1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32/*
33 * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
34 *
35 * Written by Bill Paul <wpaul@ctr.columbia.edu>
36 * Electrical Engineering Department
37 * Columbia University, New York City
38 */
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD$");
42
43/*
44 * The Aironet 4500/4800 series cards come in PCMCIA, ISA and PCI form.
45 * This driver supports all three device types (PCI devices are supported
46 * through an extra PCI shim: /sys/dev/an/if_an_pci.c). ISA devices can be
47 * supported either using hard-coded IO port/IRQ settings or via Plug
48 * and Play. The 4500 series devices support 1Mbps and 2Mbps data rates.
49 * The 4800 devices support 1, 2, 5.5 and 11Mbps rates.
50 *
51 * Like the WaveLAN/IEEE cards, the Aironet NICs are all essentially
52 * PCMCIA devices. The ISA and PCI cards are a combination of a PCMCIA
53 * device and a PCMCIA to ISA or PCMCIA to PCI adapter card. There are
54 * a couple of important differences though:
55 *
56 * - Lucent ISA card looks to the host like a PCMCIA controller with
57 *   a PCMCIA WaveLAN card inserted. This means that even desktop
58 *   machines need to be configured with PCMCIA support in order to
59 *   use WaveLAN/IEEE ISA cards. The Aironet cards on the other hand
60 *   actually look like normal ISA and PCI devices to the host, so
61 *   no PCMCIA controller support is needed
62 *
63 * The latter point results in a small gotcha. The Aironet PCMCIA
64 * cards can be configured for one of two operating modes depending
65 * on how the Vpp1 and Vpp2 programming voltages are set when the
66 * card is activated. In order to put the card in proper PCMCIA
67 * operation (where the CIS table is visible and the interface is
68 * programmed for PCMCIA operation), both Vpp1 and Vpp2 have to be
69 * set to 5 volts. FreeBSD by default doesn't set the Vpp voltages,
70 * which leaves the card in ISA/PCI mode, which prevents it from
71 * being activated as an PCMCIA device.
72 *
73 * Note that some PCMCIA controller software packages for Windows NT
74 * fail to set the voltages as well.
75 *
76 * The Aironet devices can operate in both station mode and access point
77 * mode. Typically, when programmed for station mode, the card can be set
78 * to automatically perform encapsulation/decapsulation of Ethernet II
79 * and 802.3 frames within 802.11 frames so that the host doesn't have
80 * to do it itself. This driver doesn't program the card that way: the
81 * driver handles all of the encapsulation/decapsulation itself.
82 */
83
84#include "opt_inet.h"
85
86#ifdef INET
87#define ANCACHE			/* enable signal strength cache */
88#endif
89
90#include <sys/param.h>
91#include <sys/ctype.h>
92#include <sys/systm.h>
93#include <sys/sockio.h>
94#include <sys/mbuf.h>
95#include <sys/priv.h>
96#include <sys/proc.h>
97#include <sys/kernel.h>
98#include <sys/socket.h>
99#ifdef ANCACHE
100#include <sys/syslog.h>
101#endif
102#include <sys/sysctl.h>
103
104#include <sys/module.h>
105#include <sys/bus.h>
106#include <machine/bus.h>
107#include <sys/rman.h>
108#include <sys/lock.h>
109#include <sys/mutex.h>
110#include <machine/resource.h>
111#include <sys/malloc.h>
112
113#include <net/if.h>
114#include <net/if_arp.h>
115#include <net/if_dl.h>
116#include <net/ethernet.h>
117#include <net/if_types.h>
118#include <net/if_media.h>
119
120#include <net80211/ieee80211_var.h>
121#include <net80211/ieee80211_ioctl.h>
122
123#ifdef INET
124#include <netinet/in.h>
125#include <netinet/in_systm.h>
126#include <netinet/in_var.h>
127#include <netinet/ip.h>
128#endif
129
130#include <net/bpf.h>
131
132#include <machine/md_var.h>
133
134#include <dev/an/if_aironet_ieee.h>
135#include <dev/an/if_anreg.h>
136
137/* These are global because we need them in sys/pci/if_an_p.c. */
138static void an_reset(struct an_softc *);
139static int an_init_mpi350_desc(struct an_softc *);
140static int an_ioctl(struct ifnet *, u_long, caddr_t);
141static void an_init(void *);
142static void an_init_locked(struct an_softc *);
143static int an_init_tx_ring(struct an_softc *);
144static void an_start(struct ifnet *);
145static void an_start_locked(struct ifnet *);
146static void an_watchdog(struct an_softc *);
147static void an_rxeof(struct an_softc *);
148static void an_txeof(struct an_softc *, int);
149
150static void an_promisc(struct an_softc *, int);
151static int an_cmd(struct an_softc *, int, int);
152static int an_cmd_struct(struct an_softc *, struct an_command *,
153    struct an_reply *);
154static int an_read_record(struct an_softc *, struct an_ltv_gen *);
155static int an_write_record(struct an_softc *, struct an_ltv_gen *);
156static int an_read_data(struct an_softc *, int, int, caddr_t, int);
157static int an_write_data(struct an_softc *, int, int, caddr_t, int);
158static int an_seek(struct an_softc *, int, int, int);
159static int an_alloc_nicmem(struct an_softc *, int, int *);
160static int an_dma_malloc(struct an_softc *, bus_size_t, struct an_dma_alloc *,
161    int);
162static void an_dma_free(struct an_softc *, struct an_dma_alloc *);
163static void an_dma_malloc_cb(void *, bus_dma_segment_t *, int, int);
164static void an_stats_update(void *);
165static void an_setdef(struct an_softc *, struct an_req *);
166#ifdef ANCACHE
167static void an_cache_store(struct an_softc *, struct ether_header *,
168    struct mbuf *, u_int8_t, u_int8_t);
169#endif
170
171/* function definitions for use with the Cisco's Linux configuration
172   utilities
173*/
174
175static int readrids(struct ifnet*, struct aironet_ioctl*);
176static int writerids(struct ifnet*, struct aironet_ioctl*);
177static int flashcard(struct ifnet*, struct aironet_ioctl*);
178
179static int cmdreset(struct ifnet *);
180static int setflashmode(struct ifnet *);
181static int flashgchar(struct ifnet *,int,int);
182static int flashpchar(struct ifnet *,int,int);
183static int flashputbuf(struct ifnet *);
184static int flashrestart(struct ifnet *);
185static int WaitBusy(struct ifnet *, int);
186static int unstickbusy(struct ifnet *);
187
188static void an_dump_record	(struct an_softc *,struct an_ltv_gen *,
189				    char *);
190
191static int an_media_change	(struct ifnet *);
192static void an_media_status	(struct ifnet *, struct ifmediareq *);
193
194static int	an_dump = 0;
195static int	an_cache_mode = 0;
196
197#define DBM 0
198#define PERCENT 1
199#define RAW 2
200
201static char an_conf[256];
202static char an_conf_cache[256];
203
204/* sysctl vars */
205
206SYSCTL_NODE(_hw, OID_AUTO, an, CTLFLAG_RD, 0, "Wireless driver parameters");
207
208/* XXX violate ethernet/netgraph callback hooks */
209extern	void	(*ng_ether_attach_p)(struct ifnet *ifp);
210extern	void	(*ng_ether_detach_p)(struct ifnet *ifp);
211
212static int
213sysctl_an_dump(SYSCTL_HANDLER_ARGS)
214{
215	int	error, r, last;
216	char 	*s = an_conf;
217
218	last = an_dump;
219
220	switch (an_dump) {
221	case 0:
222		strcpy(an_conf, "off");
223		break;
224	case 1:
225		strcpy(an_conf, "type");
226		break;
227	case 2:
228		strcpy(an_conf, "dump");
229		break;
230	default:
231		snprintf(an_conf, 5, "%x", an_dump);
232		break;
233	}
234
235	error = sysctl_handle_string(oidp, an_conf, sizeof(an_conf), req);
236
237	if (strncmp(an_conf,"off", 3) == 0) {
238		an_dump = 0;
239 	}
240	if (strncmp(an_conf,"dump", 4) == 0) {
241		an_dump = 1;
242	}
243	if (strncmp(an_conf,"type", 4) == 0) {
244		an_dump = 2;
245	}
246	if (*s == 'f') {
247		r = 0;
248		for (;;s++) {
249			if ((*s >= '0') && (*s <= '9')) {
250				r = r * 16 + (*s - '0');
251			} else if ((*s >= 'a') && (*s <= 'f')) {
252				r = r * 16 + (*s - 'a' + 10);
253			} else {
254				break;
255			}
256		}
257		an_dump = r;
258	}
259	if (an_dump != last)
260		printf("Sysctl changed for Aironet driver\n");
261
262	return error;
263}
264
265SYSCTL_PROC(_hw_an, OID_AUTO, an_dump, CTLTYPE_STRING | CTLFLAG_RW,
266	    0, sizeof(an_conf), sysctl_an_dump, "A", "");
267
268static int
269sysctl_an_cache_mode(SYSCTL_HANDLER_ARGS)
270{
271	int	error, last;
272
273	last = an_cache_mode;
274
275	switch (an_cache_mode) {
276	case 1:
277		strcpy(an_conf_cache, "per");
278		break;
279	case 2:
280		strcpy(an_conf_cache, "raw");
281		break;
282	default:
283		strcpy(an_conf_cache, "dbm");
284		break;
285	}
286
287	error = sysctl_handle_string(oidp, an_conf_cache,
288			sizeof(an_conf_cache), req);
289
290	if (strncmp(an_conf_cache,"dbm", 3) == 0) {
291		an_cache_mode = 0;
292	}
293	if (strncmp(an_conf_cache,"per", 3) == 0) {
294		an_cache_mode = 1;
295 	}
296	if (strncmp(an_conf_cache,"raw", 3) == 0) {
297		an_cache_mode = 2;
298	}
299
300	return error;
301}
302
303SYSCTL_PROC(_hw_an, OID_AUTO, an_cache_mode, CTLTYPE_STRING | CTLFLAG_RW,
304	    0, sizeof(an_conf_cache), sysctl_an_cache_mode, "A", "");
305
306/*
307 * Setup the lock for PCI attachment since it skips the an_probe
308 * function.  We need to setup the lock in an_probe since some
309 * operations need the lock.  So we might as well create the
310 * lock in the probe.
311 */
312int
313an_pci_probe(device_t dev)
314{
315	struct an_softc *sc = device_get_softc(dev);
316
317	mtx_init(&sc->an_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
318	    MTX_DEF);
319
320	return(0);
321}
322
323/*
324 * We probe for an Aironet 4500/4800 card by attempting to
325 * read the default SSID list. On reset, the first entry in
326 * the SSID list will contain the name "tsunami." If we don't
327 * find this, then there's no card present.
328 */
329int
330an_probe(device_t dev)
331{
332	struct an_softc *sc = device_get_softc(dev);
333	struct an_ltv_ssidlist_new	ssid;
334	int	error;
335
336	bzero((char *)&ssid, sizeof(ssid));
337
338	error = an_alloc_port(dev, 0, AN_IOSIZ);
339	if (error != 0)
340		return (0);
341
342	/* can't do autoprobing */
343	if (rman_get_start(sc->port_res) == -1)
344		return(0);
345
346	/*
347	 * We need to fake up a softc structure long enough
348	 * to be able to issue commands and call some of the
349	 * other routines.
350	 */
351	ssid.an_len = sizeof(ssid);
352	ssid.an_type = AN_RID_SSIDLIST;
353
354	/* Make sure interrupts are disabled. */
355	sc->mpi350 = 0;
356	CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
357	CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), 0xFFFF);
358
359	mtx_init(&sc->an_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
360	    MTX_DEF);
361	AN_LOCK(sc);
362	an_reset(sc);
363
364	if (an_cmd(sc, AN_CMD_READCFG, 0)) {
365		AN_UNLOCK(sc);
366		goto fail;
367	}
368
369	if (an_read_record(sc, (struct an_ltv_gen *)&ssid)) {
370		AN_UNLOCK(sc);
371		goto fail;
372	}
373
374	/* See if the ssid matches what we expect ... but doesn't have to */
375	if (strcmp(ssid.an_entry[0].an_ssid, AN_DEF_SSID)) {
376		AN_UNLOCK(sc);
377		goto fail;
378	}
379
380	AN_UNLOCK(sc);
381	return(AN_IOSIZ);
382fail:
383	mtx_destroy(&sc->an_mtx);
384	return(0);
385}
386
387/*
388 * Allocate a port resource with the given resource id.
389 */
390int
391an_alloc_port(device_t dev, int rid, int size)
392{
393	struct an_softc *sc = device_get_softc(dev);
394	struct resource *res;
395
396	res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
397				 0ul, ~0ul, size, RF_ACTIVE);
398	if (res) {
399		sc->port_rid = rid;
400		sc->port_res = res;
401		return (0);
402	} else {
403		return (ENOENT);
404	}
405}
406
407/*
408 * Allocate a memory resource with the given resource id.
409 */
410int an_alloc_memory(device_t dev, int rid, int size)
411{
412	struct an_softc *sc = device_get_softc(dev);
413	struct resource *res;
414
415	res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
416				 0ul, ~0ul, size, RF_ACTIVE);
417	if (res) {
418		sc->mem_rid = rid;
419		sc->mem_res = res;
420		sc->mem_used = size;
421		return (0);
422	} else {
423		return (ENOENT);
424	}
425}
426
427/*
428 * Allocate a auxilary memory resource with the given resource id.
429 */
430int an_alloc_aux_memory(device_t dev, int rid, int size)
431{
432	struct an_softc *sc = device_get_softc(dev);
433	struct resource *res;
434
435	res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
436				 0ul, ~0ul, size, RF_ACTIVE);
437	if (res) {
438		sc->mem_aux_rid = rid;
439		sc->mem_aux_res = res;
440		sc->mem_aux_used = size;
441		return (0);
442	} else {
443		return (ENOENT);
444	}
445}
446
447/*
448 * Allocate an irq resource with the given resource id.
