1/* Target-dependent code for Atmel AVR, for GDB.
2   Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3   Free Software Foundation, Inc.
4
5   This file is part of GDB.
6
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 2 of the License, or
10   (at your option) any later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program; if not, write to the Free Software
19   Foundation, Inc., 59 Temple Place - Suite 330,
20   Boston, MA 02111-1307, USA.  */
21
22/* Contributed by Theodore A. Roth, troth@openavr.org */
23
24/* Portions of this file were taken from the original gdb-4.18 patch developed
25   by Denis Chertykov, denisc@overta.ru */
26
27#include "defs.h"
28#include "frame.h"
29#include "frame-unwind.h"
30#include "frame-base.h"
31#include "trad-frame.h"
32#include "gdbcmd.h"
33#include "gdbcore.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "arch-utils.h"
37#include "regcache.h"
38#include "gdb_string.h"
39#include "dis-asm.h"
40
41/* AVR Background:
42
43   (AVR micros are pure Harvard Architecture processors.)
44
45   The AVR family of microcontrollers have three distinctly different memory
46   spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47   the most part to store program instructions. The sram is 8 bits wide and is
48   used for the stack and the heap. Some devices lack sram and some can have
49   an additional external sram added on as a peripheral.
50
51   The eeprom is 8 bits wide and is used to store data when the device is
52   powered down. Eeprom is not directly accessible, it can only be accessed
53   via io-registers using a special algorithm. Accessing eeprom via gdb's
54   remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55   not included at this time.
56
57   [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58   written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''.  For this to
59   work, the remote target must be able to handle eeprom accesses and perform
60   the address translation.]
61
62   All three memory spaces have physical addresses beginning at 0x0. In
63   addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64   bytes instead of the 16 bit wide words used by the real device for the
65   Program Counter.
66
67   In order for remote targets to work correctly, extra bits must be added to
68   addresses before they are send to the target or received from the target
69   via the remote serial protocol. The extra bits are the MSBs and are used to
70   decode which memory space the address is referring to. */
71
72#undef XMALLOC
73#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
74
75#undef EXTRACT_INSN
76#define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
77
78/* Constants: prefixed with AVR_ to avoid name space clashes */
79
80enum
81{
82  AVR_REG_W = 24,
83  AVR_REG_X = 26,
84  AVR_REG_Y = 28,
85  AVR_FP_REGNUM = 28,
86  AVR_REG_Z = 30,
87
88  AVR_SREG_REGNUM = 32,
89  AVR_SP_REGNUM = 33,
90  AVR_PC_REGNUM = 34,
91
92  AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
93  AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
94
95  AVR_PC_REG_INDEX = 35,	/* index into array of registers */
96
97  AVR_MAX_PROLOGUE_SIZE = 64,	/* bytes */
98
99  /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
100  AVR_MAX_PUSHES = 18,
101
102  /* Number of the last pushed register. r17 for current avr-gcc */
103  AVR_LAST_PUSHED_REGNUM = 17,
104
105  AVR_ARG1_REGNUM = 24,         /* Single byte argument */
106  AVR_ARGN_REGNUM = 25,         /* Multi byte argments */
107
108  AVR_RET1_REGNUM = 24,         /* Single byte return value */
109  AVR_RETN_REGNUM = 25,         /* Multi byte return value */
110
111  /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
112     bits? Do these have to match the bfd vma values?. It sure would make
113     things easier in the future if they didn't need to match.
114
115     Note: I chose these values so as to be consistent with bfd vma
116     addresses.
117
118     TRoth/2002-04-08: There is already a conflict with very large programs
119     in the mega128. The mega128 has 128K instruction bytes (64K words),
120     thus the Most Significant Bit is 0x10000 which gets masked off my
121     AVR_MEM_MASK.
122
123     The problem manifests itself when trying to set a breakpoint in a
124     function which resides in the upper half of the instruction space and
125     thus requires a 17-bit address.
126
127     For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
128     from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
129     but could be for some remote targets by just adding the correct offset
130     to the address and letting the remote target handle the low-level
131     details of actually accessing the eeprom. */
132
133  AVR_IMEM_START = 0x00000000,	/* INSN memory */
134  AVR_SMEM_START = 0x00800000,	/* SRAM memory */
135#if 1
136  /* No eeprom mask defined */
137  AVR_MEM_MASK = 0x00f00000,	/* mask to determine memory space */
138#else
139  AVR_EMEM_START = 0x00810000,	/* EEPROM memory */
140  AVR_MEM_MASK = 0x00ff0000,	/* mask to determine memory space */
141#endif
142};
143
144/* Prologue types:
145
146   NORMAL and CALL are the typical types (the -mcall-prologues gcc option
147   causes the generation of the CALL type prologues).  */
148
149enum {
150    AVR_PROLOGUE_NONE,              /* No prologue */
151    AVR_PROLOGUE_NORMAL,
152    AVR_PROLOGUE_CALL,              /* -mcall-prologues */
153    AVR_PROLOGUE_MAIN,
154    AVR_PROLOGUE_INTR,              /* interrupt handler */
155    AVR_PROLOGUE_SIG,               /* signal handler */
156};
157
158/* Any function with a frame looks like this
159   .......    <-SP POINTS HERE
160   LOCALS1    <-FP POINTS HERE
161   LOCALS0
162   SAVED FP
163   SAVED R3
164   SAVED R2
165   RET PC
166   FIRST ARG
167   SECOND ARG */
168
169struct avr_unwind_cache
170{
171  /* The previous frame's inner most stack address.  Used as this
172     frame ID's stack_addr.  */
173  CORE_ADDR prev_sp;
174  /* The frame's base, optionally used by the high-level debug info.  */
175  CORE_ADDR base;
176  int size;
177  int prologue_type;
178  /* Table indicating the location of each and every register.  */
179  struct trad_frame_saved_reg *saved_regs;
180};
181
182struct gdbarch_tdep
183{
184  /* FIXME: TRoth: is there anything to put here? */
185  int foo;
186};
187
188/* Lookup the name of a register given it's number. */
189
190static const char *
191avr_register_name (int regnum)
192{
193  static char *register_names[] = {
194    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
195    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
196    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
197    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
198    "SREG", "SP", "PC"
199  };
200  if (regnum < 0)
201    return NULL;
202  if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
203    return NULL;
204  return register_names[regnum];
205}
206
207/* Return the GDB type object for the "standard" data type
208   of data in register N.  */
209
210static struct type *
211avr_register_type (struct gdbarch *gdbarch, int reg_nr)
212{
213  if (reg_nr == AVR_PC_REGNUM)
214    return builtin_type_uint32;
215  if (reg_nr == AVR_SP_REGNUM)
216    return builtin_type_void_data_ptr;
217  else
218    return builtin_type_uint8;
219}
220
221/* Instruction address checks and convertions. */
222
223static CORE_ADDR
224avr_make_iaddr (CORE_ADDR x)
225{
226  return ((x) | AVR_IMEM_START);
227}
228
229/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
230   devices are already up to 128KBytes of flash space.
