1/* Calculate branch probabilities, and basic block execution counts.
2   Copyright (C) 1990, 91-94, 96-98, 1999 Free Software Foundation, Inc.
3   Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
4   based on some ideas from Dain Samples of UC Berkeley.
5   Further mangling by Bob Manson, Cygnus Support.
6
7This file is part of GNU CC.
8
9GNU CC is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2, or (at your option)
12any later version.
13
14GNU CC is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with GNU CC; see the file COPYING.  If not, write to
21the Free Software Foundation, 59 Temple Place - Suite 330,
22Boston, MA 02111-1307, USA.  */
23
24/* ??? Really should not put insns inside of LIBCALL sequences, when putting
25   insns after a call, should look for the insn setting the retval, and
26   insert the insns after that one.  */
27
28/* ??? Register allocation should use basic block execution counts to
29   give preference to the most commonly executed blocks.  */
30
31/* ??? The .da files are not safe.  Changing the program after creating .da
32   files or using different options when compiling with -fbranch-probabilities
33   can result the arc data not matching the program.  Maybe add instrumented
34   arc count to .bbg file?  Maybe check whether PFG matches the .bbg file?  */
35
36/* ??? Should calculate branch probabilities before instrumenting code, since
37   then we can use arc counts to help decide which arcs to instrument.  */
38
39/* ??? Rearrange code so that the most frequently executed arcs become from
40   one block to the next block (i.e. a fall through), move seldom executed
41   code outside of loops even at the expense of adding a few branches to
42   achieve this, see Dain Sample's UC Berkeley thesis.  */
43
44#include "config.h"
45#include "system.h"
46#include "rtl.h"
47#include "flags.h"
48#include "insn-flags.h"
49#include "insn-config.h"
50#include "output.h"
51#include "regs.h"
52#include "tree.h"
53#include "output.h"
54#include "gcov-io.h"
55#include "toplev.h"
56
57/* One of these is dynamically created whenever we identify an arc in the
58   function.  */
59
60struct adj_list
61{
62  int source;
63  int target;
64  int arc_count;
65  unsigned int count_valid : 1;
66  unsigned int on_tree : 1;
67  unsigned int fake : 1;
68  unsigned int fall_through : 1;
69  rtx branch_insn;
70  struct adj_list *pred_next;
71  struct adj_list *succ_next;
72};
73
74#define ARC_TARGET(ARCPTR) (ARCPTR->target)
75#define ARC_SOURCE(ARCPTR) (ARCPTR->source)
76#define ARC_COUNT(ARCPTR)  (ARCPTR->arc_count)
77
78/* Count the number of basic blocks, and create an array of these structures,
79   one for each bb in the function.  */
80
81struct bb_info
82{
83  struct adj_list *succ;
84  struct adj_list *pred;
85  int succ_count;
86  int pred_count;
87  int exec_count;
88  unsigned int count_valid : 1;
89  unsigned int on_tree : 1;
90  rtx first_insn;
91};
92
93/* Indexed by label number, gives the basic block number containing that
94   label.  */
95
96static int *label_to_bb;
97
98/* Number of valid entries in the label_to_bb array.  */
99
100static int label_to_bb_size;
101
102/* Indexed by block index, holds the basic block graph.  */
103
104static struct bb_info *bb_graph;
105
106/* Name and file pointer of the output file for the basic block graph.  */
107
108static char *bbg_file_name;
109static FILE *bbg_file;
110
111/* Name and file pointer of the input file for the arc count data.  */
112
113static char *da_file_name;
114static FILE *da_file;
115
116/* Pointer of the output file for the basic block/line number map. */
117static FILE *bb_file;
118
119/* Last source file name written to bb_file. */
120
121static char *last_bb_file_name;
122
123/* Indicates whether the next line number note should be output to
124   bb_file or not.  Used to eliminate a redundant note after an
125   expanded inline function call.  */
126
127static int ignore_next_note;
128
129/* Used by final, for allocating the proper amount of storage for the
130   instrumented arc execution counts.  */
131
132int count_instrumented_arcs;
133
134/* Number of executions for the return label.  */
135
136int return_label_execution_count;
137
138/* Collect statistics on the performance of this pass for the entire source
139   file.  */
140
141static int total_num_blocks;
142static int total_num_arcs;
143static int total_num_arcs_instrumented;
144static int total_num_blocks_created;
145static int total_num_passes;
146static int total_num_times_called;
147static int total_hist_br_prob[20];
148static int total_num_never_executed;
149static int total_num_branches;
150
151/* Forward declarations.  */
152static void init_arc PROTO((struct adj_list *, int, int, rtx));
153static void find_spanning_tree PROTO((int));
154static void expand_spanning_tree PROTO((int));
155static void fill_spanning_tree PROTO((int));
156static void init_arc_profiler PROTO((void));
157static void output_arc_profiler PROTO((int, rtx));
158
159#ifndef LONG_TYPE_SIZE
160#define LONG_TYPE_SIZE BITS_PER_WORD
161#endif
162
163/* If non-zero, we need to output a constructor to set up the
164   per-object-file data. */
165static int need_func_profiler = 0;
166
167
168/* Add arc instrumentation code to the entire insn chain.
169
170   F is the first insn of the chain.
171   NUM_BLOCKS is the number of basic blocks found in F.
172   DUMP_FILE, if nonzero, is an rtl dump file we can write to.  */
173
174static void
175instrument_arcs (f, num_blocks, dump_file)
176     rtx f;
177     int num_blocks;
178     FILE *dump_file;
179{
180  register int i;
181  register struct adj_list *arcptr, *backptr;
182  int num_arcs = 0;
183  int num_instr_arcs = 0;
184  rtx insn;
185
186  /* Instrument the program start.  */
187  /* Handle block 0 specially, since it will always be instrumented,
188     but it doesn't have a valid first_insn or branch_insn.  We must
189     put the instructions before the NOTE_INSN_FUNCTION_BEG note, so
190     that they don't clobber any of the parameters of the current
191     function.  */
192  for (insn = f; insn; insn = NEXT_INSN (insn))
193    if (GET_CODE (insn) == NOTE
194	&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
195      break;
196  insn = PREV_INSN (insn);
197  need_func_profiler = 1;
198  output_arc_profiler (total_num_arcs_instrumented + num_instr_arcs++, insn);
199
200  for (i = 1; i < num_blocks; i++)
201    for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
202      if (! arcptr->on_tree)
203	{
204	  if (dump_file)
205	    fprintf (dump_file, "Arc %d to %d instrumented\n", i,
206		     ARC_TARGET (arcptr));
207
208	  /* Check to see if this arc is the only exit from its source block,
209	     or the only entrance to its target block.  In either case,
210	     we don't need to create a new block to instrument the arc.  */
211
212	  if (bb_graph[i].succ == arcptr && arcptr->succ_next == 0)
213	    {
214	      /* Instrument the source block.  */
215	      output_arc_profiler (total_num_arcs_instrumented
216				   + num_instr_arcs++,
217				   PREV_INSN (bb_graph[i].first_insn));
218	    }
219	  else if (arcptr == bb_graph[ARC_TARGET (arcptr)].pred
220		   && arcptr->pred_next == 0)
221	    {
222	      /* Instrument the target block.  */
223	      output_arc_profiler (total_num_arcs_instrumented
224				   + num_instr_arcs++,
225				   PREV_INSN (bb_graph[ARC_TARGET (arcptr)].first_insn));
226	    }
227	  else if (arcptr->fall_through)
228	    {
229	      /* This is a fall-through; put the instrumentation code after
230		 the branch that ends this block.  */
231
232	      for (backptr = bb_graph[i].succ; backptr;
233		   backptr = backptr->succ_next)
234		if (backptr != arcptr)
235		  break;
236
237	      output_arc_profiler (total_num_arcs_instrumented
238				   + num_instr_arcs++,
239				   backptr->branch_insn);
240	    }
241	  else
242	    {
243	      /* Must emit a new basic block to hold the arc counting code.  */
244	      enum rtx_code code = GET_CODE (PATTERN (arcptr->branch_insn));
245
246	      if (code == SET)
247		{
248		  /* Create the new basic block right after the branch.
