1/* Target-dependent code for GDB, the GNU debugger.
2
3   Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4   1997, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6   This file is part of GDB.
7
8   This program is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 2 of the License, or
11   (at your option) any later version.
12
13   This program is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with this program; if not, write to the Free Software
20   Foundation, Inc., 59 Temple Place - Suite 330,
21   Boston, MA 02111-1307, USA.  */
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "regcache.h"
33#include "value.h"
34#include "osabi.h"
35#include "regset.h"
36#include "solib-svr4.h"
37#include "ppc-tdep.h"
38#include "trad-frame.h"
39#include "frame-unwind.h"
40
41/* The following instructions are used in the signal trampoline code
42   on GNU/Linux PPC. The kernel used to use magic syscalls 0x6666 and
43   0x7777 but now uses the sigreturn syscalls.  We check for both.  */
44#define INSTR_LI_R0_0x6666		0x38006666
45#define INSTR_LI_R0_0x7777		0x38007777
46#define INSTR_LI_R0_NR_sigreturn	0x38000077
47#define INSTR_LI_R0_NR_rt_sigreturn	0x380000AC
48
49#define INSTR_SC			0x44000002
50
51/* Since the *-tdep.c files are platform independent (i.e, they may be
52   used to build cross platform debuggers), we can't include system
53   headers.  Therefore, details concerning the sigcontext structure
54   must be painstakingly rerecorded.  What's worse, if these details
55   ever change in the header files, they'll have to be changed here
56   as well. */
57
58/* __SIGNAL_FRAMESIZE from <asm/ptrace.h> */
59#define PPC_LINUX_SIGNAL_FRAMESIZE 64
60
61/* From <asm/sigcontext.h>, offsetof(struct sigcontext_struct, regs) == 0x1c */
62#define PPC_LINUX_REGS_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x1c)
63
64/* From <asm/sigcontext.h>,
65   offsetof(struct sigcontext_struct, handler) == 0x14 */
66#define PPC_LINUX_HANDLER_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x14)
67
68/* From <asm/ptrace.h>, values for PT_NIP, PT_R1, and PT_LNK */
69#define PPC_LINUX_PT_R0		0
70#define PPC_LINUX_PT_R1		1
71#define PPC_LINUX_PT_R2		2
72#define PPC_LINUX_PT_R3		3
73#define PPC_LINUX_PT_R4		4
74#define PPC_LINUX_PT_R5		5
75#define PPC_LINUX_PT_R6		6
76#define PPC_LINUX_PT_R7		7
77#define PPC_LINUX_PT_R8		8
78#define PPC_LINUX_PT_R9		9
79#define PPC_LINUX_PT_R10	10
80#define PPC_LINUX_PT_R11	11
81#define PPC_LINUX_PT_R12	12
82#define PPC_LINUX_PT_R13	13
83#define PPC_LINUX_PT_R14	14
84#define PPC_LINUX_PT_R15	15
85#define PPC_LINUX_PT_R16	16
86#define PPC_LINUX_PT_R17	17
87#define PPC_LINUX_PT_R18	18
88#define PPC_LINUX_PT_R19	19
89#define PPC_LINUX_PT_R20	20
90#define PPC_LINUX_PT_R21	21
91#define PPC_LINUX_PT_R22	22
92#define PPC_LINUX_PT_R23	23
93#define PPC_LINUX_PT_R24	24
94#define PPC_LINUX_PT_R25	25
95#define PPC_LINUX_PT_R26	26
96#define PPC_LINUX_PT_R27	27
97#define PPC_LINUX_PT_R28	28
98#define PPC_LINUX_PT_R29	29
99#define PPC_LINUX_PT_R30	30
100#define PPC_LINUX_PT_R31	31
101#define PPC_LINUX_PT_NIP	32
102#define PPC_LINUX_PT_MSR	33
103#define PPC_LINUX_PT_CTR	35
104#define PPC_LINUX_PT_LNK	36
105#define PPC_LINUX_PT_XER	37
106#define PPC_LINUX_PT_CCR	38
107#define PPC_LINUX_PT_MQ		39
108#define PPC_LINUX_PT_FPR0	48	/* each FP reg occupies 2 slots in this space */
109#define PPC_LINUX_PT_FPR31 (PPC_LINUX_PT_FPR0 + 2*31)
110#define PPC_LINUX_PT_FPSCR (PPC_LINUX_PT_FPR0 + 2*32 + 1)
111
112static int ppc_linux_at_sigtramp_return_path (CORE_ADDR pc);
113
114/* Determine if pc is in a signal trampoline...
115
116   Ha!  That's not what this does at all.  wait_for_inferior in
117   infrun.c calls get_frame_type() in order to detect entry into a
118   signal trampoline just after delivery of a signal.  But on
119   GNU/Linux, signal trampolines are used for the return path only.
120   The kernel sets things up so that the signal handler is called
121   directly.
122
123   If we use in_sigtramp2() in place of in_sigtramp() (see below)
124   we'll (often) end up with stop_pc in the trampoline and prev_pc in
125   the (now exited) handler.  The code there will cause a temporary
126   breakpoint to be set on prev_pc which is not very likely to get hit
127   again.
128
129   If this is confusing, think of it this way...  the code in
130   wait_for_inferior() needs to be able to detect entry into a signal
131   trampoline just after a signal is delivered, not after the handler
132   has been run.
