1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33/*
34 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
35 */
36
37#ifdef HAVE_KERNEL_OPTION_HEADERS
38#include "opt_device_polling.h"
39#endif
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/bus.h>
44#include <sys/endian.h>
45#include <sys/kernel.h>
46#include <sys/mbuf.h>
47#include <sys/lock.h>
48#include <sys/module.h>
49#include <sys/mutex.h>
50#include <sys/rman.h>
51#include <sys/socket.h>
52#include <sys/sockio.h>
53#include <sys/sysctl.h>
54
55#include <net/bpf.h>
56#include <net/ethernet.h>
57#include <net/if.h>
58#include <net/if_arp.h>
59#include <net/if_dl.h>
60#include <net/if_media.h>
61#include <net/if_types.h>
62#include <net/if_vlan_var.h>
63
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#include <netinet/tcp.h>
68#include <netinet/udp.h>
69
70#include <machine/bus.h>
71#include <machine/in_cksum.h>
72#include <machine/resource.h>
73
74#include <dev/pci/pcivar.h>
75#include <dev/pci/pcireg.h>		/* for PCIM_CMD_xxx */
76
77#include <dev/mii/mii.h>
78#include <dev/mii/miivar.h>
79
80#include <dev/fxp/if_fxpreg.h>
81#include <dev/fxp/if_fxpvar.h>
82#include <dev/fxp/rcvbundl.h>
83
84MODULE_DEPEND(fxp, pci, 1, 1, 1);
85MODULE_DEPEND(fxp, ether, 1, 1, 1);
86MODULE_DEPEND(fxp, miibus, 1, 1, 1);
87#include "miibus_if.h"
88
89/*
90 * NOTE!  On !x86 we typically have an alignment constraint.  The
91 * card DMAs the packet immediately following the RFA.  However,
92 * the first thing in the packet is a 14-byte Ethernet header.
93 * This means that the packet is misaligned.  To compensate,
94 * we actually offset the RFA 2 bytes into the cluster.  This
95 * alignes the packet after the Ethernet header at a 32-bit
96 * boundary.  HOWEVER!  This means that the RFA is misaligned!
97 */
98#define	RFA_ALIGNMENT_FUDGE	2
99
100/*
101 * Set initial transmit threshold at 64 (512 bytes). This is
102 * increased by 64 (512 bytes) at a time, to maximum of 192
103 * (1536 bytes), if an underrun occurs.
104 */
105static int tx_threshold = 64;
106
107/*
108 * The configuration byte map has several undefined fields which
109 * must be one or must be zero.  Set up a template for these bits.
110 * The actual configuration is performed in fxp_init_body.
111 *
112 * See struct fxp_cb_config for the bit definitions.
113 */
114static const u_char const fxp_cb_config_template[] = {
115	0x0, 0x0,		/* cb_status */
116	0x0, 0x0,		/* cb_command */
117	0x0, 0x0, 0x0, 0x0,	/* link_addr */
118	0x0,	/*  0 */
119	0x0,	/*  1 */
120	0x0,	/*  2 */
121	0x0,	/*  3 */
122	0x0,	/*  4 */
123	0x0,	/*  5 */
124	0x32,	/*  6 */
125	0x0,	/*  7 */
126	0x0,	/*  8 */
127	0x0,	/*  9 */
128	0x6,	/* 10 */
129	0x0,	/* 11 */
130	0x0,	/* 12 */
131	0x0,	/* 13 */
132	0xf2,	/* 14 */
133	0x48,	/* 15 */
134	0x0,	/* 16 */
135	0x40,	/* 17 */
136	0xf0,	/* 18 */
137	0x0,	/* 19 */
138	0x3f,	/* 20 */
139	0x5,	/* 21 */
140	0x0,	/* 22 */
141	0x0,	/* 23 */
142	0x0,	/* 24 */
143	0x0,	/* 25 */
144	0x0,	/* 26 */
145	0x0,	/* 27 */
146	0x0,	/* 28 */
147	0x0,	/* 29 */
148	0x0,	/* 30 */
149	0x0	/* 31 */
150};
151
152/*
153 * Claim various Intel PCI device identifiers for this driver.  The
154 * sub-vendor and sub-device field are extensively used to identify
155 * particular variants, but we don't currently differentiate between
156 * them.
157 */
158static const struct fxp_ident const fxp_ident_table[] = {
159    { 0x1029,	-1,	0, "Intel 82559 PCI/CardBus Pro/100" },
160    { 0x1030,	-1,	0, "Intel 82559 Pro/100 Ethernet" },
161    { 0x1031,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
162    { 0x1032,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
163    { 0x1033,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
164    { 0x1034,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
165    { 0x1035,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
166    { 0x1036,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
167    { 0x1037,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
168    { 0x1038,	-1,	3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
169    { 0x1039,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
170    { 0x103A,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
171    { 0x103B,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
172    { 0x103C,	-1,	4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
173    { 0x103D,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
174    { 0x103E,	-1,	4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
175    { 0x1050,	-1,	5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
176    { 0x1051,	-1,	5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
177    { 0x1059,	-1,	0, "Intel 82551QM Pro/100 M Mobile Connection" },
178    { 0x1064,	-1,	6, "Intel 82562EZ (ICH6)" },
179    { 0x1065,	-1,	6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
180    { 0x1068,	-1,	6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
181    { 0x1069,	-1,	6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
182    { 0x1091,	-1,	7, "Intel 82562GX Pro/100 Ethernet" },
183    { 0x1092,	-1,	7, "Intel Pro/100 VE Network Connection" },
184    { 0x1093,	-1,	7, "Intel Pro/100 VM Network Connection" },
185    { 0x1094,	-1,	7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
186    { 0x1209,	-1,	0, "Intel 82559ER Embedded 10/100 Ethernet" },
187    { 0x1229,	0x01,	0, "Intel 82557 Pro/100 Ethernet" },
188    { 0x1229,	0x02,	0, "Intel 82557 Pro/100 Ethernet" },
189    { 0x1229,	0x03,	0, "Intel 82557 Pro/100 Ethernet" },
190    { 0x1229,	0x04,	0, "Intel 82558 Pro/100 Ethernet" },
191    { 0x1229,	0x05,	0, "Intel 82558 Pro/100 Ethernet" },
192    { 0x1229,	0x06,	0, "Intel 82559 Pro/100 Ethernet" },
193    { 0x1229,	0x07,	0, "Intel 82559 Pro/100 Ethernet" },
194    { 0x1229,	0x08,	0, "Intel 82559 Pro/100 Ethernet" },
195    { 0x1229,	0x09,	0, "Intel 82559ER Pro/100 Ethernet" },
196    { 0x1229,	0x0c,	0, "Intel 82550 Pro/100 Ethernet" },
197    { 0x1229,	0x0d,	0, "Intel 82550C Pro/100 Ethernet" },
198    { 0x1229,	0x0e,	0, "Intel 82550 Pro/100 Ethernet" },
199    { 0x1229,	0x0f,	0, "Intel 82551 Pro/100 Ethernet" },
200    { 0x1229,	0x10,	0, "Intel 82551 Pro/100 Ethernet" },
201    { 0x1229,	-1,	0, "Intel 82557/8/9 Pro/100 Ethernet" },
202    { 0x2449,	-1,	2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
203    { 0x27dc,	-1,	7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
204    { 0,	-1,	0, NULL },
205};
206
207#ifdef FXP_IP_CSUM_WAR
208#define FXP_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
209#else
210#define FXP_CSUM_FEATURES    (CSUM_TCP | CSUM_UDP)
211#endif
212
213static int		fxp_probe(device_t dev);
214static int		fxp_attach(device_t dev);
215static int		fxp_detach(device_t dev);
216static int		fxp_shutdown(device_t dev);
217static int		fxp_suspend(device_t dev);
218static int		fxp_resume(device_t dev);
219
220static const struct fxp_ident *fxp_find_ident(device_t dev);
221static void		fxp_intr(void *xsc);
222static void		fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp,
223			    struct mbuf *m, uint16_t status, int pos);
224static int		fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp,
225			    uint8_t statack, int count);
226static void 		fxp_init(void *xsc);
227static void 		fxp_init_body(struct fxp_softc *sc, int);
228static void 		fxp_tick(void *xsc);
229static void 		fxp_start(struct ifnet *ifp);
230static void 		fxp_start_body(struct ifnet *ifp);
231static int		fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
232static void		fxp_txeof(struct fxp_softc *sc);
233static void		fxp_stop(struct fxp_softc *sc);
234static void 		fxp_release(struct fxp_softc *sc);
235static int		fxp_ioctl(struct ifnet *ifp, u_long command,
236			    caddr_t data);
237static void 		fxp_watchdog(struct fxp_softc *sc);
238static void		fxp_add_rfabuf(struct fxp_softc *sc,
239			    struct fxp_rx *rxp);
240static void		fxp_discard_rfabuf(struct fxp_softc *sc,
241			    struct fxp_rx *rxp);
242static int		fxp_new_rfabuf(struct fxp_softc *sc,
243			    struct fxp_rx *rxp);
244static int		fxp_mc_addrs(struct fxp_softc *sc);
245static void		fxp_mc_setup(struct fxp_softc *sc);
246static uint16_t		fxp_eeprom_getword(struct fxp_softc *sc, int offset,
247			    int autosize);
248static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
249			    uint16_t data);
250static void		fxp_autosize_eeprom(struct fxp_softc *sc);
251static void		fxp_load_eeprom(struct fxp_softc *sc);
252static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
253			    int offset, int words);
254static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
255			    int offset, int words);
256static int		fxp_ifmedia_upd(struct ifnet *ifp);
257static void		fxp_ifmedia_sts(struct ifnet *ifp,
258			    struct ifmediareq *ifmr);
259static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
260static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
261			    struct ifmediareq *ifmr);
262static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
263static int		fxp_miibus_writereg(device_t dev, int phy, int reg,
264			    int value);
265static void		fxp_miibus_statchg(device_t dev);
266static void		fxp_load_ucode(struct fxp_softc *sc);
267static void		fxp_update_stats(struct fxp_softc *sc);
268static void		fxp_sysctl_node(struct fxp_softc *sc);
269static int		sysctl_int_range(SYSCTL_HANDLER_ARGS,
270			    int low, int high);
271static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
272static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
273static void 		fxp_scb_wait(struct fxp_softc *sc);
274static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
275static void		fxp_dma_wait(struct fxp_softc *sc,
276			    volatile uint16_t *status, bus_dma_tag_t dmat,
277			    bus_dmamap_t map);
278
279static device_method_t fxp_methods[] = {
280	/* Device interface */
281	DEVMETHOD(device_probe,		fxp_probe),
282	DEVMETHOD(device_attach,	fxp_attach),
283	DEVMETHOD(device_detach,	fxp_detach),
284	DEVMETHOD(device_shutdown,	fxp_shutdown),
285	DEVMETHOD(device_suspend,	fxp_suspend),
286	DEVMETHOD(device_resume,	fxp_resume),
287
288	/* MII interface */
289	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
290	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
291	DEVMETHOD(miibus_statchg,	fxp_miibus_statchg),
292
293	DEVMETHOD_END
294};
295
296static driver_t fxp_driver = {
297	"fxp",
298	fxp_methods,
299	sizeof(struct fxp_softc),
300};
301
302static devclass_t fxp_devclass;
303
304DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, fxp_devclass, NULL, NULL,
305    SI_ORDER_ANY);
306DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL);
307
308static struct resource_spec fxp_res_spec_mem[] = {
309	{ SYS_RES_MEMORY,	FXP_PCI_MMBA,	RF_ACTIVE },
310	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
311	{ -1, 0 }
312};
313
314static struct resource_spec fxp_res_spec_io[] = {
315	{ SYS_RES_IOPORT,	FXP_PCI_IOBA,	RF_ACTIVE },
316	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
317	{ -1, 0 }
318};
319
320/*
321 * Wait for the previous command to be accepted (but not necessarily
322 * completed).
323 */
324static void
325fxp_scb_wait(struct fxp_softc *sc)
326{
327	union {
328		uint16_t w;
329		uint8_t b[2];
330	} flowctl;
331	int i = 10000;
332
333	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
334		DELAY(2);
335	if (i == 0) {
336		flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
337		flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
338		device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
339		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
340		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
341		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
342	}
343}
344
345static void
346fxp_scb_cmd(struct fxp_softc *sc, int cmd)
347{
348
349	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
350		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
351		fxp_scb_wait(sc);
352	}
353	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
354}
355
356static void
357fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
358    bus_dma_tag_t dmat, bus_dmamap_t map)
359{
360	int i;
361
362	for (i = 10000; i > 0; i--) {
363		DELAY(2);
364		bus_dmamap_sync(dmat, map,
365		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
366		if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
367			break;
368	}
369	if (i == 0)
370		device_printf(sc->dev, "DMA timeout\n");
371}
372
373static const struct fxp_ident *
374fxp_find_ident(device_t dev)
375{
376	uint16_t devid;
377	uint8_t revid;
378	const struct fxp_ident *ident;
379
380	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
381		devid = pci_get_device(dev);
382		revid = pci_get_revid(dev);
383		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
384			if (ident->devid == devid &&
385			    (ident->revid == revid || ident->revid == -1)) {
386				return (ident);
387			}
388		}
389	}
390	return (NULL);
391}
392
393/*
394 * Return identification string if this device is ours.