449 */
450int
451an_alloc_irq(device_t dev, int rid, int flags)
452{
453	struct an_softc *sc = device_get_softc(dev);
454	struct resource *res;
455
456	res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
457				     (RF_ACTIVE | flags));
458	if (res) {
459		sc->irq_rid = rid;
460		sc->irq_res = res;
461		return (0);
462	} else {
463		return (ENOENT);
464	}
465}
466
467static void
468an_dma_malloc_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
469{
470	bus_addr_t *paddr = (bus_addr_t*) arg;
471	*paddr = segs->ds_addr;
472}
473
474/*
475 * Alloc DMA memory and set the pointer to it
476 */
477static int
478an_dma_malloc(struct an_softc *sc, bus_size_t size, struct an_dma_alloc *dma,
479    int mapflags)
480{
481	int r;
482
483	r = bus_dmamap_create(sc->an_dtag, BUS_DMA_NOWAIT, &dma->an_dma_map);
484	if (r != 0)
485		goto fail_0;
486
487	r = bus_dmamem_alloc(sc->an_dtag, (void**) &dma->an_dma_vaddr,
488			     BUS_DMA_NOWAIT, &dma->an_dma_map);
489	if (r != 0)
490		goto fail_1;
491
492	r = bus_dmamap_load(sc->an_dtag, dma->an_dma_map, dma->an_dma_vaddr,
493			    size,
494			    an_dma_malloc_cb,
495			    &dma->an_dma_paddr,
496			    mapflags | BUS_DMA_NOWAIT);
497	if (r != 0)
498		goto fail_2;
499
500	dma->an_dma_size = size;
501	return (0);
502
503fail_2:
504	bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
505fail_1:
506	bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
507fail_0:
508	bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map);
509	dma->an_dma_map = NULL;
510	return (r);
511}
512
513static void
514an_dma_free(struct an_softc *sc, struct an_dma_alloc *dma)
515{
516	bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
517	bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
518	dma->an_dma_vaddr = 0;
519	bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map);
520}
521
522/*
523 * Release all resources
524 */
525void
526an_release_resources(device_t dev)
527{
528	struct an_softc *sc = device_get_softc(dev);
529	int i;
530
531	if (sc->port_res) {
532		bus_release_resource(dev, SYS_RES_IOPORT,
533				     sc->port_rid, sc->port_res);
534		sc->port_res = 0;
535	}
536	if (sc->mem_res) {
537		bus_release_resource(dev, SYS_RES_MEMORY,
538				     sc->mem_rid, sc->mem_res);
539		sc->mem_res = 0;
540	}
541	if (sc->mem_aux_res) {
542		bus_release_resource(dev, SYS_RES_MEMORY,
543				     sc->mem_aux_rid, sc->mem_aux_res);
544		sc->mem_aux_res = 0;
545	}
546	if (sc->irq_res) {
547		bus_release_resource(dev, SYS_RES_IRQ,
548				     sc->irq_rid, sc->irq_res);
549		sc->irq_res = 0;
550	}
551	if (sc->an_rid_buffer.an_dma_paddr) {
552		an_dma_free(sc, &sc->an_rid_buffer);
553	}
554	for (i = 0; i < AN_MAX_RX_DESC; i++)
555		if (sc->an_rx_buffer[i].an_dma_paddr) {
556			an_dma_free(sc, &sc->an_rx_buffer[i]);
557		}
558	for (i = 0; i < AN_MAX_TX_DESC; i++)
559		if (sc->an_tx_buffer[i].an_dma_paddr) {
560			an_dma_free(sc, &sc->an_tx_buffer[i]);
561		}
562	if (sc->an_dtag) {
563		bus_dma_tag_destroy(sc->an_dtag);
564	}
565
566}
567
568int
569an_init_mpi350_desc(struct an_softc *sc)
570{
571	struct an_command	cmd_struct;
572	struct an_reply		reply;
573	struct an_card_rid_desc an_rid_desc;
574	struct an_card_rx_desc	an_rx_desc;
575	struct an_card_tx_desc	an_tx_desc;
576	int			i, desc;
577
578	AN_LOCK_ASSERT(sc);
579	if(!sc->an_rid_buffer.an_dma_paddr)
580		an_dma_malloc(sc, AN_RID_BUFFER_SIZE,
581				 &sc->an_rid_buffer, 0);
582	for (i = 0; i < AN_MAX_RX_DESC; i++)
583		if(!sc->an_rx_buffer[i].an_dma_paddr)
584			an_dma_malloc(sc, AN_RX_BUFFER_SIZE,
585				      &sc->an_rx_buffer[i], 0);
586	for (i = 0; i < AN_MAX_TX_DESC; i++)
587		if(!sc->an_tx_buffer[i].an_dma_paddr)
588			an_dma_malloc(sc, AN_TX_BUFFER_SIZE,
589				      &sc->an_tx_buffer[i], 0);
590
591	/*
592	 * Allocate RX descriptor
593	 */
594	bzero(&reply,sizeof(reply));
595	cmd_struct.an_cmd   = AN_CMD_ALLOC_DESC;
596	cmd_struct.an_parm0 = AN_DESCRIPTOR_RX;
597	cmd_struct.an_parm1 = AN_RX_DESC_OFFSET;
598	cmd_struct.an_parm2 = AN_MAX_RX_DESC;
599	if (an_cmd_struct(sc, &cmd_struct, &reply)) {
600		if_printf(sc->an_ifp, "failed to allocate RX descriptor\n");
601		return(EIO);
602	}
603
604	for (desc = 0; desc < AN_MAX_RX_DESC; desc++) {
605		bzero(&an_rx_desc, sizeof(an_rx_desc));
606		an_rx_desc.an_valid = 1;
607		an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
608		an_rx_desc.an_done = 0;
609		an_rx_desc.an_phys = sc->an_rx_buffer[desc].an_dma_paddr;
610
611		for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
612			CSR_MEM_AUX_WRITE_4(sc, AN_RX_DESC_OFFSET
613			    + (desc * sizeof(an_rx_desc))
614			    + (i * 4),
615			    ((u_int32_t *)(void *)&an_rx_desc)[i]);
616	}
617
618	/*
619	 * Allocate TX descriptor
620	 */
621
622	bzero(&reply,sizeof(reply));
623	cmd_struct.an_cmd   = AN_CMD_ALLOC_DESC;
624	cmd_struct.an_parm0 = AN_DESCRIPTOR_TX;
625	cmd_struct.an_parm1 = AN_TX_DESC_OFFSET;
626	cmd_struct.an_parm2 = AN_MAX_TX_DESC;
627	if (an_cmd_struct(sc, &cmd_struct, &reply)) {
628		if_printf(sc->an_ifp, "failed to allocate TX descriptor\n");
629		return(EIO);
630	}
631
632	for (desc = 0; desc < AN_MAX_TX_DESC; desc++) {
633		bzero(&an_tx_desc, sizeof(an_tx_desc));
634		an_tx_desc.an_offset = 0;
635		an_tx_desc.an_eoc = 0;
636		an_tx_desc.an_valid = 0;
637		an_tx_desc.an_len = 0;
638		an_tx_desc.an_phys = sc->an_tx_buffer[desc].an_dma_paddr;
639
640		for (i = 0; i < sizeof(an_tx_desc) / 4; i++)
641			CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET
642			    + (desc * sizeof(an_tx_desc))
643			    + (i * 4),
644			    ((u_int32_t *)(void *)&an_tx_desc)[i]);
645	}
646
647	/*
648	 * Allocate RID descriptor
649	 */
650
651	bzero(&reply,sizeof(reply));
652	cmd_struct.an_cmd   = AN_CMD_ALLOC_DESC;
653	cmd_struct.an_parm0 = AN_DESCRIPTOR_HOSTRW;
654	cmd_struct.an_parm1 = AN_HOST_DESC_OFFSET;
655	cmd_struct.an_parm2 = 1;
656	if (an_cmd_struct(sc, &cmd_struct, &reply)) {
657		if_printf(sc->an_ifp, "failed to allocate host descriptor\n");
658		return(EIO);
659	}
660
661	bzero(&an_rid_desc, sizeof(an_rid_desc));
662	an_rid_desc.an_valid = 1;
663	an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
664	an_rid_desc.an_rid = 0;
665	an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
666
667	for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
668		CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
669				    ((u_int32_t *)(void *)&an_rid_desc)[i]);
670
671	return(0);
672}
673
674int
675an_attach(struct an_softc *sc, int flags)
676{
677	struct ifnet		*ifp;
678	int			error = EIO;
679	int			i, nrate, mword;
680	u_int8_t		r;
681
682	ifp = sc->an_ifp = if_alloc(IFT_ETHER);
683	if (ifp == NULL) {
684		device_printf(sc->an_dev, "can not if_alloc()\n");
685		goto fail;
686	}
687
688	sc->an_gone = 0;
689	sc->an_associated = 0;
690	sc->an_monitor = 0;
691	sc->an_was_monitor = 0;
692	sc->an_flash_buffer = NULL;
693
694	/* Reset the NIC. */
695	AN_LOCK(sc);
696	an_reset(sc);
697	if (sc->mpi350) {
698		error = an_init_mpi350_desc(sc);
699		if (error)
700			goto fail;
701	}
702
703	/* Load factory config */
704	if (an_cmd(sc, AN_CMD_READCFG, 0)) {
705		device_printf(sc->an_dev, "failed to load config data\n");
706		goto fail;
707	}
708
709	/* Read the current configuration */
710	sc->an_config.an_type = AN_RID_GENCONFIG;
711	sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
712	if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
713		device_printf(sc->an_dev, "read record failed\n");
714		goto fail;
715	}
716
717	/* Read the card capabilities */
718	sc->an_caps.an_type = AN_RID_CAPABILITIES;
719	sc->an_caps.an_len = sizeof(struct an_ltv_caps);
720	if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_caps)) {
721		device_printf(sc->an_dev, "read record failed\n");
722		goto fail;
723	}
724
725	/* Read ssid list */
726	sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
727	sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist_new);
728	if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
729		device_printf(sc->an_dev, "read record failed\n");
730		goto fail;
731	}
732
733	/* Read AP list */
734	sc->an_aplist.an_type = AN_RID_APLIST;
735	sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
736	if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
737		device_printf(sc->an_dev, "read record failed\n");
738		goto fail;
739	}
740
741#ifdef ANCACHE
742	/* Read the RSSI <-> dBm map */
743	sc->an_have_rssimap = 0;
744	if (sc->an_caps.an_softcaps & 8) {
745		sc->an_rssimap.an_type = AN_RID_RSSI_MAP;
746		sc->an_rssimap.an_len = sizeof(struct an_ltv_rssi_map);
747		if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_rssimap)) {
748			device_printf(sc->an_dev,
749			    "unable to get RSSI <-> dBM map\n");
750		} else {
751			device_printf(sc->an_dev, "got RSSI <-> dBM map\n");
752			sc->an_have_rssimap = 1;
753		}
754	} else {
755		device_printf(sc->an_dev, "no RSSI <-> dBM map\n");
756	}
757#endif
758	AN_UNLOCK(sc);
759
760	ifp->if_softc = sc;
761	if_initname(ifp, device_get_name(sc->an_dev),
762	    device_get_unit(sc->an_dev));
763	ifp->if_mtu = ETHERMTU;
764	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
765	ifp->if_ioctl = an_ioctl;
766	ifp->if_start = an_start;
767	ifp->if_init = an_init;
768	ifp->if_baudrate = 10000000;
769	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
770	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
771	IFQ_SET_READY(&ifp->if_snd);
772
773	bzero(sc->an_config.an_nodename, sizeof(sc->an_config.an_nodename));
774	bcopy(AN_DEFAULT_NODENAME, sc->an_config.an_nodename,
775	    sizeof(AN_DEFAULT_NODENAME) - 1);
776
777	bzero(sc->an_ssidlist.an_entry[0].an_ssid,
778	      sizeof(sc->an_ssidlist.an_entry[0].an_ssid));
779	bcopy(AN_DEFAULT_NETNAME, sc->an_ssidlist.an_entry[0].an_ssid,
780	    sizeof(AN_DEFAULT_NETNAME) - 1);
781	sc->an_ssidlist.an_entry[0].an_len = strlen(AN_DEFAULT_NETNAME);
782
783	sc->an_config.an_opmode =
784	    AN_OPMODE_INFRASTRUCTURE_STATION;
785
786	sc->an_tx_rate = 0;
787	bzero((char *)&sc->an_stats, sizeof(sc->an_stats));
788
789	nrate = 8;
790
791	ifmedia_init(&sc->an_ifmedia, 0, an_media_change, an_media_status);
792	if_printf(ifp, "supported rates: ");
793#define	ADD(s, o)	ifmedia_add(&sc->an_ifmedia, \
794	IFM_MAKEWORD(IFM_IEEE80211, (s), (o), 0), 0, NULL)
795	ADD(IFM_AUTO, 0);
796	ADD(IFM_AUTO, IFM_IEEE80211_ADHOC);
797	for (i = 0; i < nrate; i++) {
798		r = sc->an_caps.an_rates[i];
799		mword = ieee80211_rate2media(NULL, r, IEEE80211_MODE_AUTO);
800		if (mword == 0)
801			continue;
802		printf("%s%d%sMbps", (i != 0 ? " " : ""),
803		    (r & IEEE80211_RATE_VAL) / 2, ((r & 0x1) != 0 ? ".5" : ""));
804		ADD(mword, 0);
805		ADD(mword, IFM_IEEE80211_ADHOC);
806	}
807	printf("\n");
808	ifmedia_set(&sc->an_ifmedia, IFM_MAKEWORD(IFM_IEEE80211,
809	    IFM_AUTO, 0, 0));
810#undef ADD
811
812	/*
813	 * Call MI attach routine.
814	 */
815
816	ether_ifattach(ifp, sc->an_caps.an_oemaddr);
817	callout_init_mtx(&sc->an_stat_ch, &sc->an_mtx, 0);
818
819	return(0);
820fail:
821	AN_UNLOCK(sc);
822	mtx_destroy(&sc->an_mtx);
823	if (ifp != NULL)
824		if_free(ifp);
825	return(error);
826}
827
828int
829an_detach(device_t dev)
830{
831	struct an_softc		*sc = device_get_softc(dev);
832	struct ifnet		*ifp = sc->an_ifp;
833
834	if (sc->an_gone) {
835		device_printf(dev,"already unloaded\n");
836		return(0);
837	}
838	AN_LOCK(sc);
839	an_stop(sc);
840	sc->an_gone = 1;
841	ifmedia_removeall(&sc->an_ifmedia);
842	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
843	AN_UNLOCK(sc);
844	ether_ifdetach(ifp);
845	bus_teardown_intr(dev, sc->irq_res, sc->irq_handle);
846	callout_drain(&sc->an_stat_ch);
847	if_free(ifp);
848	an_release_resources(dev);
849	mtx_destroy(&sc->an_mtx);
850	return (0);
851}
852
853static void
854an_rxeof(struct an_softc *sc)
855{
856	struct ifnet   *ifp;
857	struct ether_header *eh;
858	struct ieee80211_frame *ih;
859	struct an_rxframe rx_frame;
860	struct an_rxframe_802_3 rx_frame_802_3;
861	struct mbuf    *m;
862	int		len, id, error = 0, i, count = 0;
863	int		ieee80211_header_len;
864	u_char		*bpf_buf;
865	u_short		fc1;
866	struct an_card_rx_desc an_rx_desc;
867	u_int8_t	*buf;
868
869	AN_LOCK_ASSERT(sc);
870
871	ifp = sc->an_ifp;
872
873	if (!sc->mpi350) {
874		id = CSR_READ_2(sc, AN_RX_FID);
875
876		if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
877			/* read raw 802.11 packet */
878			bpf_buf = sc->buf_802_11;
879
880			/* read header */
881			if (an_read_data(sc, id, 0x0, (caddr_t)&rx_frame,
882					 sizeof(rx_frame))) {
883				ifp->if_ierrors++;
884				return;
885			}
886
887			/*
888			 * skip beacon by default since this increases the
889			 * system load a lot
890			 */
891
892			if (!(sc->an_monitor & AN_MONITOR_INCLUDE_BEACON) &&
893			    (rx_frame.an_frame_ctl &
894			     IEEE80211_FC0_SUBTYPE_BEACON)) {
895				return;
896			}
897
898			if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
899				len = rx_frame.an_rx_payload_len
900					+ sizeof(rx_frame);
901				/* Check for insane frame length */
902				if (len > sizeof(sc->buf_802_11)) {
903					if_printf(ifp, "oversized packet "
904					       "received (%d, %d)\n",
905					       len, MCLBYTES);
906					ifp->if_ierrors++;
907					return;
908				}
909
910				bcopy((char *)&rx_frame,
911				      bpf_buf, sizeof(rx_frame));
912
913				error = an_read_data(sc, id, sizeof(rx_frame),
914					    (caddr_t)bpf_buf+sizeof(rx_frame),
915					    rx_frame.an_rx_payload_len);
916			} else {
917				fc1=rx_frame.an_frame_ctl >> 8;
918				ieee80211_header_len =
919					sizeof(struct ieee80211_frame);
920				if ((fc1 & IEEE80211_FC1_DIR_TODS) &&
921				    (fc1 & IEEE80211_FC1_DIR_FROMDS)) {
922					ieee80211_header_len += ETHER_ADDR_LEN;
923				}
924
925				len = rx_frame.an_rx_payload_len
926					+ ieee80211_header_len;
927				/* Check for insane frame length */
928				if (len > sizeof(sc->buf_802_11)) {
929					if_printf(ifp, "oversized packet "
930					       "received (%d, %d)\n",
931					       len, MCLBYTES);
932					ifp->if_ierrors++;
933					return;
934				}
935
936				ih = (struct ieee80211_frame *)bpf_buf;
937
938				bcopy((char *)&rx_frame.an_frame_ctl,
939				      (char *)ih, ieee80211_header_len);
940
941				error = an_read_data(sc, id, sizeof(rx_frame) +
942					    rx_frame.an_gaplen,
943					    (caddr_t)ih +ieee80211_header_len,
944					    rx_frame.an_rx_payload_len);
945			}
946			/* dump raw 802.11 packet to bpf and skip ip stack */
947			BPF_TAP(ifp, bpf_buf, len);
948		} else {
949			MGETHDR(m, M_DONTWAIT, MT_DATA);
950			if (m == NULL) {
951				ifp->if_ierrors++;
952				return;
953			}
954			MCLGET(m, M_DONTWAIT);
955			if (!(m->m_flags & M_EXT)) {
956				m_freem(m);
957				ifp->if_ierrors++;
958				return;
959			}
960			m->m_pkthdr.rcvif = ifp;
961			/* Read Ethernet encapsulated packet */
962
963#ifdef ANCACHE
964			/* Read NIC frame header */
965			if (an_read_data(sc, id, 0, (caddr_t)&rx_frame,
966					 sizeof(rx_frame))) {
967				m_freem(m);
968				ifp->if_ierrors++;
969				return;
970			}
971#endif
972			/* Read in the 802_3 frame header */
973			if (an_read_data(sc, id, 0x34,
974					 (caddr_t)&rx_frame_802_3,
975					 sizeof(rx_frame_802_3))) {
976				m_freem(m);
977				ifp->if_ierrors++;
978				return;
979			}
980			if (rx_frame_802_3.an_rx_802_3_status != 0) {
