1/* Target-dependent code for the Motorola 88000 series.
2
3   Copyright 2004 Free Software Foundation, Inc.
4
5   This file is part of GDB.
6
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 2 of the License, or
10   (at your option) any later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program; if not, write to the Free Software
19   Foundation, Inc., 59 Temple Place - Suite 330,
20   Boston, MA 02111-1307, USA.  */
21
22#include "defs.h"
23#include "arch-utils.h"
24#include "dis-asm.h"
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "regcache.h"
31#include "regset.h"
32#include "symtab.h"
33#include "trad-frame.h"
34#include "value.h"
35
36#include "gdb_assert.h"
37#include "gdb_string.h"
38
39#include "m88k-tdep.h"
40
41/* Fetch the instruction at PC.  */
42
43static unsigned long
44m88k_fetch_instruction (CORE_ADDR pc)
45{
46  return read_memory_unsigned_integer (pc, 4);
47}
48
49/* Register information.  */
50
51/* Return the name of register REGNUM.  */
52
53static const char *
54m88k_register_name (int regnum)
55{
56  static char *register_names[] =
57  {
58    "r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
59    "r8",  "r9",  "r10", "r11", "r12", "r13", "r14", "r15",
60    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
61    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
62    "epsr", "fpsr", "fpcr", "sxip", "snip", "sfip"
63  };
64
65  if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
66    return register_names[regnum];
67
68  return NULL;
69}
70
71/* Return the GDB type object for the "standard" data type of data in
72   register REGNUM. */
73
74static struct type *
75m88k_register_type (struct gdbarch *gdbarch, int regnum)
76{
77  /* SXIP, SNIP, SFIP and R1 contain code addresses.  */
78  if ((regnum >= M88K_SXIP_REGNUM && regnum <= M88K_SFIP_REGNUM)
79      || regnum == M88K_R1_REGNUM)
80    return builtin_type_void_func_ptr;
81
82  /* R30 and R31 typically contains data addresses.  */
83  if (regnum == M88K_R30_REGNUM || regnum == M88K_R31_REGNUM)
84    return builtin_type_void_data_ptr;
85
86  return builtin_type_int32;
87}
88
89
90static CORE_ADDR
91m88k_addr_bits_remove (CORE_ADDR addr)
92{
93  /* All instructures are 4-byte aligned.  The lower 2 bits of SXIP,
94     SNIP and SFIP are used for special purposes: bit 0 is the
95     exception bit and bit 1 is the valid bit.  */
96  return addr & ~0x3;
97}
98
99/* Use the program counter to determine the contents and size of a
100   breakpoint instruction.  Return a pointer to a string of bytes that
101   encode a breakpoint instruction, store the length of the string in
102   *LEN and optionally adjust *PC to point to the correct memory
103   location for inserting the breakpoint.  */
104
105static const unsigned char *
106m88k_breakpoint_from_pc (CORE_ADDR *pc, int *len)
107{
108  /* tb 0,r0,511 */
109  static unsigned char break_insn[] = { 0xf0, 0x00, 0xd1, 0xff };
110
111  *len = sizeof (break_insn);
112  return break_insn;
113}
114
115static CORE_ADDR
116m88k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
117{
118  CORE_ADDR pc;
119
120  pc = frame_unwind_register_unsigned (next_frame, M88K_SXIP_REGNUM);
121  return m88k_addr_bits_remove (pc);
122}
123
124static void
125m88k_write_pc (CORE_ADDR pc, ptid_t ptid)
126{
127  /* According to the MC88100 RISC Microprocessor User's Manual,
128     section 6.4.3.1.2:
129
130     "... can be made to return to a particular instruction by placing
131     a valid instruction address in the SNIP and the next sequential
132     instruction address in the SFIP (with V bits set and E bits
133     clear).  The rte resumes execution at the instruction pointed to
134     by the SNIP, then the SFIP."