395 */
396static int
397fxp_probe(device_t dev)
398{
399	const struct fxp_ident *ident;
400
401	ident = fxp_find_ident(dev);
402	if (ident != NULL) {
403		device_set_desc(dev, ident->name);
404		return (BUS_PROBE_DEFAULT);
405	}
406	return (ENXIO);
407}
408
409static void
410fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
411{
412	uint32_t *addr;
413
414	if (error)
415		return;
416
417	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
418	addr = arg;
419	*addr = segs->ds_addr;
420}
421
422static int
423fxp_attach(device_t dev)
424{
425	struct fxp_softc *sc;
426	struct fxp_cb_tx *tcbp;
427	struct fxp_tx *txp;
428	struct fxp_rx *rxp;
429	struct ifnet *ifp;
430	uint32_t val;
431	uint16_t data;
432	u_char eaddr[ETHER_ADDR_LEN];
433	int error, flags, i, pmc, prefer_iomap;
434
435	error = 0;
436	sc = device_get_softc(dev);
437	sc->dev = dev;
438	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
439	    MTX_DEF);
440	callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
441	ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
442	    fxp_serial_ifmedia_sts);
443
444	ifp = sc->ifp = if_alloc(IFT_ETHER);
445	if (ifp == NULL) {
446		device_printf(dev, "can not if_alloc()\n");
447		error = ENOSPC;
448		goto fail;
449	}
450
451	/*
452	 * Enable bus mastering.
453	 */
454	pci_enable_busmaster(dev);
455	val = pci_read_config(dev, PCIR_COMMAND, 2);
456
457	/*
458	 * Figure out which we should try first - memory mapping or i/o mapping?
459	 * We default to memory mapping. Then we accept an override from the
460	 * command line. Then we check to see which one is enabled.
461	 */
462	prefer_iomap = 0;
463	resource_int_value(device_get_name(dev), device_get_unit(dev),
464	    "prefer_iomap", &prefer_iomap);
465	if (prefer_iomap)
466		sc->fxp_spec = fxp_res_spec_io;
467	else
468		sc->fxp_spec = fxp_res_spec_mem;
469
470	error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
471	if (error) {
472		if (sc->fxp_spec == fxp_res_spec_mem)
473			sc->fxp_spec = fxp_res_spec_io;
474		else
475			sc->fxp_spec = fxp_res_spec_mem;
476		error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
477	}
478	if (error) {
479		device_printf(dev, "could not allocate resources\n");
480		error = ENXIO;
481		goto fail;
482	}
483
484	if (bootverbose) {
485		device_printf(dev, "using %s space register mapping\n",
486		   sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
487	}
488
489	/*
490	 * Put CU/RU idle state and prepare full reset.
491	 */
492	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
493	DELAY(10);
494	/* Full reset and disable interrupts. */
495	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
496	DELAY(10);
497	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
498
499	/*
500	 * Find out how large of an SEEPROM we have.
501	 */
502	fxp_autosize_eeprom(sc);
503	fxp_load_eeprom(sc);
504
505	/*
506	 * Find out the chip revision; lump all 82557 revs together.
507	 */
508	sc->ident = fxp_find_ident(dev);
509	if (sc->ident->ich > 0) {
510		/* Assume ICH controllers are 82559. */
511		sc->revision = FXP_REV_82559_A0;
512	} else {
513		data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
514		if ((data >> 8) == 1)
515			sc->revision = FXP_REV_82557;
516		else
517			sc->revision = pci_get_revid(dev);
518	}
519
520	/*
521	 * Check availability of WOL. 82559ER does not support WOL.
522	 */
523	if (sc->revision >= FXP_REV_82558_A4 &&
524	    sc->revision != FXP_REV_82559S_A) {
525		data = sc->eeprom[FXP_EEPROM_MAP_ID];
526		if ((data & 0x20) != 0 &&
527		    pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
528			sc->flags |= FXP_FLAG_WOLCAP;
529	}
530
531	if (sc->revision == FXP_REV_82550_C) {
532		/*
533		 * 82550C with server extension requires microcode to
534		 * receive fragmented UDP datagrams.  However if the
535		 * microcode is used for client-only featured 82550C
536		 * it locks up controller.
537		 */
538		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
539		if ((data & 0x0400) == 0)
540			sc->flags |= FXP_FLAG_NO_UCODE;
541	}
542
543	/* Receiver lock-up workaround detection. */
544	if (sc->revision < FXP_REV_82558_A4) {
545		data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
546		if ((data & 0x03) != 0x03) {
547			sc->flags |= FXP_FLAG_RXBUG;
548			device_printf(dev, "Enabling Rx lock-up workaround\n");
549		}
550	}
551
552	/*
553	 * Determine whether we must use the 503 serial interface.
554	 */
555	data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
556	if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
557	    && (data & FXP_PHY_SERIAL_ONLY))
558		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
559
560	fxp_sysctl_node(sc);
561	/*
562	 * Enable workarounds for certain chip revision deficiencies.
563	 *
564	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
565	 * some systems based a normal 82559 design, have a defect where
566	 * the chip can cause a PCI protocol violation if it receives
567	 * a CU_RESUME command when it is entering the IDLE state.  The
568	 * workaround is to disable Dynamic Standby Mode, so the chip never
569	 * deasserts CLKRUN#, and always remains in an active state.
570	 *
571	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
572	 */
573	if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
574	    (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
575		data = sc->eeprom[FXP_EEPROM_MAP_ID];
576		if (data & 0x02) {			/* STB enable */
577			uint16_t cksum;
578			int i;
579
580			device_printf(dev,
581			    "Disabling dynamic standby mode in EEPROM\n");
582			data &= ~0x02;
583			sc->eeprom[FXP_EEPROM_MAP_ID] = data;
584			fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
585			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
586			cksum = 0;
587			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
588				cksum += sc->eeprom[i];
589			i = (1 << sc->eeprom_size) - 1;
590			cksum = 0xBABA - cksum;
591			fxp_write_eeprom(sc, &cksum, i, 1);
592			device_printf(dev,
593			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
594			    i, sc->eeprom[i], cksum);
595			sc->eeprom[i] = cksum;
596			/*
597			 * If the user elects to continue, try the software
598			 * workaround, as it is better than nothing.
599			 */
600			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
601		}
602	}
603
604	/*
605	 * If we are not a 82557 chip, we can enable extended features.
606	 */
607	if (sc->revision != FXP_REV_82557) {
608		/*
609		 * If MWI is enabled in the PCI configuration, and there
610		 * is a valid cacheline size (8 or 16 dwords), then tell
611		 * the board to turn on MWI.
612		 */
613		if (val & PCIM_CMD_MWRICEN &&
614		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
615			sc->flags |= FXP_FLAG_MWI_ENABLE;
616
617		/* turn on the extended TxCB feature */
618		sc->flags |= FXP_FLAG_EXT_TXCB;
619
620		/* enable reception of long frames for VLAN */
621		sc->flags |= FXP_FLAG_LONG_PKT_EN;
622	} else {
623		/* a hack to get long VLAN frames on a 82557 */
624		sc->flags |= FXP_FLAG_SAVE_BAD;
625	}
626
627	/* For 82559 or later chips, Rx checksum offload is supported. */
628	if (sc->revision >= FXP_REV_82559_A0) {
629		/* 82559ER does not support Rx checksum offloading. */
630		if (sc->ident->devid != 0x1209)
631			sc->flags |= FXP_FLAG_82559_RXCSUM;
632	}
633	/*
634	 * Enable use of extended RFDs and TCBs for 82550
635	 * and later chips. Note: we need extended TXCB support
636	 * too, but that's already enabled by the code above.
637	 * Be careful to do this only on the right devices.
638	 */
639	if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
640	    sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
641	    || sc->revision == FXP_REV_82551_10) {
642		sc->rfa_size = sizeof (struct fxp_rfa);
643		sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
644		sc->flags |= FXP_FLAG_EXT_RFA;
645		/* Use extended RFA instead of 82559 checksum mode. */
646		sc->flags &= ~FXP_FLAG_82559_RXCSUM;
647	} else {
648		sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
649		sc->tx_cmd = FXP_CB_COMMAND_XMIT;
650	}
651
652	/*
653	 * Allocate DMA tags and DMA safe memory.
654	 */
655	sc->maxtxseg = FXP_NTXSEG;
656	sc->maxsegsize = MCLBYTES;
657	if (sc->flags & FXP_FLAG_EXT_RFA) {
658		sc->maxtxseg--;
659		sc->maxsegsize = FXP_TSO_SEGSIZE;
660	}
661	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
662	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
663	    sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
664	    sc->maxtxseg, sc->maxsegsize, 0,
665	    busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
666	if (error) {
667		device_printf(dev, "could not create TX DMA tag\n");
668		goto fail;
669	}
670
671	error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
672	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
673	    MCLBYTES, 1, MCLBYTES, 0,
674	    busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
675	if (error) {
676		device_printf(dev, "could not create RX DMA tag\n");
677		goto fail;
678	}
679
680	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
681	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
682	    sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
683	    busdma_lock_mutex, &Giant, &sc->fxp_stag);
684	if (error) {
685		device_printf(dev, "could not create stats DMA tag\n");
686		goto fail;
687	}
688
689	error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
690	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
691	if (error) {
692		device_printf(dev, "could not allocate stats DMA memory\n");
693		goto fail;
694	}
695	error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
696	    sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
697	    BUS_DMA_NOWAIT);
698	if (error) {
699		device_printf(dev, "could not load the stats DMA buffer\n");
700		goto fail;
701	}
702
703	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
704	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
705	    FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
706	    busdma_lock_mutex, &Giant, &sc->cbl_tag);
707	if (error) {
708		device_printf(dev, "could not create TxCB DMA tag\n");
709		goto fail;
710	}
711
712	error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
713	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
714	if (error) {
715		device_printf(dev, "could not allocate TxCB DMA memory\n");
716		goto fail;
717	}
718
719	error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
720	    sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
721	    &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
722	if (error) {
723		device_printf(dev, "could not load TxCB DMA buffer\n");
724		goto fail;
725	}
726
727	error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
728	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
729	    sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
730	    busdma_lock_mutex, &Giant, &sc->mcs_tag);
731	if (error) {
732		device_printf(dev,
733		    "could not create multicast setup DMA tag\n");
734		goto fail;
735	}
736
737	error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
738	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
739	if (error) {
740		device_printf(dev,
741		    "could not allocate multicast setup DMA memory\n");
742		goto fail;
743	}
744	error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
745	    sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
746	    BUS_DMA_NOWAIT);
747	if (error) {
748		device_printf(dev,
749		    "can't load the multicast setup DMA buffer\n");
750		goto fail;
751	}
752
753	/*
754	 * Pre-allocate the TX DMA maps and setup the pointers to
755	 * the TX command blocks.
756	 */
757	txp = sc->fxp_desc.tx_list;
758	tcbp = sc->fxp_desc.cbl_list;
759	for (i = 0; i < FXP_NTXCB; i++) {
760		txp[i].tx_cb = tcbp + i;
761		error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
762		if (error) {
763			device_printf(dev, "can't create DMA map for TX\n");
764			goto fail;
765		}
766	}
767	error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
768	if (error) {
769		device_printf(dev, "can't create spare DMA map\n");
770		goto fail;
771	}
772
773	/*
774	 * Pre-allocate our receive buffers.
775	 */
776	sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
777	for (i = 0; i < FXP_NRFABUFS; i++) {
778		rxp = &sc->fxp_desc.rx_list[i];
779		error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
780		if (error) {
781			device_printf(dev, "can't create DMA map for RX\n");
782			goto fail;
783		}
784		if (fxp_new_rfabuf(sc, rxp) != 0) {
785			error = ENOMEM;
786			goto fail;
787		}
788		fxp_add_rfabuf(sc, rxp);
789	}
790
791	/*
792	 * Read MAC address.
