1/* Output Dwarf format symbol table information from the GNU C compiler.
2   Copyright (C) 1992, 1993, 95-98, 1999 Free Software Foundation, Inc.
3   Contributed by Ron Guilmette (rfg@monkeys.com) of Network Computing Devices.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING.  If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA.  */
21
22#include "config.h"
23
24#ifdef DWARF_DEBUGGING_INFO
25#include "system.h"
26#include "dwarf.h"
27#include "tree.h"
28#include "flags.h"
29#include "rtl.h"
30#include "hard-reg-set.h"
31#include "insn-config.h"
32#include "reload.h"
33#include "output.h"
34#include "defaults.h"
35#include "dwarfout.h"
36#include "toplev.h"
37
38#if defined(DWARF_TIMESTAMPS)
39#if !defined(POSIX)
40extern time_t time PROTO ((time_t *)); /* FIXME: use NEED_DECLARATION_TIME */
41#endif /* !defined(POSIX) */
42#endif /* defined(DWARF_TIMESTAMPS) */
43
44/* We cannot use <assert.h> in GCC source, since that would include
45   GCC's assert.h, which may not be compatible with the host compiler.  */
46#undef assert
47#ifdef NDEBUG
48# define assert(e)
49#else
50# define assert(e) do { if (! (e)) abort (); } while (0)
51#endif
52
53extern char *getpwd PROTO((void));
54
55/* IMPORTANT NOTE: Please see the file README.DWARF for important details
56   regarding the GNU implementation of Dwarf.  */
57
58/* NOTE: In the comments in this file, many references are made to
59   so called "Debugging Information Entries".  For the sake of brevity,
60   this term is abbreviated to `DIE' throughout the remainder of this
61   file.  */
62
63/* Note that the implementation of C++ support herein is (as yet) unfinished.
64   If you want to try to complete it, more power to you.  */
65
66/* How to start an assembler comment.  */
67#ifndef ASM_COMMENT_START
68#define ASM_COMMENT_START ";#"
69#endif
70
71/* How to print out a register name.  */
72#ifndef PRINT_REG
73#define PRINT_REG(RTX, CODE, FILE) \
74  fprintf ((FILE), "%s", reg_names[REGNO (RTX)])
75#endif
76
77/* Define a macro which returns non-zero for any tagged type which is
78   used (directly or indirectly) in the specification of either some
79   function's return type or some formal parameter of some function.
80   We use this macro when we are operating in "terse" mode to help us
81   know what tagged types have to be represented in Dwarf (even in
82   terse mode) and which ones don't.
83
84   A flag bit with this meaning really should be a part of the normal
85   GCC ..._TYPE nodes, but at the moment, there is no such bit defined
86   for these nodes.  For now, we have to just fake it.  It it safe for
87   us to simply return zero for all complete tagged types (which will
88   get forced out anyway if they were used in the specification of some
89   formal or return type) and non-zero for all incomplete tagged types.
90*/
91
92#define TYPE_USED_FOR_FUNCTION(tagged_type) (TYPE_SIZE (tagged_type) == 0)
93
94/* Define a macro which returns non-zero for a TYPE_DECL which was
95   implicitly generated for a tagged type.
96
97   Note that unlike the gcc front end (which generates a NULL named
98   TYPE_DECL node for each complete tagged type, each array type, and
99   each function type node created) the g++ front end generates a
100   _named_ TYPE_DECL node for each tagged type node created.
101   These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
102   generate a DW_TAG_typedef DIE for them.  */
103#define TYPE_DECL_IS_STUB(decl)				\
104  (DECL_NAME (decl) == NULL				\
105   || (DECL_ARTIFICIAL (decl)				\
106       && is_tagged_type (TREE_TYPE (decl))		\
107       && decl == TYPE_STUB_DECL (TREE_TYPE (decl))))
108
109extern int flag_traditional;
110extern char *version_string;
111extern char *language_string;
112
113/* Maximum size (in bytes) of an artificially generated label.	*/
114
115#define MAX_ARTIFICIAL_LABEL_BYTES	30
116
117/* Make sure we know the sizes of the various types dwarf can describe.
118   These are only defaults.  If the sizes are different for your target,
119   you should override these values by defining the appropriate symbols
120   in your tm.h file.  */
121
122#ifndef CHAR_TYPE_SIZE
123#define CHAR_TYPE_SIZE BITS_PER_UNIT
124#endif
125
126#ifndef SHORT_TYPE_SIZE
127#define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2)
128#endif
129
130#ifndef INT_TYPE_SIZE
131#define INT_TYPE_SIZE BITS_PER_WORD
132#endif
133
134#ifndef LONG_TYPE_SIZE
135#define LONG_TYPE_SIZE BITS_PER_WORD
136#endif
137
138#ifndef LONG_LONG_TYPE_SIZE
139#define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
140#endif
141
142#ifndef WCHAR_TYPE_SIZE
143#define WCHAR_TYPE_SIZE INT_TYPE_SIZE
144#endif
145
146#ifndef WCHAR_UNSIGNED
147#define WCHAR_UNSIGNED 0
148#endif
149
150#ifndef FLOAT_TYPE_SIZE
151#define FLOAT_TYPE_SIZE BITS_PER_WORD
152#endif
153
154#ifndef DOUBLE_TYPE_SIZE
155#define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
156#endif
157
158#ifndef LONG_DOUBLE_TYPE_SIZE
159#define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
160#endif
161
162/* Structure to keep track of source filenames.  */
163
164struct filename_entry {
165  unsigned	number;
166  char *	name;
167};
168
169typedef struct filename_entry filename_entry;
170
171/* Pointer to an array of elements, each one having the structure above.  */
172
173static filename_entry *filename_table;
174
175/* Total number of entries in the table (i.e. array) pointed to by
176   `filename_table'.  This is the *total* and includes both used and
177   unused slots.  */
178
179static unsigned ft_entries_allocated;
180
181/* Number of entries in the filename_table which are actually in use.  */
182
183static unsigned ft_entries;
184
185/* Size (in elements) of increments by which we may expand the filename
186   table.  Actually, a single hunk of space of this size should be enough
187   for most typical programs.	 */
188
189#define FT_ENTRIES_INCREMENT 64
190
191/* Local pointer to the name of the main input file.  Initialized in
192   dwarfout_init.  */
193
194static char *primary_filename;
195
196/* Pointer to the most recent filename for which we produced some line info.  */
197
198static char *last_filename;
199
200/* For Dwarf output, we must assign lexical-blocks id numbers
201   in the order in which their beginnings are encountered.
202   We output Dwarf debugging info that refers to the beginnings
203   and ends of the ranges of code for each lexical block with
204   assembler labels ..Bn and ..Bn.e, where n is the block number.
205   The labels themselves are generated in final.c, which assigns
206   numbers to the blocks in the same way.  */
207
208static unsigned next_block_number = 2;
209
210/* Counter to generate unique names for DIEs.  */
211
212static unsigned next_unused_dienum = 1;
213
214/* Number of the DIE which is currently being generated.  */
215
216static unsigned current_dienum;
217
218/* Number to use for the special "pubname" label on the next DIE which
219   represents a function or data object defined in this compilation
220   unit which has "extern" linkage.  */
221
222static int next_pubname_number = 0;
223
224#define NEXT_DIE_NUM pending_sibling_stack[pending_siblings-1]
225
226/* Pointer to a dynamically allocated list of pre-reserved and still
227   pending sibling DIE numbers.	 Note that this list will grow as needed.  */
228
229static unsigned *pending_sibling_stack;
230
231/* Counter to keep track of the number of pre-reserved and still pending
232   sibling DIE numbers.	 */
233
234static unsigned pending_siblings;
235
236/* The currently allocated size of the above list (expressed in number of
237   list elements).  */
238
239static unsigned pending_siblings_allocated;
240
241/* Size (in elements) of increments by which we may expand the pending
242   sibling stack.  Actually, a single hunk of space of this size should
243   be enough for most typical programs.	 */
244
245#define PENDING_SIBLINGS_INCREMENT 64
246
247/* Non-zero if we are performing our file-scope finalization pass and if
248   we should force out Dwarf descriptions of any and all file-scope
249   tagged types which are still incomplete types.  */
250
251static int finalizing = 0;
252
253/* A pointer to the base of a list of pending types which we haven't
254   generated DIEs for yet, but which we will have to come back to
255   later on.  */
256
257static tree *pending_types_list;
258
259/* Number of elements currently allocated for the pending_types_list.  */
260
261static unsigned pending_types_allocated;
262
263/* Number of elements of pending_types_list currently in use.  */
264
265static unsigned pending_types;
266
267/* Size (in elements) of increments by which we may expand the pending
268   types list.  Actually, a single hunk of space of this size should
269   be enough for most typical programs.	 */
270
271#define PENDING_TYPES_INCREMENT 64
272
273/* A pointer to the base of a list of incomplete types which might be
274   completed at some later time.  */
275
276static tree *incomplete_types_list;
277
278/* Number of elements currently allocated for the incomplete_types_list.  */
279static unsigned incomplete_types_allocated;
280
281/* Number of elements of incomplete_types_list currently in use.  */
282static unsigned incomplete_types;
283
284/* Size (in elements) of increments by which we may expand the incomplete
285   types list.  Actually, a single hunk of space of this size should
286   be enough for most typical programs.	 */
287#define INCOMPLETE_TYPES_INCREMENT 64
288
289/* Pointer to an artificial RECORD_TYPE which we create in dwarfout_init.
