1/* linker.c -- BFD linker routines
2   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3   2003, 2004 Free Software Foundation, Inc.
4   Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
5
6   This file is part of BFD, the Binary File Descriptor library.
7
8   This program is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 2 of the License, or
11   (at your option) any later version.
12
13   This program is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with this program; if not, write to the Free Software
20   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
21
22#include "bfd.h"
23#include "sysdep.h"
24#include "libbfd.h"
25#include "bfdlink.h"
26#include "genlink.h"
27
28/*
29SECTION
30	Linker Functions
31
32@cindex Linker
33	The linker uses three special entry points in the BFD target
34	vector.  It is not necessary to write special routines for
35	these entry points when creating a new BFD back end, since
36	generic versions are provided.  However, writing them can
37	speed up linking and make it use significantly less runtime
38	memory.
39
40	The first routine creates a hash table used by the other
41	routines.  The second routine adds the symbols from an object
42	file to the hash table.  The third routine takes all the
43	object files and links them together to create the output
44	file.  These routines are designed so that the linker proper
45	does not need to know anything about the symbols in the object
46	files that it is linking.  The linker merely arranges the
47	sections as directed by the linker script and lets BFD handle
48	the details of symbols and relocs.
49
50	The second routine and third routines are passed a pointer to
51	a <<struct bfd_link_info>> structure (defined in
52	<<bfdlink.h>>) which holds information relevant to the link,
53	including the linker hash table (which was created by the
54	first routine) and a set of callback functions to the linker
55	proper.
56
57	The generic linker routines are in <<linker.c>>, and use the
58	header file <<genlink.h>>.  As of this writing, the only back
59	ends which have implemented versions of these routines are
60	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
61	routines are used as examples throughout this section.
62
63@menu
64@* Creating a Linker Hash Table::
65@* Adding Symbols to the Hash Table::
66@* Performing the Final Link::
67@end menu
68
69INODE
70Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71SUBSECTION
72	Creating a linker hash table
73
74@cindex _bfd_link_hash_table_create in target vector
75@cindex target vector (_bfd_link_hash_table_create)
76	The linker routines must create a hash table, which must be
77	derived from <<struct bfd_link_hash_table>> described in
78	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
79	create a derived hash table.  This entry point is called using
80	the target vector of the linker output file.
81
82	The <<_bfd_link_hash_table_create>> entry point must allocate
83	and initialize an instance of the desired hash table.  If the
84	back end does not require any additional information to be
85	stored with the entries in the hash table, the entry point may
86	simply create a <<struct bfd_link_hash_table>>.  Most likely,
87	however, some additional information will be needed.
88
89	For example, with each entry in the hash table the a.out
90	linker keeps the index the symbol has in the final output file
91	(this index number is used so that when doing a relocatable
92	link the symbol index used in the output file can be quickly
93	filled in when copying over a reloc).  The a.out linker code
94	defines the required structures and functions for a hash table
95	derived from <<struct bfd_link_hash_table>>.  The a.out linker
96	hash table is created by the function
97	<<NAME(aout,link_hash_table_create)>>; it simply allocates
98	space for the hash table, initializes it, and returns a
99	pointer to it.
100
101	When writing the linker routines for a new back end, you will
102	generally not know exactly which fields will be required until
103	you have finished.  You should simply create a new hash table
104	which defines no additional fields, and then simply add fields
105	as they become necessary.
106
107INODE
108Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109SUBSECTION
110	Adding symbols to the hash table
111
112@cindex _bfd_link_add_symbols in target vector
113@cindex target vector (_bfd_link_add_symbols)
114	The linker proper will call the <<_bfd_link_add_symbols>>
115	entry point for each object file or archive which is to be
116	linked (typically these are the files named on the command
117	line, but some may also come from the linker script).  The
118	entry point is responsible for examining the file.  For an
119	object file, BFD must add any relevant symbol information to
120	the hash table.  For an archive, BFD must determine which
121	elements of the archive should be used and adding them to the
122	link.
123
124	The a.out version of this entry point is
125	<<NAME(aout,link_add_symbols)>>.
126
127@menu
128@* Differing file formats::
129@* Adding symbols from an object file::
130@* Adding symbols from an archive::
131@end menu
132
133INODE
134Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135SUBSUBSECTION
136	Differing file formats
137
138	Normally all the files involved in a link will be of the same
139	format, but it is also possible to link together different
140	format object files, and the back end must support that.  The
141	<<_bfd_link_add_symbols>> entry point is called via the target
142	vector of the file to be added.  This has an important
143	consequence: the function may not assume that the hash table
144	is the type created by the corresponding
145	<<_bfd_link_hash_table_create>> vector.  All the
146	<<_bfd_link_add_symbols>> function can assume about the hash
147	table is that it is derived from <<struct
148	bfd_link_hash_table>>.
149
150	Sometimes the <<_bfd_link_add_symbols>> function must store
151	some information in the hash table entry to be used by the
152	<<_bfd_final_link>> function.  In such a case the <<creator>>
153	field of the hash table must be checked to make sure that the
154	hash table was created by an object file of the same format.
155
156	The <<_bfd_final_link>> routine must be prepared to handle a
157	hash entry without any extra information added by the
158	<<_bfd_link_add_symbols>> function.  A hash entry without
159	extra information will also occur when the linker script
160	directs the linker to create a symbol.  Note that, regardless
161	of how a hash table entry is added, all the fields will be
162	initialized to some sort of null value by the hash table entry
163	initialization function.
164
165	See <<ecoff_link_add_externals>> for an example of how to
166	check the <<creator>> field before saving information (in this
167	case, the ECOFF external symbol debugging information) in a
168	hash table entry.
169
170INODE
171Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172SUBSUBSECTION
173	Adding symbols from an object file
174
175	When the <<_bfd_link_add_symbols>> routine is passed an object
176	file, it must add all externally visible symbols in that
177	object file to the hash table.  The actual work of adding the
178	symbol to the hash table is normally handled by the function
179	<<_bfd_generic_link_add_one_symbol>>.  The
180	<<_bfd_link_add_symbols>> routine is responsible for reading
181	all the symbols from the object file and passing the correct
182	information to <<_bfd_generic_link_add_one_symbol>>.
183
184	The <<_bfd_link_add_symbols>> routine should not use
185	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
186	providing this routine is to avoid the overhead of converting
187	the symbols into generic <<asymbol>> structures.
188
189@findex _bfd_generic_link_add_one_symbol
190	<<_bfd_generic_link_add_one_symbol>> handles the details of
191	combining common symbols, warning about multiple definitions,
192	and so forth.  It takes arguments which describe the symbol to
193	add, notably symbol flags, a section, and an offset.  The
194	symbol flags include such things as <<BSF_WEAK>> or
195	<<BSF_INDIRECT>>.  The section is a section in the object
196	file, or something like <<bfd_und_section_ptr>> for an undefined
197	symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199	If the <<_bfd_final_link>> routine is also going to need to
200	read the symbol information, the <<_bfd_link_add_symbols>>
201	routine should save it somewhere attached to the object file
202	BFD.  However, the information should only be saved if the
203	<<keep_memory>> field of the <<info>> argument is TRUE, so
204	that the <<-no-keep-memory>> linker switch is effective.
205
206	The a.out function which adds symbols from an object file is
207	<<aout_link_add_object_symbols>>, and most of the interesting
208	work is in <<aout_link_add_symbols>>.  The latter saves
209	pointers to the hash tables entries created by
210	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211	so that the <<_bfd_final_link>> routine does not have to call
212	the hash table lookup routine to locate the entry.
213
214INODE
215Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216SUBSUBSECTION
217	Adding symbols from an archive
218
219	When the <<_bfd_link_add_symbols>> routine is passed an
220	archive, it must look through the symbols defined by the
221	archive and decide which elements of the archive should be
222	included in the link.  For each such element it must call the
223	<<add_archive_element>> linker callback, and it must add the
224	symbols from the object file to the linker hash table.
225
226@findex _bfd_generic_link_add_archive_symbols
227	In most cases the work of looking through the symbols in the
228	archive should be done by the
229	<<_bfd_generic_link_add_archive_symbols>> function.  This
230	function builds a hash table from the archive symbol table and
231	looks through the list of undefined symbols to see which
232	elements should be included.
233	<<_bfd_generic_link_add_archive_symbols>> is passed a function
234	to call to make the final decision about adding an archive
235	element to the link and to do the actual work of adding the
236	symbols to the linker hash table.
237
238	The function passed to
239	<<_bfd_generic_link_add_archive_symbols>> must read the
240	symbols of the archive element and decide whether the archive
241	element should be included in the link.  If the element is to
242	be included, the <<add_archive_element>> linker callback
243	routine must be called with the element as an argument, and
244	the elements symbols must be added to the linker hash table
245	just as though the element had itself been passed to the
246	<<_bfd_link_add_symbols>> function.
247
248	When the a.out <<_bfd_link_add_symbols>> function receives an
249	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
250	passing <<aout_link_check_archive_element>> as the function
251	argument. <<aout_link_check_archive_element>> calls
252	<<aout_link_check_ar_symbols>>.  If the latter decides to add
253	the element (an element is only added if it provides a real,
254	non-common, definition for a previously undefined or common
255	symbol) it calls the <<add_archive_element>> callback and then
256	<<aout_link_check_archive_element>> calls
257	<<aout_link_add_symbols>> to actually add the symbols to the
258	linker hash table.
259
260	The ECOFF back end is unusual in that it does not normally
261	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
262	archives already contain a hash table of symbols.  The ECOFF
263	back end searches the archive itself to avoid the overhead of
264	creating a new hash table.
265
266INODE
267Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
268SUBSECTION
269	Performing the final link
270
271@cindex _bfd_link_final_link in target vector
272@cindex target vector (_bfd_final_link)
273	When all the input files have been processed, the linker calls
274	the <<_bfd_final_link>> entry point of the output BFD.  This
275	routine is responsible for producing the final output file,
276	which has several aspects.  It must relocate the contents of
277	the input sections and copy the data into the output sections.
278	It must build an output symbol table including any local
279	symbols from the input files and the global symbols from the
280	hash table.  When producing relocatable output, it must
281	modify the input relocs and write them into the output file.
282	There may also be object format dependent work to be done.
283
284	The linker will also call the <<write_object_contents>> entry
285	point when the BFD is closed.  The two entry points must work
286	together in order to produce the correct output file.
287
288	The details of how this works are inevitably dependent upon
289	the specific object file format.  The a.out
290	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
291
292@menu
293@* Information provided by the linker::
294@* Relocating the section contents::
295@* Writing the symbol table::
296@end menu
297
298INODE
299Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
300SUBSUBSECTION
301	Information provided by the linker
302
303	Before the linker calls the <<_bfd_final_link>> entry point,
304	it sets up some data structures for the function to use.
305
306	The <<input_bfds>> field of the <<bfd_link_info>> structure
307	will point to a list of all the input files included in the
308	link.  These files are linked through the <<link_next>> field
309	of the <<bfd>> structure.
310
311	Each section in the output file will have a list of
312	<<link_order>> structures attached to the <<link_order_head>>
313	field (the <<link_order>> structure is defined in
314	<<bfdlink.h>>).  These structures describe how to create the
315	contents of the output section in terms of the contents of
316	various input sections, fill constants, and, eventually, other
317	types of information.  They also describe relocs that must be
318	created by the BFD backend, but do not correspond to any input
319	file; this is used to support -Ur, which builds constructors
320	while generating a relocatable object file.
321
322INODE
323Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
324SUBSUBSECTION
325	Relocating the section contents
326
327	The <<_bfd_final_link>> function should look through the
328	<<link_order>> structures attached to each section of the
329	output file.  Each <<link_order>> structure should either be
330	handled specially, or it should be passed to the function
331	<<_bfd_default_link_order>> which will do the right thing
332	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
333
334	For efficiency, a <<link_order>> of type
335	<<bfd_indirect_link_order>> whose associated section belongs
336	to a BFD of the same format as the output BFD must be handled
337	specially.  This type of <<link_order>> describes part of an
338	output section in terms of a section belonging to one of the
339	input files.  The <<_bfd_final_link>> function should read the
340	contents of the section and any associated relocs, apply the
341	relocs to the section contents, and write out the modified
342	section contents.  If performing a relocatable link, the
343	relocs themselves must also be modified and written out.
344
345@findex _bfd_relocate_contents
346@findex _bfd_final_link_relocate
347	The functions <<_bfd_relocate_contents>> and
348	<<_bfd_final_link_relocate>> provide some general support for
349	performing the actual relocations, notably overflow checking.