793	 */
794	eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
795	eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
796	eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
797	eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
798	eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
799	eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
800	if (bootverbose) {
801		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
802		    pci_get_vendor(dev), pci_get_device(dev),
803		    pci_get_subvendor(dev), pci_get_subdevice(dev),
804		    pci_get_revid(dev));
805		device_printf(dev, "Dynamic Standby mode is %s\n",
806		    sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
807		    "disabled");
808	}
809
810	/*
811	 * If this is only a 10Mbps device, then there is no MII, and
812	 * the PHY will use a serial interface instead.
813	 *
814	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
815	 * doesn't have a programming interface of any sort.  The
816	 * media is sensed automatically based on how the link partner
817	 * is configured.  This is, in essence, manual configuration.
818	 */
819	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
820		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
821		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
822	} else {
823		/*
824		 * i82557 wedge when isolating all of their PHYs.
825		 */
826		flags = MIIF_NOISOLATE;
827		if (sc->revision >= FXP_REV_82558_A4)
828			flags |= MIIF_DOPAUSE;
829		error = mii_attach(dev, &sc->miibus, ifp, fxp_ifmedia_upd,
830		    fxp_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
831		    MII_OFFSET_ANY, flags);
832		if (error != 0) {
833			device_printf(dev, "attaching PHYs failed\n");
834			goto fail;
835		}
836	}
837
838	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
839	ifp->if_init = fxp_init;
840	ifp->if_softc = sc;
841	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
842	ifp->if_ioctl = fxp_ioctl;
843	ifp->if_start = fxp_start;
844
845	ifp->if_capabilities = ifp->if_capenable = 0;
846
847	/* Enable checksum offload/TSO for 82550 or better chips */
848	if (sc->flags & FXP_FLAG_EXT_RFA) {
849		ifp->if_hwassist = FXP_CSUM_FEATURES | CSUM_TSO;
850		ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_TSO4;
851		ifp->if_capenable |= IFCAP_HWCSUM | IFCAP_TSO4;
852	}
853
854	if (sc->flags & FXP_FLAG_82559_RXCSUM) {
855		ifp->if_capabilities |= IFCAP_RXCSUM;
856		ifp->if_capenable |= IFCAP_RXCSUM;
857	}
858
859	if (sc->flags & FXP_FLAG_WOLCAP) {
860		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
861		ifp->if_capenable |= IFCAP_WOL_MAGIC;
862	}
863
864#ifdef DEVICE_POLLING
865	/* Inform the world we support polling. */
866	ifp->if_capabilities |= IFCAP_POLLING;
867#endif
868
869	/*
870	 * Attach the interface.
871	 */
872	ether_ifattach(ifp, eaddr);
873
874	/*
875	 * Tell the upper layer(s) we support long frames.
876	 * Must appear after the call to ether_ifattach() because
877	 * ether_ifattach() sets ifi_hdrlen to the default value.
878	 */
879	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
880	ifp->if_capabilities |= IFCAP_VLAN_MTU;
881	ifp->if_capenable |= IFCAP_VLAN_MTU; /* the hw bits already set */
882	if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
883		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING |
884		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
885		ifp->if_capenable |= IFCAP_VLAN_HWTAGGING |
886		    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
887	}
888
889	/*
890	 * Let the system queue as many packets as we have available
891	 * TX descriptors.
892	 */
893	IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1);
894	ifp->if_snd.ifq_drv_maxlen = FXP_NTXCB - 1;
895	IFQ_SET_READY(&ifp->if_snd);
896
897	/*
898	 * Hook our interrupt after all initialization is complete.
899	 */
900	error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
901			       NULL, fxp_intr, sc, &sc->ih);
902	if (error) {
903		device_printf(dev, "could not setup irq\n");
904		ether_ifdetach(sc->ifp);
905		goto fail;
906	}
907
908	/*
909	 * Configure hardware to reject magic frames otherwise
910	 * system will hang on recipt of magic frames.
911	 */
912	if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
913		FXP_LOCK(sc);
914		/* Clear wakeup events. */
915		CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
916		fxp_init_body(sc, 0);
917		fxp_stop(sc);
918		FXP_UNLOCK(sc);
919	}
920
921fail:
922	if (error)
923		fxp_release(sc);
924	return (error);
925}
926
927/*
928 * Release all resources.  The softc lock should not be held and the
929 * interrupt should already be torn down.
930 */
931static void
932fxp_release(struct fxp_softc *sc)
933{
934	struct fxp_rx *rxp;
935	struct fxp_tx *txp;
936	int i;
937
938	FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
939	KASSERT(sc->ih == NULL,
940	    ("fxp_release() called with intr handle still active"));
941	if (sc->miibus)
942		device_delete_child(sc->dev, sc->miibus);
943	bus_generic_detach(sc->dev);
944	ifmedia_removeall(&sc->sc_media);
945	if (sc->fxp_desc.cbl_list) {
946		bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
947		bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
948		    sc->cbl_map);
949	}
950	if (sc->fxp_stats) {
951		bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
952		bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
953	}
954	if (sc->mcsp) {
955		bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
956		bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
957	}
958	bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
959	if (sc->fxp_rxmtag) {
960		for (i = 0; i < FXP_NRFABUFS; i++) {
961			rxp = &sc->fxp_desc.rx_list[i];
962			if (rxp->rx_mbuf != NULL) {
963				bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
964				    BUS_DMASYNC_POSTREAD);
965				bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
966				m_freem(rxp->rx_mbuf);
967			}
968			bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
969		}
970		bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
971		bus_dma_tag_destroy(sc->fxp_rxmtag);
972	}
973	if (sc->fxp_txmtag) {
974		for (i = 0; i < FXP_NTXCB; i++) {
975			txp = &sc->fxp_desc.tx_list[i];
976			if (txp->tx_mbuf != NULL) {
977				bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
978				    BUS_DMASYNC_POSTWRITE);
979				bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
980				m_freem(txp->tx_mbuf);
981			}
982			bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
983		}
984		bus_dma_tag_destroy(sc->fxp_txmtag);
985	}
986	if (sc->fxp_stag)
987		bus_dma_tag_destroy(sc->fxp_stag);
988	if (sc->cbl_tag)
989		bus_dma_tag_destroy(sc->cbl_tag);
990	if (sc->mcs_tag)
991		bus_dma_tag_destroy(sc->mcs_tag);
992	if (sc->ifp)
993		if_free(sc->ifp);
994
995	mtx_destroy(&sc->sc_mtx);
996}
997
998/*
999 * Detach interface.
1000 */
1001static int
1002fxp_detach(device_t dev)
1003{
1004	struct fxp_softc *sc = device_get_softc(dev);
1005
1006#ifdef DEVICE_POLLING
1007	if (sc->ifp->if_capenable & IFCAP_POLLING)
1008		ether_poll_deregister(sc->ifp);
1009#endif
1010
1011	FXP_LOCK(sc);
1012	/*
1013	 * Stop DMA and drop transmit queue, but disable interrupts first.
1014	 */
1015	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1016	fxp_stop(sc);
1017	FXP_UNLOCK(sc);
1018	callout_drain(&sc->stat_ch);
1019
1020	/*
1021	 * Close down routes etc.
1022	 */
1023	ether_ifdetach(sc->ifp);
1024
1025	/*
1026	 * Unhook interrupt before dropping lock. This is to prevent
1027	 * races with fxp_intr().
1028	 */
1029	bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
1030	sc->ih = NULL;
1031
1032	/* Release our allocated resources. */
1033	fxp_release(sc);
1034	return (0);
1035}
1036
1037/*
1038 * Device shutdown routine. Called at system shutdown after sync. The
1039 * main purpose of this routine is to shut off receiver DMA so that
1040 * kernel memory doesn't get clobbered during warmboot.
1041 */
1042static int
1043fxp_shutdown(device_t dev)
1044{
1045
1046	/*
1047	 * Make sure that DMA is disabled prior to reboot. Not doing
1048	 * do could allow DMA to corrupt kernel memory during the
1049	 * reboot before the driver initializes.
1050	 */
1051	return (fxp_suspend(dev));
1052}
1053
1054/*
1055 * Device suspend routine.  Stop the interface and save some PCI
1056 * settings in case the BIOS doesn't restore them properly on
1057 * resume.
1058 */
1059static int
1060fxp_suspend(device_t dev)
1061{
1062	struct fxp_softc *sc = device_get_softc(dev);
1063	struct ifnet *ifp;
1064	int pmc;
1065	uint16_t pmstat;
1066
1067	FXP_LOCK(sc);
1068
1069	ifp = sc->ifp;
1070	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1071		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1072		pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1073		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1074			/* Request PME. */
1075			pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1076			sc->flags |= FXP_FLAG_WOL;
1077			/* Reconfigure hardware to accept magic frames. */
1078			fxp_init_body(sc, 1);
1079		}
1080		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1081	}
1082	fxp_stop(sc);
1083
1084	sc->suspended = 1;
1085
1086	FXP_UNLOCK(sc);
1087	return (0);
1088}
1089
1090/*
1091 * Device resume routine. re-enable busmastering, and restart the interface if
1092 * appropriate.
1093 */
1094static int
1095fxp_resume(device_t dev)
1096{
1097	struct fxp_softc *sc = device_get_softc(dev);
1098	struct ifnet *ifp = sc->ifp;
1099	int pmc;
1100	uint16_t pmstat;
1101
1102	FXP_LOCK(sc);
1103
1104	if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
1105		sc->flags &= ~FXP_FLAG_WOL;
1106		pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
1107		/* Disable PME and clear PME status. */
1108		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1109		pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1110		if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
1111			CSR_WRITE_1(sc, FXP_CSR_PMDR,
1112			    CSR_READ_1(sc, FXP_CSR_PMDR));
1113	}
1114
1115	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1116	DELAY(10);
1117
1118	/* reinitialize interface if necessary */
1119	if (ifp->if_flags & IFF_UP)
1120		fxp_init_body(sc, 1);
1121
1122	sc->suspended = 0;
1123
1124	FXP_UNLOCK(sc);
1125	return (0);
1126}
1127
1128static void
1129fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
1130{
1131	uint16_t reg;
1132	int x;
1133
1134	/*
1135	 * Shift in data.
1136	 */
1137	for (x = 1 << (length - 1); x; x >>= 1) {
1138		if (data & x)
1139			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1140		else
1141			reg = FXP_EEPROM_EECS;
1142		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1143		DELAY(1);
1144		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1145		DELAY(1);
1146		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1147		DELAY(1);
1148	}
1149}
1150
1151/*
1152 * Read from the serial EEPROM. Basically, you manually shift in
1153 * the read opcode (one bit at a time) and then shift in the address,
1154 * and then you shift out the data (all of this one bit at a time).
1155 * The word size is 16 bits, so you have to provide the address for
1156 * every 16 bits of data.
1157 */
1158static uint16_t
1159fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
1160{
1161	uint16_t reg, data;
1162	int x;
1163
1164	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1165	/*
1166	 * Shift in read opcode.
1167	 */
1168	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
1169	/*
1170	 * Shift in address.
1171	 */
1172	data = 0;
1173	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1174		if (offset & x)
1175			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1176		else
1177			reg = FXP_EEPROM_EECS;
1178		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1179		DELAY(1);
1180		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1181		DELAY(1);
1182		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1183		DELAY(1);
1184		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1185		data++;
1186		if (autosize && reg == 0) {
1187			sc->eeprom_size = data;
1188			break;
1189		}
1190	}
1191	/*
1192	 * Shift out data.
1193	 */
1194	data = 0;
1195	reg = FXP_EEPROM_EECS;
1196	for (x = 1 << 15; x; x >>= 1) {
1197		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1198		DELAY(1);
1199		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1200			data |= x;
1201		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1202		DELAY(1);
1203	}
1204	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1205	DELAY(1);
1206
1207	return (data);
1208}
1209
1210static void
1211fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
1212{
1213	int i;
1214
1215	/*
1216	 * Erase/write enable.
1217	 */
1218	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1219	fxp_eeprom_shiftin(sc, 0x4, 3);
1220	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1221	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1222	DELAY(1);
1223	/*
1224	 * Shift in write opcode, address, data.
1225	 */
1226	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1227	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1228	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1229	fxp_eeprom_shiftin(sc, data, 16);
1230	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1231	DELAY(1);
1232	/*
1233	 * Wait for EEPROM to finish up.
1234	 */
1235	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1236	DELAY(1);
1237	for (i = 0; i < 1000; i++) {
1238		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1239			break;
1240		DELAY(50);
1241	}
1242	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1243	DELAY(1);
1244	/*
1245	 * Erase/write disable.
1246	 */
1247	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1248	fxp_eeprom_shiftin(sc, 0x4, 3);
1249	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1250	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1251	DELAY(1);
1252}
1253
1254/*
1255 * From NetBSD:
1256 *
1257 * Figure out EEPROM size.