135
136     The E bit is the least significant bit (bit 0).  The V (valid)
137     bit is bit 1.  This is why we logical or 2 into the values we are
138     writing below.  It turns out that SXIP plays no role when
139     returning from an exception so nothing special has to be done
140     with it.  We could even (presumably) give it a totally bogus
141     value.  */
142
143  write_register_pid (M88K_SXIP_REGNUM, pc, ptid);
144  write_register_pid (M88K_SNIP_REGNUM, pc | 2, ptid);
145  write_register_pid (M88K_SFIP_REGNUM, (pc + 4) | 2, ptid);
146}
147
148
149/* The functions on this page are intended to be used to classify
150   function arguments.  */
151
152/* Check whether TYPE is "Integral or Pointer".  */
153
154static int
155m88k_integral_or_pointer_p (const struct type *type)
156{
157  switch (TYPE_CODE (type))
158    {
159    case TYPE_CODE_INT:
160    case TYPE_CODE_BOOL:
161    case TYPE_CODE_CHAR:
162    case TYPE_CODE_ENUM:
163    case TYPE_CODE_RANGE:
164      {
165	/* We have byte, half-word, word and extended-word/doubleword
166           integral types.  */
167	int len = TYPE_LENGTH (type);
168	return (len == 1 || len == 2 || len == 4 || len == 8);
169      }
170      return 1;
171    case TYPE_CODE_PTR:
172    case TYPE_CODE_REF:
173      {
174	/* Allow only 32-bit pointers.  */
175	return (TYPE_LENGTH (type) == 4);
176      }
177      return 1;
178    default:
179      break;
180    }
181
182  return 0;
183}
184
185/* Check whether TYPE is "Floating".  */
186
187static int
188m88k_floating_p (const struct type *type)
189{
190  switch (TYPE_CODE (type))
191    {
192    case TYPE_CODE_FLT:
193      {
194	int len = TYPE_LENGTH (type);
195	return (len == 4 || len == 8);
196      }
197    default:
198      break;
199    }
200
201  return 0;
202}
203
204/* Check whether TYPE is "Structure or Union".  */
205
206static int
207m88k_structure_or_union_p (const struct type *type)
208{
209  switch (TYPE_CODE (type))
210    {
211    case TYPE_CODE_STRUCT:
212    case TYPE_CODE_UNION:
213      return 1;
214    default:
215      break;
216    }
217
218  return 0;
219}
220
221/* Check whether TYPE has 8-byte alignment.  */
222
223static int
224m88k_8_byte_align_p (struct type *type)
225{
226  if (m88k_structure_or_union_p (type))
227    {
228      int i;
229
230      for (i = 0; i < TYPE_NFIELDS (type); i++)
231	{
232	  struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
233
234	  if (m88k_8_byte_align_p (subtype))
235	    return 1;
236	}
237    }
238
239  if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
240    return (TYPE_LENGTH (type) == 8);
241
242  return 0;
243}
244
245/* Check whether TYPE can be passed in a register.  */
246
247static int
248m88k_in_register_p (struct type *type)
249{
250  if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
251    return 1;
252
253  if (m88k_structure_or_union_p (type) && TYPE_LENGTH (type) == 4)
254    return 1;
255
256  return 0;
257}
258
259static CORE_ADDR
260m88k_store_arguments (struct regcache *regcache, int nargs,
261		      struct value **args, CORE_ADDR sp)
262{
263  int num_register_words = 0;
264  int num_stack_words = 0;
265  int i;
266
267  for (i = 0; i < nargs; i++)
268    {
269      struct type *type = VALUE_TYPE (args[i]);