981				m_freem(m);
982				ifp->if_ierrors++;
983				return;
984			}
985			/* Check for insane frame length */
986			len = rx_frame_802_3.an_rx_802_3_payload_len;
987			if (len > sizeof(sc->buf_802_11)) {
988				m_freem(m);
989				if_printf(ifp, "oversized packet "
990				       "received (%d, %d)\n",
991				       len, MCLBYTES);
992				ifp->if_ierrors++;
993				return;
994			}
995			m->m_pkthdr.len = m->m_len =
996				rx_frame_802_3.an_rx_802_3_payload_len + 12;
997
998			eh = mtod(m, struct ether_header *);
999
1000			bcopy((char *)&rx_frame_802_3.an_rx_dst_addr,
1001			      (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
1002			bcopy((char *)&rx_frame_802_3.an_rx_src_addr,
1003			      (char *)&eh->ether_shost, ETHER_ADDR_LEN);
1004
1005			/* in mbuf header type is just before payload */
1006			error = an_read_data(sc, id, 0x44,
1007				    (caddr_t)&(eh->ether_type),
1008				    rx_frame_802_3.an_rx_802_3_payload_len);
1009
1010			if (error) {
1011				m_freem(m);
1012				ifp->if_ierrors++;
1013				return;
1014			}
1015			ifp->if_ipackets++;
1016
1017			/* Receive packet. */
1018#ifdef ANCACHE
1019			an_cache_store(sc, eh, m,
1020				rx_frame.an_rx_signal_strength,
1021				rx_frame.an_rsvd0);
1022#endif
1023			AN_UNLOCK(sc);
1024			(*ifp->if_input)(ifp, m);
1025			AN_LOCK(sc);
1026		}
1027
1028	} else { /* MPI-350 */
1029		for (count = 0; count < AN_MAX_RX_DESC; count++){
1030			for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
1031				((u_int32_t *)(void *)&an_rx_desc)[i]
1032					= CSR_MEM_AUX_READ_4(sc,
1033						AN_RX_DESC_OFFSET
1034						+ (count * sizeof(an_rx_desc))
1035						+ (i * 4));
1036
1037			if (an_rx_desc.an_done && !an_rx_desc.an_valid) {
1038				buf = sc->an_rx_buffer[count].an_dma_vaddr;
1039
1040				MGETHDR(m, M_DONTWAIT, MT_DATA);
1041				if (m == NULL) {
1042					ifp->if_ierrors++;
1043					return;
1044				}
1045				MCLGET(m, M_DONTWAIT);
1046				if (!(m->m_flags & M_EXT)) {
1047					m_freem(m);
1048					ifp->if_ierrors++;
1049					return;
1050				}
1051				m->m_pkthdr.rcvif = ifp;
1052				/* Read Ethernet encapsulated packet */
1053
1054				/*
1055				 * No ANCACHE support since we just get back
1056				 * an Ethernet packet no 802.11 info
1057				 */
1058#if 0
1059#ifdef ANCACHE
1060				/* Read NIC frame header */
1061				bcopy(buf, (caddr_t)&rx_frame,
1062				      sizeof(rx_frame));
1063#endif
1064#endif
1065				/* Check for insane frame length */
1066				len = an_rx_desc.an_len + 12;
1067				if (len > MCLBYTES) {
1068					m_freem(m);
1069					if_printf(ifp, "oversized packet "
1070					       "received (%d, %d)\n",
1071					       len, MCLBYTES);
1072					ifp->if_ierrors++;
1073					return;
1074				}
1075
1076				m->m_pkthdr.len = m->m_len =
1077					an_rx_desc.an_len + 12;
1078
1079				eh = mtod(m, struct ether_header *);
1080
1081				bcopy(buf, (char *)eh,
1082				      m->m_pkthdr.len);
1083
1084				ifp->if_ipackets++;
1085
1086				/* Receive packet. */
1087#if 0
1088#ifdef ANCACHE
1089				an_cache_store(sc, eh, m,
1090					rx_frame.an_rx_signal_strength,
1091					rx_frame.an_rsvd0);
1092#endif
1093#endif
1094				AN_UNLOCK(sc);
1095				(*ifp->if_input)(ifp, m);
1096				AN_LOCK(sc);
1097
1098				an_rx_desc.an_valid = 1;
1099				an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
1100				an_rx_desc.an_done = 0;
1101				an_rx_desc.an_phys =
1102					sc->an_rx_buffer[count].an_dma_paddr;
1103
1104				for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
1105					CSR_MEM_AUX_WRITE_4(sc,
1106					    AN_RX_DESC_OFFSET
1107					    + (count * sizeof(an_rx_desc))
1108					    + (i * 4),
1109					    ((u_int32_t *)(void *)&an_rx_desc)[i]);
1110
1111			} else {
1112				if_printf(ifp, "Didn't get valid RX packet "
1113				       "%x %x %d\n",
1114				       an_rx_desc.an_done,
1115				       an_rx_desc.an_valid, an_rx_desc.an_len);
1116			}
1117		}
1118	}
1119}
1120
1121static void
1122an_txeof(struct an_softc *sc, int status)
1123{
1124	struct ifnet		*ifp;
1125	int			id, i;
1126
1127	AN_LOCK_ASSERT(sc);
1128	ifp = sc->an_ifp;
1129
1130	sc->an_timer = 0;
1131	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1132
1133	if (!sc->mpi350) {
1134		id = CSR_READ_2(sc, AN_TX_CMP_FID(sc->mpi350));
1135
1136		if (status & AN_EV_TX_EXC) {
1137			ifp->if_oerrors++;
1138		} else
1139			ifp->if_opackets++;
1140
1141		for (i = 0; i < AN_TX_RING_CNT; i++) {
1142			if (id == sc->an_rdata.an_tx_ring[i]) {
1143				sc->an_rdata.an_tx_ring[i] = 0;
1144				break;
1145			}
1146		}
1147
1148		AN_INC(sc->an_rdata.an_tx_cons, AN_TX_RING_CNT);
1149	} else { /* MPI 350 */
1150		id = CSR_READ_2(sc, AN_TX_CMP_FID(sc->mpi350));
1151		if (!sc->an_rdata.an_tx_empty){
1152			if (status & AN_EV_TX_EXC) {
1153				ifp->if_oerrors++;
1154			} else
1155				ifp->if_opackets++;
1156			AN_INC(sc->an_rdata.an_tx_cons, AN_MAX_TX_DESC);
1157			if (sc->an_rdata.an_tx_prod ==
1158			    sc->an_rdata.an_tx_cons)
1159				sc->an_rdata.an_tx_empty = 1;
1160		}
1161	}
1162
1163	return;
1164}
1165
1166/*
1167 * We abuse the stats updater to check the current NIC status. This
1168 * is important because we don't want to allow transmissions until
1169 * the NIC has synchronized to the current cell (either as the master
1170 * in an ad-hoc group, or as a station connected to an access point).
1171 *
1172 * Note that this function will be called via callout(9) with a lock held.
1173 */
1174static void
1175an_stats_update(void *xsc)
1176{
1177	struct an_softc		*sc;
1178	struct ifnet		*ifp;
1179
1180	sc = xsc;
1181	AN_LOCK_ASSERT(sc);
1182	ifp = sc->an_ifp;
1183	if (sc->an_timer > 0 && --sc->an_timer == 0)
1184		an_watchdog(sc);
1185
1186	sc->an_status.an_type = AN_RID_STATUS;
1187	sc->an_status.an_len = sizeof(struct an_ltv_status);
1188	if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_status))
1189		return;
1190
1191	if (sc->an_status.an_opmode & AN_STATUS_OPMODE_IN_SYNC)
1192		sc->an_associated = 1;
1193	else
1194		sc->an_associated = 0;
1195
1196	/* Don't do this while we're transmitting */
1197	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
1198		callout_reset(&sc->an_stat_ch, hz, an_stats_update, sc);
1199		return;
1200	}
1201
1202	sc->an_stats.an_len = sizeof(struct an_ltv_stats);
1203	sc->an_stats.an_type = AN_RID_32BITS_CUM;
1204	if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_stats.an_len))
1205		return;
1206
1207	callout_reset(&sc->an_stat_ch, hz, an_stats_update, sc);
1208
1209	return;
1210}
1211
1212void
1213an_intr(void *xsc)
1214{
1215	struct an_softc		*sc;
1216	struct ifnet		*ifp;
1217	u_int16_t		status;
1218
1219	sc = (struct an_softc*)xsc;
1220
1221	AN_LOCK(sc);
1222
1223	if (sc->an_gone) {
1224		AN_UNLOCK(sc);
1225		return;
1226	}
1227
1228	ifp = sc->an_ifp;
1229
1230	/* Disable interrupts. */
1231	CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
1232
1233	status = CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350));
1234	CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), ~AN_INTRS(sc->mpi350));
1235
1236	if (status & AN_EV_MIC) {
1237		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_MIC);
1238	}
1239
1240	if (status & AN_EV_LINKSTAT) {
1241		if (CSR_READ_2(sc, AN_LINKSTAT(sc->mpi350))
1242		    == AN_LINKSTAT_ASSOCIATED)
1243			sc->an_associated = 1;
1244		else
1245			sc->an_associated = 0;
1246		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_LINKSTAT);
1247	}
1248
1249	if (status & AN_EV_RX) {
1250		an_rxeof(sc);
1251		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_RX);
1252	}
1253
1254	if (sc->mpi350 && status & AN_EV_TX_CPY) {
1255		an_txeof(sc, status);
1256		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_CPY);
1257	}
1258
1259	if (status & AN_EV_TX) {
1260		an_txeof(sc, status);
1261		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX);
1262	}
1263
1264	if (status & AN_EV_TX_EXC) {
1265		an_txeof(sc, status);
1266		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_EXC);
1267	}
1268
1269	if (status & AN_EV_ALLOC)
1270		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1271
1272	/* Re-enable interrupts. */
1273	CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
1274
1275	if ((ifp->if_flags & IFF_UP) && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1276		an_start_locked(ifp);
1277
1278	AN_UNLOCK(sc);
1279
1280	return;
1281}
1282
1283
1284static int
1285an_cmd_struct(struct an_softc *sc, struct an_command *cmd,
1286    struct an_reply *reply)
1287{
1288	int			i;
1289
1290	AN_LOCK_ASSERT(sc);
1291	for (i = 0; i != AN_TIMEOUT; i++) {
1292		if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
1293			DELAY(1000);
1294		} else
1295			break;
1296	}
1297
1298	if( i == AN_TIMEOUT) {
1299		printf("BUSY\n");
1300		return(ETIMEDOUT);
1301	}
1302
1303	CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), cmd->an_parm0);
1304	CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), cmd->an_parm1);
1305	CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), cmd->an_parm2);
1306	CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd->an_cmd);
1307
1308	for (i = 0; i < AN_TIMEOUT; i++) {
1309		if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1310			break;
1311		DELAY(1000);
1312	}
1313
1314	reply->an_resp0 = CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1315	reply->an_resp1 = CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1316	reply->an_resp2 = CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1317	reply->an_status = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1318
1319	if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1320		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350),
1321		    AN_EV_CLR_STUCK_BUSY);
1322
1323	/* Ack the command */
1324	CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1325
1326	if (i == AN_TIMEOUT)
1327		return(ETIMEDOUT);
1328
1329	return(0);
1330}
1331
1332static int
1333an_cmd(struct an_softc *sc, int cmd, int val)
1334{
1335	int			i, s = 0;
1336
1337	AN_LOCK_ASSERT(sc);
1338	CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), val);
1339	CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), 0);
1340	CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), 0);
1341	CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1342
1343	for (i = 0; i < AN_TIMEOUT; i++) {
1344		if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1345			break;
1346		else {
1347			if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) == cmd)
1348				CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1349		}
1350	}
1351
1352	for (i = 0; i < AN_TIMEOUT; i++) {
1353		CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1354		CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1355		CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1356		s = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1357		if ((s & AN_STAT_CMD_CODE) == (cmd & AN_STAT_CMD_CODE))
1358			break;
1359	}
1360
1361	/* Ack the command */
1362	CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1363
1364	if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1365		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
1366
1367	if (i == AN_TIMEOUT)
1368		return(ETIMEDOUT);
1369
1370	return(0);
1371}
1372
1373/*
1374 * This reset sequence may look a little strange, but this is the
1375 * most reliable method I've found to really kick the NIC in the
1376 * head and force it to reboot correctly.
1377 */
1378static void
1379an_reset(struct an_softc *sc)
1380{
1381	if (sc->an_gone)
1382		return;
1383
1384	AN_LOCK_ASSERT(sc);
1385	an_cmd(sc, AN_CMD_ENABLE, 0);
1386	an_cmd(sc, AN_CMD_FW_RESTART, 0);
1387	an_cmd(sc, AN_CMD_NOOP2, 0);
1388
1389	if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT)
1390		if_printf(sc->an_ifp, "reset failed\n");
1391
1392	an_cmd(sc, AN_CMD_DISABLE, 0);
1393
1394	return;
1395}
1396
1397/*
1398 * Read an LTV record from the NIC.
1399 */
1400static int
1401an_read_record(struct an_softc *sc, struct an_ltv_gen *ltv)
1402{
1403	struct an_ltv_gen	*an_ltv;
1404	struct an_card_rid_desc an_rid_desc;
1405	struct an_command	cmd;
1406	struct an_reply		reply;
1407	struct ifnet		*ifp;
1408	u_int16_t		*ptr;
1409	u_int8_t		*ptr2;
1410	int			i, len;
1411
1412	AN_LOCK_ASSERT(sc);
1413	if (ltv->an_len < 4 || ltv->an_type == 0)
1414		return(EINVAL);
1415
1416	ifp = sc->an_ifp;
1417	if (!sc->mpi350){
1418		/* Tell the NIC to enter record read mode. */
1419		if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) {
1420			if_printf(ifp, "RID access failed\n");
1421			return(EIO);
1422		}
1423
1424		/* Seek to the record. */
1425		if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) {
1426			if_printf(ifp, "seek to record failed\n");
1427			return(EIO);
1428		}
1429
1430		/*
1431		 * Read the length and record type and make sure they
1432		 * match what we expect (this verifies that we have enough
1433		 * room to hold all of the returned data).
1434		 * Length includes type but not length.
1435		 */
1436		len = CSR_READ_2(sc, AN_DATA1);
1437		if (len > (ltv->an_len - 2)) {
1438			if_printf(ifp, "record length mismatch -- expected %d, "
1439			       "got %d for Rid %x\n",
1440			       ltv->an_len - 2, len, ltv->an_type);
1441			len = ltv->an_len - 2;
1442		} else {
1443			ltv->an_len = len + 2;
1444		}
1445
1446		/* Now read the data. */
1447		len -= 2;	/* skip the type */
1448		ptr = &ltv->an_val;
1449		for (i = len; i > 1; i -= 2)
1450			*ptr++ = CSR_READ_2(sc, AN_DATA1);
1451		if (i) {
1452			ptr2 = (u_int8_t *)ptr;
1453			*ptr2 = CSR_READ_1(sc, AN_DATA1);
1454		}
1455	} else { /* MPI-350 */
1456		if (!sc->an_rid_buffer.an_dma_vaddr)
1457			return(EIO);
1458		an_rid_desc.an_valid = 1;
1459		an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
1460		an_rid_desc.an_rid = 0;
1461		an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1462		bzero(sc->an_rid_buffer.an_dma_vaddr, AN_RID_BUFFER_SIZE);
1463
1464		bzero(&cmd, sizeof(cmd));
1465		bzero(&reply, sizeof(reply));
1466		cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_READ;
1467		cmd.an_parm0 = ltv->an_type;
1468
1469		for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1470			CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
1471			    ((u_int32_t *)(void *)&an_rid_desc)[i]);
1472
1473		if (an_cmd_struct(sc, &cmd, &reply)
1474		    || reply.an_status & AN_CMD_QUAL_MASK) {
1475			if_printf(ifp, "failed to read RID %x %x %x %x %x, %d\n",
1476			       ltv->an_type,
1477			       reply.an_status,
1478			       reply.an_resp0,
1479			       reply.an_resp1,
1480			       reply.an_resp2,
1481			       i);
1482			return(EIO);
1483		}
1484
1485		an_ltv = (struct an_ltv_gen *)sc->an_rid_buffer.an_dma_vaddr;
1486		if (an_ltv->an_len + 2 < an_rid_desc.an_len) {
1487			an_rid_desc.an_len = an_ltv->an_len;
1488		}
1489
1490		len = an_rid_desc.an_len;
1491		if (len > (ltv->an_len - 2)) {
1492			if_printf(ifp, "record length mismatch -- expected %d, "
1493			       "got %d for Rid %x\n",
1494			       ltv->an_len - 2, len, ltv->an_type);
1495			len = ltv->an_len - 2;
1496		} else {
1497			ltv->an_len = len + 2;
1498		}
1499		bcopy(&an_ltv->an_type,
1500		    &ltv->an_val,
1501		    len);
1502	}
1503
1504	if (an_dump)
1505		an_dump_record(sc, ltv, "Read");
1506
1507	return(0);
1508}
1509
1510/*
1511 * Same as read, except we inject data instead of reading it.