350	Their arguments include information about the symbol the
351	relocation is against and a <<reloc_howto_type>> argument
352	which describes the relocation to perform.  These functions
353	are defined in <<reloc.c>>.
354
355	The a.out function which handles reading, relocating, and
356	writing section contents is <<aout_link_input_section>>.  The
357	actual relocation is done in <<aout_link_input_section_std>>
358	and <<aout_link_input_section_ext>>.
359
360INODE
361Writing the symbol table, , Relocating the section contents, Performing the Final Link
362SUBSUBSECTION
363	Writing the symbol table
364
365	The <<_bfd_final_link>> function must gather all the symbols
366	in the input files and write them out.  It must also write out
367	all the symbols in the global hash table.  This must be
368	controlled by the <<strip>> and <<discard>> fields of the
369	<<bfd_link_info>> structure.
370
371	The local symbols of the input files will not have been
372	entered into the linker hash table.  The <<_bfd_final_link>>
373	routine must consider each input file and include the symbols
374	in the output file.  It may be convenient to do this when
375	looking through the <<link_order>> structures, or it may be
376	done by stepping through the <<input_bfds>> list.
377
378	The <<_bfd_final_link>> routine must also traverse the global
379	hash table to gather all the externally visible symbols.  It
380	is possible that most of the externally visible symbols may be
381	written out when considering the symbols of each input file,
382	but it is still necessary to traverse the hash table since the
383	linker script may have defined some symbols that are not in
384	any of the input files.
385
386	The <<strip>> field of the <<bfd_link_info>> structure
387	controls which symbols are written out.  The possible values
388	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
389	then the <<keep_hash>> field of the <<bfd_link_info>>
390	structure is a hash table of symbols to keep; each symbol
391	should be looked up in this hash table, and only symbols which
392	are present should be included in the output file.
393
394	If the <<strip>> field of the <<bfd_link_info>> structure
395	permits local symbols to be written out, the <<discard>> field
396	is used to further controls which local symbols are included
397	in the output file.  If the value is <<discard_l>>, then all
398	local symbols which begin with a certain prefix are discarded;
399	this is controlled by the <<bfd_is_local_label_name>> entry point.
400
401	The a.out backend handles symbols by calling
402	<<aout_link_write_symbols>> on each input BFD and then
403	traversing the global hash table with the function
404	<<aout_link_write_other_symbol>>.  It builds a string table
405	while writing out the symbols, which is written to the output
406	file at the end of <<NAME(aout,final_link)>>.
407*/
408
409static bfd_boolean generic_link_add_object_symbols
410  (bfd *, struct bfd_link_info *, bfd_boolean collect);
411static bfd_boolean generic_link_add_symbols
412  (bfd *, struct bfd_link_info *, bfd_boolean);
413static bfd_boolean generic_link_check_archive_element_no_collect
414  (bfd *, struct bfd_link_info *, bfd_boolean *);
415static bfd_boolean generic_link_check_archive_element_collect
416  (bfd *, struct bfd_link_info *, bfd_boolean *);
417static bfd_boolean generic_link_check_archive_element
418  (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
419static bfd_boolean generic_link_add_symbol_list
420  (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
421   bfd_boolean);
422static bfd_boolean generic_add_output_symbol
423  (bfd *, size_t *psymalloc, asymbol *);
424static bfd_boolean default_data_link_order
425  (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
426static bfd_boolean default_indirect_link_order
427  (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
428   bfd_boolean);
429
430/* The link hash table structure is defined in bfdlink.h.  It provides
431   a base hash table which the backend specific hash tables are built
432   upon.  */
433
434/* Routine to create an entry in the link hash table.  */
435
436struct bfd_hash_entry *
437_bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
438			struct bfd_hash_table *table,
439			const char *string)
440{
441  /* Allocate the structure if it has not already been allocated by a
442     subclass.  */
443  if (entry == NULL)
444    {
445      entry = bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
446      if (entry == NULL)
447	return entry;
448    }
449
450  /* Call the allocation method of the superclass.  */
451  entry = bfd_hash_newfunc (entry, table, string);
452  if (entry)
453    {
454      struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
455
456      /* Initialize the local fields.  */
457      h->type = bfd_link_hash_new;
458      h->u.undef.next = NULL;
459    }
460
461  return entry;
462}
463
464/* Initialize a link hash table.  The BFD argument is the one
465   responsible for creating this table.  */
466
467bfd_boolean
468_bfd_link_hash_table_init
469  (struct bfd_link_hash_table *table,
470   bfd *abfd,
471   struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
472				      struct bfd_hash_table *,
473				      const char *))
474{
475  table->creator = abfd->xvec;
476  table->undefs = NULL;
477  table->undefs_tail = NULL;
478  table->type = bfd_link_generic_hash_table;
479
480  return bfd_hash_table_init (&table->table, newfunc);
481}
482
483/* Look up a symbol in a link hash table.  If follow is TRUE, we
484   follow bfd_link_hash_indirect and bfd_link_hash_warning links to
485   the real symbol.  */
486
487struct bfd_link_hash_entry *
488bfd_link_hash_lookup (struct bfd_link_hash_table *table,
489		      const char *string,
490		      bfd_boolean create,
491		      bfd_boolean copy,
492		      bfd_boolean follow)
493{
494  struct bfd_link_hash_entry *ret;
495
496  ret = ((struct bfd_link_hash_entry *)
497	 bfd_hash_lookup (&table->table, string, create, copy));
498
499  if (follow && ret != NULL)
500    {
501      while (ret->type == bfd_link_hash_indirect
502	     || ret->type == bfd_link_hash_warning)
503	ret = ret->u.i.link;
504    }
505
506  return ret;
507}
508
509/* Look up a symbol in the main linker hash table if the symbol might
510   be wrapped.  This should only be used for references to an
511   undefined symbol, not for definitions of a symbol.  */
512
513struct bfd_link_hash_entry *
514bfd_wrapped_link_hash_lookup (bfd *abfd,
515			      struct bfd_link_info *info,
516			      const char *string,
517			      bfd_boolean create,
518			      bfd_boolean copy,
519			      bfd_boolean follow)
520{
521  bfd_size_type amt;
522
523  if (info->wrap_hash != NULL)
524    {
525      const char *l;
526      char prefix = '\0';
527
528      l = string;
529      if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
530	{
531	  prefix = *l;
532	  ++l;
533	}
534
535#undef WRAP
536#define WRAP "__wrap_"
537
538      if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
539	{
540	  char *n;
541	  struct bfd_link_hash_entry *h;
542
543	  /* This symbol is being wrapped.  We want to replace all
544             references to SYM with references to __wrap_SYM.  */
545
546	  amt = strlen (l) + sizeof WRAP + 1;
547	  n = bfd_malloc (amt);
548	  if (n == NULL)
549	    return NULL;
550
551	  n[0] = prefix;
552	  n[1] = '\0';
553	  strcat (n, WRAP);
554	  strcat (n, l);
555	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
556	  free (n);
557	  return h;
558	}
559
560#undef WRAP
561
562#undef REAL
563#define REAL "__real_"
564
565      if (*l == '_'
566	  && strncmp (l, REAL, sizeof REAL - 1) == 0
567	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
568			      FALSE, FALSE) != NULL)
569	{
570	  char *n;
571	  struct bfd_link_hash_entry *h;
572
573	  /* This is a reference to __real_SYM, where SYM is being
574             wrapped.  We want to replace all references to __real_SYM
575             with references to SYM.  */
576
577	  amt = strlen (l + sizeof REAL - 1) + 2;
578	  n = bfd_malloc (amt);
579	  if (n == NULL)
580	    return NULL;
581
582	  n[0] = prefix;
583	  n[1] = '\0';
584	  strcat (n, l + sizeof REAL - 1);
585	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
586	  free (n);
587	  return h;
588	}
589
590#undef REAL
591    }
592
593  return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
594}
595
596/* Traverse a generic link hash table.  The only reason this is not a
597   macro is to do better type checking.  This code presumes that an
598   argument passed as a struct bfd_hash_entry * may be caught as a
599   struct bfd_link_hash_entry * with no explicit cast required on the
600   call.  */
601
602void
603bfd_link_hash_traverse
604  (struct bfd_link_hash_table *table,
605   bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
606   void *info)
607{
608  bfd_hash_traverse (&table->table,
609		     (bfd_boolean (*) (struct bfd_hash_entry *, void *)) func,
610		     info);
611}
612
613/* Add a symbol to the linker hash table undefs list.  */
614
615void
616bfd_link_add_undef (struct bfd_link_hash_table *table,
617		    struct bfd_link_hash_entry *h)
618{
619  BFD_ASSERT (h->u.undef.next == NULL);
620  if (table->undefs_tail != NULL)
621    table->undefs_tail->u.undef.next = h;
622  if (table->undefs == NULL)
623    table->undefs = h;
624  table->undefs_tail = h;
625}
626
627/* Routine to create an entry in a generic link hash table.  */
628
629struct bfd_hash_entry *
630_bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
631				struct bfd_hash_table *table,
632				const char *string)
633{
634  /* Allocate the structure if it has not already been allocated by a
635     subclass.  */
636  if (entry == NULL)
637    {
638      entry =
639	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
640      if (entry == NULL)
641	return entry;
642    }
643
644  /* Call the allocation method of the superclass.  */
645  entry = _bfd_link_hash_newfunc (entry, table, string);
646  if (entry)
647    {
648      struct generic_link_hash_entry *ret;
649
650      /* Set local fields.  */
651      ret = (struct generic_link_hash_entry *) entry;
652      ret->written = FALSE;
653      ret->sym = NULL;
654    }
655
656  return entry;
657}
658
659/* Create a generic link hash table.  */
660
661struct bfd_link_hash_table *
662_bfd_generic_link_hash_table_create (bfd *abfd)
663{
664  struct generic_link_hash_table *ret;
665  bfd_size_type amt = sizeof (struct generic_link_hash_table);
666
667  ret = bfd_malloc (amt);
668  if (ret == NULL)
669    return NULL;
670  if (! _bfd_link_hash_table_init (&ret->root, abfd,
671				   _bfd_generic_link_hash_newfunc))
672    {
673      free (ret);
674      return NULL;
675    }
676  return &ret->root;
677}
678
679void
680_bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
681{
682  struct generic_link_hash_table *ret
683    = (struct generic_link_hash_table *) hash;
684
685  bfd_hash_table_free (&ret->root.table);
686  free (ret);
687}
688
689/* Grab the symbols for an object file when doing a generic link.  We
690   store the symbols in the outsymbols field.  We need to keep them
691   around for the entire link to ensure that we only read them once.
692   If we read them multiple times, we might wind up with relocs and
693   the hash table pointing to different instances of the symbol
694   structure.  */
695
696static bfd_boolean
697generic_link_read_symbols (bfd *abfd)
698{
699  if (bfd_get_outsymbols (abfd) == NULL)
700    {
701      long symsize;
702      long symcount;
703
704      symsize = bfd_get_symtab_upper_bound (abfd);
705      if (symsize < 0)
706	return FALSE;
707      bfd_get_outsymbols (abfd) = bfd_alloc (abfd, symsize);
708      if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
709	return FALSE;
710      symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
711      if (symcount < 0)
712	return FALSE;
713      bfd_get_symcount (abfd) = symcount;
714    }
715
716  return TRUE;
717}
718
719/* Generic function to add symbols to from an object file to the
720   global hash table.  This version does not automatically collect
721   constructors by name.  */
722
723bfd_boolean
724_bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
725{
726  return generic_link_add_symbols (abfd, info, FALSE);
727}
728
729/* Generic function to add symbols from an object file to the global
730   hash table.  This version automatically collects constructors by
731   name, as the collect2 program does.  It should be used for any
732   target which does not provide some other mechanism for setting up
733   constructors and destructors; these are approximately those targets
734   for which gcc uses collect2 and do not support stabs.  */
735
736bfd_boolean
737_bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
738{
739  return generic_link_add_symbols (abfd, info, TRUE);
740}
741
742/* Indicate that we are only retrieving symbol values from this
743   section.  We want the symbols to act as though the values in the
744   file are absolute.  */
745
746void
747_bfd_generic_link_just_syms (asection *sec,
748			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
749{
750  sec->output_section = bfd_abs_section_ptr;
751  sec->output_offset = sec->vma;
752}
753
754/* Add symbols from an object file to the global hash table.  */
755
756static bfd_boolean
757generic_link_add_symbols (bfd *abfd,
758			  struct bfd_link_info *info,
759			  bfd_boolean collect)
760{
761  bfd_boolean ret;
762
763  switch (bfd_get_format (abfd))
764    {
765    case bfd_object:
766      ret = generic_link_add_object_symbols (abfd, info, collect);
767      break;
768    case bfd_archive:
769      ret = (_bfd_generic_link_add_archive_symbols
770	     (abfd, info,
771	      (collect
772	       ? generic_link_check_archive_element_collect
773	       : generic_link_check_archive_element_no_collect)));
774      break;
775    default:
776      bfd_set_error (bfd_error_wrong_format);
777      ret = FALSE;
778    }
779
780  return ret;
781}
782
783/* Add symbols from an object file to the global hash table.  */
784
785static bfd_boolean
786generic_link_add_object_symbols (bfd *abfd,
787				 struct bfd_link_info *info,
788				 bfd_boolean collect)
789{
790  bfd_size_type symcount;
791  struct bfd_symbol **outsyms;
792
793  if (! generic_link_read_symbols (abfd))
794    return FALSE;
795  symcount = _bfd_generic_link_get_symcount (abfd);
796  outsyms = _bfd_generic_link_get_symbols (abfd);
797  return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
798}
799
800/* We build a hash table of all symbols defined in an archive.  */
801
802/* An archive symbol may be defined by multiple archive elements.
