1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/endian.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/mbuf.h>
40#include <sys/rman.h>
41#include <sys/module.h>
42#include <sys/queue.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/sysctl.h>
46#include <sys/taskqueue.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_arp.h>
51#include <net/ethernet.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54#include <net/if_types.h>
55#include <net/if_vlan_var.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/tcp.h>
61
62#include <dev/mii/mii.h>
63#include <dev/mii/miivar.h>
64
65#include <dev/pci/pcireg.h>
66#include <dev/pci/pcivar.h>
67
68#include <machine/bus.h>
69#include <machine/in_cksum.h>
70
71#include <dev/age/if_agereg.h>
72#include <dev/age/if_agevar.h>
73
74/* "device miibus" required.  See GENERIC if you get errors here. */
75#include "miibus_if.h"
76
77#define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
78
79MODULE_DEPEND(age, pci, 1, 1, 1);
80MODULE_DEPEND(age, ether, 1, 1, 1);
81MODULE_DEPEND(age, miibus, 1, 1, 1);
82
83/* Tunables. */
84static int msi_disable = 0;
85static int msix_disable = 0;
86TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88
89/*
90 * Devices supported by this driver.
91 */
92static struct age_dev {
93	uint16_t	age_vendorid;
94	uint16_t	age_deviceid;
95	const char	*age_name;
96} age_devs[] = {
97	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
99};
100
101static int age_miibus_readreg(device_t, int, int);
102static int age_miibus_writereg(device_t, int, int, int);
103static void age_miibus_statchg(device_t);
104static void age_mediastatus(struct ifnet *, struct ifmediareq *);
105static int age_mediachange(struct ifnet *);
106static int age_probe(device_t);
107static void age_get_macaddr(struct age_softc *);
108static void age_phy_reset(struct age_softc *);
109static int age_attach(device_t);
110static int age_detach(device_t);
111static void age_sysctl_node(struct age_softc *);
112static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113static int age_check_boundary(struct age_softc *);
114static int age_dma_alloc(struct age_softc *);
115static void age_dma_free(struct age_softc *);
116static int age_shutdown(device_t);
117static void age_setwol(struct age_softc *);
118static int age_suspend(device_t);
119static int age_resume(device_t);
120static int age_encap(struct age_softc *, struct mbuf **);
121static void age_start(struct ifnet *);
122static void age_start_locked(struct ifnet *);
123static void age_watchdog(struct age_softc *);
124static int age_ioctl(struct ifnet *, u_long, caddr_t);
125static void age_mac_config(struct age_softc *);
126static void age_link_task(void *, int);
127static void age_stats_update(struct age_softc *);
128static int age_intr(void *);
129static void age_int_task(void *, int);
130static void age_txintr(struct age_softc *, int);
131static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132static int age_rxintr(struct age_softc *, int, int);
133static void age_tick(void *);
134static void age_reset(struct age_softc *);
135static void age_init(void *);
136static void age_init_locked(struct age_softc *);
137static void age_stop(struct age_softc *);
138static void age_stop_txmac(struct age_softc *);
139static void age_stop_rxmac(struct age_softc *);
140static void age_init_tx_ring(struct age_softc *);
141static int age_init_rx_ring(struct age_softc *);
142static void age_init_rr_ring(struct age_softc *);
143static void age_init_cmb_block(struct age_softc *);
144static void age_init_smb_block(struct age_softc *);
145static int age_newbuf(struct age_softc *, struct age_rxdesc *);
146static void age_rxvlan(struct age_softc *);
147static void age_rxfilter(struct age_softc *);
148static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
149static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
150static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
151static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
152
153
154static device_method_t age_methods[] = {
155	/* Device interface. */
156	DEVMETHOD(device_probe,		age_probe),
157	DEVMETHOD(device_attach,	age_attach),
158	DEVMETHOD(device_detach,	age_detach),
159	DEVMETHOD(device_shutdown,	age_shutdown),
160	DEVMETHOD(device_suspend,	age_suspend),
161	DEVMETHOD(device_resume,	age_resume),
162
163	/* MII interface. */
164	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
165	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
166	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
167
168	{ NULL, NULL }
169};
170
171static driver_t age_driver = {
172	"age",
173	age_methods,
174	sizeof(struct age_softc)
175};
176
177static devclass_t age_devclass;
178
179DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
180DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
181
182static struct resource_spec age_res_spec_mem[] = {
183	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
184	{ -1,			0,		0 }
185};
186
187static struct resource_spec age_irq_spec_legacy[] = {
188	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
189	{ -1,			0,		0 }
190};
191
192static struct resource_spec age_irq_spec_msi[] = {
193	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
194	{ -1,			0,		0 }
195};
196
197static struct resource_spec age_irq_spec_msix[] = {
198	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
199	{ -1,			0,		0 }
200};
201
202/*
203 *	Read a PHY register on the MII of the L1.
204 */
205static int
206age_miibus_readreg(device_t dev, int phy, int reg)
207{
208	struct age_softc *sc;
209	uint32_t v;
210	int i;
211
212	sc = device_get_softc(dev);
213
214	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
215	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
216	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
217		DELAY(1);
218		v = CSR_READ_4(sc, AGE_MDIO);
219		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
220			break;
221	}
222
223	if (i == 0) {
224		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
225		return (0);
226	}
227
228	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
229}
230
231/*
232 *	Write a PHY register on the MII of the L1.
233 */
234static int
235age_miibus_writereg(device_t dev, int phy, int reg, int val)
236{
237	struct age_softc *sc;
238	uint32_t v;
239	int i;
240
241	sc = device_get_softc(dev);
242
243	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
244	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
245	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
246	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
247		DELAY(1);
248		v = CSR_READ_4(sc, AGE_MDIO);
249		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
250			break;
251	}
252
253	if (i == 0)
254		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
255
256	return (0);
257}
258
259/*
260 *	Callback from MII layer when media changes.
261 */
262static void
263age_miibus_statchg(device_t dev)
264{
265	struct age_softc *sc;
266
267	sc = device_get_softc(dev);
268	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
269}
270
271/*
272 *	Get the current interface media status.
273 */
274static void
275age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
276{
277	struct age_softc *sc;
278	struct mii_data *mii;
279
280	sc = ifp->if_softc;
281	AGE_LOCK(sc);
282	mii = device_get_softc(sc->age_miibus);
283
284	mii_pollstat(mii);
285	ifmr->ifm_status = mii->mii_media_status;
286	ifmr->ifm_active = mii->mii_media_active;
287	AGE_UNLOCK(sc);
288}
289
290/*
291 *	Set hardware to newly-selected media.
292 */
293static int
294age_mediachange(struct ifnet *ifp)
295{
296	struct age_softc *sc;
297	struct mii_data *mii;
298	struct mii_softc *miisc;
299	int error;
300
301	sc = ifp->if_softc;
302	AGE_LOCK(sc);
303	mii = device_get_softc(sc->age_miibus);
304	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
305		PHY_RESET(miisc);
306	error = mii_mediachg(mii);
307	AGE_UNLOCK(sc);
308
309	return (error);
310}
311
312static int
313age_probe(device_t dev)
314{
315	struct age_dev *sp;
316	int i;
317	uint16_t vendor, devid;
318
319	vendor = pci_get_vendor(dev);
320	devid = pci_get_device(dev);
321	sp = age_devs;
322	for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
323	    i++, sp++) {
324		if (vendor == sp->age_vendorid &&
325		    devid == sp->age_deviceid) {
326			device_set_desc(dev, sp->age_name);
327			return (BUS_PROBE_DEFAULT);
328		}
329	}
330
331	return (ENXIO);
332}
333
334static void
335age_get_macaddr(struct age_softc *sc)
336{
337	uint32_t ea[2], reg;
338	int i, vpdc;
339
340	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
341	if ((reg & SPI_VPD_ENB) != 0) {
342		/* Get VPD stored in TWSI EEPROM. */
343		reg &= ~SPI_VPD_ENB;
344		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
345	}
346
347	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
348		/*
349		 * PCI VPD capability found, let TWSI reload EEPROM.
350		 * This will set ethernet address of controller.
351		 */
352		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
353		    TWSI_CTRL_SW_LD_START);
354		for (i = 100; i > 0; i--) {
355			DELAY(1000);
356			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
357			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
358				break;
359		}
360		if (i == 0)
361			device_printf(sc->age_dev,
362			    "reloading EEPROM timeout!\n");
363	} else {
364		if (bootverbose)
365			device_printf(sc->age_dev,
366			    "PCI VPD capability not found!\n");
367	}
368
369	ea[0] = CSR_READ_4(sc, AGE_PAR0);
370	ea[1] = CSR_READ_4(sc, AGE_PAR1);
371	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
372	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
373	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
374	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
375	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
376	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
377}
378
379static void
380age_phy_reset(struct age_softc *sc)
381{
382	uint16_t reg, pn;
383	int i, linkup;
384
385	/* Reset PHY. */
386	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
387	DELAY(2000);
388	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
389	DELAY(2000);
390
391#define	ATPHY_DBG_ADDR		0x1D
392#define	ATPHY_DBG_DATA		0x1E
393#define	ATPHY_CDTC		0x16
394#define	PHY_CDTC_ENB		0x0001
395#define	PHY_CDTC_POFF		8
396#define	ATPHY_CDTS		0x1C
397#define	PHY_CDTS_STAT_OK	0x0000
398#define	PHY_CDTS_STAT_SHORT	0x0100
399#define	PHY_CDTS_STAT_OPEN	0x0200
400#define	PHY_CDTS_STAT_INVAL	0x0300
401#define	PHY_CDTS_STAT_MASK	0x0300
402
403	/* Check power saving mode. Magic from Linux. */
404	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
405	for (linkup = 0, pn = 0; pn < 4; pn++) {
406		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
407		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
408		for (i = 200; i > 0; i--) {
409			DELAY(1000);
410			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
411			    ATPHY_CDTC);
412			if ((reg & PHY_CDTC_ENB) == 0)
413				break;
414		}
415		DELAY(1000);
416		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
417		    ATPHY_CDTS);
418		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
419			linkup++;
420			break;
421		}
422	}
423	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
424	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
425	if (linkup == 0) {
426		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
427		    ATPHY_DBG_ADDR, 0);
428		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
429		    ATPHY_DBG_DATA, 0x124E);
430		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
431		    ATPHY_DBG_ADDR, 1);
432		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
433		    ATPHY_DBG_DATA);
434		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
435		    ATPHY_DBG_DATA, reg | 0x03);
436		/* XXX */
437		DELAY(1500 * 1000);
438		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
439		    ATPHY_DBG_ADDR, 0);
440		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
441		    ATPHY_DBG_DATA, 0x024E);
442    }
443
444#undef	ATPHY_DBG_ADDR
445#undef	ATPHY_DBG_DATA
446#undef	ATPHY_CDTC
447#undef	PHY_CDTC_ENB
448#undef	PHY_CDTC_POFF
449#undef	ATPHY_CDTS
450#undef	PHY_CDTS_STAT_OK
451#undef	PHY_CDTS_STAT_SHORT
452#undef	PHY_CDTS_STAT_OPEN
453#undef	PHY_CDTS_STAT_INVAL
454#undef	PHY_CDTS_STAT_MASK
455}
456
457static int
458age_attach(device_t dev)
459{
460	struct age_softc *sc;
461	struct ifnet *ifp;
462	uint16_t burst;
463	int error, i, msic, msixc, pmc;
464
465	error = 0;
466	sc = device_get_softc(dev);
467	sc->age_dev = dev;
468
469	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
470	    MTX_DEF);
471	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
472	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
473	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
474
475	/* Map the device. */
476	pci_enable_busmaster(dev);
477	sc->age_res_spec = age_res_spec_mem;
478	sc->age_irq_spec = age_irq_spec_legacy;
479	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
480	if (error != 0) {
481		device_printf(dev, "cannot allocate memory resources.\n");
482		goto fail;
483	}
484
485	/* Set PHY address. */
486	sc->age_phyaddr = AGE_PHY_ADDR;
487
488	/* Reset PHY. */
489	age_phy_reset(sc);
490
491	/* Reset the ethernet controller. */
492	age_reset(sc);
493
494	/* Get PCI and chip id/revision. */
495	sc->age_rev = pci_get_revid(dev);
496	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
497	    MASTER_CHIP_REV_SHIFT;
498	if (bootverbose) {
499		device_printf(dev, "PCI device revision : 0x%04x\n",
500		    sc->age_rev);
501		device_printf(dev, "Chip id/revision : 0x%04x\n",
502		    sc->age_chip_rev);
503	}
504
505	/*
506	 * XXX
507	 * Unintialized hardware returns an invalid chip id/revision
508	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
509	 * unplugged cable results in putting hardware into automatic
510	 * power down mode which in turn returns invalld chip revision.