1512 */
1513static int
1514an_write_record(struct an_softc *sc, struct an_ltv_gen *ltv)
1515{
1516	struct an_card_rid_desc an_rid_desc;
1517	struct an_command	cmd;
1518	struct an_reply		reply;
1519	u_int16_t		*ptr;
1520	u_int8_t		*ptr2;
1521	int			i, len;
1522
1523	AN_LOCK_ASSERT(sc);
1524	if (an_dump)
1525		an_dump_record(sc, ltv, "Write");
1526
1527	if (!sc->mpi350){
1528		if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type))
1529			return(EIO);
1530
1531		if (an_seek(sc, ltv->an_type, 0, AN_BAP1))
1532			return(EIO);
1533
1534		/*
1535		 * Length includes type but not length.
1536		 */
1537		len = ltv->an_len - 2;
1538		CSR_WRITE_2(sc, AN_DATA1, len);
1539
1540		len -= 2;	/* skip the type */
1541		ptr = &ltv->an_val;
1542		for (i = len; i > 1; i -= 2)
1543			CSR_WRITE_2(sc, AN_DATA1, *ptr++);
1544		if (i) {
1545			ptr2 = (u_int8_t *)ptr;
1546			CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1547		}
1548
1549		if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_WRITE, ltv->an_type))
1550			return(EIO);
1551	} else {
1552		/* MPI-350 */
1553
1554		for (i = 0; i != AN_TIMEOUT; i++) {
1555			if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350))
1556			    & AN_CMD_BUSY) {
1557				DELAY(10);
1558			} else
1559				break;
1560		}
1561		if (i == AN_TIMEOUT) {
1562			printf("BUSY\n");
1563		}
1564
1565		an_rid_desc.an_valid = 1;
1566		an_rid_desc.an_len = ltv->an_len - 2;
1567		an_rid_desc.an_rid = ltv->an_type;
1568		an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1569
1570		bcopy(&ltv->an_type, sc->an_rid_buffer.an_dma_vaddr,
1571		      an_rid_desc.an_len);
1572
1573		bzero(&cmd,sizeof(cmd));
1574		bzero(&reply,sizeof(reply));
1575		cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_WRITE;
1576		cmd.an_parm0 = ltv->an_type;
1577
1578		for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1579			CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
1580			    ((u_int32_t *)(void *)&an_rid_desc)[i]);
1581
1582		DELAY(100000);
1583
1584		if ((i = an_cmd_struct(sc, &cmd, &reply))) {
1585			if_printf(sc->an_ifp,
1586			    "failed to write RID 1 %x %x %x %x %x, %d\n",
1587			    ltv->an_type,
1588			    reply.an_status,
1589			    reply.an_resp0,
1590			    reply.an_resp1,
1591			    reply.an_resp2,
1592			    i);
1593			return(EIO);
1594		}
1595
1596
1597		if (reply.an_status & AN_CMD_QUAL_MASK) {
1598			if_printf(sc->an_ifp,
1599			    "failed to write RID 2 %x %x %x %x %x, %d\n",
1600			    ltv->an_type,
1601			    reply.an_status,
1602			    reply.an_resp0,
1603			    reply.an_resp1,
1604			    reply.an_resp2,
1605			    i);
1606			return(EIO);
1607		}
1608		DELAY(100000);
1609	}
1610
1611	return(0);
1612}
1613
1614static void
1615an_dump_record(struct an_softc *sc, struct an_ltv_gen *ltv, char *string)
1616{
1617	u_int8_t		*ptr2;
1618	int			len;
1619	int			i;
1620	int			count = 0;
1621	char			buf[17], temp;
1622
1623	len = ltv->an_len - 4;
1624	if_printf(sc->an_ifp, "RID %4x, Length %4d, Mode %s\n",
1625		ltv->an_type, ltv->an_len - 4, string);
1626
1627	if (an_dump == 1 || (an_dump == ltv->an_type)) {
1628		if_printf(sc->an_ifp, "\t");
1629		bzero(buf,sizeof(buf));
1630
1631		ptr2 = (u_int8_t *)&ltv->an_val;
1632		for (i = len; i > 0; i--) {
1633			printf("%02x ", *ptr2);
1634
1635			temp = *ptr2++;
1636			if (isprint(temp))
1637				buf[count] = temp;
1638			else
1639				buf[count] = '.';
1640			if (++count == 16) {
1641				count = 0;
1642				printf("%s\n",buf);
1643				if_printf(sc->an_ifp, "\t");
1644				bzero(buf,sizeof(buf));
1645			}
1646		}
1647		for (; count != 16; count++) {
1648			printf("   ");
1649		}
1650		printf(" %s\n",buf);
1651	}
1652}
1653
1654static int
1655an_seek(struct an_softc *sc, int id, int off, int chan)
1656{
1657	int			i;
1658	int			selreg, offreg;
1659
1660	switch (chan) {
1661	case AN_BAP0:
1662		selreg = AN_SEL0;
1663		offreg = AN_OFF0;
1664		break;
1665	case AN_BAP1:
1666		selreg = AN_SEL1;
1667		offreg = AN_OFF1;
1668		break;
1669	default:
1670		if_printf(sc->an_ifp, "invalid data path: %x\n", chan);
1671		return(EIO);
1672	}
1673
1674	CSR_WRITE_2(sc, selreg, id);
1675	CSR_WRITE_2(sc, offreg, off);
1676
1677	for (i = 0; i < AN_TIMEOUT; i++) {
1678		if (!(CSR_READ_2(sc, offreg) & (AN_OFF_BUSY|AN_OFF_ERR)))
1679			break;
1680	}
1681
1682	if (i == AN_TIMEOUT)
1683		return(ETIMEDOUT);
1684
1685	return(0);
1686}
1687
1688static int
1689an_read_data(struct an_softc *sc, int id, int off, caddr_t buf, int len)
1690{
1691	int			i;
1692	u_int16_t		*ptr;
1693	u_int8_t		*ptr2;
1694
1695	if (off != -1) {
1696		if (an_seek(sc, id, off, AN_BAP1))
1697			return(EIO);
1698	}
1699
1700	ptr = (u_int16_t *)buf;
1701	for (i = len; i > 1; i -= 2)
1702		*ptr++ = CSR_READ_2(sc, AN_DATA1);
1703	if (i) {
1704		ptr2 = (u_int8_t *)ptr;
1705		*ptr2 = CSR_READ_1(sc, AN_DATA1);
1706	}
1707
1708	return(0);
1709}
1710
1711static int
1712an_write_data(struct an_softc *sc, int id, int off, caddr_t buf, int len)
1713{
1714	int			i;
1715	u_int16_t		*ptr;
1716	u_int8_t		*ptr2;
1717
1718	if (off != -1) {
1719		if (an_seek(sc, id, off, AN_BAP0))
1720			return(EIO);
1721	}
1722
1723	ptr = (u_int16_t *)buf;
1724	for (i = len; i > 1; i -= 2)
1725		CSR_WRITE_2(sc, AN_DATA0, *ptr++);
1726	if (i) {
1727		ptr2 = (u_int8_t *)ptr;
1728		CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1729	}
1730
1731	return(0);
1732}
1733
1734/*
1735 * Allocate a region of memory inside the NIC and zero
1736 * it out.
1737 */
1738static int
1739an_alloc_nicmem(struct an_softc *sc, int len, int *id)
1740{
1741	int			i;
1742
1743	if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
1744		if_printf(sc->an_ifp, "failed to allocate %d bytes on NIC\n",
1745		    len);
1746		return(ENOMEM);
1747	}
1748
1749	for (i = 0; i < AN_TIMEOUT; i++) {
1750		if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_ALLOC)
1751			break;
1752	}
1753
1754	if (i == AN_TIMEOUT)
1755		return(ETIMEDOUT);
1756
1757	CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1758	*id = CSR_READ_2(sc, AN_ALLOC_FID);
1759
1760	if (an_seek(sc, *id, 0, AN_BAP0))
1761		return(EIO);
1762
1763	for (i = 0; i < len / 2; i++)
1764		CSR_WRITE_2(sc, AN_DATA0, 0);
1765
1766	return(0);
1767}
1768
1769static void
1770an_setdef(struct an_softc *sc, struct an_req *areq)
1771{
1772	struct ifnet		*ifp;
1773	struct an_ltv_genconfig	*cfg;
1774	struct an_ltv_ssidlist_new	*ssid;
1775	struct an_ltv_aplist	*ap;
1776	struct an_ltv_gen	*sp;
1777
1778	ifp = sc->an_ifp;
1779
1780	AN_LOCK_ASSERT(sc);
1781	switch (areq->an_type) {
1782	case AN_RID_GENCONFIG:
1783		cfg = (struct an_ltv_genconfig *)areq;
1784
1785		bcopy((char *)&cfg->an_macaddr, IF_LLADDR(sc->an_ifp),
1786		    ETHER_ADDR_LEN);
1787
1788		bcopy((char *)cfg, (char *)&sc->an_config,
1789			sizeof(struct an_ltv_genconfig));
1790		break;
1791	case AN_RID_SSIDLIST:
1792		ssid = (struct an_ltv_ssidlist_new *)areq;
1793		bcopy((char *)ssid, (char *)&sc->an_ssidlist,
1794			sizeof(struct an_ltv_ssidlist_new));
1795		break;
1796	case AN_RID_APLIST:
1797		ap = (struct an_ltv_aplist *)areq;
1798		bcopy((char *)ap, (char *)&sc->an_aplist,
1799			sizeof(struct an_ltv_aplist));
1800		break;
1801	case AN_RID_TX_SPEED:
1802		sp = (struct an_ltv_gen *)areq;
1803		sc->an_tx_rate = sp->an_val;
1804
1805		/* Read the current configuration */
1806		sc->an_config.an_type = AN_RID_GENCONFIG;
1807		sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1808		an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
1809		cfg = &sc->an_config;
1810
1811		/* clear other rates and set the only one we want */
1812		bzero(cfg->an_rates, sizeof(cfg->an_rates));
1813		cfg->an_rates[0] = sc->an_tx_rate;
1814
1815		/* Save the new rate */
1816		sc->an_config.an_type = AN_RID_GENCONFIG;
1817		sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1818		break;
1819	case AN_RID_WEP_TEMP:
1820		/* Cache the temp keys */
1821		bcopy(areq,
1822		    &sc->an_temp_keys[((struct an_ltv_key *)areq)->kindex],
1823		    sizeof(struct an_ltv_key));
1824	case AN_RID_WEP_PERM:
1825	case AN_RID_LEAPUSERNAME:
1826	case AN_RID_LEAPPASSWORD:
1827		an_init_locked(sc);
1828
1829		/* Disable the MAC. */
1830		an_cmd(sc, AN_CMD_DISABLE, 0);
1831
1832		/* Write the key */
1833		an_write_record(sc, (struct an_ltv_gen *)areq);
1834
1835		/* Turn the MAC back on. */
1836		an_cmd(sc, AN_CMD_ENABLE, 0);
1837
1838		break;
1839	case AN_RID_MONITOR_MODE:
1840		cfg = (struct an_ltv_genconfig *)areq;
1841		bpfdetach(ifp);
1842		if (ng_ether_detach_p != NULL)
1843			(*ng_ether_detach_p) (ifp);
1844		sc->an_monitor = cfg->an_len;
1845
1846		if (sc->an_monitor & AN_MONITOR) {
1847			if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
1848				bpfattach(ifp, DLT_AIRONET_HEADER,
1849					sizeof(struct ether_header));
1850			} else {
1851				bpfattach(ifp, DLT_IEEE802_11,
1852					sizeof(struct ether_header));
1853			}
1854		} else {
1855			bpfattach(ifp, DLT_EN10MB,
1856				  sizeof(struct ether_header));
1857			if (ng_ether_attach_p != NULL)
1858				(*ng_ether_attach_p) (ifp);
1859		}
1860		break;
1861	default:
1862		if_printf(ifp, "unknown RID: %x\n", areq->an_type);
1863		return;
1864	}
1865
1866
1867	/* Reinitialize the card. */
1868	if (ifp->if_flags)
1869		an_init_locked(sc);
1870
1871	return;
1872}
1873
1874/*
1875 * Derived from Linux driver to enable promiscious mode.