803   This linked list is used to hold the elements.  */
804
805struct archive_list
806{
807  struct archive_list *next;
808  unsigned int indx;
809};
810
811/* An entry in an archive hash table.  */
812
813struct archive_hash_entry
814{
815  struct bfd_hash_entry root;
816  /* Where the symbol is defined.  */
817  struct archive_list *defs;
818};
819
820/* An archive hash table itself.  */
821
822struct archive_hash_table
823{
824  struct bfd_hash_table table;
825};
826
827/* Create a new entry for an archive hash table.  */
828
829static struct bfd_hash_entry *
830archive_hash_newfunc (struct bfd_hash_entry *entry,
831		      struct bfd_hash_table *table,
832		      const char *string)
833{
834  struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
835
836  /* Allocate the structure if it has not already been allocated by a
837     subclass.  */
838  if (ret == NULL)
839    ret = bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
840  if (ret == NULL)
841    return NULL;
842
843  /* Call the allocation method of the superclass.  */
844  ret = ((struct archive_hash_entry *)
845	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
846
847  if (ret)
848    {
849      /* Initialize the local fields.  */
850      ret->defs = NULL;
851    }
852
853  return &ret->root;
854}
855
856/* Initialize an archive hash table.  */
857
858static bfd_boolean
859archive_hash_table_init
860  (struct archive_hash_table *table,
861   struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
862				      struct bfd_hash_table *,
863				      const char *))
864{
865  return bfd_hash_table_init (&table->table, newfunc);
866}
867
868/* Look up an entry in an archive hash table.  */
869
870#define archive_hash_lookup(t, string, create, copy) \
871  ((struct archive_hash_entry *) \
872   bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
873
874/* Allocate space in an archive hash table.  */
875
876#define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
877
878/* Free an archive hash table.  */
879
880#define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
881
882/* Generic function to add symbols from an archive file to the global
883   hash file.  This function presumes that the archive symbol table
884   has already been read in (this is normally done by the
885   bfd_check_format entry point).  It looks through the undefined and
886   common symbols and searches the archive symbol table for them.  If
887   it finds an entry, it includes the associated object file in the
888   link.
889
890   The old linker looked through the archive symbol table for
891   undefined symbols.  We do it the other way around, looking through
892   undefined symbols for symbols defined in the archive.  The
893   advantage of the newer scheme is that we only have to look through
894   the list of undefined symbols once, whereas the old method had to
895   re-search the symbol table each time a new object file was added.
896
897   The CHECKFN argument is used to see if an object file should be
898   included.  CHECKFN should set *PNEEDED to TRUE if the object file
899   should be included, and must also call the bfd_link_info
900   add_archive_element callback function and handle adding the symbols
901   to the global hash table.  CHECKFN should only return FALSE if some
902   sort of error occurs.
903
904   For some formats, such as a.out, it is possible to look through an
905   object file but not actually include it in the link.  The
906   archive_pass field in a BFD is used to avoid checking the symbols
907   of an object files too many times.  When an object is included in
908   the link, archive_pass is set to -1.  If an object is scanned but
909   not included, archive_pass is set to the pass number.  The pass
910   number is incremented each time a new object file is included.  The
911   pass number is used because when a new object file is included it
912   may create new undefined symbols which cause a previously examined
913   object file to be included.  */
914
915bfd_boolean
916_bfd_generic_link_add_archive_symbols
917  (bfd *abfd,
918   struct bfd_link_info *info,
919   bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
920{
921  carsym *arsyms;
922  carsym *arsym_end;
923  register carsym *arsym;
924  int pass;
925  struct archive_hash_table arsym_hash;
926  unsigned int indx;
927  struct bfd_link_hash_entry **pundef;
928
929  if (! bfd_has_map (abfd))
930    {
931      /* An empty archive is a special case.  */
932      if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
933	return TRUE;
934      bfd_set_error (bfd_error_no_armap);
935      return FALSE;
936    }
937
938  arsyms = bfd_ardata (abfd)->symdefs;
939  arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
940
941  /* In order to quickly determine whether an symbol is defined in
942     this archive, we build a hash table of the symbols.  */
943  if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
944    return FALSE;
945  for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
946    {
947      struct archive_hash_entry *arh;
948      struct archive_list *l, **pp;
949
950      arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
951      if (arh == NULL)
952	goto error_return;
953      l = ((struct archive_list *)
954	   archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
955      if (l == NULL)
956	goto error_return;
957      l->indx = indx;
958      for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
959	;
960      *pp = l;
961      l->next = NULL;
962    }
963
964  /* The archive_pass field in the archive itself is used to
965     initialize PASS, sine we may search the same archive multiple
966     times.  */
967  pass = abfd->archive_pass + 1;
968
969  /* New undefined symbols are added to the end of the list, so we
970     only need to look through it once.  */
971  pundef = &info->hash->undefs;
972  while (*pundef != NULL)
973    {
974      struct bfd_link_hash_entry *h;
975      struct archive_hash_entry *arh;
976      struct archive_list *l;
977
978      h = *pundef;
979
980      /* When a symbol is defined, it is not necessarily removed from
981	 the list.  */
982      if (h->type != bfd_link_hash_undefined
983	  && h->type != bfd_link_hash_common)
984	{
985	  /* Remove this entry from the list, for general cleanliness
986	     and because we are going to look through the list again
987	     if we search any more libraries.  We can't remove the
988	     entry if it is the tail, because that would lose any
989	     entries we add to the list later on (it would also cause
990	     us to lose track of whether the symbol has been
991	     referenced).  */
992	  if (*pundef != info->hash->undefs_tail)
993	    *pundef = (*pundef)->u.undef.next;
994	  else
995	    pundef = &(*pundef)->u.undef.next;
996	  continue;
997	}
998
999      /* Look for this symbol in the archive symbol map.  */
1000      arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1001      if (arh == NULL)
1002	{
1003	  /* If we haven't found the exact symbol we're looking for,
1004	     let's look for its import thunk */
1005	  if (info->pei386_auto_import)
1006	    {
1007	      bfd_size_type amt = strlen (h->root.string) + 10;
1008	      char *buf = bfd_malloc (amt);
1009	      if (buf == NULL)
1010		return FALSE;
1011
1012	      sprintf (buf, "__imp_%s", h->root.string);
1013	      arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1014	      free(buf);
1015	    }
1016	  if (arh == NULL)
1017	    {
1018	      pundef = &(*pundef)->u.undef.next;
1019	      continue;
1020	    }
1021	}
1022      /* Look at all the objects which define this symbol.  */
1023      for (l = arh->defs; l != NULL; l = l->next)
1024	{
1025	  bfd *element;
1026	  bfd_boolean needed;
1027
1028	  /* If the symbol has gotten defined along the way, quit.  */
1029	  if (h->type != bfd_link_hash_undefined
1030	      && h->type != bfd_link_hash_common)
1031	    break;
1032
1033	  element = bfd_get_elt_at_index (abfd, l->indx);
1034	  if (element == NULL)
1035	    goto error_return;
1036
1037	  /* If we've already included this element, or if we've
1038	     already checked it on this pass, continue.  */
1039	  if (element->archive_pass == -1
1040	      || element->archive_pass == pass)
1041	    continue;
1042
1043	  /* If we can't figure this element out, just ignore it.  */
1044	  if (! bfd_check_format (element, bfd_object))
1045	    {
1046	      element->archive_pass = -1;
1047	      continue;
1048	    }
1049
1050	  /* CHECKFN will see if this element should be included, and
1051	     go ahead and include it if appropriate.  */
1052	  if (! (*checkfn) (element, info, &needed))
1053	    goto error_return;
1054
1055	  if (! needed)
1056	    element->archive_pass = pass;
1057	  else
1058	    {
1059	      element->archive_pass = -1;
1060
1061	      /* Increment the pass count to show that we may need to
1062		 recheck object files which were already checked.  */
1063	      ++pass;
1064	    }
1065	}
1066
1067      pundef = &(*pundef)->u.undef.next;
1068    }
1069
1070  archive_hash_table_free (&arsym_hash);
1071
1072  /* Save PASS in case we are called again.  */
1073  abfd->archive_pass = pass;
1074
1075  return TRUE;
1076
1077 error_return:
1078  archive_hash_table_free (&arsym_hash);
1079  return FALSE;
1080}
1081
1082/* See if we should include an archive element.  This version is used
1083   when we do not want to automatically collect constructors based on
1084   the symbol name, presumably because we have some other mechanism
1085   for finding them.  */
1086
1087static bfd_boolean
1088generic_link_check_archive_element_no_collect (
1089					       bfd *abfd,
1090					       struct bfd_link_info *info,
1091					       bfd_boolean *pneeded)
1092{
1093  return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1094}
1095
1096/* See if we should include an archive element.  This version is used
1097   when we want to automatically collect constructors based on the
1098   symbol name, as collect2 does.  */
1099
1100static bfd_boolean
1101generic_link_check_archive_element_collect (bfd *abfd,
1102					    struct bfd_link_info *info,
1103					    bfd_boolean *pneeded)
1104{
1105  return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1106}
1107
1108/* See if we should include an archive element.  Optionally collect
1109   constructors.  */
1110
1111static bfd_boolean
1112generic_link_check_archive_element (bfd *abfd,
1113				    struct bfd_link_info *info,
1114				    bfd_boolean *pneeded,
1115				    bfd_boolean collect)
1116{
1117  asymbol **pp, **ppend;
1118
1119  *pneeded = FALSE;
1120
1121  if (! generic_link_read_symbols (abfd))
1122    return FALSE;
1123
1124  pp = _bfd_generic_link_get_symbols (abfd);
1125  ppend = pp + _bfd_generic_link_get_symcount (abfd);
1126  for (; pp < ppend; pp++)
1127    {
1128      asymbol *p;
1129      struct bfd_link_hash_entry *h;
1130
1131      p = *pp;
1132
1133      /* We are only interested in globally visible symbols.  */
1134      if (! bfd_is_com_section (p->section)
1135	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1136	continue;
1137
1138      /* We are only interested if we know something about this
1139	 symbol, and it is undefined or common.  An undefined weak
1140	 symbol (type bfd_link_hash_undefweak) is not considered to be
1141	 a reference when pulling files out of an archive.  See the
1142	 SVR4 ABI, p. 4-27.  */
1143      h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1144				FALSE, TRUE);
1145      if (h == NULL
1146	  || (h->type != bfd_link_hash_undefined
1147	      && h->type != bfd_link_hash_common))
1148	continue;
1149
1150      /* P is a symbol we are looking for.  */
1151
1152      if (! bfd_is_com_section (p->section))