1258 *
1259 * 559's can have either 64-word or 256-word EEPROMs, the 558
1260 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1261 * talks about the existance of 16 to 256 word EEPROMs.
1262 *
1263 * The only known sizes are 64 and 256, where the 256 version is used
1264 * by CardBus cards to store CIS information.
1265 *
1266 * The address is shifted in msb-to-lsb, and after the last
1267 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1268 * after which follows the actual data. We try to detect this zero, by
1269 * probing the data-out bit in the EEPROM control register just after
1270 * having shifted in a bit. If the bit is zero, we assume we've
1271 * shifted enough address bits. The data-out should be tri-state,
1272 * before this, which should translate to a logical one.
1273 */
1274static void
1275fxp_autosize_eeprom(struct fxp_softc *sc)
1276{
1277
1278	/* guess maximum size of 256 words */
1279	sc->eeprom_size = 8;
1280
1281	/* autosize */
1282	(void) fxp_eeprom_getword(sc, 0, 1);
1283}
1284
1285static void
1286fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1287{
1288	int i;
1289
1290	for (i = 0; i < words; i++)
1291		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1292}
1293
1294static void
1295fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1296{
1297	int i;
1298
1299	for (i = 0; i < words; i++)
1300		fxp_eeprom_putword(sc, offset + i, data[i]);
1301}
1302
1303static void
1304fxp_load_eeprom(struct fxp_softc *sc)
1305{
1306	int i;
1307	uint16_t cksum;
1308
1309	fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
1310	cksum = 0;
1311	for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
1312		cksum += sc->eeprom[i];
1313	cksum = 0xBABA - cksum;
1314	if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
1315		device_printf(sc->dev,
1316		    "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
1317		    cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
1318}
1319
1320/*
1321 * Grab the softc lock and call the real fxp_start_body() routine
1322 */
1323static void
1324fxp_start(struct ifnet *ifp)
1325{
1326	struct fxp_softc *sc = ifp->if_softc;
1327
1328	FXP_LOCK(sc);
1329	fxp_start_body(ifp);
1330	FXP_UNLOCK(sc);
1331}
1332
1333/*
1334 * Start packet transmission on the interface.
1335 * This routine must be called with the softc lock held, and is an
1336 * internal entry point only.
1337 */
1338static void
1339fxp_start_body(struct ifnet *ifp)
1340{
1341	struct fxp_softc *sc = ifp->if_softc;
1342	struct mbuf *mb_head;
1343	int txqueued;
1344
1345	FXP_LOCK_ASSERT(sc, MA_OWNED);
1346
1347	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1348	    IFF_DRV_RUNNING)
1349		return;
1350
1351	if (sc->tx_queued > FXP_NTXCB_HIWAT)
1352		fxp_txeof(sc);
1353	/*
1354	 * We're finished if there is nothing more to add to the list or if
1355	 * we're all filled up with buffers to transmit.
1356	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1357	 *       a NOP command when needed.
1358	 */
1359	txqueued = 0;
1360	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1361	    sc->tx_queued < FXP_NTXCB - 1) {
1362
1363		/*
1364		 * Grab a packet to transmit.
1365		 */
1366		IFQ_DRV_DEQUEUE(&ifp->if_snd, mb_head);
1367		if (mb_head == NULL)
1368			break;
1369
1370		if (fxp_encap(sc, &mb_head)) {
1371			if (mb_head == NULL)
1372				break;
1373			IFQ_DRV_PREPEND(&ifp->if_snd, mb_head);
1374			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1375		}
1376		txqueued++;
1377		/*
1378		 * Pass packet to bpf if there is a listener.
1379		 */
1380		BPF_MTAP(ifp, mb_head);
1381	}
1382
1383	/*
1384	 * We're finished. If we added to the list, issue a RESUME to get DMA
1385	 * going again if suspended.
1386	 */
1387	if (txqueued > 0) {
1388		bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1389		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1390		fxp_scb_wait(sc);
1391		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1392		/*
1393		 * Set a 5 second timer just in case we don't hear
1394		 * from the card again.
1395		 */
1396		sc->watchdog_timer = 5;
1397	}
1398}
1399
1400static int
1401fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
1402{
1403	struct ifnet *ifp;
1404	struct mbuf *m;
1405	struct fxp_tx *txp;
1406	struct fxp_cb_tx *cbp;
1407	struct tcphdr *tcp;
1408	bus_dma_segment_t segs[FXP_NTXSEG];
1409	int error, i, nseg, tcp_payload;
1410
1411	FXP_LOCK_ASSERT(sc, MA_OWNED);
1412	ifp = sc->ifp;
1413
1414	tcp_payload = 0;
1415	tcp = NULL;
1416	/*
1417	 * Get pointer to next available tx desc.
1418	 */
1419	txp = sc->fxp_desc.tx_last->tx_next;
1420
1421	/*
1422	 * A note in Appendix B of the Intel 8255x 10/100 Mbps
1423	 * Ethernet Controller Family Open Source Software
1424	 * Developer Manual says:
1425	 *   Using software parsing is only allowed with legal
1426	 *   TCP/IP or UDP/IP packets.
1427	 *   ...
1428	 *   For all other datagrams, hardware parsing must
1429	 *   be used.
1430	 * Software parsing appears to truncate ICMP and
1431	 * fragmented UDP packets that contain one to three
1432	 * bytes in the second (and final) mbuf of the packet.
1433	 */
1434	if (sc->flags & FXP_FLAG_EXT_RFA)
1435		txp->tx_cb->ipcb_ip_activation_high =
1436		    FXP_IPCB_HARDWAREPARSING_ENABLE;
1437
1438	m = *m_head;
1439	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1440		/*
1441		 * 82550/82551 requires ethernet/IP/TCP headers must be
1442		 * contained in the first active transmit buffer.
1443		 */
1444		struct ether_header *eh;
1445		struct ip *ip;
1446		uint32_t ip_off, poff;
1447
1448		if (M_WRITABLE(*m_head) == 0) {
1449			/* Get a writable copy. */
1450			m = m_dup(*m_head, M_DONTWAIT);
1451			m_freem(*m_head);
1452			if (m == NULL) {
1453				*m_head = NULL;
1454				return (ENOBUFS);
1455			}
1456			*m_head = m;
1457		}
1458		ip_off = sizeof(struct ether_header);
1459		m = m_pullup(*m_head, ip_off);
1460		if (m == NULL) {
1461			*m_head = NULL;
1462			return (ENOBUFS);
1463		}
1464		eh = mtod(m, struct ether_header *);
1465		/* Check the existence of VLAN tag. */
1466		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1467			ip_off = sizeof(struct ether_vlan_header);
1468			m = m_pullup(m, ip_off);
1469			if (m == NULL) {
1470				*m_head = NULL;
1471				return (ENOBUFS);
1472			}
1473		}
1474		m = m_pullup(m, ip_off + sizeof(struct ip));
1475		if (m == NULL) {
1476			*m_head = NULL;
1477			return (ENOBUFS);
1478		}
1479		ip = (struct ip *)(mtod(m, char *) + ip_off);
1480		poff = ip_off + (ip->ip_hl << 2);
1481		m = m_pullup(m, poff + sizeof(struct tcphdr));
1482		if (m == NULL) {
1483			*m_head = NULL;
1484			return (ENOBUFS);
1485		}
1486		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1487		m = m_pullup(m, poff + (tcp->th_off << 2));
1488		if (m == NULL) {
1489			*m_head = NULL;
1490			return (ENOBUFS);
1491		}
1492
1493		/*
1494		 * Since 82550/82551 doesn't modify IP length and pseudo
1495		 * checksum in the first frame driver should compute it.
1496		 */
1497		ip = (struct ip *)(mtod(m, char *) + ip_off);
1498		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1499		ip->ip_sum = 0;
1500		ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
1501		    (tcp->th_off << 2));
1502		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1503		    htons(IPPROTO_TCP + (tcp->th_off << 2) +
1504		    m->m_pkthdr.tso_segsz));
1505		/* Compute total TCP payload. */
1506		tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
1507		tcp_payload -= tcp->th_off << 2;
1508		*m_head = m;
1509	} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
1510		/*
1511		 * Deal with TCP/IP checksum offload. Note that
1512		 * in order for TCP checksum offload to work,
1513		 * the pseudo header checksum must have already
1514		 * been computed and stored in the checksum field
1515		 * in the TCP header. The stack should have
1516		 * already done this for us.
1517		 */
1518		txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1519		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1520			txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
1521
1522#ifdef FXP_IP_CSUM_WAR
1523		/*
1524		 * XXX The 82550 chip appears to have trouble
1525		 * dealing with IP header checksums in very small
1526		 * datagrams, namely fragments from 1 to 3 bytes
1527		 * in size. For example, say you want to transmit
1528		 * a UDP packet of 1473 bytes. The packet will be
1529		 * fragmented over two IP datagrams, the latter
1530		 * containing only one byte of data. The 82550 will
1531		 * botch the header checksum on the 1-byte fragment.
1532		 * As long as the datagram contains 4 or more bytes
1533		 * of data, you're ok.
1534		 *
1535                 * The following code attempts to work around this
1536		 * problem: if the datagram is less than 38 bytes
1537		 * in size (14 bytes ether header, 20 bytes IP header,
1538		 * plus 4 bytes of data), we punt and compute the IP
1539		 * header checksum by hand. This workaround doesn't
1540		 * work very well, however, since it can be fooled
1541		 * by things like VLAN tags and IP options that make
1542		 * the header sizes/offsets vary.
1543		 */
1544
1545		if (m->m_pkthdr.csum_flags & CSUM_IP) {
1546			if (m->m_pkthdr.len < 38) {
1547				struct ip *ip;
1548				m->m_data += ETHER_HDR_LEN;
1549				ip = mtod(m, struct ip *);
1550				ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1551				m->m_data -= ETHER_HDR_LEN;
1552				m->m_pkthdr.csum_flags &= ~CSUM_IP;
1553			} else {
1554				txp->tx_cb->ipcb_ip_activation_high =
1555				    FXP_IPCB_HARDWAREPARSING_ENABLE;
1556				txp->tx_cb->ipcb_ip_schedule |=
1557				    FXP_IPCB_IP_CHECKSUM_ENABLE;
1558			}
1559		}
1560#endif
1561	}
1562
1563	error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
1564	    segs, &nseg, 0);
1565	if (error == EFBIG) {
1566		m = m_collapse(*m_head, M_DONTWAIT, sc->maxtxseg);
1567		if (m == NULL) {
1568			m_freem(*m_head);
1569			*m_head = NULL;
1570			return (ENOMEM);
1571		}
1572		*m_head = m;
1573		error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
1574		    *m_head, segs, &nseg, 0);
1575		if (error != 0) {
1576			m_freem(*m_head);
1577			*m_head = NULL;
1578			return (ENOMEM);
1579		}
1580	} else if (error != 0)
1581		return (error);
1582	if (nseg == 0) {
1583		m_freem(*m_head);
1584		*m_head = NULL;
1585		return (EIO);
1586	}
1587
1588	KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
1589	bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
1590
1591	cbp = txp->tx_cb;
1592	for (i = 0; i < nseg; i++) {
1593		/*
1594		 * If this is an 82550/82551, then we're using extended
1595		 * TxCBs _and_ we're using checksum offload. This means
1596		 * that the TxCB is really an IPCB. One major difference
1597		 * between the two is that with plain extended TxCBs,
1598		 * the bottom half of the TxCB contains two entries from
1599		 * the TBD array, whereas IPCBs contain just one entry:
1600		 * one entry (8 bytes) has been sacrificed for the TCP/IP
1601		 * checksum offload control bits. So to make things work
1602		 * right, we have to start filling in the TBD array
1603		 * starting from a different place depending on whether
1604		 * the chip is an 82550/82551 or not.
1605		 */
1606		if (sc->flags & FXP_FLAG_EXT_RFA) {
1607			cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
1608			cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
1609		} else {
1610			cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
1611			cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
1612		}
1613	}
1614	if (sc->flags & FXP_FLAG_EXT_RFA) {
1615		/* Configure dynamic TBD for 82550/82551. */
1616		cbp->tbd_number = 0xFF;
1617		cbp->tbd[nseg].tb_size |= htole32(0x8000);
1618	} else
1619		cbp->tbd_number = nseg;
1620	/* Configure TSO. */
1621	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1622		cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
1623		cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
1624		cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
1625		    FXP_IPCB_IP_CHECKSUM_ENABLE |
1626		    FXP_IPCB_TCP_PACKET |
1627		    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1628	}
1629	/* Configure VLAN hardware tag insertion. */
1630	if ((m->m_flags & M_VLANTAG) != 0) {
1631		cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
1632		txp->tx_cb->ipcb_ip_activation_high |=
1633		    FXP_IPCB_INSERTVLAN_ENABLE;
1634	}
1635
1636	txp->tx_mbuf = m;
1637	txp->tx_cb->cb_status = 0;
1638	txp->tx_cb->byte_count = 0;
1639	if (sc->tx_queued != FXP_CXINT_THRESH - 1)
1640		txp->tx_cb->cb_command =
1641		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1642		    FXP_CB_COMMAND_S);
1643	else
1644		txp->tx_cb->cb_command =
1645		    htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
1646		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
1647	if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
1648		txp->tx_cb->tx_threshold = tx_threshold;
1649
1650	/*
1651	 * Advance the end of list forward.