1876 */
1877
1878static void
1879an_promisc(struct an_softc *sc, int promisc)
1880{
1881	AN_LOCK_ASSERT(sc);
1882	if (sc->an_was_monitor) {
1883		an_reset(sc);
1884		if (sc->mpi350)
1885			an_init_mpi350_desc(sc);
1886	}
1887	if (sc->an_monitor || sc->an_was_monitor)
1888		an_init_locked(sc);
1889
1890	sc->an_was_monitor = sc->an_monitor;
1891	an_cmd(sc, AN_CMD_SET_MODE, promisc ? 0xffff : 0);
1892
1893	return;
1894}
1895
1896static int
1897an_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1898{
1899	int			error = 0;
1900	int			len;
1901	int			i, max;
1902	struct an_softc		*sc;
1903	struct ifreq		*ifr;
1904	struct thread		*td = curthread;
1905	struct ieee80211req	*ireq;
1906	struct ieee80211_channel	ch;
1907	u_int8_t		tmpstr[IEEE80211_NWID_LEN*2];
1908	u_int8_t		*tmpptr;
1909	struct an_ltv_genconfig	*config;
1910	struct an_ltv_key	*key;
1911	struct an_ltv_status	*status;
1912	struct an_ltv_ssidlist_new	*ssids;
1913	int			mode;
1914	struct aironet_ioctl	l_ioctl;
1915
1916	sc = ifp->if_softc;
1917	ifr = (struct ifreq *)data;
1918	ireq = (struct ieee80211req *)data;
1919
1920	config = (struct an_ltv_genconfig *)&sc->areq;
1921	key = (struct an_ltv_key *)&sc->areq;
1922	status = (struct an_ltv_status *)&sc->areq;
1923	ssids = (struct an_ltv_ssidlist_new *)&sc->areq;
1924
1925	if (sc->an_gone) {
1926		error = ENODEV;
1927		goto out;
1928	}
1929
1930	switch (command) {
1931	case SIOCSIFFLAGS:
1932		AN_LOCK(sc);
1933		if (ifp->if_flags & IFF_UP) {
1934			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1935			    ifp->if_flags & IFF_PROMISC &&
1936			    !(sc->an_if_flags & IFF_PROMISC)) {
1937				an_promisc(sc, 1);
1938			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1939			    !(ifp->if_flags & IFF_PROMISC) &&
1940			    sc->an_if_flags & IFF_PROMISC) {
1941				an_promisc(sc, 0);
1942			} else
1943				an_init_locked(sc);
1944		} else {
1945			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1946				an_stop(sc);
1947		}
1948		sc->an_if_flags = ifp->if_flags;
1949		AN_UNLOCK(sc);
1950		error = 0;
1951		break;
1952	case SIOCSIFMEDIA:
1953	case SIOCGIFMEDIA:
1954		error = ifmedia_ioctl(ifp, ifr, &sc->an_ifmedia, command);
1955		break;
1956	case SIOCADDMULTI:
1957	case SIOCDELMULTI:
1958		/* The Aironet has no multicast filter. */
1959		error = 0;
1960		break;
1961	case SIOCGAIRONET:
1962		error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1963		if (error != 0)
1964			break;
1965		AN_LOCK(sc);
1966#ifdef ANCACHE
1967		if (sc->areq.an_type == AN_RID_ZERO_CACHE) {
1968			error = priv_check(td, PRIV_DRIVER);
1969			if (error)
1970				break;
1971			sc->an_sigitems = sc->an_nextitem = 0;
1972			break;
1973		} else if (sc->areq.an_type == AN_RID_READ_CACHE) {
1974			char *pt = (char *)&sc->areq.an_val;
1975			bcopy((char *)&sc->an_sigitems, (char *)pt,
1976			    sizeof(int));
1977			pt += sizeof(int);
1978			sc->areq.an_len = sizeof(int) / 2;
1979			bcopy((char *)&sc->an_sigcache, (char *)pt,
1980			    sizeof(struct an_sigcache) * sc->an_sigitems);
1981			sc->areq.an_len += ((sizeof(struct an_sigcache) *
1982			    sc->an_sigitems) / 2) + 1;
1983		} else
1984#endif
1985		if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) {
1986			AN_UNLOCK(sc);
1987			error = EINVAL;
1988			break;
1989		}
1990		AN_UNLOCK(sc);
1991		error = copyout(&sc->areq, ifr->ifr_data, sizeof(sc->areq));
1992		break;
1993	case SIOCSAIRONET:
1994		if ((error = priv_check(td, PRIV_DRIVER)))
1995			goto out;
1996		AN_LOCK(sc);
1997		error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1998		if (error != 0)
1999			break;
2000		an_setdef(sc, &sc->areq);
2001		AN_UNLOCK(sc);
2002		break;
2003	case SIOCGPRIVATE_0:		/* used by Cisco client utility */
2004		if ((error = priv_check(td, PRIV_DRIVER)))
2005			goto out;
2006		error = copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
2007		if (error)
2008			goto out;
2009		mode = l_ioctl.command;
2010
2011		AN_LOCK(sc);
2012		if (mode >= AIROGCAP && mode <= AIROGSTATSD32) {
2013			error = readrids(ifp, &l_ioctl);
2014		} else if (mode >= AIROPCAP && mode <= AIROPLEAPUSR) {
2015			error = writerids(ifp, &l_ioctl);
2016		} else if (mode >= AIROFLSHRST && mode <= AIRORESTART) {
2017			error = flashcard(ifp, &l_ioctl);
2018		} else {
2019			error =-1;
2020		}
2021		AN_UNLOCK(sc);
2022		if (!error) {
2023			/* copy out the updated command info */
2024			error = copyout(&l_ioctl, ifr->ifr_data, sizeof(l_ioctl));
2025		}
2026		break;
2027	case SIOCGPRIVATE_1:		/* used by Cisco client utility */
2028		if ((error = priv_check(td, PRIV_DRIVER)))
2029			goto out;
2030		error = copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
2031		if (error)
2032			goto out;
2033		l_ioctl.command = 0;
2034		error = AIROMAGIC;
2035		(void) copyout(&error, l_ioctl.data, sizeof(error));
2036		error = 0;
2037		break;
2038	case SIOCG80211:
2039		sc->areq.an_len = sizeof(sc->areq);
2040		/* was that a good idea DJA we are doing a short-cut */
2041		switch (ireq->i_type) {
2042		case IEEE80211_IOC_SSID:
2043			AN_LOCK(sc);
2044			if (ireq->i_val == -1) {
2045				sc->areq.an_type = AN_RID_STATUS;
2046				if (an_read_record(sc,
2047				    (struct an_ltv_gen *)&sc->areq)) {
2048					error = EINVAL;
2049					AN_UNLOCK(sc);
2050					break;
2051				}
2052				len = status->an_ssidlen;
2053				tmpptr = status->an_ssid;
2054			} else if (ireq->i_val >= 0) {
2055				sc->areq.an_type = AN_RID_SSIDLIST;
2056				if (an_read_record(sc,
2057				    (struct an_ltv_gen *)&sc->areq)) {
2058					error = EINVAL;
2059					AN_UNLOCK(sc);
2060					break;
2061				}
2062				max = (sc->areq.an_len - 4)
2063				    / sizeof(struct an_ltv_ssid_entry);
2064				if ( max > MAX_SSIDS ) {
2065					printf("To many SSIDs only using "
2066					    "%d of %d\n",
2067					    MAX_SSIDS, max);
2068					max = MAX_SSIDS;
2069				}
2070				if (ireq->i_val > max) {
2071					error = EINVAL;
2072					AN_UNLOCK(sc);
2073					break;
2074				} else {
2075					len = ssids->an_entry[ireq->i_val].an_len;
2076					tmpptr = ssids->an_entry[ireq->i_val].an_ssid;
2077				}
2078			} else {
2079				error = EINVAL;
2080				AN_UNLOCK(sc);
2081				break;
2082			}
2083			if (len > IEEE80211_NWID_LEN) {
2084				error = EINVAL;
2085				AN_UNLOCK(sc);
2086				break;
2087			}
2088			AN_UNLOCK(sc);
2089			ireq->i_len = len;
2090			bzero(tmpstr, IEEE80211_NWID_LEN);
2091			bcopy(tmpptr, tmpstr, len);
2092			error = copyout(tmpstr, ireq->i_data,
2093			    IEEE80211_NWID_LEN);
2094			break;
2095		case IEEE80211_IOC_NUMSSIDS:
2096			AN_LOCK(sc);
2097			sc->areq.an_len = sizeof(sc->areq);
2098			sc->areq.an_type = AN_RID_SSIDLIST;
2099			if (an_read_record(sc,
2100			    (struct an_ltv_gen *)&sc->areq)) {
2101				AN_UNLOCK(sc);
2102				error = EINVAL;
2103				break;
2104			}
2105			max = (sc->areq.an_len - 4)
2106			    / sizeof(struct an_ltv_ssid_entry);
2107			AN_UNLOCK(sc);
2108			if ( max > MAX_SSIDS ) {
2109				printf("To many SSIDs only using "
2110				    "%d of %d\n",
2111				    MAX_SSIDS, max);
2112				max = MAX_SSIDS;
2113			}
2114			ireq->i_val = max;
2115			break;
2116		case IEEE80211_IOC_WEP:
2117			AN_LOCK(sc);
2118			sc->areq.an_type = AN_RID_ACTUALCFG;
2119			if (an_read_record(sc,
2120			    (struct an_ltv_gen *)&sc->areq)) {
2121				error = EINVAL;
2122				AN_UNLOCK(sc);
2123				break;
2124			}
2125			AN_UNLOCK(sc);
2126			if (config->an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) {
2127				if (config->an_authtype &
2128				    AN_AUTHTYPE_ALLOW_UNENCRYPTED)
2129					ireq->i_val = IEEE80211_WEP_MIXED;
2130				else
2131					ireq->i_val = IEEE80211_WEP_ON;
2132			} else {
2133				ireq->i_val = IEEE80211_WEP_OFF;
2134			}
2135			break;
2136		case IEEE80211_IOC_WEPKEY:
2137			/*
2138			 * XXX: I'm not entierly convinced this is
2139			 * correct, but it's what is implemented in
2140			 * ancontrol so it will have to do until we get
2141			 * access to actual Cisco code.
2142			 */
2143			if (ireq->i_val < 0 || ireq->i_val > 8) {
2144				error = EINVAL;
2145				break;
2146			}
2147			len = 0;
2148			if (ireq->i_val < 5) {
2149				AN_LOCK(sc);
2150				sc->areq.an_type = AN_RID_WEP_TEMP;
2151				for (i = 0; i < 5; i++) {
2152					if (an_read_record(sc,
2153					    (struct an_ltv_gen *)&sc->areq)) {
2154						error = EINVAL;
2155						break;
2156					}
2157					if (key->kindex == 0xffff)
2158						break;
2159					if (key->kindex == ireq->i_val)
2160						len = key->klen;
2161					/* Required to get next entry */
2162					sc->areq.an_type = AN_RID_WEP_PERM;
2163				}
2164				AN_UNLOCK(sc);
2165				if (error != 0) {
2166					break;
2167				}
2168			}
2169			/* We aren't allowed to read the value of the
2170			 * key from the card so we just output zeros
2171			 * like we would if we could read the card, but
2172			 * denied the user access.
2173			 */
2174			bzero(tmpstr, len);
2175			ireq->i_len = len;
2176			error = copyout(tmpstr, ireq->i_data, len);
2177			break;
2178		case IEEE80211_IOC_NUMWEPKEYS:
2179			ireq->i_val = 9; /* include home key */
2180			break;
2181		case IEEE80211_IOC_WEPTXKEY:
2182			/*
2183			 * For some strange reason, you have to read all
2184			 * keys before you can read the txkey.
2185			 */
2186			AN_LOCK(sc);
2187			sc->areq.an_type = AN_RID_WEP_TEMP;
2188			for (i = 0; i < 5; i++) {
2189				if (an_read_record(sc,
2190				    (struct an_ltv_gen *) &sc->areq)) {
2191					error = EINVAL;
2192					break;
2193				}
2194				if (key->kindex == 0xffff) {
2195					break;
2196				}
2197				/* Required to get next entry */
2198				sc->areq.an_type = AN_RID_WEP_PERM;
2199			}
2200			if (error != 0) {
2201				AN_UNLOCK(sc);
2202				break;
2203			}
2204
2205			sc->areq.an_type = AN_RID_WEP_PERM;
2206			key->kindex = 0xffff;
2207			if (an_read_record(sc,
2208			    (struct an_ltv_gen *)&sc->areq)) {
2209				error = EINVAL;
2210				AN_UNLOCK(sc);
2211				break;
2212			}
2213			ireq->i_val = key->mac[0];
2214			/*
2215			 * Check for home mode.  Map home mode into
2216			 * 5th key since that is how it is stored on
2217			 * the card
2218			 */
2219			sc->areq.an_len  = sizeof(struct an_ltv_genconfig);
2220			sc->areq.an_type = AN_RID_GENCONFIG;
2221			if (an_read_record(sc,
2222			    (struct an_ltv_gen *)&sc->areq)) {
2223				error = EINVAL;
2224				AN_UNLOCK(sc);
2225				break;
2226			}
2227			if (config->an_home_product & AN_HOME_NETWORK)
2228				ireq->i_val = 4;
2229			AN_UNLOCK(sc);
2230			break;
2231		case IEEE80211_IOC_AUTHMODE:
2232			AN_LOCK(sc);
2233			sc->areq.an_type = AN_RID_ACTUALCFG;
2234			if (an_read_record(sc,
2235			    (struct an_ltv_gen *)&sc->areq)) {
2236				error = EINVAL;
2237				AN_UNLOCK(sc);
2238				break;
2239			}
2240			AN_UNLOCK(sc);
2241			if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2242			    AN_AUTHTYPE_NONE) {
2243			    ireq->i_val = IEEE80211_AUTH_NONE;
2244			} else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2245			    AN_AUTHTYPE_OPEN) {
2246			    ireq->i_val = IEEE80211_AUTH_OPEN;
2247			} else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2248			    AN_AUTHTYPE_SHAREDKEY) {
2249			    ireq->i_val = IEEE80211_AUTH_SHARED;
2250			} else
2251				error = EINVAL;
2252			break;
2253		case IEEE80211_IOC_STATIONNAME:
2254			AN_LOCK(sc);
2255			sc->areq.an_type = AN_RID_ACTUALCFG;
2256			if (an_read_record(sc,
2257			    (struct an_ltv_gen *)&sc->areq)) {
2258				error = EINVAL;
2259				AN_UNLOCK(sc);
2260				break;
2261			}
2262			AN_UNLOCK(sc);
2263			ireq->i_len = sizeof(config->an_nodename);
2264			tmpptr = config->an_nodename;
2265			bzero(tmpstr, IEEE80211_NWID_LEN);
2266			bcopy(tmpptr, tmpstr, ireq->i_len);
2267			error = copyout(tmpstr, ireq->i_data,
2268			    IEEE80211_NWID_LEN);
2269			break;
2270		case IEEE80211_IOC_CHANNEL:
2271			AN_LOCK(sc);
2272			sc->areq.an_type = AN_RID_STATUS;
2273			if (an_read_record(sc,
2274			    (struct an_ltv_gen *)&sc->areq)) {
2275				error = EINVAL;
2276				AN_UNLOCK(sc);
2277				break;
2278			}
2279			AN_UNLOCK(sc);
2280			ireq->i_val = status->an_cur_channel;
2281			break;
2282		case IEEE80211_IOC_CURCHAN:
2283			AN_LOCK(sc);
2284			sc->areq.an_type = AN_RID_STATUS;
2285			if (an_read_record(sc,
2286			    (struct an_ltv_gen *)&sc->areq)) {
2287				error = EINVAL;
2288				AN_UNLOCK(sc);
2289				break;
2290			}
2291			AN_UNLOCK(sc);
2292			bzero(&ch, sizeof(ch));
2293			ch.ic_freq = ieee80211_ieee2mhz(status->an_cur_channel,
2294			    IEEE80211_CHAN_B);
2295			ch.ic_flags = IEEE80211_CHAN_B;
2296			ch.ic_ieee = status->an_cur_channel;
2297			error = copyout(&ch, ireq->i_data, sizeof(ch));
2298			break;
2299		case IEEE80211_IOC_POWERSAVE:
2300			AN_LOCK(sc);
2301			sc->areq.an_type = AN_RID_ACTUALCFG;
2302			if (an_read_record(sc,
2303			    (struct an_ltv_gen *)&sc->areq)) {
2304				error = EINVAL;
2305				AN_UNLOCK(sc);
2306				break;
2307			}
2308			AN_UNLOCK(sc);
2309			if (config->an_psave_mode == AN_PSAVE_NONE) {
2310				ireq->i_val = IEEE80211_POWERSAVE_OFF;
2311			} else if (config->an_psave_mode == AN_PSAVE_CAM) {
2312				ireq->i_val = IEEE80211_POWERSAVE_CAM;
2313			} else if (config->an_psave_mode == AN_PSAVE_PSP) {
2314				ireq->i_val = IEEE80211_POWERSAVE_PSP;
2315			} else if (config->an_psave_mode == AN_PSAVE_PSP_CAM) {
2316				ireq->i_val = IEEE80211_POWERSAVE_PSP_CAM;
2317			} else
2318				error = EINVAL;
2319			break;
2320		case IEEE80211_IOC_POWERSAVESLEEP:
2321			AN_LOCK(sc);
2322			sc->areq.an_type = AN_RID_ACTUALCFG;
2323			if (an_read_record(sc,
2324			    (struct an_ltv_gen *)&sc->areq)) {
2325				error = EINVAL;
2326				AN_UNLOCK(sc);
2327				break;
2328			}
2329			AN_UNLOCK(sc);
2330			ireq->i_val = config->an_listen_interval;
2331			break;
2332		}
2333		break;
2334	case SIOCS80211:
2335		if ((error = priv_check(td, PRIV_NET80211_MANAGE)))
2336			goto out;
2337		AN_LOCK(sc);
2338		sc->areq.an_len = sizeof(sc->areq);
2339		/*
2340		 * We need a config structure for everything but the WEP
2341		 * key management and SSIDs so we get it now so avoid
2342		 * duplicating this code every time.