1153	{
1154	  bfd_size_type symcount;
1155	  asymbol **symbols;
1156
1157	  /* This object file defines this symbol, so pull it in.  */
1158	  if (! (*info->callbacks->add_archive_element) (info, abfd,
1159							 bfd_asymbol_name (p)))
1160	    return FALSE;
1161	  symcount = _bfd_generic_link_get_symcount (abfd);
1162	  symbols = _bfd_generic_link_get_symbols (abfd);
1163	  if (! generic_link_add_symbol_list (abfd, info, symcount,
1164					      symbols, collect))
1165	    return FALSE;
1166	  *pneeded = TRUE;
1167	  return TRUE;
1168	}
1169
1170      /* P is a common symbol.  */
1171
1172      if (h->type == bfd_link_hash_undefined)
1173	{
1174	  bfd *symbfd;
1175	  bfd_vma size;
1176	  unsigned int power;
1177
1178	  symbfd = h->u.undef.abfd;
1179	  if (symbfd == NULL)
1180	    {
1181	      /* This symbol was created as undefined from outside
1182		 BFD.  We assume that we should link in the object
1183		 file.  This is for the -u option in the linker.  */
1184	      if (! (*info->callbacks->add_archive_element)
1185		  (info, abfd, bfd_asymbol_name (p)))
1186		return FALSE;
1187	      *pneeded = TRUE;
1188	      return TRUE;
1189	    }
1190
1191	  /* Turn the symbol into a common symbol but do not link in
1192	     the object file.  This is how a.out works.  Object
1193	     formats that require different semantics must implement
1194	     this function differently.  This symbol is already on the
1195	     undefs list.  We add the section to a common section
1196	     attached to symbfd to ensure that it is in a BFD which
1197	     will be linked in.  */
1198	  h->type = bfd_link_hash_common;
1199	  h->u.c.p =
1200	    bfd_hash_allocate (&info->hash->table,
1201			       sizeof (struct bfd_link_hash_common_entry));
1202	  if (h->u.c.p == NULL)
1203	    return FALSE;
1204
1205	  size = bfd_asymbol_value (p);
1206	  h->u.c.size = size;
1207
1208	  power = bfd_log2 (size);
1209	  if (power > 4)
1210	    power = 4;
1211	  h->u.c.p->alignment_power = power;
1212
1213	  if (p->section == bfd_com_section_ptr)
1214	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1215	  else
1216	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1217							  p->section->name);
1218	  h->u.c.p->section->flags = SEC_ALLOC;
1219	}
1220      else
1221	{
1222	  /* Adjust the size of the common symbol if necessary.  This
1223	     is how a.out works.  Object formats that require
1224	     different semantics must implement this function
1225	     differently.  */
1226	  if (bfd_asymbol_value (p) > h->u.c.size)
1227	    h->u.c.size = bfd_asymbol_value (p);
1228	}
1229    }
1230
1231  /* This archive element is not needed.  */
1232  return TRUE;
1233}
1234
1235/* Add the symbols from an object file to the global hash table.  ABFD
1236   is the object file.  INFO is the linker information.  SYMBOL_COUNT
1237   is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
1238   is TRUE if constructors should be automatically collected by name
1239   as is done by collect2.  */
1240
1241static bfd_boolean
1242generic_link_add_symbol_list (bfd *abfd,
1243			      struct bfd_link_info *info,
1244			      bfd_size_type symbol_count,
1245			      asymbol **symbols,
1246			      bfd_boolean collect)
1247{
1248  asymbol **pp, **ppend;
1249
1250  pp = symbols;
1251  ppend = symbols + symbol_count;
1252  for (; pp < ppend; pp++)
1253    {
1254      asymbol *p;
1255
1256      p = *pp;
1257
1258      if ((p->flags & (BSF_INDIRECT
1259		       | BSF_WARNING
1260		       | BSF_GLOBAL
1261		       | BSF_CONSTRUCTOR
1262		       | BSF_WEAK)) != 0
1263	  || bfd_is_und_section (bfd_get_section (p))
1264	  || bfd_is_com_section (bfd_get_section (p))
1265	  || bfd_is_ind_section (bfd_get_section (p)))
1266	{
1267	  const char *name;
1268	  const char *string;
1269	  struct generic_link_hash_entry *h;
1270	  struct bfd_link_hash_entry *bh;
1271
1272	  name = bfd_asymbol_name (p);
1273	  if (((p->flags & BSF_INDIRECT) != 0
1274	       || bfd_is_ind_section (p->section))
1275	      && pp + 1 < ppend)
1276	    {
1277	      pp++;
1278	      string = bfd_asymbol_name (*pp);
1279	    }
1280	  else if ((p->flags & BSF_WARNING) != 0
1281		   && pp + 1 < ppend)
1282	    {
1283	      /* The name of P is actually the warning string, and the
1284		 next symbol is the one to warn about.  */
1285	      string = name;
1286	      pp++;
1287	      name = bfd_asymbol_name (*pp);
1288	    }
1289	  else
1290	    string = NULL;
1291
1292	  bh = NULL;
1293	  if (! (_bfd_generic_link_add_one_symbol
1294		 (info, abfd, name, p->flags, bfd_get_section (p),
1295		  p->value, string, FALSE, collect, &bh)))
1296	    return FALSE;
1297	  h = (struct generic_link_hash_entry *) bh;
1298
1299	  /* If this is a constructor symbol, and the linker didn't do
1300             anything with it, then we want to just pass the symbol
1301             through to the output file.  This will happen when
1302             linking with -r.  */
1303	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1304	      && (h == NULL || h->root.type == bfd_link_hash_new))
1305	    {
1306	      p->udata.p = NULL;
1307	      continue;
1308	    }
1309
1310	  /* Save the BFD symbol so that we don't lose any backend
1311	     specific information that may be attached to it.  We only
1312	     want this one if it gives more information than the
1313	     existing one; we don't want to replace a defined symbol
1314	     with an undefined one.  This routine may be called with a
1315	     hash table other than the generic hash table, so we only
1316	     do this if we are certain that the hash table is a
1317	     generic one.  */
1318	  if (info->hash->creator == abfd->xvec)
1319	    {
1320	      if (h->sym == NULL
1321		  || (! bfd_is_und_section (bfd_get_section (p))
1322		      && (! bfd_is_com_section (bfd_get_section (p))
1323			  || bfd_is_und_section (bfd_get_section (h->sym)))))
1324		{
1325		  h->sym = p;
1326		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1327		     reading, and it should go away when the COFF
1328		     linker is switched to the new version.  */
1329		  if (bfd_is_com_section (bfd_get_section (p)))
1330		    p->flags |= BSF_OLD_COMMON;
1331		}
1332	    }
1333
1334	  /* Store a back pointer from the symbol to the hash
1335	     table entry for the benefit of relaxation code until
1336	     it gets rewritten to not use asymbol structures.
1337	     Setting this is also used to check whether these
1338	     symbols were set up by the generic linker.  */
1339	  p->udata.p = h;
1340	}
1341    }
1342
1343  return TRUE;
1344}
1345
1346/* We use a state table to deal with adding symbols from an object
1347   file.  The first index into the state table describes the symbol
1348   from the object file.  The second index into the state table is the
1349   type of the symbol in the hash table.  */
1350
1351/* The symbol from the object file is turned into one of these row
1352   values.  */
1353
1354enum link_row
1355{
1356  UNDEF_ROW,		/* Undefined.  */
1357  UNDEFW_ROW,		/* Weak undefined.  */
1358  DEF_ROW,		/* Defined.  */
1359  DEFW_ROW,		/* Weak defined.  */
1360  COMMON_ROW,		/* Common.  */
1361  INDR_ROW,		/* Indirect.  */
1362  WARN_ROW,		/* Warning.  */
1363  SET_ROW		/* Member of set.  */
1364};
1365
1366/* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1367#undef FAIL
1368
1369/* The actions to take in the state table.  */
1370
1371enum link_action
1372{
1373  FAIL,		/* Abort.  */
1374  UND,		/* Mark symbol undefined.  */
1375  WEAK,		/* Mark symbol weak undefined.  */
1376  DEF,		/* Mark symbol defined.  */
1377  DEFW,		/* Mark symbol weak defined.  */
1378  COM,		/* Mark symbol common.  */
1379  REF,		/* Mark defined symbol referenced.  */
1380  CREF,		/* Possibly warn about common reference to defined symbol.  */
1381  CDEF,		/* Define existing common symbol.  */
1382  NOACT,	/* No action.  */
1383  BIG,		/* Mark symbol common using largest size.  */
1384  MDEF,		/* Multiple definition error.  */
1385  MIND,		/* Multiple indirect symbols.  */
1386  IND,		/* Make indirect symbol.  */
1387  CIND,		/* Make indirect symbol from existing common symbol.  */
1388  SET,		/* Add value to set.  */
1389  MWARN,	/* Make warning symbol.  */
1390  WARN,		/* Issue warning.  */
1391  CWARN,	/* Warn if referenced, else MWARN.  */
1392  CYCLE,	/* Repeat with symbol pointed to.  */
1393  REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1394  WARNC		/* Issue warning and then CYCLE.  */
1395};
1396
1397/* The state table itself.  The first index is a link_row and the
1398   second index is a bfd_link_hash_type.  */
1399
1400static const enum link_action link_action[8][8] =
1401{
1402  /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1403  /* UNDEF_ROW 	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1404  /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1405  /* DEF_ROW 	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1406  /* DEFW_ROW 	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1407  /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1408  /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1409  /* WARN_ROW   */  {MWARN, WARN,  WARN,  CWARN, CWARN, WARN,  CWARN, NOACT },
1410  /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1411};
1412
1413/* Most of the entries in the LINK_ACTION table are straightforward,
1414   but a few are somewhat subtle.
1415
1416   A reference to an indirect symbol (UNDEF_ROW/indr or
1417   UNDEFW_ROW/indr) is counted as a reference both to the indirect
1418   symbol and to the symbol the indirect symbol points to.
1419
1420   A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1421   causes the warning to be issued.
1422
1423   A common definition of an indirect symbol (COMMON_ROW/indr) is
1424   treated as a multiple definition error.  Likewise for an indirect
1425   definition of a common symbol (INDR_ROW/com).
1426
1427   An indirect definition of a warning (INDR_ROW/warn) does not cause
1428   the warning to be issued.
1429
1430   If a warning is created for an indirect symbol (WARN_ROW/indr) no
1431   warning is created for the symbol the indirect symbol points to.
1432
1433   Adding an entry to a set does not count as a reference to a set,
1434   and no warning is issued (SET_ROW/warn).  */
1435
1436/* Return the BFD in which a hash entry has been defined, if known.  */
1437
1438static bfd *
1439hash_entry_bfd (struct bfd_link_hash_entry *h)
1440{
1441  while (h->type == bfd_link_hash_warning)
1442    h = h->u.i.link;
1443  switch (h->type)
1444    {
1445    default:
1446      return NULL;
1447    case bfd_link_hash_undefined:
1448    case bfd_link_hash_undefweak:
1449      return h->u.undef.abfd;
1450    case bfd_link_hash_defined:
1451    case bfd_link_hash_defweak:
1452      return h->u.def.section->owner;
1453    case bfd_link_hash_common:
1454      return h->u.c.p->section->owner;
1455    }
1456  /*NOTREACHED*/
1457}
1458
1459/* Add a symbol to the global hash table.
1460   ABFD is the BFD the symbol comes from.
1461   NAME is the name of the symbol.
1462   FLAGS is the BSF_* bits associated with the symbol.
1463   SECTION is the section in which the symbol is defined; this may be
1464     bfd_und_section_ptr or bfd_com_section_ptr.
1465   VALUE is the value of the symbol, relative to the section.
1466   STRING is used for either an indirect symbol, in which case it is
1467     the name of the symbol to indirect to, or a warning symbol, in
1468     which case it is the warning string.
1469   COPY is TRUE if NAME or STRING must be copied into locally
1470     allocated memory if they need to be saved.
1471   COLLECT is TRUE if we should automatically collect gcc constructor
1472     or destructor names as collect2 does.
