1/* Intel 386 target-dependent stuff.
2
3   Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4   1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5   Foundation, Inc.
6
7   This file is part of GDB.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 2 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 59 Temple Place - Suite 330,
22   Boston, MA 02111-1307, USA.  */
23
24#include "defs.h"
25#include "arch-utils.h"
26#include "command.h"
27#include "dummy-frame.h"
28#include "dwarf2-frame.h"
29#include "doublest.h"
30#include "floatformat.h"
31#include "frame.h"
32#include "frame-base.h"
33#include "frame-unwind.h"
34#include "inferior.h"
35#include "gdbcmd.h"
36#include "gdbcore.h"
37#include "objfiles.h"
38#include "osabi.h"
39#include "regcache.h"
40#include "reggroups.h"
41#include "regset.h"
42#include "symfile.h"
43#include "symtab.h"
44#include "target.h"
45#include "value.h"
46#include "dis-asm.h"
47
48#include "gdb_assert.h"
49#include "gdb_string.h"
50
51#include "i386-tdep.h"
52#include "i387-tdep.h"
53
54/* Register names.  */
55
56static char *i386_register_names[] =
57{
58  "eax",   "ecx",    "edx",   "ebx",
59  "esp",   "ebp",    "esi",   "edi",
60  "eip",   "eflags", "cs",    "ss",
61  "ds",    "es",     "fs",    "gs",
62  "st0",   "st1",    "st2",   "st3",
63  "st4",   "st5",    "st6",   "st7",
64  "fctrl", "fstat",  "ftag",  "fiseg",
65  "fioff", "foseg",  "fooff", "fop",
66  "xmm0",  "xmm1",   "xmm2",  "xmm3",
67  "xmm4",  "xmm5",   "xmm6",  "xmm7",
68  "mxcsr"
69};
70
71static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
72
73/* Register names for MMX pseudo-registers.  */
74
75static char *i386_mmx_names[] =
76{
77  "mm0", "mm1", "mm2", "mm3",
78  "mm4", "mm5", "mm6", "mm7"
79};
80
81static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
82
83static int
84i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
85{
86  int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88  if (mm0_regnum < 0)
89    return 0;
90
91  return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
92}
93
94/* SSE register?  */
95
96static int
97i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
98{
99  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101#define I387_ST0_REGNUM tdep->st0_regnum
102#define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104  if (I387_NUM_XMM_REGS == 0)
105    return 0;
106
107  return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109#undef I387_ST0_REGNUM
110#undef I387_NUM_XMM_REGS
111}
112
113static int
114i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
115{
116  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118#define I387_ST0_REGNUM tdep->st0_regnum
119#define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121  if (I387_NUM_XMM_REGS == 0)
122    return 0;
123
124  return (regnum == I387_MXCSR_REGNUM);
125
126#undef I387_ST0_REGNUM
127#undef I387_NUM_XMM_REGS
128}
129
130#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134/* FP register?  */
135
136int
137i386_fp_regnum_p (int regnum)
138{
139  if (I387_ST0_REGNUM < 0)
140    return 0;
141
142  return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
143}
144
145int
146i386_fpc_regnum_p (int regnum)
147{
148  if (I387_ST0_REGNUM < 0)
149    return 0;
150
151  return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
152}
153
154/* Return the name of register REGNUM.  */
155
156const char *
157i386_register_name (int regnum)
158{
159  if (i386_mmx_regnum_p (current_gdbarch, regnum))
160    return i386_mmx_names[regnum - I387_MM0_REGNUM];
161
162  if (regnum >= 0 && regnum < i386_num_register_names)
163    return i386_register_names[regnum];
164
165  return NULL;
166}
167
168/* Convert a dbx register number REG to the appropriate register
169   number used by GDB.  */
170
171static int
172i386_dbx_reg_to_regnum (int reg)
173{
174  /* This implements what GCC calls the "default" register map
175     (dbx_register_map[]).  */
176
177  if (reg >= 0 && reg <= 7)
178    {
179      /* General-purpose registers.  The debug info calls %ebp
180         register 4, and %esp register 5.  */
181      if (reg == 4)
182        return 5;
183      else if (reg == 5)
184        return 4;
185      else return reg;
186    }
187  else if (reg >= 12 && reg <= 19)
188    {
189      /* Floating-point registers.  */
190      return reg - 12 + I387_ST0_REGNUM;
191    }
192  else if (reg >= 21 && reg <= 28)
193    {
194      /* SSE registers.  */
195      return reg - 21 + I387_XMM0_REGNUM;
196    }
197  else if (reg >= 29 && reg <= 36)
198    {
199      /* MMX registers.  */
200      return reg - 29 + I387_MM0_REGNUM;
201    }
202
203  /* This will hopefully provoke a warning.  */
204  return NUM_REGS + NUM_PSEUDO_REGS;
205}
206
207/* Convert SVR4 register number REG to the appropriate register number
208   used by GDB.  */
209
210static int
211i386_svr4_reg_to_regnum (int reg)
212{
213  /* This implements the GCC register map that tries to be compatible
214     with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]).  */
215
216  /* The SVR4 register numbering includes %eip and %eflags, and
217     numbers the floating point registers differently.  */
218  if (reg >= 0 && reg <= 9)
219    {
220      /* General-purpose registers.  */
221      return reg;
222    }
223  else if (reg >= 11 && reg <= 18)
224    {
225      /* Floating-point registers.  */
226      return reg - 11 + I387_ST0_REGNUM;
227    }
228  else if (reg >= 21)
229    {
230      /* The SSE and MMX registers have the same numbers as with dbx.  */
231      return i386_dbx_reg_to_regnum (reg);
232    }
233
234  /* This will hopefully provoke a warning.  */
235  return NUM_REGS + NUM_PSEUDO_REGS;
236}
237
238#undef I387_ST0_REGNUM
239#undef I387_MM0_REGNUM
240#undef I387_NUM_XMM_REGS
241
242
243/* This is the variable that is set with "set disassembly-flavor", and
244   its legitimate values.  */
245static const char att_flavor[] = "att";
246static const char intel_flavor[] = "intel";
247static const char *valid_flavors[] =
248{
249  att_flavor,
250  intel_flavor,
251  NULL
252};
253static const char *disassembly_flavor = att_flavor;
254
255
256/* Use the program counter to determine the contents and size of a
257   breakpoint instruction.  Return a pointer to a string of bytes that
258   encode a breakpoint instruction, store the length of the string in
259   *LEN and optionally adjust *PC to point to the correct memory
260   location for inserting the breakpoint.
261
262   On the i386 we have a single breakpoint that fits in a single byte
263   and can be inserted anywhere.
264
265   This function is 64-bit safe.  */
266
267static const unsigned char *
268i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
269{
270  static unsigned char break_insn[] = { 0xcc };	/* int 3 */
271
272  *len = sizeof (break_insn);
273  return break_insn;
274}
275
276#ifdef I386_REGNO_TO_SYMMETRY
277#error "The Sequent Symmetry is no longer supported."