2343		 */
2344		if (ireq->i_type != IEEE80211_IOC_SSID &&
2345		    ireq->i_type != IEEE80211_IOC_WEPKEY &&
2346		    ireq->i_type != IEEE80211_IOC_WEPTXKEY) {
2347			sc->areq.an_type = AN_RID_GENCONFIG;
2348			if (an_read_record(sc,
2349			    (struct an_ltv_gen *)&sc->areq)) {
2350				error = EINVAL;
2351				AN_UNLOCK(sc);
2352				break;
2353			}
2354		}
2355		switch (ireq->i_type) {
2356		case IEEE80211_IOC_SSID:
2357			sc->areq.an_len = sizeof(sc->areq);
2358			sc->areq.an_type = AN_RID_SSIDLIST;
2359			if (an_read_record(sc,
2360			    (struct an_ltv_gen *)&sc->areq)) {
2361				error = EINVAL;
2362				AN_UNLOCK(sc);
2363				break;
2364			}
2365			if (ireq->i_len > IEEE80211_NWID_LEN) {
2366				error = EINVAL;
2367				AN_UNLOCK(sc);
2368				break;
2369			}
2370			max = (sc->areq.an_len - 4)
2371			    / sizeof(struct an_ltv_ssid_entry);
2372			if ( max > MAX_SSIDS ) {
2373				printf("To many SSIDs only using "
2374				    "%d of %d\n",
2375				    MAX_SSIDS, max);
2376				max = MAX_SSIDS;
2377			}
2378			if (ireq->i_val > max) {
2379				error = EINVAL;
2380				AN_UNLOCK(sc);
2381				break;
2382			} else {
2383				error = copyin(ireq->i_data,
2384				    ssids->an_entry[ireq->i_val].an_ssid,
2385				    ireq->i_len);
2386				ssids->an_entry[ireq->i_val].an_len
2387				    = ireq->i_len;
2388				sc->areq.an_len = sizeof(sc->areq);
2389				sc->areq.an_type = AN_RID_SSIDLIST;
2390				an_setdef(sc, &sc->areq);
2391				AN_UNLOCK(sc);
2392				break;
2393			}
2394			break;
2395		case IEEE80211_IOC_WEP:
2396			switch (ireq->i_val) {
2397			case IEEE80211_WEP_OFF:
2398				config->an_authtype &=
2399				    ~(AN_AUTHTYPE_PRIVACY_IN_USE |
2400				    AN_AUTHTYPE_ALLOW_UNENCRYPTED);
2401				break;
2402			case IEEE80211_WEP_ON:
2403				config->an_authtype |=
2404				    AN_AUTHTYPE_PRIVACY_IN_USE;
2405				config->an_authtype &=
2406				    ~AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2407				break;
2408			case IEEE80211_WEP_MIXED:
2409				config->an_authtype |=
2410				    AN_AUTHTYPE_PRIVACY_IN_USE |
2411				    AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2412				break;
2413			default:
2414				error = EINVAL;
2415				break;
2416			}
2417			if (error != EINVAL)
2418				an_setdef(sc, &sc->areq);
2419			AN_UNLOCK(sc);
2420			break;
2421		case IEEE80211_IOC_WEPKEY:
2422			if (ireq->i_val < 0 || ireq->i_val > 8 ||
2423			    ireq->i_len > 13) {
2424				error = EINVAL;
2425				AN_UNLOCK(sc);
2426				break;
2427			}
2428			error = copyin(ireq->i_data, tmpstr, 13);
2429			if (error != 0) {
2430				AN_UNLOCK(sc);
2431				break;
2432			}
2433			/*
2434			 * Map the 9th key into the home mode
2435			 * since that is how it is stored on
2436			 * the card
2437			 */
2438			bzero(&sc->areq, sizeof(struct an_ltv_key));
2439			sc->areq.an_len = sizeof(struct an_ltv_key);
2440			key->mac[0] = 1;	/* The others are 0. */
2441			if (ireq->i_val < 4) {
2442				sc->areq.an_type = AN_RID_WEP_TEMP;
2443				key->kindex = ireq->i_val;
2444			} else {
2445				sc->areq.an_type = AN_RID_WEP_PERM;
2446				key->kindex = ireq->i_val - 4;
2447			}
2448			key->klen = ireq->i_len;
2449			bcopy(tmpstr, key->key, key->klen);
2450			an_setdef(sc, &sc->areq);
2451			AN_UNLOCK(sc);
2452			break;
2453		case IEEE80211_IOC_WEPTXKEY:
2454			if (ireq->i_val < 0 || ireq->i_val > 4) {
2455				error = EINVAL;
2456				AN_UNLOCK(sc);
2457				break;
2458			}
2459
2460			/*
2461			 * Map the 5th key into the home mode
2462			 * since that is how it is stored on
2463			 * the card
2464			 */
2465			sc->areq.an_len  = sizeof(struct an_ltv_genconfig);
2466			sc->areq.an_type = AN_RID_ACTUALCFG;
2467			if (an_read_record(sc,
2468			    (struct an_ltv_gen *)&sc->areq)) {
2469				error = EINVAL;
2470				AN_UNLOCK(sc);
2471				break;
2472			}
2473			if (ireq->i_val ==  4) {
2474				config->an_home_product |= AN_HOME_NETWORK;
2475				ireq->i_val = 0;
2476			} else {
2477				config->an_home_product &= ~AN_HOME_NETWORK;
2478			}
2479
2480			sc->an_config.an_home_product
2481				= config->an_home_product;
2482
2483			/* update configuration */
2484			an_init_locked(sc);
2485
2486			bzero(&sc->areq, sizeof(struct an_ltv_key));
2487			sc->areq.an_len = sizeof(struct an_ltv_key);
2488			sc->areq.an_type = AN_RID_WEP_PERM;
2489			key->kindex = 0xffff;
2490			key->mac[0] = ireq->i_val;
2491			an_setdef(sc, &sc->areq);
2492			AN_UNLOCK(sc);
2493			break;
2494		case IEEE80211_IOC_AUTHMODE:
2495			switch (ireq->i_val) {
2496			case IEEE80211_AUTH_NONE:
2497				config->an_authtype = AN_AUTHTYPE_NONE |
2498				    (config->an_authtype & ~AN_AUTHTYPE_MASK);
2499				break;
2500			case IEEE80211_AUTH_OPEN:
2501				config->an_authtype = AN_AUTHTYPE_OPEN |
2502				    (config->an_authtype & ~AN_AUTHTYPE_MASK);
2503				break;
2504			case IEEE80211_AUTH_SHARED:
2505				config->an_authtype = AN_AUTHTYPE_SHAREDKEY |
2506				    (config->an_authtype & ~AN_AUTHTYPE_MASK);
2507				break;
2508			default:
2509				error = EINVAL;
2510			}
2511			if (error != EINVAL) {
2512				an_setdef(sc, &sc->areq);
2513			}
2514			AN_UNLOCK(sc);
2515			break;
2516		case IEEE80211_IOC_STATIONNAME:
2517			if (ireq->i_len > 16) {
2518				error = EINVAL;
2519				AN_UNLOCK(sc);
2520				break;
2521			}
2522			bzero(config->an_nodename, 16);
2523			error = copyin(ireq->i_data,
2524			    config->an_nodename, ireq->i_len);
2525			an_setdef(sc, &sc->areq);
2526			AN_UNLOCK(sc);
2527			break;
2528		case IEEE80211_IOC_CHANNEL:
2529			/*
2530			 * The actual range is 1-14, but if you set it
2531			 * to 0 you get the default so we let that work
2532			 * too.
2533			 */
2534			if (ireq->i_val < 0 || ireq->i_val >14) {
2535				error = EINVAL;
2536				AN_UNLOCK(sc);
2537				break;
2538			}
2539			config->an_ds_channel = ireq->i_val;
2540			an_setdef(sc, &sc->areq);
2541			AN_UNLOCK(sc);
2542			break;
2543		case IEEE80211_IOC_POWERSAVE:
2544			switch (ireq->i_val) {
2545			case IEEE80211_POWERSAVE_OFF:
2546				config->an_psave_mode = AN_PSAVE_NONE;
2547				break;
2548			case IEEE80211_POWERSAVE_CAM:
2549				config->an_psave_mode = AN_PSAVE_CAM;
2550				break;
2551			case IEEE80211_POWERSAVE_PSP:
2552				config->an_psave_mode = AN_PSAVE_PSP;
2553				break;
2554			case IEEE80211_POWERSAVE_PSP_CAM:
2555				config->an_psave_mode = AN_PSAVE_PSP_CAM;
2556				break;
2557			default:
2558				error = EINVAL;
2559				break;
2560			}
2561			an_setdef(sc, &sc->areq);
2562			AN_UNLOCK(sc);
2563			break;
2564		case IEEE80211_IOC_POWERSAVESLEEP:
2565			config->an_listen_interval = ireq->i_val;
2566			an_setdef(sc, &sc->areq);
2567			AN_UNLOCK(sc);
2568			break;
2569		default:
2570			AN_UNLOCK(sc);
2571			break;
2572		}
2573
2574		/*
2575		if (!error) {
2576			AN_LOCK(sc);
2577			an_setdef(sc, &sc->areq);
2578			AN_UNLOCK(sc);
2579		}
2580		*/
2581		break;
2582	default:
2583		error = ether_ioctl(ifp, command, data);
2584		break;
2585	}
2586out:
2587
2588	return(error != 0);
2589}
2590
2591static int
2592an_init_tx_ring(struct an_softc *sc)
2593{
2594	int			i;
2595	int			id;
2596
2597	if (sc->an_gone)
2598		return (0);
2599
2600	if (!sc->mpi350) {
2601		for (i = 0; i < AN_TX_RING_CNT; i++) {
2602			if (an_alloc_nicmem(sc, 1518 +
2603			    0x44, &id))
2604				return(ENOMEM);
2605			sc->an_rdata.an_tx_fids[i] = id;
2606			sc->an_rdata.an_tx_ring[i] = 0;
2607		}
2608	}
2609
2610	sc->an_rdata.an_tx_prod = 0;
2611	sc->an_rdata.an_tx_cons = 0;
2612	sc->an_rdata.an_tx_empty = 1;
2613
2614	return(0);
2615}
2616
2617static void
2618an_init(void *xsc)
2619{
2620	struct an_softc		*sc = xsc;
2621
2622	AN_LOCK(sc);
2623	an_init_locked(sc);
2624	AN_UNLOCK(sc);
2625}
2626
2627static void
2628an_init_locked(struct an_softc *sc)
2629{
2630	struct ifnet *ifp;
2631
2632	AN_LOCK_ASSERT(sc);
2633	ifp = sc->an_ifp;
2634	if (sc->an_gone)
2635		return;
2636
2637	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2638		an_stop(sc);
2639
2640	sc->an_associated = 0;
2641
2642	/* Allocate the TX buffers */
2643	if (an_init_tx_ring(sc)) {
2644		an_reset(sc);
2645		if (sc->mpi350)
2646			an_init_mpi350_desc(sc);
2647		if (an_init_tx_ring(sc)) {
2648			if_printf(ifp, "tx buffer allocation failed\n");
2649			return;
2650		}
2651	}
2652
2653	/* Set our MAC address. */
2654	bcopy((char *)IF_LLADDR(sc->an_ifp),
2655	    (char *)&sc->an_config.an_macaddr, ETHER_ADDR_LEN);
2656
2657	if (ifp->if_flags & IFF_BROADCAST)
2658		sc->an_config.an_rxmode = AN_RXMODE_BC_ADDR;
2659	else
2660		sc->an_config.an_rxmode = AN_RXMODE_ADDR;
2661
2662	if (ifp->if_flags & IFF_MULTICAST)
2663		sc->an_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
2664
2665	if (ifp->if_flags & IFF_PROMISC) {
2666		if (sc->an_monitor & AN_MONITOR) {
2667			if (sc->an_monitor & AN_MONITOR_ANY_BSS) {
2668				sc->an_config.an_rxmode |=
2669				    AN_RXMODE_80211_MONITOR_ANYBSS |
2670				    AN_RXMODE_NO_8023_HEADER;
2671			} else {
2672				sc->an_config.an_rxmode |=
2673				    AN_RXMODE_80211_MONITOR_CURBSS |
2674				    AN_RXMODE_NO_8023_HEADER;
2675			}
2676		}
2677	}
2678
2679#ifdef ANCACHE
2680	if (sc->an_have_rssimap)
2681		sc->an_config.an_rxmode |= AN_RXMODE_NORMALIZED_RSSI;
2682#endif
2683
2684	/* Set the ssid list */
2685	sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
2686	sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist_new);
2687	if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
2688		if_printf(ifp, "failed to set ssid list\n");
2689		return;
2690	}
2691
2692	/* Set the AP list */
2693	sc->an_aplist.an_type = AN_RID_APLIST;
2694	sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
2695	if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
2696		if_printf(ifp, "failed to set AP list\n");
2697		return;
2698	}
2699
2700	/* Set the configuration in the NIC */
2701	sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
2702	sc->an_config.an_type = AN_RID_GENCONFIG;
2703	if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
2704		if_printf(ifp, "failed to set configuration\n");
2705		return;
2706	}
2707
2708	/* Enable the MAC */
2709	if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
2710		if_printf(ifp, "failed to enable MAC\n");
2711		return;
2712	}
2713
2714	if (ifp->if_flags & IFF_PROMISC)
2715		an_cmd(sc, AN_CMD_SET_MODE, 0xffff);
2716
2717	/* enable interrupts */
2718	CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
2719
2720	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2721	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2722
2723	callout_reset(&sc->an_stat_ch, hz, an_stats_update, sc);
2724
2725	return;
2726}
2727
2728static void
2729an_start(struct ifnet *ifp)
2730{
2731	struct an_softc		*sc;
2732
2733	sc = ifp->if_softc;
2734	AN_LOCK(sc);
2735	an_start_locked(ifp);
2736	AN_UNLOCK(sc);
2737}
2738
2739static void
2740an_start_locked(struct ifnet *ifp)
2741{
2742	struct an_softc		*sc;
2743	struct mbuf		*m0 = NULL;
2744	struct an_txframe_802_3	tx_frame_802_3;
2745	struct ether_header	*eh;
2746	int			id, idx, i;
2747	unsigned char		txcontrol;
2748	struct an_card_tx_desc an_tx_desc;
2749	u_int8_t		*buf;
2750
2751	sc = ifp->if_softc;
2752
2753	AN_LOCK_ASSERT(sc);
2754	if (sc->an_gone)
2755		return;
2756
2757	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
2758		return;
2759
2760	if (!sc->an_associated)
2761		return;
2762
2763	/* We can't send in monitor mode so toss any attempts. */
2764	if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
2765		for (;;) {
2766			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2767			if (m0 == NULL)
2768				break;
2769			m_freem(m0);
2770		}
2771		return;
2772	}
2773
2774	idx = sc->an_rdata.an_tx_prod;
2775
2776	if (!sc->mpi350) {
2777		bzero((char *)&tx_frame_802_3, sizeof(tx_frame_802_3));
2778
2779		while (sc->an_rdata.an_tx_ring[idx] == 0) {
2780			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2781			if (m0 == NULL)
2782				break;
2783
2784			id = sc->an_rdata.an_tx_fids[idx];
2785			eh = mtod(m0, struct ether_header *);
2786
2787			bcopy((char *)&eh->ether_dhost,
2788			      (char *)&tx_frame_802_3.an_tx_dst_addr,
2789			      ETHER_ADDR_LEN);
2790			bcopy((char *)&eh->ether_shost,
2791			      (char *)&tx_frame_802_3.an_tx_src_addr,
2792			      ETHER_ADDR_LEN);
2793
2794			/* minus src/dest mac & type */
2795			tx_frame_802_3.an_tx_802_3_payload_len =
2796				m0->m_pkthdr.len - 12;
2797
2798			m_copydata(m0, sizeof(struct ether_header) - 2 ,
2799				   tx_frame_802_3.an_tx_802_3_payload_len,
2800				   (caddr_t)&sc->an_txbuf);
2801
2802			txcontrol = AN_TXCTL_8023 | AN_TXCTL_HW(sc->mpi350);
2803			/* write the txcontrol only */
2804			an_write_data(sc, id, 0x08, (caddr_t)&txcontrol,
2805				      sizeof(txcontrol));
2806
2807			/* 802_3 header */
2808			an_write_data(sc, id, 0x34, (caddr_t)&tx_frame_802_3,
2809				      sizeof(struct an_txframe_802_3));
2810
2811			/* in mbuf header type is just before payload */
2812			an_write_data(sc, id, 0x44, (caddr_t)&sc->an_txbuf,
2813				      tx_frame_802_3.an_tx_802_3_payload_len);
2814
2815			/*
2816			 * If there's a BPF listner, bounce a copy of
2817			 * this frame to him.
2818			 */
2819			BPF_MTAP(ifp, m0);
2820
2821			m_freem(m0);
2822			m0 = NULL;
2823
2824			sc->an_rdata.an_tx_ring[idx] = id;
2825			if (an_cmd(sc, AN_CMD_TX, id))
2826				if_printf(ifp, "xmit failed\n");
2827
2828			AN_INC(idx, AN_TX_RING_CNT);
2829
2830			/*
2831			 * Set a timeout in case the chip goes out to lunch.