133
134   So, we define in_sigtramp() below to return 1 if the following is
135   true:
136
137   1) The previous frame is a real signal trampoline.
138
139   - and -
140
141   2) pc is at the first or second instruction of the corresponding
142   handler.
143
144   Why the second instruction?  It seems that wait_for_inferior()
145   never sees the first instruction when single stepping.  When a
146   signal is delivered while stepping, the next instruction that
147   would've been stepped over isn't, instead a signal is delivered and
148   the first instruction of the handler is stepped over instead.  That
149   puts us on the second instruction.  (I added the test for the first
150   instruction long after the fact, just in case the observed behavior
151   is ever fixed.)  */
152
153int
154ppc_linux_in_sigtramp (CORE_ADDR pc, char *func_name)
155{
156  CORE_ADDR lr;
157  CORE_ADDR sp;
158  CORE_ADDR tramp_sp;
159  char buf[4];
160  CORE_ADDR handler;
161
162  lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
163  if (!ppc_linux_at_sigtramp_return_path (lr))
164    return 0;
165
166  sp = read_register (SP_REGNUM);
167
168  if (target_read_memory (sp, buf, sizeof (buf)) != 0)
169    return 0;
170
171  tramp_sp = extract_unsigned_integer (buf, 4);
172
173  if (target_read_memory (tramp_sp + PPC_LINUX_HANDLER_PTR_OFFSET, buf,
174			  sizeof (buf)) != 0)
175    return 0;
176
177  handler = extract_unsigned_integer (buf, 4);
178
179  return (pc == handler || pc == handler + 4);
180}
181
182static int
183insn_is_sigreturn (unsigned long pcinsn)
184{
185  switch(pcinsn)
186    {
187    case INSTR_LI_R0_0x6666:
188    case INSTR_LI_R0_0x7777:
189    case INSTR_LI_R0_NR_sigreturn:
190    case INSTR_LI_R0_NR_rt_sigreturn:
191      return 1;
192    default:
193      return 0;
194    }
195}
196
197/*
198 * The signal handler trampoline is on the stack and consists of exactly
199 * two instructions.  The easiest and most accurate way of determining
200 * whether the pc is in one of these trampolines is by inspecting the
201 * instructions.  It'd be faster though if we could find a way to do this
202 * via some simple address comparisons.
203 */
204static int
205ppc_linux_at_sigtramp_return_path (CORE_ADDR pc)
206{
207  char buf[12];
208  unsigned long pcinsn;
209  if (target_read_memory (pc - 4, buf, sizeof (buf)) != 0)
210    return 0;
211
212  /* extract the instruction at the pc */
213  pcinsn = extract_unsigned_integer (buf + 4, 4);
214
215  return (
216	   (insn_is_sigreturn (pcinsn)
217	    && extract_unsigned_integer (buf + 8, 4) == INSTR_SC)
218	   ||
219	   (pcinsn == INSTR_SC
220	    && insn_is_sigreturn (extract_unsigned_integer (buf, 4))));
221}
222
223static CORE_ADDR
224ppc_linux_skip_trampoline_code (CORE_ADDR pc)
225{
226  char buf[4];
227  struct obj_section *sect;
228  struct objfile *objfile;
229  unsigned long insn;
230  CORE_ADDR plt_start = 0;
231  CORE_ADDR symtab = 0;
232  CORE_ADDR strtab = 0;
233  int num_slots = -1;
234  int reloc_index = -1;
235  CORE_ADDR plt_table;
236  CORE_ADDR reloc;
237  CORE_ADDR sym;
238  long symidx;
239  char symname[1024];
240  struct minimal_symbol *msymbol;
241
242  /* Find the section pc is in; return if not in .plt */
243  sect = find_pc_section (pc);
244  if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0)
245    return 0;
246
247  objfile = sect->objfile;
248
249  /* Pick up the instruction at pc.  It had better be of the
250     form
251     li r11, IDX
252
253     where IDX is an index into the plt_table.  */
254
255  if (target_read_memory (pc, buf, 4) != 0)
256    return 0;
257  insn = extract_unsigned_integer (buf, 4);
258
259  if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ )
260    return 0;
261
262  reloc_index = (insn << 16) >> 16;
263
264  /* Find the objfile that pc is in and obtain the information
265     necessary for finding the symbol name. */
266  for (sect = objfile->sections; sect < objfile->sections_end; ++sect)
267    {
268      const char *secname = sect->the_bfd_section->name;
269      if (strcmp (secname, ".plt") == 0)
270	plt_start = sect->addr;
271      else if (strcmp (secname, ".rela.plt") == 0)
272	num_slots = ((int) sect->endaddr - (int) sect->addr) / 12;
273      else if (strcmp (secname, ".dynsym") == 0)
274	symtab = sect->addr;
275      else if (strcmp (secname, ".dynstr") == 0)
276	strtab = sect->addr;
277    }
278
279  /* Make sure we have all the information we need. */
280  if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0)
281    return 0;
282
283  /* Compute the value of the plt table */
284  plt_table = plt_start + 72 + 8 * num_slots;
285
286  /* Get address of the relocation entry (Elf32_Rela) */
287  if (target_read_memory (plt_table + reloc_index, buf, 4) != 0)
288    return 0;
289  reloc = extract_unsigned_integer (buf, 4);
290
291  sect = find_pc_section (reloc);
292  if (!sect)
293    return 0;
294
295  if (strcmp (sect->the_bfd_section->name, ".text") == 0)
296    return reloc;
297
298  /* Now get the r_info field which is the relocation type and symbol
299     index. */
300  if (target_read_memory (reloc + 4, buf, 4) != 0)
301    return 0;
302  symidx = extract_unsigned_integer (buf, 4);
303
304  /* Shift out the relocation type leaving just the symbol index */
305  /* symidx = ELF32_R_SYM(symidx); */
306  symidx = symidx >> 8;
307
308  /* compute the address of the symbol */
309  sym = symtab + symidx * 4;
310
311  /* Fetch the string table index */
312  if (target_read_memory (sym, buf, 4) != 0)
313    return 0;
314  symidx = extract_unsigned_integer (buf, 4);
315
316  /* Fetch the string; we don't know how long it is.  Is it possible
317     that the following will fail because we're trying to fetch too
318     much? */
319  if (target_read_memory (strtab + symidx, symname, sizeof (symname)) != 0)
320    return 0;
321
322  /* This might not work right if we have multiple symbols with the
323     same name; the only way to really get it right is to perform
324     the same sort of lookup as the dynamic linker. */
325  msymbol = lookup_minimal_symbol_text (symname, NULL);
326  if (!msymbol)
327    return 0;
328
329  return SYMBOL_VALUE_ADDRESS (msymbol);
330}
331
332/* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
333   in much the same fashion as memory_remove_breakpoint in mem-break.c,
334   but is careful not to write back the previous contents if the code
335   in question has changed in between inserting the breakpoint and
336   removing it.