278#endif
279
280/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
281   and %esp "belong" to the calling function.  Therefore these
282   registers should be saved if they're going to be modified.  */
283
284/* The maximum number of saved registers.  This should include all
285   registers mentioned above, and %eip.  */
286#define I386_NUM_SAVED_REGS	I386_NUM_GREGS
287
288struct i386_frame_cache
289{
290  /* Base address.  */
291  CORE_ADDR base;
292  CORE_ADDR sp_offset;
293  CORE_ADDR pc;
294
295  /* Saved registers.  */
296  CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
297  CORE_ADDR saved_sp;
298  int pc_in_eax;
299
300  /* Stack space reserved for local variables.  */
301  long locals;
302};
303
304/* Allocate and initialize a frame cache.  */
305
306static struct i386_frame_cache *
307i386_alloc_frame_cache (void)
308{
309  struct i386_frame_cache *cache;
310  int i;
311
312  cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
313
314  /* Base address.  */
315  cache->base = 0;
316  cache->sp_offset = -4;
317  cache->pc = 0;
318
319  /* Saved registers.  We initialize these to -1 since zero is a valid
320     offset (that's where %ebp is supposed to be stored).  */
321  for (i = 0; i < I386_NUM_SAVED_REGS; i++)
322    cache->saved_regs[i] = -1;
323  cache->saved_sp = 0;
324  cache->pc_in_eax = 0;
325
326  /* Frameless until proven otherwise.  */
327  cache->locals = -1;
328
329  return cache;
330}
331
332/* If the instruction at PC is a jump, return the address of its
333   target.  Otherwise, return PC.  */
334
335static CORE_ADDR
336i386_follow_jump (CORE_ADDR pc)
337{
338  unsigned char op;
339  long delta = 0;
340  int data16 = 0;
341
342  op = read_memory_unsigned_integer (pc, 1);
343  if (op == 0x66)
344    {
345      data16 = 1;
346      op = read_memory_unsigned_integer (pc + 1, 1);
347    }
348
349  switch (op)
350    {
351    case 0xe9:
352      /* Relative jump: if data16 == 0, disp32, else disp16.  */
353      if (data16)
354	{
355	  delta = read_memory_integer (pc + 2, 2);
356
357	  /* Include the size of the jmp instruction (including the
358             0x66 prefix).  */
359	  delta += 4;
360	}
361      else
362	{
363	  delta = read_memory_integer (pc + 1, 4);
364
365	  /* Include the size of the jmp instruction.  */
366	  delta += 5;
367	}
368      break;
369    case 0xeb:
370      /* Relative jump, disp8 (ignore data16).  */
371      delta = read_memory_integer (pc + data16 + 1, 1);
372
373      delta += data16 + 2;
374      break;
375    }
376
377  return pc + delta;
378}
379
380/* Check whether PC points at a prologue for a function returning a
381   structure or union.  If so, it updates CACHE and returns the
382   address of the first instruction after the code sequence that
383   removes the "hidden" argument from the stack or CURRENT_PC,
384   whichever is smaller.  Otherwise, return PC.  */
385
386static CORE_ADDR
387i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
388			    struct i386_frame_cache *cache)
389{
390  /* Functions that return a structure or union start with:
391
392        popl %eax             0x58
393        xchgl %eax, (%esp)    0x87 0x04 0x24
394     or xchgl %eax, 0(%esp)   0x87 0x44 0x24 0x00
395
396     (the System V compiler puts out the second `xchg' instruction,
397     and the assembler doesn't try to optimize it, so the 'sib' form
398     gets generated).  This sequence is used to get the address of the
399     return buffer for a function that returns a structure.  */
400  static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
401  static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
402  unsigned char buf[4];
403  unsigned char op;
404
405  if (current_pc <= pc)
406    return pc;
407
408  op = read_memory_unsigned_integer (pc, 1);
409
410  if (op != 0x58)		/* popl %eax */
411    return pc;
412
413  read_memory (pc + 1, buf, 4);
414  if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
415    return pc;
416
417  if (current_pc == pc)
418    {
419      cache->sp_offset += 4;
420      return current_pc;
421    }
422
423  if (current_pc == pc + 1)
424    {
425      cache->pc_in_eax = 1;
426      return current_pc;
427    }
428
429  if (buf[1] == proto1[1])
430    return pc + 4;
431  else
432    return pc + 5;
433}
434
435static CORE_ADDR
436i386_skip_probe (CORE_ADDR pc)
437{
438  /* A function may start with
439
440        pushl constant
441        call _probe
442	addl $4, %esp
443
444     followed by
445
446        pushl %ebp
447
448     etc.  */
449  unsigned char buf[8];
450  unsigned char op;
451
452  op = read_memory_unsigned_integer (pc, 1);
453
454  if (op == 0x68 || op == 0x6a)
455    {
456      int delta;
457
458      /* Skip past the `pushl' instruction; it has either a one-byte or a
459	 four-byte operand, depending on the opcode.  */
460      if (op == 0x68)
461	delta = 5;
462      else
463	delta = 2;
464
465      /* Read the following 8 bytes, which should be `call _probe' (6
466	 bytes) followed by `addl $4,%esp' (2 bytes).  */
467      read_memory (pc + delta, buf, sizeof (buf));
468      if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
469	pc += delta + sizeof (buf);
470    }
471
472  return pc;
473}
474
475/* Maximum instruction length we need to handle.  */
476#define I386_MAX_INSN_LEN	6
477
478/* Instruction description.  */
479struct i386_insn
480{
481  size_t len;
482  unsigned char insn[I386_MAX_INSN_LEN];
483  unsigned char mask[I386_MAX_INSN_LEN];
484};
485
486/* Search for the instruction at PC in the list SKIP_INSNS.  Return
487   the first instruction description that matches.  Otherwise, return
488   NULL.  */
489
490static struct i386_insn *
491i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
492{
493  struct i386_insn *insn;
494  unsigned char op;
495
496  op = read_memory_unsigned_integer (pc, 1);
497
498  for (insn = skip_insns; insn->len > 0; insn++)
499    {
500      if ((op & insn->mask[0]) == insn->insn[0])
501	{
502	  unsigned char buf[I386_MAX_INSN_LEN - 1];
503	  size_t i;
504
505	  gdb_assert (insn->len > 1);
506	  gdb_assert (insn->len <= I386_MAX_INSN_LEN);
507
508	  read_memory (pc + 1, buf, insn->len - 1);
509	  for (i = 1; i < insn->len; i++)
510	    {
511	      if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
512		break;
513
514	      return insn;
515	    }
516	}
517    }
518
519  return NULL;
520}
521
522/* Some special instructions that might be migrated by GCC into the
523   part of the prologue that sets up the new stack frame.  Because the
524   stack frame hasn't been setup yet, no registers have been saved
525   yet, and only the scratch registers %eax, %ecx and %edx can be
526   touched.  */
527
528struct i386_insn i386_frame_setup_skip_insns[] =
529{
530  /* Check for `movb imm8, r' and `movl imm32, r'.
531
532     ??? Should we handle 16-bit operand-sizes here?  */
533
534  /* `movb imm8, %al' and `movb imm8, %ah' */
535  /* `movb imm8, %cl' and `movb imm8, %ch' */
536  { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
537  /* `movb imm8, %dl' and `movb imm8, %dh' */
538  { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
539  /* `movl imm32, %eax' and `movl imm32, %ecx' */
540  { 5, { 0xb8 }, { 0xfe } },
541  /* `movl imm32, %edx' */
542  { 5, { 0xba }, { 0xff } },
543
544  /* Check for `mov imm32, r32'.  Note that there is an alternative
545     encoding for `mov m32, %eax'.
546
547     ??? Should we handle SIB adressing here?
548     ??? Should we handle 16-bit operand-sizes here?  */
549
550  /* `movl m32, %eax' */
551  { 5, { 0xa1 }, { 0xff } },
552  /* `movl m32, %eax' and `mov; m32, %ecx' */
553  { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
554  /* `movl m32, %edx' */
555  { 6, { 0x89, 0x15 }, {0xff, 0xff } },
556
557  /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
558     Because of the symmetry, there are actually two ways to encode
559     these instructions; opcode bytes 0x29 and 0x2b for `subl' and
560     opcode bytes 0x31 and 0x33 for `xorl'.  */
561
562  /* `subl %eax, %eax' */
563  { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
564  /* `subl %ecx, %ecx' */
565  { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
566  /* `subl %edx, %edx' */
567  { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
568  /* `xorl %eax, %eax' */
569  { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
570  /* `xorl %ecx, %ecx' */
571  { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
572  /* `xorl %edx, %edx' */
573  { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
574  { 0 }
575};
576
577/* Check whether PC points at a code that sets up a new stack frame.
578   If so, it updates CACHE and returns the address of the first
579   instruction after the sequence that sets up the frame or LIMIT,
580   whichever is smaller.  If we don't recognize the code, return PC.  */
581
582static CORE_ADDR
583i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
584			  struct i386_frame_cache *cache)
585{
586  struct i386_insn *insn;
587  unsigned char op;
588  int skip = 0;
589
590  if (limit <= pc)
591    return limit;
592
593  op = read_memory_unsigned_integer (pc, 1);
594
595  if (op == 0x55)		/* pushl %ebp */
596    {
597      /* Take into account that we've executed the `pushl %ebp' that
598	 starts this instruction sequence.  */
599      cache->saved_regs[I386_EBP_REGNUM] = 0;
600      cache->sp_offset += 4;
601      pc++;
602
603      /* If that's all, return now.  */
604      if (limit <= pc)
605	return limit;
606
607      /* Check for some special instructions that might be migrated by
608	 GCC into the prologue and skip them.  At this point in the
609	 prologue, code should only touch the scratch registers %eax,
610	 %ecx and %edx, so while the number of posibilities is sheer,
611	 it is limited.