1473   HASHP, if not NULL, is a place to store the created hash table
1474     entry; if *HASHP is not NULL, the caller has already looked up
1475     the hash table entry, and stored it in *HASHP.  */
1476
1477bfd_boolean
1478_bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1479				  bfd *abfd,
1480				  const char *name,
1481				  flagword flags,
1482				  asection *section,
1483				  bfd_vma value,
1484				  const char *string,
1485				  bfd_boolean copy,
1486				  bfd_boolean collect,
1487				  struct bfd_link_hash_entry **hashp)
1488{
1489  enum link_row row;
1490  struct bfd_link_hash_entry *h;
1491  bfd_boolean cycle;
1492
1493  if (bfd_is_ind_section (section)
1494      || (flags & BSF_INDIRECT) != 0)
1495    row = INDR_ROW;
1496  else if ((flags & BSF_WARNING) != 0)
1497    row = WARN_ROW;
1498  else if ((flags & BSF_CONSTRUCTOR) != 0)
1499    row = SET_ROW;
1500  else if (bfd_is_und_section (section))
1501    {
1502      if ((flags & BSF_WEAK) != 0)
1503	row = UNDEFW_ROW;
1504      else
1505	row = UNDEF_ROW;
1506    }
1507  else if ((flags & BSF_WEAK) != 0)
1508    row = DEFW_ROW;
1509  else if (bfd_is_com_section (section))
1510    row = COMMON_ROW;
1511  else
1512    row = DEF_ROW;
1513
1514  if (hashp != NULL && *hashp != NULL)
1515    h = *hashp;
1516  else
1517    {
1518      if (row == UNDEF_ROW || row == UNDEFW_ROW)
1519	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1520      else
1521	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1522      if (h == NULL)
1523	{
1524	  if (hashp != NULL)
1525	    *hashp = NULL;
1526	  return FALSE;
1527	}
1528    }
1529
1530  if (info->notice_all
1531      || (info->notice_hash != NULL
1532	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1533    {
1534      if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1535					value))
1536	return FALSE;
1537    }
1538
1539  if (hashp != NULL)
1540    *hashp = h;
1541
1542  do
1543    {
1544      enum link_action action;
1545
1546      cycle = FALSE;
1547      action = link_action[(int) row][(int) h->type];
1548      switch (action)
1549	{
1550	case FAIL:
1551	  abort ();
1552
1553	case NOACT:
1554	  /* Do nothing.  */
1555	  break;
1556
1557	case UND:
1558	  /* Make a new undefined symbol.  */
1559	  h->type = bfd_link_hash_undefined;
1560	  h->u.undef.abfd = abfd;
1561	  bfd_link_add_undef (info->hash, h);
1562	  break;
1563
1564	case WEAK:
1565	  /* Make a new weak undefined symbol.  */
1566	  h->type = bfd_link_hash_undefweak;
1567	  h->u.undef.abfd = abfd;
1568	  break;
1569
1570	case CDEF:
1571	  /* We have found a definition for a symbol which was
1572	     previously common.  */
1573	  BFD_ASSERT (h->type == bfd_link_hash_common);
1574	  if (! ((*info->callbacks->multiple_common)
1575		 (info, h->root.string,
1576		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1577		  abfd, bfd_link_hash_defined, 0)))
1578	    return FALSE;
1579	  /* Fall through.  */
1580	case DEF:
1581	case DEFW:
1582	  {
1583	    enum bfd_link_hash_type oldtype;
1584
1585	    /* Define a symbol.  */
1586	    oldtype = h->type;
1587	    if (action == DEFW)
1588	      h->type = bfd_link_hash_defweak;
1589	    else
1590	      h->type = bfd_link_hash_defined;
1591	    h->u.def.section = section;
1592	    h->u.def.value = value;
1593
1594	    /* If we have been asked to, we act like collect2 and
1595	       identify all functions that might be global
1596	       constructors and destructors and pass them up in a
1597	       callback.  We only do this for certain object file
1598	       types, since many object file types can handle this
1599	       automatically.  */
1600	    if (collect && name[0] == '_')
1601	      {
1602		const char *s;
1603
1604		/* A constructor or destructor name starts like this:
1605		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1606		   the second are the same character (we accept any
1607		   character there, in case a new object file format
1608		   comes along with even worse naming restrictions).  */
1609
1610#define CONS_PREFIX "GLOBAL_"
1611#define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1612
1613		s = name + 1;
1614		while (*s == '_')
1615		  ++s;
1616		if (s[0] == 'G'
1617		    && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1618		  {
1619		    char c;
1620
1621		    c = s[CONS_PREFIX_LEN + 1];
1622		    if ((c == 'I' || c == 'D')
1623			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1624		      {
1625			/* If this is a definition of a symbol which
1626                           was previously weakly defined, we are in
1627                           trouble.  We have already added a
1628                           constructor entry for the weak defined
1629                           symbol, and now we are trying to add one
1630                           for the new symbol.  Fortunately, this case
1631                           should never arise in practice.  */
1632			if (oldtype == bfd_link_hash_defweak)
1633			  abort ();
1634
1635			if (! ((*info->callbacks->constructor)
1636			       (info, c == 'I',
1637				h->root.string, abfd, section, value)))
1638			  return FALSE;
1639		      }
1640		  }
1641	      }
1642	  }
1643
1644	  break;
1645
1646	case COM:
1647	  /* We have found a common definition for a symbol.  */
1648	  if (h->type == bfd_link_hash_new)
1649	    bfd_link_add_undef (info->hash, h);
1650	  h->type = bfd_link_hash_common;
1651	  h->u.c.p =
1652	    bfd_hash_allocate (&info->hash->table,
1653			       sizeof (struct bfd_link_hash_common_entry));
1654	  if (h->u.c.p == NULL)
1655	    return FALSE;
1656
1657	  h->u.c.size = value;
1658
1659	  /* Select a default alignment based on the size.  This may
1660             be overridden by the caller.  */
1661	  {
1662	    unsigned int power;
1663
1664	    power = bfd_log2 (value);
1665	    if (power > 4)
1666	      power = 4;
1667	    h->u.c.p->alignment_power = power;
1668	  }
1669
1670	  /* The section of a common symbol is only used if the common
1671             symbol is actually allocated.  It basically provides a
1672             hook for the linker script to decide which output section
1673             the common symbols should be put in.  In most cases, the
1674             section of a common symbol will be bfd_com_section_ptr,
1675             the code here will choose a common symbol section named
1676             "COMMON", and the linker script will contain *(COMMON) in
1677             the appropriate place.  A few targets use separate common
1678             sections for small symbols, and they require special
1679             handling.  */
1680	  if (section == bfd_com_section_ptr)
1681	    {
1682	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1683	      h->u.c.p->section->flags = SEC_ALLOC;
1684	    }
1685	  else if (section->owner != abfd)
1686	    {
1687	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1688							    section->name);
1689	      h->u.c.p->section->flags = SEC_ALLOC;
1690	    }
1691	  else
1692	    h->u.c.p->section = section;
1693	  break;
1694
1695	case REF:
1696	  /* A reference to a defined symbol.  */
1697	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1698	    h->u.undef.next = h;
1699	  break;
1700
1701	case BIG:
1702	  /* We have found a common definition for a symbol which
1703	     already had a common definition.  Use the maximum of the
1704	     two sizes, and use the section required by the larger symbol.  */
1705	  BFD_ASSERT (h->type == bfd_link_hash_common);
1706	  if (! ((*info->callbacks->multiple_common)
1707		 (info, h->root.string,
1708		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1709		  abfd, bfd_link_hash_common, value)))
1710	    return FALSE;
1711	  if (value > h->u.c.size)
1712	    {
1713	      unsigned int power;
1714
1715	      h->u.c.size = value;
1716
1717	      /* Select a default alignment based on the size.  This may
1718		 be overridden by the caller.  */
1719	      power = bfd_log2 (value);
1720	      if (power > 4)
1721		power = 4;
1722	      h->u.c.p->alignment_power = power;
1723
1724	      /* Some systems have special treatment for small commons,
1725		 hence we want to select the section used by the larger
1726		 symbol.  This makes sure the symbol does not go in a
1727		 small common section if it is now too large.  */
1728	      if (section == bfd_com_section_ptr)
1729		{
1730		  h->u.c.p->section
1731		    = bfd_make_section_old_way (abfd, "COMMON");
1732		  h->u.c.p->section->flags = SEC_ALLOC;
1733		}
1734	      else if (section->owner != abfd)
1735		{
1736		  h->u.c.p->section
1737		    = bfd_make_section_old_way (abfd, section->name);
1738		  h->u.c.p->section->flags = SEC_ALLOC;
1739		}
1740	      else
1741		h->u.c.p->section = section;
1742	    }
1743	  break;
1744
1745	case CREF:
1746	  {
1747	    bfd *obfd;
1748
1749	    /* We have found a common definition for a symbol which
1750	       was already defined.  FIXME: It would nice if we could
1751	       report the BFD which defined an indirect symbol, but we
1752	       don't have anywhere to store the information.  */
1753	    if (h->type == bfd_link_hash_defined
1754		|| h->type == bfd_link_hash_defweak)
1755	      obfd = h->u.def.section->owner;
1756	    else
1757	      obfd = NULL;
1758	    if (! ((*info->callbacks->multiple_common)
1759		   (info, h->root.string, obfd, h->type, 0,
1760		    abfd, bfd_link_hash_common, value)))
1761	      return FALSE;
1762	  }
1763	  break;
1764
1765	case MIND:
1766	  /* Multiple indirect symbols.  This is OK if they both point
1767	     to the same symbol.  */
1768	  if (strcmp (h->u.i.link->root.string, string) == 0)
1769	    break;
1770	  /* Fall through.  */
1771	case MDEF:
1772	  /* Handle a multiple definition.  */
1773	  if (!info->allow_multiple_definition)
1774	    {
1775	      asection *msec = NULL;
1776	      bfd_vma mval = 0;
1777
1778	      switch (h->type)
1779		{
1780		case bfd_link_hash_defined:
1781		  msec = h->u.def.section;
1782		  mval = h->u.def.value;
1783		  break;
1784	        case bfd_link_hash_indirect:
1785		  msec = bfd_ind_section_ptr;
1786		  mval = 0;
1787		  break;
1788		default:
1789		  abort ();
1790		}
1791
1792	      /* Ignore a redefinition of an absolute symbol to the
1793		 same value; it's harmless.  */
1794	      if (h->type == bfd_link_hash_defined
1795		  && bfd_is_abs_section (msec)
1796		  && bfd_is_abs_section (section)
1797		  && value == mval)
1798		break;
1799
1800	      if (! ((*info->callbacks->multiple_definition)
1801		     (info, h->root.string, msec->owner, msec, mval,
1802		      abfd, section, value)))
1803		return FALSE;
1804	    }
1805	  break;
1806
1807	case CIND:
1808	  /* Create an indirect symbol from an existing common symbol.  */
1809	  BFD_ASSERT (h->type == bfd_link_hash_common);
1810	  if (! ((*info->callbacks->multiple_common)
1811		 (info, h->root.string,
1812		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1813		  abfd, bfd_link_hash_indirect, 0)))
1814	    return FALSE;
1815	  /* Fall through.  */
1816	case IND:
1817	  /* Create an indirect symbol.  */
1818	  {
1819	    struct bfd_link_hash_entry *inh;
1820
1821	    /* STRING is the name of the symbol we want to indirect
1822	       to.  */
1823	    inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1824						copy, FALSE);
1825	    if (inh == NULL)
1826	      return FALSE;
1827	    if (inh->type == bfd_link_hash_indirect
1828		&& inh->u.i.link == h)
1829	      {
1830		(*_bfd_error_handler)
1831		  (_("%B: indirect symbol `%s' to `%s' is a loop"),
1832		   abfd, name, string);
1833		bfd_set_error (bfd_error_invalid_operation);
1834		return FALSE;
1835	      }
1836	    if (inh->type == bfd_link_hash_new)
1837	      {
1838		inh->type = bfd_link_hash_undefined;
1839		inh->u.undef.abfd = abfd;
1840		bfd_link_add_undef (info->hash, inh);
1841	      }
1842
1843	    /* If the indirect symbol has been referenced, we need to
1844	       push the reference down to the symbol we are
1845	       referencing.  */
1846	    if (h->type != bfd_link_hash_new)
1847	      {
1848		row = UNDEF_ROW;
1849		cycle = TRUE;
1850	      }
1851
1852	    h->type = bfd_link_hash_indirect;
1853	    h->u.i.link = inh;
1854	  }
1855	  break;
1856
1857	case SET:
1858	  /* Add an entry to a set.  */
1859	  if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1860						abfd, section, value))
1861	    return FALSE;
1862	  break;
1863
1864	case WARNC:
1865	  /* Issue a warning and cycle.  */
1866	  if (h->u.i.warning != NULL)
1867	    {
1868	      if (! (*info->callbacks->warning) (info, h->u.i.warning,
1869						 h->root.string, abfd,
1870						 NULL, 0))
1871		return FALSE;
1872	      /* Only issue a warning once.  */
1873	      h->u.i.warning = NULL;
1874	    }
1875	  /* Fall through.  */
1876	case CYCLE:
1877	  /* Try again with the referenced symbol.  */
1878	  h = h->u.i.link;
1879	  cycle = TRUE;
1880	  break;
1881
1882	case REFC:
1883	  /* A reference to an indirect symbol.  */
1884	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1885	    h->u.undef.next = h;
1886	  h = h->u.i.link;
1887	  cycle = TRUE;
1888	  break;
1889
1890	case WARN:
1891	  /* Issue a warning.  */
1892	  if (! (*info->callbacks->warning) (info, string, h->root.string,
1893					     hash_entry_bfd (h), NULL, 0))
1894	    return FALSE;
1895	  break;
1896
1897	case CWARN:
1898	  /* Warn if this symbol has been referenced already,
1899	     otherwise add a warning.  A symbol has been referenced if
1900	     the u.undef.next field is not NULL, or it is the tail of the
1901	     undefined symbol list.  The REF case above helps to
1902	     ensure this.  */
1903	  if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1904	    {
1905	      if (! (*info->callbacks->warning) (info, string, h->root.string,
1906						 hash_entry_bfd (h), NULL, 0))
1907		return FALSE;
1908	      break;
1909	    }
1910	  /* Fall through.  */
1911	case MWARN:
1912	  /* Make a warning symbol.  */
1913	  {
1914	    struct bfd_link_hash_entry *sub;
1915
1916	    /* STRING is the warning to give.  */
1917	    sub = ((struct bfd_link_hash_entry *)
1918		   ((*info->hash->table.newfunc)
1919		    (NULL, &info->hash->table, h->root.string)));
1920	    if (sub == NULL)
1921	      return FALSE;
1922	    *sub = *h;
1923	    sub->type = bfd_link_hash_warning;
1924	    sub->u.i.link = h;
1925	    if (! copy)
1926	      sub->u.i.warning = string;
1927	    else
1928	      {
1929		char *w;
1930		size_t len = strlen (string) + 1;
1931
1932		w = bfd_hash_allocate (&info->hash->table, len);
1933		if (w == NULL)
1934		  return FALSE;
1935		memcpy (w, string, len);
1936		sub->u.i.warning = w;
1937	      }
1938
1939	    bfd_hash_replace (&info->hash->table,
1940			      (struct bfd_hash_entry *) h,
1941			      (struct bfd_hash_entry *) sub);
1942	    if (hashp != NULL)
1943	      *hashp = sub;
1944	  }
1945	  break;
1946	}
1947    }
1948  while (cycle);
1949
1950  return TRUE;
1951}
1952
1953/* Generic final link routine.  */
1954
1955bfd_boolean
1956_bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1957{
1958  bfd *sub;
1959  asection *o;
1960  struct bfd_link_order *p;
1961  size_t outsymalloc;
1962  struct generic_write_global_symbol_info wginfo;
1963
1964  bfd_get_outsymbols (abfd) = NULL;
1965  bfd_get_symcount (abfd) = 0;
1966  outsymalloc = 0;
1967
1968  /* Mark all sections which will be included in the output file.  */
1969  for (o = abfd->sections; o != NULL; o = o->next)
1970    for (p = o->link_order_head; p != NULL; p = p->next)
1971      if (p->type == bfd_indirect_link_order)
1972	p->u.indirect.section->linker_mark = TRUE;
1973
1974  /* Build the output symbol table.  */
1975  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
1976    if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1977      return FALSE;
1978
1979  /* Accumulate the global symbols.  */
1980  wginfo.info = info;
1981  wginfo.output_bfd = abfd;
1982  wginfo.psymalloc = &outsymalloc;
1983  _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1984				   _bfd_generic_link_write_global_symbol,
1985				   &wginfo);
1986
1987  /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
1988     shouldn't really need one, since we have SYMCOUNT, but some old
1989     code still expects one.  */
1990  if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1991    return FALSE;
1992
1993  if (info->relocatable)
1994    {
1995      /* Allocate space for the output relocs for each section.  */
1996      for (o = abfd->sections; o != NULL; o = o->next)
1997	{
1998	  o->reloc_count = 0;
1999	  for (p = o->link_order_head; p != NULL; p = p->next)
2000	    {
2001	      if (p->type == bfd_section_reloc_link_order
2002		  || p->type == bfd_symbol_reloc_link_order)
2003		++o->reloc_count;
2004	      else if (p->type == bfd_indirect_link_order)
2005		{
2006		  asection *input_section;
2007		  bfd *input_bfd;
2008		  long relsize;
2009		  arelent **relocs;
2010		  asymbol **symbols;
2011		  long reloc_count;
2012
2013		  input_section = p->u.indirect.section;
2014		  input_bfd = input_section->owner;
2015		  relsize = bfd_get_reloc_upper_bound (input_bfd,
2016						       input_section);
2017		  if (relsize < 0)
2018		    return FALSE;
2019		  relocs = bfd_malloc (relsize);
2020		  if (!relocs && relsize != 0)
2021		    return FALSE;
2022		  symbols = _bfd_generic_link_get_symbols (input_bfd);
2023		  reloc_count = bfd_canonicalize_reloc (input_bfd,
2024							input_section,
2025							relocs,
2026							symbols);
2027		  free (relocs);
2028		  if (reloc_count < 0)
2029		    return FALSE;
2030		  BFD_ASSERT ((unsigned long) reloc_count
2031			      == input_section->reloc_count);
2032		  o->reloc_count += reloc_count;
2033		}
2034	    }
2035	  if (o->reloc_count > 0)
2036	    {
2037	      bfd_size_type amt;
2038
2039	      amt = o->reloc_count;
2040	      amt *= sizeof (arelent *);
2041	      o->orelocation = bfd_alloc (abfd, amt);
2042	      if (!o->orelocation)
2043		return FALSE;
2044	      o->flags |= SEC_RELOC;
2045	      /* Reset the count so that it can be used as an index
2046		 when putting in the output relocs.  */
2047	      o->reloc_count = 0;
2048	    }
2049	}
2050    }
2051
2052  /* Handle all the link order information for the sections.  */
2053  for (o = abfd->sections; o != NULL; o = o->next)
2054    {
2055      for (p = o->link_order_head; p != NULL; p = p->next)
2056	{
2057	  switch (p->type)
2058	    {
2059	    case bfd_section_reloc_link_order:
2060	    case bfd_symbol_reloc_link_order:
2061	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2062		return FALSE;
2063	      break;
2064	    case bfd_indirect_link_order:
2065	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2066		return FALSE;
2067	      break;
2068	    default:
2069	      if (! _bfd_default_link_order (abfd, info, o, p))
2070		return FALSE;
2071	      break;
2072	    }
2073	}
2074    }
2075
2076  return TRUE;
2077}
2078
2079/* Add an output symbol to the output BFD.  */
2080
2081static bfd_boolean
2082generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2083{
2084  if (bfd_get_symcount (output_bfd) >= *psymalloc)
2085    {
2086      asymbol **newsyms;
2087      bfd_size_type amt;
2088
2089      if (*psymalloc == 0)
2090	*psymalloc = 124;
2091      else
2092	*psymalloc *= 2;
2093      amt = *psymalloc;
2094      amt *= sizeof (asymbol *);
2095      newsyms = bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2096      if (newsyms == NULL)
2097	return FALSE;
2098      bfd_get_outsymbols (output_bfd) = newsyms;
2099    }
2100
2101  bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2102  if (sym != NULL)
2103    ++ bfd_get_symcount (output_bfd);
2104
2105  return TRUE;
2106}
2107
2108/* Handle the symbols for an input BFD.  */
2109
2110bfd_boolean
2111_bfd_generic_link_output_symbols (bfd *output_bfd,
2112				  bfd *input_bfd,
2113				  struct bfd_link_info *info,
2114				  size_t *psymalloc)
2115{
2116  asymbol **sym_ptr;
2117  asymbol **sym_end;
2118
2119  if (! generic_link_read_symbols (input_bfd))
2120    return FALSE;
2121
2122  /* Create a filename symbol if we are supposed to.  */
2123  if (info->create_object_symbols_section != NULL)
2124    {
2125      asection *sec;
2126
2127      for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2128	{
2129	  if (sec->output_section == info->create_object_symbols_section)
2130	    {
2131	      asymbol *newsym;
2132
2133	      newsym = bfd_make_empty_symbol (input_bfd);
2134	      if (!newsym)
2135		return FALSE;
2136	      newsym->name = input_bfd->filename;
2137	      newsym->value = 0;
2138	      newsym->flags = BSF_LOCAL | BSF_FILE;
2139	      newsym->section = sec;
2140
2141	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2142					       newsym))
2143		return FALSE;
2144
2145	      break;
2146	    }
2147	}
2148    }
2149
2150  /* Adjust the values of the globally visible symbols, and write out
2151     local symbols.  */
2152  sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2153  sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2154  for (; sym_ptr < sym_end; sym_ptr++)
2155    {
2156      asymbol *sym;
2157      struct generic_link_hash_entry *h;
2158      bfd_boolean output;
2159
2160      h = NULL;
2161      sym = *sym_ptr;
2162      if ((sym->flags & (BSF_INDIRECT
2163			 | BSF_WARNING
2164			 | BSF_GLOBAL
2165			 | BSF_CONSTRUCTOR
2166			 | BSF_WEAK)) != 0
2167	  || bfd_is_und_section (bfd_get_section (sym))
2168	  || bfd_is_com_section (bfd_get_section (sym))
2169	  || bfd_is_ind_section (bfd_get_section (sym)))
2170	{
2171	  if (sym->udata.p != NULL)
2172	    h = sym->udata.p;
2173	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2174	    {
2175	      /* This case normally means that the main linker code
2176                 deliberately ignored this constructor symbol.  We
2177                 should just pass it through.  This will screw up if
2178                 the constructor symbol is from a different,
2179                 non-generic, object file format, but the case will
2180                 only arise when linking with -r, which will probably
2181                 fail anyhow, since there will be no way to represent
2182                 the relocs in the output format being used.  */
2183	      h = NULL;
2184	    }
2185	  else if (bfd_is_und_section (bfd_get_section (sym)))
2186	    h = ((struct generic_link_hash_entry *)
2187		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2188					       bfd_asymbol_name (sym),
2189					       FALSE, FALSE, TRUE));
2190	  else
2191	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2192					       bfd_asymbol_name (sym),
2193					       FALSE, FALSE, TRUE);
2194
2195	  if (h != NULL)
2196	    {
2197	      /* Force all references to this symbol to point to
2198		 the same area in memory.  It is possible that
2199		 this routine will be called with a hash table
2200		 other than a generic hash table, so we double
2201		 check that.  */
2202	      if (info->hash->creator == input_bfd->xvec)
2203		{
2204		  if (h->sym != NULL)
2205		    *sym_ptr = sym = h->sym;
2206		}
2207
2208	      switch (h->root.type)
2209		{
2210		default:
2211		case bfd_link_hash_new:
2212		  abort ();
2213		case bfd_link_hash_undefined:
2214		  break;
2215		case bfd_link_hash_undefweak:
2216		  sym->flags |= BSF_WEAK;
2217		  break;
2218		case bfd_link_hash_indirect:
2219		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2220		  /* fall through */
2221		case bfd_link_hash_defined:
2222		  sym->flags |= BSF_GLOBAL;
2223		  sym->flags &=~ BSF_CONSTRUCTOR;
2224		  sym->value = h->root.u.def.value;
2225		  sym->section = h->root.u.def.section;
2226		  break;
2227		case bfd_link_hash_defweak:
2228		  sym->flags |= BSF_WEAK;
2229		  sym->flags &=~ BSF_CONSTRUCTOR;
2230		  sym->value = h->root.u.def.value;
2231		  sym->section = h->root.u.def.section;
2232		  break;
2233		case bfd_link_hash_common:
2234		  sym->value = h->root.u.c.size;
2235		  sym->flags |= BSF_GLOBAL;
2236		  if (! bfd_is_com_section (sym->section))
2237		    {
2238		      BFD_ASSERT (bfd_is_und_section (sym->section));
2239		      sym->section = bfd_com_section_ptr;
2240		    }
2241		  /* We do not set the section of the symbol to
2242		     h->root.u.c.p->section.  That value was saved so
2243		     that we would know where to allocate the symbol
2244		     if it was defined.  In this case the type is
2245		     still bfd_link_hash_common, so we did not define
2246		     it, so we do not want to use that section.  */
2247		  break;
2248		}
2249	    }
2250	}
2251
2252      /* This switch is straight from the old code in
2253	 write_file_locals in ldsym.c.  */
2254      if (info->strip == strip_all
2255	  || (info->strip == strip_some
2256	      && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2257				  FALSE, FALSE) == NULL))
2258	output = FALSE;
2259      else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2260	{
2261	  /* If this symbol is marked as occurring now, rather
2262	     than at the end, output it now.  This is used for
2263	     COFF C_EXT FCN symbols.  FIXME: There must be a
2264	     better way.  */
2265	  if (bfd_asymbol_bfd (sym) == input_bfd
2266	      && (sym->flags & BSF_NOT_AT_END) != 0)
2267	    output = TRUE;
2268	  else
2269	    output = FALSE;
2270	}
2271      else if (bfd_is_ind_section (sym->section))
2272	output = FALSE;
2273      else if ((sym->flags & BSF_DEBUGGING) != 0)
2274	{
2275	  if (info->strip == strip_none)
2276	    output = TRUE;
2277	  else
2278	    output = FALSE;
2279	}
2280      else if (bfd_is_und_section (sym->section)
2281	       || bfd_is_com_section (sym->section))
2282	output = FALSE;
2283      else if ((sym->flags & BSF_LOCAL) != 0)
2284	{
2285	  if ((sym->flags & BSF_WARNING) != 0)
2286	    output = FALSE;
2287	  else
2288	    {
2289	      switch (info->discard)
2290		{
2291		default:
2292		case discard_all:
2293		  output = FALSE;
2294		  break;
2295		case discard_sec_merge:
2296		  output = TRUE;
2297		  if (info->relocatable
2298		      || ! (sym->section->flags & SEC_MERGE))
2299		    break;
2300		  /* FALLTHROUGH */
2301		case discard_l:
2302		  if (bfd_is_local_label (input_bfd, sym))
2303		    output = FALSE;
2304		  else
2305		    output = TRUE;
2306		  break;
2307		case discard_none:
2308		  output = TRUE;
2309		  break;
2310		}
2311	    }
2312	}
2313      else if ((sym->flags & BSF_CONSTRUCTOR))
2314	{
2315	  if (info->strip != strip_all)
2316	    output = TRUE;
2317	  else
2318	    output = FALSE;
2319	}
2320      else
2321	abort ();
2322
2323      /* If this symbol is in a section which is not being included
2324	 in the output file, then we don't want to output the symbol.