1652	 */
1653	sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
1654	sc->fxp_desc.tx_last = txp;
1655
1656	/*
1657	 * Advance the beginning of the list forward if there are
1658	 * no other packets queued (when nothing is queued, tx_first
1659	 * sits on the last TxCB that was sent out).
1660	 */
1661	if (sc->tx_queued == 0)
1662		sc->fxp_desc.tx_first = txp;
1663
1664	sc->tx_queued++;
1665
1666	return (0);
1667}
1668
1669#ifdef DEVICE_POLLING
1670static poll_handler_t fxp_poll;
1671
1672static int
1673fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1674{
1675	struct fxp_softc *sc = ifp->if_softc;
1676	uint8_t statack;
1677	int rx_npkts = 0;
1678
1679	FXP_LOCK(sc);
1680	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1681		FXP_UNLOCK(sc);
1682		return (rx_npkts);
1683	}
1684
1685	statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1686	    FXP_SCB_STATACK_FR;
1687	if (cmd == POLL_AND_CHECK_STATUS) {
1688		uint8_t tmp;
1689
1690		tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1691		if (tmp == 0xff || tmp == 0) {
1692			FXP_UNLOCK(sc);
1693			return (rx_npkts); /* nothing to do */
1694		}
1695		tmp &= ~statack;
1696		/* ack what we can */
1697		if (tmp != 0)
1698			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1699		statack |= tmp;
1700	}
1701	rx_npkts = fxp_intr_body(sc, ifp, statack, count);
1702	FXP_UNLOCK(sc);
1703	return (rx_npkts);
1704}
1705#endif /* DEVICE_POLLING */
1706
1707/*
1708 * Process interface interrupts.
1709 */
1710static void
1711fxp_intr(void *xsc)
1712{
1713	struct fxp_softc *sc = xsc;
1714	struct ifnet *ifp = sc->ifp;
1715	uint8_t statack;
1716
1717	FXP_LOCK(sc);
1718	if (sc->suspended) {
1719		FXP_UNLOCK(sc);
1720		return;
1721	}
1722
1723#ifdef DEVICE_POLLING
1724	if (ifp->if_capenable & IFCAP_POLLING) {
1725		FXP_UNLOCK(sc);
1726		return;
1727	}
1728#endif
1729	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1730		/*
1731		 * It should not be possible to have all bits set; the
1732		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1733		 * all bits are set, this may indicate that the card has
1734		 * been physically ejected, so ignore it.
1735		 */
1736		if (statack == 0xff) {
1737			FXP_UNLOCK(sc);
1738			return;
1739		}
1740
1741		/*
1742		 * First ACK all the interrupts in this pass.
1743		 */
1744		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1745		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1746			fxp_intr_body(sc, ifp, statack, -1);
1747	}
1748	FXP_UNLOCK(sc);
1749}
1750
1751static void
1752fxp_txeof(struct fxp_softc *sc)
1753{
1754	struct ifnet *ifp;
1755	struct fxp_tx *txp;
1756
1757	ifp = sc->ifp;
1758	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1759	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1760	for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
1761	    (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
1762	    txp = txp->tx_next) {
1763		if (txp->tx_mbuf != NULL) {
1764			bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
1765			    BUS_DMASYNC_POSTWRITE);
1766			bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
1767			m_freem(txp->tx_mbuf);
1768			txp->tx_mbuf = NULL;
1769			/* clear this to reset csum offload bits */
1770			txp->tx_cb->tbd[0].tb_addr = 0;
1771		}
1772		sc->tx_queued--;
1773		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1774	}
1775	sc->fxp_desc.tx_first = txp;
1776	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
1777	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1778	if (sc->tx_queued == 0)
1779		sc->watchdog_timer = 0;
1780}
1781
1782static void
1783fxp_rxcsum(struct fxp_softc *sc, struct ifnet *ifp, struct mbuf *m,
1784    uint16_t status, int pos)
1785{
1786	struct ether_header *eh;
1787	struct ip *ip;
1788	struct udphdr *uh;
1789	int32_t hlen, len, pktlen, temp32;
1790	uint16_t csum, *opts;
1791
1792	if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
1793		if ((status & FXP_RFA_STATUS_PARSE) != 0) {
1794			if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1795				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1796			if (status & FXP_RFDX_CS_IP_CSUM_VALID)
1797				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1798			if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1799			    (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1800				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1801				    CSUM_PSEUDO_HDR;
1802				m->m_pkthdr.csum_data = 0xffff;
1803			}
1804		}
1805		return;
1806	}
1807
1808	pktlen = m->m_pkthdr.len;
1809	if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
1810		return;
1811	eh = mtod(m, struct ether_header *);
1812	if (eh->ether_type != htons(ETHERTYPE_IP))
1813		return;
1814	ip = (struct ip *)(eh + 1);
1815	if (ip->ip_v != IPVERSION)
1816		return;
1817
1818	hlen = ip->ip_hl << 2;
1819	pktlen -= sizeof(struct ether_header);
1820	if (hlen < sizeof(struct ip))
1821		return;
1822	if (ntohs(ip->ip_len) < hlen)
1823		return;
1824	if (ntohs(ip->ip_len) != pktlen)
1825		return;
1826	if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
1827		return;	/* can't handle fragmented packet */
1828
1829	switch (ip->ip_p) {
1830	case IPPROTO_TCP:
1831		if (pktlen < (hlen + sizeof(struct tcphdr)))
1832			return;
1833		break;
1834	case IPPROTO_UDP:
1835		if (pktlen < (hlen + sizeof(struct udphdr)))
1836			return;
1837		uh = (struct udphdr *)((caddr_t)ip + hlen);
1838		if (uh->uh_sum == 0)
1839			return; /* no checksum */
1840		break;
1841	default:
1842		return;
1843	}
1844	/* Extract computed checksum. */
1845	csum = be16dec(mtod(m, char *) + pos);
1846	/* checksum fixup for IP options */
1847	len = hlen - sizeof(struct ip);
1848	if (len > 0) {
1849		opts = (uint16_t *)(ip + 1);
1850		for (; len > 0; len -= sizeof(uint16_t), opts++) {
1851			temp32 = csum - *opts;
1852			temp32 = (temp32 >> 16) + (temp32 & 65535);
1853			csum = temp32 & 65535;
1854		}
1855	}
1856	m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1857	m->m_pkthdr.csum_data = csum;
1858}
1859
1860static int
1861fxp_intr_body(struct fxp_softc *sc, struct ifnet *ifp, uint8_t statack,
1862    int count)
1863{
1864	struct mbuf *m;
1865	struct fxp_rx *rxp;
1866	struct fxp_rfa *rfa;
1867	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1868	int rx_npkts;
1869	uint16_t status;
1870
1871	rx_npkts = 0;
1872	FXP_LOCK_ASSERT(sc, MA_OWNED);
1873
1874	if (rnr)
1875		sc->rnr++;
1876#ifdef DEVICE_POLLING
1877	/* Pick up a deferred RNR condition if `count' ran out last time. */
1878	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1879		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1880		rnr = 1;
1881	}
1882#endif
1883
1884	/*
1885	 * Free any finished transmit mbuf chains.
1886	 *
1887	 * Handle the CNA event likt a CXTNO event. It used to
1888	 * be that this event (control unit not ready) was not
1889	 * encountered, but it is now with the SMPng modifications.
1890	 * The exact sequence of events that occur when the interface
1891	 * is brought up are different now, and if this event
1892	 * goes unhandled, the configuration/rxfilter setup sequence
1893	 * can stall for several seconds. The result is that no
1894	 * packets go out onto the wire for about 5 to 10 seconds
1895	 * after the interface is ifconfig'ed for the first time.
1896	 */
1897	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
1898		fxp_txeof(sc);
1899
1900	/*
1901	 * Try to start more packets transmitting.
1902	 */
1903	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1904		fxp_start_body(ifp);
1905
1906	/*
1907	 * Just return if nothing happened on the receive side.
1908	 */
1909	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1910		return (rx_npkts);
1911
1912	/*
1913	 * Process receiver interrupts. If a no-resource (RNR)
1914	 * condition exists, get whatever packets we can and
1915	 * re-start the receiver.
1916	 *
1917	 * When using polling, we do not process the list to completion,
1918	 * so when we get an RNR interrupt we must defer the restart
1919	 * until we hit the last buffer with the C bit set.
1920	 * If we run out of cycles and rfa_headm has the C bit set,
1921	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1922	 * that the info will be used in the subsequent polling cycle.
1923	 */
1924	for (;;) {
1925		rxp = sc->fxp_desc.rx_head;
1926		m = rxp->rx_mbuf;
1927		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1928		    RFA_ALIGNMENT_FUDGE);
1929		bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
1930		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1931
1932#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1933		if (count >= 0 && count-- == 0) {
1934			if (rnr) {
1935				/* Defer RNR processing until the next time. */
1936				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1937				rnr = 0;
1938			}
1939			break;
1940		}
1941#endif /* DEVICE_POLLING */
1942
1943		status = le16toh(rfa->rfa_status);
1944		if ((status & FXP_RFA_STATUS_C) == 0)
1945			break;
1946
1947		if ((status & FXP_RFA_STATUS_RNR) != 0)
1948			rnr++;
1949		/*
1950		 * Advance head forward.
1951		 */
1952		sc->fxp_desc.rx_head = rxp->rx_next;
1953
1954		/*
1955		 * Add a new buffer to the receive chain.
1956		 * If this fails, the old buffer is recycled
1957		 * instead.
1958		 */
1959		if (fxp_new_rfabuf(sc, rxp) == 0) {
1960			int total_len;
1961
1962			/*
1963			 * Fetch packet length (the top 2 bits of
1964			 * actual_size are flags set by the controller
1965			 * upon completion), and drop the packet in case
1966			 * of bogus length or CRC errors.
1967			 */
1968			total_len = le16toh(rfa->actual_size) & 0x3fff;
1969			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
1970			    (ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1971				/* Adjust for appended checksum bytes. */
1972				total_len -= 2;
1973			}
1974			if (total_len < (int)sizeof(struct ether_header) ||
1975			    total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
1976			    sc->rfa_size) ||
1977			    status & (FXP_RFA_STATUS_CRC |
1978			    FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
1979				m_freem(m);
1980				fxp_add_rfabuf(sc, rxp);
1981				continue;
1982			}
1983
1984			m->m_pkthdr.len = m->m_len = total_len;
1985			m->m_pkthdr.rcvif = ifp;
1986
1987                        /* Do IP checksum checking. */
1988			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1989				fxp_rxcsum(sc, ifp, m, status, total_len);
1990			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1991			    (status & FXP_RFA_STATUS_VLAN) != 0) {
1992				m->m_pkthdr.ether_vtag =
1993				    ntohs(rfa->rfax_vlan_id);
1994				m->m_flags |= M_VLANTAG;
1995			}
1996			/*
1997			 * Drop locks before calling if_input() since it
1998			 * may re-enter fxp_start() in the netisr case.
1999			 * This would result in a lock reversal.  Better
2000			 * performance might be obtained by chaining all
2001			 * packets received, dropping the lock, and then
2002			 * calling if_input() on each one.