270      int len = TYPE_LENGTH (type);
271
272      if (m88k_integral_or_pointer_p (type) && len < 4)
273	{
274	  args[i] = value_cast (builtin_type_int32, args[i]);
275	  type = VALUE_TYPE (args[i]);
276	  len = TYPE_LENGTH (type);
277	}
278
279      if (m88k_in_register_p (type))
280	{
281	  int num_words = 0;
282
283	  if (num_register_words % 2 == 1 && m88k_8_byte_align_p (type))
284	    num_words++;
285
286	  num_words += ((len + 3) / 4);
287	  if (num_register_words + num_words <= 8)
288	    {
289	      num_register_words += num_words;
290	      continue;
291	    }
292
293	  /* We've run out of available registers.  Pass the argument
294             on the stack.  */
295	}
296
297      if (num_stack_words % 2 == 1 && m88k_8_byte_align_p (type))
298	num_stack_words++;
299
300      num_stack_words += ((len + 3) / 4);
301    }
302
303  /* Allocate stack space.  */
304  sp = align_down (sp - 32 - num_stack_words * 4, 16);
305  num_stack_words = num_register_words = 0;
306
307  for (i = 0; i < nargs; i++)
308    {
309      char *valbuf = VALUE_CONTENTS (args[i]);
310      struct type *type = VALUE_TYPE (args[i]);
311      int len = TYPE_LENGTH (type);
312      int stack_word = num_stack_words;
313
314      if (m88k_in_register_p (type))
315	{
316	  int register_word = num_register_words;
317
318	  if (register_word % 2 == 1 && m88k_8_byte_align_p (type))
319	    register_word++;
320
321	  gdb_assert (len == 4 || len == 8);
322
323	  if (register_word + len / 8 < 8)
324	    {
325	      int regnum = M88K_R2_REGNUM + register_word;
326
327	      regcache_raw_write (regcache, regnum, valbuf);
328	      if (len > 4)
329		regcache_raw_write (regcache, regnum + 1, valbuf + 4);
330
331	      num_register_words = (register_word + len / 4);
332	      continue;
333	    }
334	}
335
336      if (stack_word % 2 == -1 && m88k_8_byte_align_p (type))
337	stack_word++;
338
339      write_memory (sp + stack_word * 4, valbuf, len);
340      num_stack_words = (stack_word + (len + 3) / 4);
341    }
342
343  return sp;
344}
345
346static CORE_ADDR
347m88k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
348		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
349		      struct value **args, CORE_ADDR sp, int struct_return,
350		      CORE_ADDR struct_addr)
351{
352  /* Set up the function arguments.  */
353  sp = m88k_store_arguments (regcache, nargs, args, sp);
354  gdb_assert (sp % 16 == 0);
355
356  /* Store return value address.  */
357  if (struct_return)
358    regcache_raw_write_unsigned (regcache, M88K_R12_REGNUM, struct_addr);
359
360  /* Store the stack pointer and return address in the appropriate
361     registers.  */
362  regcache_raw_write_unsigned (regcache, M88K_R31_REGNUM, sp);
363  regcache_raw_write_unsigned (regcache, M88K_R1_REGNUM, bp_addr);
364
365  /* Return the stack pointer.  */
366  return sp;
367}
368
369static struct frame_id
370m88k_unwind_dummy_id (struct gdbarch *arch, struct frame_info *next_frame)
371{
372  CORE_ADDR sp;
373
374  sp = frame_unwind_register_unsigned (next_frame, M88K_R31_REGNUM);
375  return frame_id_build (sp, frame_pc_unwind (next_frame));
376}
377
378
379/* Determine, for architecture GDBARCH, how a return value of TYPE
380   should be returned.  If it is supposed to be returned in registers,