249		     Invert the branch so that it jumps past the end of the new
250		     block.  The new block will consist of the instrumentation
251		     code, and a jump to the target of this arc.  */
252		  int this_is_simplejump = simplejump_p (arcptr->branch_insn);
253		  rtx new_label = gen_label_rtx ();
254		  rtx old_label, set_src;
255		  rtx after = arcptr->branch_insn;
256
257		  /* Simplejumps can't reach here.  */
258		  if (this_is_simplejump)
259		    abort ();
260
261		  /* We can't use JUMP_LABEL, because it won't be set if we
262		     are compiling without optimization.  */
263
264		  set_src = SET_SRC (single_set (arcptr->branch_insn));
265		  if (GET_CODE (set_src) == LABEL_REF)
266		    old_label = set_src;
267		  else if (GET_CODE (set_src) != IF_THEN_ELSE)
268		    abort ();
269		  else if (XEXP (set_src, 1) == pc_rtx)
270		    old_label = XEXP (XEXP (set_src, 2), 0);
271		  else
272		    old_label = XEXP (XEXP (set_src, 1), 0);
273
274		  /* Set the JUMP_LABEL so that redirect_jump will work.  */
275		  JUMP_LABEL (arcptr->branch_insn) = old_label;
276
277		  /* Add a use for OLD_LABEL that will be needed when we emit
278		     the JUMP_INSN below.  If we don't do this here,
279		     `invert_jump' might delete it for us.  We must add two
280		     when not optimizing, because the NUSES is zero now,
281		     but must be at least two to prevent the label from being
282		     deleted.  */
283		  LABEL_NUSES (old_label) += 2;
284
285		  /* Emit the insns for the new block in reverse order,
286		     since that is most convenient.  */
287
288		  if (this_is_simplejump)
289		    {
290		      after = NEXT_INSN (arcptr->branch_insn);
291		      if (! redirect_jump (arcptr->branch_insn, new_label))
292			/* Don't know what to do if this branch won't
293			   redirect.  */
294			abort ();
295		    }
296		  else
297		    {
298		      if (! invert_jump (arcptr->branch_insn, new_label))
299			/* Don't know what to do if this branch won't invert.  */
300			abort ();
301
302		      emit_label_after (new_label, after);
303		      LABEL_NUSES (new_label)++;
304		    }
305		  emit_barrier_after (after);
306		  emit_jump_insn_after (gen_jump (old_label), after);
307		  JUMP_LABEL (NEXT_INSN (after)) = old_label;
308
309		  /* Instrument the source arc.  */
310		  output_arc_profiler (total_num_arcs_instrumented
311				       + num_instr_arcs++,
312				       after);
313		  if (this_is_simplejump)
314		    {
315		      emit_label_after (new_label, after);
316		      LABEL_NUSES (new_label)++;
317		    }
318		}
319	      else if (code == ADDR_VEC || code == ADDR_DIFF_VEC)
320		{
321		  /* A table jump.  Create a new basic block immediately
322		     after the table, by emitting a barrier, a label, a
323		     counting note, and a jump to the old label.  Put the
324		     new label in the table.  */
325
326		  rtx new_label = gen_label_rtx ();
327		  rtx old_lref, new_lref;
328		  int index;
329
330		  /* Must determine the old_label reference, do this
331		     by counting the arcs after this one, which will
332		     give the index of our label in the table.  */
333
334		  index = 0;
335		  for (backptr = arcptr->succ_next; backptr;
336		       backptr = backptr->succ_next)
337		    index++;
338
339		  old_lref = XVECEXP (PATTERN (arcptr->branch_insn),
340				      (code == ADDR_DIFF_VEC), index);
341
342		  /* Emit the insns for the new block in reverse order,
343		     since that is most convenient.  */
344		  emit_jump_insn_after (gen_jump (XEXP (old_lref, 0)),
345					arcptr->branch_insn);
346		  JUMP_LABEL (NEXT_INSN (arcptr->branch_insn))
347		    = XEXP (old_lref, 0);
348
349		  /* Instrument the source arc.  */
350		  output_arc_profiler (total_num_arcs_instrumented
351				       + num_instr_arcs++,
352				       arcptr->branch_insn);
353
354		  emit_label_after (new_label, arcptr->branch_insn);
355		  LABEL_NUSES (NEXT_INSN (arcptr->branch_insn))++;
356		  emit_barrier_after (arcptr->branch_insn);
357
358		  /* Fix up the table jump.  */
359		  new_lref = gen_rtx_LABEL_REF (Pmode, new_label);
360		  XVECEXP (PATTERN (arcptr->branch_insn),
361			   (code == ADDR_DIFF_VEC), index) = new_lref;
362		}
363	      else
364		abort ();
365
366	      num_arcs += 1;
367	      if (dump_file)
368		fprintf (dump_file,
369			 "Arc %d to %d needed new basic block\n", i,
370			 ARC_TARGET (arcptr));
371	    }
372	}
373
374  total_num_arcs_instrumented += num_instr_arcs;
375  count_instrumented_arcs = total_num_arcs_instrumented;
376
377  total_num_blocks_created += num_arcs;
378  if (dump_file)
379    {
380      fprintf (dump_file, "%d arcs instrumented\n", num_instr_arcs);
381      fprintf (dump_file, "%d extra basic blocks created\n", num_arcs);
382    }
383}
384
385/* Output STRING to bb_file, surrounded by DELIMITER.  */
386
387static void
388output_gcov_string (string, delimiter)
389     char *string;
390     long delimiter;
391{
392  long temp;
393
394  /* Write a delimiter to indicate that a file name follows.  */
395  __write_long (delimiter, bb_file, 4);
396
397  /* Write the string.  */
398  temp = strlen (string) + 1;
399  fwrite (string, temp, 1, bb_file);
400
401  /* Append a few zeros, to align the output to a 4 byte boundary.  */
402  temp = temp & 0x3;
403  if (temp)
404    {
405      char c[4];
406
407      c[0] = c[1] = c[2] = c[3] = 0;
408      fwrite (c, sizeof (char), 4 - temp, bb_file);
409    }
410
411  /* Store another delimiter in the .bb file, just to make it easy to find the
412     end of the file name.  */
413  __write_long (delimiter, bb_file, 4);
414}
415
416/* Return TRUE if this insn must be a tablejump entry insn.  This works for
417   the MIPS port, but may give false negatives for some targets.  */
418
419int
420tablejump_entry_p (insn, label)
421     rtx insn, label;
422{
423  rtx next = next_active_insn (insn);
424  enum rtx_code code = GET_CODE (PATTERN (next));
425
426  if (code != ADDR_DIFF_VEC && code != ADDR_VEC)
427    return 0;
428
429  if (PREV_INSN (next) == XEXP (label, 0))
430    return 1;
431
432  return 0;
433}
434
435/* Instrument and/or analyze program behavior based on program flow graph.
436   In either case, this function builds a flow graph for the function being
437   compiled.  The flow graph is stored in BB_GRAPH.
438
439   When FLAG_PROFILE_ARCS is nonzero, this function instruments the arcs in
440   the flow graph that are needed to reconstruct the dynamic behavior of the
441   flow graph.
442
443   When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary
444   information from a data file containing arc count information from previous
445   executions of the function being compiled.  In this case, the flow graph is
446   annotated with actual execution counts, which are later propagated into the
447   rtl for optimization purposes.