290   This is used in a hack to help us get the DIEs describing types of
291   formal parameters to come *after* all of the DIEs describing the formal
292   parameters themselves.  That's necessary in order to be compatible
293   with what the brain-damaged svr4 SDB debugger requires.  */
294
295static tree fake_containing_scope;
296
297/* The number of the current function definition that we are generating
298   debugging information for.  These numbers range from 1 up to the maximum
299   number of function definitions contained within the current compilation
300   unit.  These numbers are used to create unique labels for various things
301   contained within various function definitions.  */
302
303static unsigned current_funcdef_number = 1;
304
305/* A pointer to the ..._DECL node which we have most recently been working
306   on.  We keep this around just in case something about it looks screwy
307   and we want to tell the user what the source coordinates for the actual
308   declaration are.  */
309
310static tree dwarf_last_decl;
311
312/* A flag indicating that we are emitting the member declarations of a
313   class, so member functions and variables should not be entirely emitted.
314   This is a kludge to avoid passing a second argument to output_*_die.  */
315
316static int in_class;
317
318/* Forward declarations for functions defined in this file.  */
319
320static char *dwarf_tag_name		PROTO((unsigned));
321static char *dwarf_attr_name		PROTO((unsigned));
322static char *dwarf_stack_op_name	PROTO((unsigned));
323static char *dwarf_typemod_name		PROTO((unsigned));
324static char *dwarf_fmt_byte_name	PROTO((unsigned));
325static char *dwarf_fund_type_name	PROTO((unsigned));
326static tree decl_ultimate_origin	PROTO((tree));
327static tree block_ultimate_origin	PROTO((tree));
328static tree decl_class_context 		PROTO((tree));
329#if 0
330static void output_unsigned_leb128	PROTO((unsigned long));
331static void output_signed_leb128	PROTO((long));
332#endif
333static inline int is_body_block		PROTO((tree));
334static int fundamental_type_code	PROTO((tree));
335static tree root_type_1			PROTO((tree, int));
336static tree root_type			PROTO((tree));
337static void write_modifier_bytes_1	PROTO((tree, int, int, int));
338static void write_modifier_bytes	PROTO((tree, int, int));
339static inline int type_is_fundamental	PROTO((tree));
340static void equate_decl_number_to_die_number PROTO((tree));
341static inline void equate_type_number_to_die_number PROTO((tree));
342static void output_reg_number		PROTO((rtx));
343static void output_mem_loc_descriptor	PROTO((rtx));
344static void output_loc_descriptor	PROTO((rtx));
345static void output_bound_representation	PROTO((tree, unsigned, int));
346static void output_enumeral_list	PROTO((tree));
347static inline unsigned ceiling		PROTO((unsigned, unsigned));
348static inline tree field_type		PROTO((tree));
349static inline unsigned simple_type_align_in_bits PROTO((tree));
350static inline unsigned simple_type_size_in_bits  PROTO((tree));
351static unsigned field_byte_offset	PROTO((tree));
352static inline void sibling_attribute	PROTO((void));
353static void location_attribute		PROTO((rtx));
354static void data_member_location_attribute PROTO((tree));
355static void const_value_attribute	PROTO((rtx));
356static void location_or_const_value_attribute PROTO((tree));
357static inline void name_attribute	PROTO((char *));
358static inline void fund_type_attribute	PROTO((unsigned));
359static void mod_fund_type_attribute	PROTO((tree, int, int));
360static inline void user_def_type_attribute PROTO((tree));
361static void mod_u_d_type_attribute	PROTO((tree, int, int));
362#ifdef USE_ORDERING_ATTRIBUTE
363static inline void ordering_attribute	PROTO((unsigned));
364#endif /* defined(USE_ORDERING_ATTRIBUTE) */
365static void subscript_data_attribute	PROTO((tree));
366static void byte_size_attribute		PROTO((tree));
367static inline void bit_offset_attribute	PROTO((tree));
368static inline void bit_size_attribute	PROTO((tree));
369static inline void element_list_attribute PROTO((tree));
370static inline void stmt_list_attribute	PROTO((char *));
371static inline void low_pc_attribute	PROTO((char *));
372static inline void high_pc_attribute	PROTO((char *));
373static inline void body_begin_attribute	PROTO((char *));
374static inline void body_end_attribute	PROTO((char *));
375static inline void language_attribute	PROTO((unsigned));
376static inline void member_attribute	PROTO((tree));
377#if 0
378static inline void string_length_attribute PROTO((tree));
379#endif
380static inline void comp_dir_attribute	PROTO((char *));
381static inline void sf_names_attribute	PROTO((char *));
382static inline void src_info_attribute	PROTO((char *));
383static inline void mac_info_attribute	PROTO((char *));
384static inline void prototyped_attribute	PROTO((tree));
385static inline void producer_attribute	PROTO((char *));
386static inline void inline_attribute	PROTO((tree));
387static inline void containing_type_attribute PROTO((tree));
388static inline void abstract_origin_attribute PROTO((tree));
389#ifdef DWARF_DECL_COORDINATES
390static inline void src_coords_attribute PROTO((unsigned, unsigned));
391#endif /* defined(DWARF_DECL_COORDINATES) */
392static inline void pure_or_virtual_attribute PROTO((tree));
393static void name_and_src_coords_attributes PROTO((tree));
394static void type_attribute		PROTO((tree, int, int));
395static char *type_tag			PROTO((tree));
396static inline void dienum_push		PROTO((void));
397static inline void dienum_pop		PROTO((void));
398static inline tree member_declared_type PROTO((tree));
399static char *function_start_label	PROTO((tree));
400static void output_array_type_die	PROTO((void *));
401static void output_set_type_die		PROTO((void *));
402#if 0
403static void output_entry_point_die	PROTO((void *));
404#endif
405static void output_inlined_enumeration_type_die PROTO((void *));
406static void output_inlined_structure_type_die PROTO((void *));
407static void output_inlined_union_type_die PROTO((void *));
408static void output_enumeration_type_die	PROTO((void *));
409static void output_formal_parameter_die	PROTO((void *));
410static void output_global_subroutine_die PROTO((void *));
411static void output_global_variable_die	PROTO((void *));
412static void output_label_die		PROTO((void *));
413static void output_lexical_block_die	PROTO((void *));
414static void output_inlined_subroutine_die PROTO((void *));
415static void output_local_variable_die	PROTO((void *));
416static void output_member_die		PROTO((void *));
417#if 0
418static void output_pointer_type_die	PROTO((void *));
419static void output_reference_type_die	PROTO((void *));
420#endif
421static void output_ptr_to_mbr_type_die	PROTO((void *));
422static void output_compile_unit_die	PROTO((void *));
423static void output_string_type_die	PROTO((void *));
424static void output_inheritance_die	PROTO((void *));
425static void output_structure_type_die	PROTO((void *));
426static void output_local_subroutine_die PROTO((void *));
427static void output_subroutine_type_die	PROTO((void *));
428static void output_typedef_die		PROTO((void *));
429static void output_union_type_die	PROTO((void *));
430static void output_unspecified_parameters_die PROTO((void *));
431static void output_padded_null_die	PROTO((void *));
432static void output_die			PROTO((void (*) PROTO((void *)), void *));
433static void end_sibling_chain		PROTO((void));
434static void output_formal_types		PROTO((tree));
435static void pend_type			PROTO((tree));
436static int type_ok_for_scope		PROTO((tree, tree));
437static void output_pending_types_for_scope PROTO((tree));
438static void output_type			PROTO((tree, tree));
439static void output_tagged_type_instantiation PROTO((tree));
440static void output_block		PROTO((tree, int));
441static void output_decls_for_scope	PROTO((tree, int));
442static void output_decl			PROTO((tree, tree));
443static void shuffle_filename_entry	PROTO((filename_entry *));
444static void generate_new_sfname_entry	PROTO((void));
445static unsigned lookup_filename		PROTO((char *));
446static void generate_srcinfo_entry	PROTO((unsigned, unsigned));
447static void generate_macinfo_entry	PROTO((char *, char *));
448static int is_pseudo_reg		PROTO((rtx));
449static tree type_main_variant		PROTO((tree));
450static int is_tagged_type		PROTO((tree));
451static int is_redundant_typedef		PROTO((tree));
452
453/* Definitions of defaults for assembler-dependent names of various
454   pseudo-ops and section names.