511	 */
512	if (sc->age_chip_rev == 0xFFFF) {
513		device_printf(dev,"invalid chip revision : 0x%04x -- "
514		    "not initialized?\n", sc->age_chip_rev);
515		error = ENXIO;
516		goto fail;
517	}
518
519	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
520	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
521	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
522
523	/* Allocate IRQ resources. */
524	msixc = pci_msix_count(dev);
525	msic = pci_msi_count(dev);
526	if (bootverbose) {
527		device_printf(dev, "MSIX count : %d\n", msixc);
528		device_printf(dev, "MSI count : %d\n", msic);
529	}
530
531	/* Prefer MSIX over MSI. */
532	if (msix_disable == 0 || msi_disable == 0) {
533		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
534		    pci_alloc_msix(dev, &msixc) == 0) {
535			if (msic == AGE_MSIX_MESSAGES) {
536				device_printf(dev, "Using %d MSIX messages.\n",
537				    msixc);
538				sc->age_flags |= AGE_FLAG_MSIX;
539				sc->age_irq_spec = age_irq_spec_msix;
540			} else
541				pci_release_msi(dev);
542		}
543		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
544		    msic == AGE_MSI_MESSAGES &&
545		    pci_alloc_msi(dev, &msic) == 0) {
546			if (msic == AGE_MSI_MESSAGES) {
547				device_printf(dev, "Using %d MSI messages.\n",
548				    msic);
549				sc->age_flags |= AGE_FLAG_MSI;
550				sc->age_irq_spec = age_irq_spec_msi;
551			} else
552				pci_release_msi(dev);
553		}
554	}
555
556	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
557	if (error != 0) {
558		device_printf(dev, "cannot allocate IRQ resources.\n");
559		goto fail;
560	}
561
562
563	/* Get DMA parameters from PCIe device control register. */
564	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
565		sc->age_flags |= AGE_FLAG_PCIE;
566		burst = pci_read_config(dev, i + 0x08, 2);
567		/* Max read request size. */
568		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
569		    DMA_CFG_RD_BURST_SHIFT;
570		/* Max payload size. */
571		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
572		    DMA_CFG_WR_BURST_SHIFT;
573		if (bootverbose) {
574			device_printf(dev, "Read request size : %d bytes.\n",
575			    128 << ((burst >> 12) & 0x07));
576			device_printf(dev, "TLP payload size : %d bytes.\n",
577			    128 << ((burst >> 5) & 0x07));
578		}
579	} else {
580		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
581		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
582	}
583
584	/* Create device sysctl node. */
585	age_sysctl_node(sc);
586
587	if ((error = age_dma_alloc(sc) != 0))
588		goto fail;
589
590	/* Load station address. */
591	age_get_macaddr(sc);
592
593	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
594	if (ifp == NULL) {
595		device_printf(dev, "cannot allocate ifnet structure.\n");
596		error = ENXIO;
597		goto fail;
598	}
599
600	ifp->if_softc = sc;
601	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
602	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
603	ifp->if_ioctl = age_ioctl;
604	ifp->if_start = age_start;
605	ifp->if_init = age_init;
606	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
607	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
608	IFQ_SET_READY(&ifp->if_snd);
609	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
610	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
611	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
612		sc->age_flags |= AGE_FLAG_PMCAP;
613		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
614	}
615	ifp->if_capenable = ifp->if_capabilities;
616
617	/* Set up MII bus. */
618	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
619	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
620	    0);
621	if (error != 0) {
622		device_printf(dev, "attaching PHYs failed\n");
623		goto fail;
624	}
625
626	ether_ifattach(ifp, sc->age_eaddr);
627
628	/* VLAN capability setup. */
629	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
630	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
631	ifp->if_capenable = ifp->if_capabilities;
632
633	/* Tell the upper layer(s) we support long frames. */
634	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
635
636	/* Create local taskq. */
637	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
638	    taskqueue_thread_enqueue, &sc->age_tq);
639	if (sc->age_tq == NULL) {
640		device_printf(dev, "could not create taskqueue.\n");
641		ether_ifdetach(ifp);
642		error = ENXIO;
643		goto fail;
644	}
645	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
646	    device_get_nameunit(sc->age_dev));
647
648	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
649		msic = AGE_MSIX_MESSAGES;
650	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
651		msic = AGE_MSI_MESSAGES;
652	else
653		msic = 1;
654	for (i = 0; i < msic; i++) {
655		error = bus_setup_intr(dev, sc->age_irq[i],
656		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
657		    &sc->age_intrhand[i]);
658		if (error != 0)
659			break;
660	}
661	if (error != 0) {
662		device_printf(dev, "could not set up interrupt handler.\n");
663		taskqueue_free(sc->age_tq);
664		sc->age_tq = NULL;
665		ether_ifdetach(ifp);
666		goto fail;
667	}
668
669fail:
670	if (error != 0)
671		age_detach(dev);
672
673	return (error);
674}
675
676static int
677age_detach(device_t dev)
678{
679	struct age_softc *sc;
680	struct ifnet *ifp;
681	int i, msic;
682
683	sc = device_get_softc(dev);
684
685	ifp = sc->age_ifp;
686	if (device_is_attached(dev)) {
687		AGE_LOCK(sc);
688		sc->age_flags |= AGE_FLAG_DETACH;
689		age_stop(sc);
690		AGE_UNLOCK(sc);
691		callout_drain(&sc->age_tick_ch);
692		taskqueue_drain(sc->age_tq, &sc->age_int_task);
693		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
694		ether_ifdetach(ifp);
695	}
696
697	if (sc->age_tq != NULL) {
698		taskqueue_drain(sc->age_tq, &sc->age_int_task);
699		taskqueue_free(sc->age_tq);
700		sc->age_tq = NULL;
701	}
702
703	if (sc->age_miibus != NULL) {
704		device_delete_child(dev, sc->age_miibus);
705		sc->age_miibus = NULL;
706	}
707	bus_generic_detach(dev);
708	age_dma_free(sc);
709
710	if (ifp != NULL) {
711		if_free(ifp);
712		sc->age_ifp = NULL;
713	}
714
715	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
716		msic = AGE_MSIX_MESSAGES;
717	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
718		msic = AGE_MSI_MESSAGES;
719	else
720		msic = 1;
721	for (i = 0; i < msic; i++) {
722		if (sc->age_intrhand[i] != NULL) {
723			bus_teardown_intr(dev, sc->age_irq[i],
724			    sc->age_intrhand[i]);
725			sc->age_intrhand[i] = NULL;
726		}
727	}
728
729	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
730	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
731		pci_release_msi(dev);
732	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
733	mtx_destroy(&sc->age_mtx);
734
735	return (0);
736}
737
738static void
739age_sysctl_node(struct age_softc *sc)
740{
741	int error;
742
743	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
744	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
745	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
746	    "I", "Statistics");
747
748	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
749	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
750	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
751	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
752
753	/* Pull in device tunables. */
754	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
755	error = resource_int_value(device_get_name(sc->age_dev),
756	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
757	if (error == 0) {
758		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
759		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
760			device_printf(sc->age_dev,
761			    "int_mod value out of range; using default: %d\n",
762			    AGE_IM_TIMER_DEFAULT);
763			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
764		}
765	}
766
767	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
768	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
769	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
770	    0, sysctl_hw_age_proc_limit, "I",
771	    "max number of Rx events to process");
772
773	/* Pull in device tunables. */
774	sc->age_process_limit = AGE_PROC_DEFAULT;
775	error = resource_int_value(device_get_name(sc->age_dev),
776	    device_get_unit(sc->age_dev), "process_limit",
777	    &sc->age_process_limit);
778	if (error == 0) {
779		if (sc->age_process_limit < AGE_PROC_MIN ||
780		    sc->age_process_limit > AGE_PROC_MAX) {
781			device_printf(sc->age_dev,
782			    "process_limit value out of range; "
783			    "using default: %d\n", AGE_PROC_DEFAULT);
784			sc->age_process_limit = AGE_PROC_DEFAULT;
785		}
786	}
787}
788
789struct age_dmamap_arg {
790	bus_addr_t	age_busaddr;
791};
792
793static void
794age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
795{
796	struct age_dmamap_arg *ctx;
797
798	if (error != 0)
799		return;
800
801	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
802
803	ctx = (struct age_dmamap_arg *)arg;
804	ctx->age_busaddr = segs[0].ds_addr;
805}
806
807/*
808 * Attansic L1 controller have single register to specify high
809 * address part of DMA blocks. So all descriptor structures and
810 * DMA memory blocks should have the same high address of given
811 * 4GB address space(i.e. crossing 4GB boundary is not allowed).