448
449   Main entry point of this file.  */
450
451void
452branch_prob (f, dump_file)
453     rtx f;
454     FILE *dump_file;
455{
456  int i, num_blocks;
457  struct adj_list *arcptr;
458  int num_arcs, changes, passes;
459  int total, prob;
460  int hist_br_prob[20], num_never_executed, num_branches;
461  /* Set to non-zero if we got bad count information.  */
462  int bad_counts = 0;
463
464  /* start of a function.  */
465  if (flag_test_coverage)
466    output_gcov_string (current_function_name, (long) -2);
467
468  /* Execute this only if doing arc profiling or branch probabilities.  */
469  if (! profile_arc_flag && ! flag_branch_probabilities
470      && ! flag_test_coverage)
471    abort ();
472
473  total_num_times_called++;
474
475  /* Create an array label_to_bb of ints of size max_label_num.  */
476  label_to_bb_size = max_label_num ();
477  label_to_bb = (int *) oballoc (label_to_bb_size * sizeof (int));
478  bzero ((char *) label_to_bb, label_to_bb_size * sizeof (int));
479
480  /* Scan the insns in the function, count the number of basic blocks
481     present.  When a code label is passed, set label_to_bb[label] = bb
482     number.  */
483
484  /* The first block found will be block 1, so that function entry can be
485     block 0.  */
486
487  {
488    register RTX_CODE prev_code = JUMP_INSN;
489    register RTX_CODE code;
490    register rtx insn;
491    register int i;
492    int block_separator_emitted = 0;
493
494    ignore_next_note = 0;
495
496    for (insn = NEXT_INSN (f), i = 0; insn; insn = NEXT_INSN (insn))
497      {
498	code = GET_CODE (insn);
499
500	if (code == BARRIER)
501	  ;
502	else if (code == CODE_LABEL)
503	  /* This label is part of the next block, but we can't increment
504	     block number yet since there might be multiple labels.  */
505	  label_to_bb[CODE_LABEL_NUMBER (insn)] = i + 1;
506	/* We make NOTE_INSN_SETJMP notes into a block of their own, so that
507	   they can be the target of the fake arc for the setjmp call.
508	   This avoids creating cycles of fake arcs, which would happen if
509	   the block after the setjmp call contained a call insn.  */
510	else if ((prev_code == JUMP_INSN || prev_code == CALL_INSN
511		  || prev_code == CODE_LABEL || prev_code == BARRIER)
512		 && (GET_RTX_CLASS (code) == 'i'
513		     || (code == NOTE
514			 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)))
515	  {
516	    i += 1;
517
518	    /* Emit the block separator if it hasn't already been emitted.  */
519	    if (flag_test_coverage && ! block_separator_emitted)
520	      {
521		/* Output a zero to the .bb file to indicate that a new
522		   block list is starting.  */
523		__write_long (0, bb_file, 4);
524	      }
525	    block_separator_emitted = 0;
526	  }
527	/* If flag_test_coverage is true, then we must add an entry to the
528	   .bb file for every note.  */
529	else if (code == NOTE && flag_test_coverage)
530	  {
531	    /* Must ignore the line number notes that immediately follow the
532	       end of an inline function to avoid counting it twice.  There
533	       is a note before the call, and one after the call.  */
534	    if (NOTE_LINE_NUMBER (insn) == NOTE_REPEATED_LINE_NUMBER)
535	      ignore_next_note = 1;
536	    else if (NOTE_LINE_NUMBER (insn) > 0)
537	      {
538		if (ignore_next_note)
539		  ignore_next_note = 0;
540		else
541		  {
542		    /* Emit a block separator here to ensure that a NOTE
543		       immediately following a JUMP_INSN or CALL_INSN will end
544		       up in the right basic block list.  */
545		    if ((prev_code == JUMP_INSN || prev_code == CALL_INSN
546			 || prev_code == CODE_LABEL || prev_code == BARRIER)
547			&& ! block_separator_emitted)
548		      {
549			/* Output a zero to the .bb file to indicate that
550			   a new block list is starting.  */
551			__write_long (0, bb_file, 4);
552
553			block_separator_emitted = 1;
554		      }
555
556		    /* If this is a new source file, then output the file's
557		       name to the .bb file.  */
558		    if (! last_bb_file_name
559			|| strcmp (NOTE_SOURCE_FILE (insn),
560				   last_bb_file_name))
561		      {
562			if (last_bb_file_name)
563			  free (last_bb_file_name);
564			last_bb_file_name
565			  = xmalloc (strlen (NOTE_SOURCE_FILE (insn)) + 1);
566			strcpy (last_bb_file_name, NOTE_SOURCE_FILE (insn));
567			output_gcov_string (NOTE_SOURCE_FILE (insn), (long)-1);
568		      }
569
570		    /* Output the line number to the .bb file.  Must be done
571		       after the output_bb_profile_data() call, and after the
572		       file name is written, to ensure that it is correctly
573		       handled by gcov.  */
574		    __write_long (NOTE_LINE_NUMBER (insn), bb_file, 4);
575		  }
576	      }
577	  }
578
579	if (code != NOTE)
580	  prev_code = code;
581	else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
582	  prev_code = CALL_INSN;
583      }
584
585    /* Allocate last `normal' entry for bb_graph.  */
586
587    /* The last insn was a jump, call, or label.  In that case we have
588       a block at the end of the function with no insns.  */
589    if (prev_code == JUMP_INSN || prev_code == CALL_INSN
590	|| prev_code == CODE_LABEL || prev_code == BARRIER)
591      {
592	i++;
593
594	/* Emit the block separator if it hasn't already been emitted.  */
595	if (flag_test_coverage && ! block_separator_emitted)
596	  {
597	    /* Output a zero to the .bb file to indicate that a new
598	       block list is starting.  */
599	    __write_long (0, bb_file, 4);
600	  }
601      }
602
603    /* Create another block to stand for EXIT, and make all return insns, and
604       the last basic block point here.  Add one more to account for block
605       zero.  */
606    num_blocks = i + 2;
607  }
608
609  total_num_blocks += num_blocks;
610  if (dump_file)
611    fprintf (dump_file, "%d basic blocks\n", num_blocks);
612
613  /* If we are only doing test coverage here, then return now.  */
614  if (! profile_arc_flag && ! flag_branch_probabilities)
615    return;
616
617  /* Create and initialize the arrays that will hold bb_graph
618     and execution count info.  */
619
620  bb_graph = (struct bb_info *) alloca (num_blocks * sizeof (struct bb_info));
621  bzero ((char *) bb_graph, (sizeof (struct bb_info) * num_blocks));
622
623  {
624    /* Scan the insns again:
625       - at the entry to each basic block, increment the predecessor count
626       (and successor of previous block) if it is a fall through entry,
627       create adj_list entries for this and the previous block
628       - at each jump insn, increment predecessor/successor counts for
629       target/source basic blocks, add this insn to pred/succ lists.
630
631       This also cannot be broken out as a separate subroutine
632       because it uses `alloca'.  */
633
634    register RTX_CODE prev_code = JUMP_INSN;
635    register RTX_CODE code;
636    register rtx insn;
637    register int i;
638    int fall_through = 0;
639    struct adj_list *arcptr;
640    int dest = 0;
641
642    /* Block 0 always falls through to block 1.  */
643    num_arcs = 0;
644    arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
645    init_arc (arcptr, 0, 1, 0);
646    arcptr->fall_through = 1;
647    num_arcs++;
648
649    /* Add a fake fall through arc from the last block to block 0, to make the
650       graph complete.  */
651    arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
652    init_arc (arcptr, num_blocks - 1, 0, 0);
653    arcptr->fake = 1;
654    num_arcs++;
655
656    /* Exit must be one node of the graph, and all exits from the function
657       must point there.  When see a return branch, must point the arc to the
658       exit node.  */
659
660    /* Must start scan with second insn in function as above.  */
661    for (insn = NEXT_INSN (f), i = 0; insn; insn = NEXT_INSN (insn))
662      {
663	code = GET_CODE (insn);
664
665	if (code == BARRIER)
666	  fall_through = 0;
667	else if (code == CODE_LABEL)
668	  ;
669	/* We make NOTE_INSN_SETJMP notes into a block of their own, so that
670	   they can be the target of the fake arc for the setjmp call.