231
232   TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
233
234static CORE_ADDR
235avr_convert_iaddr_to_raw (CORE_ADDR x)
236{
237  return ((x) & 0xffffffff);
238}
239
240/* SRAM address checks and convertions. */
241
242static CORE_ADDR
243avr_make_saddr (CORE_ADDR x)
244{
245  return ((x) | AVR_SMEM_START);
246}
247
248static CORE_ADDR
249avr_convert_saddr_to_raw (CORE_ADDR x)
250{
251  return ((x) & 0xffffffff);
252}
253
254/* EEPROM address checks and convertions. I don't know if these will ever
255   actually be used, but I've added them just the same. TRoth */
256
257/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
258   programs in the mega128. */
259
260/*  static CORE_ADDR */
261/*  avr_make_eaddr (CORE_ADDR x) */
262/*  { */
263/*    return ((x) | AVR_EMEM_START); */
264/*  } */
265
266/*  static int */
267/*  avr_eaddr_p (CORE_ADDR x) */
268/*  { */
269/*    return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
270/*  } */
271
272/*  static CORE_ADDR */
273/*  avr_convert_eaddr_to_raw (CORE_ADDR x) */
274/*  { */
275/*    return ((x) & 0xffffffff); */
276/*  } */
277
278/* Convert from address to pointer and vice-versa. */
279
280static void
281avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
282{
283  /* Is it a code address?  */
284  if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
285      || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
286    {
287      store_unsigned_integer (buf, TYPE_LENGTH (type),
288			      avr_convert_iaddr_to_raw (addr >> 1));
289    }
290  else
291    {
292      /* Strip off any upper segment bits.  */
293      store_unsigned_integer (buf, TYPE_LENGTH (type),
294			      avr_convert_saddr_to_raw (addr));
295    }
296}
297
298static CORE_ADDR
299avr_pointer_to_address (struct type *type, const void *buf)
300{
301  CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
302
303  /* Is it a code address?  */
304  if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
305      || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
306      || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
307    return avr_make_iaddr (addr << 1);
308  else
309    return avr_make_saddr (addr);
310}
311
312static CORE_ADDR
313avr_read_pc (ptid_t ptid)
314{
315  ptid_t save_ptid;
316  ULONGEST pc;
317  CORE_ADDR retval;
318
319  save_ptid = inferior_ptid;
320  inferior_ptid = ptid;
321  regcache_cooked_read_unsigned (current_regcache, AVR_PC_REGNUM, &pc);
322  inferior_ptid = save_ptid;
323  retval = avr_make_iaddr (pc);
324  return retval;
325}
326
327static void
328avr_write_pc (CORE_ADDR val, ptid_t ptid)
329{
330  ptid_t save_ptid;
331
332  save_ptid = inferior_ptid;
333  inferior_ptid = ptid;
334  write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
335  inferior_ptid = save_ptid;
336}
337
338static CORE_ADDR
339avr_read_sp (void)
340{
341  ULONGEST sp;
342
343  regcache_cooked_read_unsigned (current_regcache, AVR_SP_REGNUM, &sp);
344  return (avr_make_saddr (sp));
345}
346
347static int
348avr_scan_arg_moves (int vpc, unsigned char *prologue)
349{
350  unsigned short insn;
351
352  for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
353    {
354      insn = EXTRACT_INSN (&prologue[vpc]);
355      if ((insn & 0xff00) == 0x0100)	/* movw rXX, rYY */
356        continue;
357      else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
358        continue;
359      else
360          break;
361    }
362
363  return vpc;
364}
365
366/* Function: avr_scan_prologue
367
368   This function decodes an AVR function prologue to determine:
369     1) the size of the stack frame
370     2) which registers are saved on it
371     3) the offsets of saved regs
372   This information is stored in the avr_unwind_cache structure.
373
374   Some devices lack the sbiw instruction, so on those replace this:
375        sbiw    r28, XX
376   with this:
377        subi    r28,lo8(XX)
378        sbci    r29,hi8(XX)
379
380   A typical AVR function prologue with a frame pointer might look like this:
381        push    rXX        ; saved regs
382        ...