812 */
813static int
814age_check_boundary(struct age_softc *sc)
815{
816	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
817	bus_addr_t cmb_block_end, smb_block_end;
818
819	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
820	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
821	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
822	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
823	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
824	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
825
826	if ((AGE_ADDR_HI(tx_ring_end) !=
827	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
828	    (AGE_ADDR_HI(rx_ring_end) !=
829	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
830	    (AGE_ADDR_HI(rr_ring_end) !=
831	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
832	    (AGE_ADDR_HI(cmb_block_end) !=
833	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
834	    (AGE_ADDR_HI(smb_block_end) !=
835	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
836		return (EFBIG);
837
838	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
839	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
840	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
841	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
842		return (EFBIG);
843
844	return (0);
845}
846
847static int
848age_dma_alloc(struct age_softc *sc)
849{
850	struct age_txdesc *txd;
851	struct age_rxdesc *rxd;
852	bus_addr_t lowaddr;
853	struct age_dmamap_arg ctx;
854	int error, i;
855
856	lowaddr = BUS_SPACE_MAXADDR;
857
858again:
859	/* Create parent ring/DMA block tag. */
860	error = bus_dma_tag_create(
861	    bus_get_dma_tag(sc->age_dev), /* parent */
862	    1, 0,			/* alignment, boundary */
863	    lowaddr,			/* lowaddr */
864	    BUS_SPACE_MAXADDR,		/* highaddr */
865	    NULL, NULL,			/* filter, filterarg */
866	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
867	    0,				/* nsegments */
868	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
869	    0,				/* flags */
870	    NULL, NULL,			/* lockfunc, lockarg */
871	    &sc->age_cdata.age_parent_tag);
872	if (error != 0) {
873		device_printf(sc->age_dev,
874		    "could not create parent DMA tag.\n");
875		goto fail;
876	}
877
878	/* Create tag for Tx ring. */
879	error = bus_dma_tag_create(
880	    sc->age_cdata.age_parent_tag, /* parent */
881	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
882	    BUS_SPACE_MAXADDR,		/* lowaddr */
883	    BUS_SPACE_MAXADDR,		/* highaddr */
884	    NULL, NULL,			/* filter, filterarg */
885	    AGE_TX_RING_SZ,		/* maxsize */
886	    1,				/* nsegments */
887	    AGE_TX_RING_SZ,		/* maxsegsize */
888	    0,				/* flags */
889	    NULL, NULL,			/* lockfunc, lockarg */
890	    &sc->age_cdata.age_tx_ring_tag);
891	if (error != 0) {
892		device_printf(sc->age_dev,
893		    "could not create Tx ring DMA tag.\n");
894		goto fail;
895	}
896
897	/* Create tag for Rx ring. */
898	error = bus_dma_tag_create(
899	    sc->age_cdata.age_parent_tag, /* parent */
900	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
901	    BUS_SPACE_MAXADDR,		/* lowaddr */
902	    BUS_SPACE_MAXADDR,		/* highaddr */
903	    NULL, NULL,			/* filter, filterarg */
904	    AGE_RX_RING_SZ,		/* maxsize */
905	    1,				/* nsegments */
906	    AGE_RX_RING_SZ,		/* maxsegsize */
907	    0,				/* flags */
908	    NULL, NULL,			/* lockfunc, lockarg */
909	    &sc->age_cdata.age_rx_ring_tag);
910	if (error != 0) {
911		device_printf(sc->age_dev,
912		    "could not create Rx ring DMA tag.\n");
913		goto fail;
914	}
915
916	/* Create tag for Rx return ring. */
917	error = bus_dma_tag_create(
918	    sc->age_cdata.age_parent_tag, /* parent */
919	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
920	    BUS_SPACE_MAXADDR,		/* lowaddr */
921	    BUS_SPACE_MAXADDR,		/* highaddr */
922	    NULL, NULL,			/* filter, filterarg */
923	    AGE_RR_RING_SZ,		/* maxsize */
924	    1,				/* nsegments */
925	    AGE_RR_RING_SZ,		/* maxsegsize */
926	    0,				/* flags */
927	    NULL, NULL,			/* lockfunc, lockarg */
928	    &sc->age_cdata.age_rr_ring_tag);
929	if (error != 0) {
930		device_printf(sc->age_dev,
931		    "could not create Rx return ring DMA tag.\n");
932		goto fail;
933	}
934
935	/* Create tag for coalesing message block. */
936	error = bus_dma_tag_create(
937	    sc->age_cdata.age_parent_tag, /* parent */
938	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
939	    BUS_SPACE_MAXADDR,		/* lowaddr */
940	    BUS_SPACE_MAXADDR,		/* highaddr */
941	    NULL, NULL,			/* filter, filterarg */
942	    AGE_CMB_BLOCK_SZ,		/* maxsize */
943	    1,				/* nsegments */
944	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
945	    0,				/* flags */
946	    NULL, NULL,			/* lockfunc, lockarg */
947	    &sc->age_cdata.age_cmb_block_tag);
948	if (error != 0) {
949		device_printf(sc->age_dev,
950		    "could not create CMB DMA tag.\n");
951		goto fail;
952	}
953
954	/* Create tag for statistics message block. */
955	error = bus_dma_tag_create(
956	    sc->age_cdata.age_parent_tag, /* parent */
957	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
958	    BUS_SPACE_MAXADDR,		/* lowaddr */
959	    BUS_SPACE_MAXADDR,		/* highaddr */
960	    NULL, NULL,			/* filter, filterarg */
961	    AGE_SMB_BLOCK_SZ,		/* maxsize */
962	    1,				/* nsegments */
963	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
964	    0,				/* flags */
965	    NULL, NULL,			/* lockfunc, lockarg */
966	    &sc->age_cdata.age_smb_block_tag);
967	if (error != 0) {
968		device_printf(sc->age_dev,
969		    "could not create SMB DMA tag.\n");
970		goto fail;
971	}
972
973	/* Allocate DMA'able memory and load the DMA map. */
974	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
975	    (void **)&sc->age_rdata.age_tx_ring,
976	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
977	    &sc->age_cdata.age_tx_ring_map);
978	if (error != 0) {
979		device_printf(sc->age_dev,
980		    "could not allocate DMA'able memory for Tx ring.\n");
981		goto fail;
982	}
983	ctx.age_busaddr = 0;
984	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
985	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
986	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
987	if (error != 0 || ctx.age_busaddr == 0) {
988		device_printf(sc->age_dev,
989		    "could not load DMA'able memory for Tx ring.\n");
990		goto fail;
991	}
992	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
993	/* Rx ring */
994	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
995	    (void **)&sc->age_rdata.age_rx_ring,
996	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
997	    &sc->age_cdata.age_rx_ring_map);
998	if (error != 0) {
999		device_printf(sc->age_dev,
1000		    "could not allocate DMA'able memory for Rx ring.\n");
1001		goto fail;
1002	}
1003	ctx.age_busaddr = 0;
1004	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1005	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1006	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1007	if (error != 0 || ctx.age_busaddr == 0) {
1008		device_printf(sc->age_dev,
1009		    "could not load DMA'able memory for Rx ring.\n");
1010		goto fail;
1011	}
1012	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1013	/* Rx return ring */
1014	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1015	    (void **)&sc->age_rdata.age_rr_ring,
1016	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1017	    &sc->age_cdata.age_rr_ring_map);
1018	if (error != 0) {
1019		device_printf(sc->age_dev,
1020		    "could not allocate DMA'able memory for Rx return ring.\n");
1021		goto fail;
1022	}
1023	ctx.age_busaddr = 0;
1024	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1025	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1026	    AGE_RR_RING_SZ, age_dmamap_cb,
1027	    &ctx, 0);
1028	if (error != 0 || ctx.age_busaddr == 0) {
1029		device_printf(sc->age_dev,
1030		    "could not load DMA'able memory for Rx return ring.\n");
1031		goto fail;
1032	}
1033	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1034	/* CMB block */
1035	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1036	    (void **)&sc->age_rdata.age_cmb_block,
1037	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1038	    &sc->age_cdata.age_cmb_block_map);
1039	if (error != 0) {
1040		device_printf(sc->age_dev,
1041		    "could not allocate DMA'able memory for CMB block.\n");
1042		goto fail;
1043	}
1044	ctx.age_busaddr = 0;
1045	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1046	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1047	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1048	if (error != 0 || ctx.age_busaddr == 0) {
1049		device_printf(sc->age_dev,
1050		    "could not load DMA'able memory for CMB block.\n");
1051		goto fail;
1052	}
1053	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1054	/* SMB block */
1055	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1056	    (void **)&sc->age_rdata.age_smb_block,
1057	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1058	    &sc->age_cdata.age_smb_block_map);
1059	if (error != 0) {
1060		device_printf(sc->age_dev,
1061		    "could not allocate DMA'able memory for SMB block.\n");
1062		goto fail;
1063	}
1064	ctx.age_busaddr = 0;
1065	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1066	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1067	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1068	if (error != 0 || ctx.age_busaddr == 0) {
1069		device_printf(sc->age_dev,
1070		    "could not load DMA'able memory for SMB block.\n");
1071		goto fail;
1072	}
1073	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1074
1075	/*
1076	 * All ring buffer and DMA blocks should have the same
1077	 * high address part of 64bit DMA address space.
1078	 */
1079	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1080	    (error = age_check_boundary(sc)) != 0) {
1081		device_printf(sc->age_dev, "4GB boundary crossed, "
1082		    "switching to 32bit DMA addressing mode.\n");
1083		age_dma_free(sc);
1084		/* Limit DMA address space to 32bit and try again. */
1085		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1086		goto again;
1087	}
1088
1089	/*
1090	 * Create Tx/Rx buffer parent tag.
1091	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1092	 * so it needs separate parent DMA tag.
1093	 * XXX
1094	 * It seems enabling 64bit DMA causes data corruption. Limit
1095	 * DMA address space to 32bit.
1096	 */
1097	error = bus_dma_tag_create(
1098	    bus_get_dma_tag(sc->age_dev), /* parent */
1099	    1, 0,			/* alignment, boundary */
1100	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1101	    BUS_SPACE_MAXADDR,		/* highaddr */
1102	    NULL, NULL,			/* filter, filterarg */
1103	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1104	    0,				/* nsegments */
1105	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1106	    0,				/* flags */
1107	    NULL, NULL,			/* lockfunc, lockarg */
1108	    &sc->age_cdata.age_buffer_tag);
1109	if (error != 0) {
1110		device_printf(sc->age_dev,
1111		    "could not create parent buffer DMA tag.\n");
1112		goto fail;
1113	}
1114
1115	/* Create tag for Tx buffers. */
1116	error = bus_dma_tag_create(
1117	    sc->age_cdata.age_buffer_tag, /* parent */
1118	    1, 0,			/* alignment, boundary */
1119	    BUS_SPACE_MAXADDR,		/* lowaddr */
1120	    BUS_SPACE_MAXADDR,		/* highaddr */
1121	    NULL, NULL,			/* filter, filterarg */
1122	    AGE_TSO_MAXSIZE,		/* maxsize */
1123	    AGE_MAXTXSEGS,		/* nsegments */
1124	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1125	    0,				/* flags */
1126	    NULL, NULL,			/* lockfunc, lockarg */
1127	    &sc->age_cdata.age_tx_tag);
1128	if (error != 0) {
1129		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1130		goto fail;
1131	}
1132
1133	/* Create tag for Rx buffers. */
1134	error = bus_dma_tag_create(
1135	    sc->age_cdata.age_buffer_tag, /* parent */
1136	    1, 0,			/* alignment, boundary */
1137	    BUS_SPACE_MAXADDR,		/* lowaddr */
1138	    BUS_SPACE_MAXADDR,		/* highaddr */
1139	    NULL, NULL,			/* filter, filterarg */
1140	    MCLBYTES,			/* maxsize */
1141	    1,				/* nsegments */
1142	    MCLBYTES,			/* maxsegsize */
1143	    0,				/* flags */
1144	    NULL, NULL,			/* lockfunc, lockarg */
1145	    &sc->age_cdata.age_rx_tag);
1146	if (error != 0) {
1147		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1148		goto fail;
1149	}
1150
1151	/* Create DMA maps for Tx buffers. */
1152	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1153		txd = &sc->age_cdata.age_txdesc[i];
1154		txd->tx_m = NULL;
1155		txd->tx_dmamap = NULL;
1156		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1157		    &txd->tx_dmamap);
1158		if (error != 0) {
1159			device_printf(sc->age_dev,
1160			    "could not create Tx dmamap.\n");
1161			goto fail;
1162		}
1163	}
1164	/* Create DMA maps for Rx buffers. */
1165	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1166	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1167		device_printf(sc->age_dev,
1168		    "could not create spare Rx dmamap.\n");
1169		goto fail;
1170	}
1171	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1172		rxd = &sc->age_cdata.age_rxdesc[i];
1173		rxd->rx_m = NULL;
1174		rxd->rx_dmamap = NULL;
1175		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1176		    &rxd->rx_dmamap);
1177		if (error != 0) {
1178			device_printf(sc->age_dev,
1179			    "could not create Rx dmamap.\n");
1180			goto fail;
1181		}
1182	}
1183
1184fail:
1185	return (error);
1186}
1187
1188static void
1189age_dma_free(struct age_softc *sc)
1190{
1191	struct age_txdesc *txd;
1192	struct age_rxdesc *rxd;
1193	int i;
1194
1195	/* Tx buffers */
1196	if (sc->age_cdata.age_tx_tag != NULL) {
1197		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1198			txd = &sc->age_cdata.age_txdesc[i];
1199			if (txd->tx_dmamap != NULL) {
1200				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1201				    txd->tx_dmamap);
1202				txd->tx_dmamap = NULL;
1203			}
1204		}
1205		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1206		sc->age_cdata.age_tx_tag = NULL;
1207	}
1208	/* Rx buffers */
1209	if (sc->age_cdata.age_rx_tag != NULL) {
1210		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1211			rxd = &sc->age_cdata.age_rxdesc[i];
1212			if (rxd->rx_dmamap != NULL) {
1213				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1214				    rxd->rx_dmamap);
1215				rxd->rx_dmamap = NULL;
1216			}
1217		}
1218		if (sc->age_cdata.age_rx_sparemap != NULL) {
1219			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1220			    sc->age_cdata.age_rx_sparemap);
1221			sc->age_cdata.age_rx_sparemap = NULL;
1222		}
1223		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1224		sc->age_cdata.age_rx_tag = NULL;
1225	}
1226	/* Tx ring. */
1227	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1228		if (sc->age_cdata.age_tx_ring_map != NULL)
1229			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1230			    sc->age_cdata.age_tx_ring_map);
1231		if (sc->age_cdata.age_tx_ring_map != NULL &&
1232		    sc->age_rdata.age_tx_ring != NULL)
1233			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1234			    sc->age_rdata.age_tx_ring,
1235			    sc->age_cdata.age_tx_ring_map);
1236		sc->age_rdata.age_tx_ring = NULL;
1237		sc->age_cdata.age_tx_ring_map = NULL;
1238		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1239		sc->age_cdata.age_tx_ring_tag = NULL;
1240	}
1241	/* Rx ring. */
1242	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1243		if (sc->age_cdata.age_rx_ring_map != NULL)
1244			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1245			    sc->age_cdata.age_rx_ring_map);
1246		if (sc->age_cdata.age_rx_ring_map != NULL &&
1247		    sc->age_rdata.age_rx_ring != NULL)
1248			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1249			    sc->age_rdata.age_rx_ring,
1250			    sc->age_cdata.age_rx_ring_map);
1251		sc->age_rdata.age_rx_ring = NULL;
1252		sc->age_cdata.age_rx_ring_map = NULL;
1253		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1254		sc->age_cdata.age_rx_ring_tag = NULL;
1255	}
1256	/* Rx return ring. */
1257	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1258		if (sc->age_cdata.age_rr_ring_map != NULL)
1259			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1260			    sc->age_cdata.age_rr_ring_map);
1261		if (sc->age_cdata.age_rr_ring_map != NULL &&
1262		    sc->age_rdata.age_rr_ring != NULL)
1263			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1264			    sc->age_rdata.age_rr_ring,
1265			    sc->age_cdata.age_rr_ring_map);
1266		sc->age_rdata.age_rr_ring = NULL;
1267		sc->age_cdata.age_rr_ring_map = NULL;
1268		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1269		sc->age_cdata.age_rr_ring_tag = NULL;
1270	}
1271	/* CMB block */
1272	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1273		if (sc->age_cdata.age_cmb_block_map != NULL)
1274			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1275			    sc->age_cdata.age_cmb_block_map);
1276		if (sc->age_cdata.age_cmb_block_map != NULL &&
1277		    sc->age_rdata.age_cmb_block != NULL)
1278			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1279			    sc->age_rdata.age_cmb_block,
1280			    sc->age_cdata.age_cmb_block_map);
1281		sc->age_rdata.age_cmb_block = NULL;
1282		sc->age_cdata.age_cmb_block_map = NULL;
1283		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1284		sc->age_cdata.age_cmb_block_tag = NULL;
1285	}
1286	/* SMB block */
1287	if (sc->age_cdata.age_smb_block_tag != NULL) {
1288		if (sc->age_cdata.age_smb_block_map != NULL)
1289			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1290			    sc->age_cdata.age_smb_block_map);
1291		if (sc->age_cdata.age_smb_block_map != NULL &&
1292		    sc->age_rdata.age_smb_block != NULL)
1293			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1294			    sc->age_rdata.age_smb_block,
1295			    sc->age_cdata.age_smb_block_map);
1296		sc->age_rdata.age_smb_block = NULL;
1297		sc->age_cdata.age_smb_block_map = NULL;
1298		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1299		sc->age_cdata.age_smb_block_tag = NULL;
1300	}
1301
1302	if (sc->age_cdata.age_buffer_tag != NULL) {
1303		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1304		sc->age_cdata.age_buffer_tag = NULL;
1305	}
1306	if (sc->age_cdata.age_parent_tag != NULL) {
1307		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1308		sc->age_cdata.age_parent_tag = NULL;
1309	}
1310}
1311
1312/*
1313 *	Make sure the interface is stopped at reboot time.