612
613	 Make sure we only skip these instructions if we later see the
614	 `movl %esp, %ebp' that actually sets up the frame.  */
615      while (pc + skip < limit)
616	{
617	  insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
618	  if (insn == NULL)
619	    break;
620
621	  skip += insn->len;
622	}
623
624      /* If that's all, return now.  */
625      if (limit <= pc + skip)
626	return limit;
627
628      op = read_memory_unsigned_integer (pc + skip, 1);
629
630      /* Check for `movl %esp, %ebp' -- can be written in two ways.  */
631      switch (op)
632	{
633	case 0x8b:
634	  if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
635	    return pc;
636	  break;
637	case 0x89:
638	  if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
639	    return pc;
640	  break;
641	default:
642	  return pc;
643	}
644
645      /* OK, we actually have a frame.  We just don't know how large
646	 it is yet.  Set its size to zero.  We'll adjust it if
647	 necessary.  We also now commit to skipping the special
648	 instructions mentioned before.  */
649      cache->locals = 0;
650      pc += (skip + 2);
651
652      /* If that's all, return now.  */
653      if (limit <= pc)
654	return limit;
655
656      /* Check for stack adjustment
657
658	    subl $XXX, %esp
659
660	 NOTE: You can't subtract a 16-bit immediate from a 32-bit
661	 reg, so we don't have to worry about a data16 prefix.  */
662      op = read_memory_unsigned_integer (pc, 1);
663      if (op == 0x83)
664	{
665	  /* `subl' with 8-bit immediate.  */
666	  if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
667	    /* Some instruction starting with 0x83 other than `subl'.  */
668	    return pc;
669
670	  /* `subl' with signed 8-bit immediate (though it wouldn't
671	     make sense to be negative).  */
672	  cache->locals = read_memory_integer (pc + 2, 1);
673	  return pc + 3;
674	}
675      else if (op == 0x81)
676	{
677	  /* Maybe it is `subl' with a 32-bit immediate.  */
678	  if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
679	    /* Some instruction starting with 0x81 other than `subl'.  */
680	    return pc;
681
682	  /* It is `subl' with a 32-bit immediate.  */
683	  cache->locals = read_memory_integer (pc + 2, 4);
684	  return pc + 6;
685	}
686      else
687	{
688	  /* Some instruction other than `subl'.  */
689	  return pc;
690	}
691    }
692  else if (op == 0xc8)		/* enter */
693    {
694      cache->locals = read_memory_unsigned_integer (pc + 1, 2);
695      return pc + 4;
696    }
697
698  return pc;
699}
700
701/* Check whether PC points at code that saves registers on the stack.
702   If so, it updates CACHE and returns the address of the first
703   instruction after the register saves or CURRENT_PC, whichever is
704   smaller.  Otherwise, return PC.  */
705
706static CORE_ADDR
707i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
708			     struct i386_frame_cache *cache)
709{
710  CORE_ADDR offset = 0;
711  unsigned char op;
712  int i;
713
714  if (cache->locals > 0)
715    offset -= cache->locals;
716  for (i = 0; i < 8 && pc < current_pc; i++)
717    {
718      op = read_memory_unsigned_integer (pc, 1);
719      if (op < 0x50 || op > 0x57)
720	break;
721
722      offset -= 4;
723      cache->saved_regs[op - 0x50] = offset;
724      cache->sp_offset += 4;
725      pc++;
726    }
727
728  return pc;
729}
730
731/* Do a full analysis of the prologue at PC and update CACHE
732   accordingly.  Bail out early if CURRENT_PC is reached.  Return the
733   address where the analysis stopped.
734
735   We handle these cases:
736
737   The startup sequence can be at the start of the function, or the
738   function can start with a branch to startup code at the end.
739
740   %ebp can be set up with either the 'enter' instruction, or "pushl
741   %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
742   once used in the System V compiler).
743
744   Local space is allocated just below the saved %ebp by either the
745   'enter' instruction, or by "subl $<size>, %esp".  'enter' has a
746   16-bit unsigned argument for space to allocate, and the 'addl'
747   instruction could have either a signed byte, or 32-bit immediate.
748
749   Next, the registers used by this function are pushed.  With the
750   System V compiler they will always be in the order: %edi, %esi,
751   %ebx (and sometimes a harmless bug causes it to also save but not
752   restore %eax); however, the code below is willing to see the pushes
753   in any order, and will handle up to 8 of them.
754
755   If the setup sequence is at the end of the function, then the next
756   instruction will be a branch back to the start.  */
757
758static CORE_ADDR
759i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
760		       struct i386_frame_cache *cache)
761{
762  pc = i386_follow_jump (pc);
763  pc = i386_analyze_struct_return (pc, current_pc, cache);
764  pc = i386_skip_probe (pc);
765  pc = i386_analyze_frame_setup (pc, current_pc, cache);
766  return i386_analyze_register_saves (pc, current_pc, cache);
767}
768
769/* Return PC of first real instruction.  */
770
771static CORE_ADDR
772i386_skip_prologue (CORE_ADDR start_pc)
773{
774  static unsigned char pic_pat[6] =
775  {
776    0xe8, 0, 0, 0, 0,		/* call 0x0 */
777    0x5b,			/* popl %ebx */
778  };
779  struct i386_frame_cache cache;
780  CORE_ADDR pc;
781  unsigned char op;
782  int i;
783
784  cache.locals = -1;
785  pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
786  if (cache.locals < 0)
787    return start_pc;
788
789  /* Found valid frame setup.  */
790
791  /* The native cc on SVR4 in -K PIC mode inserts the following code
792     to get the address of the global offset table (GOT) into register
793     %ebx:
794
795        call	0x0
796	popl    %ebx
797        movl    %ebx,x(%ebp)    (optional)
798        addl    y,%ebx
799
800     This code is with the rest of the prologue (at the end of the
801     function), so we have to skip it to get to the first real
802     instruction at the start of the function.  */
803
804  for (i = 0; i < 6; i++)
805    {
806      op = read_memory_unsigned_integer (pc + i, 1);
807      if (pic_pat[i] != op)
808	break;
809    }
810  if (i == 6)
811    {
812      int delta = 6;
813
814      op = read_memory_unsigned_integer (pc + delta, 1);
815
816      if (op == 0x89)		/* movl %ebx, x(%ebp) */
817	{
818	  op = read_memory_unsigned_integer (pc + delta + 1, 1);
819
820	  if (op == 0x5d)	/* One byte offset from %ebp.  */
821	    delta += 3;
822	  else if (op == 0x9d)	/* Four byte offset from %ebp.  */
823	    delta += 6;
824	  else			/* Unexpected instruction.  */
825	    delta = 0;
826
827	  op = read_memory_unsigned_integer (pc + delta, 1);
828	}
829
830      /* addl y,%ebx */
831      if (delta > 0 && op == 0x81
832	  && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
833	{
834	  pc += delta + 6;
835	}
836    }
837
838  /* If the function starts with a branch (to startup code at the end)
839     the last instruction should bring us back to the first
840     instruction of the real code.  */
841  if (i386_follow_jump (start_pc) != start_pc)
842    pc = i386_follow_jump (pc);
843
844  return pc;
845}
846
847/* This function is 64-bit safe.  */
848
849static CORE_ADDR
850i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
851{
852  char buf[8];
853
854  frame_unwind_register (next_frame, PC_REGNUM, buf);
855  return extract_typed_address (buf, builtin_type_void_func_ptr);
856}
857
858
859/* Normal frames.  */
860
861static struct i386_frame_cache *
862i386_frame_cache (struct frame_info *next_frame, void **this_cache)
863{
864  struct i386_frame_cache *cache;
865  char buf[4];
866  int i;
867
868  if (*this_cache)
869    return *this_cache;
870
871  cache = i386_alloc_frame_cache ();
872  *this_cache = cache;
873
874  /* In principle, for normal frames, %ebp holds the frame pointer,
875     which holds the base address for the current stack frame.
876     However, for functions that don't need it, the frame pointer is
877     optional.  For these "frameless" functions the frame pointer is
878     actually the frame pointer of the calling frame.  Signal
879     trampolines are just a special case of a "frameless" function.
