1/* Target-dependent code for GNU/Linux i386.
2
3   Copyright 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5   This file is part of GDB.
6
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 2 of the License, or
10   (at your option) any later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program; if not, write to the Free Software
19   Foundation, Inc., 59 Temple Place - Suite 330,
20   Boston, MA 02111-1307, USA.  */
21
22#include "defs.h"
23#include "gdbcore.h"
24#include "frame.h"
25#include "value.h"
26#include "regcache.h"
27#include "inferior.h"
28#include "osabi.h"
29#include "reggroups.h"
30
31#include "gdb_string.h"
32
33#include "i386-tdep.h"
34#include "i386-linux-tdep.h"
35#include "glibc-tdep.h"
36#include "solib-svr4.h"
37
38/* Return the name of register REG.  */
39
40static const char *
41i386_linux_register_name (int reg)
42{
43  /* Deal with the extra "orig_eax" pseudo register.  */
44  if (reg == I386_LINUX_ORIG_EAX_REGNUM)
45    return "orig_eax";
46
47  return i386_register_name (reg);
48}
49
50/* Return non-zero, when the register is in the corresponding register
51   group.  Put the LINUX_ORIG_EAX register in the system group.  */
52static int
53i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
54				struct reggroup *group)
55{
56  if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
57    return (group == system_reggroup
58	    || group == save_reggroup
59	    || group == restore_reggroup);
60  return i386_register_reggroup_p (gdbarch, regnum, group);
61}
62
63
64/* Recognizing signal handler frames.  */
65
66/* GNU/Linux has two flavors of signals.  Normal signal handlers, and
67   "realtime" (RT) signals.  The RT signals can provide additional
68   information to the signal handler if the SA_SIGINFO flag is set
69   when establishing a signal handler using `sigaction'.  It is not
70   unlikely that future versions of GNU/Linux will support SA_SIGINFO
71   for normal signals too.  */
72
73/* When the i386 Linux kernel calls a signal handler and the
74   SA_RESTORER flag isn't set, the return address points to a bit of
75   code on the stack.  This function returns whether the PC appears to
76   be within this bit of code.
77
78   The instruction sequence for normal signals is
79       pop    %eax
80       mov    $0x77, %eax
81       int    $0x80
82   or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
83
84   Checking for the code sequence should be somewhat reliable, because
85   the effect is to call the system call sigreturn.  This is unlikely
86   to occur anywhere other than in a signal trampoline.
87
88   It kind of sucks that we have to read memory from the process in
89   order to identify a signal trampoline, but there doesn't seem to be
90   any other way.  Therefore we only do the memory reads if no
91   function name could be identified, which should be the case since
92   the code is on the stack.
93
94   Detection of signal trampolines for handlers that set the
95   SA_RESTORER flag is in general not possible.  Unfortunately this is
96   what the GNU C Library has been doing for quite some time now.
97   However, as of version 2.1.2, the GNU C Library uses signal
98   trampolines (named __restore and __restore_rt) that are identical
99   to the ones used by the kernel.  Therefore, these trampolines are
100   supported too.  */
101
102#define LINUX_SIGTRAMP_INSN0	0x58	/* pop %eax */
103#define LINUX_SIGTRAMP_OFFSET0	0
104#define LINUX_SIGTRAMP_INSN1	0xb8	/* mov $NNNN, %eax */
105#define LINUX_SIGTRAMP_OFFSET1	1
106#define LINUX_SIGTRAMP_INSN2	0xcd	/* int */
107#define LINUX_SIGTRAMP_OFFSET2	6
108
109static const unsigned char linux_sigtramp_code[] =
110{
111  LINUX_SIGTRAMP_INSN0,					/* pop %eax */
112  LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00,		/* mov $0x77, %eax */
113  LINUX_SIGTRAMP_INSN2, 0x80				/* int $0x80 */
114};
115
116#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
117
118/* If NEXT_FRAME unwinds into a sigtramp routine, return the address
119   of the start of the routine.  Otherwise, return 0.  */
120
121static CORE_ADDR
122i386_linux_sigtramp_start (struct frame_info *next_frame)
123{
124  CORE_ADDR pc = frame_pc_unwind (next_frame);
125  unsigned char buf[LINUX_SIGTRAMP_LEN];
126
127  /* We only recognize a signal trampoline if PC is at the start of
128     one of the three instructions.  We optimize for finding the PC at
129     the start, as will be the case when the trampoline is not the
130     first frame on the stack.  We assume that in the case where the
131     PC is not at the start of the instruction sequence, there will be
132     a few trailing readable bytes on the stack.  */
133
134  if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_SIGTRAMP_LEN))
135    return 0;
136
137  if (buf[0] != LINUX_SIGTRAMP_INSN0)
138    {
139      int adjust;
140
141      switch (buf[0])
142	{
143	case LINUX_SIGTRAMP_INSN1:
144	  adjust = LINUX_SIGTRAMP_OFFSET1;
145	  break;
146	case LINUX_SIGTRAMP_INSN2:
147	  adjust = LINUX_SIGTRAMP_OFFSET2;
148	  break;
149	default:
150	  return 0;
151	}
152
153      pc -= adjust;
154
155      if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_SIGTRAMP_LEN))
156	return 0;
157    }
158
159  if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
160    return 0;
161