455
456   Theses may be overridden in your tm.h file (if necessary) for your
457   particular assembler.  The default values provided here correspond to
458   what is expected by "standard" AT&T System V.4 assemblers.  */
459
460#ifndef FILE_ASM_OP
461#define FILE_ASM_OP		".file"
462#endif
463#ifndef VERSION_ASM_OP
464#define VERSION_ASM_OP		".version"
465#endif
466#ifndef UNALIGNED_SHORT_ASM_OP
467#define UNALIGNED_SHORT_ASM_OP	".2byte"
468#endif
469#ifndef UNALIGNED_INT_ASM_OP
470#define UNALIGNED_INT_ASM_OP	".4byte"
471#endif
472#ifndef ASM_BYTE_OP
473#define ASM_BYTE_OP		".byte"
474#endif
475#ifndef SET_ASM_OP
476#define SET_ASM_OP		".set"
477#endif
478
479/* Pseudo-ops for pushing the current section onto the section stack (and
480   simultaneously changing to a new section) and for poping back to the
481   section we were in immediately before this one.  Note that most svr4
482   assemblers only maintain a one level stack... you can push all the
483   sections you want, but you can only pop out one level.  (The sparc
484   svr4 assembler is an exception to this general rule.)  That's
485   OK because we only use at most one level of the section stack herein.  */
486
487#ifndef PUSHSECTION_ASM_OP
488#define PUSHSECTION_ASM_OP	".section"
489#endif
490#ifndef POPSECTION_ASM_OP
491#define POPSECTION_ASM_OP	".previous"
492#endif
493
494/* The default format used by the ASM_OUTPUT_PUSH_SECTION macro (see below)
495   to print the PUSHSECTION_ASM_OP and the section name.  The default here
496   works for almost all svr4 assemblers, except for the sparc, where the
497   section name must be enclosed in double quotes.  (See sparcv4.h.)  */
498
499#ifndef PUSHSECTION_FORMAT
500#define PUSHSECTION_FORMAT	"\t%s\t%s\n"
501#endif
502
503#ifndef DEBUG_SECTION
504#define DEBUG_SECTION		".debug"
505#endif
506#ifndef LINE_SECTION
507#define LINE_SECTION		".line"
508#endif
509#ifndef SFNAMES_SECTION
510#define SFNAMES_SECTION		".debug_sfnames"
511#endif
512#ifndef SRCINFO_SECTION
513#define SRCINFO_SECTION		".debug_srcinfo"
514#endif
515#ifndef MACINFO_SECTION
516#define MACINFO_SECTION		".debug_macinfo"
517#endif
518#ifndef PUBNAMES_SECTION
519#define PUBNAMES_SECTION	".debug_pubnames"
520#endif
521#ifndef ARANGES_SECTION
522#define ARANGES_SECTION		".debug_aranges"
523#endif
524#ifndef TEXT_SECTION
525#define TEXT_SECTION		".text"
526#endif
527#ifndef DATA_SECTION
528#define DATA_SECTION		".data"
529#endif
530#ifndef DATA1_SECTION
531#define DATA1_SECTION		".data1"
532#endif
533#ifndef RODATA_SECTION
534#define RODATA_SECTION		".rodata"
535#endif
536#ifndef RODATA1_SECTION
537#define RODATA1_SECTION		".rodata1"
538#endif
539#ifndef BSS_SECTION
540#define BSS_SECTION		".bss"
541#endif
542
543/* Definitions of defaults for formats and names of various special
544   (artificial) labels which may be generated within this file (when
545   the -g options is used and DWARF_DEBUGGING_INFO is in effect.
546
547   If necessary, these may be overridden from within your tm.h file,
548   but typically, you should never need to override these.
549
550   These labels have been hacked (temporarily) so that they all begin with
551   a `.L' sequence so as to appease the stock sparc/svr4 assembler and the
552   stock m88k/svr4 assembler, both of which need to see .L at the start of
553   a label in order to prevent that label from going into the linker symbol
554   table).  When I get time, I'll have to fix this the right way so that we
555   will use ASM_GENERATE_INTERNAL_LABEL and ASM_OUTPUT_INTERNAL_LABEL herein,
556   but that will require a rather massive set of changes.  For the moment,
557   the following definitions out to produce the right results for all svr4
558   and svr3 assemblers. -- rfg
559*/
560
561#ifndef TEXT_BEGIN_LABEL
562#define TEXT_BEGIN_LABEL	"*.L_text_b"
563#endif
564#ifndef TEXT_END_LABEL
565#define TEXT_END_LABEL		"*.L_text_e"
566#endif
567
568#ifndef DATA_BEGIN_LABEL
569#define DATA_BEGIN_LABEL	"*.L_data_b"
570#endif
571#ifndef DATA_END_LABEL
572#define DATA_END_LABEL		"*.L_data_e"
573#endif
574
575#ifndef DATA1_BEGIN_LABEL
576#define DATA1_BEGIN_LABEL	"*.L_data1_b"
577#endif
578#ifndef DATA1_END_LABEL
579#define DATA1_END_LABEL		"*.L_data1_e"
580#endif
581
582#ifndef RODATA_BEGIN_LABEL
583#define RODATA_BEGIN_LABEL	"*.L_rodata_b"
584#endif
585#ifndef RODATA_END_LABEL
586#define RODATA_END_LABEL	"*.L_rodata_e"
587#endif
588
589#ifndef RODATA1_BEGIN_LABEL
590#define RODATA1_BEGIN_LABEL	"*.L_rodata1_b"
591#endif
592#ifndef RODATA1_END_LABEL
593#define RODATA1_END_LABEL	"*.L_rodata1_e"
594#endif
595
596#ifndef BSS_BEGIN_LABEL
597#define BSS_BEGIN_LABEL		"*.L_bss_b"
598#endif
599#ifndef BSS_END_LABEL
600#define BSS_END_LABEL		"*.L_bss_e"
601#endif
602
603#ifndef LINE_BEGIN_LABEL
604#define LINE_BEGIN_LABEL	"*.L_line_b"
605#endif
606#ifndef LINE_LAST_ENTRY_LABEL
607#define LINE_LAST_ENTRY_LABEL	"*.L_line_last"
608#endif
609#ifndef LINE_END_LABEL
610#define LINE_END_LABEL		"*.L_line_e"
611#endif
612
613#ifndef DEBUG_BEGIN_LABEL
614#define DEBUG_BEGIN_LABEL	"*.L_debug_b"
615#endif
616#ifndef SFNAMES_BEGIN_LABEL
617#define SFNAMES_BEGIN_LABEL	"*.L_sfnames_b"
618#endif
619#ifndef SRCINFO_BEGIN_LABEL
620#define SRCINFO_BEGIN_LABEL	"*.L_srcinfo_b"
621#endif
622#ifndef MACINFO_BEGIN_LABEL
623#define MACINFO_BEGIN_LABEL	"*.L_macinfo_b"
624#endif
625
626#ifndef DIE_BEGIN_LABEL_FMT
627#define DIE_BEGIN_LABEL_FMT	"*.L_D%u"
628#endif
629#ifndef DIE_END_LABEL_FMT
630#define DIE_END_LABEL_FMT	"*.L_D%u_e"
631#endif
632#ifndef PUB_DIE_LABEL_FMT
633#define PUB_DIE_LABEL_FMT	"*.L_P%u"
634#endif
635#ifndef INSN_LABEL_FMT
636#define INSN_LABEL_FMT		"*.L_I%u_%u"
637#endif
638#ifndef BLOCK_BEGIN_LABEL_FMT
639#define BLOCK_BEGIN_LABEL_FMT	"*.L_B%u"
640#endif
641#ifndef BLOCK_END_LABEL_FMT
642#define BLOCK_END_LABEL_FMT	"*.L_B%u_e"
643#endif
644#ifndef SS_BEGIN_LABEL_FMT
645#define SS_BEGIN_LABEL_FMT	"*.L_s%u"
646#endif
647#ifndef SS_END_LABEL_FMT
648#define SS_END_LABEL_FMT	"*.L_s%u_e"
649#endif
650#ifndef EE_BEGIN_LABEL_FMT
651#define EE_BEGIN_LABEL_FMT	"*.L_e%u"
652#endif
653#ifndef EE_END_LABEL_FMT
654#define EE_END_LABEL_FMT	"*.L_e%u_e"
655#endif
656#ifndef MT_BEGIN_LABEL_FMT
657#define MT_BEGIN_LABEL_FMT	"*.L_t%u"
658#endif
659#ifndef MT_END_LABEL_FMT
660#define MT_END_LABEL_FMT	"*.L_t%u_e"
661#endif
662#ifndef LOC_BEGIN_LABEL_FMT
663#define LOC_BEGIN_LABEL_FMT	"*.L_l%u"
664#endif
665#ifndef LOC_END_LABEL_FMT
666#define LOC_END_LABEL_FMT	"*.L_l%u_e"
667#endif
668#ifndef BOUND_BEGIN_LABEL_FMT
669#define BOUND_BEGIN_LABEL_FMT	"*.L_b%u_%u_%c"
670#endif
671#ifndef BOUND_END_LABEL_FMT
672#define BOUND_END_LABEL_FMT	"*.L_b%u_%u_%c_e"
673#endif
674#ifndef DERIV_BEGIN_LABEL_FMT
675#define DERIV_BEGIN_LABEL_FMT	"*.L_d%u"
676#endif
677#ifndef DERIV_END_LABEL_FMT
678#define DERIV_END_LABEL_FMT	"*.L_d%u_e"
679#endif
680#ifndef SL_BEGIN_LABEL_FMT
681#define SL_BEGIN_LABEL_FMT	"*.L_sl%u"
682#endif
683#ifndef SL_END_LABEL_FMT
684#define SL_END_LABEL_FMT	"*.L_sl%u_e"
685#endif
686#ifndef BODY_BEGIN_LABEL_FMT
687#define BODY_BEGIN_LABEL_FMT	"*.L_b%u"
688#endif
689#ifndef BODY_END_LABEL_FMT
690#define BODY_END_LABEL_FMT	"*.L_b%u_e"
691#endif
692#ifndef FUNC_END_LABEL_FMT
693#define FUNC_END_LABEL_FMT	"*.L_f%u_e"
694#endif
695#ifndef TYPE_NAME_FMT
696#define TYPE_NAME_FMT		"*.L_T%u"
697#endif
698#ifndef DECL_NAME_FMT