671	   This avoids creating cycles of fake arcs, which would happen if
672	   the block after the setjmp call ended with a call.  */
673	else if ((prev_code == JUMP_INSN || prev_code == CALL_INSN
674		  || prev_code == CODE_LABEL || prev_code == BARRIER)
675		 && (GET_RTX_CLASS (code) == 'i'
676		     || (code == NOTE
677			 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)))
678	  {
679	    /* This is the first insn of the block.  */
680	    i += 1;
681	    if (fall_through)
682	      {
683		arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
684		init_arc (arcptr, i - 1, i, 0);
685		arcptr->fall_through = 1;
686
687		num_arcs++;
688	      }
689	    fall_through = 1;
690	    bb_graph[i].first_insn = insn;
691	  }
692	else if (code == NOTE)
693	  {;}
694
695	if (code == CALL_INSN)
696	  {
697	    /* In the normal case, the call returns, and this is just like
698	       a branch fall through.  */
699	    fall_through = 1;
700
701	    /* Setjmp may return more times than called, so to make the graph
702	       solvable, add a fake arc from the function entrance to the
703	       next block.
704
705	       All other functions may return fewer times than called (if
706	       a descendent call longjmp or exit), so to make the graph
707	       solvable, add a fake arc to the function exit from the
708	       current block.
709
710	       Distinguish the cases by checking for a SETJUMP note.
711	       A call_insn can be the last ins of a function, so must check
712	       to see if next insn actually exists.  */
713	    arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
714	    if (NEXT_INSN (insn)
715		&& GET_CODE (NEXT_INSN (insn)) == NOTE
716		&& NOTE_LINE_NUMBER (NEXT_INSN (insn)) == NOTE_INSN_SETJMP)
717	      init_arc (arcptr, 0, i+1, insn);
718	    else
719	      init_arc (arcptr, i, num_blocks-1, insn);
720	    arcptr->fake = 1;
721	    num_arcs++;
722	  }
723	else if (code == JUMP_INSN)
724	  {
725	    rtx tem, pattern = PATTERN (insn);
726	    rtx tablejump = 0;
727
728	    /* If running without optimization, then jump label won't be valid,
729	       so we must search for the destination label in that case.
730	       We have to handle tablejumps and returns specially anyways, so
731	       we don't check the JUMP_LABEL at all here.  */
732
733	    /* ??? This code should be rewritten.  We need a more elegant way
734	       to find the LABEL_REF.  We need a more elegant way to
735	       differentiate tablejump entries from computed gotos.
736	       We should perhaps reuse code from flow to compute the CFG
737	       instead of trying to compute it here.
738
739	       We can't use current_function_has_computed_jump, because that
740	       is calculated later by flow.  We can't use computed_jump_p,
741	       because that returns true for tablejump entry insns for some
742	       targets, e.g. HPPA and MIPS.  */
743
744	    if (GET_CODE (pattern) == PARALLEL)
745	      {
746		/* This assumes that PARALLEL jumps with a USE are
747		   tablejump entry jumps.  The same assumption can be found
748		   in computed_jump_p.  */
749		/* Make an arc from this jump to the label of the
750		   jump table.  This will instrument the number of
751		   times the switch statement is executed.  */
752		if (GET_CODE (XVECEXP (pattern, 0, 1)) == USE)
753		  {
754		    tem = XEXP (XVECEXP (pattern, 0, 1), 0);
755		    if (GET_CODE (tem) != LABEL_REF)
756		      abort ();
757		    dest = label_to_bb[CODE_LABEL_NUMBER (XEXP (tem, 0))];
758		  }
759		else if (GET_CODE (XVECEXP (pattern, 0, 0)) == SET
760			 && SET_DEST (XVECEXP (pattern, 0, 0)) == pc_rtx)
761		  {
762		    tem = SET_SRC (XVECEXP (pattern, 0, 0));
763		    if (GET_CODE (tem) == PLUS
764			&& GET_CODE (XEXP (tem, 1)) == LABEL_REF)
765		      {
766			tem = XEXP (tem, 1);
767			dest = label_to_bb [CODE_LABEL_NUMBER (XEXP (tem, 0))];
768		      }
769		  }
770		else
771		  abort ();
772	      }
773	    else if (GET_CODE (pattern) == ADDR_VEC
774		     || GET_CODE (pattern) == ADDR_DIFF_VEC)
775	      tablejump = pattern;
776	    else if (GET_CODE (pattern) == RETURN)
777	      dest = num_blocks - 1;
778	    else if (GET_CODE (pattern) != SET)
779	      abort ();
780	    else if ((tem = SET_SRC (pattern))
781		     && GET_CODE (tem) == LABEL_REF)
782	      dest = label_to_bb[CODE_LABEL_NUMBER (XEXP (tem, 0))];
783	    /* Recognize HPPA table jump entry.  This code is similar to
784	       the code above in the PARALLEL case.  */
785	    else if (GET_CODE (tem) == PLUS
786		     && GET_CODE (XEXP (tem, 0)) == MEM
787		     && GET_CODE (XEXP (XEXP (tem, 0), 0)) == PLUS
788		     && GET_CODE (XEXP (XEXP (XEXP (tem, 0), 0), 0)) == PC
789		     && GET_CODE (XEXP (tem, 1)) == LABEL_REF
790		     && tablejump_entry_p (insn, XEXP (tem, 1)))
791	      dest = label_to_bb[CODE_LABEL_NUMBER (XEXP (XEXP (tem, 1), 0))];
792	    /* Recognize the MIPS table jump entry.  */
793	    else if (GET_CODE (tem) == PLUS
794		     && GET_CODE (XEXP (tem, 0)) == REG
795		     && GET_CODE (XEXP (tem, 1)) == LABEL_REF
796		     && tablejump_entry_p (insn, XEXP (tem, 1)))
797	      dest = label_to_bb[CODE_LABEL_NUMBER (XEXP (XEXP (tem, 1), 0))];
798	    else
799	      {
800		rtx label_ref;
801
802		/* Must be an IF_THEN_ELSE branch.  If it isn't, assume it
803		   is a computed goto, which aren't supported yet.  */
804		if (GET_CODE (tem) != IF_THEN_ELSE)
805		  fatal ("-fprofile-arcs does not support computed gotos");
806		if (XEXP (tem, 1) != pc_rtx)
807		  label_ref = XEXP (tem, 1);
808		else
809		  label_ref = XEXP (tem, 2);
810		dest = label_to_bb[CODE_LABEL_NUMBER (XEXP (label_ref, 0))];
811	      }
812
813	    if (tablejump)
814	      {
815		int diff_vec_p = GET_CODE (tablejump) == ADDR_DIFF_VEC;
816		int len = XVECLEN (tablejump, diff_vec_p);
817		int k;
818
819		for (k = 0; k < len; k++)
820		  {
821		    rtx tem = XEXP (XVECEXP (tablejump, diff_vec_p, k), 0);
822		    dest = label_to_bb[CODE_LABEL_NUMBER (tem)];
823
824		    arcptr = (struct adj_list *) alloca (sizeof(struct adj_list));
825		    init_arc (arcptr, i, dest, insn);
826
827		    num_arcs++;
828		  }
829	      }
830	    else
831	      {
832		arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
833		init_arc (arcptr, i, dest, insn);
834
835		num_arcs++;
836	      }
837
838	    /* Determine whether or not this jump will fall through.