381   and READBUF is non-zero, read the appropriate value from REGCACHE,
382   and copy it into READBUF.  If WRITEBUF is non-zero, write the value
383   from WRITEBUF into REGCACHE.  */
384
385static enum return_value_convention
386m88k_return_value (struct gdbarch *gdbarch, struct type *type,
387		   struct regcache *regcache, void *readbuf,
388		   const void *writebuf)
389{
390  int len = TYPE_LENGTH (type);
391  char buf[8];
392
393  if (!m88k_integral_or_pointer_p (type) && !m88k_floating_p (type))
394    return RETURN_VALUE_STRUCT_CONVENTION;
395
396  if (readbuf)
397    {
398      /* Read the contents of R2 and (if necessary) R3.  */
399      regcache_cooked_read (regcache, M88K_R2_REGNUM, buf);
400      if (len > 4)
401	{
402	  regcache_cooked_read (regcache, M88K_R3_REGNUM, buf + 4);
403	  gdb_assert (len == 8);
404	  memcpy (readbuf, buf, len);
405	}
406      else
407	{
408	  /* Just stripping off any unused bytes should preserve the
409             signed-ness just fine.  */
410	  memcpy (readbuf, buf + 4 - len, len);
411	}
412    }
413
414  if (writebuf)
415    {
416      /* Read the contents to R2 and (if necessary) R3.  */
417      if (len > 4)
418	{
419	  gdb_assert (len == 8);
420	  memcpy (buf, writebuf, 8);
421	  regcache_cooked_write (regcache, M88K_R3_REGNUM, buf + 4);
422	}
423      else
424	{
425	  /* ??? Do we need to do any sign-extension here?  */
426	  memcpy (buf + 4 - len, writebuf, len);
427	}
428      regcache_cooked_write (regcache, M88K_R2_REGNUM, buf);
429    }
430
431  return RETURN_VALUE_REGISTER_CONVENTION;
432}
433
434/* Default frame unwinder.  */
435
436struct m88k_frame_cache
437{
438  /* Base address.  */
439  CORE_ADDR base;
440  CORE_ADDR pc;
441
442  int sp_offset;
443  int fp_offset;
444
445  /* Table of saved registers.  */
446  struct trad_frame_saved_reg *saved_regs;
447};
448
449/* Prologue analysis.  */
450
451/* Macros for extracting fields from instructions.  */
452
453#define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
454#define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
455#define	SUBU_OFFSET(x)	((unsigned)(x & 0xFFFF))
456#define	ST_OFFSET(x)	((unsigned)((x) & 0xFFFF))
457#define	ST_SRC(x)	EXTRACT_FIELD ((x), 21, 5)
458#define	ADDU_OFFSET(x)	((unsigned)(x & 0xFFFF))
459
460/* Possible actions to be taken by the prologue analyzer for the
461   instructions it encounters.  */
462
463enum m88k_prologue_insn_action
464{
465  M88K_PIA_SKIP,		/* Ignore.  */
466  M88K_PIA_NOTE_ST,		/* Note register store.  */
467  M88K_PIA_NOTE_STD,		/* Note register pair store.  */
468  M88K_PIA_NOTE_SP_ADJUSTMENT,	/* Note stack pointer adjustment.  */
469  M88K_PIA_NOTE_FP_ASSIGNMENT,	/* Note frame pointer assignment.  */
470  M88K_PIA_NOTE_BRANCH,		/* Note branch.  */
471  M88K_PIA_NOTE_PROLOGUE_END	/* Note end of prologue.  */
472};
473
474/* Table of instructions that may comprise a function prologue.  */
475
476struct m88k_prologue_insn
477{
478  unsigned long insn;
479  unsigned long mask;
480  enum m88k_prologue_insn_action action;
481};
482
483struct m88k_prologue_insn m88k_prologue_insn_table[] =
484{
485  /* Various register move instructions.  */
486  { 0x58000000, 0xf800ffff, M88K_PIA_SKIP },     /* or/or.u with immed of 0 */
487  { 0xf4005800, 0xfc1fffe0, M88K_PIA_SKIP },     /* or rd,r0,rs */