699#define DECL_NAME_FMT		"*.L_E%u"
700#endif
701#ifndef LINE_CODE_LABEL_FMT
702#define LINE_CODE_LABEL_FMT	"*.L_LC%u"
703#endif
704#ifndef SFNAMES_ENTRY_LABEL_FMT
705#define SFNAMES_ENTRY_LABEL_FMT	"*.L_F%u"
706#endif
707#ifndef LINE_ENTRY_LABEL_FMT
708#define LINE_ENTRY_LABEL_FMT	"*.L_LE%u"
709#endif
710
711/* Definitions of defaults for various types of primitive assembly language
712   output operations.
713
714   If necessary, these may be overridden from within your tm.h file,
715   but typically, you shouldn't need to override these.  */
716
717#ifndef ASM_OUTPUT_PUSH_SECTION
718#define ASM_OUTPUT_PUSH_SECTION(FILE, SECTION) \
719  fprintf ((FILE), PUSHSECTION_FORMAT, PUSHSECTION_ASM_OP, SECTION)
720#endif
721
722#ifndef ASM_OUTPUT_POP_SECTION
723#define ASM_OUTPUT_POP_SECTION(FILE) \
724  fprintf ((FILE), "\t%s\n", POPSECTION_ASM_OP)
725#endif
726
727#ifndef ASM_OUTPUT_DWARF_DELTA2
728#define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2)			\
729 do {	fprintf ((FILE), "\t%s\t", UNALIGNED_SHORT_ASM_OP);		\
730	assemble_name (FILE, LABEL1);					\
731	fprintf (FILE, "-");						\
732	assemble_name (FILE, LABEL2);					\
733	fprintf (FILE, "\n");						\
734  } while (0)
735#endif
736
737#ifndef ASM_OUTPUT_DWARF_DELTA4
738#define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2)			\
739 do {	fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP);		\
740	assemble_name (FILE, LABEL1);					\
741	fprintf (FILE, "-");						\
742	assemble_name (FILE, LABEL2);					\
743	fprintf (FILE, "\n");						\
744  } while (0)
745#endif
746
747#ifndef ASM_OUTPUT_DWARF_TAG
748#define ASM_OUTPUT_DWARF_TAG(FILE,TAG)					\
749  do {									\
750    fprintf ((FILE), "\t%s\t0x%x",					\
751		     UNALIGNED_SHORT_ASM_OP, (unsigned) TAG);		\
752    if (flag_debug_asm)							\
753      fprintf ((FILE), "\t%s %s",					\
754		       ASM_COMMENT_START, dwarf_tag_name (TAG));	\
755    fputc ('\n', (FILE));						\
756  } while (0)
757#endif
758
759#ifndef ASM_OUTPUT_DWARF_ATTRIBUTE
760#define ASM_OUTPUT_DWARF_ATTRIBUTE(FILE,ATTR)				\
761  do {									\
762    fprintf ((FILE), "\t%s\t0x%x",					\
763		     UNALIGNED_SHORT_ASM_OP, (unsigned) ATTR);		\
764    if (flag_debug_asm)							\
765      fprintf ((FILE), "\t%s %s",					\
766		       ASM_COMMENT_START, dwarf_attr_name (ATTR));	\
767    fputc ('\n', (FILE));						\
768  } while (0)
769#endif
770
771#ifndef ASM_OUTPUT_DWARF_STACK_OP
772#define ASM_OUTPUT_DWARF_STACK_OP(FILE,OP)				\
773  do {									\
774    fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) OP);		\
775    if (flag_debug_asm)							\
776      fprintf ((FILE), "\t%s %s",					\
777		       ASM_COMMENT_START, dwarf_stack_op_name (OP));	\
778    fputc ('\n', (FILE));						\
779  } while (0)
780#endif
781
782#ifndef ASM_OUTPUT_DWARF_FUND_TYPE
783#define ASM_OUTPUT_DWARF_FUND_TYPE(FILE,FT)				\
784  do {									\
785    fprintf ((FILE), "\t%s\t0x%x",					\
786		     UNALIGNED_SHORT_ASM_OP, (unsigned) FT);		\
787    if (flag_debug_asm)							\
788      fprintf ((FILE), "\t%s %s",					\
789		       ASM_COMMENT_START, dwarf_fund_type_name (FT));	\
790    fputc ('\n', (FILE));						\
791  } while (0)
792#endif
793
794#ifndef ASM_OUTPUT_DWARF_FMT_BYTE
795#define ASM_OUTPUT_DWARF_FMT_BYTE(FILE,FMT)				\
796  do {									\
797    fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) FMT);	\
798    if (flag_debug_asm)							\
799      fprintf ((FILE), "\t%s %s",					\
800		       ASM_COMMENT_START, dwarf_fmt_byte_name (FMT));	\
801    fputc ('\n', (FILE));						\
802  } while (0)
803#endif
804
805#ifndef ASM_OUTPUT_DWARF_TYPE_MODIFIER
806#define ASM_OUTPUT_DWARF_TYPE_MODIFIER(FILE,MOD)			\
807  do {									\
808    fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) MOD);	\
809    if (flag_debug_asm)							\
810      fprintf ((FILE), "\t%s %s",					\
811		       ASM_COMMENT_START, dwarf_typemod_name (MOD));	\
812    fputc ('\n', (FILE));						\
813  } while (0)
814#endif
815
816#ifndef ASM_OUTPUT_DWARF_ADDR
817#define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL)				\
818 do {	fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP);		\
819	assemble_name (FILE, LABEL);					\
820	fprintf (FILE, "\n");						\
821  } while (0)
822#endif
823
824#ifndef ASM_OUTPUT_DWARF_ADDR_CONST
825#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,RTX)				\
826  do {									\
827    fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP);			\
828    output_addr_const ((FILE), (RTX));					\
829    fputc ('\n', (FILE));						\
830  } while (0)
831#endif
832
833#ifndef ASM_OUTPUT_DWARF_REF
834#define ASM_OUTPUT_DWARF_REF(FILE,LABEL)				\
835 do {	fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP);		\
836	assemble_name (FILE, LABEL);					\
837	fprintf (FILE, "\n");						\
838  } while (0)
839#endif
840
841#ifndef ASM_OUTPUT_DWARF_DATA1
842#define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
843  fprintf ((FILE), "\t%s\t0x%x\n", ASM_BYTE_OP, VALUE)
844#endif
845
846#ifndef ASM_OUTPUT_DWARF_DATA2
847#define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
848  fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_SHORT_ASM_OP, (unsigned) VALUE)
849#endif
850
851#ifndef ASM_OUTPUT_DWARF_DATA4
852#define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
853  fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, (unsigned) VALUE)
854#endif
855
856#ifndef ASM_OUTPUT_DWARF_DATA8
857#define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE)		\
858  do {									\
859    if (WORDS_BIG_ENDIAN)						\
860      {									\
861	fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
862	fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
863      }									\
864    else								\
865      {									\
866	fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
867	fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
868      }									\
869  } while (0)
870#endif
871
872/* ASM_OUTPUT_DWARF_STRING is defined to output an ascii string, but to
873   NOT issue a trailing newline. We define ASM_OUTPUT_DWARF_STRING_NEWLINE
874   based on whether ASM_OUTPUT_DWARF_STRING is defined or not. If it is
875   defined, we call it, then issue the line feed. If not, we supply a
876   default defintion of calling ASM_OUTPUT_ASCII */
877
878#ifndef ASM_OUTPUT_DWARF_STRING
879#define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
880  ASM_OUTPUT_ASCII ((FILE), P, strlen (P)+1)
881#else
882#define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
883  ASM_OUTPUT_DWARF_STRING (FILE,P), ASM_OUTPUT_DWARF_STRING (FILE,"\n")
884#endif
885
886
887/************************ general utility functions **************************/
888
889inline static int
890is_pseudo_reg (rtl)
891     register rtx rtl;
892{
893  return (((GET_CODE (rtl) == REG) && (REGNO (rtl) >= FIRST_PSEUDO_REGISTER))
894          || ((GET_CODE (rtl) == SUBREG)
895	      && (REGNO (XEXP (rtl, 0)) >= FIRST_PSEUDO_REGISTER)));
896}
897
898inline static tree
899type_main_variant (type)
900     register tree type;
901{
902  type = TYPE_MAIN_VARIANT (type);
903
904  /* There really should be only one main variant among any group of variants
905     of a given type (and all of the MAIN_VARIANT values for all members of
906     the group should point to that one type) but sometimes the C front-end