383        push    r28
384        push    r29
385        in      r28,__SP_L__
386        in      r29,__SP_H__
387        sbiw    r28,<LOCALS_SIZE>
388        in      __tmp_reg__,__SREG__
389        cli
390        out     __SP_H__,r29
391        out     __SREG__,__tmp_reg__
392        out     __SP_L__,r28
393
394   A typical AVR function prologue without a frame pointer might look like
395   this:
396        push    rXX        ; saved regs
397        ...
398
399   A main function prologue looks like this:
400        ldi     r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
401        ldi     r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
402        out     __SP_H__,r29
403        out     __SP_L__,r28
404
405   A signal handler prologue looks like this:
406        push    __zero_reg__
407        push    __tmp_reg__
408        in      __tmp_reg__, __SREG__
409        push    __tmp_reg__
410        clr     __zero_reg__
411        push    rXX             ; save registers r18:r27, r30:r31
412        ...
413        push    r28             ; save frame pointer
414        push    r29
415        in      r28, __SP_L__
416        in      r29, __SP_H__
417        sbiw    r28, <LOCALS_SIZE>
418        out     __SP_H__, r29
419        out     __SP_L__, r28
420
421   A interrupt handler prologue looks like this:
422        sei
423        push    __zero_reg__
424        push    __tmp_reg__
425        in      __tmp_reg__, __SREG__
426        push    __tmp_reg__
427        clr     __zero_reg__
428        push    rXX             ; save registers r18:r27, r30:r31
429        ...
430        push    r28             ; save frame pointer
431        push    r29
432        in      r28, __SP_L__
433        in      r29, __SP_H__
434        sbiw    r28, <LOCALS_SIZE>
435        cli
436        out     __SP_H__, r29
437        sei
438        out     __SP_L__, r28
439
440   A `-mcall-prologues' prologue looks like this (Note that the megas use a
441   jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
442   32 bit insn and rjmp is a 16 bit insn):
443        ldi     r26,lo8(<LOCALS_SIZE>)
444        ldi     r27,hi8(<LOCALS_SIZE>)
445        ldi     r30,pm_lo8(.L_foo_body)
446        ldi     r31,pm_hi8(.L_foo_body)
447        rjmp    __prologue_saves__+RRR
448        .L_foo_body:  */
449
450/* Not really part of a prologue, but still need to scan for it, is when a
451   function prologue moves values passed via registers as arguments to new
452   registers. In this case, all local variables live in registers, so there
453   may be some register saves. This is what it looks like:
454        movw    rMM, rNN
455        ...
456
457   There could be multiple movw's. If the target doesn't have a movw insn, it
458   will use two mov insns. This could be done after any of the above prologue
459   types.  */
460
461static CORE_ADDR
462avr_scan_prologue (CORE_ADDR pc, struct avr_unwind_cache *info)
463{
464  int i;
465  unsigned short insn;
466  int scan_stage = 0;
467  struct minimal_symbol *msymbol;
468  unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
469  int vpc = 0;
470
471  /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
472     reading in the bytes of the prologue. The problem is that the figuring
473     out where the end of the prologue is is a bit difficult. The old code
474     tried to do that, but failed quite often.  */
475  read_memory (pc, prologue, AVR_MAX_PROLOGUE_SIZE);
476
477  /* Scanning main()'s prologue
478     ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
479     ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
480     out __SP_H__,r29
481     out __SP_L__,r28 */
482
483  if (1)
484    {
485      CORE_ADDR locals;
486      unsigned char img[] = {
487	0xde, 0xbf,		/* out __SP_H__,r29 */
488	0xcd, 0xbf		/* out __SP_L__,r28 */
489      };
490
491      insn = EXTRACT_INSN (&prologue[vpc]);
492      /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
493      if ((insn & 0xf0f0) == 0xe0c0)
494	{
495	  locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
496	  insn = EXTRACT_INSN (&prologue[vpc + 2]);
497	  /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
498	  if ((insn & 0xf0f0) == 0xe0d0)
499	    {
500	      locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
501	      if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
502		{
503                  info->prologue_type = AVR_PROLOGUE_MAIN;
504                  info->base = locals;
505                  return pc + 4;
506		}
507	    }
508	}
509    }
510
511  /* Scanning `-mcall-prologues' prologue
512     Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
513
514  while (1)	/* Using a while to avoid many goto's */
515    {
516      int loc_size;
517      int body_addr;
518      unsigned num_pushes;
519      int pc_offset = 0;
520
521      insn = EXTRACT_INSN (&prologue[vpc]);
522      /* ldi r26,<LOCALS_SIZE> */
523      if ((insn & 0xf0f0) != 0xe0a0)
524	break;
525      loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
526      pc_offset += 2;
527
528      insn = EXTRACT_INSN (&prologue[vpc + 2]);
529      /* ldi r27,<LOCALS_SIZE> / 256 */
530      if ((insn & 0xf0f0) != 0xe0b0)
531	break;
532      loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
533      pc_offset += 2;
534
535      insn = EXTRACT_INSN (&prologue[vpc + 4]);
536      /* ldi r30,pm_lo8(.L_foo_body) */
537      if ((insn & 0xf0f0) != 0xe0e0)
538	break;
539      body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
540      pc_offset += 2;
541
542      insn = EXTRACT_INSN (&prologue[vpc + 6]);
543      /* ldi r31,pm_hi8(.L_foo_body) */
544      if ((insn & 0xf0f0) != 0xe0f0)
545	break;
546      body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
547      pc_offset += 2;
548
549      msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
550      if (!msymbol)
551	break;
552
553      insn = EXTRACT_INSN (&prologue[vpc + 8]);
554      /* rjmp __prologue_saves__+RRR */
555      if ((insn & 0xf000) == 0xc000)
556        {
557          /* Extract PC relative offset from RJMP */
558          i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
559          /* Convert offset to byte addressable mode */
560          i *= 2;
561          /* Destination address */
562          i += pc + 10;
563
564          if (body_addr != (pc + 10)/2)
565            break;
566
567          pc_offset += 2;
568        }
569      else if ((insn & 0xfe0e) == 0x940c)
570        {
571          /* Extract absolute PC address from JMP */
572          i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
573            | (EXTRACT_INSN (&prologue[vpc + 10]) & 0xffff));
574          /* Convert address to byte addressable mode */
575          i *= 2;
576
577          if (body_addr != (pc + 12)/2)
578            break;
579
580          pc_offset += 4;
581        }
582      else
583        break;
584
585      /* Resolve offset (in words) from __prologue_saves__ symbol.