880     They (usually) share their frame pointer with the frame that was
881     in progress when the signal occurred.  */
882
883  frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
884  cache->base = extract_unsigned_integer (buf, 4);
885  if (cache->base == 0)
886    return cache;
887
888  /* For normal frames, %eip is stored at 4(%ebp).  */
889  cache->saved_regs[I386_EIP_REGNUM] = 4;
890
891  cache->pc = frame_func_unwind (next_frame);
892  if (cache->pc != 0)
893    i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
894
895  if (cache->locals < 0)
896    {
897      /* We didn't find a valid frame, which means that CACHE->base
898	 currently holds the frame pointer for our calling frame.  If
899	 we're at the start of a function, or somewhere half-way its
900	 prologue, the function's frame probably hasn't been fully
901	 setup yet.  Try to reconstruct the base address for the stack
902	 frame by looking at the stack pointer.  For truly "frameless"
903	 functions this might work too.  */
904
905      frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
906      cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
907    }
908
909  /* Now that we have the base address for the stack frame we can
910     calculate the value of %esp in the calling frame.  */
911  cache->saved_sp = cache->base + 8;
912
913  /* Adjust all the saved registers such that they contain addresses
914     instead of offsets.  */
915  for (i = 0; i < I386_NUM_SAVED_REGS; i++)
916    if (cache->saved_regs[i] != -1)
917      cache->saved_regs[i] += cache->base;
918
919  return cache;
920}
921
922static void
923i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
924		    struct frame_id *this_id)
925{
926  struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
927
928  /* This marks the outermost frame.  */
929  if (cache->base == 0)
930    return;
931
932  /* See the end of i386_push_dummy_call.  */
933  (*this_id) = frame_id_build (cache->base + 8, cache->pc);
934}
935
936static void
937i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
938			  int regnum, int *optimizedp,
939			  enum lval_type *lvalp, CORE_ADDR *addrp,
940			  int *realnump, void *valuep)
941{
942  struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
943
944  gdb_assert (regnum >= 0);
945
946  /* The System V ABI says that:
947
948     "The flags register contains the system flags, such as the
949     direction flag and the carry flag.  The direction flag must be
950     set to the forward (that is, zero) direction before entry and
951     upon exit from a function.  Other user flags have no specified
952     role in the standard calling sequence and are not preserved."
953
954     To guarantee the "upon exit" part of that statement we fake a
955     saved flags register that has its direction flag cleared.
956
957     Note that GCC doesn't seem to rely on the fact that the direction
958     flag is cleared after a function return; it always explicitly
959     clears the flag before operations where it matters.
960
961     FIXME: kettenis/20030316: I'm not quite sure whether this is the
962     right thing to do.  The way we fake the flags register here makes
963     it impossible to change it.  */
964
965  if (regnum == I386_EFLAGS_REGNUM)
966    {
967      *optimizedp = 0;
968      *lvalp = not_lval;
969      *addrp = 0;
970      *realnump = -1;
971      if (valuep)
972	{
973	  ULONGEST val;
974
975	  /* Clear the direction flag.  */
976	  val = frame_unwind_register_unsigned (next_frame,
977						I386_EFLAGS_REGNUM);
978	  val &= ~(1 << 10);
979	  store_unsigned_integer (valuep, 4, val);
980	}
981
982      return;
983    }
984
985  if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
986    {
987      frame_register_unwind (next_frame, I386_EAX_REGNUM,
988			     optimizedp, lvalp, addrp, realnump, valuep);
989      return;
990    }
991
992  if (regnum == I386_ESP_REGNUM && cache->saved_sp)
993    {
994      *optimizedp = 0;
995      *lvalp = not_lval;
996      *addrp = 0;
997      *realnump = -1;
998      if (valuep)
999	{
1000	  /* Store the value.  */
1001	  store_unsigned_integer (valuep, 4, cache->saved_sp);
1002	}
1003      return;
1004    }
1005
1006  if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1007    {
1008      *optimizedp = 0;
1009      *lvalp = lval_memory;
1010      *addrp = cache->saved_regs[regnum];
1011      *realnump = -1;
1012      if (valuep)
1013	{
1014	  /* Read the value in from memory.  */
1015	  read_memory (*addrp, valuep,
1016		       register_size (current_gdbarch, regnum));
1017	}
1018      return;
1019    }
1020
1021  frame_register_unwind (next_frame, regnum,
1022			 optimizedp, lvalp, addrp, realnump, valuep);
1023}
1024
1025static const struct frame_unwind i386_frame_unwind =
1026{
1027  NORMAL_FRAME,
1028  i386_frame_this_id,
1029  i386_frame_prev_register
1030};
1031
1032static const struct frame_unwind *
1033i386_frame_sniffer (struct frame_info *next_frame)
1034{
1035  return &i386_frame_unwind;
1036}
1037
1038
1039/* Signal trampolines.  */
1040
1041static struct i386_frame_cache *
1042i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1043{
1044  struct i386_frame_cache *cache;
1045  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1046  CORE_ADDR addr;
1047  char buf[4];
1048
1049  if (*this_cache)
1050    return *this_cache;
1051
1052  cache = i386_alloc_frame_cache ();
1053
1054  frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1055  cache->base = extract_unsigned_integer (buf, 4) - 4;
1056
1057  addr = tdep->sigcontext_addr (next_frame);
1058  if (tdep->sc_reg_offset)
1059    {
1060      int i;
1061
1062      gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1063
1064      for (i = 0; i < tdep->sc_num_regs; i++)
1065	if (tdep->sc_reg_offset[i] != -1)
1066	  cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1067    }
1068  else
1069    {
1070      cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1071      cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1072    }
1073
1074  *this_cache = cache;
1075  return cache;
1076}
1077
1078static void
1079i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1080			     struct frame_id *this_id)
1081{
1082  struct i386_frame_cache *cache =
1083    i386_sigtramp_frame_cache (next_frame, this_cache);
1084
1085  /* See the end of i386_push_dummy_call.  */
1086  (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1087}
1088
1089static void
1090i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1091				   void **this_cache,
1092				   int regnum, int *optimizedp,
1093				   enum lval_type *lvalp, CORE_ADDR *addrp,
1094				   int *realnump, void *valuep)
1095{
1096  /* Make sure we've initialized the cache.  */
1097  i386_sigtramp_frame_cache (next_frame, this_cache);
1098
1099  i386_frame_prev_register (next_frame, this_cache, regnum,
1100			    optimizedp, lvalp, addrp, realnump, valuep);
1101}
1102
1103static const struct frame_unwind i386_sigtramp_frame_unwind =
1104{
1105  SIGTRAMP_FRAME,
1106  i386_sigtramp_frame_this_id,
1107  i386_sigtramp_frame_prev_register
1108};
1109
1110static const struct frame_unwind *
1111i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
1112{
1113  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1114
1115  /* We shouldn't even bother if we don't have a sigcontext_addr
1116     handler.  */
1117  if (tdep->sigcontext_addr == NULL)
1118    return NULL;
1119
1120  if (tdep->sigtramp_p != NULL)
1121    {
1122      if (tdep->sigtramp_p (next_frame))
1123	return &i386_sigtramp_frame_unwind;
1124    }
1125
1126  if (tdep->sigtramp_start != 0)
1127    {
1128      CORE_ADDR pc = frame_pc_unwind (next_frame);
1129
1130      gdb_assert (tdep->sigtramp_end != 0);
1131      if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1132	return &i386_sigtramp_frame_unwind;
1133    }
1134
1135  return NULL;
1136}
1137
1138
1139static CORE_ADDR
1140i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1141{
1142  struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1143
1144  return cache->base;
1145}
1146
1147static const struct frame_base i386_frame_base =
1148{
1149  &i386_frame_unwind,
1150  i386_frame_base_address,
1151  i386_frame_base_address,
1152  i386_frame_base_address
1153};
1154
1155static struct frame_id
1156i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1157{
1158  char buf[4];
1159  CORE_ADDR fp;
1160
1161  frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1162  fp = extract_unsigned_integer (buf, 4);
1163
1164  /* See the end of i386_push_dummy_call.  */
1165  return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1166}
1167
1168
1169/* Figure out where the longjmp will land.  Slurp the args out of the
1170   stack.  We expect the first arg to be a pointer to the jmp_buf
1171   structure from which we extract the address that we will land at.
1172   This address is copied into PC.  This routine returns non-zero on
1173   success.
1174
1175   This function is 64-bit safe.  */
1176
1177static int
1178i386_get_longjmp_target (CORE_ADDR *pc)
1179{
1180  char buf[8];
1181  CORE_ADDR sp, jb_addr;
1182  int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
1183  int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1184
1185  /* If JB_PC_OFFSET is -1, we have no way to find out where the
1186     longjmp will land.  */
1187  if (jb_pc_offset == -1)
1188    return 0;
1189
1190  /* Don't use I386_ESP_REGNUM here, since this function is also used
1191     for AMD64.  */
1192  regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1193  sp = extract_typed_address (buf, builtin_type_void_data_ptr);
1194  if (target_read_memory (sp + len, buf, len))
1195    return 0;
1196
1197  jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1198  if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1199    return 0;
1200
1201  *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1202  return 1;
1203}
1204
1205
1206static CORE_ADDR
1207i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1208		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1209		      struct value **args, CORE_ADDR sp, int struct_return,
1210		      CORE_ADDR struct_addr)
1211{
1212  char buf[4];
1213  int i;
1214
1215  /* Push arguments in reverse order.  */
1216  for (i = nargs - 1; i >= 0; i--)
1217    {
1218      int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1219
1220      /* The System V ABI says that:
1221
1222	 "An argument's size is increased, if necessary, to make it a
1223	 multiple of [32-bit] words.  This may require tail padding,
1224	 depending on the size of the argument."