337
338   Here is the problem that we're trying to solve...
339
340   Once upon a time, before introducing this function to remove
341   breakpoints from the inferior, setting a breakpoint on a shared
342   library function prior to running the program would not work
343   properly.  In order to understand the problem, it is first
344   necessary to understand a little bit about dynamic linking on
345   this platform.
346
347   A call to a shared library function is accomplished via a bl
348   (branch-and-link) instruction whose branch target is an entry
349   in the procedure linkage table (PLT).  The PLT in the object
350   file is uninitialized.  To gdb, prior to running the program, the
351   entries in the PLT are all zeros.
352
353   Once the program starts running, the shared libraries are loaded
354   and the procedure linkage table is initialized, but the entries in
355   the table are not (necessarily) resolved.  Once a function is
356   actually called, the code in the PLT is hit and the function is
357   resolved.  In order to better illustrate this, an example is in
358   order; the following example is from the gdb testsuite.
359
360	We start the program shmain.
361
362	    [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
363	    [...]
364
365	We place two breakpoints, one on shr1 and the other on main.
366
367	    (gdb) b shr1
368	    Breakpoint 1 at 0x100409d4
369	    (gdb) b main
370	    Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
371
372	Examine the instruction (and the immediatly following instruction)
373	upon which the breakpoint was placed.  Note that the PLT entry
374	for shr1 contains zeros.
375
376	    (gdb) x/2i 0x100409d4
377	    0x100409d4 <shr1>:      .long 0x0
378	    0x100409d8 <shr1+4>:    .long 0x0
379
380	Now run 'til main.
381
382	    (gdb) r
383	    Starting program: gdb.base/shmain
384	    Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
385
386	    Breakpoint 2, main ()
387		at gdb.base/shmain.c:44
388	    44        g = 1;
389
390	Examine the PLT again.  Note that the loading of the shared
391	library has initialized the PLT to code which loads a constant
392	(which I think is an index into the GOT) into r11 and then
393	branchs a short distance to the code which actually does the
394	resolving.
395
396	    (gdb) x/2i 0x100409d4
397	    0x100409d4 <shr1>:      li      r11,4
398	    0x100409d8 <shr1+4>:    b       0x10040984 <sg+4>
399	    (gdb) c
400	    Continuing.
401
402	    Breakpoint 1, shr1 (x=1)
403		at gdb.base/shr1.c:19
404	    19        l = 1;
405
406	Now we've hit the breakpoint at shr1.  (The breakpoint was
407	reset from the PLT entry to the actual shr1 function after the
408	shared library was loaded.) Note that the PLT entry has been
409	resolved to contain a branch that takes us directly to shr1.
410	(The real one, not the PLT entry.)
411
412	    (gdb) x/2i 0x100409d4
413	    0x100409d4 <shr1>:      b       0xffaf76c <shr1>
414	    0x100409d8 <shr1+4>:    b       0x10040984 <sg+4>
415
416   The thing to note here is that the PLT entry for shr1 has been
417   changed twice.
418
419   Now the problem should be obvious.  GDB places a breakpoint (a
420   trap instruction) on the zero value of the PLT entry for shr1.
421   Later on, after the shared library had been loaded and the PLT
422   initialized, GDB gets a signal indicating this fact and attempts
423   (as it always does when it stops) to remove all the breakpoints.
424
425   The breakpoint removal was causing the former contents (a zero
426   word) to be written back to the now initialized PLT entry thus
427   destroying a portion of the initialization that had occurred only a
428   short time ago.  When execution continued, the zero word would be
429   executed as an instruction an an illegal instruction trap was
430   generated instead.  (0 is not a legal instruction.)
431
432   The fix for this problem was fairly straightforward.  The function
433   memory_remove_breakpoint from mem-break.c was copied to this file,
434   modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
435   In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
436   function.