586         Which is a pushes count in `-mcall-prologues' mode */
587      num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
588
589      if (num_pushes > AVR_MAX_PUSHES)
590        {
591          fprintf_unfiltered (gdb_stderr, "Num pushes too large: %d\n",
592                              num_pushes);
593          num_pushes = 0;
594        }
595
596      if (num_pushes)
597	{
598	  int from;
599
600	  info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
601	  if (num_pushes >= 2)
602	    info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
603
604	  i = 0;
605	  for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
606	       from <= AVR_LAST_PUSHED_REGNUM; ++from)
607	    info->saved_regs [from].addr = ++i;
608	}
609      info->size = loc_size + num_pushes;
610      info->prologue_type = AVR_PROLOGUE_CALL;
611
612      return pc + pc_offset;
613    }
614
615  /* Scan for the beginning of the prologue for an interrupt or signal
616     function.  Note that we have to set the prologue type here since the
617     third stage of the prologue may not be present (e.g. no saved registered
618     or changing of the SP register).  */
619
620  if (1)
621    {
622      unsigned char img[] = {
623	0x78, 0x94,		/* sei */
624	0x1f, 0x92,		/* push r1 */
625	0x0f, 0x92,		/* push r0 */
626	0x0f, 0xb6,		/* in r0,0x3f SREG */
627	0x0f, 0x92,		/* push r0 */
628	0x11, 0x24		/* clr r1 */
629      };
630      if (memcmp (prologue, img, sizeof (img)) == 0)
631	{
632          info->prologue_type = AVR_PROLOGUE_INTR;
633	  vpc += sizeof (img);
634          info->saved_regs[AVR_SREG_REGNUM].addr = 3;
635          info->saved_regs[0].addr = 2;
636          info->saved_regs[1].addr = 1;
637          info->size += 3;
638	}
639      else if (memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
640	{
641          info->prologue_type = AVR_PROLOGUE_SIG;
642          vpc += sizeof (img) - 2;
643          info->saved_regs[AVR_SREG_REGNUM].addr = 3;
644          info->saved_regs[0].addr = 2;
645          info->saved_regs[1].addr = 1;
646          info->size += 3;
647	}
648    }
649
650  /* First stage of the prologue scanning.
651     Scan pushes (saved registers) */
652
653  for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
654    {
655      insn = EXTRACT_INSN (&prologue[vpc]);
656      if ((insn & 0xfe0f) == 0x920f)	/* push rXX */
657	{
658	  /* Bits 4-9 contain a mask for registers R0-R32. */
659	  int regno = (insn & 0x1f0) >> 4;
660	  info->size++;
661	  info->saved_regs[regno].addr = info->size;
662	  scan_stage = 1;
663	}
664      else
665	break;
666    }
667
668  if (vpc >= AVR_MAX_PROLOGUE_SIZE)
669     fprintf_unfiltered (gdb_stderr,
670                         "Hit end of prologue while scanning pushes\n");
671
672  /* Second stage of the prologue scanning.
673     Scan:
674     in r28,__SP_L__
675     in r29,__SP_H__ */
676
677  if (scan_stage == 1 && vpc < AVR_MAX_PROLOGUE_SIZE)
678    {
679      unsigned char img[] = {
680	0xcd, 0xb7,		/* in r28,__SP_L__ */
681	0xde, 0xb7		/* in r29,__SP_H__ */
682      };
683      unsigned short insn1;
684
685      if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
686	{
687	  vpc += 4;
688	  scan_stage = 2;
689	}
690    }
691
692  /* Third stage of the prologue scanning. (Really two stages)
693     Scan for:
694     sbiw r28,XX or subi r28,lo8(XX)
695                    sbci r29,hi8(XX)
696     in __tmp_reg__,__SREG__
697     cli
698     out __SP_H__,r29
699     out __SREG__,__tmp_reg__
700     out __SP_L__,r28 */
701
702  if (scan_stage == 2 && vpc < AVR_MAX_PROLOGUE_SIZE)
703    {
704      int locals_size = 0;
705      unsigned char img[] = {
706	0x0f, 0xb6,		/* in r0,0x3f */
707	0xf8, 0x94,		/* cli */
708	0xde, 0xbf,		/* out 0x3e,r29 ; SPH */
709	0x0f, 0xbe,		/* out 0x3f,r0  ; SREG */
710	0xcd, 0xbf		/* out 0x3d,r28 ; SPL */
711      };
712      unsigned char img_sig[] = {
713	0xde, 0xbf,		/* out 0x3e,r29 ; SPH */
714	0xcd, 0xbf		/* out 0x3d,r28 ; SPL */
715      };
716      unsigned char img_int[] = {
717	0xf8, 0x94,		/* cli */
718	0xde, 0xbf,		/* out 0x3e,r29 ; SPH */
719	0x78, 0x94,		/* sei */
720	0xcd, 0xbf		/* out 0x3d,r28 ; SPL */
721      };
722
723      insn = EXTRACT_INSN (&prologue[vpc]);
724      vpc += 2;
725      if ((insn & 0xff30) == 0x9720)	/* sbiw r28,XXX */
726	locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
727      else if ((insn & 0xf0f0) == 0x50c0)	/* subi r28,lo8(XX) */
728	{
729	  locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
730	  insn = EXTRACT_INSN (&prologue[vpc]);
731	  vpc += 2;
732	  locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
733	}
734      else
735	return pc + vpc;
736
737      /* Scan the last part of the prologue. May not be present for interrupt
738         or signal handler functions, which is why we set the prologue type
739         when we saw the beginning of the prologue previously.  */
740
741      if (memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
742        {
743          vpc += sizeof (img_sig);
744        }
745      else if (memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
746        {
747          vpc += sizeof (img_int);
748        }
749      if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
750        {
751          info->prologue_type = AVR_PROLOGUE_NORMAL;
752          vpc += sizeof (img);
753        }
754
755      info->size += locals_size;
756
757      return pc + avr_scan_arg_moves (vpc, prologue);
758    }
759
760  /* If we got this far, we could not scan the prologue, so just return the pc
761     of the frame plus an adjustment for argument move insns.  */
762
763  return pc + avr_scan_arg_moves (vpc, prologue);;
764}
765