1225
1226	 This makes sure the stack says word-aligned.  */
1227      sp -= (len + 3) & ~3;
1228      write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1229    }
1230
1231  /* Push value address.  */
1232  if (struct_return)
1233    {
1234      sp -= 4;
1235      store_unsigned_integer (buf, 4, struct_addr);
1236      write_memory (sp, buf, 4);
1237    }
1238
1239  /* Store return address.  */
1240  sp -= 4;
1241  store_unsigned_integer (buf, 4, bp_addr);
1242  write_memory (sp, buf, 4);
1243
1244  /* Finally, update the stack pointer...  */
1245  store_unsigned_integer (buf, 4, sp);
1246  regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1247
1248  /* ...and fake a frame pointer.  */
1249  regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1250
1251  /* MarkK wrote: This "+ 8" is all over the place:
1252     (i386_frame_this_id, i386_sigtramp_frame_this_id,
1253     i386_unwind_dummy_id).  It's there, since all frame unwinders for
1254     a given target have to agree (within a certain margin) on the
1255     definition of the stack address of a frame.  Otherwise
1256     frame_id_inner() won't work correctly.  Since DWARF2/GCC uses the
1257     stack address *before* the function call as a frame's CFA.  On
1258     the i386, when %ebp is used as a frame pointer, the offset
1259     between the contents %ebp and the CFA as defined by GCC.  */
1260  return sp + 8;
1261}
1262
1263/* These registers are used for returning integers (and on some
1264   targets also for returning `struct' and `union' values when their
1265   size and alignment match an integer type).  */
1266#define LOW_RETURN_REGNUM	I386_EAX_REGNUM /* %eax */
1267#define HIGH_RETURN_REGNUM	I386_EDX_REGNUM /* %edx */
1268
1269/* Read, for architecture GDBARCH, a function return value of TYPE
1270   from REGCACHE, and copy that into VALBUF.  */
1271
1272static void
1273i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1274			   struct regcache *regcache, void *valbuf)
1275{
1276  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1277  int len = TYPE_LENGTH (type);
1278  char buf[I386_MAX_REGISTER_SIZE];
1279
1280  if (TYPE_CODE (type) == TYPE_CODE_FLT)
1281    {
1282      if (tdep->st0_regnum < 0)
1283	{
1284	  warning ("Cannot find floating-point return value.");
1285	  memset (valbuf, 0, len);
1286	  return;
1287	}
1288
1289      /* Floating-point return values can be found in %st(0).  Convert
1290	 its contents to the desired type.  This is probably not
1291	 exactly how it would happen on the target itself, but it is
1292	 the best we can do.  */
1293      regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1294      convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1295    }
1296  else
1297    {
1298      int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1299      int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1300
1301      if (len <= low_size)
1302	{
1303	  regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1304	  memcpy (valbuf, buf, len);
1305	}
1306      else if (len <= (low_size + high_size))
1307	{
1308	  regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1309	  memcpy (valbuf, buf, low_size);
1310	  regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1311	  memcpy ((char *) valbuf + low_size, buf, len - low_size);
1312	}
1313      else
1314	internal_error (__FILE__, __LINE__,
1315			"Cannot extract return value of %d bytes long.", len);
1316    }
1317}
1318
1319/* Write, for architecture GDBARCH, a function return value of TYPE
1320   from VALBUF into REGCACHE.  */
1321
1322static void
1323i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1324			 struct regcache *regcache, const void *valbuf)
1325{
1326  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1327  int len = TYPE_LENGTH (type);
1328
1329  /* Define I387_ST0_REGNUM such that we use the proper definitions
1330     for the architecture.  */
1331#define I387_ST0_REGNUM I386_ST0_REGNUM
1332
1333  if (TYPE_CODE (type) == TYPE_CODE_FLT)
1334    {
1335      ULONGEST fstat;
1336      char buf[I386_MAX_REGISTER_SIZE];
1337
1338      if (tdep->st0_regnum < 0)
1339	{
1340	  warning ("Cannot set floating-point return value.");
1341	  return;
1342	}
1343
1344      /* Returning floating-point values is a bit tricky.  Apart from
1345         storing the return value in %st(0), we have to simulate the
1346         state of the FPU at function return point.  */
1347
1348      /* Convert the value found in VALBUF to the extended
1349	 floating-point format used by the FPU.  This is probably
1350	 not exactly how it would happen on the target itself, but
1351	 it is the best we can do.  */
1352      convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1353      regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1354
1355      /* Set the top of the floating-point register stack to 7.  The
1356         actual value doesn't really matter, but 7 is what a normal
1357         function return would end up with if the program started out
1358         with a freshly initialized FPU.  */
1359      regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1360      fstat |= (7 << 11);
1361      regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
1362
1363      /* Mark %st(1) through %st(7) as empty.  Since we set the top of
1364         the floating-point register stack to 7, the appropriate value
1365         for the tag word is 0x3fff.  */
1366      regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
1367    }
1368  else
1369    {
1370      int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1371      int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1372
1373      if (len <= low_size)
1374	regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1375      else if (len <= (low_size + high_size))
1376	{
1377	  regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1378	  regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1379				   len - low_size, (char *) valbuf + low_size);
1380	}
1381      else
1382	internal_error (__FILE__, __LINE__,
1383			"Cannot store return value of %d bytes long.", len);
1384    }
1385
1386#undef I387_ST0_REGNUM
1387}
1388
1389
1390/* This is the variable that is set with "set struct-convention", and
1391   its legitimate values.  */
1392static const char default_struct_convention[] = "default";
1393static const char pcc_struct_convention[] = "pcc";
1394static const char reg_struct_convention[] = "reg";
1395static const char *valid_conventions[] =
1396{
1397  default_struct_convention,
1398  pcc_struct_convention,
1399  reg_struct_convention,
1400  NULL
1401};
1402static const char *struct_convention = default_struct_convention;
1403
1404/* Return non-zero if TYPE, which is assumed to be a structure or
1405   union type, should be returned in registers for architecture
1406   GDBARCH.  */
1407
1408static int
1409i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1410{
1411  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1412  enum type_code code = TYPE_CODE (type);
1413  int len = TYPE_LENGTH (type);
1414
1415  gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
1416
1417  if (struct_convention == pcc_struct_convention
1418      || (struct_convention == default_struct_convention
1419	  && tdep->struct_return == pcc_struct_return))
1420    return 0;
1421
1422  return (len == 1 || len == 2 || len == 4 || len == 8);
1423}
1424
1425/* Determine, for architecture GDBARCH, how a return value of TYPE
1426   should be returned.  If it is supposed to be returned in registers,
1427   and READBUF is non-zero, read the appropriate value from REGCACHE,
1428   and copy it into READBUF.  If WRITEBUF is non-zero, write the value
1429   from WRITEBUF into REGCACHE.  */
1430
1431static enum return_value_convention
1432i386_return_value (struct gdbarch *gdbarch, struct type *type,
1433		   struct regcache *regcache, void *readbuf,
1434		   const void *writebuf)
1435{
1436  enum type_code code = TYPE_CODE (type);
1437
1438  if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1439      && !i386_reg_struct_return_p (gdbarch, type))
1440    {
1441      /* The System V ABI says that:
1442
1443	 "A function that returns a structure or union also sets %eax
1444	 to the value of the original address of the caller's area
1445	 before it returns.  Thus when the caller receives control
1446	 again, the address of the returned object resides in register
1447	 %eax and can be used to access the object."
1448
1449	 So the ABI guarantees that we can always find the return
1450	 value just after the function has returned.  */
1451
1452      if (readbuf)
1453	{
1454	  ULONGEST addr;
1455
1456	  regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1457	  read_memory (addr, readbuf, TYPE_LENGTH (type));
1458	}
1459
1460      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1461    }
1462
1463  /* This special case is for structures consisting of a single
1464     `float' or `double' member.  These structures are returned in
1465     %st(0).  For these structures, we call ourselves recursively,
1466     changing TYPE into the type of the first member of the structure.