488  { 0xf4005800, 0xfc00ffff, M88K_PIA_SKIP },     /* or rd,rs,r0 */
489
490  /* Various other instructions.  */
491  { 0x58000000, 0xf8000000, M88K_PIA_SKIP },     /* or/or.u */
492
493  /* Stack pointer setup: "subu sp,sp,n" where n is a multiple of 8.  */
494  { 0x67ff0000, 0xffff0007, M88K_PIA_NOTE_SP_ADJUSTMENT },
495
496  /* Frame pointer assignment: "addu r30,r31,n".  */
497  { 0x63df0000, 0xffff0000, M88K_PIA_NOTE_FP_ASSIGNMENT },
498
499  /* Store to stack instructions; either "st rx,sp,n" or "st.d rx,sp,n".  */
500  { 0x241f0000, 0xfc1f0000, M88K_PIA_NOTE_ST },  /* st rx,sp,n */
501  { 0x201f0000, 0xfc1f0000, M88K_PIA_NOTE_STD }, /* st.d rs,sp,n */
502
503  /* Instructions needed for setting up r25 for pic code.  */
504  { 0x5f200000, 0xffff0000, M88K_PIA_SKIP },     /* or.u r25,r0,offset_high */
505  { 0xcc000002, 0xffffffff, M88K_PIA_SKIP },     /* bsr.n Lab */
506  { 0x5b390000, 0xffff0000, M88K_PIA_SKIP },     /* or r25,r25,offset_low */
507  { 0xf7396001, 0xffffffff, M88K_PIA_SKIP },     /* Lab: addu r25,r25,r1 */
508
509  /* Various branch or jump instructions which have a delay slot --
510     these do not form part of the prologue, but the instruction in
511     the delay slot might be a store instruction which should be
512     noted.  */
513  { 0xc4000000, 0xe4000000, M88K_PIA_NOTE_BRANCH },
514                                      /* br.n, bsr.n, bb0.n, or bb1.n */
515  { 0xec000000, 0xfc000000, M88K_PIA_NOTE_BRANCH }, /* bcnd.n */
516  { 0xf400c400, 0xfffff7e0, M88K_PIA_NOTE_BRANCH }, /* jmp.n or jsr.n */
517
518  /* Catch all.  Ends prologue analysis.  */
519  { 0x00000000, 0x00000000, M88K_PIA_NOTE_PROLOGUE_END }
520};
521
522/* Do a full analysis of the function prologue at PC and update CACHE
523   accordingly.  Bail out early if LIMIT is reached.  Return the
524   address where the analysis stopped.  If LIMIT points beyond the
525   function prologue, the return address should be the end of the
526   prologue.  */
527
528static CORE_ADDR
529m88k_analyze_prologue (CORE_ADDR pc, CORE_ADDR limit,
530		       struct m88k_frame_cache *cache)
531{
532  CORE_ADDR end = limit;
533
534  /* Provide a dummy cache if necessary.  */
535  if (cache == NULL)
536    {
537      size_t sizeof_saved_regs =
538	(M88K_R31_REGNUM + 1) * sizeof (struct trad_frame_saved_reg);
539
540      cache = alloca (sizeof (struct m88k_frame_cache));
541      cache->saved_regs = alloca (sizeof_saved_regs);
542
543      /* We only initialize the members we care about.  */
544      cache->saved_regs[M88K_R1_REGNUM].addr = -1;
545      cache->fp_offset = -1;
546    }
547
548  while (pc < limit)
549    {
550      struct m88k_prologue_insn *pi = m88k_prologue_insn_table;
551      unsigned long insn = m88k_fetch_instruction (pc);
552
553      while ((insn & pi->mask) != pi->insn)
554	pi++;
555
556      switch (pi->action)
557	{
558	case M88K_PIA_SKIP:
559	  /* If we have a frame pointer, and R1 has been saved,
560             consider this instruction as not being part of the
561             prologue.  */
562	  if (cache->fp_offset != -1
563	      && cache->saved_regs[M88K_R1_REGNUM].addr != -1)
564	    return min (pc, end);
565	  break;
566
567	case M88K_PIA_NOTE_ST:
568	case M88K_PIA_NOTE_STD:
569	  /* If no frame has been allocated, the stores aren't part of
570             the prologue.  */
571	  if (cache->sp_offset == 0)
572	    return min (pc, end);
573
574	  /* Record location of saved registers.  */
575	  {
576	    int regnum = ST_SRC (insn) + M88K_R0_REGNUM;
577	    ULONGEST offset = ST_OFFSET (insn);
578
579	    cache->saved_regs[regnum].addr = offset;
580	    if (pi->action == M88K_PIA_NOTE_STD && regnum < M88K_R31_REGNUM)
581	      cache->saved_regs[regnum + 1].addr = offset + 4;
582	  }
583	  break;
584
585	case M88K_PIA_NOTE_SP_ADJUSTMENT:
586	  /* A second stack pointer adjustment isn't part of the
587             prologue.  */
588	  if (cache->sp_offset != 0)
589	    return min (pc, end);
590
591	  /* Store stack pointer adjustment.  */
592	  cache->sp_offset = -SUBU_OFFSET (insn);
593	  break;
594
595	case M88K_PIA_NOTE_FP_ASSIGNMENT:
596	  /* A second frame pointer assignment isn't part of the
597             prologue.  */
598	  if (cache->fp_offset != -1)
599	    return min (pc, end);
600
601	  /* Record frame pointer assignment.  */
602	  cache->fp_offset = ADDU_OFFSET (insn);
603	  break;
604
605	case M88K_PIA_NOTE_BRANCH:
606	  /* The branch instruction isn't part of the prologue, but
607             the instruction in the delay slot might be.  Limit the
608             prologue analysis to the delay slot and record the branch
609             instruction as the end of the prologue.  */
610	  limit = min (limit, pc + 2 * M88K_INSN_SIZE);
611	  end = pc;
612	  break;
613
614	case M88K_PIA_NOTE_PROLOGUE_END:
615	  return min (pc, end);
616	}
617
618      pc += M88K_INSN_SIZE;
619    }
620
621  return end;
622}
623
624/* An upper limit to the size of the prologue.  */
625const int m88k_max_prologue_size = 128 * M88K_INSN_SIZE;
626
627/* Return the address of first real instruction of the function
628   starting at PC.  */
629
630static CORE_ADDR
631m88k_skip_prologue (CORE_ADDR pc)
632{
633  struct symtab_and_line sal;
634  CORE_ADDR func_start, func_end;
635
636  /* This is the preferred method, find the end of the prologue by
637     using the debugging information.  */
638  if (find_pc_partial_function (pc, NULL, &func_start, &func_end))
639    {
640      sal = find_pc_line (func_start, 0);
641
642      if (sal.end < func_end && pc <= sal.end)
643	return sal.end;
644    }
645
646  return m88k_analyze_prologue (pc, pc + m88k_max_prologue_size, NULL);
647}
648
649struct m88k_frame_cache *
650m88k_frame_cache (struct frame_info *next_frame, void **this_cache)
651{
652  struct m88k_frame_cache *cache;
653  CORE_ADDR frame_sp;
654
655  if (*this_cache)
656    return *this_cache;
657
658  cache = FRAME_OBSTACK_ZALLOC (struct m88k_frame_cache);
659  cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
660  cache->fp_offset = -1;
661
662  cache->pc = frame_func_unwind (next_frame);
663  if (cache->pc != 0)
664    {
665      CORE_ADDR addr_in_block = frame_unwind_address_in_block (next_frame);
666      m88k_analyze_prologue (cache->pc, addr_in_block, cache);
667    }
668
669  /* Calculate the stack pointer used in the prologue.  */
670  if (cache->fp_offset != -1)
671    {
672      CORE_ADDR fp;
673
674      fp = frame_unwind_register_unsigned (next_frame, M88K_R30_REGNUM);
675      frame_sp = fp - cache->fp_offset;