162  return pc;
163}
164
165/* This function does the same for RT signals.  Here the instruction
166   sequence is
167       mov    $0xad, %eax
168       int    $0x80
169   or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
170
171   The effect is to call the system call rt_sigreturn.  */
172
173#define LINUX_RT_SIGTRAMP_INSN0		0xb8 /* mov $NNNN, %eax */
174#define LINUX_RT_SIGTRAMP_OFFSET0	0
175#define LINUX_RT_SIGTRAMP_INSN1		0xcd /* int */
176#define LINUX_RT_SIGTRAMP_OFFSET1	5
177
178static const unsigned char linux_rt_sigtramp_code[] =
179{
180  LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00,	/* mov $0xad, %eax */
181  LINUX_RT_SIGTRAMP_INSN1, 0x80				/* int $0x80 */
182};
183
184#define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
185
186/* If NEXT_FRAME unwinds into an RT sigtramp routine, return the
187   address of the start of the routine.  Otherwise, return 0.  */
188
189static CORE_ADDR
190i386_linux_rt_sigtramp_start (struct frame_info *next_frame)
191{
192  CORE_ADDR pc = frame_pc_unwind (next_frame);
193  unsigned char buf[LINUX_RT_SIGTRAMP_LEN];
194
195  /* We only recognize a signal trampoline if PC is at the start of
196     one of the two instructions.  We optimize for finding the PC at
197     the start, as will be the case when the trampoline is not the
198     first frame on the stack.  We assume that in the case where the
199     PC is not at the start of the instruction sequence, there will be
200     a few trailing readable bytes on the stack.  */
201
202  if (!safe_frame_unwind_memory (next_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
203    return 0;
204
205  if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
206    {
207      if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
208	return 0;
209
210      pc -= LINUX_RT_SIGTRAMP_OFFSET1;
211
212      if (!safe_frame_unwind_memory (next_frame, pc, buf,
213				     LINUX_RT_SIGTRAMP_LEN))
214	return 0;
215    }
216
217  if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
218    return 0;
219
220  return pc;
221}
222
223/* Return whether the frame preceding NEXT_FRAME corresponds to a
224   GNU/Linux sigtramp routine.  */
225
226static int
227i386_linux_sigtramp_p (struct frame_info *next_frame)
228{
229  CORE_ADDR pc = frame_pc_unwind (next_frame);
230  char *name;
231
232  find_pc_partial_function (pc, &name, NULL, NULL);
233
234  /* If we have NAME, we can optimize the search.  The trampolines are
235     named __restore and __restore_rt.  However, they aren't dynamically
236     exported from the shared C library, so the trampoline may appear to
237     be part of the preceding function.  This should always be sigaction,
238     __sigaction, or __libc_sigaction (all aliases to the same function).  */
239  if (name == NULL || strstr (name, "sigaction") != NULL)
240    return (i386_linux_sigtramp_start (next_frame) != 0
241	    || i386_linux_rt_sigtramp_start (next_frame) != 0);
242
243  return (strcmp ("__restore", name) == 0
244	  || strcmp ("__restore_rt", name) == 0);
245}
246
247/* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>.  */
248#define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
249
250/* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
251   routine, return the address of the associated sigcontext structure.  */
252
253static CORE_ADDR
254i386_linux_sigcontext_addr (struct frame_info *next_frame)
255{
256  CORE_ADDR pc;
257  CORE_ADDR sp;
258  char buf[4];
259
260  frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
261  sp = extract_unsigned_integer (buf, 4);
262
263  pc = i386_linux_sigtramp_start (next_frame);
264  if (pc)
265    {
266      /* The sigcontext structure lives on the stack, right after
267	 the signum argument.  We determine the address of the
268	 sigcontext structure by looking at the frame's stack
269	 pointer.  Keep in mind that the first instruction of the
270	 sigtramp code is "pop %eax".  If the PC is after this
271	 instruction, adjust the returned value accordingly.  */
272      if (pc == frame_pc_unwind (next_frame))
273	return sp + 4;
274      return sp;
275    }
276
277  pc = i386_linux_rt_sigtramp_start (next_frame);
278  if (pc)
279    {
280      CORE_ADDR ucontext_addr;
281
282      /* The sigcontext structure is part of the user context.  A
283	 pointer to the user context is passed as the third argument
284	 to the signal handler.  */
285      read_memory (sp + 8, buf, 4);
286      ucontext_addr = extract_unsigned_integer (buf, 4);
287      return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
288    }
289
290  error ("Couldn't recognize signal trampoline.");
291  return 0;
292}
293
294/* Set the program counter for process PTID to PC.  */
295
296static void
297i386_linux_write_pc (CORE_ADDR pc, ptid_t ptid)
298{
299  write_register_pid (I386_EIP_REGNUM, pc, ptid);
300
301  /* We must be careful with modifying the program counter.  If we
302     just interrupted a system call, the kernel might try to restart
303     it when we resume the inferior.  On restarting the system call,
304     the kernel will try backing up the program counter even though it
305     no longer points at the system call.  This typically results in a
306     SIGSEGV or SIGILL.  We can prevent this by writing `-1' in the
307     "orig_eax" pseudo-register.