437
438   The differences between ppc_linux_memory_remove_breakpoint () and
439   memory_remove_breakpoint () are minor.  All that the former does
440   that the latter does not is check to make sure that the breakpoint
441   location actually contains a breakpoint (trap instruction) prior
442   to attempting to write back the old contents.  If it does contain
443   a trap instruction, we allow the old contents to be written back.
444   Otherwise, we silently do nothing.
445
446   The big question is whether memory_remove_breakpoint () should be
447   changed to have the same functionality.  The downside is that more
448   traffic is generated for remote targets since we'll have an extra
449   fetch of a memory word each time a breakpoint is removed.
450
451   For the time being, we'll leave this self-modifying-code-friendly
452   version in ppc-linux-tdep.c, but it ought to be migrated somewhere
453   else in the event that some other platform has similar needs with
454   regard to removing breakpoints in some potentially self modifying
455   code.  */
456int
457ppc_linux_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
458{
459  const unsigned char *bp;
460  int val;
461  int bplen;
462  char old_contents[BREAKPOINT_MAX];
463
464  /* Determine appropriate breakpoint contents and size for this address.  */
465  bp = BREAKPOINT_FROM_PC (&addr, &bplen);
466  if (bp == NULL)
467    error ("Software breakpoints not implemented for this target.");
468
469  val = target_read_memory (addr, old_contents, bplen);
470
471  /* If our breakpoint is no longer at the address, this means that the
472     program modified the code on us, so it is wrong to put back the
473     old value */
474  if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
475    val = target_write_memory (addr, contents_cache, bplen);
476
477  return val;
478}
479
480/* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
481   than the 32 bit SYSV R4 ABI structure return convention - all
482   structures, no matter their size, are put in memory.  Vectors,
483   which were added later, do get returned in a register though.  */
484
485static enum return_value_convention
486ppc_linux_return_value (struct gdbarch *gdbarch, struct type *valtype,
487			struct regcache *regcache, void *readbuf,
488			const void *writebuf)
489{
490  if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
491       || TYPE_CODE (valtype) == TYPE_CODE_UNION)
492      && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
493	   && TYPE_VECTOR (valtype)))
494    return RETURN_VALUE_STRUCT_CONVENTION;
495  else
496    return ppc_sysv_abi_return_value (gdbarch, valtype, regcache, readbuf,
497				      writebuf);
498}
499
500/* Fetch (and possibly build) an appropriate link_map_offsets
501   structure for GNU/Linux PPC targets using the struct offsets
502   defined in link.h (but without actual reference to that file).
503
504   This makes it possible to access GNU/Linux PPC shared libraries
505   from a GDB that was not built on an GNU/Linux PPC host (for cross
506   debugging).  */
507
508struct link_map_offsets *
509ppc_linux_svr4_fetch_link_map_offsets (void)
510{
511  static struct link_map_offsets lmo;
512  static struct link_map_offsets *lmp = NULL;
513
514  if (lmp == NULL)
515    {
516      lmp = &lmo;
517
518      lmo.r_debug_size = 8;	/* The actual size is 20 bytes, but
519				   this is all we need.  */
520      lmo.r_map_offset = 4;
521      lmo.r_map_size   = 4;
522
523      lmo.link_map_size = 20;	/* The actual size is 560 bytes, but
524				   this is all we need.  */
525      lmo.l_addr_offset = 0;
526      lmo.l_addr_size   = 4;
527
528      lmo.l_name_offset = 4;
529      lmo.l_name_size   = 4;
530
531      lmo.l_next_offset = 12;
532      lmo.l_next_size   = 4;
533
534      lmo.l_prev_offset = 16;
535      lmo.l_prev_size   = 4;
536    }
537
538  return lmp;
539}
540
541
542/* Macros for matching instructions.  Note that, since all the
543   operands are masked off before they're or-ed into the instruction,
544   you can use -1 to make masks.  */
545
546#define insn_d(opcd, rts, ra, d)                \
547  ((((opcd) & 0x3f) << 26)                      \
548   | (((rts) & 0x1f) << 21)                     \
549   | (((ra) & 0x1f) << 16)                      \
550   | ((d) & 0xffff))
551
552#define insn_ds(opcd, rts, ra, d, xo)           \
553  ((((opcd) & 0x3f) << 26)                      \
554   | (((rts) & 0x1f) << 21)                     \
555   | (((ra) & 0x1f) << 16)                      \
556   | ((d) & 0xfffc)                             \
557   | ((xo) & 0x3))
558
559#define insn_xfx(opcd, rts, spr, xo)            \
560  ((((opcd) & 0x3f) << 26)                      \
561   | (((rts) & 0x1f) << 21)                     \
562   | (((spr) & 0x1f) << 16)                     \
563   | (((spr) & 0x3e0) << 6)                     \
564   | (((xo) & 0x3ff) << 1))
565
566/* Read a PPC instruction from memory.  PPC instructions are always
567   big-endian, no matter what endianness the program is running in, so
568   we can't use read_memory_integer or one of its friends here.  */
569static unsigned int
570read_insn (CORE_ADDR pc)
571{
572  unsigned char buf[4];
573
574  read_memory (pc, buf, 4);
575  return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
576}
577
578
579/* An instruction to match.  */
580struct insn_pattern
581{
582  unsigned int mask;            /* mask the insn with this... */
583  unsigned int data;            /* ...and see if it matches this. */
584  int optional;                 /* If non-zero, this insn may be absent.  */
585};
586
587/* Return non-zero if the instructions at PC match the series
588   described in PATTERN, or zero otherwise.  PATTERN is an array of
589   'struct insn_pattern' objects, terminated by an entry whose mask is
590   zero.