766static CORE_ADDR
767avr_skip_prologue (CORE_ADDR pc)
768{
769  CORE_ADDR func_addr, func_end;
770  CORE_ADDR prologue_end = pc;
771
772  /* See what the symbol table says */
773
774  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
775    {
776      struct symtab_and_line sal;
777      struct avr_unwind_cache info = {0};
778      struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
779
780      info.saved_regs = saved_regs;
781
782      /* Need to run the prologue scanner to figure out if the function has a
783         prologue and possibly skip over moving arguments passed via registers
784         to other registers.  */
785
786      prologue_end = avr_scan_prologue (pc, &info);
787
788      if (info.prologue_type == AVR_PROLOGUE_NONE)
789        return pc;
790      else
791        {
792          sal = find_pc_line (func_addr, 0);
793
794          if (sal.line != 0 && sal.end < func_end)
795            return sal.end;
796        }
797    }
798
799/* Either we didn't find the start of this function (nothing we can do),
800   or there's no line info, or the line after the prologue is after
801   the end of the function (there probably isn't a prologue). */
802
803  return prologue_end;
804}
805
806/* Not all avr devices support the BREAK insn. Those that don't should treat
807   it as a NOP. Thus, it should be ok. Since the avr is currently a remote
808   only target, this shouldn't be a problem (I hope). TRoth/2003-05-14  */
809
810static const unsigned char *
811avr_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
812{
813    static unsigned char avr_break_insn [] = { 0x98, 0x95 };
814    *lenptr = sizeof (avr_break_insn);
815    return avr_break_insn;
816}
817
818/* Given a return value in `regbuf' with a type `valtype',
819   extract and copy its value into `valbuf'.
820
821   Return values are always passed via registers r25:r24:...  */
822
823static void
824avr_extract_return_value (struct type *type, struct regcache *regcache,
825                          void *valbuf)
826{
827  ULONGEST r24, r25;
828  ULONGEST c;
829  int len;
830  if (TYPE_LENGTH (type) == 1)
831    {
832      regcache_cooked_read_unsigned (regcache, 24, &c);
833      store_unsigned_integer (valbuf, 1, c);
834    }
835  else
836    {
837      int i;
838      /* The MSB of the return value is always in r25, calculate which
839         register holds the LSB.  */
840      int lsb_reg = 25 - TYPE_LENGTH (type) + 1;
841
842      for (i=0; i< TYPE_LENGTH (type); i++)
843        {
844          regcache_cooked_read (regcache, lsb_reg + i,
845                                (bfd_byte *) valbuf + i);
846        }
847    }
848}
849
850/* Put here the code to store, into fi->saved_regs, the addresses of
851   the saved registers of frame described by FRAME_INFO.  This
852   includes special registers such as pc and fp saved in special ways
853   in the stack frame.  sp is even more special: the address we return
854   for it IS the sp for the next frame. */
855
856struct avr_unwind_cache *
857avr_frame_unwind_cache (struct frame_info *next_frame,
858                        void **this_prologue_cache)
859{
860  CORE_ADDR pc;
861  ULONGEST prev_sp;
862  ULONGEST this_base;
863  struct avr_unwind_cache *info;
864  int i;
865
866  if ((*this_prologue_cache))
867    return (*this_prologue_cache);
868
869  info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
870  (*this_prologue_cache) = info;
871  info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
872
873  info->size = 0;
874  info->prologue_type = AVR_PROLOGUE_NONE;
875
876  pc = frame_func_unwind (next_frame);
877
878  if ((pc > 0) && (pc < frame_pc_unwind (next_frame)))
879    avr_scan_prologue (pc, info);
880
881  if ((info->prologue_type != AVR_PROLOGUE_NONE)
882      && (info->prologue_type != AVR_PROLOGUE_MAIN))
883    {
884      ULONGEST high_base;       /* High byte of FP */
885
886      /* The SP was moved to the FP.  This indicates that a new frame
887         was created.  Get THIS frame's FP value by unwinding it from
888         the next frame.  */
889      frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM, &this_base);
890      frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM+1, &high_base);
891      this_base += (high_base << 8);
892
893      /* The FP points at the last saved register.  Adjust the FP back
894         to before the first saved register giving the SP.  */
895      prev_sp = this_base + info->size;
896   }
897  else
898    {
899      /* Assume that the FP is this frame's SP but with that pushed
900         stack space added back.  */
901      frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &this_base);
902      prev_sp = this_base + info->size;
903    }
904
905  /* Add 1 here to adjust for the post-decrement nature of the push
906     instruction.*/
907  info->prev_sp = avr_make_saddr (prev_sp+1);
908
909  info->base = avr_make_saddr (this_base);
910
911  /* Adjust all the saved registers so that they contain addresses and not
912     offsets.  */
913  for (i = 0; i < NUM_REGS - 1; i++)
914    if (info->saved_regs[i].addr)
915      {
916        info->saved_regs[i].addr = (info->prev_sp - info->saved_regs[i].addr);
917      }
918
919  /* Except for the main and startup code, the return PC is always saved on
920     the stack and is at the base of the frame. */
921
922  if (info->prologue_type != AVR_PROLOGUE_MAIN)
923    {
924      info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
925    }
926
927  /* The previous frame's SP needed to be computed.  Save the computed
928     value.  */
929  trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM, info->prev_sp+1);
930
931  return info;
932}
933