907     messes this up for array types, so we work around that bug here.  */
908
909  if (TREE_CODE (type) == ARRAY_TYPE)
910    {
911      while (type != TYPE_MAIN_VARIANT (type))
912        type = TYPE_MAIN_VARIANT (type);
913    }
914
915  return type;
916}
917
918/* Return non-zero if the given type node represents a tagged type.  */
919
920inline static int
921is_tagged_type (type)
922     register tree type;
923{
924  register enum tree_code code = TREE_CODE (type);
925
926  return (code == RECORD_TYPE || code == UNION_TYPE
927	  || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
928}
929
930static char *
931dwarf_tag_name (tag)
932     register unsigned tag;
933{
934  switch (tag)
935    {
936    case TAG_padding:			return "TAG_padding";
937    case TAG_array_type:		return "TAG_array_type";
938    case TAG_class_type:		return "TAG_class_type";
939    case TAG_entry_point:		return "TAG_entry_point";
940    case TAG_enumeration_type:		return "TAG_enumeration_type";
941    case TAG_formal_parameter:		return "TAG_formal_parameter";
942    case TAG_global_subroutine:		return "TAG_global_subroutine";
943    case TAG_global_variable:		return "TAG_global_variable";
944    case TAG_label:			return "TAG_label";
945    case TAG_lexical_block:		return "TAG_lexical_block";
946    case TAG_local_variable:		return "TAG_local_variable";
947    case TAG_member:			return "TAG_member";
948    case TAG_pointer_type:		return "TAG_pointer_type";
949    case TAG_reference_type:		return "TAG_reference_type";
950    case TAG_compile_unit:		return "TAG_compile_unit";
951    case TAG_string_type:		return "TAG_string_type";
952    case TAG_structure_type:		return "TAG_structure_type";
953    case TAG_subroutine:		return "TAG_subroutine";
954    case TAG_subroutine_type:		return "TAG_subroutine_type";
955    case TAG_typedef:			return "TAG_typedef";
956    case TAG_union_type:		return "TAG_union_type";
957    case TAG_unspecified_parameters:	return "TAG_unspecified_parameters";
958    case TAG_variant:			return "TAG_variant";
959    case TAG_common_block:		return "TAG_common_block";
960    case TAG_common_inclusion:		return "TAG_common_inclusion";
961    case TAG_inheritance:		return "TAG_inheritance";
962    case TAG_inlined_subroutine:	return "TAG_inlined_subroutine";
963    case TAG_module:			return "TAG_module";
964    case TAG_ptr_to_member_type:	return "TAG_ptr_to_member_type";
965    case TAG_set_type:			return "TAG_set_type";
966    case TAG_subrange_type:		return "TAG_subrange_type";
967    case TAG_with_stmt:			return "TAG_with_stmt";
968
969    /* GNU extensions.  */
970
971    case TAG_format_label:		return "TAG_format_label";
972    case TAG_namelist:			return "TAG_namelist";
973    case TAG_function_template:		return "TAG_function_template";
974    case TAG_class_template:		return "TAG_class_template";
975
976    default:				return "TAG_<unknown>";
977    }
978}
979
980static char *
981dwarf_attr_name (attr)
982     register unsigned attr;
983{
984  switch (attr)
985    {
986    case AT_sibling:			return "AT_sibling";
987    case AT_location:			return "AT_location";
988    case AT_name:			return "AT_name";
989    case AT_fund_type:			return "AT_fund_type";
990    case AT_mod_fund_type:		return "AT_mod_fund_type";
991    case AT_user_def_type:		return "AT_user_def_type";
992    case AT_mod_u_d_type:		return "AT_mod_u_d_type";
993    case AT_ordering:			return "AT_ordering";
994    case AT_subscr_data:		return "AT_subscr_data";
995    case AT_byte_size:			return "AT_byte_size";
996    case AT_bit_offset:			return "AT_bit_offset";
997    case AT_bit_size:			return "AT_bit_size";
998    case AT_element_list:		return "AT_element_list";
999    case AT_stmt_list:			return "AT_stmt_list";
1000    case AT_low_pc:			return "AT_low_pc";
1001    case AT_high_pc:			return "AT_high_pc";
1002    case AT_language:			return "AT_language";
1003    case AT_member:			return "AT_member";
1004    case AT_discr:			return "AT_discr";
1005    case AT_discr_value:		return "AT_discr_value";
1006    case AT_string_length:		return "AT_string_length";
1007    case AT_common_reference:		return "AT_common_reference";
1008    case AT_comp_dir:			return "AT_comp_dir";
1009    case AT_const_value_string:		return "AT_const_value_string";
1010    case AT_const_value_data2:		return "AT_const_value_data2";
1011    case AT_const_value_data4:		return "AT_const_value_data4";
1012    case AT_const_value_data8:		return "AT_const_value_data8";
1013    case AT_const_value_block2:		return "AT_const_value_block2";
1014    case AT_const_value_block4:		return "AT_const_value_block4";
1015    case AT_containing_type:		return "AT_containing_type";
1016    case AT_default_value_addr:		return "AT_default_value_addr";
1017    case AT_default_value_data2:	return "AT_default_value_data2";
1018    case AT_default_value_data4:	return "AT_default_value_data4";
1019    case AT_default_value_data8:	return "AT_default_value_data8";
1020    case AT_default_value_string:	return "AT_default_value_string";
1021    case AT_friends:			return "AT_friends";
1022    case AT_inline:			return "AT_inline";
1023    case AT_is_optional:		return "AT_is_optional";
1024    case AT_lower_bound_ref:		return "AT_lower_bound_ref";
1025    case AT_lower_bound_data2:		return "AT_lower_bound_data2";
1026    case AT_lower_bound_data4:		return "AT_lower_bound_data4";
1027    case AT_lower_bound_data8:		return "AT_lower_bound_data8";
1028    case AT_private:			return "AT_private";
1029    case AT_producer:			return "AT_producer";
1030    case AT_program:			return "AT_program";
1031    case AT_protected:			return "AT_protected";
1032    case AT_prototyped:			return "AT_prototyped";
1033    case AT_public:			return "AT_public";
1034    case AT_pure_virtual:		return "AT_pure_virtual";
1035    case AT_return_addr:		return "AT_return_addr";
1036    case AT_abstract_origin:		return "AT_abstract_origin";
1037    case AT_start_scope:		return "AT_start_scope";
1038    case AT_stride_size:		return "AT_stride_size";
1039    case AT_upper_bound_ref:		return "AT_upper_bound_ref";
1040    case AT_upper_bound_data2:		return "AT_upper_bound_data2";
1041    case AT_upper_bound_data4:		return "AT_upper_bound_data4";
1042    case AT_upper_bound_data8:		return "AT_upper_bound_data8";
1043    case AT_virtual:			return "AT_virtual";
1044
1045    /* GNU extensions */
1046
1047    case AT_sf_names:			return "AT_sf_names";
1048    case AT_src_info:			return "AT_src_info";
1049    case AT_mac_info:			return "AT_mac_info";
1050    case AT_src_coords:			return "AT_src_coords";
1051    case AT_body_begin:			return "AT_body_begin";
1052    case AT_body_end:			return "AT_body_end";
1053
1054    default:				return "AT_<unknown>";
1055    }
1056}
1057
1058static char *
1059dwarf_stack_op_name (op)
1060     register unsigned op;
1061{
1062  switch (op)
1063    {
1064    case OP_REG:		return "OP_REG";
1065    case OP_BASEREG:		return "OP_BASEREG";
1066    case OP_ADDR:		return "OP_ADDR";
1067    case OP_CONST:		return "OP_CONST";
1068    case OP_DEREF2:		return "OP_DEREF2";
1069    case OP_DEREF4:		return "OP_DEREF4";
1070    case OP_ADD:		return "OP_ADD";
1071    default:			return "OP_<unknown>";
1072    }
1073}
1074
1075static char *
1076dwarf_typemod_name (mod)
1077     register unsigned mod;
1078{
1079  switch (mod)
1080    {