591
592   When the match is successful, fill INSN[i] with what PATTERN[i]
593   matched.  If PATTERN[i] is optional, and the instruction wasn't
594   present, set INSN[i] to 0 (which is not a valid PPC instruction).
595   INSN should have as many elements as PATTERN.  Note that, if
596   PATTERN contains optional instructions which aren't present in
597   memory, then INSN will have holes, so INSN[i] isn't necessarily the
598   i'th instruction in memory.  */
599static int
600insns_match_pattern (CORE_ADDR pc,
601                     struct insn_pattern *pattern,
602                     unsigned int *insn)
603{
604  int i;
605
606  for (i = 0; pattern[i].mask; i++)
607    {
608      insn[i] = read_insn (pc);
609      if ((insn[i] & pattern[i].mask) == pattern[i].data)
610        pc += 4;
611      else if (pattern[i].optional)
612        insn[i] = 0;
613      else
614        return 0;
615    }
616
617  return 1;
618}
619
620
621/* Return the 'd' field of the d-form instruction INSN, properly
622   sign-extended.  */
623static CORE_ADDR
624insn_d_field (unsigned int insn)
625{
626  return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
627}
628
629
630/* Return the 'ds' field of the ds-form instruction INSN, with the two
631   zero bits concatenated at the right, and properly
632   sign-extended.  */
633static CORE_ADDR
634insn_ds_field (unsigned int insn)
635{
636  return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
637}
638
639
640/* If DESC is the address of a 64-bit PowerPC GNU/Linux function
641   descriptor, return the descriptor's entry point.  */
642static CORE_ADDR
643ppc64_desc_entry_point (CORE_ADDR desc)
644{
645  /* The first word of the descriptor is the entry point.  */
646  return (CORE_ADDR) read_memory_unsigned_integer (desc, 8);
647}
648
649
650/* Pattern for the standard linkage function.  These are built by
651   build_plt_stub in elf64-ppc.c, whose GLINK argument is always
652   zero.  */
653static struct insn_pattern ppc64_standard_linkage[] =
654  {
655    /* addis r12, r2, <any> */
656    { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
657
658    /* std r2, 40(r1) */
659    { -1, insn_ds (62, 2, 1, 40, 0), 0 },
660
661    /* ld r11, <any>(r12) */
662    { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
663
664    /* addis r12, r12, 1 <optional> */
665    { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
666
667    /* ld r2, <any>(r12) */
668    { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
669
670    /* addis r12, r12, 1 <optional> */
671    { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
672
673    /* mtctr r11 */
674    { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467),
675      0 },
676
677    /* ld r11, <any>(r12) */
678    { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
679
680    /* bctr */
681    { -1, 0x4e800420, 0 },
682
683    { 0, 0, 0 }
684  };
685#define PPC64_STANDARD_LINKAGE_LEN \
686  (sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0]))
687
688
689/* Recognize a 64-bit PowerPC GNU/Linux linkage function --- what GDB
690   calls a "solib trampoline".  */
691static int
692ppc64_in_solib_call_trampoline (CORE_ADDR pc, char *name)
693{
694  /* Detecting solib call trampolines on PPC64 GNU/Linux is a pain.
695
696     It's not specifically solib call trampolines that are the issue.
697     Any call from one function to another function that uses a
698     different TOC requires a trampoline, to save the caller's TOC
699     pointer and then load the callee's TOC.  An executable or shared
700     library may have more than one TOC, so even intra-object calls
701     may require a trampoline.  Since executable and shared libraries
702     will all have their own distinct TOCs, every inter-object call is
703     also an inter-TOC call, and requires a trampoline --- so "solib
704     call trampolines" are just a special case.
705
706     The 64-bit PowerPC GNU/Linux ABI calls these call trampolines
707     "linkage functions".  Since they need to be near the functions
708     that call them, they all appear in .text, not in any special
709     section.  The .plt section just contains an array of function
710     descriptors, from which the linkage functions load the callee's
711     entry point, TOC value, and environment pointer.  So
712     in_plt_section is useless.  The linkage functions don't have any
713     special linker symbols to name them, either.