934static CORE_ADDR
935avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
936{
937  ULONGEST pc;
938
939  frame_unwind_unsigned_register (next_frame, AVR_PC_REGNUM, &pc);
940
941  return avr_make_iaddr (pc);
942}
943
944/* Given a GDB frame, determine the address of the calling function's
945   frame.  This will be used to create a new GDB frame struct.  */
946
947static void
948avr_frame_this_id (struct frame_info *next_frame,
949                   void **this_prologue_cache,
950                   struct frame_id *this_id)
951{
952  struct avr_unwind_cache *info
953    = avr_frame_unwind_cache (next_frame, this_prologue_cache);
954  CORE_ADDR base;
955  CORE_ADDR func;
956  struct frame_id id;
957
958  /* The FUNC is easy.  */
959  func = frame_func_unwind (next_frame);
960
961  /* Hopefully the prologue analysis either correctly determined the
962     frame's base (which is the SP from the previous frame), or set
963     that base to "NULL".  */
964  base = info->prev_sp;
965  if (base == 0)
966    return;
967
968  id = frame_id_build (base, func);
969  (*this_id) = id;
970}
971
972static void
973avr_frame_prev_register (struct frame_info *next_frame,
974			  void **this_prologue_cache,
975			  int regnum, int *optimizedp,
976			  enum lval_type *lvalp, CORE_ADDR *addrp,
977			  int *realnump, void *bufferp)
978{
979  struct avr_unwind_cache *info
980    = avr_frame_unwind_cache (next_frame, this_prologue_cache);
981
982  if (regnum == AVR_PC_REGNUM)
983    {
984      if (trad_frame_addr_p (info->saved_regs, regnum))
985        {
986          *optimizedp = 0;
987          *lvalp = lval_memory;
988          *addrp = info->saved_regs[regnum].addr;
989          *realnump = -1;
990          if (bufferp != NULL)
991            {
992              /* Reading the return PC from the PC register is slightly
993                 abnormal.  register_size(AVR_PC_REGNUM) says it is 4 bytes,
994                 but in reality, only two bytes (3 in upcoming mega256) are
995                 stored on the stack.
996
997                 Also, note that the value on the stack is an addr to a word
998                 not a byte, so we will need to multiply it by two at some
999                 point.
1000
1001                 And to confuse matters even more, the return address stored
1002                 on the stack is in big endian byte order, even though most
1003                 everything else about the avr is little endian. Ick!  */
1004
1005              /* FIXME: number of bytes read here will need updated for the
1006                 mega256 when it is available.  */
1007
1008              ULONGEST pc;
1009              unsigned char tmp;
1010              unsigned char buf[2];
1011
1012              read_memory (info->saved_regs[regnum].addr, buf, 2);
1013
1014              /* Convert the PC read from memory as a big-endian to
1015                 little-endian order. */
1016              tmp = buf[0];
1017              buf[0] = buf[1];
1018              buf[1] = tmp;
1019
1020              pc = (extract_unsigned_integer (buf, 2) * 2);
1021              store_unsigned_integer (bufferp,
1022                                      register_size (current_gdbarch, regnum),
1023                                      pc);
1024            }
1025        }
1026    }
1027  else
1028    trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1029				  optimizedp, lvalp, addrp, realnump, bufferp);
1030}
1031
1032static const struct frame_unwind avr_frame_unwind = {
1033  NORMAL_FRAME,
1034  avr_frame_this_id,
1035  avr_frame_prev_register
1036};
1037
1038const struct frame_unwind *
1039avr_frame_sniffer (struct frame_info *next_frame)
1040{
1041  return &avr_frame_unwind;
1042}
1043
1044static CORE_ADDR
1045avr_frame_base_address (struct frame_info *next_frame, void **this_cache)
1046{
1047  struct avr_unwind_cache *info
1048    = avr_frame_unwind_cache (next_frame, this_cache);
1049
1050  return info->base;
1051}
1052
1053static const struct frame_base avr_frame_base = {
1054  &avr_frame_unwind,
1055  avr_frame_base_address,
1056  avr_frame_base_address,
1057  avr_frame_base_address
1058};
1059
1060/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1061   dummy frame.  The frame ID's base needs to match the TOS value
1062   saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1063   breakpoint.  */
1064
1065static struct frame_id
1066avr_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1067{
1068  ULONGEST base;
1069
1070  frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &base);
1071  return frame_id_build (avr_make_saddr (base), frame_pc_unwind (next_frame));
1072}
1073
1074/* When arguments must be pushed onto the stack, they go on in reverse
1075   order.  The below implements a FILO (stack) to do this. */
1076
1077struct stack_item
1078{
1079  int len;
1080  struct stack_item *prev;
1081  void *data;
1082};
1083
1084static struct stack_item *push_stack_item (struct stack_item *prev,
1085					   void *contents, int len);
1086static struct stack_item *
1087push_stack_item (struct stack_item *prev, void *contents, int len)
1088{
1089  struct stack_item *si;
1090  si = xmalloc (sizeof (struct stack_item));
1091  si->data = xmalloc (len);
1092  si->len = len;
1093  si->prev = prev;
1094  memcpy (si->data, contents, len);
1095  return si;
1096}
1097
1098static struct stack_item *pop_stack_item (struct stack_item *si);
1099static struct stack_item *
1100pop_stack_item (struct stack_item *si)
1101{
1102  struct stack_item *dead = si;
1103  si = si->prev;
1104  xfree (dead->data);
1105  xfree (dead);
1106  return si;
1107}
1108
1109/* Setup the function arguments for calling a function in the inferior.