1081    case MOD_pointer_to:	return "MOD_pointer_to";
1082    case MOD_reference_to:	return "MOD_reference_to";
1083    case MOD_const:		return "MOD_const";
1084    case MOD_volatile:		return "MOD_volatile";
1085    default:			return "MOD_<unknown>";
1086    }
1087}
1088
1089static char *
1090dwarf_fmt_byte_name (fmt)
1091     register unsigned fmt;
1092{
1093  switch (fmt)
1094    {
1095    case FMT_FT_C_C:	return "FMT_FT_C_C";
1096    case FMT_FT_C_X:	return "FMT_FT_C_X";
1097    case FMT_FT_X_C:	return "FMT_FT_X_C";
1098    case FMT_FT_X_X:	return "FMT_FT_X_X";
1099    case FMT_UT_C_C:	return "FMT_UT_C_C";
1100    case FMT_UT_C_X:	return "FMT_UT_C_X";
1101    case FMT_UT_X_C:	return "FMT_UT_X_C";
1102    case FMT_UT_X_X:	return "FMT_UT_X_X";
1103    case FMT_ET:	return "FMT_ET";
1104    default:		return "FMT_<unknown>";
1105    }
1106}
1107
1108static char *
1109dwarf_fund_type_name (ft)
1110     register unsigned ft;
1111{
1112  switch (ft)
1113    {
1114    case FT_char:		return "FT_char";
1115    case FT_signed_char:	return "FT_signed_char";
1116    case FT_unsigned_char:	return "FT_unsigned_char";
1117    case FT_short:		return "FT_short";
1118    case FT_signed_short:	return "FT_signed_short";
1119    case FT_unsigned_short:	return "FT_unsigned_short";
1120    case FT_integer:		return "FT_integer";
1121    case FT_signed_integer:	return "FT_signed_integer";
1122    case FT_unsigned_integer:	return "FT_unsigned_integer";
1123    case FT_long:		return "FT_long";
1124    case FT_signed_long:	return "FT_signed_long";
1125    case FT_unsigned_long:	return "FT_unsigned_long";
1126    case FT_pointer:		return "FT_pointer";
1127    case FT_float:		return "FT_float";
1128    case FT_dbl_prec_float:	return "FT_dbl_prec_float";
1129    case FT_ext_prec_float:	return "FT_ext_prec_float";
1130    case FT_complex:		return "FT_complex";
1131    case FT_dbl_prec_complex:	return "FT_dbl_prec_complex";
1132    case FT_void:		return "FT_void";
1133    case FT_boolean:		return "FT_boolean";
1134    case FT_ext_prec_complex:	return "FT_ext_prec_complex";
1135    case FT_label:		return "FT_label";
1136
1137    /* GNU extensions.  */
1138
1139    case FT_long_long:		return "FT_long_long";
1140    case FT_signed_long_long:	return "FT_signed_long_long";
1141    case FT_unsigned_long_long: return "FT_unsigned_long_long";
1142
1143    case FT_int8:		return "FT_int8";
1144    case FT_signed_int8:	return "FT_signed_int8";
1145    case FT_unsigned_int8:	return "FT_unsigned_int8";
1146    case FT_int16:		return "FT_int16";
1147    case FT_signed_int16:	return "FT_signed_int16";
1148    case FT_unsigned_int16:	return "FT_unsigned_int16";
1149    case FT_int32:		return "FT_int32";
1150    case FT_signed_int32:	return "FT_signed_int32";
1151    case FT_unsigned_int32:	return "FT_unsigned_int32";
1152    case FT_int64:		return "FT_int64";
1153    case FT_signed_int64:	return "FT_signed_int64";
1154    case FT_unsigned_int64:	return "FT_unsigned_int64";
1155
1156    case FT_real32:		return "FT_real32";
1157    case FT_real64:		return "FT_real64";
1158    case FT_real96:		return "FT_real96";
1159    case FT_real128:		return "FT_real128";
1160
1161    default:			return "FT_<unknown>";
1162    }
1163}
1164
1165/* Determine the "ultimate origin" of a decl.  The decl may be an
1166   inlined instance of an inlined instance of a decl which is local
1167   to an inline function, so we have to trace all of the way back
1168   through the origin chain to find out what sort of node actually
1169   served as the original seed for the given block.  */
1170
1171static tree
1172decl_ultimate_origin (decl)
1173     register tree decl;
1174{
1175#ifdef ENABLE_CHECKING
1176  if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
1177    /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
1178       most distant ancestor, this should never happen.  */
1179    abort ();
1180#endif
1181
1182  return DECL_ABSTRACT_ORIGIN (decl);
1183}
1184
1185/* Determine the "ultimate origin" of a block.  The block may be an
1186   inlined instance of an inlined instance of a block which is local
1187   to an inline function, so we have to trace all of the way back
1188   through the origin chain to find out what sort of node actually
1189   served as the original seed for the given block.  */
1190
1191static tree
1192block_ultimate_origin (block)
1193     register tree block;
1194{
1195  register tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
1196
1197  if (immediate_origin == NULL)
1198    return NULL;
1199  else
1200    {
1201      register tree ret_val;
1202      register tree lookahead = immediate_origin;
1203
1204      do
1205	{
1206	  ret_val = lookahead;
1207	  lookahead = (TREE_CODE (ret_val) == BLOCK)
1208		       ? BLOCK_ABSTRACT_ORIGIN (ret_val)
1209		       : NULL;
1210	}
1211      while (lookahead != NULL && lookahead != ret_val);
1212      return ret_val;
1213    }
1214}
1215
1216/* Get the class to which DECL belongs, if any.  In g++, the DECL_CONTEXT
1217   of a virtual function may refer to a base class, so we check the 'this'
1218   parameter.  */
1219
1220static tree
1221decl_class_context (decl)
1222     tree decl;
1223{
1224  tree context = NULL_TREE;
1225  if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
1226    context = DECL_CONTEXT (decl);
1227  else
1228    context = TYPE_MAIN_VARIANT
1229      (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
1230
1231  if (context && TREE_CODE_CLASS (TREE_CODE (context)) != 't')
1232    context = NULL_TREE;
1233
1234  return context;
1235}
1236
1237#if 0
1238static void
1239output_unsigned_leb128 (value)
1240     register unsigned long value;
1241{
1242  register unsigned long orig_value = value;
1243
1244  do
1245    {
1246      register unsigned byte = (value & 0x7f);
1247
1248      value >>= 7;
1249      if (value != 0)	/* more bytes to follow */
1250	byte |= 0x80;
1251      fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
1252      if (flag_debug_asm && value == 0)
1253	fprintf (asm_out_file, "\t%s ULEB128 number - value = %lu",
1254		 ASM_COMMENT_START, orig_value);
1255      fputc ('\n', asm_out_file);
1256    }
1257  while (value != 0);
1258}
1259
1260static void
1261output_signed_leb128 (value)
1262     register long value;
1263{
1264  register long orig_value = value;
1265  register int negative = (value < 0);
1266  register int more;
1267
1268  do
1269    {
1270      register unsigned byte = (value & 0x7f);
1271
1272      value >>= 7;
1273      if (negative)
1274	value |= 0xfe000000;  /* manually sign extend */
1275      if (((value == 0) && ((byte & 0x40) == 0))
1276          || ((value == -1) && ((byte & 0x40) == 1)))
1277	more = 0;
1278      else
1279	{
1280	  byte |= 0x80;
1281	  more = 1;
1282	}
1283      fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
1284      if (flag_debug_asm && more == 0)
1285	fprintf (asm_out_file, "\t%s SLEB128 number - value = %ld",
1286		 ASM_COMMENT_START, orig_value);
1287      fputc ('\n', asm_out_file);
1288    }
1289  while (more);
1290}
1291#endif
1292
1293/**************** utility functions for attribute functions ******************/
1294
1295/* Given a pointer to a BLOCK node return non-zero if (and only if) the
1296   node in question represents the outermost pair of curly braces (i.e.