714
715     The only way I can see to recognize them is to actually look at
716     their code.  They're generated by ppc_build_one_stub and some
717     other functions in bfd/elf64-ppc.c, so that should show us all
718     the instruction sequences we need to recognize.  */
719  unsigned int insn[PPC64_STANDARD_LINKAGE_LEN];
720
721  return insns_match_pattern (pc, ppc64_standard_linkage, insn);
722}
723
724
725/* When the dynamic linker is doing lazy symbol resolution, the first
726   call to a function in another object will go like this:
727
728   - The user's function calls the linkage function:
729
730     100007c4:	4b ff fc d5 	bl	10000498
731     100007c8:	e8 41 00 28 	ld	r2,40(r1)
732
733   - The linkage function loads the entry point (and other stuff) from
734     the function descriptor in the PLT, and jumps to it:
735
736     10000498:	3d 82 00 00 	addis	r12,r2,0
737     1000049c:	f8 41 00 28 	std	r2,40(r1)
738     100004a0:	e9 6c 80 98 	ld	r11,-32616(r12)
739     100004a4:	e8 4c 80 a0 	ld	r2,-32608(r12)
740     100004a8:	7d 69 03 a6 	mtctr	r11
741     100004ac:	e9 6c 80 a8 	ld	r11,-32600(r12)
742     100004b0:	4e 80 04 20 	bctr
743
744   - But since this is the first time that PLT entry has been used, it
745     sends control to its glink entry.  That loads the number of the
746     PLT entry and jumps to the common glink0 code:
747
748     10000c98:	38 00 00 00 	li	r0,0
749     10000c9c:	4b ff ff dc 	b	10000c78
750
751   - The common glink0 code then transfers control to the dynamic
752     linker's fixup code:
753
754     10000c78:	e8 41 00 28 	ld	r2,40(r1)
755     10000c7c:	3d 82 00 00 	addis	r12,r2,0
756     10000c80:	e9 6c 80 80 	ld	r11,-32640(r12)
757     10000c84:	e8 4c 80 88 	ld	r2,-32632(r12)
758     10000c88:	7d 69 03 a6 	mtctr	r11
759     10000c8c:	e9 6c 80 90 	ld	r11,-32624(r12)
760     10000c90:	4e 80 04 20 	bctr
761
762   Eventually, this code will figure out how to skip all of this,
763   including the dynamic linker.  At the moment, we just get through
764   the linkage function.  */
765
766/* If the current thread is about to execute a series of instructions
767   at PC matching the ppc64_standard_linkage pattern, and INSN is the result
768   from that pattern match, return the code address to which the
769   standard linkage function will send them.  (This doesn't deal with
770   dynamic linker lazy symbol resolution stubs.)  */
771static CORE_ADDR
772ppc64_standard_linkage_target (CORE_ADDR pc, unsigned int *insn)
773{
774  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
775
776  /* The address of the function descriptor this linkage function
777     references.  */
778  CORE_ADDR desc
779    = ((CORE_ADDR) read_register (tdep->ppc_gp0_regnum + 2)
780       + (insn_d_field (insn[0]) << 16)
781       + insn_ds_field (insn[2]));
782
783  /* The first word of the descriptor is the entry point.  Return that.  */
784  return ppc64_desc_entry_point (desc);
785}
786
787
788/* Given that we've begun executing a call trampoline at PC, return
789   the entry point of the function the trampoline will go to.  */
790static CORE_ADDR
791ppc64_skip_trampoline_code (CORE_ADDR pc)
792{
793  unsigned int ppc64_standard_linkage_insn[PPC64_STANDARD_LINKAGE_LEN];
794
795  if (insns_match_pattern (pc, ppc64_standard_linkage,
796                           ppc64_standard_linkage_insn))
797    return ppc64_standard_linkage_target (pc, ppc64_standard_linkage_insn);
798  else
799    return 0;
800}
801
802
803/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG) on PPC64
804   GNU/Linux.
805
806   Usually a function pointer's representation is simply the address
807   of the function. On GNU/Linux on the 64-bit PowerPC however, a
808   function pointer is represented by a pointer to a TOC entry. This
809   TOC entry contains three words, the first word is the address of
810   the function, the second word is the TOC pointer (r2), and the
811   third word is the static chain value.  Throughout GDB it is
812   currently assumed that a function pointer contains the address of
813   the function, which is not easy to fix.  In addition, the
814   conversion of a function address to a function pointer would
815   require allocation of a TOC entry in the inferior's memory space,
816   with all its drawbacks.  To be able to call C++ virtual methods in
817   the inferior (which are called via function pointers),
818   find_function_addr uses this function to get the function address
819   from a function pointer.  */
820
821/* If ADDR points at what is clearly a function descriptor, transform
822   it into the address of the corresponding function.  Be
823   conservative, otherwize GDB will do the transformation on any
824   random addresses such as occures when there is no symbol table.  */
825
826static CORE_ADDR
827ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
828					CORE_ADDR addr,
829					struct target_ops *targ)
830{
831  struct section_table *s = target_section_by_addr (targ, addr);
832
833  /* Check if ADDR points to a function descriptor.  */
834  if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
835    return get_target_memory_unsigned (targ, addr, 8);
836
837  return addr;
838}
839
840static void
841right_supply_register (struct regcache *regcache, int wordsize, int regnum,
842		       const bfd_byte *buf)
843{
