1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42#include "opt_wlan.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/sysctl.h>
47#include <sys/mbuf.h>
48#include <sys/malloc.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/kernel.h>
52#include <sys/socket.h>
53#include <sys/sockio.h>
54#include <sys/errno.h>
55#include <sys/callout.h>
56#include <sys/bus.h>
57#include <sys/endian.h>
58#include <sys/kthread.h>
59#include <sys/taskqueue.h>
60#include <sys/priv.h>
61
62#include <machine/bus.h>
63
64#include <net/if.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_types.h>
68#include <net/if_arp.h>
69#include <net/ethernet.h>
70#include <net/if_llc.h>
71
72#include <net80211/ieee80211_var.h>
73
74#include <net/bpf.h>
75
76#include <dev/ath/if_athvar.h>
77
78#include <dev/ath/if_ath_debug.h>
79#include <dev/ath/if_ath_keycache.h>
80
81#ifdef ATH_DEBUG
82static void
83ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
84	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
85{
86	static const char *ciphers[] = {
87		"WEP",
88		"AES-OCB",
89		"AES-CCM",
90		"CKIP",
91		"TKIP",
92		"CLR",
93	};
94	int i, n;
95
96	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
97	for (i = 0, n = hk->kv_len; i < n; i++)
98		printf("%02x", hk->kv_val[i]);
99	printf(" mac %s", ether_sprintf(mac));
100	if (hk->kv_type == HAL_CIPHER_TKIP) {
101		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
102		for (i = 0; i < sizeof(hk->kv_mic); i++)
103			printf("%02x", hk->kv_mic[i]);
104		if (!sc->sc_splitmic) {
105			printf(" txmic ");
106			for (i = 0; i < sizeof(hk->kv_txmic); i++)
107				printf("%02x", hk->kv_txmic[i]);
108		}
109	}
110	printf("\n");
111}
112#endif
113
114/*
115 * Set a TKIP key into the hardware.  This handles the
116 * potential distribution of key state to multiple key
117 * cache slots for TKIP.
118 */
119static int
120ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
121	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
122{
123#define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
124	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
125	struct ath_hal *ah = sc->sc_ah;
126
127	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
128		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
129	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
130		if (sc->sc_splitmic) {
131			/*
132			 * TX key goes at first index, RX key at the rx index.
133			 * The hal handles the MIC keys at index+64.
134			 */
135			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
136			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
137			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
138				return 0;
139
140			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
141			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
142			/* XXX delete tx key on failure? */
143			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
144		} else {
145			/*
146			 * Room for both TX+RX MIC keys in one key cache
147			 * slot, just set key at the first index; the hal
148			 * will handle the rest.
149			 */
150			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
151			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
152			KEYPRINTF(sc, k->wk_keyix, hk, mac);
153			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
154		}
155	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
156		if (sc->sc_splitmic) {
157			/*
158			 * NB: must pass MIC key in expected location when
159			 * the keycache only holds one MIC key per entry.
160			 */
161			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
162		} else
163			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
164		KEYPRINTF(sc, k->wk_keyix, hk, mac);
165		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
166	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
167		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
168		KEYPRINTF(sc, k->wk_keyix, hk, mac);
169		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
170	}
171	return 0;
172#undef IEEE80211_KEY_XR
173}
174
175/*
176 * Set a net80211 key into the hardware.  This handles the
177 * potential distribution of key state to multiple key
178 * cache slots for TKIP with hardware MIC support.
179 */
180int
181ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
182	struct ieee80211_node *bss)
183{
184#define	N(a)	(sizeof(a)/sizeof(a[0]))
185	static const u_int8_t ciphermap[] = {
186		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
187		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
188		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
189		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
190		(u_int8_t) -1,		/* 4 is not allocated */
191		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
192		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
193	};
194	struct ath_hal *ah = sc->sc_ah;
195	const struct ieee80211_cipher *cip = k->wk_cipher;
196	u_int8_t gmac[IEEE80211_ADDR_LEN];
197	const u_int8_t *mac;
198	HAL_KEYVAL hk;
199
200	memset(&hk, 0, sizeof(hk));
201	/*
202	 * Software crypto uses a "clear key" so non-crypto
203	 * state kept in the key cache are maintained and
204	 * so that rx frames have an entry to match.