1297   the "body block") of a function or method.
1298
1299   For any BLOCK node representing a "body block" of a function or method,
1300   the BLOCK_SUPERCONTEXT of the node will point to another BLOCK node
1301   which represents the outermost (function) scope for the function or
1302   method (i.e. the one which includes the formal parameters).  The
1303   BLOCK_SUPERCONTEXT of *that* node in turn will point to the relevant
1304   FUNCTION_DECL node.
1305*/
1306
1307static inline int
1308is_body_block (stmt)
1309     register tree stmt;
1310{
1311  if (TREE_CODE (stmt) == BLOCK)
1312    {
1313      register tree parent = BLOCK_SUPERCONTEXT (stmt);
1314
1315      if (TREE_CODE (parent) == BLOCK)
1316	{
1317	  register tree grandparent = BLOCK_SUPERCONTEXT (parent);
1318
1319	  if (TREE_CODE (grandparent) == FUNCTION_DECL)
1320	    return 1;
1321	}
1322    }
1323  return 0;
1324}
1325
1326/* Given a pointer to a tree node for some type, return a Dwarf fundamental
1327   type code for the given type.
1328
1329   This routine must only be called for GCC type nodes that correspond to
1330   Dwarf fundamental types.
1331
1332   The current Dwarf draft specification calls for Dwarf fundamental types
1333   to accurately reflect the fact that a given type was either a "plain"
1334   integral type or an explicitly "signed" integral type.  Unfortunately,
1335   we can't always do this, because GCC may already have thrown away the
1336   information about the precise way in which the type was originally
1337   specified, as in:
1338
1339	typedef signed int my_type;
1340
1341	struct s { my_type f; };
1342
1343   Since we may be stuck here without enought information to do exactly
1344   what is called for in the Dwarf draft specification, we do the best
1345   that we can under the circumstances and always use the "plain" integral
1346   fundamental type codes for int, short, and long types.  That's probably
1347   good enough.  The additional accuracy called for in the current DWARF
1348   draft specification is probably never even useful in practice.  */
1349
1350static int
1351fundamental_type_code (type)
1352     register tree type;
1353{
1354  if (TREE_CODE (type) == ERROR_MARK)
1355    return 0;
1356
1357  switch (TREE_CODE (type))
1358    {
1359      case ERROR_MARK:
1360	return FT_void;
1361
1362      case VOID_TYPE:
1363	return FT_void;
1364
1365      case INTEGER_TYPE:
1366	/* Carefully distinguish all the standard types of C,
1367	   without messing up if the language is not C.
1368	   Note that we check only for the names that contain spaces;
1369	   other names might occur by coincidence in other languages.  */
1370	if (TYPE_NAME (type) != 0
1371	    && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1372	    && DECL_NAME (TYPE_NAME (type)) != 0
1373	    && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1374	  {
1375	    char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1376
1377	    if (!strcmp (name, "unsigned char"))
1378	      return FT_unsigned_char;
1379	    if (!strcmp (name, "signed char"))
1380	      return FT_signed_char;
1381	    if (!strcmp (name, "unsigned int"))
1382	      return FT_unsigned_integer;
1383	    if (!strcmp (name, "short int"))
1384	      return FT_short;
1385	    if (!strcmp (name, "short unsigned int"))
1386	      return FT_unsigned_short;
1387	    if (!strcmp (name, "long int"))
1388	      return FT_long;
1389	    if (!strcmp (name, "long unsigned int"))
1390	      return FT_unsigned_long;
1391	    if (!strcmp (name, "long long int"))
1392	      return FT_long_long;		/* Not grok'ed by svr4 SDB */
1393	    if (!strcmp (name, "long long unsigned int"))
1394	      return FT_unsigned_long_long;	/* Not grok'ed by svr4 SDB */
1395	  }
1396
1397	/* Most integer types will be sorted out above, however, for the
1398	   sake of special `array index' integer types, the following code
1399	   is also provided.  */
1400
1401	if (TYPE_PRECISION (type) == INT_TYPE_SIZE)
1402	  return (TREE_UNSIGNED (type) ? FT_unsigned_integer : FT_integer);
1403
1404	if (TYPE_PRECISION (type) == LONG_TYPE_SIZE)
1405	  return (TREE_UNSIGNED (type) ? FT_unsigned_long : FT_long);
1406
1407	if (TYPE_PRECISION (type) == LONG_LONG_TYPE_SIZE)
1408	  return (TREE_UNSIGNED (type) ? FT_unsigned_long_long : FT_long_long);
1409
1410	if (TYPE_PRECISION (type) == SHORT_TYPE_SIZE)
1411	  return (TREE_UNSIGNED (type) ? FT_unsigned_short : FT_short);
1412
1413	if (TYPE_PRECISION (type) == CHAR_TYPE_SIZE)
1414	  return (TREE_UNSIGNED (type) ? FT_unsigned_char : FT_char);
1415
1416	/* In C++, __java_boolean is an INTEGER_TYPE with precision == 1 */
1417	if (TYPE_PRECISION (type) == 1)
1418	  return FT_boolean;
1419
1420	abort ();
1421
1422      case REAL_TYPE:
1423	/* Carefully distinguish all the standard types of C,
1424	   without messing up if the language is not C.  */
1425	if (TYPE_NAME (type) != 0
1426	    && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1427	    && DECL_NAME (TYPE_NAME (type)) != 0
1428	    && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1429	  {
1430	    char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1431
1432	    /* Note that here we can run afowl of a serious bug in "classic"
1433	       svr4 SDB debuggers.  They don't seem to understand the
1434	       FT_ext_prec_float type (even though they should).  */
1435
1436	    if (!strcmp (name, "long double"))
1437	      return FT_ext_prec_float;
1438	  }
1439
1440	if (TYPE_PRECISION (type) == DOUBLE_TYPE_SIZE)
1441	  {
1442	    /* On the SH, when compiling with -m3e or -m4-single-only, both
1443	       float and double are 32 bits.  But since the debugger doesn't
1444	       know about the subtarget, it always thinks double is 64 bits.
1445	       So we have to tell the debugger that the type is float to
1446	       make the output of the 'print' command etc. readable.  */
1447	    if (DOUBLE_TYPE_SIZE == FLOAT_TYPE_SIZE && FLOAT_TYPE_SIZE == 32)
1448	      return FT_float;
1449	    return FT_dbl_prec_float;
1450	  }
1451	if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
1452	  return FT_float;
1453
1454	/* Note that here we can run afowl of a serious bug in "classic"
1455	   svr4 SDB debuggers.  They don't seem to understand the
1456	   FT_ext_prec_float type (even though they should).  */
1457
1458	if (TYPE_PRECISION (type) == LONG_DOUBLE_TYPE_SIZE)
1459	  return FT_ext_prec_float;
1460	abort ();
1461
1462      case COMPLEX_TYPE:
1463	return FT_complex;	/* GNU FORTRAN COMPLEX type.  */
1464
1465      case CHAR_TYPE:
1466	return FT_char;		/* GNU Pascal CHAR type.  Not used in C.  */
1467
1468      case BOOLEAN_TYPE:
1469	return FT_boolean;	/* GNU FORTRAN BOOLEAN type.  */
1470
1471      default:
1472	abort ();	/* No other TREE_CODEs are Dwarf fundamental types.  */
1473    }
1474  return 0;
1475}
1476
1477/* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
1478   the Dwarf "root" type for the given input type.  The Dwarf "root" type
1479   of a given type is generally the same as the given type, except that if
1480   the	given type is a pointer or reference type, then the root type of
1481   the given type is the root type of the "basis" type for the pointer or
1482   reference type.  (This definition of the "root" type is recursive.)