844  regcache_raw_supply (regcache, regnum,
845		       (buf + wordsize - register_size (current_gdbarch, regnum)));
846}
847
848/* Extract the register values found in the WORDSIZED ABI GREGSET,
849   storing their values in REGCACHE.  Note that some are left-aligned,
850   while others are right aligned.  */
851
852void
853ppc_linux_supply_gregset (struct regcache *regcache,
854			  int regnum, const void *gregs, size_t size,
855			  int wordsize)
856{
857  int regi;
858  struct gdbarch *regcache_arch = get_regcache_arch (regcache);
859  struct gdbarch_tdep *regcache_tdep = gdbarch_tdep (regcache_arch);
860  const bfd_byte *buf = gregs;
861
862  for (regi = 0; regi < ppc_num_gprs; regi++)
863    right_supply_register (regcache, wordsize,
864                           regcache_tdep->ppc_gp0_regnum + regi,
865                           buf + wordsize * regi);
866
867  right_supply_register (regcache, wordsize, gdbarch_pc_regnum (regcache_arch),
868			 buf + wordsize * PPC_LINUX_PT_NIP);
869  right_supply_register (regcache, wordsize, regcache_tdep->ppc_lr_regnum,
870			 buf + wordsize * PPC_LINUX_PT_LNK);
871  regcache_raw_supply (regcache, regcache_tdep->ppc_cr_regnum,
872		       buf + wordsize * PPC_LINUX_PT_CCR);
873  regcache_raw_supply (regcache, regcache_tdep->ppc_xer_regnum,
874		       buf + wordsize * PPC_LINUX_PT_XER);
875  regcache_raw_supply (regcache, regcache_tdep->ppc_ctr_regnum,
876		       buf + wordsize * PPC_LINUX_PT_CTR);
877  if (regcache_tdep->ppc_mq_regnum != -1)
878    right_supply_register (regcache, wordsize, regcache_tdep->ppc_mq_regnum,
879			   buf + wordsize * PPC_LINUX_PT_MQ);
880  right_supply_register (regcache, wordsize, regcache_tdep->ppc_ps_regnum,
881			 buf + wordsize * PPC_LINUX_PT_MSR);
882}
883
884static void
885ppc32_linux_supply_gregset (const struct regset *regset,
886			    struct regcache *regcache,
887			    int regnum, const void *gregs, size_t size)
888{
889  ppc_linux_supply_gregset (regcache, regnum, gregs, size, 4);
890}
891
892static struct regset ppc32_linux_gregset = {
893  NULL, ppc32_linux_supply_gregset
894};
895
896struct ppc_linux_sigtramp_cache
897{
898  CORE_ADDR base;
899  struct trad_frame_saved_reg *saved_regs;
900};
901
902static struct ppc_linux_sigtramp_cache *
903ppc_linux_sigtramp_cache (struct frame_info *next_frame, void **this_cache)
904{
905  CORE_ADDR regs;
906  CORE_ADDR gpregs;
907  CORE_ADDR fpregs;
908  int i;
909  struct ppc_linux_sigtramp_cache *cache;
910  struct gdbarch *gdbarch = get_frame_arch (next_frame);
911  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
912
913  if ((*this_cache) != NULL)
914    return (*this_cache);
915  cache = FRAME_OBSTACK_ZALLOC (struct ppc_linux_sigtramp_cache);
916  (*this_cache) = cache;
917  cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
918
919  cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
920
921  /* Find the register pointer, which gives the address of the
922     register buffers.  */
923  if (tdep->wordsize == 4)
924    regs = (cache->base
925	    + 0xd0 /* Offset to ucontext_t.  */
926	    + 0x30 /* Offset to .reg.  */);
927  else
928    regs = (cache->base
929	    + 0x80 /* Offset to ucontext_t.  */
930	    + 0xe0 /* Offset to .reg.  */);
931  /* And the corresponding register buffers.  */
932  gpregs = read_memory_unsigned_integer (regs, tdep->wordsize);
933  fpregs = gpregs + 48 * tdep->wordsize;
934
935  /* General purpose.  */
936  for (i = 0; i < ppc_num_gprs; i++)
937    {
938      int regnum = i + tdep->ppc_gp0_regnum;
939      cache->saved_regs[regnum].addr = gpregs + i * tdep->wordsize;
940    }
941  cache->saved_regs[PC_REGNUM].addr = gpregs + 32 * tdep->wordsize;
942  cache->saved_regs[tdep->ppc_ctr_regnum].addr = gpregs + 35 * tdep->wordsize;
943  cache->saved_regs[tdep->ppc_lr_regnum].addr = gpregs + 36 * tdep->wordsize;
944  cache->saved_regs[tdep->ppc_xer_regnum].addr = gpregs + 37 * tdep->wordsize;
945  cache->saved_regs[tdep->ppc_cr_regnum].addr = gpregs + 38 * tdep->wordsize;
946
947  /* Floating point registers.  */
948  if (ppc_floating_point_unit_p (gdbarch))
949    {
950      for (i = 0; i < ppc_num_fprs; i++)
951        {
952          int regnum = i + tdep->ppc_fp0_regnum;
953          cache->saved_regs[regnum].addr = fpregs + i * tdep->wordsize;
954        }
955      cache->saved_regs[tdep->ppc_fpscr_regnum].addr
956        = fpregs + 32 * tdep->wordsize;
957    }
958
959  return cache;
960}
961
962static void
963ppc_linux_sigtramp_this_id (struct frame_info *next_frame, void **this_cache,
964			  struct frame_id *this_id)
965{
966  struct ppc_linux_sigtramp_cache *info
967    = ppc_linux_sigtramp_cache (next_frame, this_cache);
968  (*this_id) = frame_id_build (info->base, frame_pc_unwind (next_frame));
969}
970
971static void
972ppc_linux_sigtramp_prev_register (struct frame_info *next_frame,
973				void **this_cache,
974				int regnum, int *optimizedp,
975				enum lval_type *lvalp, CORE_ADDR *addrp,
976				int *realnump, void *valuep)
977{
978  struct ppc_linux_sigtramp_cache *info
979    = ppc_linux_sigtramp_cache (next_frame, this_cache);
980  trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
981				optimizedp, lvalp, addrp, realnump, valuep);
982}
983
984static const struct frame_unwind ppc_linux_sigtramp_unwind =
985{
986  SIGTRAMP_FRAME,
987  ppc_linux_sigtramp_this_id,