839	       Unconditional jumps and returns are not always followed by
840	       barriers.  */
841	    pattern = PATTERN (insn);
842	    if (GET_CODE (pattern) == PARALLEL
843		|| GET_CODE (pattern) == RETURN)
844	      fall_through = 0;
845	    else if (GET_CODE (pattern) == ADDR_VEC
846		     || GET_CODE (pattern) == ADDR_DIFF_VEC)
847	      /* These aren't actually jump insns, but they never fall
848		 through, so...  */
849	      fall_through = 0;
850	    else
851	      {
852		if (GET_CODE (pattern) != SET || SET_DEST (pattern) != pc_rtx)
853		  abort ();
854		if (GET_CODE (SET_SRC (pattern)) != IF_THEN_ELSE)
855		  fall_through = 0;
856	      }
857	  }
858
859	if (code != NOTE)
860	  prev_code = code;
861	else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
862	  {
863	    /* Make a fake insn to tag our notes on.  */
864	    bb_graph[i].first_insn = insn
865	      = emit_insn_after (gen_rtx_USE (VOIDmode, stack_pointer_rtx),
866				 insn);
867	    prev_code = CALL_INSN;
868	  }
869      }
870
871    /* If the code at the end of the function would give a new block, then
872       do the following.  */
873
874    if (prev_code == JUMP_INSN || prev_code == CALL_INSN
875	|| prev_code == CODE_LABEL || prev_code == BARRIER)
876      {
877	if (fall_through)
878	  {
879	    arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
880	    init_arc (arcptr, i, i + 1, 0);
881	    arcptr->fall_through = 1;
882
883	    num_arcs++;
884	  }
885
886	/* This may not be a real insn, but that should not cause a problem.  */
887	bb_graph[i+1].first_insn = get_last_insn ();
888      }
889
890    /* There is always a fake arc from the last block of the function
891       to the function exit block.  */
892    arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
893    init_arc (arcptr, num_blocks-2, num_blocks-1, 0);
894    arcptr->fake = 1;
895    num_arcs++;
896  }
897
898  total_num_arcs += num_arcs;
899  if (dump_file)
900    fprintf (dump_file, "%d arcs\n", num_arcs);
901
902  /* Create spanning tree from basic block graph, mark each arc that is
903     on the spanning tree.  */
904
905  /* To reduce the instrumentation cost, make two passes over the tree.
906     First, put as many must-split (crowded and fake) arcs on the tree as
907     possible, then on the second pass fill in the rest of the tree.
908     Note that the spanning tree is considered undirected, so that as many
909     must-split arcs as possible can be put on it.
910
911     Fallthrough arcs which are crowded should not be chosen on the first
912     pass, since they do not require creating a new basic block.  These
913     arcs will have fall_through set.  */
914
915  find_spanning_tree (num_blocks);
916
917  /* Create a .bbg file from which gcov can reconstruct the basic block
918     graph.  First output the number of basic blocks, and then for every
919     arc output the source and target basic block numbers.
920     NOTE: The format of this file must be compatible with gcov.  */
921
922  if (flag_test_coverage)
923    {
924      int flag_bits;
925
926      __write_long (num_blocks, bbg_file, 4);
927      __write_long (num_arcs, bbg_file, 4);
928
929      for (i = 0; i < num_blocks; i++)
930	{
931	  long count = 0;
932	  for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
933	    count++;
934	  __write_long (count, bbg_file, 4);
935
936	  for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
937	    {
938	      flag_bits = 0;
939	      if (arcptr->on_tree)
940		flag_bits |= 0x1;
941	      if (arcptr->fake)
942		flag_bits |= 0x2;
943	      if (arcptr->fall_through)
944		flag_bits |= 0x4;
945
946	      __write_long (ARC_TARGET (arcptr), bbg_file, 4);
947	      __write_long (flag_bits, bbg_file, 4);
948	    }
949	}
950
951      /* Emit a -1 to separate the list of all arcs from the list of
952	 loop back edges that follows.  */
953      __write_long (-1, bbg_file, 4);
954    }
955
956  /* For each arc not on the spanning tree, add counting code as rtl.  */
957
958  if (profile_arc_flag)
959    {
960      instrument_arcs (f, num_blocks, dump_file);
961      allocate_reg_info (max_reg_num (), FALSE, FALSE);
962    }
963
964  /* Execute the rest only if doing branch probabilities.  */
965  if (! flag_branch_probabilities)
966    return;
967
968  /* For each arc not on the spanning tree, set its execution count from
969     the .da file.  */
970
971  /* The first count in the .da file is the number of times that the function
972     was entered.  This is the exec_count for block zero.  */
973
974  num_arcs = 0;
975  for (i = 0; i < num_blocks; i++)
976    for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
977      if (! arcptr->on_tree)
978	{
979	  num_arcs++;
980	  if (da_file)
981	    {
982	      long value;
983	      __read_long (&value, da_file, 8);
984	      ARC_COUNT (arcptr) = value;
985	    }
986	  else
987	    ARC_COUNT (arcptr) = 0;
988	  arcptr->count_valid = 1;
989	  bb_graph[i].succ_count--;
990	  bb_graph[ARC_TARGET (arcptr)].pred_count--;
991	}
992
993  if (dump_file)
994    fprintf (dump_file, "%d arc counts read\n", num_arcs);
995
996  /* For every block in the file,
997     - if every exit/entrance arc has a known count, then set the block count
998     - if the block count is known, and every exit/entrance arc but one has
999       a known execution count, then set the count of the remaining arc
1000
1001     As arc counts are set, decrement the succ/pred count, but don't delete
1002     the arc, that way we can easily tell when all arcs are known, or only
1003     one arc is unknown.  */
1004
1005  /* The order that the basic blocks are iterated through is important.
1006     Since the code that finds spanning trees starts with block 0, low numbered
1007     arcs are put on the spanning tree in preference to high numbered arcs.
1008     Hence, most instrumented arcs are at the end.  Graph solving works much
1009     faster if we propagate numbers from the end to the start.
1010
1011     This takes an average of slightly more than 3 passes.  */
1012
1013  changes = 1;
1014  passes = 0;
1015  while (changes)
1016    {
1017      passes++;
1018      changes = 0;
1019
1020      for (i = num_blocks - 1; i >= 0; i--)
1021	{
1022	  struct bb_info *binfo = &bb_graph[i];
1023	  if (! binfo->count_valid)
1024	    {
1025	      if (binfo->succ_count == 0)
1026		{
1027		  total = 0;
1028		  for (arcptr = binfo->succ; arcptr;
1029		       arcptr = arcptr->succ_next)
1030		    total += ARC_COUNT (arcptr);
1031		  binfo->exec_count = total;
1032		  binfo->count_valid = 1;
1033		  changes = 1;
1034		}
1035	      else if (binfo->pred_count == 0)
1036		{
1037		  total = 0;
1038		  for (arcptr = binfo->pred; arcptr;
1039		       arcptr = arcptr->pred_next)
1040		    total += ARC_COUNT (arcptr);
1041		  binfo->exec_count = total;
1042		  binfo->count_valid = 1;
1043		  changes = 1;
1044		}
1045	    }
1046	  if (binfo->count_valid)
1047	    {
1048	      if (binfo->succ_count == 1)
1049		{
1050		  total = 0;
1051		  /* One of the counts will be invalid, but it is zero,
1052		     so adding it in also doesn't hurt.  */
1053		  for (arcptr = binfo->succ; arcptr;
1054		       arcptr = arcptr->succ_next)
1055		    total += ARC_COUNT (arcptr);
1056		  /* Calculate count for remaining arc by conservation.  */
1057		  total = binfo->exec_count - total;
1058		  /* Search for the invalid arc, and set its count.  */
1059		  for (arcptr = binfo->succ; arcptr;
1060		       arcptr = arcptr->succ_next)
1061		    if (! arcptr->count_valid)
1062		      break;
1063		  if (! arcptr)
1064		    abort ();
1065		  arcptr->count_valid = 1;
1066		  ARC_COUNT (arcptr) = total;
1067		  binfo->succ_count--;
1068
1069		  bb_graph[ARC_TARGET (arcptr)].pred_count--;
1070		  changes = 1;
1071		}
1072	      if (binfo->pred_count == 1)
1073		{
1074		  total = 0;
1075		  /* One of the counts will be invalid, but it is zero,
1076		     so adding it in also doesn't hurt.  */
1077		  for (arcptr = binfo->pred; arcptr;
1078		       arcptr = arcptr->pred_next)
1079		    total += ARC_COUNT (arcptr);
1080		  /* Calculate count for remaining arc by conservation.  */
1081		  total = binfo->exec_count - total;
1082		  /* Search for the invalid arc, and set its count.  */
1083		  for (arcptr = binfo->pred; arcptr;
1084		       arcptr = arcptr->pred_next)
1085		    if (! arcptr->count_valid)
1086		      break;
1087		  if (! arcptr)
1088		    abort ();
1089		  arcptr->count_valid = 1;
1090		  ARC_COUNT (arcptr) = total;
1091		  binfo->pred_count--;
1092