1314 */
1315static int
1316age_shutdown(device_t dev)
1317{
1318
1319	return (age_suspend(dev));
1320}
1321
1322static void
1323age_setwol(struct age_softc *sc)
1324{
1325	struct ifnet *ifp;
1326	struct mii_data *mii;
1327	uint32_t reg, pmcs;
1328	uint16_t pmstat;
1329	int aneg, i, pmc;
1330
1331	AGE_LOCK_ASSERT(sc);
1332
1333	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1334		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1335		/*
1336		 * No PME capability, PHY power down.
1337		 * XXX
1338		 * Due to an unknown reason powering down PHY resulted
1339		 * in unexpected results such as inaccessbility of
1340		 * hardware of freshly rebooted system. Disable
1341		 * powering down PHY until I got more information for
1342		 * Attansic/Atheros PHY hardwares.
1343		 */
1344#ifdef notyet
1345		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1346		    MII_BMCR, BMCR_PDOWN);
1347#endif
1348		return;
1349	}
1350
1351	ifp = sc->age_ifp;
1352	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1353		/*
1354		 * Note, this driver resets the link speed to 10/100Mbps with
1355		 * auto-negotiation but we don't know whether that operation
1356		 * would succeed or not as it have no control after powering
1357		 * off. If the renegotiation fail WOL may not work. Running
1358		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1359		 * specified in PCI specification and that would result in
1360		 * complete shutdowning power to ethernet controller.
1361		 *
1362		 * TODO
1363		 *  Save current negotiated media speed/duplex/flow-control
1364		 *  to softc and restore the same link again after resuming.
1365		 *  PHY handling such as power down/resetting to 100Mbps
1366		 *  may be better handled in suspend method in phy driver.
1367		 */
1368		mii = device_get_softc(sc->age_miibus);
1369		mii_pollstat(mii);
1370		aneg = 0;
1371		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1372			switch IFM_SUBTYPE(mii->mii_media_active) {
1373			case IFM_10_T:
1374			case IFM_100_TX:
1375				goto got_link;
1376			case IFM_1000_T:
1377				aneg++;
1378			default:
1379				break;
1380			}
1381		}
1382		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1383		    MII_100T2CR, 0);
1384		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1385		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1386		    ANAR_10 | ANAR_CSMA);
1387		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1388		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1389		DELAY(1000);
1390		if (aneg != 0) {
1391			/* Poll link state until age(4) get a 10/100 link. */
1392			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1393				mii_pollstat(mii);
1394				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1395					switch (IFM_SUBTYPE(
1396					    mii->mii_media_active)) {
1397					case IFM_10_T:
1398					case IFM_100_TX:
1399						age_mac_config(sc);
1400						goto got_link;
1401					default:
1402						break;
1403					}
1404				}
1405				AGE_UNLOCK(sc);
1406#ifdef __HAIKU__
1407				DELAY(1);
1408#else
1409				pause("agelnk", hz);
1410#endif
1411				AGE_LOCK(sc);
1412			}
1413			if (i == MII_ANEGTICKS_GIGE)
1414				device_printf(sc->age_dev,
1415				    "establishing link failed, "
1416				    "WOL may not work!");
1417		}
1418		/*
1419		 * No link, force MAC to have 100Mbps, full-duplex link.
1420		 * This is the last resort and may/may not work.
1421		 */
1422		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1423		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1424		age_mac_config(sc);
1425	}
1426
1427got_link:
1428	pmcs = 0;
1429	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1430		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1431	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1432	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1433	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1434	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1435	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1436		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1437	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1438		reg |= MAC_CFG_RX_ENB;
1439		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1440	}
1441
1442	/* Request PME. */
1443	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1444	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1445	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1446		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1447	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1448#ifdef notyet
1449	/* See above for powering down PHY issues. */
1450	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1451		/* No WOL, PHY power down. */
1452		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1453		    MII_BMCR, BMCR_PDOWN);
1454	}
1455#endif
1456}
1457
1458static int
1459age_suspend(device_t dev)
1460{
1461	struct age_softc *sc;
1462
1463	sc = device_get_softc(dev);
1464
1465	AGE_LOCK(sc);
1466	age_stop(sc);
1467	age_setwol(sc);
1468	AGE_UNLOCK(sc);
1469
1470	return (0);
1471}
1472
1473static int
1474age_resume(device_t dev)
1475{
1476	struct age_softc *sc;
1477	struct ifnet *ifp;
1478
1479	sc = device_get_softc(dev);
1480
1481	AGE_LOCK(sc);
1482	age_phy_reset(sc);
1483	ifp = sc->age_ifp;
1484	if ((ifp->if_flags & IFF_UP) != 0)
1485		age_init_locked(sc);
1486
1487	AGE_UNLOCK(sc);
1488
1489	return (0);
1490}
1491
1492static int
1493age_encap(struct age_softc *sc, struct mbuf **m_head)
1494{
1495	struct age_txdesc *txd, *txd_last;
1496	struct tx_desc *desc;
1497	struct mbuf *m;
1498	struct ip *ip;
1499	struct tcphdr *tcp;
1500	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1501	bus_dmamap_t map;
1502	uint32_t cflags, ip_off, poff, vtag;
1503	int error, i, nsegs, prod, si;
1504
1505	AGE_LOCK_ASSERT(sc);
1506
1507	M_ASSERTPKTHDR((*m_head));
1508
1509	m = *m_head;
1510	ip = NULL;
1511	tcp = NULL;
1512	cflags = vtag = 0;
1513	ip_off = poff = 0;
1514	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1515		/*
1516		 * L1 requires offset of TCP/UDP payload in its Tx
1517		 * descriptor to perform hardware Tx checksum offload.
1518		 * Additionally, TSO requires IP/TCP header size and
1519		 * modification of IP/TCP header in order to make TSO
1520		 * engine work. This kind of operation takes many CPU
1521		 * cycles on FreeBSD so fast host CPU is needed to get
1522		 * smooth TSO performance.
1523		 */
1524		struct ether_header *eh;
1525
1526		if (M_WRITABLE(m) == 0) {
1527			/* Get a writable copy. */
1528			m = m_dup(*m_head, M_DONTWAIT);
1529			/* Release original mbufs. */
1530			m_freem(*m_head);
1531			if (m == NULL) {
1532				*m_head = NULL;
1533				return (ENOBUFS);
1534			}
1535			*m_head = m;
1536		}
1537		ip_off = sizeof(struct ether_header);
1538		m = m_pullup(m, ip_off);
1539		if (m == NULL) {
1540			*m_head = NULL;
1541			return (ENOBUFS);
1542		}
1543		eh = mtod(m, struct ether_header *);
1544		/*
1545		 * Check if hardware VLAN insertion is off.
1546		 * Additional check for LLC/SNAP frame?
1547		 */
1548		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1549			ip_off = sizeof(struct ether_vlan_header);
1550			m = m_pullup(m, ip_off);
1551			if (m == NULL) {
1552				*m_head = NULL;
1553				return (ENOBUFS);
1554			}
1555		}
1556		m = m_pullup(m, ip_off + sizeof(struct ip));
1557		if (m == NULL) {
1558			*m_head = NULL;
1559			return (ENOBUFS);
1560		}
1561		ip = (struct ip *)(mtod(m, char *) + ip_off);
1562		poff = ip_off + (ip->ip_hl << 2);
1563		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1564			m = m_pullup(m, poff + sizeof(struct tcphdr));
1565			if (m == NULL) {
1566				*m_head = NULL;
1567				return (ENOBUFS);
1568			}
1569			ip = (struct ip *)(mtod(m, char *) + ip_off);
1570			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1571			/*
1572			 * L1 requires IP/TCP header size and offset as
1573			 * well as TCP pseudo checksum which complicates
1574			 * TSO configuration. I guess this comes from the
1575			 * adherence to Microsoft NDIS Large Send
1576			 * specification which requires insertion of
1577			 * pseudo checksum by upper stack. The pseudo
1578			 * checksum that NDIS refers to doesn't include
1579			 * TCP payload length so age(4) should recompute
1580			 * the pseudo checksum here. Hopefully this wouldn't
1581			 * be much burden on modern CPUs.
1582			 * Reset IP checksum and recompute TCP pseudo
1583			 * checksum as NDIS specification said.