2003			 */
2004			FXP_UNLOCK(sc);
2005			(*ifp->if_input)(ifp, m);
2006			FXP_LOCK(sc);
2007			rx_npkts++;
2008			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2009				return (rx_npkts);
2010		} else {
2011			/* Reuse RFA and loaded DMA map. */
2012			ifp->if_iqdrops++;
2013			fxp_discard_rfabuf(sc, rxp);
2014		}
2015		fxp_add_rfabuf(sc, rxp);
2016	}
2017	if (rnr) {
2018		fxp_scb_wait(sc);
2019		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
2020		    sc->fxp_desc.rx_head->rx_addr);
2021		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2022	}
2023	return (rx_npkts);
2024}
2025
2026static void
2027fxp_update_stats(struct fxp_softc *sc)
2028{
2029	struct ifnet *ifp = sc->ifp;
2030	struct fxp_stats *sp = sc->fxp_stats;
2031	struct fxp_hwstats *hsp;
2032	uint32_t *status;
2033
2034	FXP_LOCK_ASSERT(sc, MA_OWNED);
2035
2036	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2037	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2038	/* Update statistical counters. */
2039	if (sc->revision >= FXP_REV_82559_A0)
2040		status = &sp->completion_status;
2041	else if (sc->revision >= FXP_REV_82558_A4)
2042		status = (uint32_t *)&sp->tx_tco;
2043	else
2044		status = &sp->tx_pause;
2045	if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
2046		hsp = &sc->fxp_hwstats;
2047		hsp->tx_good += le32toh(sp->tx_good);
2048		hsp->tx_maxcols += le32toh(sp->tx_maxcols);
2049		hsp->tx_latecols += le32toh(sp->tx_latecols);
2050		hsp->tx_underruns += le32toh(sp->tx_underruns);
2051		hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
2052		hsp->tx_deffered += le32toh(sp->tx_deffered);
2053		hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
2054		hsp->tx_multiple_collisions +=
2055		    le32toh(sp->tx_multiple_collisions);
2056		hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
2057		hsp->rx_good += le32toh(sp->rx_good);
2058		hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
2059		hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
2060		hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
2061		hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
2062		hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
2063		hsp->rx_shortframes += le32toh(sp->rx_shortframes);
2064		hsp->tx_pause += le32toh(sp->tx_pause);
2065		hsp->rx_pause += le32toh(sp->rx_pause);
2066		hsp->rx_controls += le32toh(sp->rx_controls);
2067		hsp->tx_tco += le16toh(sp->tx_tco);
2068		hsp->rx_tco += le16toh(sp->rx_tco);
2069
2070		ifp->if_opackets += le32toh(sp->tx_good);
2071		ifp->if_collisions += le32toh(sp->tx_total_collisions);
2072		if (sp->rx_good) {
2073			ifp->if_ipackets += le32toh(sp->rx_good);
2074			sc->rx_idle_secs = 0;
2075		} else if (sc->flags & FXP_FLAG_RXBUG) {
2076			/*
2077			 * Receiver's been idle for another second.
2078			 */
2079			sc->rx_idle_secs++;
2080		}
2081		ifp->if_ierrors +=
2082		    le32toh(sp->rx_crc_errors) +
2083		    le32toh(sp->rx_alignment_errors) +
2084		    le32toh(sp->rx_rnr_errors) +
2085		    le32toh(sp->rx_overrun_errors);
2086		/*
2087		 * If any transmit underruns occured, bump up the transmit
2088		 * threshold by another 512 bytes (64 * 8).
2089		 */
2090		if (sp->tx_underruns) {
2091			ifp->if_oerrors += le32toh(sp->tx_underruns);
2092			if (tx_threshold < 192)
2093				tx_threshold += 64;
2094		}
2095		*status = 0;
2096		bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2097		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2098	}
2099}
2100
2101/*
2102 * Update packet in/out/collision statistics. The i82557 doesn't
2103 * allow you to access these counters without doing a fairly
2104 * expensive DMA to get _all_ of the statistics it maintains, so
2105 * we do this operation here only once per second. The statistics
2106 * counters in the kernel are updated from the previous dump-stats
2107 * DMA and then a new dump-stats DMA is started. The on-chip
2108 * counters are zeroed when the DMA completes. If we can't start
2109 * the DMA immediately, we don't wait - we just prepare to read
2110 * them again next time.
2111 */
2112static void
2113fxp_tick(void *xsc)
2114{
2115	struct fxp_softc *sc = xsc;
2116	struct ifnet *ifp = sc->ifp;
2117
2118	FXP_LOCK_ASSERT(sc, MA_OWNED);
2119
2120	/* Update statistical counters. */
2121	fxp_update_stats(sc);
2122
2123	/*
2124	 * Release any xmit buffers that have completed DMA. This isn't
2125	 * strictly necessary to do here, but it's advantagous for mbufs
2126	 * with external storage to be released in a timely manner rather
2127	 * than being defered for a potentially long time. This limits
2128	 * the delay to a maximum of one second.
2129	 */
2130	fxp_txeof(sc);
2131
2132	/*
2133	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
2134	 * then assume the receiver has locked up and attempt to clear
2135	 * the condition by reprogramming the multicast filter. This is
2136	 * a work-around for a bug in the 82557 where the receiver locks
2137	 * up if it gets certain types of garbage in the syncronization
2138	 * bits prior to the packet header. This bug is supposed to only
2139	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
2140	 * mode as well (perhaps due to a 10/100 speed transition).
2141	 */
2142	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
2143		sc->rx_idle_secs = 0;
2144		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2145			fxp_init_body(sc, 1);
2146		return;
2147	}
2148	/*
2149	 * If there is no pending command, start another stats
2150	 * dump. Otherwise punt for now.
2151	 */
2152	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
2153		/*
2154		 * Start another stats dump.
2155		 */
2156		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
2157	}
2158	if (sc->miibus != NULL)
2159		mii_tick(device_get_softc(sc->miibus));
2160
2161	/*
2162	 * Check that chip hasn't hung.
2163	 */
2164	fxp_watchdog(sc);
2165
2166	/*
2167	 * Schedule another timeout one second from now.
2168	 */
2169	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2170}
2171
2172/*
2173 * Stop the interface. Cancels the statistics updater and resets
2174 * the interface.
2175 */
2176static void
2177fxp_stop(struct fxp_softc *sc)
2178{
2179	struct ifnet *ifp = sc->ifp;
2180	struct fxp_tx *txp;
2181	int i;
2182
2183	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2184	sc->watchdog_timer = 0;
2185
2186	/*
2187	 * Cancel stats updater.
2188	 */
2189	callout_stop(&sc->stat_ch);
2190
2191	/*
2192	 * Preserve PCI configuration, configure, IA/multicast
2193	 * setup and put RU and CU into idle state.
2194	 */
2195	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
2196	DELAY(50);
2197	/* Disable interrupts. */
2198	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2199
2200	fxp_update_stats(sc);
2201
2202	/*
2203	 * Release any xmit buffers.
2204	 */
2205	txp = sc->fxp_desc.tx_list;
2206	if (txp != NULL) {
2207		for (i = 0; i < FXP_NTXCB; i++) {
2208			if (txp[i].tx_mbuf != NULL) {
2209				bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
2210				    BUS_DMASYNC_POSTWRITE);
2211				bus_dmamap_unload(sc->fxp_txmtag,
2212				    txp[i].tx_map);
2213				m_freem(txp[i].tx_mbuf);
2214				txp[i].tx_mbuf = NULL;
2215				/* clear this to reset csum offload bits */
2216				txp[i].tx_cb->tbd[0].tb_addr = 0;
2217			}
2218		}
2219	}
2220	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2221	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2222	sc->tx_queued = 0;
2223}
2224
2225/*
2226 * Watchdog/transmission transmit timeout handler. Called when a
2227 * transmission is started on the interface, but no interrupt is
2228 * received before the timeout. This usually indicates that the
2229 * card has wedged for some reason.
2230 */
2231static void
2232fxp_watchdog(struct fxp_softc *sc)
2233{
2234
2235	FXP_LOCK_ASSERT(sc, MA_OWNED);
2236
2237	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
2238		return;
2239
2240	device_printf(sc->dev, "device timeout\n");
2241	sc->ifp->if_oerrors++;
2242
2243	fxp_init_body(sc, 1);
2244}
2245
2246/*
2247 * Acquire locks and then call the real initialization function.  This
2248 * is necessary because ether_ioctl() calls if_init() and this would
2249 * result in mutex recursion if the mutex was held.
2250 */
2251static void
2252fxp_init(void *xsc)
2253{
2254	struct fxp_softc *sc = xsc;
2255
2256	FXP_LOCK(sc);
2257	fxp_init_body(sc, 1);
2258	FXP_UNLOCK(sc);
2259}
2260
2261/*
2262 * Perform device initialization. This routine must be called with the
2263 * softc lock held.
2264 */
2265static void
2266fxp_init_body(struct fxp_softc *sc, int setmedia)
2267{
2268	struct ifnet *ifp = sc->ifp;
2269	struct mii_data *mii;
2270	struct fxp_cb_config *cbp;
2271	struct fxp_cb_ias *cb_ias;
2272	struct fxp_cb_tx *tcbp;
2273	struct fxp_tx *txp;
2274	int i, prm;
2275
2276	FXP_LOCK_ASSERT(sc, MA_OWNED);
2277	/*
2278	 * Cancel any pending I/O
2279	 */
2280	fxp_stop(sc);
2281
2282	/*
2283	 * Issue software reset, which also unloads the microcode.
2284	 */
2285	sc->flags &= ~FXP_FLAG_UCODE;
2286	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
2287	DELAY(50);
2288
2289	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
2290
2291	/*
2292	 * Initialize base of CBL and RFA memory. Loading with zero
2293	 * sets it up for regular linear addressing.
2294	 */
2295	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
2296	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
2297
2298	fxp_scb_wait(sc);
2299	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
2300
2301	/*
2302	 * Initialize base of dump-stats buffer.
2303	 */
2304	fxp_scb_wait(sc);
2305	bzero(sc->fxp_stats, sizeof(struct fxp_stats));
2306	bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
2307	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2308	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
2309	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
2310
2311	/*
2312	 * Attempt to load microcode if requested.
2313	 * For ICH based controllers do not load microcode.
2314	 */
2315	if (sc->ident->ich == 0) {
2316		if (ifp->if_flags & IFF_LINK0 &&
2317		    (sc->flags & FXP_FLAG_UCODE) == 0)
2318			fxp_load_ucode(sc);
2319	}
2320
2321	/*
2322	 * Set IFF_ALLMULTI status. It's needed in configure action
2323	 * command.
2324	 */
2325	fxp_mc_addrs(sc);
2326
2327	/*
2328	 * We temporarily use memory that contains the TxCB list to
2329	 * construct the config CB. The TxCB list memory is rebuilt
2330	 * later.
2331	 */
2332	cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
2333
2334	/*
2335	 * This bcopy is kind of disgusting, but there are a bunch of must be
2336	 * zero and must be one bits in this structure and this is the easiest
2337	 * way to initialize them all to proper values.
2338	 */
2339	bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
2340
2341	cbp->cb_status =	0;
2342	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
2343	    FXP_CB_COMMAND_EL);
2344	cbp->link_addr =	0xffffffff;	/* (no) next command */
2345	cbp->byte_count =	sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
2346	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
2347	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
2348	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
2349	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
2350	cbp->type_enable =	0;	/* actually reserved */
2351	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
2352	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
2353	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
2354	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
2355	cbp->dma_mbce =		0;	/* (disable) dma max counters */
2356	cbp->late_scb =		0;	/* (don't) defer SCB update */
2357	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
2358	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
2359	cbp->ci_int =		1;	/* interrupt on CU idle */
2360	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
2361	cbp->ext_stats_dis = 	1;	/* disable extended counters */
2362	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
2363	cbp->save_bf =		sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
2364	cbp->disc_short_rx =	!prm;	/* discard short packets */
2365	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
2366	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
2367	cbp->dyn_tbd =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2368	cbp->ext_rfa =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2369	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
2370	cbp->csma_dis =		0;	/* (don't) disable link */
2371	cbp->tcp_udp_cksum =	((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
2372	    (ifp->if_capenable & IFCAP_RXCSUM) != 0) ? 1 : 0;
2373	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
2374	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
2375	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
2376	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
2377	cbp->nsai =		1;	/* (don't) disable source addr insert */
2378	cbp->preamble_length =	2;	/* (7 byte) preamble */
2379	cbp->loopback =		0;	/* (don't) loopback */
2380	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
2381	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
2382	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
2383	cbp->promiscuous =	prm;	/* promiscuous mode */
2384	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
2385	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
2386	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
2387	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
2388	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
2389
2390	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
2391	cbp->padding =		1;	/* (do) pad short tx packets */
2392	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
2393	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
2394	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
2395	cbp->magic_pkt_dis =	sc->flags & FXP_FLAG_WOL ? 0 : 1;
2396	cbp->force_fdx =	0;	/* (don't) force full duplex */
2397	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
2398	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
2399	cbp->mc_all =		ifp->if_flags & IFF_ALLMULTI ? 1 : prm;
2400	cbp->gamla_rx =		sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
2401	cbp->vlan_strip_en =	((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
2402	    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
2403
2404	if (sc->revision == FXP_REV_82557) {
2405		/*
2406		 * The 82557 has no hardware flow control, the values
2407		 * below are the defaults for the chip.