2832			 */
2833			sc->an_timer = 5;
2834		}
2835	} else { /* MPI-350 */
2836		/* Disable interrupts. */
2837		CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
2838
2839		while (sc->an_rdata.an_tx_empty ||
2840		    idx != sc->an_rdata.an_tx_cons) {
2841			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2842			if (m0 == NULL) {
2843				break;
2844			}
2845			buf = sc->an_tx_buffer[idx].an_dma_vaddr;
2846
2847			eh = mtod(m0, struct ether_header *);
2848
2849			/* DJA optimize this to limit bcopy */
2850			bcopy((char *)&eh->ether_dhost,
2851			      (char *)&tx_frame_802_3.an_tx_dst_addr,
2852			      ETHER_ADDR_LEN);
2853			bcopy((char *)&eh->ether_shost,
2854			      (char *)&tx_frame_802_3.an_tx_src_addr,
2855			      ETHER_ADDR_LEN);
2856
2857			/* minus src/dest mac & type */
2858			tx_frame_802_3.an_tx_802_3_payload_len =
2859				m0->m_pkthdr.len - 12;
2860
2861			m_copydata(m0, sizeof(struct ether_header) - 2 ,
2862				   tx_frame_802_3.an_tx_802_3_payload_len,
2863				   (caddr_t)&sc->an_txbuf);
2864
2865			txcontrol = AN_TXCTL_8023 | AN_TXCTL_HW(sc->mpi350);
2866			/* write the txcontrol only */
2867			bcopy((caddr_t)&txcontrol, &buf[0x08],
2868			      sizeof(txcontrol));
2869
2870			/* 802_3 header */
2871			bcopy((caddr_t)&tx_frame_802_3, &buf[0x34],
2872			      sizeof(struct an_txframe_802_3));
2873
2874			/* in mbuf header type is just before payload */
2875			bcopy((caddr_t)&sc->an_txbuf, &buf[0x44],
2876			      tx_frame_802_3.an_tx_802_3_payload_len);
2877
2878
2879			bzero(&an_tx_desc, sizeof(an_tx_desc));
2880			an_tx_desc.an_offset = 0;
2881			an_tx_desc.an_eoc = 1;
2882			an_tx_desc.an_valid = 1;
2883			an_tx_desc.an_len =  0x44 +
2884			    tx_frame_802_3.an_tx_802_3_payload_len;
2885			an_tx_desc.an_phys
2886			    = sc->an_tx_buffer[idx].an_dma_paddr;
2887			for (i = sizeof(an_tx_desc) / 4 - 1; i >= 0; i--) {
2888				CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET
2889				    /* zero for now */
2890				    + (0 * sizeof(an_tx_desc))
2891				    + (i * 4),
2892				    ((u_int32_t *)(void *)&an_tx_desc)[i]);
2893			}
2894
2895			/*
2896			 * If there's a BPF listner, bounce a copy of
2897			 * this frame to him.
2898			 */
2899			BPF_MTAP(ifp, m0);
2900
2901			m_freem(m0);
2902			m0 = NULL;
2903			AN_INC(idx, AN_MAX_TX_DESC);
2904			sc->an_rdata.an_tx_empty = 0;
2905			CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
2906
2907			/*
2908			 * Set a timeout in case the chip goes out to lunch.
2909			 */
2910			sc->an_timer = 5;
2911		}
2912
2913		/* Re-enable interrupts. */
2914		CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
2915	}
2916
2917	if (m0 != NULL)
2918		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2919
2920	sc->an_rdata.an_tx_prod = idx;
2921
2922	return;
2923}
2924
2925void
2926an_stop(struct an_softc *sc)
2927{
2928	struct ifnet		*ifp;
2929	int			i;
2930
2931	AN_LOCK_ASSERT(sc);
2932
2933	if (sc->an_gone)
2934		return;
2935
2936	ifp = sc->an_ifp;
2937
2938	an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
2939	CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
2940	an_cmd(sc, AN_CMD_DISABLE, 0);
2941
2942	for (i = 0; i < AN_TX_RING_CNT; i++)
2943		an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->an_rdata.an_tx_fids[i]);
2944
2945	callout_stop(&sc->an_stat_ch);
2946
2947	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
2948
2949	if (sc->an_flash_buffer) {
2950		free(sc->an_flash_buffer, M_DEVBUF);
2951		sc->an_flash_buffer = NULL;
2952	}
2953}
2954
2955static void
2956an_watchdog(struct an_softc *sc)
2957{
2958	struct ifnet *ifp;
2959
2960	AN_LOCK_ASSERT(sc);
2961
2962	if (sc->an_gone)
2963		return;
2964
2965	ifp = sc->an_ifp;
2966	if_printf(ifp, "device timeout\n");
2967
2968	an_reset(sc);
2969	if (sc->mpi350)
2970		an_init_mpi350_desc(sc);
2971	an_init_locked(sc);
2972
2973	ifp->if_oerrors++;
2974}
2975
2976int
2977an_shutdown(device_t dev)
2978{
2979	struct an_softc		*sc;
2980
2981	sc = device_get_softc(dev);
2982	AN_LOCK(sc);
2983	an_stop(sc);
2984	sc->an_gone = 1;
2985	AN_UNLOCK(sc);
2986
2987	return (0);
2988}
2989
2990void
2991an_resume(device_t dev)
2992{
2993	struct an_softc		*sc;
2994	struct ifnet		*ifp;
2995	int			i;
2996
2997	sc = device_get_softc(dev);
2998	AN_LOCK(sc);
2999	ifp = sc->an_ifp;
3000
3001	sc->an_gone = 0;
3002	an_reset(sc);
3003	if (sc->mpi350)
3004		an_init_mpi350_desc(sc);
3005	an_init_locked(sc);
3006
3007	/* Recovery temporary keys */
3008	for (i = 0; i < 4; i++) {
3009		sc->areq.an_type = AN_RID_WEP_TEMP;
3010		sc->areq.an_len = sizeof(struct an_ltv_key);
3011		bcopy(&sc->an_temp_keys[i],
3012		    &sc->areq, sizeof(struct an_ltv_key));
3013		an_setdef(sc, &sc->areq);
3014	}
3015
3016	if (ifp->if_flags & IFF_UP)
3017		an_start_locked(ifp);
3018	AN_UNLOCK(sc);
3019
3020	return;
3021}
3022
3023#ifdef ANCACHE
3024/* Aironet signal strength cache code.
3025 * store signal/noise/quality on per MAC src basis in
3026 * a small fixed cache.  The cache wraps if > MAX slots
3027 * used.  The cache may be zeroed out to start over.
3028 * Two simple filters exist to reduce computation:
3029 * 1. ip only (literally 0x800, ETHERTYPE_IP) which may be used
3030 * to ignore some packets.  It defaults to ip only.
3031 * it could be used to focus on broadcast, non-IP 802.11 beacons.
3032 * 2. multicast/broadcast only.  This may be used to
3033 * ignore unicast packets and only cache signal strength
3034 * for multicast/broadcast packets (beacons); e.g., Mobile-IP
3035 * beacons and not unicast traffic.
3036 *
3037 * The cache stores (MAC src(index), IP src (major clue), signal,
3038 *	quality, noise)
3039 *
3040 * No apologies for storing IP src here.  It's easy and saves much
3041 * trouble elsewhere.  The cache is assumed to be INET dependent,
3042 * although it need not be.
3043 *
3044 * Note: the Aironet only has a single byte of signal strength value
3045 * in the rx frame header, and it's not scaled to anything sensible.
3046 * This is kind of lame, but it's all we've got.
3047 */
3048
3049#ifdef documentation
3050
3051int an_sigitems;				/* number of cached entries */
3052struct an_sigcache an_sigcache[MAXANCACHE];	/* array of cache entries */
3053int an_nextitem;				/* index/# of entries */
3054
3055
3056#endif
3057
3058/* control variables for cache filtering.  Basic idea is
3059 * to reduce cost (e.g., to only Mobile-IP agent beacons
3060 * which are broadcast or multicast).  Still you might
3061 * want to measure signal strength anth unicast ping packets
3062 * on a pt. to pt. ant. setup.
3063 */
3064/* set true if you want to limit cache items to broadcast/mcast
3065 * only packets (not unicast).  Useful for mobile-ip beacons which
3066 * are broadcast/multicast at network layer.  Default is all packets
3067 * so ping/unicast anll work say anth pt. to pt. antennae setup.
3068 */
3069static int an_cache_mcastonly = 0;
3070SYSCTL_INT(_hw_an, OID_AUTO, an_cache_mcastonly, CTLFLAG_RW,
3071	&an_cache_mcastonly, 0, "");
3072
3073/* set true if you want to limit cache items to IP packets only
3074*/
3075static int an_cache_iponly = 1;
3076SYSCTL_INT(_hw_an, OID_AUTO, an_cache_iponly, CTLFLAG_RW,
3077	&an_cache_iponly, 0, "");
3078
3079/*
3080 * an_cache_store, per rx packet store signal
3081 * strength in MAC (src) indexed cache.
3082 */
3083static void
3084an_cache_store(struct an_softc *sc, struct ether_header *eh, struct mbuf *m,
3085    u_int8_t rx_rssi, u_int8_t rx_quality)
3086{
3087	struct ip *ip = 0;
3088	int i;
3089	static int cache_slot = 0; 	/* use this cache entry */
3090	static int wrapindex = 0;	/* next "free" cache entry */
3091	int type_ipv4 = 0;
3092
3093	/* filters:
3094	 * 1. ip only
3095	 * 2. configurable filter to throw out unicast packets,
3096	 * keep multicast only.
3097	 */
3098
3099	if ((ntohs(eh->ether_type) == ETHERTYPE_IP)) {
3100		type_ipv4 = 1;
3101	}
3102
3103	/* filter for ip packets only
3104	*/
3105	if ( an_cache_iponly && !type_ipv4) {
3106		return;
3107	}
3108
3109	/* filter for broadcast/multicast only
3110	 */
3111	if (an_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
3112		return;
3113	}
3114
3115#ifdef SIGDEBUG
3116	if_printf(sc->an_ifp, "q value %x (MSB=0x%x, LSB=0x%x) \n",
3117		rx_rssi & 0xffff, rx_rssi >> 8, rx_rssi & 0xff);
3118#endif
3119
3120	/* find the ip header.  we want to store the ip_src
3121	 * address.
3122	 */
3123	if (type_ipv4) {
3124		ip = mtod(m, struct ip *);
3125	}
3126
3127	/* do a linear search for a matching MAC address
3128	 * in the cache table
3129	 * . MAC address is 6 bytes,
3130	 * . var w_nextitem holds total number of entries already cached
3131	 */
3132	for (i = 0; i < sc->an_nextitem; i++) {
3133		if (! bcmp(eh->ether_shost , sc->an_sigcache[i].macsrc,  6 )) {
3134			/* Match!,
3135			 * so we already have this entry,
3136			 * update the data
3137			 */
3138			break;
3139		}
3140	}
3141
3142	/* did we find a matching mac address?
3143	 * if yes, then overwrite a previously existing cache entry
3144	 */
3145	if (i < sc->an_nextitem )   {
3146		cache_slot = i;
3147	}
3148	/* else, have a new address entry,so
3149	 * add this new entry,
3150	 * if table full, then we need to replace LRU entry
3151	 */
3152	else    {
3153
3154		/* check for space in cache table
3155		 * note: an_nextitem also holds number of entries
3156		 * added in the cache table
3157		 */
3158		if ( sc->an_nextitem < MAXANCACHE ) {
3159			cache_slot = sc->an_nextitem;
3160			sc->an_nextitem++;
3161			sc->an_sigitems = sc->an_nextitem;
3162		}
3163		/* no space found, so simply wrap anth wrap index
3164		 * and "zap" the next entry
3165		 */
3166		else {
3167			if (wrapindex == MAXANCACHE) {
3168				wrapindex = 0;
3169			}
3170			cache_slot = wrapindex++;
3171		}
3172	}
3173
3174	/* invariant: cache_slot now points at some slot
3175	 * in cache.
3176	 */
3177	if (cache_slot < 0 || cache_slot >= MAXANCACHE) {
3178		log(LOG_ERR, "an_cache_store, bad index: %d of "
3179		    "[0..%d], gross cache error\n",
3180		    cache_slot, MAXANCACHE);
3181		return;
3182	}
3183
3184	/*  store items in cache
3185	 *  .ip source address
3186	 *  .mac src
3187	 *  .signal, etc.
3188	 */
3189	if (type_ipv4) {
3190		sc->an_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
3191	}
3192	bcopy( eh->ether_shost, sc->an_sigcache[cache_slot].macsrc,  6);
3193
3194
3195	switch (an_cache_mode) {
3196	case DBM:
3197		if (sc->an_have_rssimap) {
3198			sc->an_sigcache[cache_slot].signal =
3199				- sc->an_rssimap.an_entries[rx_rssi].an_rss_dbm;
3200			sc->an_sigcache[cache_slot].quality =
3201				- sc->an_rssimap.an_entries[rx_quality].an_rss_dbm;
3202		} else {
3203			sc->an_sigcache[cache_slot].signal = rx_rssi - 100;
3204			sc->an_sigcache[cache_slot].quality = rx_quality - 100;
3205		}
3206		break;
3207	case PERCENT:
3208		if (sc->an_have_rssimap) {
3209			sc->an_sigcache[cache_slot].signal =
3210				sc->an_rssimap.an_entries[rx_rssi].an_rss_pct;
3211			sc->an_sigcache[cache_slot].quality =
3212				sc->an_rssimap.an_entries[rx_quality].an_rss_pct;
3213		} else {
3214			if (rx_rssi > 100)
3215				rx_rssi = 100;
3216			if (rx_quality > 100)
3217				rx_quality = 100;
3218			sc->an_sigcache[cache_slot].signal = rx_rssi;
3219			sc->an_sigcache[cache_slot].quality = rx_quality;
3220		}
3221		break;
3222	case RAW:
3223		sc->an_sigcache[cache_slot].signal = rx_rssi;
3224		sc->an_sigcache[cache_slot].quality = rx_quality;
3225		break;
3226	}
3227
3228	sc->an_sigcache[cache_slot].noise = 0;
3229
3230	return;
3231}
3232#endif
3233
3234static int
3235an_media_change(struct ifnet *ifp)
3236{
3237	struct an_softc *sc = ifp->if_softc;
3238	struct an_ltv_genconfig	*cfg;
3239	int otype = sc->an_config.an_opmode;
3240	int orate = sc->an_tx_rate;
3241
3242	AN_LOCK(sc);
3243	sc->an_tx_rate = ieee80211_media2rate(
3244		IFM_SUBTYPE(sc->an_ifmedia.ifm_cur->ifm_media));
3245	if (sc->an_tx_rate < 0)
3246		sc->an_tx_rate = 0;
3247
3248	if (orate != sc->an_tx_rate) {
3249		/* Read the current configuration */
3250		sc->an_config.an_type = AN_RID_GENCONFIG;
3251		sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
3252		an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
3253		cfg = &sc->an_config;
3254
3255		/* clear other rates and set the only one we want */
3256		bzero(cfg->an_rates, sizeof(cfg->an_rates));
3257		cfg->an_rates[0] = sc->an_tx_rate;
3258
3259		/* Save the new rate */
3260		sc->an_config.an_type = AN_RID_GENCONFIG;
3261		sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
3262	}
3263
3264	if ((sc->an_ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
3265		sc->an_config.an_opmode &= ~AN_OPMODE_INFRASTRUCTURE_STATION;
3266	else
3267		sc->an_config.an_opmode |= AN_OPMODE_INFRASTRUCTURE_STATION;
3268
3269	if (otype != sc->an_config.an_opmode ||
3270	    orate != sc->an_tx_rate)
3271		an_init_locked(sc);
3272	AN_UNLOCK(sc);
3273
3274	return(0);
3275}
3276
3277static void
3278an_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3279{
3280	struct an_ltv_status	status;
3281	struct an_softc		*sc = ifp->if_softc;
3282
3283	imr->ifm_active = IFM_IEEE80211;
3284
3285	AN_LOCK(sc);
3286	status.an_len = sizeof(status);
3287	status.an_type = AN_RID_STATUS;
3288	if (an_read_record(sc, (struct an_ltv_gen *)&status)) {
3289		/* If the status read fails, just lie. */
3290		imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
3291		imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
3292	}
3293
3294	if (sc->an_tx_rate == 0) {
3295		imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
3296	}
3297
3298	if (sc->an_config.an_opmode == AN_OPMODE_IBSS_ADHOC)
3299		imr->ifm_active |= IFM_IEEE80211_ADHOC;
3300	imr->ifm_active |= ieee80211_rate2media(NULL,
3301		status.an_current_tx_rate, IEEE80211_MODE_AUTO);
3302	imr->ifm_status = IFM_AVALID;
3303	if (status.an_opmode & AN_STATUS_OPMODE_ASSOCIATED)
3304		imr->ifm_status |= IFM_ACTIVE;
3305	AN_UNLOCK(sc);
3306}
3307
3308/********************** Cisco utility support routines *************/
3309
3310/*
3311 * ReadRids & WriteRids derived from Cisco driver additions to Ben Reed's
3312 * Linux driver
3313 */
3314
3315static int
3316readrids(struct ifnet *ifp, struct aironet_ioctl *l_ioctl)
3317{
3318	unsigned short  rid;
3319	struct an_softc *sc;
3320	int error;
3321
3322	switch (l_ioctl->command) {
3323	case AIROGCAP:
3324		rid = AN_RID_CAPABILITIES;
3325		break;
3326	case AIROGCFG:
3327		rid = AN_RID_GENCONFIG;
3328		break;
3329	case AIROGSLIST:
3330		rid = AN_RID_SSIDLIST;
3331		break;
3332	case AIROGVLIST:
3333		rid = AN_RID_APLIST;
3334		break;
3335	case AIROGDRVNAM:
3336		rid = AN_RID_DRVNAME;
3337		break;
3338	case AIROGEHTENC:
3339		rid = AN_RID_ENCAPPROTO;
3340		break;
3341	case AIROGWEPKTMP:
3342		rid = AN_RID_WEP_TEMP;
3343		break;
3344	case AIROGWEPKNV:
3345		rid = AN_RID_WEP_PERM;
3346		break;
3347	case AIROGSTAT:
3348		rid = AN_RID_STATUS;
3349		break;
3350	case AIROGSTATSD32:
3351		rid = AN_RID_32BITS_DELTA;
3352		break;
3353	case AIROGSTATSC32:
3354		rid = AN_RID_32BITS_CUM;
3355		break;
3356	default:
3357		rid = 999;
3358		break;
3359	}
3360
3361	if (rid == 999)	/* Is bad command */
3362		return -EINVAL;
3363
3364	sc = ifp->if_softc;
3365	sc->areq.an_len  = AN_MAX_DATALEN;
3366	sc->areq.an_type = rid;
3367
3368	an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3369
3370	l_ioctl->len = sc->areq.an_len - 4;	/* just data */
3371
3372	AN_UNLOCK(sc);
3373	/* the data contains the length at first */
3374	if (copyout(&(sc->areq.an_len), l_ioctl->data,
3375		    sizeof(sc->areq.an_len))) {
3376		error = -EFAULT;
3377		goto lock_exit;
3378	}
3379	/* Just copy the data back */
3380	if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3381		    l_ioctl->len)) {
3382		error = -EFAULT;
3383		goto lock_exit;
3384	}
3385	error = 0;
3386lock_exit:
3387	AN_LOCK(sc);
3388	return (error);
3389}
3390
3391static int
3392writerids(struct ifnet *ifp, struct aironet_ioctl *l_ioctl)
3393{
3394	struct an_softc *sc;
3395	int		rid, command, error;
3396
3397	sc = ifp->if_softc;
3398	AN_LOCK_ASSERT(sc);
3399	rid = 0;
3400	command = l_ioctl->command;
3401
3402	switch (command) {
3403	case AIROPSIDS:
3404		rid = AN_RID_SSIDLIST;
3405		break;
3406	case AIROPCAP:
3407		rid = AN_RID_CAPABILITIES;
3408		break;
3409	case AIROPAPLIST:
3410		rid = AN_RID_APLIST;
3411		break;
3412	case AIROPCFG:
3413		rid = AN_RID_GENCONFIG;
3414		break;
3415	case AIROPMACON:
3416		an_cmd(sc, AN_CMD_ENABLE, 0);
3417		return 0;
3418		break;
3419	case AIROPMACOFF:
3420		an_cmd(sc, AN_CMD_DISABLE, 0);
3421		return 0;
3422		break;
3423	case AIROPSTCLR:
3424		/*
3425		 * This command merely clears the counts does not actually
3426		 * store any data only reads rid. But as it changes the cards
3427		 * state, I put it in the writerid routines.