1584			 */
1585			ip->ip_sum = 0;
1586			if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
1587				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1588				    ip->ip_dst.s_addr,
1589				    htons((tcp->th_off << 2) + IPPROTO_TCP));
1590			else
1591				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1592				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1593		}
1594		*m_head = m;
1595	}
1596
1597	si = prod = sc->age_cdata.age_tx_prod;
1598	txd = &sc->age_cdata.age_txdesc[prod];
1599	txd_last = txd;
1600	map = txd->tx_dmamap;
1601
1602	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1603	    *m_head, txsegs, &nsegs, 0);
1604	if (error == EFBIG) {
1605		m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
1606		if (m == NULL) {
1607			m_freem(*m_head);
1608			*m_head = NULL;
1609			return (ENOMEM);
1610		}
1611		*m_head = m;
1612		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1613		    *m_head, txsegs, &nsegs, 0);
1614		if (error != 0) {
1615			m_freem(*m_head);
1616			*m_head = NULL;
1617			return (error);
1618		}
1619	} else if (error != 0)
1620		return (error);
1621	if (nsegs == 0) {
1622		m_freem(*m_head);
1623		*m_head = NULL;
1624		return (EIO);
1625	}
1626
1627	/* Check descriptor overrun. */
1628	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1629		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1630		return (ENOBUFS);
1631	}
1632
1633	m = *m_head;
1634	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1635		/* Configure TSO. */
1636		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1637			/* Not TSO but IP/TCP checksum offload. */
1638			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1639			/* Clear TSO in order not to set AGE_TD_TSO_HDR. */
1640			m->m_pkthdr.csum_flags &= ~CSUM_TSO;
1641		} else {
1642			/* Request TSO and set MSS. */
1643			cflags |= AGE_TD_TSO_IPV4;
1644			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1645			cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1646			    AGE_TD_TSO_MSS_SHIFT);
1647		}
1648		/* Set IP/TCP header size. */
1649		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1650		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1651	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1652		/* Configure Tx IP/TCP/UDP checksum offload. */
1653		cflags |= AGE_TD_CSUM;
1654		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1655			cflags |= AGE_TD_TCPCSUM;
1656		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1657			cflags |= AGE_TD_UDPCSUM;
1658		/* Set checksum start offset. */
1659		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1660		/* Set checksum insertion position of TCP/UDP. */
1661		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1662		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1663	}
1664
1665	/* Configure VLAN hardware tag insertion. */
1666	if ((m->m_flags & M_VLANTAG) != 0) {
1667		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1668		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1669		cflags |= AGE_TD_INSERT_VLAN_TAG;
1670	}
1671
1672	desc = NULL;
1673	for (i = 0; i < nsegs; i++) {
1674		desc = &sc->age_rdata.age_tx_ring[prod];
1675		desc->addr = htole64(txsegs[i].ds_addr);
1676		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1677		desc->flags = htole32(cflags);
1678		sc->age_cdata.age_tx_cnt++;
1679		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1680	}
1681	/* Update producer index. */
1682	sc->age_cdata.age_tx_prod = prod;
1683
1684	/* Set EOP on the last descriptor. */
1685	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1686	desc = &sc->age_rdata.age_tx_ring[prod];
1687	desc->flags |= htole32(AGE_TD_EOP);
1688
1689	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1690	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1691		desc = &sc->age_rdata.age_tx_ring[si];
1692		desc->flags |= htole32(AGE_TD_TSO_HDR);
1693	}
1694
1695	/* Swap dmamap of the first and the last. */
1696	txd = &sc->age_cdata.age_txdesc[prod];
1697	map = txd_last->tx_dmamap;
1698	txd_last->tx_dmamap = txd->tx_dmamap;
1699	txd->tx_dmamap = map;
1700	txd->tx_m = m;
1701
1702	/* Sync descriptors. */
1703	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1704	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1705	    sc->age_cdata.age_tx_ring_map,
1706	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1707
1708	return (0);
1709}
1710
1711static void
1712age_start(struct ifnet *ifp)
1713{
1714        struct age_softc *sc;
1715
1716	sc = ifp->if_softc;
1717	AGE_LOCK(sc);
1718	age_start_locked(ifp);
1719	AGE_UNLOCK(sc);
1720}
1721
1722static void
1723age_start_locked(struct ifnet *ifp)
1724{
1725        struct age_softc *sc;
1726        struct mbuf *m_head;
1727	int enq;
1728
1729	sc = ifp->if_softc;
1730
1731	AGE_LOCK_ASSERT(sc);
1732
1733	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1734	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1735		return;
1736
1737	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1738		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1739		if (m_head == NULL)
1740			break;
1741		/*
1742		 * Pack the data into the transmit ring. If we
1743		 * don't have room, set the OACTIVE flag and wait
1744		 * for the NIC to drain the ring.
1745		 */
1746		if (age_encap(sc, &m_head)) {
1747			if (m_head == NULL)
1748				break;
1749			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1750			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1751			break;
1752		}
1753
1754		enq++;
1755		/*
1756		 * If there's a BPF listener, bounce a copy of this frame
1757		 * to him.
1758		 */
1759		ETHER_BPF_MTAP(ifp, m_head);
1760	}
1761
1762	if (enq > 0) {
1763		/* Update mbox. */
1764		AGE_COMMIT_MBOX(sc);
1765		/* Set a timeout in case the chip goes out to lunch. */
1766		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1767	}
1768}
1769
1770static void
1771age_watchdog(struct age_softc *sc)
1772{
1773	struct ifnet *ifp;
1774
1775	AGE_LOCK_ASSERT(sc);
1776
1777	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1778		return;
1779
1780	ifp = sc->age_ifp;
1781	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1782		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1783		ifp->if_oerrors++;
1784		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1785		age_init_locked(sc);
1786		return;
1787	}
1788	if (sc->age_cdata.age_tx_cnt == 0) {
1789		if_printf(sc->age_ifp,
1790		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1791		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1792			age_start_locked(ifp);
1793		return;
1794	}
1795	if_printf(sc->age_ifp, "watchdog timeout\n");
1796	ifp->if_oerrors++;
1797	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1798	age_init_locked(sc);
1799	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1800		age_start_locked(ifp);
1801}
1802
1803static int
1804age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1805{
1806	struct age_softc *sc;
1807	struct ifreq *ifr;
1808	struct mii_data *mii;
1809	uint32_t reg;
1810	int error, mask;
1811
1812	sc = ifp->if_softc;
1813	ifr = (struct ifreq *)data;
1814	error = 0;
1815	switch (cmd) {
1816	case SIOCSIFMTU:
1817		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1818			error = EINVAL;
1819		else if (ifp->if_mtu != ifr->ifr_mtu) {
1820			AGE_LOCK(sc);
1821			ifp->if_mtu = ifr->ifr_mtu;
1822			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1823				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1824				age_init_locked(sc);
1825			}
1826			AGE_UNLOCK(sc);
1827		}
1828		break;
1829	case SIOCSIFFLAGS:
1830		AGE_LOCK(sc);
1831		if ((ifp->if_flags & IFF_UP) != 0) {
1832			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1833				if (((ifp->if_flags ^ sc->age_if_flags)
1834				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1835					age_rxfilter(sc);
1836			} else {
1837				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1838					age_init_locked(sc);
1839			}
1840		} else {
1841			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1842				age_stop(sc);
1843		}
1844		sc->age_if_flags = ifp->if_flags;
1845		AGE_UNLOCK(sc);
1846		break;
1847	case SIOCADDMULTI:
1848	case SIOCDELMULTI:
1849		AGE_LOCK(sc);
1850		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1851			age_rxfilter(sc);
1852		AGE_UNLOCK(sc);
1853		break;
1854	case SIOCSIFMEDIA:
1855	case SIOCGIFMEDIA:
1856		mii = device_get_softc(sc->age_miibus);
1857		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1858		break;
1859	case SIOCSIFCAP:
1860		AGE_LOCK(sc);
1861		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1862		if ((mask & IFCAP_TXCSUM) != 0 &&
1863		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1864			ifp->if_capenable ^= IFCAP_TXCSUM;
1865			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1866				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1867			else
1868				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1869		}
1870		if ((mask & IFCAP_RXCSUM) != 0 &&
1871		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1872			ifp->if_capenable ^= IFCAP_RXCSUM;
1873			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1874			reg &= ~MAC_CFG_RXCSUM_ENB;
1875			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1876				reg |= MAC_CFG_RXCSUM_ENB;
1877			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1878		}
1879		if ((mask & IFCAP_TSO4) != 0 &&
1880		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1881			ifp->if_capenable ^= IFCAP_TSO4;
1882			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1883				ifp->if_hwassist |= CSUM_TSO;
1884			else
1885				ifp->if_hwassist &= ~CSUM_TSO;
1886		}
1887
1888		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1889		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1890			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1891		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1892		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1893			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1894		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1895		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1896			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1897		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1898		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1899			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1900		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1901		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1902			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1903			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1904				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1905			age_rxvlan(sc);
1906		}
1907		AGE_UNLOCK(sc);
1908		VLAN_CAPABILITIES(ifp);
1909		break;
1910	default:
1911		error = ether_ioctl(ifp, cmd, data);
1912		break;
1913	}
1914
1915	return (error);
1916}
1917
1918static void
1919age_mac_config(struct age_softc *sc)
1920{
1921	struct mii_data *mii;
1922	uint32_t reg;
1923
1924	AGE_LOCK_ASSERT(sc);
1925
1926	mii = device_get_softc(sc->age_miibus);
1927	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1928	reg &= ~MAC_CFG_FULL_DUPLEX;
1929	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1930	reg &= ~MAC_CFG_SPEED_MASK;
1931	/* Reprogram MAC with resolved speed/duplex. */
1932	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1933	case IFM_10_T:
1934	case IFM_100_TX:
1935		reg |= MAC_CFG_SPEED_10_100;
1936		break;
1937	case IFM_1000_T:
1938		reg |= MAC_CFG_SPEED_1000;
1939		break;
1940	}
1941	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1942		reg |= MAC_CFG_FULL_DUPLEX;
1943#ifdef notyet
1944		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1945			reg |= MAC_CFG_TX_FC;
1946		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1947			reg |= MAC_CFG_RX_FC;
1948#endif
1949	}
1950
1951	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1952}
1953
1954static void
1955age_link_task(void *arg, int pending)
1956{
1957	struct age_softc *sc;
1958	struct mii_data *mii;
1959	struct ifnet *ifp;
1960	uint32_t reg;
1961
1962	sc = (struct age_softc *)arg;
1963
1964	AGE_LOCK(sc);
1965	mii = device_get_softc(sc->age_miibus);
1966	ifp = sc->age_ifp;
1967	if (mii == NULL || ifp == NULL ||
1968	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1969		AGE_UNLOCK(sc);
1970		return;
1971	}
1972
1973	sc->age_flags &= ~AGE_FLAG_LINK;
1974	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1975		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1976		case IFM_10_T:
1977		case IFM_100_TX:
1978		case IFM_1000_T:
1979			sc->age_flags |= AGE_FLAG_LINK;
1980			break;
1981		default:
1982			break;
1983		}
1984	}
1985
1986	/* Stop Rx/Tx MACs. */
1987	age_stop_rxmac(sc);
1988	age_stop_txmac(sc);
1989
1990	/* Program MACs with resolved speed/duplex/flow-control. */
1991	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
1992		age_mac_config(sc);
1993		reg = CSR_READ_4(sc, AGE_MAC_CFG);
1994		/* Restart DMA engine and Tx/Rx MAC. */
1995		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
1996		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
1997		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1998		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1999	}
2000
2001	AGE_UNLOCK(sc);
2002}
2003
2004static void
2005age_stats_update(struct age_softc *sc)
2006{
2007	struct age_stats *stat;
2008	struct smb *smb;
2009	struct ifnet *ifp;
2010
2011	AGE_LOCK_ASSERT(sc);
2012
2013	stat = &sc->age_stat;
2014
2015	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2016	    sc->age_cdata.age_smb_block_map,
2017	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2018
2019	smb = sc->age_rdata.age_smb_block;
2020	if (smb->updated == 0)
2021		return;
2022
2023	ifp = sc->age_ifp;
2024	/* Rx stats. */
2025	stat->rx_frames += smb->rx_frames;
2026	stat->rx_bcast_frames += smb->rx_bcast_frames;
2027	stat->rx_mcast_frames += smb->rx_mcast_frames;
2028	stat->rx_pause_frames += smb->rx_pause_frames;
2029	stat->rx_control_frames += smb->rx_control_frames;
2030	stat->rx_crcerrs += smb->rx_crcerrs;
2031	stat->rx_lenerrs += smb->rx_lenerrs;