1467     Since that should work for all structures that have only one
1468     member, we don't bother to check the member's type here.  */
1469  if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1470    {
1471      type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1472      return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1473    }
1474
1475  if (readbuf)
1476    i386_extract_return_value (gdbarch, type, regcache, readbuf);
1477  if (writebuf)
1478    i386_store_return_value (gdbarch, type, regcache, writebuf);
1479
1480  return RETURN_VALUE_REGISTER_CONVENTION;
1481}
1482
1483
1484/* Return the GDB type object for the "standard" data type of data in
1485   register REGNUM.  Perhaps %esi and %edi should go here, but
1486   potentially they could be used for things other than address.  */
1487
1488static struct type *
1489i386_register_type (struct gdbarch *gdbarch, int regnum)
1490{
1491  if (regnum == I386_EIP_REGNUM
1492      || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1493    return lookup_pointer_type (builtin_type_void);
1494
1495  if (i386_fp_regnum_p (regnum))
1496    return builtin_type_i387_ext;
1497
1498  if (i386_sse_regnum_p (gdbarch, regnum))
1499    return builtin_type_vec128i;
1500
1501  if (i386_mmx_regnum_p (gdbarch, regnum))
1502    return builtin_type_vec64i;
1503
1504  return builtin_type_int;
1505}
1506
1507/* Map a cooked register onto a raw register or memory.  For the i386,
1508   the MMX registers need to be mapped onto floating point registers.  */
1509
1510static int
1511i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1512{
1513  struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1514  int mmxreg, fpreg;
1515  ULONGEST fstat;
1516  int tos;
1517
1518  /* Define I387_ST0_REGNUM such that we use the proper definitions
1519     for REGCACHE's architecture.  */
1520#define I387_ST0_REGNUM tdep->st0_regnum
1521
1522  mmxreg = regnum - tdep->mm0_regnum;
1523  regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1524  tos = (fstat >> 11) & 0x7;
1525  fpreg = (mmxreg + tos) % 8;
1526
1527  return (I387_ST0_REGNUM + fpreg);
1528
1529#undef I387_ST0_REGNUM
1530}
1531
1532static void
1533i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1534			   int regnum, void *buf)
1535{
1536  if (i386_mmx_regnum_p (gdbarch, regnum))
1537    {
1538      char mmx_buf[MAX_REGISTER_SIZE];
1539      int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1540
1541      /* Extract (always little endian).  */
1542      regcache_raw_read (regcache, fpnum, mmx_buf);
1543      memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1544    }
1545  else
1546    regcache_raw_read (regcache, regnum, buf);
1547}
1548
1549static void
1550i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1551			    int regnum, const void *buf)
1552{
1553  if (i386_mmx_regnum_p (gdbarch, regnum))
1554    {
1555      char mmx_buf[MAX_REGISTER_SIZE];
1556      int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1557
1558      /* Read ...  */
1559      regcache_raw_read (regcache, fpnum, mmx_buf);
1560      /* ... Modify ... (always little endian).  */
1561      memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
1562      /* ... Write.  */
1563      regcache_raw_write (regcache, fpnum, mmx_buf);
1564    }
1565  else
1566    regcache_raw_write (regcache, regnum, buf);
1567}
1568
1569
1570/* Return the register number of the register allocated by GCC after
1571   REGNUM, or -1 if there is no such register.  */
1572
1573static int
1574i386_next_regnum (int regnum)
1575{
1576  /* GCC allocates the registers in the order:
1577
1578     %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1579
1580     Since storing a variable in %esp doesn't make any sense we return
1581     -1 for %ebp and for %esp itself.  */
1582  static int next_regnum[] =
1583  {
1584    I386_EDX_REGNUM,		/* Slot for %eax.  */
1585    I386_EBX_REGNUM,		/* Slot for %ecx.  */
1586    I386_ECX_REGNUM,		/* Slot for %edx.  */
1587    I386_ESI_REGNUM,		/* Slot for %ebx.  */
1588    -1, -1,			/* Slots for %esp and %ebp.  */
1589    I386_EDI_REGNUM,		/* Slot for %esi.  */
1590    I386_EBP_REGNUM		/* Slot for %edi.  */
1591  };
1592
1593  if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1594    return next_regnum[regnum];
1595
1596  return -1;
1597}
1598
1599/* Return nonzero if a value of type TYPE stored in register REGNUM
1600   needs any special handling.  */
1601
1602static int
1603i386_convert_register_p (int regnum, struct type *type)
1604{
1605  int len = TYPE_LENGTH (type);
1606
1607  /* Values may be spread across multiple registers.  Most debugging
1608     formats aren't expressive enough to specify the locations, so
1609     some heuristics is involved.  Right now we only handle types that
1610     have a length that is a multiple of the word size, since GCC
1611     doesn't seem to put any other types into registers.  */
1612  if (len > 4 && len % 4 == 0)
1613    {
1614      int last_regnum = regnum;
1615
1616      while (len > 4)
1617	{
1618	  last_regnum = i386_next_regnum (last_regnum);
1619	  len -= 4;
1620	}
1621
1622      if (last_regnum != -1)
1623	return 1;
1624    }
1625
1626  return i386_fp_regnum_p (regnum);
1627}
1628
1629/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1630   return its contents in TO.  */
1631
1632static void
1633i386_register_to_value (struct frame_info *frame, int regnum,
1634			struct type *type, void *to)
1635{
1636  int len = TYPE_LENGTH (type);
1637  char *buf = to;
1638
1639  /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1640     available in FRAME (i.e. if it wasn't saved)?  */
1641
1642  if (i386_fp_regnum_p (regnum))
1643    {
1644      i387_register_to_value (frame, regnum, type, to);
1645      return;
1646    }
1647
1648  /* Read a value spread across multiple registers.  */
1649
1650  gdb_assert (len > 4 && len % 4 == 0);
1651
1652  while (len > 0)
1653    {
1654      gdb_assert (regnum != -1);
1655      gdb_assert (register_size (current_gdbarch, regnum) == 4);
1656
1657      get_frame_register (frame, regnum, buf);
1658      regnum = i386_next_regnum (regnum);
1659      len -= 4;
1660      buf += 4;
1661    }
1662}
1663
1664/* Write the contents FROM of a value of type TYPE into register
1665   REGNUM in frame FRAME.  */
1666
1667static void
1668i386_value_to_register (struct frame_info *frame, int regnum,
1669			struct type *type, const void *from)
1670{
1671  int len = TYPE_LENGTH (type);
1672  const char *buf = from;
1673
1674  if (i386_fp_regnum_p (regnum))
1675    {
1676      i387_value_to_register (frame, regnum, type, from);
1677      return;
1678    }
1679
1680  /* Write a value spread across multiple registers.  */
1681
1682  gdb_assert (len > 4 && len % 4 == 0);
1683
1684  while (len > 0)
1685    {
1686      gdb_assert (regnum != -1);
1687      gdb_assert (register_size (current_gdbarch, regnum) == 4);
1688
1689      put_frame_register (frame, regnum, buf);
1690      regnum = i386_next_regnum (regnum);
1691      len -= 4;
1692      buf += 4;
1693    }
1694}
1695
1696/* Supply register REGNUM from the buffer specified by GREGS and LEN
1697   in the general-purpose register set REGSET to register cache
1698   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
1699
1700void
1701i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1702		     int regnum, const void *gregs, size_t len)
1703{
1704  const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1705  const char *regs = gregs;
1706  int i;
1707
1708  gdb_assert (len == tdep->sizeof_gregset);
1709
1710  for (i = 0; i < tdep->gregset_num_regs; i++)
1711    {
1712      if ((regnum == i || regnum == -1)
1713	  && tdep->gregset_reg_offset[i] != -1)
1714	regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1715    }
1716}
1717
1718/* Collect register REGNUM from the register cache REGCACHE and store
1719   it in the buffer specified by GREGS and LEN as described by the
1720   general-purpose register set REGSET.  If REGNUM is -1, do this for
1721   all registers in REGSET.  */
1722
1723void
1724i386_collect_gregset (const struct regset *regset,
1725		      const struct regcache *regcache,
1726		      int regnum, void *gregs, size_t len)
1727{
1728  const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1729  char *regs = gregs;
1730  int i;
1731
1732  gdb_assert (len == tdep->sizeof_gregset);
1733
1734  for (i = 0; i < tdep->gregset_num_regs; i++)
1735    {
1736      if ((regnum == i || regnum == -1)
1737	  && tdep->gregset_reg_offset[i] != -1)
1738	regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1739    }
1740}
1741
1742/* Supply register REGNUM from the buffer specified by FPREGS and LEN
1743   in the floating-point register set REGSET to register cache
1744   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
1745
1746static void
1747i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1748		      int regnum, const void *fpregs, size_t len)
1749{
1750  const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1751
1752  if (len == I387_SIZEOF_FXSAVE)
1753    {
1754      i387_supply_fxsave (regcache, regnum, fpregs);
1755      return;
1756    }
1757
1758  gdb_assert (len == tdep->sizeof_fpregset);
1759  i387_supply_fsave (regcache, regnum, fpregs);
1760}
1761
1762/* Collect register REGNUM from the register cache REGCACHE and store
1763   it in the buffer specified by FPREGS and LEN as described by the
1764   floating-point register set REGSET.  If REGNUM is -1, do this for
1765   all registers in REGSET.  */
1766
1767static void
1768i386_collect_fpregset (const struct regset *regset,
1769		       const struct regcache *regcache,
1770		       int regnum, void *fpregs, size_t len)
1771{
1772  const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1773
1774  if (len == I387_SIZEOF_FXSAVE)
1775    {
1776      i387_collect_fxsave (regcache, regnum, fpregs);
1777      return;
1778    }
1779
1780  gdb_assert (len == tdep->sizeof_fpregset);