205	 */
206	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
207		KASSERT(cip->ic_cipher < N(ciphermap),
208			("invalid cipher type %u", cip->ic_cipher));
209		hk.kv_type = ciphermap[cip->ic_cipher];
210		hk.kv_len = k->wk_keylen;
211		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
212	} else
213		hk.kv_type = HAL_CIPHER_CLR;
214
215	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
216		/*
217		 * Group keys on hardware that supports multicast frame
218		 * key search use a MAC that is the sender's address with
219		 * the multicast bit set instead of the app-specified address.
220		 */
221		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
222		gmac[0] |= 0x01;
223		mac = gmac;
224	} else
225		mac = k->wk_macaddr;
226
227	if (hk.kv_type == HAL_CIPHER_TKIP &&
228	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
229		return ath_keyset_tkip(sc, k, &hk, mac);
230	} else {
231		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
232		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
233	}
234#undef N
235}
236
237/*
238 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
239 * each key, one for decrypt/encrypt and the other for the MIC.
240 */
241static u_int16_t
242key_alloc_2pair(struct ath_softc *sc,
243	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
244{
245#define	N(a)	(sizeof(a)/sizeof(a[0]))
246	u_int i, keyix;
247
248	KASSERT(sc->sc_splitmic, ("key cache !split"));
249	/* XXX could optimize */
250	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
251		u_int8_t b = sc->sc_keymap[i];
252		if (b != 0xff) {
253			/*
254			 * One or more slots in this byte are free.
255			 */
256			keyix = i*NBBY;
257			while (b & 1) {
258		again:
259				keyix++;
260				b >>= 1;
261			}
262			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
263			if (isset(sc->sc_keymap, keyix+32) ||
264			    isset(sc->sc_keymap, keyix+64) ||
265			    isset(sc->sc_keymap, keyix+32+64)) {
266				/* full pair unavailable */
267				/* XXX statistic */
268				if (keyix == (i+1)*NBBY) {
269					/* no slots were appropriate, advance */
270					continue;
271				}
272				goto again;
273			}
274			setbit(sc->sc_keymap, keyix);
275			setbit(sc->sc_keymap, keyix+64);
276			setbit(sc->sc_keymap, keyix+32);
277			setbit(sc->sc_keymap, keyix+32+64);
278			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
279				"%s: key pair %u,%u %u,%u\n",
280				__func__, keyix, keyix+64,
281				keyix+32, keyix+32+64);
282			*txkeyix = keyix;
283			*rxkeyix = keyix+32;
284			return 1;
285		}
286	}
287	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
288	return 0;
289#undef N
290}
291
292/*
293 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
294 * each key, one for decrypt/encrypt and the other for the MIC.
295 */
296static u_int16_t
297key_alloc_pair(struct ath_softc *sc,
298	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
299{
300#define	N(a)	(sizeof(a)/sizeof(a[0]))
301	u_int i, keyix;
302
303	KASSERT(!sc->sc_splitmic, ("key cache split"));
304	/* XXX could optimize */
305	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
306		u_int8_t b = sc->sc_keymap[i];
307		if (b != 0xff) {
308			/*
309			 * One or more slots in this byte are free.
310			 */
311			keyix = i*NBBY;
312			while (b & 1) {
313		again:
314				keyix++;
315				b >>= 1;
316			}
317			if (isset(sc->sc_keymap, keyix+64)) {
318				/* full pair unavailable */
319				/* XXX statistic */
320				if (keyix == (i+1)*NBBY) {
321					/* no slots were appropriate, advance */
322					continue;
323				}
324				goto again;
325			}
326			setbit(sc->sc_keymap, keyix);
327			setbit(sc->sc_keymap, keyix+64);
328			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
329				"%s: key pair %u,%u\n",
330				__func__, keyix, keyix+64);
331			*txkeyix = *rxkeyix = keyix;
332			return 1;
333		}
334	}
335	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
336	return 0;
337#undef N
338}
339
340/*
341 * Allocate a single key cache slot.
342 */
343static int
344key_alloc_single(struct ath_softc *sc,
345	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
346{
347#define	N(a)	(sizeof(a)/sizeof(a[0]))
348	u_int i, keyix;
349
350	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
351	for (i = 0; i < N(sc->sc_keymap); i++) {
352		u_int8_t b = sc->sc_keymap[i];
353		if (b != 0xff) {
354			/*
355			 * One or more slots are free.