2032	stat->rx_bytes += smb->rx_bytes;
2033	stat->rx_runts += smb->rx_runts;
2034	stat->rx_fragments += smb->rx_fragments;
2035	stat->rx_pkts_64 += smb->rx_pkts_64;
2036	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2037	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2038	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2039	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2040	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2041	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2042	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2043	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2044	stat->rx_desc_oflows += smb->rx_desc_oflows;
2045	stat->rx_alignerrs += smb->rx_alignerrs;
2046	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2047	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2048	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2049
2050	/* Tx stats. */
2051	stat->tx_frames += smb->tx_frames;
2052	stat->tx_bcast_frames += smb->tx_bcast_frames;
2053	stat->tx_mcast_frames += smb->tx_mcast_frames;
2054	stat->tx_pause_frames += smb->tx_pause_frames;
2055	stat->tx_excess_defer += smb->tx_excess_defer;
2056	stat->tx_control_frames += smb->tx_control_frames;
2057	stat->tx_deferred += smb->tx_deferred;
2058	stat->tx_bytes += smb->tx_bytes;
2059	stat->tx_pkts_64 += smb->tx_pkts_64;
2060	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2061	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2062	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2063	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2064	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2065	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2066	stat->tx_single_colls += smb->tx_single_colls;
2067	stat->tx_multi_colls += smb->tx_multi_colls;
2068	stat->tx_late_colls += smb->tx_late_colls;
2069	stat->tx_excess_colls += smb->tx_excess_colls;
2070	stat->tx_underrun += smb->tx_underrun;
2071	stat->tx_desc_underrun += smb->tx_desc_underrun;
2072	stat->tx_lenerrs += smb->tx_lenerrs;
2073	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2074	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2075	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2076
2077	/* Update counters in ifnet. */
2078	ifp->if_opackets += smb->tx_frames;
2079
2080	ifp->if_collisions += smb->tx_single_colls +
2081	    smb->tx_multi_colls + smb->tx_late_colls +
2082	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2083
2084	ifp->if_oerrors += smb->tx_excess_colls +
2085	    smb->tx_late_colls + smb->tx_underrun +
2086	    smb->tx_pkts_truncated;
2087
2088	ifp->if_ipackets += smb->rx_frames;
2089
2090	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2091	    smb->rx_runts + smb->rx_pkts_truncated +
2092	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2093	    smb->rx_alignerrs;
2094
2095	/* Update done, clear. */
2096	smb->updated = 0;
2097
2098	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2099	    sc->age_cdata.age_smb_block_map,
2100	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2101}
2102
2103static int
2104age_intr(void *arg)
2105{
2106	struct age_softc *sc;
2107	uint32_t status;
2108
2109	sc = (struct age_softc *)arg;
2110
2111	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2112	if (status == 0 || (status & AGE_INTRS) == 0)
2113		return (FILTER_STRAY);
2114	/* Disable interrupts. */
2115	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2116	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2117
2118	return (FILTER_HANDLED);
2119}
2120
2121static void
2122age_int_task(void *arg, int pending)
2123{
2124	struct age_softc *sc;
2125	struct ifnet *ifp;
2126	struct cmb *cmb;
2127	uint32_t status;
2128
2129	sc = (struct age_softc *)arg;
2130
2131	AGE_LOCK(sc);
2132
2133	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2134	    sc->age_cdata.age_cmb_block_map,
2135	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2136	cmb = sc->age_rdata.age_cmb_block;
2137	status = le32toh(cmb->intr_status);
2138	if (sc->age_morework != 0)
2139		status |= INTR_CMB_RX;
2140	if ((status & AGE_INTRS) == 0)
2141		goto done;
2142
2143	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2144	    TPD_CONS_SHIFT;
2145	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2146	    RRD_PROD_SHIFT;
2147	/* Let hardware know CMB was served. */
2148	cmb->intr_status = 0;
2149	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2150	    sc->age_cdata.age_cmb_block_map,
2151	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2152
2153#if 0
2154	printf("INTR: 0x%08x\n", status);
2155	status &= ~INTR_DIS_DMA;
2156	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2157#endif
2158	ifp = sc->age_ifp;
2159	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2160		if ((status & INTR_CMB_RX) != 0)
2161			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2162			    sc->age_process_limit);
2163		if ((status & INTR_CMB_TX) != 0)
2164			age_txintr(sc, sc->age_tpd_cons);
2165		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2166			if ((status & INTR_DMA_RD_TO_RST) != 0)
2167				device_printf(sc->age_dev,
2168				    "DMA read error! -- resetting\n");
2169			if ((status & INTR_DMA_WR_TO_RST) != 0)
2170				device_printf(sc->age_dev,
2171				    "DMA write error! -- resetting\n");
2172			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2173			age_init_locked(sc);
2174		}
2175		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2176			age_start_locked(ifp);
2177		if ((status & INTR_SMB) != 0)
2178			age_stats_update(sc);
2179	}
2180
2181	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2182	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2183	    sc->age_cdata.age_cmb_block_map,
2184	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2185	status = le32toh(cmb->intr_status);
2186	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2187		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2188		AGE_UNLOCK(sc);
2189		return;
2190	}
2191
2192done:
2193	/* Re-enable interrupts. */
2194	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2195	AGE_UNLOCK(sc);
2196}
2197
2198static void
2199age_txintr(struct age_softc *sc, int tpd_cons)
2200{
2201	struct ifnet *ifp;
2202	struct age_txdesc *txd;
2203	int cons, prog;
2204
2205	AGE_LOCK_ASSERT(sc);
2206
2207	ifp = sc->age_ifp;
2208
2209	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2210	    sc->age_cdata.age_tx_ring_map,
2211	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2212
2213	/*
2214	 * Go through our Tx list and free mbufs for those
2215	 * frames which have been transmitted.
2216	 */
2217	cons = sc->age_cdata.age_tx_cons;
2218	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2219		if (sc->age_cdata.age_tx_cnt <= 0)
2220			break;
2221		prog++;
2222		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2223		sc->age_cdata.age_tx_cnt--;
2224		txd = &sc->age_cdata.age_txdesc[cons];
2225		/*
2226		 * Clear Tx descriptors, it's not required but would
2227		 * help debugging in case of Tx issues.
2228		 */
2229		txd->tx_desc->addr = 0;
2230		txd->tx_desc->len = 0;
2231		txd->tx_desc->flags = 0;
2232
2233		if (txd->tx_m == NULL)
2234			continue;
2235		/* Reclaim transmitted mbufs. */
2236		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2237		    BUS_DMASYNC_POSTWRITE);
2238		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2239		m_freem(txd->tx_m);
2240		txd->tx_m = NULL;
2241	}
2242
2243	if (prog > 0) {
2244		sc->age_cdata.age_tx_cons = cons;
2245
2246		/*
2247		 * Unarm watchdog timer only when there are no pending
2248		 * Tx descriptors in queue.
2249		 */
2250		if (sc->age_cdata.age_tx_cnt == 0)
2251			sc->age_watchdog_timer = 0;
2252		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2253		    sc->age_cdata.age_tx_ring_map,
2254		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2255	}
2256}
2257
2258/* Receive a frame. */
2259static void
2260age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2261{
2262	struct age_rxdesc *rxd;
2263	struct rx_desc *desc;
2264	struct ifnet *ifp;
2265	struct mbuf *mp, *m;
2266	uint32_t status, index, vtag;
2267	int count, nsegs, pktlen;
2268	int rx_cons;
2269
2270	AGE_LOCK_ASSERT(sc);
2271
2272	ifp = sc->age_ifp;
2273	status = le32toh(rxrd->flags);
2274	index = le32toh(rxrd->index);
2275	rx_cons = AGE_RX_CONS(index);
2276	nsegs = AGE_RX_NSEGS(index);
2277
2278	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2279	if ((status & AGE_RRD_ERROR) != 0 &&
2280	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2281	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2282		/*
2283		 * We want to pass the following frames to upper
2284		 * layer regardless of error status of Rx return
2285		 * ring.
2286		 *
2287		 *  o IP/TCP/UDP checksum is bad.
2288		 *  o frame length and protocol specific length
2289		 *     does not match.
2290		 */
2291		sc->age_cdata.age_rx_cons += nsegs;
2292		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2293		return;
2294	}
2295
2296	pktlen = 0;
2297	for (count = 0; count < nsegs; count++,
2298	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2299		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2300		mp = rxd->rx_m;
2301		desc = rxd->rx_desc;
2302		/* Add a new receive buffer to the ring. */
2303		if (age_newbuf(sc, rxd) != 0) {
2304			ifp->if_iqdrops++;
2305			/* Reuse Rx buffers. */
2306			if (sc->age_cdata.age_rxhead != NULL) {
2307				m_freem(sc->age_cdata.age_rxhead);
2308				AGE_RXCHAIN_RESET(sc);
2309			}
2310			break;
2311		}
2312
2313		/* The length of the first mbuf is computed last. */
2314		if (count != 0) {
2315			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2316			pktlen += mp->m_len;
2317		}
2318
2319		/* Chain received mbufs. */
2320		if (sc->age_cdata.age_rxhead == NULL) {
2321			sc->age_cdata.age_rxhead = mp;
2322			sc->age_cdata.age_rxtail = mp;
2323		} else {
2324			mp->m_flags &= ~M_PKTHDR;
2325			sc->age_cdata.age_rxprev_tail =
2326			    sc->age_cdata.age_rxtail;
2327			sc->age_cdata.age_rxtail->m_next = mp;
2328			sc->age_cdata.age_rxtail = mp;
2329		}
2330
2331		if (count == nsegs - 1) {
2332			/*
2333			 * It seems that L1 controller has no way
2334			 * to tell hardware to strip CRC bytes.
2335			 */
2336			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2337			if (nsegs > 1) {
2338				/* Remove the CRC bytes in chained mbufs. */
2339				pktlen -= ETHER_CRC_LEN;
2340				if (mp->m_len <= ETHER_CRC_LEN) {
2341					sc->age_cdata.age_rxtail =
2342					    sc->age_cdata.age_rxprev_tail;
2343					sc->age_cdata.age_rxtail->m_len -=
2344					    (ETHER_CRC_LEN - mp->m_len);
2345					sc->age_cdata.age_rxtail->m_next = NULL;
2346					m_freem(mp);
2347				} else {
2348					mp->m_len -= ETHER_CRC_LEN;
2349				}
2350			}
2351
2352			m = sc->age_cdata.age_rxhead;
2353			m->m_flags |= M_PKTHDR;
2354			m->m_pkthdr.rcvif = ifp;
2355			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2356			/* Set the first mbuf length. */
2357			m->m_len = sc->age_cdata.age_rxlen - pktlen;
2358
2359			/*
2360			 * Set checksum information.
2361			 * It seems that L1 controller can compute partial
2362			 * checksum. The partial checksum value can be used
2363			 * to accelerate checksum computation for fragmented
2364			 * TCP/UDP packets. Upper network stack already
2365			 * takes advantage of the partial checksum value in
2366			 * IP reassembly stage. But I'm not sure the
2367			 * correctness of the partial hardware checksum
2368			 * assistance due to lack of data sheet. If it is
2369			 * proven to work on L1 I'll enable it.
2370			 */
2371			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2372			    (status & AGE_RRD_IPV4) != 0) {
2373				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2374				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2375					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2376				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2377				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2378					m->m_pkthdr.csum_flags |=
2379					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2380					m->m_pkthdr.csum_data = 0xffff;
2381				}
2382				/*
2383				 * Don't mark bad checksum for TCP/UDP frames
2384				 * as fragmented frames may always have set
2385				 * bad checksummed bit of descriptor status.
2386				 */
2387			}
2388
2389			/* Check for VLAN tagged frames. */
2390			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2391			    (status & AGE_RRD_VLAN) != 0) {
2392				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2393				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2394				m->m_flags |= M_VLANTAG;
2395			}
2396
2397			/* Pass it on. */
2398			AGE_UNLOCK(sc);
2399			(*ifp->if_input)(ifp, m);
2400			AGE_LOCK(sc);
2401
2402			/* Reset mbuf chains. */
2403			AGE_RXCHAIN_RESET(sc);
2404		}
2405	}
2406
2407	if (count != nsegs) {
2408		sc->age_cdata.age_rx_cons += nsegs;
2409		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2410	} else
2411		sc->age_cdata.age_rx_cons = rx_cons;
2412}
2413
2414static int
2415age_rxintr(struct age_softc *sc, int rr_prod, int count)
2416{
2417	struct rx_rdesc *rxrd;
2418	int rr_cons, nsegs, pktlen, prog;
2419
2420	AGE_LOCK_ASSERT(sc);
2421
2422	rr_cons = sc->age_cdata.age_rr_cons;
2423	if (rr_cons == rr_prod)
2424		return (0);
2425
2426	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2427	    sc->age_cdata.age_rr_ring_map,
2428	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2429	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2430	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2431
2432	for (prog = 0; rr_cons != rr_prod; prog++) {
2433		if (count <= 0)
2434			break;
2435		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2436		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2437		if (nsegs == 0)
2438			break;
2439		/*
2440		 * Check number of segments against received bytes.
2441		 * Non-matching value would indicate that hardware
2442		 * is still trying to update Rx return descriptors.
2443		 * I'm not sure whether this check is really needed.