2325
2326	 Gross.  .bss and similar sections won't have the linker_mark
2327	 field set.  */
2328      if ((sym->section->flags & SEC_HAS_CONTENTS) != 0
2329	  && ! sym->section->linker_mark)
2330	output = FALSE;
2331
2332      if (output)
2333	{
2334	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2335	    return FALSE;
2336	  if (h != NULL)
2337	    h->written = TRUE;
2338	}
2339    }
2340
2341  return TRUE;
2342}
2343
2344/* Set the section and value of a generic BFD symbol based on a linker
2345   hash table entry.  */
2346
2347static void
2348set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2349{
2350  switch (h->type)
2351    {
2352    default:
2353      abort ();
2354      break;
2355    case bfd_link_hash_new:
2356      /* This can happen when a constructor symbol is seen but we are
2357         not building constructors.  */
2358      if (sym->section != NULL)
2359	{
2360	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2361	}
2362      else
2363	{
2364	  sym->flags |= BSF_CONSTRUCTOR;
2365	  sym->section = bfd_abs_section_ptr;
2366	  sym->value = 0;
2367	}
2368      break;
2369    case bfd_link_hash_undefined:
2370      sym->section = bfd_und_section_ptr;
2371      sym->value = 0;
2372      break;
2373    case bfd_link_hash_undefweak:
2374      sym->section = bfd_und_section_ptr;
2375      sym->value = 0;
2376      sym->flags |= BSF_WEAK;
2377      break;
2378    case bfd_link_hash_defined:
2379      sym->section = h->u.def.section;
2380      sym->value = h->u.def.value;
2381      break;
2382    case bfd_link_hash_defweak:
2383      sym->flags |= BSF_WEAK;
2384      sym->section = h->u.def.section;
2385      sym->value = h->u.def.value;
2386      break;
2387    case bfd_link_hash_common:
2388      sym->value = h->u.c.size;
2389      if (sym->section == NULL)
2390	sym->section = bfd_com_section_ptr;
2391      else if (! bfd_is_com_section (sym->section))
2392	{
2393	  BFD_ASSERT (bfd_is_und_section (sym->section));
2394	  sym->section = bfd_com_section_ptr;
2395	}
2396      /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2397      break;
2398    case bfd_link_hash_indirect:
2399    case bfd_link_hash_warning:
2400      /* FIXME: What should we do here?  */
2401      break;
2402    }
2403}
2404
2405/* Write out a global symbol, if it hasn't already been written out.
2406   This is called for each symbol in the hash table.  */
2407
2408bfd_boolean
2409_bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2410				       void *data)
2411{
2412  struct generic_write_global_symbol_info *wginfo = data;
2413  asymbol *sym;
2414
2415  if (h->root.type == bfd_link_hash_warning)
2416    h = (struct generic_link_hash_entry *) h->root.u.i.link;
2417
2418  if (h->written)
2419    return TRUE;
2420
2421  h->written = TRUE;
2422
2423  if (wginfo->info->strip == strip_all
2424      || (wginfo->info->strip == strip_some
2425	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2426			      FALSE, FALSE) == NULL))
2427    return TRUE;
2428
2429  if (h->sym != NULL)
2430    sym = h->sym;
2431  else
2432    {
2433      sym = bfd_make_empty_symbol (wginfo->output_bfd);
2434      if (!sym)
2435	return FALSE;
2436      sym->name = h->root.root.string;
2437      sym->flags = 0;
2438    }
2439
2440  set_symbol_from_hash (sym, &h->root);
2441
2442  sym->flags |= BSF_GLOBAL;
2443
2444  if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2445				   sym))
2446    {
2447      /* FIXME: No way to return failure.  */
2448      abort ();
2449    }
2450
2451  return TRUE;
2452}
2453
2454/* Create a relocation.  */
2455
2456bfd_boolean
2457_bfd_generic_reloc_link_order (bfd *abfd,
2458			       struct bfd_link_info *info,
2459			       asection *sec,
2460			       struct bfd_link_order *link_order)
2461{
2462  arelent *r;
2463
2464  if (! info->relocatable)
2465    abort ();
2466  if (sec->orelocation == NULL)
2467    abort ();
2468
2469  r = bfd_alloc (abfd, sizeof (arelent));
2470  if (r == NULL)
2471    return FALSE;
2472
2473  r->address = link_order->offset;
2474  r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2475  if (r->howto == 0)
2476    {
2477      bfd_set_error (bfd_error_bad_value);
2478      return FALSE;
2479    }
2480
2481  /* Get the symbol to use for the relocation.  */
2482  if (link_order->type == bfd_section_reloc_link_order)
2483    r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2484  else
2485    {
2486      struct generic_link_hash_entry *h;
2487
2488      h = ((struct generic_link_hash_entry *)
2489	   bfd_wrapped_link_hash_lookup (abfd, info,
2490					 link_order->u.reloc.p->u.name,
2491					 FALSE, FALSE, TRUE));
2492      if (h == NULL
2493	  || ! h->written)
2494	{
2495	  if (! ((*info->callbacks->unattached_reloc)
2496		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2497	    return FALSE;
2498	  bfd_set_error (bfd_error_bad_value);
2499	  return FALSE;
2500	}
2501      r->sym_ptr_ptr = &h->sym;
2502    }
2503
2504  /* If this is an inplace reloc, write the addend to the object file.
2505     Otherwise, store it in the reloc addend.  */
2506  if (! r->howto->partial_inplace)
2507    r->addend = link_order->u.reloc.p->addend;
2508  else
2509    {
2510      bfd_size_type size;
2511      bfd_reloc_status_type rstat;
2512      bfd_byte *buf;
2513      bfd_boolean ok;
2514      file_ptr loc;
2515
2516      size = bfd_get_reloc_size (r->howto);
2517      buf = bfd_zmalloc (size);
2518      if (buf == NULL)
2519	return FALSE;
2520      rstat = _bfd_relocate_contents (r->howto, abfd,
2521				      (bfd_vma) link_order->u.reloc.p->addend,
2522				      buf);
2523      switch (rstat)
2524	{
2525	case bfd_reloc_ok:
2526	  break;
2527	default:
2528	case bfd_reloc_outofrange:
2529	  abort ();
2530	case bfd_reloc_overflow:
2531	  if (! ((*info->callbacks->reloc_overflow)
2532		 (info,
2533		  (link_order->type == bfd_section_reloc_link_order
2534		   ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2535		   : link_order->u.reloc.p->u.name),
2536		  r->howto->name, link_order->u.reloc.p->addend,
2537		  NULL, NULL, 0)))
2538	    {
2539	      free (buf);
2540	      return FALSE;
2541	    }
2542	  break;
2543	}
2544      loc = link_order->offset * bfd_octets_per_byte (abfd);
2545      ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2546      free (buf);
2547      if (! ok)
2548	return FALSE;
2549
2550      r->addend = 0;
2551    }
2552
2553  sec->orelocation[sec->reloc_count] = r;
2554  ++sec->reloc_count;
2555
2556  return TRUE;
2557}
2558
2559/* Allocate a new link_order for a section.  */
2560
2561struct bfd_link_order *
2562bfd_new_link_order (bfd *abfd, asection *section)
2563{
2564  bfd_size_type amt = sizeof (struct bfd_link_order);
2565  struct bfd_link_order *new;
2566
2567  new = bfd_zalloc (abfd, amt);
2568  if (!new)
2569    return NULL;
2570
2571  new->type = bfd_undefined_link_order;
2572
2573  if (section->link_order_tail != NULL)
2574    section->link_order_tail->next = new;
2575  else
2576    section->link_order_head = new;
2577  section->link_order_tail = new;
2578
2579  return new;
2580}
2581
2582/* Default link order processing routine.  Note that we can not handle
2583   the reloc_link_order types here, since they depend upon the details
2584   of how the particular backends generates relocs.  */
2585
2586bfd_boolean
2587_bfd_default_link_order (bfd *abfd,
2588			 struct bfd_link_info *info,
2589			 asection *sec,
2590			 struct bfd_link_order *link_order)
2591{
2592  switch (link_order->type)
2593    {
2594    case bfd_undefined_link_order:
2595    case bfd_section_reloc_link_order:
2596    case bfd_symbol_reloc_link_order:
2597    default:
2598      abort ();
2599    case bfd_indirect_link_order:
2600      return default_indirect_link_order (abfd, info, sec, link_order,
2601					  FALSE);
2602    case bfd_data_link_order:
2603      return default_data_link_order (abfd, info, sec, link_order);
2604    }
2605}
2606
2607/* Default routine to handle a bfd_data_link_order.  */
2608
2609static bfd_boolean
2610default_data_link_order (bfd *abfd,
2611			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2612			 asection *sec,
2613			 struct bfd_link_order *link_order)
2614{
2615  bfd_size_type size;
2616  size_t fill_size;
2617  bfd_byte *fill;
2618  file_ptr loc;
2619  bfd_boolean result;
2620
2621  BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2622
2623  size = link_order->size;
2624  if (size == 0)
2625    return TRUE;
2626
2627  fill = link_order->u.data.contents;
2628  fill_size = link_order->u.data.size;
2629  if (fill_size != 0 && fill_size < size)
2630    {
2631      bfd_byte *p;
2632      fill = bfd_malloc (size);
2633      if (fill == NULL)
2634	return FALSE;
2635      p = fill;
2636      if (fill_size == 1)
2637	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2638      else
2639	{
2640	  do
2641	    {
2642	      memcpy (p, link_order->u.data.contents, fill_size);
2643	      p += fill_size;
2644	      size -= fill_size;
2645	    }
2646	  while (size >= fill_size);
2647	  if (size != 0)
2648	    memcpy (p, link_order->u.data.contents, (size_t) size);
2649	  size = link_order->size;
2650	}
2651    }
2652
2653  loc = link_order->offset * bfd_octets_per_byte (abfd);
2654  result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2655
2656  if (fill != link_order->u.data.contents)
2657    free (fill);
2658  return result;
2659}
2660
2661/* Default routine to handle a bfd_indirect_link_order.  */
2662
2663static bfd_boolean
2664default_indirect_link_order (bfd *output_bfd,
2665			     struct bfd_link_info *info,
2666			     asection *output_section,
2667			     struct bfd_link_order *link_order,
2668			     bfd_boolean generic_linker)
2669{
2670  asection *input_section;
2671  bfd *input_bfd;
2672  bfd_byte *contents = NULL;
2673  bfd_byte *new_contents;
2674  bfd_size_type sec_size;
2675  file_ptr loc;
2676
2677  BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2678
2679  if (link_order->size == 0)
2680    return TRUE;
2681
2682  input_section = link_order->u.indirect.section;
2683  input_bfd = input_section->owner;
2684
2685  BFD_ASSERT (input_section->output_section == output_section);
2686  BFD_ASSERT (input_section->output_offset == link_order->offset);
2687  BFD_ASSERT (input_section->size == link_order->size);
2688
2689  if (info->relocatable
2690      && input_section->reloc_count > 0
2691      && output_section->orelocation == NULL)
2692    {
2693      /* Space has not been allocated for the output relocations.