1110
1111   On the AVR architecture, there are 18 registers (R25 to R8) which are
1112   dedicated for passing function arguments.  Up to the first 18 arguments
1113   (depending on size) may go into these registers.  The rest go on the stack.
1114
1115   All arguments are aligned to start in even-numbered registers (odd-sized
1116   arguments, including char, have one free register above them). For example,
1117   an int in arg1 and a char in arg2 would be passed as such:
1118
1119      arg1 -> r25:r24
1120      arg2 -> r22
1121
1122   Arguments that are larger than 2 bytes will be split between two or more
1123   registers as available, but will NOT be split between a register and the
1124   stack. Arguments that go onto the stack are pushed last arg first (this is
1125   similar to the d10v).  */
1126
1127/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1128   inaccurate.
1129
1130   An exceptional case exists for struct arguments (and possibly other
1131   aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1132   not a multiple of WORDSIZE bytes.  In this case the argument is never split
1133   between the registers and the stack, but instead is copied in its entirety
1134   onto the stack, AND also copied into as many registers as there is room
1135   for.  In other words, space in registers permitting, two copies of the same
1136   argument are passed in.  As far as I can tell, only the one on the stack is
1137   used, although that may be a function of the level of compiler
1138   optimization.  I suspect this is a compiler bug.  Arguments of these odd
1139   sizes are left-justified within the word (as opposed to arguments smaller
1140   than WORDSIZE bytes, which are right-justified).
1141
1142   If the function is to return an aggregate type such as a struct, the caller
1143   must allocate space into which the callee will copy the return value.  In
1144   this case, a pointer to the return value location is passed into the callee
1145   in register R0, which displaces one of the other arguments passed in via
1146   registers R0 to R2. */
1147
1148static CORE_ADDR
1149avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1150                     struct regcache *regcache, CORE_ADDR bp_addr,
1151                     int nargs, struct value **args, CORE_ADDR sp,
1152                     int struct_return, CORE_ADDR struct_addr)
1153{
1154  int i;
1155  unsigned char buf[2];
1156  CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1157  int regnum = AVR_ARGN_REGNUM;
1158  struct stack_item *si = NULL;
1159
1160#if 0
1161  /* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */
1162  if (struct_return)
1163    {
1164      fprintf_unfiltered (gdb_stderr, "struct_return: 0x%lx\n", struct_addr);
1165      write_register (argreg--, struct_addr & 0xff);
1166      write_register (argreg--, (struct_addr >>8) & 0xff);
1167    }
1168#endif
1169
1170  for (i = 0; i < nargs; i++)
1171    {
1172      int last_regnum;
1173      int j;
1174      struct value *arg = args[i];
1175      struct type *type = check_typedef (VALUE_TYPE (arg));
1176      char *contents = VALUE_CONTENTS (arg);
1177      int len = TYPE_LENGTH (type);
1178
1179      /* Calculate the potential last register needed. */
1180      last_regnum = regnum - (len + (len & 1));
1181
1182      /* If there are registers available, use them. Once we start putting
1183         stuff on the stack, all subsequent args go on stack. */
1184      if ((si == NULL) && (last_regnum >= 8))
1185        {
1186          ULONGEST val;
1187
1188          /* Skip a register for odd length args. */
1189          if (len & 1)
1190            regnum--;
1191
1192          val = extract_unsigned_integer (contents, len);
1193          for (j=0; j<len; j++)
1194            {
1195              regcache_cooked_write_unsigned (regcache, regnum--,
1196                                              val >> (8*(len-j-1)));
1197            }
1198        }
1199      /* No registers available, push the args onto the stack. */
1200      else
1201        {
1202          /* From here on, we don't care about regnum. */
1203          si = push_stack_item (si, contents, len);
1204        }
1205    }
1206
1207  /* Push args onto the stack. */
1208  while (si)
1209    {
1210      sp -= si->len;
1211      /* Add 1 to sp here to account for post decr nature of pushes. */
1212      write_memory (sp+1, si->data, si->len);
1213      si = pop_stack_item (si);
1214    }
1215
1216  /* Set the return address.  For the avr, the return address is the BP_ADDR.