3428		 */
3429
3430		rid = AN_RID_32BITS_DELTACLR;
3431		sc = ifp->if_softc;
3432		sc->areq.an_len = AN_MAX_DATALEN;
3433		sc->areq.an_type = rid;
3434
3435		an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3436		l_ioctl->len = sc->areq.an_len - 4;	/* just data */
3437
3438		AN_UNLOCK(sc);
3439		/* the data contains the length at first */
3440		error = copyout(&(sc->areq.an_len), l_ioctl->data,
3441			    sizeof(sc->areq.an_len));
3442		if (error) {
3443			AN_LOCK(sc);
3444			return -EFAULT;
3445		}
3446		/* Just copy the data */
3447		error = copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3448			    l_ioctl->len);
3449		AN_LOCK(sc);
3450		if (error)
3451			return -EFAULT;
3452		return 0;
3453		break;
3454	case AIROPWEPKEY:
3455		rid = AN_RID_WEP_TEMP;
3456		break;
3457	case AIROPWEPKEYNV:
3458		rid = AN_RID_WEP_PERM;
3459		break;
3460	case AIROPLEAPUSR:
3461		rid = AN_RID_LEAPUSERNAME;
3462		break;
3463	case AIROPLEAPPWD:
3464		rid = AN_RID_LEAPPASSWORD;
3465		break;
3466	default:
3467		return -EOPNOTSUPP;
3468	}
3469
3470	if (rid) {
3471		if (l_ioctl->len > sizeof(sc->areq.an_val) + 4)
3472			return -EINVAL;
3473		sc->areq.an_len = l_ioctl->len + 4;	/* add type & length */
3474		sc->areq.an_type = rid;
3475
3476		/* Just copy the data back */
3477		AN_UNLOCK(sc);
3478		error = copyin((l_ioctl->data) + 2, &sc->areq.an_val,
3479		       l_ioctl->len);
3480		AN_LOCK(sc);
3481		if (error)
3482			return -EFAULT;
3483
3484		an_cmd(sc, AN_CMD_DISABLE, 0);
3485		an_write_record(sc, (struct an_ltv_gen *)&sc->areq);
3486		an_cmd(sc, AN_CMD_ENABLE, 0);
3487		return 0;
3488	}
3489	return -EOPNOTSUPP;
3490}
3491
3492/*
3493 * General Flash utilities derived from Cisco driver additions to Ben Reed's
3494 * Linux driver
3495 */
3496
3497#define FLASH_DELAY(_sc, x)	msleep(ifp, &(_sc)->an_mtx, PZERO, \
3498	"flash", ((x) / hz) + 1);
3499#define FLASH_COMMAND	0x7e7e
3500#define FLASH_SIZE	32 * 1024
3501
3502static int
3503unstickbusy(struct ifnet *ifp)
3504{
3505	struct an_softc *sc = ifp->if_softc;
3506
3507	if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
3508		CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350),
3509			    AN_EV_CLR_STUCK_BUSY);
3510		return 1;
3511	}
3512	return 0;
3513}
3514
3515/*
3516 * Wait for busy completion from card wait for delay uSec's Return true for
3517 * success meaning command reg is clear
3518 */
3519
3520static int
3521WaitBusy(struct ifnet *ifp, int uSec)
3522{
3523	int		statword = 0xffff;
3524	int		delay = 0;
3525	struct an_softc	*sc = ifp->if_softc;
3526
3527	while ((statword & AN_CMD_BUSY) && delay <= (1000 * 100)) {
3528		FLASH_DELAY(sc, 10);
3529		delay += 10;
3530		statword = CSR_READ_2(sc, AN_COMMAND(sc->mpi350));
3531
3532		if ((AN_CMD_BUSY & statword) && (delay % 200)) {
3533			unstickbusy(ifp);
3534		}
3535	}
3536
3537	return 0 == (AN_CMD_BUSY & statword);
3538}
3539
3540/*
3541 * STEP 1) Disable MAC and do soft reset on card.
3542 */
3543
3544static int
3545cmdreset(struct ifnet *ifp)
3546{
3547	int		status;
3548	struct an_softc	*sc = ifp->if_softc;
3549
3550	AN_LOCK(sc);
3551	an_stop(sc);
3552
3553	an_cmd(sc, AN_CMD_DISABLE, 0);
3554
3555	if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3556		if_printf(ifp, "Waitbusy hang b4 RESET =%d\n", status);
3557		AN_UNLOCK(sc);
3558		return -EBUSY;
3559	}
3560	CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), AN_CMD_FW_RESTART);
3561
3562	FLASH_DELAY(sc, 1000);	/* WAS 600 12/7/00 */
3563
3564
3565	if (!(status = WaitBusy(ifp, 100))) {
3566		if_printf(ifp, "Waitbusy hang AFTER RESET =%d\n", status);
3567		AN_UNLOCK(sc);
3568		return -EBUSY;
3569	}
3570	AN_UNLOCK(sc);
3571	return 0;
3572}
3573
3574/*
3575 * STEP 2) Put the card in legendary flash mode
3576 */
3577
3578static int
3579setflashmode(struct ifnet *ifp)
3580{
3581	int		status;
3582	struct an_softc	*sc = ifp->if_softc;
3583
3584	CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3585	CSR_WRITE_2(sc, AN_SW1(sc->mpi350), FLASH_COMMAND);
3586	CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3587	CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), FLASH_COMMAND);
3588
3589	/*
3590	 * mdelay(500); // 500ms delay
3591	 */
3592
3593	FLASH_DELAY(sc, 500);
3594
3595	if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3596		printf("Waitbusy hang after setflash mode\n");
3597		return -EIO;
3598	}
3599	return 0;
3600}
3601
3602/*
3603 * Get a character from the card matching matchbyte Step 3)
3604 */
3605
3606static int
3607flashgchar(struct ifnet *ifp, int matchbyte, int dwelltime)
3608{
3609	int		rchar;
3610	unsigned char	rbyte = 0;
3611	int		success = -1;
3612	struct an_softc	*sc = ifp->if_softc;
3613
3614
3615	do {
3616		rchar = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3617
3618		if (dwelltime && !(0x8000 & rchar)) {
3619			dwelltime -= 10;
3620			FLASH_DELAY(sc, 10);
3621			continue;
3622		}
3623		rbyte = 0xff & rchar;
3624
3625		if ((rbyte == matchbyte) && (0x8000 & rchar)) {
3626			CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3627			success = 1;
3628			break;
3629		}
3630		if (rbyte == 0x81 || rbyte == 0x82 || rbyte == 0x83 || rbyte == 0x1a || 0xffff == rchar)
3631			break;
3632		CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3633
3634	} while (dwelltime > 0);
3635	return success;
3636}
3637
3638/*
3639 * Put character to SWS0 wait for dwelltime x 50us for  echo .
3640 */
3641
3642static int
3643flashpchar(struct ifnet *ifp, int byte, int dwelltime)
3644{
3645	int		echo;
3646	int		pollbusy, waittime;
3647	struct an_softc	*sc = ifp->if_softc;
3648
3649	byte |= 0x8000;
3650
3651	if (dwelltime == 0)
3652		dwelltime = 200;
3653
3654	waittime = dwelltime;
3655
3656	/*
3657	 * Wait for busy bit d15 to go false indicating buffer empty
3658	 */
3659	do {
3660		pollbusy = CSR_READ_2(sc, AN_SW0(sc->mpi350));
3661
3662		if (pollbusy & 0x8000) {
3663			FLASH_DELAY(sc, 50);
3664			waittime -= 50;
3665			continue;
3666		} else
3667			break;
3668	}
3669	while (waittime >= 0);
3670
3671	/* timeout for busy clear wait */
3672
3673	if (waittime <= 0) {
3674		if_printf(ifp, "flash putchar busywait timeout!\n");
3675		return -1;
3676	}
3677	/*
3678	 * Port is clear now write byte and wait for it to echo back
3679	 */
3680	do {
3681		CSR_WRITE_2(sc, AN_SW0(sc->mpi350), byte);
3682		FLASH_DELAY(sc, 50);
3683		dwelltime -= 50;
3684		echo = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3685	} while (dwelltime >= 0 && echo != byte);
3686
3687
3688	CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3689
3690	return echo == byte;
3691}
3692
3693/*
3694 * Transfer 32k of firmware data from user buffer to our buffer and send to
3695 * the card
3696 */
3697
3698static int
3699flashputbuf(struct ifnet *ifp)
3700{
3701	unsigned short *bufp;
3702	int		nwords;
3703	struct an_softc	*sc = ifp->if_softc;
3704
3705	/* Write stuff */
3706
3707	bufp = sc->an_flash_buffer;
3708
3709	if (!sc->mpi350) {
3710		CSR_WRITE_2(sc, AN_AUX_PAGE, 0x100);
3711		CSR_WRITE_2(sc, AN_AUX_OFFSET, 0);
3712
3713		for (nwords = 0; nwords != FLASH_SIZE / 2; nwords++) {
3714			CSR_WRITE_2(sc, AN_AUX_DATA, bufp[nwords] & 0xffff);
3715		}
3716	} else {
3717		for (nwords = 0; nwords != FLASH_SIZE / 4; nwords++) {
3718			CSR_MEM_AUX_WRITE_4(sc, 0x8000,
3719				((u_int32_t *)bufp)[nwords] & 0xffff);
3720		}
3721	}
3722
3723	CSR_WRITE_2(sc, AN_SW0(sc->mpi350), 0x8000);
3724
3725	return 0;
3726}
3727
3728/*
3729 * After flashing restart the card.
3730 */
3731
3732static int
3733flashrestart(struct ifnet *ifp)
3734{
3735	int		status = 0;
3736	struct an_softc	*sc = ifp->if_softc;
3737
3738	FLASH_DELAY(sc, 1024);		/* Added 12/7/00 */
3739
3740	an_init_locked(sc);
3741
3742	FLASH_DELAY(sc, 1024);		/* Added 12/7/00 */
3743	return status;
3744}
3745
3746/*
3747 * Entry point for flash ioclt.
3748 */
3749
3750static int
3751flashcard(struct ifnet *ifp, struct aironet_ioctl *l_ioctl)
3752{
3753	int		z = 0, status;
3754	struct an_softc	*sc;
3755
3756	sc = ifp->if_softc;
3757	if (sc->mpi350) {
3758		if_printf(ifp, "flashing not supported on MPI 350 yet\n");
3759		return(-1);
3760	}
3761	status = l_ioctl->command;
3762
3763	switch (l_ioctl->command) {
3764	case AIROFLSHRST:
3765		return cmdreset(ifp);
3766		break;
3767	case AIROFLSHSTFL:
3768		if (sc->an_flash_buffer) {
3769			free(sc->an_flash_buffer, M_DEVBUF);
3770			sc->an_flash_buffer = NULL;
3771		}
3772		sc->an_flash_buffer = malloc(FLASH_SIZE, M_DEVBUF, M_WAITOK);
3773		if (sc->an_flash_buffer)
3774			return setflashmode(ifp);
3775		else
3776			return ENOBUFS;
3777		break;
3778	case AIROFLSHGCHR:	/* Get char from aux */
3779		AN_UNLOCK(sc);
3780		status = copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3781		AN_LOCK(sc);
3782		if (status)
3783			return status;
3784		z = *(int *)&sc->areq;
3785		if ((status = flashgchar(ifp, z, 8000)) == 1)
3786			return 0;
3787		else
3788			return -1;
3789	case AIROFLSHPCHR:	/* Send char to card. */
3790		AN_UNLOCK(sc);
3791		status = copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3792		AN_LOCK(sc);
3793		if (status)
3794			return status;
3795		z = *(int *)&sc->areq;
3796		if ((status = flashpchar(ifp, z, 8000)) == -1)
3797			return -EIO;
3798		else
3799			return 0;
3800		break;
3801	case AIROFLPUTBUF:	/* Send 32k to card */
3802		if (l_ioctl->len > FLASH_SIZE) {
3803			if_printf(ifp, "Buffer to big, %x %x\n",
3804			       l_ioctl->len, FLASH_SIZE);
3805			return -EINVAL;
3806		}
3807		AN_UNLOCK(sc);
3808		status = copyin(l_ioctl->data, sc->an_flash_buffer, l_ioctl->len);
3809		AN_LOCK(sc);
3810		if (status)
3811			return status;
3812
3813		if ((status = flashputbuf(ifp)) != 0)
3814			return -EIO;
3815		else
3816			return 0;
3817		break;
3818	case AIRORESTART:
3819		if ((status = flashrestart(ifp)) != 0) {
3820			if_printf(ifp, "FLASHRESTART returned %d\n", status);
3821			return -EIO;
3822		} else
3823			return 0;
3824
3825		break;
3826	default:
3827		return -EINVAL;
3828	}
3829
3830	return -EINVAL;
3831}
3832