1093		  bb_graph[ARC_SOURCE (arcptr)].succ_count--;
1094		  changes = 1;
1095		}
1096	    }
1097	}
1098    }
1099
1100  total_num_passes += passes;
1101  if (dump_file)
1102    fprintf (dump_file, "Graph solving took %d passes.\n\n", passes);
1103
1104  /* If the graph has been correctly solved, every block will have a
1105     succ and pred count of zero.  */
1106  for (i = 0; i < num_blocks; i++)
1107    {
1108      struct bb_info *binfo = &bb_graph[i];
1109      if (binfo->succ_count || binfo->pred_count)
1110	abort ();
1111    }
1112
1113  /* For every arc, calculate its branch probability and add a reg_note
1114     to the branch insn to indicate this.  */
1115
1116  for (i = 0; i < 20; i++)
1117    hist_br_prob[i] = 0;
1118  num_never_executed = 0;
1119  num_branches = 0;
1120
1121  for (i = 0; i < num_blocks; i++)
1122    {
1123      struct bb_info *binfo = &bb_graph[i];
1124
1125      total = binfo->exec_count;
1126      for (arcptr = binfo->succ; arcptr; arcptr = arcptr->succ_next)
1127	{
1128	  if (arcptr->branch_insn)
1129	    {
1130	      /* This calculates the branch probability as an integer between
1131		 0 and REG_BR_PROB_BASE, properly rounded to the nearest
1132		 integer.  Perform the arithmetic in double to avoid
1133		 overflowing the range of ints.  */
1134
1135	      if (total == 0)
1136		prob = -1;
1137	      else
1138		{
1139		  rtx pat = PATTERN (arcptr->branch_insn);
1140
1141		  prob = (((double)ARC_COUNT (arcptr) * REG_BR_PROB_BASE)
1142			  + (total >> 1)) / total;
1143		  if (prob < 0 || prob > REG_BR_PROB_BASE)
1144		    {
1145		      if (dump_file)
1146			fprintf (dump_file, "bad count: prob for %d-%d thought to be %d (forcibly normalized)\n",
1147				 ARC_SOURCE (arcptr), ARC_TARGET (arcptr),
1148				 prob);
1149
1150		      bad_counts = 1;
1151		      prob = REG_BR_PROB_BASE / 2;
1152		    }
1153
1154		  /* Match up probability with JUMP pattern.  */
1155
1156		  if (GET_CODE (pat) == SET
1157		      && GET_CODE (SET_SRC (pat)) == IF_THEN_ELSE)
1158		    {
1159		      if (ARC_TARGET (arcptr) == ARC_SOURCE (arcptr) + 1)
1160			{
1161			  /* A fall through arc should never have a
1162			     branch insn.  */
1163			  abort ();
1164			}
1165		      else
1166			{
1167			  /* This is the arc for the taken branch.  */
1168			  if (GET_CODE (XEXP (SET_SRC (pat), 2)) != PC)
1169			    prob = REG_BR_PROB_BASE - prob;
1170			}
1171		    }
1172		}
1173
1174	      if (prob == -1)
1175		num_never_executed++;
1176	      else
1177		{
1178		  int index = prob * 20 / REG_BR_PROB_BASE;
1179		  if (index == 20)
1180		    index = 19;
1181		  hist_br_prob[index]++;
1182		}
1183	      num_branches++;
1184
1185	      REG_NOTES (arcptr->branch_insn)
1186		= gen_rtx_EXPR_LIST (REG_BR_PROB, GEN_INT (prob),
1187				     REG_NOTES (arcptr->branch_insn));
1188	    }
1189	}
1190
1191      /* Add a REG_EXEC_COUNT note to the first instruction of this block.  */
1192      if (! binfo->first_insn
1193	  || GET_RTX_CLASS (GET_CODE (binfo->first_insn)) != 'i')
1194	{
1195	  /* Block 0 is a fake block representing function entry, and does
1196	     not have a real first insn.  The second last block might not
1197	     begin with a real insn.  */
1198	  if (i == num_blocks - 1)
1199	    return_label_execution_count = total;
1200	  else if (i != 0 && i != num_blocks - 2)
1201	    abort ();
1202	}
1203      else
1204	{
1205	  REG_NOTES (binfo->first_insn)
1206	    = gen_rtx_EXPR_LIST (REG_EXEC_COUNT, GEN_INT (total),
1207				 REG_NOTES (binfo->first_insn));
1208	  if (i == num_blocks - 1)
1209	    return_label_execution_count = total;
1210	}
1211    }
1212
1213  /* This should never happen.  */
1214  if (bad_counts)
1215    warning ("Arc profiling: some arc counts were bad.");
1216
1217  if (dump_file)
1218    {
1219      fprintf (dump_file, "%d branches\n", num_branches);
1220      fprintf (dump_file, "%d branches never executed\n",
1221	       num_never_executed);
1222      if (num_branches)
1223	for (i = 0; i < 10; i++)
1224	  fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
1225		   (hist_br_prob[i]+hist_br_prob[19-i])*100/num_branches,
1226		   5*i, 5*i+5);
1227
1228      total_num_branches += num_branches;
1229      total_num_never_executed += num_never_executed;
1230      for (i = 0; i < 20; i++)
1231	total_hist_br_prob[i] += hist_br_prob[i];
1232    }
1233
1234}
1235
1236/* Initialize a new arc.
1237   ARCPTR is the empty adj_list this function fills in.
1238   SOURCE is the block number of the source block.
1239   TARGET is the block number of the target block.
1240   INSN is the insn which transfers control from SOURCE to TARGET,
1241   or zero if the transfer is implicit.  */
1242
1243static void
1244init_arc (arcptr, source, target, insn)
1245     struct adj_list *arcptr;
1246     int source, target;
1247     rtx insn;
1248{
1249  ARC_TARGET (arcptr) = target;
1250  ARC_SOURCE (arcptr) = source;
1251
1252  ARC_COUNT (arcptr) = 0;
1253  arcptr->count_valid = 0;
1254  arcptr->on_tree = 0;
1255  arcptr->fake = 0;
1256  arcptr->fall_through = 0;
1257  arcptr->branch_insn = insn;
1258
1259  arcptr->succ_next = bb_graph[source].succ;
1260  bb_graph[source].succ = arcptr;
1261  bb_graph[source].succ_count++;
1262
1263  arcptr->pred_next = bb_graph[target].pred;
1264  bb_graph[target].pred = arcptr;
1265  bb_graph[target].pred_count++;
1266}
1267
1268/* This function searches all of the arcs in the program flow graph, and puts
1269   as many bad arcs as possible onto the spanning tree.  Bad arcs include
1270   fake arcs (needed for setjmp(), longjmp(), exit()) which MUST be on the
1271   spanning tree as they can't be instrumented.  Also, arcs which must be
1272   split when instrumented should be part of the spanning tree if possible.  */
1273
1274static void
1275find_spanning_tree (num_blocks)
1276     int num_blocks;
1277{
1278  int i;
1279  struct adj_list *arcptr;
1280  struct bb_info *binfo = &bb_graph[0];
1281
1282  /* Fake arcs must be part of the spanning tree, and are always safe to put
1283     on the spanning tree.  Fake arcs will either be a successor of node 0,
1284     a predecessor of the last node, or from the last node to node 0.  */
1285
1286  for (arcptr = bb_graph[0].succ; arcptr; arcptr = arcptr->succ_next)
1287    if (arcptr->fake)
1288      {
1289	/* Adding this arc should never cause a cycle.  This is a fatal
1290	   error if it would.  */
1291	if (bb_graph[ARC_TARGET (arcptr)].on_tree && binfo->on_tree)
1292	  abort();
1293	else
1294	  {
1295	    arcptr->on_tree = 1;
1296	    bb_graph[ARC_TARGET (arcptr)].on_tree = 1;
1297	    binfo->on_tree = 1;
1298	  }
1299      }
1300
1301  binfo = &bb_graph[num_blocks-1];
1302  for (arcptr = binfo->pred; arcptr; arcptr = arcptr->pred_next)
1303    if (arcptr->fake)
1304      {
1305	/* Adding this arc should never cause a cycle.  This is a fatal
1306	   error if it would.  */
1307	if (bb_graph[ARC_SOURCE (arcptr)].on_tree && binfo->on_tree)
1308	  abort();
1309	else
1310	  {
1311	    arcptr->on_tree = 1;
1312	    bb_graph[ARC_SOURCE (arcptr)].on_tree = 1;
1313	    binfo->on_tree = 1;
1314	  }
1315      }
1316  /* The only entrace to node zero is a fake arc.  */
1317  bb_graph[0].pred->on_tree = 1;
1318
1319  /* Arcs which are crowded at both the source and target should be put on
1320     the spanning tree if possible, except for fall_throuch arcs which never
1321     require adding a new block even if crowded, add arcs with the same source
1322     and dest which must always be instrumented.  */
1323  for (i = 0; i < num_blocks; i++)
1324    {
1325      binfo = &bb_graph[i];
1326
1327      for (arcptr = binfo->succ; arcptr; arcptr = arcptr->succ_next)
1328	if (! ((binfo->succ == arcptr && arcptr->succ_next == 0)
1329	       || (bb_graph[ARC_TARGET (arcptr)].pred
1330		   && arcptr->pred_next == 0))
1331	    && ! arcptr->fall_through
1332	    && ARC_TARGET (arcptr) != i)
1333	  {
1334	    /* This is a crowded arc at both source and target.  Try to put
1335	       in on the spanning tree.  Can do this if either the source or
1336	       target block is not yet on the tree.  */
1337	    if (! bb_graph[ARC_TARGET (arcptr)].on_tree	|| ! binfo->on_tree)
1338	      {
1339		arcptr->on_tree = 1;
1340		bb_graph[ARC_TARGET (arcptr)].on_tree = 1;
1341		binfo->on_tree = 1;
1342	      }
1343	  }
1344    }
1345
1346  /* Clear all of the basic block on_tree bits, so that we can use them to
1347     create the spanning tree.  */
1348  for (i = 0; i < num_blocks; i++)
1349    bb_graph[i].on_tree = 0;
1350
1351  /* Now fill in the spanning tree until every basic block is on it.