1217     Need to push the return address onto the stack noting that it needs to be
1218     in big-endian order on the stack.  */
1219  buf[0] = (return_pc >> 8) & 0xff;
1220  buf[1] = return_pc & 0xff;
1221
1222  sp -= 2;
1223  write_memory (sp+1, buf, 2);  /* Add one since pushes are post decr ops. */
1224
1225  /* Finally, update the SP register. */
1226  regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1227				  avr_convert_saddr_to_raw (sp));
1228
1229  return sp;
1230}
1231
1232/* Initialize the gdbarch structure for the AVR's. */
1233
1234static struct gdbarch *
1235avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1236{
1237  struct gdbarch *gdbarch;
1238  struct gdbarch_tdep *tdep;
1239
1240  /* Find a candidate among the list of pre-declared architectures. */
1241  arches = gdbarch_list_lookup_by_info (arches, &info);
1242  if (arches != NULL)
1243    return arches->gdbarch;
1244
1245  /* None found, create a new architecture from the information provided. */
1246  tdep = XMALLOC (struct gdbarch_tdep);
1247  gdbarch = gdbarch_alloc (&info, tdep);
1248
1249  /* If we ever need to differentiate the device types, do it here. */
1250  switch (info.bfd_arch_info->mach)
1251    {
1252    case bfd_mach_avr1:
1253    case bfd_mach_avr2:
1254    case bfd_mach_avr3:
1255    case bfd_mach_avr4:
1256    case bfd_mach_avr5:
1257      break;
1258    }
1259
1260  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1261  set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1262  set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1263  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1264  set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1265  set_gdbarch_addr_bit (gdbarch, 32);
1266
1267  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1268  set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1269  set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1270
1271  set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1272  set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1273  set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1274
1275  set_gdbarch_read_pc (gdbarch, avr_read_pc);
1276  set_gdbarch_write_pc (gdbarch, avr_write_pc);
1277  set_gdbarch_read_sp (gdbarch, avr_read_sp);
1278
1279  set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1280
1281  set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1282  set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1283
1284  set_gdbarch_register_name (gdbarch, avr_register_name);
1285  set_gdbarch_register_type (gdbarch, avr_register_type);
1286
1287  set_gdbarch_extract_return_value (gdbarch, avr_extract_return_value);
1288  set_gdbarch_print_insn (gdbarch, print_insn_avr);
1289
1290  set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1291
1292  set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1293  set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1294
1295  set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1296  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1297
1298  set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1299
1300  frame_unwind_append_sniffer (gdbarch, avr_frame_sniffer);
1301  frame_base_set_default (gdbarch, &avr_frame_base);
1302
1303  set_gdbarch_unwind_dummy_id (gdbarch, avr_unwind_dummy_id);
1304
1305  set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1306
1307  return gdbarch;
1308}
1309
1310/* Send a query request to the avr remote target asking for values of the io
1311   registers. If args parameter is not NULL, then the user has requested info
1312   on a specific io register [This still needs implemented and is ignored for
1313   now]. The query string should be one of these forms:
1314
1315   "Ravr.io_reg" -> reply is "NN" number of io registers
1316
1317   "Ravr.io_reg:addr,len" where addr is first register and len is number of
1318   registers to be read. The reply should be "<NAME>,VV;" for each io register
1319   where, <NAME> is a string, and VV is the hex value of the register.
1320
1321   All io registers are 8-bit. */
1322
1323static void
1324avr_io_reg_read_command (char *args, int from_tty)
1325{
1326  LONGEST bufsiz = 0;
1327  char buf[400];
1328  char query[400];
1329  char *p;
1330  unsigned int nreg = 0;
1331  unsigned int val;
1332  int i, j, k, step;
1333
1334  /* Just get the maximum buffer size. */
1335  bufsiz = target_read_partial (&current_target, TARGET_OBJECT_AVR,
1336				NULL, NULL, 0, 0);
1337  if (bufsiz < 0)
1338    {
1339      fprintf_unfiltered (gdb_stderr,
1340			  "ERR: info io_registers NOT supported by current "
1341                          "target\n");
1342      return;
1343    }
1344  if (bufsiz > sizeof (buf))
1345    bufsiz = sizeof (buf);
1346
1347  /* Find out how many io registers the target has. */
1348  strcpy (query, "avr.io_reg");
1349  target_read_partial (&current_target, TARGET_OBJECT_AVR, query, buf, 0,
1350		       bufsiz);
1351
1352  if (strncmp (buf, "", bufsiz) == 0)
1353    {
1354      fprintf_unfiltered (gdb_stderr,
1355			  "info io_registers NOT supported by target\n");
1356      return;
1357    }
1358
1359  if (sscanf (buf, "%x", &nreg) != 1)
1360    {
1361      fprintf_unfiltered (gdb_stderr,
1362			  "Error fetching number of io registers\n");
1363      return;
1364    }
1365
1366  reinitialize_more_filter ();
1367
1368  printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1369
1370  /* only fetch up to 8 registers at a time to keep the buffer small */
1371  step = 8;
1372
1373  for (i = 0; i < nreg; i += step)
1374    {
1375      /* how many registers this round? */
1376      j = step;
1377      if ((i+j) >= nreg)
1378        j = nreg - i;           /* last block is less than 8 registers */
1379
1380      snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1381      target_read_partial (&current_target, TARGET_OBJECT_AVR, query, buf,
1382			   0, bufsiz);
1383
1384      p = buf;
1385      for (k = i; k < (i + j); k++)
1386	{
1387	  if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1388	    {
1389	      printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1390	      while ((*p != ';') && (*p != '\0'))
1391		p++;
1392	      p++;		/* skip over ';' */
1393	      if (*p == '\0')
1394		break;
1395	    }
1396	}
1397    }
1398}
1399
1400extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1401
1402void
1403_initialize_avr_tdep (void)
1404{
1405  register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1406
1407  /* Add a new command to allow the user to query the avr remote target for
1408     the values of the io space registers in a saner way than just using
1409     `x/NNNb ADDR`. */
1410
1411  /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1412     io_registers' to signify it is not available on other platforms. */
1413
1414  add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1415	   "query remote avr target for io space register values", &infolist);
1416}
1417