2444		 */
2445		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2446		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2447		    (MCLBYTES - ETHER_ALIGN)))
2448			break;
2449
2450		prog++;
2451		/* Received a frame. */
2452		age_rxeof(sc, rxrd);
2453		/* Clear return ring. */
2454		rxrd->index = 0;
2455		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2456	}
2457
2458	if (prog > 0) {
2459		/* Update the consumer index. */
2460		sc->age_cdata.age_rr_cons = rr_cons;
2461
2462		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2463		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2464		/* Sync descriptors. */
2465		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2466		    sc->age_cdata.age_rr_ring_map,
2467		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2468
2469		/* Notify hardware availability of new Rx buffers. */
2470		AGE_COMMIT_MBOX(sc);
2471	}
2472
2473	return (count > 0 ? 0 : EAGAIN);
2474}
2475
2476static void
2477age_tick(void *arg)
2478{
2479	struct age_softc *sc;
2480	struct mii_data *mii;
2481
2482	sc = (struct age_softc *)arg;
2483
2484	AGE_LOCK_ASSERT(sc);
2485
2486	mii = device_get_softc(sc->age_miibus);
2487	mii_tick(mii);
2488	age_watchdog(sc);
2489	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2490}
2491
2492static void
2493age_reset(struct age_softc *sc)
2494{
2495	uint32_t reg;
2496	int i;
2497
2498	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2499	CSR_READ_4(sc, AGE_MASTER_CFG);
2500	DELAY(1000);
2501	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2502		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2503			break;
2504		DELAY(10);
2505	}
2506
2507	if (i == 0)
2508		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2509	/* Initialize PCIe module. From Linux. */
2510	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2511	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2512}
2513
2514static void
2515age_init(void *xsc)
2516{
2517	struct age_softc *sc;
2518
2519	sc = (struct age_softc *)xsc;
2520	AGE_LOCK(sc);
2521	age_init_locked(sc);
2522	AGE_UNLOCK(sc);
2523}
2524
2525static void
2526age_init_locked(struct age_softc *sc)
2527{
2528	struct ifnet *ifp;
2529	struct mii_data *mii;
2530	uint8_t eaddr[ETHER_ADDR_LEN];
2531	bus_addr_t paddr;
2532	uint32_t reg, fsize;
2533	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2534	int error;
2535
2536	AGE_LOCK_ASSERT(sc);
2537
2538	ifp = sc->age_ifp;
2539	mii = device_get_softc(sc->age_miibus);
2540
2541	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2542		return;
2543
2544	/*
2545	 * Cancel any pending I/O.
2546	 */
2547	age_stop(sc);
2548
2549	/*
2550	 * Reset the chip to a known state.
2551	 */
2552	age_reset(sc);
2553
2554	/* Initialize descriptors. */
2555	error = age_init_rx_ring(sc);
2556        if (error != 0) {
2557                device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2558                age_stop(sc);
2559		return;
2560        }
2561	age_init_rr_ring(sc);
2562	age_init_tx_ring(sc);
2563	age_init_cmb_block(sc);
2564	age_init_smb_block(sc);
2565
2566	/* Reprogram the station address. */
2567	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2568	CSR_WRITE_4(sc, AGE_PAR0,
2569	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2570	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2571
2572	/* Set descriptor base addresses. */
2573	paddr = sc->age_rdata.age_tx_ring_paddr;
2574	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2575	paddr = sc->age_rdata.age_rx_ring_paddr;
2576	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2577	paddr = sc->age_rdata.age_rr_ring_paddr;
2578	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2579	paddr = sc->age_rdata.age_tx_ring_paddr;
2580	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2581	paddr = sc->age_rdata.age_cmb_block_paddr;
2582	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2583	paddr = sc->age_rdata.age_smb_block_paddr;
2584	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2585	/* Set Rx/Rx return descriptor counter. */
2586	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2587	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2588	    DESC_RRD_CNT_MASK) |
2589	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2590	/* Set Tx descriptor counter. */
2591	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2592	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2593
2594	/* Tell hardware that we're ready to load descriptors. */
2595	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2596
2597	/*
2598	 * Initialize mailbox register.
2599	 * Updated producer/consumer index information is exchanged
2600	 * through this mailbox register. However Tx producer and
2601	 * Rx return consumer/Rx producer are all shared such that
2602	 * it's hard to separate code path between Tx and Rx without
2603	 * locking. If L1 hardware have a separate mail box register
2604	 * for Tx and Rx consumer/producer management we could have
2605	 * indepent Tx/Rx handler which in turn Rx handler could have
2606	 * been run without any locking.
2607	 */
2608	AGE_COMMIT_MBOX(sc);
2609
2610	/* Configure IPG/IFG parameters. */
2611	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2612	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2613	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2614	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2615	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2616
2617	/* Set parameters for half-duplex media. */
2618	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2619	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2620	    HDPX_CFG_LCOL_MASK) |
2621	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2622	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2623	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2624	    HDPX_CFG_ABEBT_MASK) |
2625	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2626	    HDPX_CFG_JAMIPG_MASK));
2627
2628	/* Configure interrupt moderation timer. */
2629	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2630	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2631	reg &= ~MASTER_MTIMER_ENB;
2632	if (AGE_USECS(sc->age_int_mod) == 0)
2633		reg &= ~MASTER_ITIMER_ENB;
2634	else
2635		reg |= MASTER_ITIMER_ENB;
2636	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2637	if (bootverbose)
2638		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2639		    sc->age_int_mod);
2640	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2641
2642	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2643	if (ifp->if_mtu < ETHERMTU)
2644		sc->age_max_frame_size = ETHERMTU;
2645	else
2646		sc->age_max_frame_size = ifp->if_mtu;
2647	sc->age_max_frame_size += ETHER_HDR_LEN +
2648	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2649	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2650	/* Configure jumbo frame. */
2651	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2652	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2653	    (((fsize / sizeof(uint64_t)) <<
2654	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2655	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2656	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2657	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2658	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2659
2660	/* Configure flow-control parameters. From Linux. */
2661	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2662		/*
2663		 * Magic workaround for old-L1.
2664		 * Don't know which hw revision requires this magic.
2665		 */
2666		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2667		/*
2668		 * Another magic workaround for flow-control mode
2669		 * change. From Linux.
2670		 */
2671		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2672	}
2673	/*
2674	 * TODO
2675	 *  Should understand pause parameter relationships between FIFO
2676	 *  size and number of Rx descriptors and Rx return descriptors.
2677	 *
2678	 *  Magic parameters came from Linux.
2679	 */
2680	switch (sc->age_chip_rev) {
2681	case 0x8001:
2682	case 0x9001:
2683	case 0x9002:
2684	case 0x9003:
2685		rxf_hi = AGE_RX_RING_CNT / 16;
2686		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2687		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2688		rrd_lo = AGE_RR_RING_CNT / 16;
2689		break;
2690	default:
2691		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2692		rxf_lo = reg / 16;
2693		if (rxf_lo < 192)
2694			rxf_lo = 192;
2695		rxf_hi = (reg * 7) / 8;
2696		if (rxf_hi < rxf_lo)
2697			rxf_hi = rxf_lo + 16;
2698		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2699		rrd_lo = reg / 8;
2700		rrd_hi = (reg * 7) / 8;
2701		if (rrd_lo < 2)
2702			rrd_lo = 2;
2703		if (rrd_hi < rrd_lo)
2704			rrd_hi = rrd_lo + 3;
2705		break;
2706	}
2707	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2708	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2709	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2710	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2711	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2712	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2713	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2714	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2715	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2716	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2717
2718	/* Configure RxQ. */
2719	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2720	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2721	    RXQ_CFG_RD_BURST_MASK) |
2722	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2723	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2724	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2725	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2726	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2727
2728	/* Configure TxQ. */
2729	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2730	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2731	    TXQ_CFG_TPD_BURST_MASK) |
2732	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2733	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2734	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2735	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2736	    TXQ_CFG_ENB);
2737
2738	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2739	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2740	    TX_JUMBO_TPD_TH_MASK) |
2741	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2742	    TX_JUMBO_TPD_IPG_MASK));
2743	/* Configure DMA parameters. */
2744	CSR_WRITE_4(sc, AGE_DMA_CFG,
2745	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2746	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2747	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2748
2749	/* Configure CMB DMA write threshold. */
2750	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2751	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2752	    CMB_WR_THRESH_RRD_MASK) |
2753	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2754	    CMB_WR_THRESH_TPD_MASK));
2755
2756	/* Set CMB/SMB timer and enable them. */
2757	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2758	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2759	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2760	/* Request SMB updates for every seconds. */
2761	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2762	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2763
2764	/*
2765	 * Disable all WOL bits as WOL can interfere normal Rx
2766	 * operation.
2767	 */
2768	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2769
2770	/*
2771	 * Configure Tx/Rx MACs.
2772	 *  - Auto-padding for short frames.
2773	 *  - Enable CRC generation.
2774	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2775	 *  of MAC is followed after link establishment.
2776	 */
2777	CSR_WRITE_4(sc, AGE_MAC_CFG,
2778	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2779	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2780	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2781	    MAC_CFG_PREAMBLE_MASK));
2782	/* Set up the receive filter. */
2783	age_rxfilter(sc);
2784	age_rxvlan(sc);
2785
2786	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2787	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2788		reg |= MAC_CFG_RXCSUM_ENB;
2789
2790	/* Ack all pending interrupts and clear it. */
2791	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2792	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2793
2794	/* Finally enable Tx/Rx MAC. */
2795	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2796
2797	sc->age_flags &= ~AGE_FLAG_LINK;
2798	/* Switch to the current media. */
2799	mii_mediachg(mii);
2800
2801	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2802
2803	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2804	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2805}
2806
2807static void
2808age_stop(struct age_softc *sc)
2809{
2810	struct ifnet *ifp;
2811	struct age_txdesc *txd;
2812	struct age_rxdesc *rxd;
2813	uint32_t reg;
2814	int i;
2815
2816	AGE_LOCK_ASSERT(sc);
2817	/*
2818	 * Mark the interface down and cancel the watchdog timer.
2819	 */
2820	ifp = sc->age_ifp;
2821	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2822	sc->age_flags &= ~AGE_FLAG_LINK;
2823	callout_stop(&sc->age_tick_ch);
2824	sc->age_watchdog_timer = 0;
2825
2826	/*
2827	 * Disable interrupts.
2828	 */
2829	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2830	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2831	/* Stop CMB/SMB updates. */
2832	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2833	/* Stop Rx/Tx MAC. */
2834	age_stop_rxmac(sc);
2835	age_stop_txmac(sc);
2836	/* Stop DMA. */
2837	CSR_WRITE_4(sc, AGE_DMA_CFG,
2838	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2839	/* Stop TxQ/RxQ. */
2840	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2841	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2842	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2843	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2844	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2845		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2846			break;
2847		DELAY(10);
2848	}
2849	if (i == 0)
2850		device_printf(sc->age_dev,
2851		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2852
2853	 /* Reclaim Rx buffers that have been processed. */
2854	if (sc->age_cdata.age_rxhead != NULL)
2855		m_freem(sc->age_cdata.age_rxhead);
2856	AGE_RXCHAIN_RESET(sc);
2857	/*
2858	 * Free RX and TX mbufs still in the queues.