1352     Don't put the 0 to 1 fall through arc on the tree, since it is
1353     always cheap to instrument, so start filling the tree from node 1.  */
1354
1355  for (i = 1; i < num_blocks; i++)
1356    for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
1357      if (! arcptr->on_tree
1358	  && ! bb_graph[ARC_TARGET (arcptr)].on_tree)
1359	{
1360	  fill_spanning_tree (i);
1361	  break;
1362	}
1363}
1364
1365/* Add arcs reached from BLOCK to the spanning tree if they are needed and
1366   not already there.  */
1367
1368static void
1369fill_spanning_tree (block)
1370     int block;
1371{
1372  struct adj_list *arcptr;
1373
1374  expand_spanning_tree (block);
1375
1376  for (arcptr = bb_graph[block].succ; arcptr; arcptr = arcptr->succ_next)
1377    if (! arcptr->on_tree
1378	&& ! bb_graph[ARC_TARGET (arcptr)].on_tree)
1379      {
1380	arcptr->on_tree = 1;
1381	fill_spanning_tree (ARC_TARGET (arcptr));
1382      }
1383}
1384
1385/* When first visit a block, must add all blocks that are already connected
1386   to this block via tree arcs to the spanning tree.  */
1387
1388static void
1389expand_spanning_tree (block)
1390     int block;
1391{
1392  struct adj_list *arcptr;
1393
1394  bb_graph[block].on_tree = 1;
1395
1396  for (arcptr = bb_graph[block].succ; arcptr; arcptr = arcptr->succ_next)
1397    if (arcptr->on_tree && ! bb_graph[ARC_TARGET (arcptr)].on_tree)
1398      expand_spanning_tree (ARC_TARGET (arcptr));
1399
1400  for (arcptr = bb_graph[block].pred;
1401       arcptr; arcptr = arcptr->pred_next)
1402    if (arcptr->on_tree && ! bb_graph[ARC_SOURCE (arcptr)].on_tree)
1403      expand_spanning_tree (ARC_SOURCE (arcptr));
1404}
1405
1406/* Perform file-level initialization for branch-prob processing.  */
1407
1408void
1409init_branch_prob (filename)
1410  const char *filename;
1411{
1412  long len;
1413  int i;
1414
1415  if (flag_test_coverage)
1416    {
1417      /* Open an output file for the basic block/line number map.  */
1418      int len = strlen (filename);
1419      char *data_file = (char *) alloca (len + 4);
1420      strcpy (data_file, filename);
1421      strip_off_ending (data_file, len);
1422      strcat (data_file, ".bb");
1423      if ((bb_file = fopen (data_file, "w")) == 0)
1424	pfatal_with_name (data_file);
1425
1426      /* Open an output file for the program flow graph.  */
1427      len = strlen (filename);
1428      bbg_file_name = (char *) alloca (len + 5);
1429      strcpy (bbg_file_name, filename);
1430      strip_off_ending (bbg_file_name, len);
1431      strcat (bbg_file_name, ".bbg");
1432      if ((bbg_file = fopen (bbg_file_name, "w")) == 0)
1433	pfatal_with_name (bbg_file_name);
1434
1435      /* Initialize to zero, to ensure that the first file name will be
1436	 written to the .bb file.  */
1437      last_bb_file_name = 0;
1438    }
1439
1440  if (flag_branch_probabilities)
1441    {
1442      len = strlen (filename);
1443      da_file_name = (char *) alloca (len + 4);
1444      strcpy (da_file_name, filename);
1445      strip_off_ending (da_file_name, len);
1446      strcat (da_file_name, ".da");
1447      if ((da_file = fopen (da_file_name, "r")) == 0)
1448	warning ("file %s not found, execution counts assumed to be zero.",
1449		 da_file_name);
1450
1451      /* The first word in the .da file gives the number of instrumented arcs,
1452	 which is not needed for our purposes.  */
1453
1454      if (da_file)
1455	__read_long (&len, da_file, 8);
1456    }
1457
1458  if (profile_arc_flag)
1459    init_arc_profiler ();
1460
1461  total_num_blocks = 0;
1462  total_num_arcs = 0;
1463  total_num_arcs_instrumented = 0;
1464  total_num_blocks_created = 0;
1465  total_num_passes = 0;
1466  total_num_times_called = 0;
1467  total_num_branches = 0;
1468  total_num_never_executed = 0;
1469  for (i = 0; i < 20; i++)
1470    total_hist_br_prob[i] = 0;
1471}
1472
1473/* Performs file-level cleanup after branch-prob processing
1474   is completed.  */
1475
1476void
1477end_branch_prob (dump_file)
1478     FILE *dump_file;
1479{
1480  if (flag_test_coverage)
1481    {
1482      fclose (bb_file);
1483      fclose (bbg_file);
1484    }
1485
1486  if (flag_branch_probabilities)
1487    {
1488      if (da_file)
1489	{
1490	  long temp;
1491	  /* This seems slightly dangerous, as it presumes the EOF
1492	     flag will not be set until an attempt is made to read
1493	     past the end of the file. */
1494	  if (feof (da_file))
1495	    warning (".da file contents exhausted too early\n");
1496	  /* Should be at end of file now.  */
1497	  if (__read_long (&temp, da_file, 8) == 0)
1498	    warning (".da file contents not exhausted\n");
1499	  fclose (da_file);
1500	}
1501    }
1502
1503  if (dump_file)
1504    {
1505      fprintf (dump_file, "\n");
1506      fprintf (dump_file, "Total number of blocks: %d\n", total_num_blocks);
1507      fprintf (dump_file, "Total number of arcs: %d\n", total_num_arcs);
1508      fprintf (dump_file, "Total number of instrumented arcs: %d\n",
1509	       total_num_arcs_instrumented);
1510      fprintf (dump_file, "Total number of blocks created: %d\n",
1511	       total_num_blocks_created);
1512      fprintf (dump_file, "Total number of graph solution passes: %d\n",
1513	       total_num_passes);
1514      if (total_num_times_called != 0)
1515	fprintf (dump_file, "Average number of graph solution passes: %d\n",
1516		 (total_num_passes + (total_num_times_called  >> 1))
1517		 / total_num_times_called);
1518      fprintf (dump_file, "Total number of branches: %d\n", total_num_branches);
1519      fprintf (dump_file, "Total number of branches never executed: %d\n",
1520	       total_num_never_executed);
1521      if (total_num_branches)
1522	{
1523	  int i;
1524
1525	  for (i = 0; i < 10; i++)
1526	    fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
1527		     (total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100
1528		     / total_num_branches, 5*i, 5*i+5);
1529	}
1530    }
1531}
1532
1533/* The label used by the arc profiling code.  */
1534
1535static rtx profiler_label;
1536
1537/* Initialize the profiler_label.  */
1538
1539static void
1540init_arc_profiler ()
1541{
1542  /* Generate and save a copy of this so it can be shared.  */
1543  char *name = xmalloc (20);
1544  ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
1545  profiler_label = gen_rtx_SYMBOL_REF (Pmode, name);
1546}
1547
1548/* Output instructions as RTL to increment the arc execution count.  */
1549
1550static void
1551output_arc_profiler (arcno, insert_after)
1552     int arcno;
1553     rtx insert_after;
1554{
1555  rtx profiler_target_addr
1556    = (arcno
1557       ? gen_rtx_CONST (Pmode,
1558			gen_rtx_PLUS (Pmode, profiler_label,
1559				      GEN_INT (LONG_TYPE_SIZE / BITS_PER_UNIT * arcno)))
1560       : profiler_label);
1561  enum machine_mode mode = mode_for_size (LONG_TYPE_SIZE, MODE_INT, 0);
1562  rtx profiler_reg = gen_reg_rtx (mode);
1563  rtx address_reg = gen_reg_rtx (Pmode);
1564  rtx mem_ref, add_ref;
1565  rtx sequence;
1566
1567  /* In this case, reload can use explicitly mentioned hard registers for
1568     reloads.  It is not safe to output profiling code between a call
1569     and the instruction that copies the result to a pseudo-reg.  This
1570     is because reload may allocate one of the profiling code pseudo-regs
1571     to the return value reg, thus clobbering the return value.  So we
1572     must check for calls here, and emit the profiling code after the
1573     instruction that uses the return value, if any.