2694	 This can happen when we are called by a specific backend
2695	 because somebody is attempting to link together different
2696	 types of object files.  Handling this case correctly is
2697	 difficult, and sometimes impossible.  */
2698      (*_bfd_error_handler)
2699	(_("Attempt to do relocatable link with %s input and %s output"),
2700	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2701      bfd_set_error (bfd_error_wrong_format);
2702      return FALSE;
2703    }
2704
2705  if (! generic_linker)
2706    {
2707      asymbol **sympp;
2708      asymbol **symppend;
2709
2710      /* Get the canonical symbols.  The generic linker will always
2711	 have retrieved them by this point, but we are being called by
2712	 a specific linker, presumably because we are linking
2713	 different types of object files together.  */
2714      if (! generic_link_read_symbols (input_bfd))
2715	return FALSE;
2716
2717      /* Since we have been called by a specific linker, rather than
2718	 the generic linker, the values of the symbols will not be
2719	 right.  They will be the values as seen in the input file,
2720	 not the values of the final link.  We need to fix them up
2721	 before we can relocate the section.  */
2722      sympp = _bfd_generic_link_get_symbols (input_bfd);
2723      symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2724      for (; sympp < symppend; sympp++)
2725	{
2726	  asymbol *sym;
2727	  struct bfd_link_hash_entry *h;
2728
2729	  sym = *sympp;
2730
2731	  if ((sym->flags & (BSF_INDIRECT
2732			     | BSF_WARNING
2733			     | BSF_GLOBAL
2734			     | BSF_CONSTRUCTOR
2735			     | BSF_WEAK)) != 0
2736	      || bfd_is_und_section (bfd_get_section (sym))
2737	      || bfd_is_com_section (bfd_get_section (sym))
2738	      || bfd_is_ind_section (bfd_get_section (sym)))
2739	    {
2740	      /* sym->udata may have been set by
2741		 generic_link_add_symbol_list.  */
2742	      if (sym->udata.p != NULL)
2743		h = sym->udata.p;
2744	      else if (bfd_is_und_section (bfd_get_section (sym)))
2745		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2746						  bfd_asymbol_name (sym),
2747						  FALSE, FALSE, TRUE);
2748	      else
2749		h = bfd_link_hash_lookup (info->hash,
2750					  bfd_asymbol_name (sym),
2751					  FALSE, FALSE, TRUE);
2752	      if (h != NULL)
2753		set_symbol_from_hash (sym, h);
2754	    }
2755	}
2756    }
2757
2758  /* Get and relocate the section contents.  */
2759  sec_size = (input_section->rawsize > input_section->size
2760	      ? input_section->rawsize
2761	      : input_section->size);
2762  contents = bfd_malloc (sec_size);
2763  if (contents == NULL && sec_size != 0)
2764    goto error_return;
2765  new_contents = (bfd_get_relocated_section_contents
2766		  (output_bfd, info, link_order, contents, info->relocatable,
2767		   _bfd_generic_link_get_symbols (input_bfd)));
2768  if (!new_contents)
2769    goto error_return;
2770
2771  /* Output the section contents.  */
2772  loc = link_order->offset * bfd_octets_per_byte (output_bfd);
2773  if (! bfd_set_section_contents (output_bfd, output_section,
2774				  new_contents, loc, link_order->size))
2775    goto error_return;
2776
2777  if (contents != NULL)
2778    free (contents);
2779  return TRUE;
2780
2781 error_return:
2782  if (contents != NULL)
2783    free (contents);
2784  return FALSE;
2785}
2786
2787/* A little routine to count the number of relocs in a link_order
2788   list.  */
2789
2790unsigned int
2791_bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2792{
2793  register unsigned int c;
2794  register struct bfd_link_order *l;
2795
2796  c = 0;
2797  for (l = link_order; l != NULL; l = l->next)
2798    {
2799      if (l->type == bfd_section_reloc_link_order
2800	  || l->type == bfd_symbol_reloc_link_order)
2801	++c;
2802    }
2803
2804  return c;
2805}
2806
2807/*
2808FUNCTION
2809	bfd_link_split_section
2810
2811SYNOPSIS
2812        bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2813
2814DESCRIPTION
2815	Return nonzero if @var{sec} should be split during a
2816	reloceatable or final link.
2817
2818.#define bfd_link_split_section(abfd, sec) \
2819.       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2820.
2821
2822*/
2823
2824bfd_boolean
2825_bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2826				 asection *sec ATTRIBUTE_UNUSED)
2827{
2828  return FALSE;
2829}
2830
2831/*
2832FUNCTION
2833	bfd_section_already_linked
2834
2835SYNOPSIS
2836        void bfd_section_already_linked (bfd *abfd, asection *sec);
2837
2838DESCRIPTION
2839	Check if @var{sec} has been already linked during a reloceatable
2840	or final link.
2841
2842.#define bfd_section_already_linked(abfd, sec) \
2843.       BFD_SEND (abfd, _section_already_linked, (abfd, sec))
2844.
2845
2846*/
2847
2848/* Sections marked with the SEC_LINK_ONCE flag should only be linked
2849   once into the output.  This routine checks each section, and
2850   arrange to discard it if a section of the same name has already
2851   been linked.  This code assumes that all relevant sections have the
2852   SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2853   section name.  bfd_section_already_linked is called via
2854   bfd_map_over_sections.  */
2855
2856/* The hash table.  */
2857
2858static struct bfd_hash_table _bfd_section_already_linked_table;
2859
2860/* Support routines for the hash table used by section_already_linked,
2861   initialize the table, traverse, lookup, fill in an entry and remove
2862   the table.  */
2863
2864void
2865bfd_section_already_linked_table_traverse
2866  (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2867			void *), void *info)
2868{
2869  bfd_hash_traverse (&_bfd_section_already_linked_table,
2870		     (bfd_boolean (*) (struct bfd_hash_entry *,
2871				       void *)) func,
2872		     info);
2873}
2874
2875struct bfd_section_already_linked_hash_entry *
2876bfd_section_already_linked_table_lookup (const char *name)
2877{
2878  return ((struct bfd_section_already_linked_hash_entry *)
2879	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2880			   TRUE, FALSE));
2881}
2882
2883void
2884bfd_section_already_linked_table_insert
2885  (struct bfd_section_already_linked_hash_entry *already_linked_list,
2886   asection *sec)
2887{
2888  struct bfd_section_already_linked *l;
2889
2890  /* Allocate the memory from the same obstack as the hash table is
2891     kept in.  */
2892  l = bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2893  l->sec = sec;
2894  l->next = already_linked_list->entry;
2895  already_linked_list->entry = l;
2896}
2897
2898static struct bfd_hash_entry *
2899already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2900			struct bfd_hash_table *table,
2901			const char *string ATTRIBUTE_UNUSED)
2902{
2903  struct bfd_section_already_linked_hash_entry *ret =
2904    bfd_hash_allocate (table, sizeof *ret);
2905
2906  ret->entry = NULL;
2907
2908  return &ret->root;
2909}
2910
2911bfd_boolean
2912bfd_section_already_linked_table_init (void)
2913{
2914  return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2915				already_linked_newfunc, 42);
2916}
2917
2918void
2919bfd_section_already_linked_table_free (void)
2920{
2921  bfd_hash_table_free (&_bfd_section_already_linked_table);
2922}
2923
2924/* This is used on non-ELF inputs.  */
2925
2926void
2927_bfd_generic_section_already_linked (bfd *abfd, asection *sec)
2928{
2929  flagword flags;
2930  const char *name;
2931  struct bfd_section_already_linked *l;
2932  struct bfd_section_already_linked_hash_entry *already_linked_list;
2933
2934  flags = sec->flags;
2935  if ((flags & SEC_LINK_ONCE) == 0)
2936    return;
2937
2938  /* FIXME: When doing a relocatable link, we may have trouble
2939     copying relocations in other sections that refer to local symbols
2940     in the section being discarded.  Those relocations will have to
2941     be converted somehow; as of this writing I'm not sure that any of
2942     the backends handle that correctly.
2943
2944     It is tempting to instead not discard link once sections when
2945     doing a relocatable link (technically, they should be discarded
2946     whenever we are building constructors).  However, that fails,
2947     because the linker winds up combining all the link once sections
2948     into a single large link once section, which defeats the purpose
2949     of having link once sections in the first place.  */
2950
2951  name = bfd_get_section_name (abfd, sec);
2952
2953  already_linked_list = bfd_section_already_linked_table_lookup (name);
2954
2955  for (l = already_linked_list->entry; l != NULL; l = l->next)
2956    {
2957      bfd_boolean skip = FALSE;
2958      struct coff_comdat_info *s_comdat
2959	= bfd_coff_get_comdat_section (abfd, sec);
2960      struct coff_comdat_info *l_comdat
2961	= bfd_coff_get_comdat_section (l->sec->owner, l->sec);
2962
2963      /* We may have 3 different sections on the list: group section,
2964	 comdat section and linkonce section. SEC may be a linkonce or
2965	 comdat section. We always ignore group section. For non-COFF
2966	 inputs, we also ignore comdat section.
2967
2968	 FIXME: Is that safe to match a linkonce section with a comdat
2969	 section for COFF inputs?  */
2970      if ((l->sec->flags & SEC_GROUP) != 0)
2971	skip = TRUE;
2972      else if (bfd_get_flavour (abfd) == bfd_target_coff_flavour)
2973	{
2974	  if (s_comdat != NULL
2975	      && l_comdat != NULL
2976	      && strcmp (s_comdat->name, l_comdat->name) != 0)
2977	    skip = TRUE;
2978	}
2979      else if (l_comdat != NULL)
2980	skip = TRUE;
2981
2982      if (!skip)
2983	{
2984	  /* The section has already been linked.  See if we should
2985             issue a warning.  */
2986	  switch (flags & SEC_LINK_DUPLICATES)
2987	    {
2988	    default:
2989	      abort ();
2990
2991	    case SEC_LINK_DUPLICATES_DISCARD:
2992	      break;
2993
2994	    case SEC_LINK_DUPLICATES_ONE_ONLY:
2995	      (*_bfd_error_handler)
2996		(_("%B: warning: ignoring duplicate section `%A'\n"),
2997		 abfd, sec);
2998	      break;
2999
3000	    case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3001	      /* FIXME: We should really dig out the contents of both
3002                 sections and memcmp them.  The COFF/PE spec says that
3003                 the Microsoft linker does not implement this
3004                 correctly, so I'm not going to bother doing it
3005                 either.  */
3006	      /* Fall through.  */
3007	    case SEC_LINK_DUPLICATES_SAME_SIZE:
3008	      if (sec->size != l->sec->size)
3009		(*_bfd_error_handler)
3010		  (_("%B: warning: duplicate section `%A' has different size\n"),
3011		   abfd, sec);
3012	      break;
3013	    }
3014
3015	  /* Set the output_section field so that lang_add_section
3016	     does not create a lang_input_section structure for this
3017	     section.  Since there might be a symbol in the section
3018	     being discarded, we must retain a pointer to the section
3019	     which we are really going to use.  */
3020	  sec->output_section = bfd_abs_section_ptr;
3021	  sec->kept_section = l->sec;
3022
3023	  return;
3024	}
3025    }
3026
3027  /* This is the first section with this name.  Record it.  */
3028  bfd_section_already_linked_table_insert (already_linked_list, sec);
3029}
3030