1781  i387_collect_fsave (regcache, regnum, fpregs);
1782}
1783
1784/* Return the appropriate register set for the core section identified
1785   by SECT_NAME and SECT_SIZE.  */
1786
1787const struct regset *
1788i386_regset_from_core_section (struct gdbarch *gdbarch,
1789			       const char *sect_name, size_t sect_size)
1790{
1791  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1792
1793  if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1794    {
1795      if (tdep->gregset == NULL)
1796	tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
1797				      i386_collect_gregset);
1798      return tdep->gregset;
1799    }
1800
1801  if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1802      || (strcmp (sect_name, ".reg-xfp") == 0
1803	  && sect_size == I387_SIZEOF_FXSAVE))
1804    {
1805      if (tdep->fpregset == NULL)
1806	tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
1807				       i386_collect_fpregset);
1808      return tdep->fpregset;
1809    }
1810
1811  return NULL;
1812}
1813
1814
1815#ifdef STATIC_TRANSFORM_NAME
1816/* SunPRO encodes the static variables.  This is not related to C++
1817   mangling, it is done for C too.  */
1818
1819char *
1820sunpro_static_transform_name (char *name)
1821{
1822  char *p;
1823  if (IS_STATIC_TRANSFORM_NAME (name))
1824    {
1825      /* For file-local statics there will be a period, a bunch of
1826         junk (the contents of which match a string given in the
1827         N_OPT), a period and the name.  For function-local statics
1828         there will be a bunch of junk (which seems to change the
1829         second character from 'A' to 'B'), a period, the name of the
1830         function, and the name.  So just skip everything before the
1831         last period.  */
1832      p = strrchr (name, '.');
1833      if (p != NULL)
1834	name = p + 1;
1835    }
1836  return name;
1837}
1838#endif /* STATIC_TRANSFORM_NAME */
1839
1840
1841/* Stuff for WIN32 PE style DLL's but is pretty generic really.  */
1842
1843CORE_ADDR
1844i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1845{
1846  if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1847    {
1848      unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1849      struct minimal_symbol *indsym =
1850	indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1851      char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
1852
1853      if (symname)
1854	{
1855	  if (strncmp (symname, "__imp_", 6) == 0
1856	      || strncmp (symname, "_imp_", 5) == 0)
1857	    return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1858	}
1859    }
1860  return 0;			/* Not a trampoline.  */
1861}
1862
1863
1864/* Return whether the frame preceding NEXT_FRAME corresponds to a
1865   sigtramp routine.  */
1866
1867static int
1868i386_sigtramp_p (struct frame_info *next_frame)
1869{
1870  CORE_ADDR pc = frame_pc_unwind (next_frame);
1871  char *name;
1872
1873  find_pc_partial_function (pc, &name, NULL, NULL);
1874  return (name && strcmp ("_sigtramp", name) == 0);
1875}
1876
1877
1878/* We have two flavours of disassembly.  The machinery on this page
1879   deals with switching between those.  */
1880
1881static int
1882i386_print_insn (bfd_vma pc, struct disassemble_info *info)
1883{
1884  gdb_assert (disassembly_flavor == att_flavor
1885	      || disassembly_flavor == intel_flavor);
1886
1887  /* FIXME: kettenis/20020915: Until disassembler_options is properly
1888     constified, cast to prevent a compiler warning.  */
1889  info->disassembler_options = (char *) disassembly_flavor;
1890  info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1891
1892  return print_insn_i386 (pc, info);
1893}
1894
1895
1896/* There are a few i386 architecture variants that differ only
1897   slightly from the generic i386 target.  For now, we don't give them
1898   their own source file, but include them here.  As a consequence,
1899   they'll always be included.  */
1900
1901/* System V Release 4 (SVR4).  */
1902
1903/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
1904   sigtramp routine.  */
1905
1906static int
1907i386_svr4_sigtramp_p (struct frame_info *next_frame)
1908{
1909  CORE_ADDR pc = frame_pc_unwind (next_frame);
1910  char *name;
1911
1912  /* UnixWare uses _sigacthandler.  The origin of the other symbols is
1913     currently unknown.  */
1914  find_pc_partial_function (pc, &name, NULL, NULL);
1915  return (name && (strcmp ("_sigreturn", name) == 0
1916		   || strcmp ("_sigacthandler", name) == 0
1917		   || strcmp ("sigvechandler", name) == 0));
1918}
1919
1920/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1921   routine, return the address of the associated sigcontext (ucontext)
1922   structure.  */
1923
1924static CORE_ADDR
1925i386_svr4_sigcontext_addr (struct frame_info *next_frame)
1926{
1927  char buf[4];
1928  CORE_ADDR sp;
1929
1930  frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1931  sp = extract_unsigned_integer (buf, 4);
1932
1933  return read_memory_unsigned_integer (sp + 8, 4);
1934}
1935
1936
1937/* Generic ELF.  */
1938
1939void
1940i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1941{
1942  /* We typically use stabs-in-ELF with the SVR4 register numbering.  */
1943  set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
1944}
1945
1946/* System V Release 4 (SVR4).  */
1947
1948void
1949i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1950{
1951  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1952
1953  /* System V Release 4 uses ELF.  */
1954  i386_elf_init_abi (info, gdbarch);
1955
1956  /* System V Release 4 has shared libraries.  */
1957  set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1958  set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1959
1960  tdep->sigtramp_p = i386_svr4_sigtramp_p;
1961  tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1962  tdep->sc_pc_offset = 36 + 14 * 4;
1963  tdep->sc_sp_offset = 36 + 17 * 4;
1964
1965  tdep->jb_pc_offset = 20;
1966}
1967
1968/* DJGPP.  */
1969
1970static void
1971i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1972{
1973  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1974
1975  /* DJGPP doesn't have any special frames for signal handlers.  */
1976  tdep->sigtramp_p = NULL;
1977
1978  tdep->jb_pc_offset = 36;
1979}
1980
1981/* NetWare.  */
1982
1983static void
1984i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1985{
1986  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1987
1988  tdep->jb_pc_offset = 24;
1989}
1990
1991
1992/* i386 register groups.  In addition to the normal groups, add "mmx"
1993   and "sse".  */
1994
1995static struct reggroup *i386_sse_reggroup;
1996static struct reggroup *i386_mmx_reggroup;
1997
1998static void
1999i386_init_reggroups (void)
2000{
2001  i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2002  i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2003}
2004
2005static void
2006i386_add_reggroups (struct gdbarch *gdbarch)
2007{
2008  reggroup_add (gdbarch, i386_sse_reggroup);
2009  reggroup_add (gdbarch, i386_mmx_reggroup);
2010  reggroup_add (gdbarch, general_reggroup);
2011  reggroup_add (gdbarch, float_reggroup);
2012  reggroup_add (gdbarch, all_reggroup);
2013  reggroup_add (gdbarch, save_reggroup);
2014  reggroup_add (gdbarch, restore_reggroup);
2015  reggroup_add (gdbarch, vector_reggroup);
2016  reggroup_add (gdbarch, system_reggroup);
2017}
2018
2019int
2020i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2021			  struct reggroup *group)
2022{
2023  int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2024		      || i386_mxcsr_regnum_p (gdbarch, regnum));
2025  int fp_regnum_p = (i386_fp_regnum_p (regnum)
2026		     || i386_fpc_regnum_p (regnum));
2027  int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2028
2029  if (group == i386_mmx_reggroup)
2030    return mmx_regnum_p;
2031  if (group == i386_sse_reggroup)
2032    return sse_regnum_p;
2033  if (group == vector_reggroup)
2034    return (mmx_regnum_p || sse_regnum_p);
2035  if (group == float_reggroup)
2036    return fp_regnum_p;
2037  if (group == general_reggroup)
2038    return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2039
2040  return default_register_reggroup_p (gdbarch, regnum, group);
2041}
2042
2043
2044/* Get the ARGIth function argument for the current function.  */
2045
2046static CORE_ADDR
2047i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2048			     struct type *type)
2049{
2050  CORE_ADDR sp = get_frame_register_unsigned  (frame, I386_ESP_REGNUM);
2051  return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2052}
2053
2054
2055static struct gdbarch *
2056i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2057{
2058  struct gdbarch_tdep *tdep;
2059  struct gdbarch *gdbarch;
2060
2061  /* If there is already a candidate, use it.  */
2062  arches = gdbarch_list_lookup_by_info (arches, &info);
2063  if (arches != NULL)
2064    return arches->gdbarch;
2065
2066  /* Allocate space for the new architecture.  */
2067  tdep = XMALLOC (struct gdbarch_tdep);
2068  gdbarch = gdbarch_alloc (&info, tdep);
2069
2070  /* General-purpose registers.  */
2071  tdep->gregset = NULL;
2072  tdep->gregset_reg_offset = NULL;
2073  tdep->gregset_num_regs = I386_NUM_GREGS;
2074  tdep->sizeof_gregset = 0;
2075
2076  /* Floating-point registers.  */
2077  tdep->fpregset = NULL;
2078  tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2079
2080  /* The default settings include the FPU registers, the MMX registers
2081     and the SSE registers.  This can be overridden for a specific ABI
2082     by adjusting the members `st0_regnum', `mm0_regnum' and
2083     `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2084     will show up in the output of "info all-registers".  Ideally we
2085     should try to autodetect whether they are available, such that we
2086     can prevent "info all-registers" from displaying registers that
2087     aren't available.