356			 */
357			keyix = i*NBBY;
358			while (b & 1)
359				keyix++, b >>= 1;
360			setbit(sc->sc_keymap, keyix);
361			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
362				__func__, keyix);
363			*txkeyix = *rxkeyix = keyix;
364			return 1;
365		}
366	}
367	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
368	return 0;
369#undef N
370}
371
372/*
373 * Allocate one or more key cache slots for a uniacst key.  The
374 * key itself is needed only to identify the cipher.  For hardware
375 * TKIP with split cipher+MIC keys we allocate two key cache slot
376 * pairs so that we can setup separate TX and RX MIC keys.  Note
377 * that the MIC key for a TKIP key at slot i is assumed by the
378 * hardware to be at slot i+64.  This limits TKIP keys to the first
379 * 64 entries.
380 */
381int
382ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
383	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
384{
385	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
386
387	/*
388	 * Group key allocation must be handled specially for
389	 * parts that do not support multicast key cache search
390	 * functionality.  For those parts the key id must match
391	 * the h/w key index so lookups find the right key.  On
392	 * parts w/ the key search facility we install the sender's
393	 * mac address (with the high bit set) and let the hardware
394	 * find the key w/o using the key id.  This is preferred as
395	 * it permits us to support multiple users for adhoc and/or
396	 * multi-station operation.
397	 */
398	if (k->wk_keyix != IEEE80211_KEYIX_NONE) {
399		/*
400		 * Only global keys should have key index assigned.
401		 */
402		if (!(&vap->iv_nw_keys[0] <= k &&
403		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
404			/* should not happen */
405			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
406				"%s: bogus group key\n", __func__);
407			return 0;
408		}
409		if (vap->iv_opmode != IEEE80211_M_HOSTAP ||
410		    !(k->wk_flags & IEEE80211_KEY_GROUP) ||
411		    !sc->sc_mcastkey) {
412			/*
413			 * XXX we pre-allocate the global keys so
414			 * have no way to check if they've already
415			 * been allocated.
416			 */
417			*keyix = *rxkeyix = k - vap->iv_nw_keys;
418			return 1;
419		}
420		/*
421		 * Group key and device supports multicast key search.
422		 */
423		k->wk_keyix = IEEE80211_KEYIX_NONE;
424	}
425
426	/*
427	 * We allocate two pair for TKIP when using the h/w to do
428	 * the MIC.  For everything else, including software crypto,
429	 * we allocate a single entry.  Note that s/w crypto requires
430	 * a pass-through slot on the 5211 and 5212.  The 5210 does
431	 * not support pass-through cache entries and we map all
432	 * those requests to slot 0.
433	 */
434	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
435		return key_alloc_single(sc, keyix, rxkeyix);
436	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
437	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
438		if (sc->sc_splitmic)
439			return key_alloc_2pair(sc, keyix, rxkeyix);
440		else
441			return key_alloc_pair(sc, keyix, rxkeyix);
442	} else {
443		return key_alloc_single(sc, keyix, rxkeyix);
444	}
445}
446
447/*
448 * Delete an entry in the key cache allocated by ath_key_alloc.
449 */
450int
451ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
452{
453	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
454	struct ath_hal *ah = sc->sc_ah;
455	const struct ieee80211_cipher *cip = k->wk_cipher;
456	u_int keyix = k->wk_keyix;
457
458	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
459
460	ath_hal_keyreset(ah, keyix);
461	/*
462	 * Handle split tx/rx keying required for TKIP with h/w MIC.
463	 */
464	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
465	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
466		ath_hal_keyreset(ah, keyix+32);		/* RX key */
467	if (keyix >= IEEE80211_WEP_NKID) {
468		/*
469		 * Don't touch keymap entries for global keys so
470		 * they are never considered for dynamic allocation.
471		 */
472		clrbit(sc->sc_keymap, keyix);
473		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
474		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
475			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
476			if (sc->sc_splitmic) {
477				/* +32 for RX key, +32+64 for RX key MIC */
478				clrbit(sc->sc_keymap, keyix+32);
479				clrbit(sc->sc_keymap, keyix+32+64);
480			}
481		}
482	}
483	return 1;
484}
485
486/*
487 * Set the key cache contents for the specified key.  Key cache
488 * slot(s) must already have been allocated by ath_key_alloc.
489 */
490int
491ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
492	const u_int8_t mac[IEEE80211_ADDR_LEN])
493{
494	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
495
496	return ath_keyset(sc, k, vap->iv_bss);
497}
498