2408		 */
2409		cbp->fc_delay_lsb =	0;
2410		cbp->fc_delay_msb =	0x40;
2411		cbp->pri_fc_thresh =	3;
2412		cbp->tx_fc_dis =	0;
2413		cbp->rx_fc_restop =	0;
2414		cbp->rx_fc_restart =	0;
2415		cbp->fc_filter =	0;
2416		cbp->pri_fc_loc =	1;
2417	} else {
2418		/* Set pause RX FIFO threshold to 1KB. */
2419		CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
2420		/* Set pause time. */
2421		cbp->fc_delay_lsb =	0xff;
2422		cbp->fc_delay_msb =	0xff;
2423		cbp->pri_fc_thresh =	3;
2424		mii = device_get_softc(sc->miibus);
2425		if ((IFM_OPTIONS(mii->mii_media_active) &
2426		    IFM_ETH_TXPAUSE) != 0)
2427			/* enable transmit FC */
2428			cbp->tx_fc_dis = 0;
2429		else
2430			/* disable transmit FC */
2431			cbp->tx_fc_dis = 1;
2432		if ((IFM_OPTIONS(mii->mii_media_active) &
2433		    IFM_ETH_RXPAUSE) != 0) {
2434			/* enable FC restart/restop frames */
2435			cbp->rx_fc_restart = 1;
2436			cbp->rx_fc_restop = 1;
2437		} else {
2438			/* disable FC restart/restop frames */
2439			cbp->rx_fc_restart = 0;
2440			cbp->rx_fc_restop = 0;
2441		}
2442		cbp->fc_filter =	!prm;	/* drop FC frames to host */
2443		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
2444	}
2445
2446	/* Enable 82558 and 82559 extended statistics functionality. */
2447	if (sc->revision >= FXP_REV_82558_A4) {
2448		if (sc->revision >= FXP_REV_82559_A0) {
2449			/*
2450			 * Extend configuration table size to 32
2451			 * to include TCO configuration.
2452			 */
2453			cbp->byte_count = 32;
2454			cbp->ext_stats_dis = 1;
2455			/* Enable TCO stats. */
2456			cbp->tno_int_or_tco_en = 1;
2457			cbp->gamla_rx = 1;
2458		} else
2459			cbp->ext_stats_dis = 0;
2460	}
2461
2462	/*
2463	 * Start the config command/DMA.
2464	 */
2465	fxp_scb_wait(sc);
2466	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2467	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2468	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2469	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2470	/* ...and wait for it to complete. */
2471	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
2472
2473	/*
2474	 * Now initialize the station address. Temporarily use the TxCB
2475	 * memory area like we did above for the config CB.
2476	 */
2477	cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
2478	cb_ias->cb_status = 0;
2479	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
2480	cb_ias->link_addr = 0xffffffff;
2481	bcopy(IF_LLADDR(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
2482
2483	/*
2484	 * Start the IAS (Individual Address Setup) command/DMA.
2485	 */
2486	fxp_scb_wait(sc);
2487	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2488	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2489	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2490	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2491	/* ...and wait for it to complete. */
2492	fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
2493
2494	/*
2495	 * Initialize the multicast address list.
2496	 */
2497	fxp_mc_setup(sc);
2498
2499	/*
2500	 * Initialize transmit control block (TxCB) list.
2501	 */
2502	txp = sc->fxp_desc.tx_list;
2503	tcbp = sc->fxp_desc.cbl_list;
2504	bzero(tcbp, FXP_TXCB_SZ);
2505	for (i = 0; i < FXP_NTXCB; i++) {
2506		txp[i].tx_mbuf = NULL;
2507		tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
2508		tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
2509		tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
2510		    (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
2511		if (sc->flags & FXP_FLAG_EXT_TXCB)
2512			tcbp[i].tbd_array_addr =
2513			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
2514		else
2515			tcbp[i].tbd_array_addr =
2516			    htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
2517		txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
2518	}
2519	/*
2520	 * Set the suspend flag on the first TxCB and start the control
2521	 * unit. It will execute the NOP and then suspend.
2522	 */
2523	tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
2524	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
2525	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2526	sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
2527	sc->tx_queued = 1;
2528
2529	fxp_scb_wait(sc);
2530	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
2531	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2532
2533	/*
2534	 * Initialize receiver buffer area - RFA.
2535	 */
2536	fxp_scb_wait(sc);
2537	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
2538	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
2539
2540	if (sc->miibus != NULL && setmedia != 0)
2541		mii_mediachg(device_get_softc(sc->miibus));
2542
2543	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2544	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2545
2546	/*
2547	 * Enable interrupts.
2548	 */
2549#ifdef DEVICE_POLLING
2550	/*
2551	 * ... but only do that if we are not polling. And because (presumably)
2552	 * the default is interrupts on, we need to disable them explicitly!
2553	 */
2554	if (ifp->if_capenable & IFCAP_POLLING )
2555		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
2556	else
2557#endif /* DEVICE_POLLING */
2558	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2559
2560	/*
2561	 * Start stats updater.
2562	 */
2563	callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
2564}
2565
2566static int
2567fxp_serial_ifmedia_upd(struct ifnet *ifp)
2568{
2569
2570	return (0);
2571}
2572
2573static void
2574fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2575{
2576
2577	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2578}
2579
2580/*
2581 * Change media according to request.
2582 */
2583static int
2584fxp_ifmedia_upd(struct ifnet *ifp)
2585{
2586	struct fxp_softc *sc = ifp->if_softc;
2587	struct mii_data *mii;
2588		struct mii_softc	*miisc;
2589
2590	mii = device_get_softc(sc->miibus);
2591	FXP_LOCK(sc);
2592	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2593		PHY_RESET(miisc);
2594	mii_mediachg(mii);
2595	FXP_UNLOCK(sc);
2596	return (0);
2597}
2598
2599/*
2600 * Notify the world which media we're using.
2601 */
2602static void
2603fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2604{
2605	struct fxp_softc *sc = ifp->if_softc;
2606	struct mii_data *mii;
2607
2608	mii = device_get_softc(sc->miibus);
2609	FXP_LOCK(sc);
2610	mii_pollstat(mii);
2611	ifmr->ifm_active = mii->mii_media_active;
2612	ifmr->ifm_status = mii->mii_media_status;
2613	FXP_UNLOCK(sc);
2614}
2615
2616/*
2617 * Add a buffer to the end of the RFA buffer list.
2618 * Return 0 if successful, 1 for failure. A failure results in
2619 * reusing the RFA buffer.
2620 * The RFA struct is stuck at the beginning of mbuf cluster and the
2621 * data pointer is fixed up to point just past it.
2622 */
2623static int
2624fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2625{
2626	struct mbuf *m;
2627	struct fxp_rfa *rfa;
2628	bus_dmamap_t tmp_map;
2629	int error;
2630
2631	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2632	if (m == NULL)
2633		return (ENOBUFS);
2634
2635	/*
2636	 * Move the data pointer up so that the incoming data packet
2637	 * will be 32-bit aligned.
2638	 */
2639	m->m_data += RFA_ALIGNMENT_FUDGE;
2640
2641	/*
2642	 * Get a pointer to the base of the mbuf cluster and move
2643	 * data start past it.
2644	 */
2645	rfa = mtod(m, struct fxp_rfa *);
2646	m->m_data += sc->rfa_size;
2647	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2648
2649	rfa->rfa_status = 0;
2650	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2651	rfa->actual_size = 0;
2652	m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
2653	    sc->rfa_size;
2654
2655	/*
2656	 * Initialize the rest of the RFA.  Note that since the RFA
2657	 * is misaligned, we cannot store values directly.  We're thus
2658	 * using the le32enc() function which handles endianness and
2659	 * is also alignment-safe.
2660	 */
2661	le32enc(&rfa->link_addr, 0xffffffff);
2662	le32enc(&rfa->rbd_addr, 0xffffffff);
2663
2664	/* Map the RFA into DMA memory. */
2665	error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
2666	    MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
2667	    &rxp->rx_addr, BUS_DMA_NOWAIT);
2668	if (error) {
2669		m_freem(m);
2670		return (error);
2671	}
2672
2673	if (rxp->rx_mbuf != NULL)
2674		bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
2675	tmp_map = sc->spare_map;
2676	sc->spare_map = rxp->rx_map;
2677	rxp->rx_map = tmp_map;
2678	rxp->rx_mbuf = m;
2679
2680	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2681	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2682	return (0);
2683}
2684
2685static void
2686fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2687{
2688	struct fxp_rfa *p_rfa;
2689	struct fxp_rx *p_rx;
2690
2691	/*
2692	 * If there are other buffers already on the list, attach this
2693	 * one to the end by fixing up the tail to point to this one.
2694	 */
2695	if (sc->fxp_desc.rx_head != NULL) {
2696		p_rx = sc->fxp_desc.rx_tail;
2697		p_rfa = (struct fxp_rfa *)
2698		    (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
2699		p_rx->rx_next = rxp;
2700		le32enc(&p_rfa->link_addr, rxp->rx_addr);
2701		p_rfa->rfa_control = 0;
2702		bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
2703		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2704	} else {
2705		rxp->rx_next = NULL;
2706		sc->fxp_desc.rx_head = rxp;
2707	}
2708	sc->fxp_desc.rx_tail = rxp;
2709}
2710
2711static void
2712fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
2713{
2714	struct mbuf *m;
2715	struct fxp_rfa *rfa;
2716
2717	m = rxp->rx_mbuf;
2718	m->m_data = m->m_ext.ext_buf;
2719	/*
2720	 * Move the data pointer up so that the incoming data packet
2721	 * will be 32-bit aligned.
2722	 */
2723	m->m_data += RFA_ALIGNMENT_FUDGE;
2724
2725	/*
2726	 * Get a pointer to the base of the mbuf cluster and move
2727	 * data start past it.
2728	 */
2729	rfa = mtod(m, struct fxp_rfa *);
2730	m->m_data += sc->rfa_size;
2731	rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
2732
2733	rfa->rfa_status = 0;
2734	rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
2735	rfa->actual_size = 0;
2736
2737	/*
2738	 * Initialize the rest of the RFA.  Note that since the RFA
2739	 * is misaligned, we cannot store values directly.  We're thus
2740	 * using the le32enc() function which handles endianness and
2741	 * is also alignment-safe.
2742	 */
2743	le32enc(&rfa->link_addr, 0xffffffff);
2744	le32enc(&rfa->rbd_addr, 0xffffffff);
2745
2746	bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
2747	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2748}
2749
2750static int
2751fxp_miibus_readreg(device_t dev, int phy, int reg)
2752{
2753	struct fxp_softc *sc = device_get_softc(dev);
2754	int count = 10000;
2755	int value;
2756
2757	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2758	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2759
2760	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2761	    && count--)
2762		DELAY(10);
2763
2764	if (count <= 0)
2765		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2766
2767	return (value & 0xffff);
2768}
2769
2770static int
2771fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2772{
2773	struct fxp_softc *sc = device_get_softc(dev);
2774	int count = 10000;
2775
2776	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2777	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2778	    (value & 0xffff));
2779
2780	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2781	    count--)
2782		DELAY(10);
2783
2784	if (count <= 0)
2785		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2786	return (0);
2787}
2788
2789static void
2790fxp_miibus_statchg(device_t dev)
2791{
2792	struct fxp_softc *sc;
2793	struct mii_data *mii;
2794	struct ifnet *ifp;
2795
2796	sc = device_get_softc(dev);
2797	mii = device_get_softc(sc->miibus);
2798	ifp = sc->ifp;
2799	if (mii == NULL || ifp == NULL ||
2800	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2801	    (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
2802	    (IFM_AVALID | IFM_ACTIVE))
2803		return;
2804
2805	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
2806	    sc->flags & FXP_FLAG_CU_RESUME_BUG)
2807		sc->cu_resume_bug = 1;
2808	else
2809		sc->cu_resume_bug = 0;
2810	/*
2811	 * Call fxp_init_body in order to adjust the flow control settings.
2812	 * Note that the 82557 doesn't support hardware flow control.
2813	 */
2814	if (sc->revision == FXP_REV_82557)
2815		return;
2816	fxp_init_body(sc, 0);
2817}
2818
2819static int
2820fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2821{
2822	struct fxp_softc *sc = ifp->if_softc;
2823	struct ifreq *ifr = (struct ifreq *)data;
2824	struct mii_data *mii;
2825	int flag, mask, error = 0, reinit;
2826
2827	switch (command) {
2828	case SIOCSIFFLAGS:
2829		FXP_LOCK(sc);
2830		/*
2831		 * If interface is marked up and not running, then start it.
2832		 * If it is marked down and running, stop it.
2833		 * XXX If it's up then re-initialize it. This is so flags
2834		 * such as IFF_PROMISC are handled.