988  ppc_linux_sigtramp_prev_register
989};
990
991static const struct frame_unwind *
992ppc_linux_sigtramp_sniffer (struct frame_info *next_frame)
993{
994  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
995  if (frame_pc_unwind (next_frame)
996      > frame_unwind_register_unsigned (next_frame, SP_REGNUM))
997    /* Assume anything that is vaguely on the stack is a signal
998       trampoline.  */
999    return &ppc_linux_sigtramp_unwind;
1000  else
1001    return NULL;
1002}
1003
1004static void
1005ppc64_linux_supply_gregset (const struct regset *regset,
1006			    struct regcache * regcache,
1007			    int regnum, const void *gregs, size_t size)
1008{
1009  ppc_linux_supply_gregset (regcache, regnum, gregs, size, 8);
1010}
1011
1012static struct regset ppc64_linux_gregset = {
1013  NULL, ppc64_linux_supply_gregset
1014};
1015
1016void
1017ppc_linux_supply_fpregset (const struct regset *regset,
1018			   struct regcache * regcache,
1019			   int regnum, const void *fpset, size_t size)
1020{
1021  int regi;
1022  struct gdbarch *regcache_arch = get_regcache_arch (regcache);
1023  struct gdbarch_tdep *regcache_tdep = gdbarch_tdep (regcache_arch);
1024  const bfd_byte *buf = fpset;
1025
1026  if (! ppc_floating_point_unit_p (regcache_arch))
1027    return;
1028
1029  for (regi = 0; regi < ppc_num_fprs; regi++)
1030    regcache_raw_supply (regcache,
1031                         regcache_tdep->ppc_fp0_regnum + regi,
1032                         buf + 8 * regi);
1033
1034  /* The FPSCR is stored in the low order word of the last
1035     doubleword in the fpregset.  */
1036  regcache_raw_supply (regcache, regcache_tdep->ppc_fpscr_regnum,
1037                       buf + 8 * 32 + 4);
1038}
1039
1040static struct regset ppc_linux_fpregset = { NULL, ppc_linux_supply_fpregset };
1041
1042static const struct regset *
1043ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
1044				    const char *sect_name, size_t sect_size)
1045{
1046  struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
1047  if (strcmp (sect_name, ".reg") == 0)
1048    {
1049      if (tdep->wordsize == 4)
1050	return &ppc32_linux_gregset;
1051      else
1052	return &ppc64_linux_gregset;
1053    }
1054  if (strcmp (sect_name, ".reg2") == 0)
1055    return &ppc_linux_fpregset;
1056  return NULL;
1057}
1058
1059static void
1060ppc_linux_init_abi (struct gdbarch_info info,
1061                    struct gdbarch *gdbarch)
1062{
1063  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1064
1065  if (tdep->wordsize == 4)
1066    {
1067      /* NOTE: jimb/2004-03-26: The System V ABI PowerPC Processor
1068         Supplement says that long doubles are sixteen bytes long.
1069         However, as one of the known warts of its ABI, PPC GNU/Linux
1070         uses eight-byte long doubles.  GCC only recently got 128-bit
1071         long double support on PPC, so it may be changing soon.  The
1072         Linux[sic] Standards Base says that programs that use 'long
1073         double' on PPC GNU/Linux are non-conformant.  */
1074      set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1075
1076      /* Until November 2001, gcc did not comply with the 32 bit SysV
1077	 R4 ABI requirement that structures less than or equal to 8
1078	 bytes should be returned in registers.  Instead GCC was using
1079	 the the AIX/PowerOpen ABI - everything returned in memory
1080	 (well ignoring vectors that is).  When this was corrected, it
1081	 wasn't fixed for GNU/Linux native platform.  Use the
1082	 PowerOpen struct convention.  */
1083      set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1084
1085      set_gdbarch_memory_remove_breakpoint (gdbarch,
1086                                            ppc_linux_memory_remove_breakpoint);
1087
1088      /* Shared library handling.  */
1089      set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1090      set_gdbarch_skip_trampoline_code (gdbarch,
1091                                        ppc_linux_skip_trampoline_code);
1092      set_solib_svr4_fetch_link_map_offsets
1093        (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
1094    }
1095
1096  if (tdep->wordsize == 8)
1097    {
1098      /* Handle PPC64 GNU/Linux function pointers (which are really
1099         function descriptors).  */
1100      set_gdbarch_convert_from_func_ptr_addr
1101        (gdbarch, ppc64_linux_convert_from_func_ptr_addr);
1102
1103      set_gdbarch_in_solib_call_trampoline
1104        (gdbarch, ppc64_in_solib_call_trampoline);
1105      set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1106
1107      /* PPC64 malloc's entry-point is called ".malloc".  */
1108      set_gdbarch_name_of_malloc (gdbarch, ".malloc");
1109    }
1110  set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section);
1111  frame_unwind_append_sniffer (gdbarch, ppc_linux_sigtramp_sniffer);
1112}
1113
1114void
1115_initialize_ppc_linux_tdep (void)
1116{
1117  /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1118     64-bit PowerPC, and the older rs6k.  */
1119  gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1120                         ppc_linux_init_abi);
1121  gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1122                         ppc_linux_init_abi);
1123  gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1124                         ppc_linux_init_abi);
1125}
1126