1574
1575     ??? The code here performs the same tests that reload does so hopefully
1576     all the bases are covered.  */
1577
1578  if (SMALL_REGISTER_CLASSES
1579      && GET_CODE (insert_after) == CALL_INSN
1580      && (GET_CODE (PATTERN (insert_after)) == SET
1581	  || (GET_CODE (PATTERN (insert_after)) == PARALLEL
1582	      && GET_CODE (XVECEXP (PATTERN (insert_after), 0, 0)) == SET)))
1583    {
1584      rtx return_reg;
1585      rtx next_insert_after = next_nonnote_insn (insert_after);
1586
1587      /* The first insn after the call may be a stack pop, skip it.  */
1588      if (next_insert_after
1589	  && GET_CODE (next_insert_after) == INSN
1590	  && GET_CODE (PATTERN (next_insert_after)) == SET
1591	  && SET_DEST (PATTERN (next_insert_after)) == stack_pointer_rtx)
1592	next_insert_after = next_nonnote_insn (next_insert_after);
1593
1594      if (next_insert_after
1595	  && GET_CODE (next_insert_after) == INSN)
1596	{
1597	  if (GET_CODE (PATTERN (insert_after)) == SET)
1598	    return_reg = SET_DEST (PATTERN (insert_after));
1599	  else
1600	    return_reg = SET_DEST (XVECEXP (PATTERN (insert_after), 0, 0));
1601
1602	  /* Now, NEXT_INSERT_AFTER may be an instruction that uses the
1603	     return value.  However, it could also be something else,
1604	     like a CODE_LABEL, so check that the code is INSN.  */
1605	  if (next_insert_after != 0
1606	      && GET_RTX_CLASS (GET_CODE (next_insert_after)) == 'i'
1607	      && reg_referenced_p (return_reg, PATTERN (next_insert_after)))
1608	    insert_after = next_insert_after;
1609	}
1610    }
1611
1612  start_sequence ();
1613
1614  emit_move_insn (address_reg, profiler_target_addr);
1615  mem_ref = gen_rtx_MEM (mode, address_reg);
1616  emit_move_insn (profiler_reg, mem_ref);
1617
1618  add_ref = gen_rtx_PLUS (mode, profiler_reg, GEN_INT (1));
1619  emit_move_insn (profiler_reg, add_ref);
1620
1621  /* This is the same rtx as above, but it is not legal to share this rtx.  */
1622  mem_ref = gen_rtx_MEM (mode, address_reg);
1623  emit_move_insn (mem_ref, profiler_reg);
1624
1625  sequence = gen_sequence ();
1626  end_sequence ();
1627  emit_insn_after (sequence, insert_after);
1628}
1629
1630/* Output code for a constructor that will invoke __bb_init_func, if
1631   this has not already been done. */
1632
1633void
1634output_func_start_profiler ()
1635{
1636  tree fnname, fndecl;
1637  char *name, *cfnname;
1638  rtx table_address;
1639  enum machine_mode mode = mode_for_size (LONG_TYPE_SIZE, MODE_INT, 0);
1640  int save_flag_inline_functions = flag_inline_functions;
1641
1642  /* It's either already been output, or we don't need it because we're
1643     not doing profile-arcs. */
1644  if (! need_func_profiler)
1645    return;
1646
1647  need_func_profiler = 0;
1648
1649  /* Synthesize a constructor function to invoke __bb_init_func with a
1650     pointer to this object file's profile block. */
1651  start_sequence ();
1652
1653  /* Try and make a unique name given the "file function name".
1654
1655     And no, I don't like this either. */
1656
1657  fnname = get_file_function_name ('I');
1658  cfnname = IDENTIFIER_POINTER (fnname);
1659  name = xmalloc (strlen (cfnname) + 5);
1660  sprintf (name, "%sGCOV",cfnname);
1661  fnname = get_identifier (name);
1662  free (name);
1663
1664  fndecl = build_decl (FUNCTION_DECL, fnname,
1665		       build_function_type (void_type_node, NULL_TREE));
1666  DECL_EXTERNAL (fndecl) = 0;
1667  TREE_PUBLIC (fndecl) = 1;
1668  DECL_ASSEMBLER_NAME (fndecl) = fnname;
1669  DECL_RESULT (fndecl) = build_decl (RESULT_DECL, NULL_TREE, void_type_node);
1670
1671  fndecl = pushdecl (fndecl);
1672  rest_of_decl_compilation (fndecl, 0, 1, 0);
1673  announce_function (fndecl);
1674  current_function_decl = fndecl;
1675  DECL_INITIAL (fndecl) = error_mark_node;
1676  temporary_allocation ();
1677  pushlevel (0);
1678  make_function_rtl (fndecl);
1679  init_function_start (fndecl, input_filename, lineno);
1680  expand_function_start (fndecl, 0);
1681
1682  /* Actually generate the code to call __bb_init_func. */
1683  name = xmalloc (20);
1684  ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 0);
1685  table_address = force_reg (Pmode, gen_rtx_SYMBOL_REF (Pmode, name));
1686  emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__bb_init_func"), 0,
1687		     mode, 1, table_address, Pmode);
1688
1689  expand_function_end (input_filename, lineno, 0);
1690  poplevel (1, 0, 1);
1691
1692  /* Since fndecl isn't in the list of globals, it would never be emitted
1693     when it's considered to be 'safe' for inlining, so turn off
1694     flag_inline_functions.  */
1695  flag_inline_functions = 0;
1696
1697  rest_of_compilation (fndecl);
1698
1699  /* Reset flag_inline_functions to its original value.  */
1700  flag_inline_functions = save_flag_inline_functions;
1701
1702  if (! quiet_flag)
1703    fflush (asm_out_file);
1704  current_function_decl = NULL_TREE;
1705
1706  assemble_constructor (IDENTIFIER_POINTER (DECL_NAME (fndecl)));
1707}
1708