2835		 */
2836		if (ifp->if_flags & IFF_UP) {
2837			if (((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) &&
2838			    ((ifp->if_flags ^ sc->if_flags) &
2839			    (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0)
2840				fxp_init_body(sc, 0);
2841			else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2842				fxp_init_body(sc, 1);
2843		} else {
2844			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2845				fxp_stop(sc);
2846		}
2847		sc->if_flags = ifp->if_flags;
2848		FXP_UNLOCK(sc);
2849		break;
2850
2851	case SIOCADDMULTI:
2852	case SIOCDELMULTI:
2853		FXP_LOCK(sc);
2854		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2855			fxp_init_body(sc, 0);
2856		FXP_UNLOCK(sc);
2857		break;
2858
2859	case SIOCSIFMEDIA:
2860	case SIOCGIFMEDIA:
2861		if (sc->miibus != NULL) {
2862			mii = device_get_softc(sc->miibus);
2863                        error = ifmedia_ioctl(ifp, ifr,
2864                            &mii->mii_media, command);
2865		} else {
2866                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2867		}
2868		break;
2869
2870	case SIOCSIFCAP:
2871		reinit = 0;
2872		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
2873#ifdef DEVICE_POLLING
2874		if (mask & IFCAP_POLLING) {
2875			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2876				error = ether_poll_register(fxp_poll, ifp);
2877				if (error)
2878					return(error);
2879				FXP_LOCK(sc);
2880				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
2881				    FXP_SCB_INTR_DISABLE);
2882				ifp->if_capenable |= IFCAP_POLLING;
2883				FXP_UNLOCK(sc);
2884			} else {
2885				error = ether_poll_deregister(ifp);
2886				/* Enable interrupts in any case */
2887				FXP_LOCK(sc);
2888				CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
2889				ifp->if_capenable &= ~IFCAP_POLLING;
2890				FXP_UNLOCK(sc);
2891			}
2892		}
2893#endif
2894		FXP_LOCK(sc);
2895		if ((mask & IFCAP_TXCSUM) != 0 &&
2896		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2897			ifp->if_capenable ^= IFCAP_TXCSUM;
2898			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2899				ifp->if_hwassist |= FXP_CSUM_FEATURES;
2900			else
2901				ifp->if_hwassist &= ~FXP_CSUM_FEATURES;
2902		}
2903		if ((mask & IFCAP_RXCSUM) != 0 &&
2904		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
2905			ifp->if_capenable ^= IFCAP_RXCSUM;
2906			if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
2907				reinit++;
2908		}
2909		if ((mask & IFCAP_TSO4) != 0 &&
2910		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2911			ifp->if_capenable ^= IFCAP_TSO4;
2912			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2913				ifp->if_hwassist |= CSUM_TSO;
2914			else
2915				ifp->if_hwassist &= ~CSUM_TSO;
2916		}
2917		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2918		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2919			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2920		if ((mask & IFCAP_VLAN_MTU) != 0 &&
2921		    (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0) {
2922			ifp->if_capenable ^= IFCAP_VLAN_MTU;
2923			if (sc->revision != FXP_REV_82557)
2924				flag = FXP_FLAG_LONG_PKT_EN;
2925			else /* a hack to get long frames on the old chip */
2926				flag = FXP_FLAG_SAVE_BAD;
2927			sc->flags ^= flag;
2928			if (ifp->if_flags & IFF_UP)
2929				reinit++;
2930		}
2931		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2932		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2933			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2934		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2935		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2936			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2937		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2938		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2939			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2940			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2941				ifp->if_capenable &=
2942				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2943			reinit++;
2944		}
2945		if (reinit > 0 && ifp->if_flags & IFF_UP)
2946			fxp_init_body(sc, 0);
2947		FXP_UNLOCK(sc);
2948		VLAN_CAPABILITIES(ifp);
2949		break;
2950
2951	default:
2952		error = ether_ioctl(ifp, command, data);
2953	}
2954	return (error);
2955}
2956
2957/*
2958 * Fill in the multicast address list and return number of entries.
2959 */
2960static int
2961fxp_mc_addrs(struct fxp_softc *sc)
2962{
2963	struct fxp_cb_mcs *mcsp = sc->mcsp;
2964	struct ifnet *ifp = sc->ifp;
2965	struct ifmultiaddr *ifma;
2966	int nmcasts;
2967
2968	nmcasts = 0;
2969	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2970		if_maddr_rlock(ifp);
2971		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2972			if (ifma->ifma_addr->sa_family != AF_LINK)
2973				continue;
2974			if (nmcasts >= MAXMCADDR) {
2975				ifp->if_flags |= IFF_ALLMULTI;
2976				nmcasts = 0;
2977				break;
2978			}
2979			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2980			    &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN);
2981			nmcasts++;
2982		}
2983		if_maddr_runlock(ifp);
2984	}
2985	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
2986	return (nmcasts);
2987}
2988
2989/*
2990 * Program the multicast filter.
2991 *
2992 * We have an artificial restriction that the multicast setup command
2993 * must be the first command in the chain, so we take steps to ensure
2994 * this. By requiring this, it allows us to keep up the performance of
2995 * the pre-initialized command ring (esp. link pointers) by not actually
2996 * inserting the mcsetup command in the ring - i.e. its link pointer
2997 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2998 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2999 * lead into the regular TxCB ring when it completes.
3000 */
3001static void
3002fxp_mc_setup(struct fxp_softc *sc)
3003{
3004	struct fxp_cb_mcs *mcsp;
3005	int count;
3006
3007	FXP_LOCK_ASSERT(sc, MA_OWNED);
3008
3009	mcsp = sc->mcsp;
3010	mcsp->cb_status = 0;
3011	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
3012	mcsp->link_addr = 0xffffffff;
3013	fxp_mc_addrs(sc);
3014
3015	/*
3016	 * Wait until command unit is idle. This should never be the
3017	 * case when nothing is queued, but make sure anyway.
3018	 */
3019	count = 100;
3020	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
3021	    FXP_SCB_CUS_IDLE && --count)
3022		DELAY(10);
3023	if (count == 0) {
3024		device_printf(sc->dev, "command queue timeout\n");
3025		return;
3026	}
3027
3028	/*
3029	 * Start the multicast setup command.
3030	 */
3031	fxp_scb_wait(sc);
3032	bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
3033	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3034	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
3035	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3036	/* ...and wait for it to complete. */
3037	fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
3038}
3039
3040static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
3041static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
3042static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
3043static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
3044static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
3045static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
3046static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
3047
3048#define UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
3049
3050static const struct ucode {
3051	uint32_t	revision;
3052	uint32_t	*ucode;
3053	int		length;
3054	u_short		int_delay_offset;
3055	u_short		bundle_max_offset;
3056} const ucode_table[] = {
3057	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
3058	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
3059	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
3060	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
3061	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
3062	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
3063	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
3064	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
3065	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
3066	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
3067	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
3068	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3069	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
3070	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
3071	{ 0, NULL, 0, 0, 0 }
3072};
3073
3074static void
3075fxp_load_ucode(struct fxp_softc *sc)
3076{
3077	const struct ucode *uc;
3078	struct fxp_cb_ucode *cbp;
3079	int i;
3080
3081	if (sc->flags & FXP_FLAG_NO_UCODE)
3082		return;
3083
3084	for (uc = ucode_table; uc->ucode != NULL; uc++)
3085		if (sc->revision == uc->revision)
3086			break;
3087	if (uc->ucode == NULL)
3088		return;
3089	cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
3090	cbp->cb_status = 0;
3091	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
3092	cbp->link_addr = 0xffffffff;    	/* (no) next command */
3093	for (i = 0; i < uc->length; i++)
3094		cbp->ucode[i] = htole32(uc->ucode[i]);
3095	if (uc->int_delay_offset)
3096		*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
3097		    htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
3098	if (uc->bundle_max_offset)
3099		*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
3100		    htole16(sc->tunable_bundle_max);
3101	/*
3102	 * Download the ucode to the chip.
3103	 */
3104	fxp_scb_wait(sc);
3105	bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
3106	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3107	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
3108	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
3109	/* ...and wait for it to complete. */
3110	fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
3111	device_printf(sc->dev,
3112	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
3113	    sc->tunable_int_delay,
3114	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
3115	sc->flags |= FXP_FLAG_UCODE;
3116	bzero(cbp, FXP_TXCB_SZ);
3117}
3118
3119#define FXP_SYSCTL_STAT_ADD(c, h, n, p, d)	\
3120	SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
3121
3122static void
3123fxp_sysctl_node(struct fxp_softc *sc)
3124{
3125	struct sysctl_ctx_list *ctx;
3126	struct sysctl_oid_list *child, *parent;
3127	struct sysctl_oid *tree;
3128	struct fxp_hwstats *hsp;
3129
3130	ctx = device_get_sysctl_ctx(sc->dev);
3131	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3132
3133	SYSCTL_ADD_PROC(ctx, child,
3134	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
3135	    &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
3136	    "FXP driver receive interrupt microcode bundling delay");
3137	SYSCTL_ADD_PROC(ctx, child,
3138	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
3139	    &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
3140	    "FXP driver receive interrupt microcode bundle size limit");
3141	SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
3142	    "FXP RNR events");
3143
3144	/*
3145	 * Pull in device tunables.
3146	 */
3147	sc->tunable_int_delay = TUNABLE_INT_DELAY;
3148	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
3149	(void) resource_int_value(device_get_name(sc->dev),
3150	    device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
3151	(void) resource_int_value(device_get_name(sc->dev),
3152	    device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
3153	sc->rnr = 0;
3154
3155	hsp = &sc->fxp_hwstats;
3156	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
3157	    NULL, "FXP statistics");
3158	parent = SYSCTL_CHILDREN(tree);
3159
3160	/* Rx MAC statistics. */
3161	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
3162	    NULL, "Rx MAC statistics");
3163	child = SYSCTL_CHILDREN(tree);
3164	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3165	    &hsp->rx_good, "Good frames");
3166	FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
3167	    &hsp->rx_crc_errors, "CRC errors");
3168	FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
3169	    &hsp->rx_alignment_errors, "Alignment errors");
3170	FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
3171	    &hsp->rx_rnr_errors, "RNR errors");
3172	FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
3173	    &hsp->rx_overrun_errors, "Overrun errors");
3174	FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
3175	    &hsp->rx_cdt_errors, "Collision detect errors");
3176	FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
3177	    &hsp->rx_shortframes, "Short frame errors");
3178	if (sc->revision >= FXP_REV_82558_A4) {
3179		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3180		    &hsp->rx_pause, "Pause frames");
3181		FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
3182		    &hsp->rx_controls, "Unsupported control frames");
3183	}
3184	if (sc->revision >= FXP_REV_82559_A0)
3185		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3186		    &hsp->rx_tco, "TCO frames");
3187
3188	/* Tx MAC statistics. */
3189	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
3190	    NULL, "Tx MAC statistics");
3191	child = SYSCTL_CHILDREN(tree);
3192	FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
3193	    &hsp->tx_good, "Good frames");
3194	FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
3195	    &hsp->tx_maxcols, "Maximum collisions errors");
3196	FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
3197	    &hsp->tx_latecols, "Late collisions errors");
3198	FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
3199	    &hsp->tx_underruns, "Underrun errors");
3200	FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
3201	    &hsp->tx_lostcrs, "Lost carrier sense");
3202	FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
3203	    &hsp->tx_deffered, "Deferred");
3204	FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
3205	    &hsp->tx_single_collisions, "Single collisions");
3206	FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
3207	    &hsp->tx_multiple_collisions, "Multiple collisions");
3208	FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
3209	    &hsp->tx_total_collisions, "Total collisions");
3210	if (sc->revision >= FXP_REV_82558_A4)
3211		FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
3212		    &hsp->tx_pause, "Pause frames");
3213	if (sc->revision >= FXP_REV_82559_A0)
3214		FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
3215		    &hsp->tx_tco, "TCO frames");
3216}
3217
3218#undef FXP_SYSCTL_STAT_ADD
3219
3220static int
3221sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3222{
3223	int error, value;
3224
3225	value = *(int *)arg1;
3226	error = sysctl_handle_int(oidp, &value, 0, req);
3227	if (error || !req->newptr)
3228		return (error);
3229	if (value < low || value > high)
3230		return (EINVAL);
3231	*(int *)arg1 = value;
3232	return (0);
3233}
3234
3235/*
3236 * Interrupt delay is expressed in microseconds, a multiplier is used
3237 * to convert this to the appropriate clock ticks before using.
3238 */
3239static int
3240sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
3241{
3242
3243	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
3244}
3245
3246static int
3247sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
3248{
3249
3250	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
3251}
3252