676    }
677  else
678    {
679      /* If we know where the return address is saved, we can take a
680         solid guess at what the frame pointer should be.  */
681      if (cache->saved_regs[M88K_R1_REGNUM].addr != -1)
682	cache->fp_offset = cache->saved_regs[M88K_R1_REGNUM].addr - 4;
683      frame_sp = frame_unwind_register_unsigned (next_frame, M88K_R31_REGNUM);
684    }
685
686  /* Now that we know the stack pointer, adjust the location of the
687     saved registers.  */
688  {
689    int regnum;
690
691    for (regnum = M88K_R0_REGNUM; regnum < M88K_R31_REGNUM; regnum ++)
692      if (cache->saved_regs[regnum].addr != -1)
693	cache->saved_regs[regnum].addr += frame_sp;
694  }
695
696  /* Calculate the frame's base.  */
697  cache->base = frame_sp - cache->sp_offset;
698  trad_frame_set_value (cache->saved_regs, M88K_R31_REGNUM, cache->base);
699
700  /* Identify SXIP with the return address in R1.  */
701  cache->saved_regs[M88K_SXIP_REGNUM] = cache->saved_regs[M88K_R1_REGNUM];
702
703  *this_cache = cache;
704  return cache;
705}
706
707static void
708m88k_frame_this_id (struct frame_info *next_frame, void **this_cache,
709		    struct frame_id *this_id)
710{
711  struct m88k_frame_cache *cache = m88k_frame_cache (next_frame, this_cache);
712
713  /* This marks the outermost frame.  */
714  if (cache->base == 0)
715    return;
716
717  (*this_id) = frame_id_build (cache->base, cache->pc);
718}
719
720static void
721m88k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
722			  int regnum, int *optimizedp,
723			  enum lval_type *lvalp, CORE_ADDR *addrp,
724			  int *realnump, void *valuep)
725{
726  struct m88k_frame_cache *cache = m88k_frame_cache (next_frame, this_cache);
727
728  if (regnum == M88K_SNIP_REGNUM || regnum == M88K_SFIP_REGNUM)
729    {
730      if (valuep)
731	{
732	  CORE_ADDR pc;
733
734	  trad_frame_get_prev_register (next_frame, cache->saved_regs,
735					M88K_SXIP_REGNUM, optimizedp,
736					lvalp, addrp, realnump, valuep);
737
738	  pc = extract_unsigned_integer (valuep, 4);
739	  if (regnum == M88K_SFIP_REGNUM)
740	    pc += 4;
741	  store_unsigned_integer (valuep, 4, pc + 4);
742	}
743
744      /* It's a computed value.  */
745      *optimizedp = 0;
746      *lvalp = not_lval;
747      *addrp = 0;
748      *realnump = -1;
749      return;
750    }
751
752  trad_frame_get_prev_register (next_frame, cache->saved_regs, regnum,
753				optimizedp, lvalp, addrp, realnump, valuep);
754}
755
756static const struct frame_unwind m88k_frame_unwind =
757{
758  NORMAL_FRAME,
759  m88k_frame_this_id,
760  m88k_frame_prev_register
761};
762
763static const struct frame_unwind *
764m88k_frame_sniffer (struct frame_info *next_frame)
765{
766  return &m88k_frame_unwind;
767}
768
769
770static CORE_ADDR
771m88k_frame_base_address (struct frame_info *next_frame, void **this_cache)
772{
773  struct m88k_frame_cache *cache = m88k_frame_cache (next_frame, this_cache);
774
775  if (cache->fp_offset != -1)
776    return cache->base + cache->sp_offset + cache->fp_offset;
777
778  return 0;
779}
780
781static const struct frame_base m88k_frame_base =
782{
783  &m88k_frame_unwind,
784  m88k_frame_base_address,
785  m88k_frame_base_address,
786  m88k_frame_base_address
787};
788
789
790/* Core file support.  */