308
309     Note that "orig_eax" is saved when setting up a dummy call frame.
310     This means that it is properly restored when that frame is
311     popped, and that the interrupted system call will be restarted
312     when we resume the inferior on return from a function call from
313     within GDB.  In all other cases the system call will not be
314     restarted.  */
315  write_register_pid (I386_LINUX_ORIG_EAX_REGNUM, -1, ptid);
316}
317
318
319/* The register sets used in GNU/Linux ELF core-dumps are identical to
320   the register sets in `struct user' that are used for a.out
321   core-dumps.  These are also used by ptrace(2).  The corresponding
322   types are `elf_gregset_t' for the general-purpose registers (with
323   `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
324   for the floating-point registers.
325
326   Those types used to be available under the names `gregset_t' and
327   `fpregset_t' too, and GDB used those names in the past.  But those
328   names are now used for the register sets used in the `mcontext_t'
329   type, which have a different size and layout.  */
330
331/* Mapping between the general-purpose registers in `struct user'
332   format and GDB's register cache layout.  */
333
334/* From <sys/reg.h>.  */
335static int i386_linux_gregset_reg_offset[] =
336{
337  6 * 4,			/* %eax */
338  1 * 4,			/* %ecx */
339  2 * 4,			/* %edx */
340  0 * 4,			/* %ebx */
341  15 * 4,			/* %esp */
342  5 * 4,			/* %ebp */
343  3 * 4,			/* %esi */
344  4 * 4,			/* %edi */
345  12 * 4,			/* %eip */
346  14 * 4,			/* %eflags */
347  13 * 4,			/* %cs */
348  16 * 4,			/* %ss */
349  7 * 4,			/* %ds */
350  8 * 4,			/* %es */
351  9 * 4,			/* %fs */
352  10 * 4,			/* %gs */
353  -1, -1, -1, -1, -1, -1, -1, -1,
354  -1, -1, -1, -1, -1, -1, -1, -1,
355  -1, -1, -1, -1, -1, -1, -1, -1,
356  -1,
357  11 * 4			/* "orig_eax" */
358};
359
360/* Mapping between the general-purpose registers in `struct
361   sigcontext' format and GDB's register cache layout.  */
362
363/* From <asm/sigcontext.h>.  */
364static int i386_linux_sc_reg_offset[] =
365{
366  11 * 4,			/* %eax */
367  10 * 4,			/* %ecx */
368  9 * 4,			/* %edx */
369  8 * 4,			/* %ebx */
370  7 * 4,			/* %esp */
371  6 * 4,			/* %ebp */
372  5 * 4,			/* %esi */
373  4 * 4,			/* %edi */
374  14 * 4,			/* %eip */
375  16 * 4,			/* %eflags */
376  15 * 4,			/* %cs */
377  18 * 4,			/* %ss */
378  3 * 4,			/* %ds */
379  2 * 4,			/* %es */
380  1 * 4,			/* %fs */
381  0 * 4				/* %gs */
382};
383
384static void
385i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
386{
387  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
388
389  /* GNU/Linux uses ELF.  */
390  i386_elf_init_abi (info, gdbarch);
391
392  /* Since we have the extra "orig_eax" register on GNU/Linux, we have
393     to adjust a few things.  */
394
395  set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
396  set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
397  set_gdbarch_register_name (gdbarch, i386_linux_register_name);
398  set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p);
399
400  tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
401  tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
402  tdep->sizeof_gregset = 17 * 4;
403
404  tdep->jb_pc_offset = 20;	/* From <bits/setjmp.h>.  */
405
406  tdep->sigtramp_p = i386_linux_sigtramp_p;
407  tdep->sigcontext_addr = i386_linux_sigcontext_addr;
408  tdep->sc_reg_offset = i386_linux_sc_reg_offset;
409  tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
410
411  /* GNU/Linux uses SVR4-style shared libraries.  */
412  set_solib_svr4_fetch_link_map_offsets
413    (gdbarch, svr4_ilp32_fetch_link_map_offsets);
414
415  /* GNU/Linux uses the dynamic linker included in the GNU C Library.  */
416  set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
417}
418
419/* Provide a prototype to silence -Wmissing-prototypes.  */
420extern void _initialize_i386_linux_tdep (void);
421
422void
423_initialize_i386_linux_tdep (void)
424{
425  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
426			  i386_linux_init_abi);
427}
428