2088
2089     NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2090     [the SSE registers] always (even when they don't exist) or never
2091     showing them to the user (even when they do exist), I prefer the
2092     former over the latter.  */
2093
2094  tdep->st0_regnum = I386_ST0_REGNUM;
2095
2096  /* The MMX registers are implemented as pseudo-registers.  Put off
2097     calculating the register number for %mm0 until we know the number
2098     of raw registers.  */
2099  tdep->mm0_regnum = 0;
2100
2101  /* I386_NUM_XREGS includes %mxcsr, so substract one.  */
2102  tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2103
2104  tdep->jb_pc_offset = -1;
2105  tdep->struct_return = pcc_struct_return;
2106  tdep->sigtramp_start = 0;
2107  tdep->sigtramp_end = 0;
2108  tdep->sigtramp_p = i386_sigtramp_p;
2109  tdep->sigcontext_addr = NULL;
2110  tdep->sc_reg_offset = NULL;
2111  tdep->sc_pc_offset = -1;
2112  tdep->sc_sp_offset = -1;
2113
2114  /* The format used for `long double' on almost all i386 targets is
2115     the i387 extended floating-point format.  In fact, of all targets
2116     in the GCC 2.95 tree, only OSF/1 does it different, and insists
2117     on having a `long double' that's not `long' at all.  */
2118  set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
2119
2120  /* Although the i387 extended floating-point has only 80 significant
2121     bits, a `long double' actually takes up 96, probably to enforce
2122     alignment.  */
2123  set_gdbarch_long_double_bit (gdbarch, 96);
2124
2125  /* The default ABI includes general-purpose registers,
2126     floating-point registers, and the SSE registers.  */
2127  set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2128  set_gdbarch_register_name (gdbarch, i386_register_name);
2129  set_gdbarch_register_type (gdbarch, i386_register_type);
2130
2131  /* Register numbers of various important registers.  */
2132  set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2133  set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2134  set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2135  set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2136
2137  /* NOTE: kettenis/20040418: GCC does have two possible register
2138     numbering schemes on the i386: dbx and SVR4.  These schemes
2139     differ in how they number %ebp, %esp, %eflags, and the
2140     floating-point registers, and are implemented by the arrays
2141     dbx_register_map[] and svr4_dbx_register_map in
2142     gcc/config/i386.c.  GCC also defines a third numbering scheme in
2143     gcc/config/i386.c, which it designates as the "default" register
2144     map used in 64bit mode.  This last register numbering scheme is
2145     implemented in dbx64_register_map, and is used for AMD64; see
2146     amd64-tdep.c.
2147
2148     Currently, each GCC i386 target always uses the same register
2149     numbering scheme across all its supported debugging formats
2150     i.e. SDB (COFF), stabs and DWARF 2.  This is because
2151     gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2152     DBX_REGISTER_NUMBER macro which is defined by each target's
2153     respective config header in a manner independent of the requested
2154     output debugging format.
2155
2156     This does not match the arrangement below, which presumes that
2157     the SDB and stabs numbering schemes differ from the DWARF and
2158     DWARF 2 ones.  The reason for this arrangement is that it is
2159     likely to get the numbering scheme for the target's
2160     default/native debug format right.  For targets where GCC is the
2161     native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2162     targets where the native toolchain uses a different numbering
2163     scheme for a particular debug format (stabs-in-ELF on Solaris)
2164     the defaults below will have to be overridden, like
2165     i386_elf_init_abi() does.  */
2166
2167  /* Use the dbx register numbering scheme for stabs and COFF.  */
2168  set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2169  set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2170
2171  /* Use the SVR4 register numbering scheme for DWARF and DWARF 2.  */
2172  set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2173  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2174
2175  /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2176     be in use on any of the supported i386 targets.  */
2177
2178  set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2179
2180  set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2181
2182  /* Call dummy code.  */
2183  set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2184
2185  set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2186  set_gdbarch_register_to_value (gdbarch,  i386_register_to_value);
2187  set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2188
2189  set_gdbarch_return_value (gdbarch, i386_return_value);
2190
2191  set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2192
2193  /* Stack grows downward.  */
2194  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2195
2196  set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2197  set_gdbarch_decr_pc_after_break (gdbarch, 1);
2198
2199  set_gdbarch_frame_args_skip (gdbarch, 8);
2200
2201  /* Wire in the MMX registers.  */
2202  set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2203  set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2204  set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2205
2206  set_gdbarch_print_insn (gdbarch, i386_print_insn);
2207
2208  set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
2209
2210  set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2211
2212  /* Add the i386 register groups.  */
2213  i386_add_reggroups (gdbarch);
2214  set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2215
2216  /* Helper for function argument information.  */
2217  set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2218
2219  /* Hook in the DWARF CFI frame unwinder.  */
2220  frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2221
2222  frame_base_set_default (gdbarch, &i386_frame_base);
2223
2224  /* Hook in ABI-specific overrides, if they have been registered.  */
2225  gdbarch_init_osabi (info, gdbarch);
2226
2227  frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2228  frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
2229
2230  /* If we have a register mapping, enable the generic core file
2231     support, unless it has already been enabled.  */
2232  if (tdep->gregset_reg_offset
2233      && !gdbarch_regset_from_core_section_p (gdbarch))
2234    set_gdbarch_regset_from_core_section (gdbarch,
2235					  i386_regset_from_core_section);
2236
2237  /* Unless support for MMX has been disabled, make %mm0 the first
2238     pseudo-register.  */
2239  if (tdep->mm0_regnum == 0)
2240    tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2241
2242  return gdbarch;
2243}
2244
2245static enum gdb_osabi
2246i386_coff_osabi_sniffer (bfd *abfd)
2247{
2248  if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2249      || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2250    return GDB_OSABI_GO32;
2251
2252  return GDB_OSABI_UNKNOWN;
2253}
2254
2255static enum gdb_osabi
2256i386_nlm_osabi_sniffer (bfd *abfd)
2257{
2258  return GDB_OSABI_NETWARE;
2259}
2260
2261
2262/* Provide a prototype to silence -Wmissing-prototypes.  */
2263void _initialize_i386_tdep (void);
2264
2265void
2266_initialize_i386_tdep (void)
2267{
2268  register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2269
2270  /* Add the variable that controls the disassembly flavor.  */
2271  {
2272    struct cmd_list_element *new_cmd;
2273
2274    new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
2275				valid_flavors,
2276				&disassembly_flavor,
2277				"\
2278Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
2279and the default value is \"att\".",
2280				&setlist);
2281    deprecated_add_show_from_set (new_cmd, &showlist);
2282  }
2283
2284  /* Add the variable that controls the convention for returning
2285     structs.  */
2286  {
2287    struct cmd_list_element *new_cmd;
2288
2289    new_cmd = add_set_enum_cmd ("struct-convention", no_class,
2290				valid_conventions,
2291				&struct_convention, "\
2292Set the convention for returning small structs, valid values \
2293are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
2294                                &setlist);
2295    deprecated_add_show_from_set (new_cmd, &showlist);
2296  }
2297
2298  gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2299				  i386_coff_osabi_sniffer);
2300  gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2301				  i386_nlm_osabi_sniffer);
2302
2303  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2304			  i386_svr4_init_abi);
2305  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2306			  i386_go32_init_abi);
2307  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
2308			  i386_nw_init_abi);
2309
2310  /* Initialize the i386 specific register groups.  */
2311  i386_init_reggroups ();
2312}
2313