791
792/* Supply register REGNUM from the buffer specified by GREGS and LEN
793   in the general-purpose register set REGSET to register cache
794   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
795
796static void
797m88k_supply_gregset (const struct regset *regset,
798		     struct regcache *regcache,
799		     int regnum, const void *gregs, size_t len)
800{
801  const char *regs = gregs;
802  int i;
803
804  for (i = 0; i < M88K_NUM_REGS; i++)
805    {
806      if (regnum == i || regnum == -1)
807	regcache_raw_supply (regcache, i, regs + i * 4);
808    }
809}
810
811/* Motorola 88000 register set.  */
812
813static struct regset m88k_gregset =
814{
815  NULL,
816  m88k_supply_gregset
817};
818
819/* Return the appropriate register set for the core section identified
820   by SECT_NAME and SECT_SIZE.  */
821
822static const struct regset *
823m88k_regset_from_core_section (struct gdbarch *gdbarch,
824			       const char *sect_name, size_t sect_size)
825{
826  if (strcmp (sect_name, ".reg") == 0 && sect_size >= M88K_NUM_REGS * 4)
827    return &m88k_gregset;
828
829  return NULL;
830}
831
832
833static struct gdbarch *
834m88k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
835{
836  struct gdbarch *gdbarch;
837
838  /* If there is already a candidate, use it.  */
839  arches = gdbarch_list_lookup_by_info (arches, &info);
840  if (arches != NULL)
841    return arches->gdbarch;
842
843  /* Allocate space for the new architecture.  */
844  gdbarch = gdbarch_alloc (&info, NULL);
845
846  /* There is no real `long double'.  */
847  set_gdbarch_long_double_bit (gdbarch, 64);
848  set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
849
850  set_gdbarch_num_regs (gdbarch, M88K_NUM_REGS);
851  set_gdbarch_register_name (gdbarch, m88k_register_name);
852  set_gdbarch_register_type (gdbarch, m88k_register_type);
853
854  /* Register numbers of various important registers.  */
855  set_gdbarch_sp_regnum (gdbarch, M88K_R31_REGNUM);
856  set_gdbarch_pc_regnum (gdbarch, M88K_SXIP_REGNUM);
857
858  /* Core file support.  */
859  set_gdbarch_regset_from_core_section
860    (gdbarch, m88k_regset_from_core_section);
861
862  set_gdbarch_print_insn (gdbarch, print_insn_m88k);
863
864  set_gdbarch_skip_prologue (gdbarch, m88k_skip_prologue);
865
866  /* Stack grows downward.  */
867  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
868
869  /* Call dummy code.  */
870  set_gdbarch_push_dummy_call (gdbarch, m88k_push_dummy_call);
871  set_gdbarch_unwind_dummy_id (gdbarch, m88k_unwind_dummy_id);
872
873  /* Return value info */
874  set_gdbarch_return_value (gdbarch, m88k_return_value);
875
876  set_gdbarch_addr_bits_remove (gdbarch, m88k_addr_bits_remove);
877  set_gdbarch_breakpoint_from_pc (gdbarch, m88k_breakpoint_from_pc);
878  set_gdbarch_unwind_pc (gdbarch, m88k_unwind_pc);
879  set_gdbarch_write_pc (gdbarch, m88k_write_pc);
880
881  frame_base_set_default (gdbarch, &m88k_frame_base);
882  frame_unwind_append_sniffer (gdbarch, m88k_frame_sniffer);
883
884  return gdbarch;
885}
886
887
888/* Provide a prototype to silence -Wmissing-prototypes.  */
889void _initialize_m88k_tdep (void);
890
891void
892_initialize_m88k_tdep (void)
893{
894  gdbarch_register (bfd_arch_m88k, m88k_gdbarch_init, NULL);
895}
896