2859	 */
2860	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2861		rxd = &sc->age_cdata.age_rxdesc[i];
2862		if (rxd->rx_m != NULL) {
2863			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2864			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2865			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2866			    rxd->rx_dmamap);
2867			m_freem(rxd->rx_m);
2868			rxd->rx_m = NULL;
2869		}
2870        }
2871	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2872		txd = &sc->age_cdata.age_txdesc[i];
2873		if (txd->tx_m != NULL) {
2874			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2875			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2876			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2877			    txd->tx_dmamap);
2878			m_freem(txd->tx_m);
2879			txd->tx_m = NULL;
2880		}
2881        }
2882}
2883
2884static void
2885age_stop_txmac(struct age_softc *sc)
2886{
2887	uint32_t reg;
2888	int i;
2889
2890	AGE_LOCK_ASSERT(sc);
2891
2892	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2893	if ((reg & MAC_CFG_TX_ENB) != 0) {
2894		reg &= ~MAC_CFG_TX_ENB;
2895		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2896	}
2897	/* Stop Tx DMA engine. */
2898	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2899	if ((reg & DMA_CFG_RD_ENB) != 0) {
2900		reg &= ~DMA_CFG_RD_ENB;
2901		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2902	}
2903	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2904		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2905		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2906			break;
2907		DELAY(10);
2908	}
2909	if (i == 0)
2910		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2911}
2912
2913static void
2914age_stop_rxmac(struct age_softc *sc)
2915{
2916	uint32_t reg;
2917	int i;
2918
2919	AGE_LOCK_ASSERT(sc);
2920
2921	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2922	if ((reg & MAC_CFG_RX_ENB) != 0) {
2923		reg &= ~MAC_CFG_RX_ENB;
2924		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2925	}
2926	/* Stop Rx DMA engine. */
2927	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2928	if ((reg & DMA_CFG_WR_ENB) != 0) {
2929		reg &= ~DMA_CFG_WR_ENB;
2930		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2931	}
2932	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2933		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2934		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2935			break;
2936		DELAY(10);
2937	}
2938	if (i == 0)
2939		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2940}
2941
2942static void
2943age_init_tx_ring(struct age_softc *sc)
2944{
2945	struct age_ring_data *rd;
2946	struct age_txdesc *txd;
2947	int i;
2948
2949	AGE_LOCK_ASSERT(sc);
2950
2951	sc->age_cdata.age_tx_prod = 0;
2952	sc->age_cdata.age_tx_cons = 0;
2953	sc->age_cdata.age_tx_cnt = 0;
2954
2955	rd = &sc->age_rdata;
2956	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2957	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2958		txd = &sc->age_cdata.age_txdesc[i];
2959		txd->tx_desc = &rd->age_tx_ring[i];
2960		txd->tx_m = NULL;
2961	}
2962
2963	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2964	    sc->age_cdata.age_tx_ring_map,
2965	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2966}
2967
2968static int
2969age_init_rx_ring(struct age_softc *sc)
2970{
2971	struct age_ring_data *rd;
2972	struct age_rxdesc *rxd;
2973	int i;
2974
2975	AGE_LOCK_ASSERT(sc);
2976
2977	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2978	sc->age_morework = 0;
2979	rd = &sc->age_rdata;
2980	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2981	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2982		rxd = &sc->age_cdata.age_rxdesc[i];
2983		rxd->rx_m = NULL;
2984		rxd->rx_desc = &rd->age_rx_ring[i];
2985		if (age_newbuf(sc, rxd) != 0)
2986			return (ENOBUFS);
2987	}
2988
2989	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2990	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2991
2992	return (0);
2993}
2994
2995static void
2996age_init_rr_ring(struct age_softc *sc)
2997{
2998	struct age_ring_data *rd;
2999
3000	AGE_LOCK_ASSERT(sc);
3001
3002	sc->age_cdata.age_rr_cons = 0;
3003	AGE_RXCHAIN_RESET(sc);
3004
3005	rd = &sc->age_rdata;
3006	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3007	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3008	    sc->age_cdata.age_rr_ring_map,
3009	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3010}
3011
3012static void
3013age_init_cmb_block(struct age_softc *sc)
3014{
3015	struct age_ring_data *rd;
3016
3017	AGE_LOCK_ASSERT(sc);
3018
3019	rd = &sc->age_rdata;
3020	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3021	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3022	    sc->age_cdata.age_cmb_block_map,
3023	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3024}
3025
3026static void
3027age_init_smb_block(struct age_softc *sc)
3028{
3029	struct age_ring_data *rd;
3030
3031	AGE_LOCK_ASSERT(sc);
3032
3033	rd = &sc->age_rdata;
3034	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3035	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3036	    sc->age_cdata.age_smb_block_map,
3037	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3038}
3039
3040static int
3041age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3042{
3043	struct rx_desc *desc;
3044	struct mbuf *m;
3045	bus_dma_segment_t segs[1];
3046	bus_dmamap_t map;
3047	int nsegs;
3048
3049	AGE_LOCK_ASSERT(sc);
3050
3051	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3052	if (m == NULL)
3053		return (ENOBUFS);
3054	m->m_len = m->m_pkthdr.len = MCLBYTES;
3055	m_adj(m, ETHER_ALIGN);
3056
3057	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3058	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3059		m_freem(m);
3060		return (ENOBUFS);
3061	}
3062	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3063
3064	if (rxd->rx_m != NULL) {
3065		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3066		    BUS_DMASYNC_POSTREAD);
3067		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3068	}
3069	map = rxd->rx_dmamap;
3070	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3071	sc->age_cdata.age_rx_sparemap = map;
3072	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3073	    BUS_DMASYNC_PREREAD);
3074	rxd->rx_m = m;
3075
3076	desc = rxd->rx_desc;
3077	desc->addr = htole64(segs[0].ds_addr);
3078	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3079	    AGE_RD_LEN_SHIFT);
3080	return (0);
3081}
3082
3083static void
3084age_rxvlan(struct age_softc *sc)
3085{
3086	struct ifnet *ifp;
3087	uint32_t reg;
3088
3089	AGE_LOCK_ASSERT(sc);
3090
3091	ifp = sc->age_ifp;
3092	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3093	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3094	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3095		reg |= MAC_CFG_VLAN_TAG_STRIP;
3096	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3097}
3098
3099static void
3100age_rxfilter(struct age_softc *sc)
3101{
3102	struct ifnet *ifp;
3103	struct ifmultiaddr *ifma;
3104	uint32_t crc;
3105	uint32_t mchash[2];
3106	uint32_t rxcfg;
3107
3108	AGE_LOCK_ASSERT(sc);
3109
3110	ifp = sc->age_ifp;
3111
3112	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3113	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3114	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3115		rxcfg |= MAC_CFG_BCAST;
3116	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3117		if ((ifp->if_flags & IFF_PROMISC) != 0)
3118			rxcfg |= MAC_CFG_PROMISC;
3119		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3120			rxcfg |= MAC_CFG_ALLMULTI;
3121		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3122		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3123		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3124		return;
3125	}
3126
3127	/* Program new filter. */
3128	bzero(mchash, sizeof(mchash));
3129
3130	if_maddr_rlock(ifp);
3131	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3132		if (ifma->ifma_addr->sa_family != AF_LINK)
3133			continue;
3134		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3135		    ifma->ifma_addr), ETHER_ADDR_LEN);
3136		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3137	}
3138	if_maddr_runlock(ifp);
3139
3140	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3141	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3142	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3143}
3144
3145static int
3146sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3147{
3148	struct age_softc *sc;
3149	struct age_stats *stats;
3150	int error, result;
3151
3152	result = -1;
3153	error = sysctl_handle_int(oidp, &result, 0, req);
3154
3155	if (error != 0 || req->newptr == NULL)
3156		return (error);
3157
3158	if (result != 1)
3159		return (error);
3160
3161	sc = (struct age_softc *)arg1;
3162	stats = &sc->age_stat;
3163	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3164	printf("Transmit good frames : %ju\n",
3165	    (uintmax_t)stats->tx_frames);
3166	printf("Transmit good broadcast frames : %ju\n",
3167	    (uintmax_t)stats->tx_bcast_frames);
3168	printf("Transmit good multicast frames : %ju\n",
3169	    (uintmax_t)stats->tx_mcast_frames);
3170	printf("Transmit pause control frames : %u\n",
3171	    stats->tx_pause_frames);
3172	printf("Transmit control frames : %u\n",
3173	    stats->tx_control_frames);
3174	printf("Transmit frames with excessive deferrals : %u\n",
3175	    stats->tx_excess_defer);
3176	printf("Transmit deferrals : %u\n",
3177	    stats->tx_deferred);
3178	printf("Transmit good octets : %ju\n",
3179	    (uintmax_t)stats->tx_bytes);
3180	printf("Transmit good broadcast octets : %ju\n",
3181	    (uintmax_t)stats->tx_bcast_bytes);
3182	printf("Transmit good multicast octets : %ju\n",
3183	    (uintmax_t)stats->tx_mcast_bytes);
3184	printf("Transmit frames 64 bytes : %ju\n",
3185	    (uintmax_t)stats->tx_pkts_64);
3186	printf("Transmit frames 65 to 127 bytes : %ju\n",
3187	    (uintmax_t)stats->tx_pkts_65_127);
3188	printf("Transmit frames 128 to 255 bytes : %ju\n",
3189	    (uintmax_t)stats->tx_pkts_128_255);
3190	printf("Transmit frames 256 to 511 bytes : %ju\n",
3191	    (uintmax_t)stats->tx_pkts_256_511);
3192	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3193	    (uintmax_t)stats->tx_pkts_512_1023);
3194	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3195	    (uintmax_t)stats->tx_pkts_1024_1518);
3196	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3197	    (uintmax_t)stats->tx_pkts_1519_max);
3198	printf("Transmit single collisions : %u\n",
3199	    stats->tx_single_colls);
3200	printf("Transmit multiple collisions : %u\n",
3201	    stats->tx_multi_colls);
3202	printf("Transmit late collisions : %u\n",
3203	    stats->tx_late_colls);
3204	printf("Transmit abort due to excessive collisions : %u\n",
3205	    stats->tx_excess_colls);
3206	printf("Transmit underruns due to FIFO underruns : %u\n",
3207	    stats->tx_underrun);
3208	printf("Transmit descriptor write-back errors : %u\n",
3209	    stats->tx_desc_underrun);
3210	printf("Transmit frames with length mismatched frame size : %u\n",
3211	    stats->tx_lenerrs);
3212	printf("Transmit frames with truncated due to MTU size : %u\n",
3213	    stats->tx_lenerrs);
3214
3215	printf("Receive good frames : %ju\n",
3216	    (uintmax_t)stats->rx_frames);
3217	printf("Receive good broadcast frames : %ju\n",
3218	    (uintmax_t)stats->rx_bcast_frames);
3219	printf("Receive good multicast frames : %ju\n",
3220	    (uintmax_t)stats->rx_mcast_frames);
3221	printf("Receive pause control frames : %u\n",
3222	    stats->rx_pause_frames);
3223	printf("Receive control frames : %u\n",
3224	    stats->rx_control_frames);
3225	printf("Receive CRC errors : %u\n",
3226	    stats->rx_crcerrs);
3227	printf("Receive frames with length errors : %u\n",
3228	    stats->rx_lenerrs);
3229	printf("Receive good octets : %ju\n",
3230	    (uintmax_t)stats->rx_bytes);
3231	printf("Receive good broadcast octets : %ju\n",
3232	    (uintmax_t)stats->rx_bcast_bytes);
3233	printf("Receive good multicast octets : %ju\n",
3234	    (uintmax_t)stats->rx_mcast_bytes);
3235	printf("Receive frames too short : %u\n",
3236	    stats->rx_runts);
3237	printf("Receive fragmented frames : %ju\n",
3238	    (uintmax_t)stats->rx_fragments);
3239	printf("Receive frames 64 bytes : %ju\n",
3240	    (uintmax_t)stats->rx_pkts_64);
3241	printf("Receive frames 65 to 127 bytes : %ju\n",
3242	    (uintmax_t)stats->rx_pkts_65_127);
3243	printf("Receive frames 128 to 255 bytes : %ju\n",
3244	    (uintmax_t)stats->rx_pkts_128_255);
3245	printf("Receive frames 256 to 511 bytes : %ju\n",
3246	    (uintmax_t)stats->rx_pkts_256_511);
3247	printf("Receive frames 512 to 1024 bytes : %ju\n",
3248	    (uintmax_t)stats->rx_pkts_512_1023);
3249	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3250	    (uintmax_t)stats->rx_pkts_1024_1518);
3251	printf("Receive frames 1519 to MTU bytes : %ju\n",
3252	    (uintmax_t)stats->rx_pkts_1519_max);
3253	printf("Receive frames too long : %ju\n",
3254	    (uint64_t)stats->rx_pkts_truncated);
3255	printf("Receive frames with FIFO overflow : %u\n",
3256	    stats->rx_fifo_oflows);
3257	printf("Receive frames with return descriptor overflow : %u\n",
3258	    stats->rx_desc_oflows);
3259	printf("Receive frames with alignment errors : %u\n",
3260	    stats->rx_alignerrs);
3261	printf("Receive frames dropped due to address filtering : %ju\n",
3262	    (uint64_t)stats->rx_pkts_filtered);
3263
3264	return (error);
3265}
3266
3267static int
3268sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3269{
3270	int error, value;
3271
3272	if (arg1 == NULL)
3273		return (EINVAL);
3274	value = *(int *)arg1;
3275	error = sysctl_handle_int(oidp, &value, 0, req);
3276	if (error || req->newptr == NULL)
3277		return (error);
3278	if (value < low || value > high)
3279		return (EINVAL);
3280        *(int *)arg1 = value;
3281
3282        return (0);
3283}
3284
3285static int
3286sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3287{
3288	return (sysctl_int_range(oidp, arg1, arg2, req,
3289	    AGE_PROC_MIN, AGE_PROC_MAX));
3290}
3291
3292static int
3293sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3294{
3295
3296	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3297	    AGE_IM_TIMER_MAX));
3298}
3299