1483   Also, the root type of a `const' qualified type or a `volatile'
1484   qualified type is the root type of the given type without the
1485   qualifiers.  */
1486
1487static tree
1488root_type_1 (type, count)
1489     register tree type;
1490     register int count;
1491{
1492  /* Give up after searching 1000 levels, in case this is a recursive
1493     pointer type.  Such types are possible in Ada, but it is not possible
1494     to represent them in DWARF1 debug info.  */
1495  if (count > 1000)
1496    return error_mark_node;
1497
1498  switch (TREE_CODE (type))
1499    {
1500      case ERROR_MARK:
1501	return error_mark_node;
1502
1503      case POINTER_TYPE:
1504      case REFERENCE_TYPE:
1505	return root_type_1 (TREE_TYPE (type), count+1);
1506
1507      default:
1508	return type;
1509    }
1510}
1511
1512static tree
1513root_type (type)
1514     register tree type;
1515{
1516  type = root_type_1 (type, 0);
1517  if (type != error_mark_node)
1518    type = type_main_variant (type);
1519  return type;
1520}
1521
1522/* Given a pointer to an arbitrary ..._TYPE tree node, write out a sequence
1523   of zero or more Dwarf "type-modifier" bytes applicable to the type.	*/
1524
1525static void
1526write_modifier_bytes_1 (type, decl_const, decl_volatile, count)
1527     register tree type;
1528     register int decl_const;
1529     register int decl_volatile;
1530     register int count;
1531{
1532  if (TREE_CODE (type) == ERROR_MARK)
1533    return;
1534
1535  /* Give up after searching 1000 levels, in case this is a recursive
1536     pointer type.  Such types are possible in Ada, but it is not possible
1537     to represent them in DWARF1 debug info.  */
1538  if (count > 1000)
1539    return;
1540
1541  if (TYPE_READONLY (type) || decl_const)
1542    ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_const);
1543  if (TYPE_VOLATILE (type) || decl_volatile)
1544    ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_volatile);
1545  switch (TREE_CODE (type))
1546    {
1547      case POINTER_TYPE:
1548	ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_pointer_to);
1549	write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1550	return;
1551
1552      case REFERENCE_TYPE:
1553	ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_reference_to);
1554	write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1555	return;
1556
1557      case ERROR_MARK:
1558      default:
1559	return;
1560    }
1561}
1562
1563static void
1564write_modifier_bytes (type, decl_const, decl_volatile)
1565     register tree type;
1566     register int decl_const;
1567     register int decl_volatile;
1568{
1569  write_modifier_bytes_1 (type, decl_const, decl_volatile, 0);
1570}
1571
1572/* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
1573   given input type is a Dwarf "fundamental" type.  Otherwise return zero.  */
1574
1575static inline int
1576type_is_fundamental (type)
1577     register tree type;
1578{
1579  switch (TREE_CODE (type))
1580    {
1581      case ERROR_MARK:
1582      case VOID_TYPE:
1583      case INTEGER_TYPE:
1584      case REAL_TYPE:
1585      case COMPLEX_TYPE:
1586      case BOOLEAN_TYPE:
1587      case CHAR_TYPE:
1588	return 1;
1589
1590      case SET_TYPE:
1591      case ARRAY_TYPE:
1592      case RECORD_TYPE:
1593      case UNION_TYPE:
1594      case QUAL_UNION_TYPE:
1595      case ENUMERAL_TYPE:
1596      case FUNCTION_TYPE:
1597      case METHOD_TYPE:
1598      case POINTER_TYPE:
1599      case REFERENCE_TYPE:
1600      case FILE_TYPE:
1601      case OFFSET_TYPE:
1602      case LANG_TYPE:
1603	return 0;
1604
1605      default:
1606	abort ();
1607    }
1608  return 0;
1609}
1610
1611/* Given a pointer to some ..._DECL tree node, generate an assembly language
1612   equate directive which will associate a symbolic name with the current DIE.
1613
1614   The name used is an artificial label generated from the DECL_UID number
1615   associated with the given decl node.  The name it gets equated to is the
1616   symbolic label that we (previously) output at the start of the DIE that
1617   we are currently generating.
1618
1619   Calling this function while generating some "decl related" form of DIE
1620   makes it possible to later refer to the DIE which represents the given
1621   decl simply by re-generating the symbolic name from the ..._DECL node's
1622   UID number.	*/
1623
1624static void
1625equate_decl_number_to_die_number (decl)
1626     register tree decl;
1627{
1628  /* In the case where we are generating a DIE for some ..._DECL node
1629     which represents either some inline function declaration or some
1630     entity declared within an inline function declaration/definition,
1631     setup a symbolic name for the current DIE so that we have a name
1632     for this DIE that we can easily refer to later on within
1633     AT_abstract_origin attributes.  */
1634
1635  char decl_label[MAX_ARTIFICIAL_LABEL_BYTES];
1636  char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1637
1638  sprintf (decl_label, DECL_NAME_FMT, DECL_UID (decl));
1639  sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1640  ASM_OUTPUT_DEF (asm_out_file, decl_label, die_label);
1641}
1642
1643/* Given a pointer to some ..._TYPE tree node, generate an assembly language
1644   equate directive which will associate a symbolic name with the current DIE.
1645
1646   The name used is an artificial label generated from the TYPE_UID number
1647   associated with the given type node.  The name it gets equated to is the
1648   symbolic label that we (previously) output at the start of the DIE that
1649   we are currently generating.
1650
1651   Calling this function while generating some "type related" form of DIE
1652   makes it easy to later refer to the DIE which represents the given type
1653   simply by re-generating the alternative name from the ..._TYPE node's
1654   UID number.	*/
1655
1656static inline void
1657equate_type_number_to_die_number (type)
1658     register tree type;
1659{
1660  char type_label[MAX_ARTIFICIAL_LABEL_BYTES];
1661  char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1662
1663  /* We are generating a DIE to represent the main variant of this type
1664     (i.e the type without any const or volatile qualifiers) so in order
1665     to get the equate to come out right, we need to get the main variant
1666     itself here.  */
1667
1668  type = type_main_variant (type);
1669
1670  sprintf (type_label, TYPE_NAME_FMT, TYPE_UID (type));
1671  sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1672  ASM_OUTPUT_DEF (asm_out_file, type_label, die_label);
1673}
1674
1675static void
1676output_reg_number (rtl)
1677     register rtx rtl;
1678{
1679  register unsigned regno = REGNO (rtl);
1680
1681  if (regno >= FIRST_PSEUDO_REGISTER)
1682    {
1683      warning_with_decl (dwarf_last_decl, "internal regno botch: regno = %d\n",
1684			 regno);
1685      regno = 0;
1686    }
1687  fprintf (asm_out_file, "\t%s\t0x%x",
1688	   UNALIGNED_INT_ASM_OP, DBX_REGISTER_NUMBER (regno));
1689  if (flag_debug_asm)
1690    {
1691      fprintf (asm_out_file, "\t%s ", ASM_COMMENT_START);
1692      PRINT_REG (rtl, 0, asm_out_file);
1693    }
1694  fputc ('\n', asm_out_file);
1695}
1696
1697/* The following routine is a nice and simple transducer.  It converts the
1698   RTL for a variable or parameter (resident in memory) into an equivalent
1699   Dwarf representation of a mechanism for getting the address of that same
1700   variable onto the top of a hypothetical "address evaluation" stack.
1701
1702   When creating memory location descriptors, we are effectively trans-
1703   forming the RTL for a memory-resident object into its Dwarf postfix
1704   expression equivalent.  This routine just recursively descends an
1705   RTL tree, turning it into Dwarf postfix code as it goes.  */
1706
1707static void
1708output_mem_loc_descriptor (rtl)
1709      register rtx rtl;
1710{
1711  /* Note that for a dynamically sized array, the location we will
1712     generate a description of here will be the lowest numbered location
1713     which is actually within the array.  That's *not* necessarily the
1714     same as the zeroth element of the array.  */
1715
1716  switch (GET_CODE (rtl))
1717    {
1718      case SUBREG:
1719
1720	/* The case of a subreg may arise when we have a local (register)
1721	   variable or a formal (register) parameter which doesn't quite
1722	   fill up an entire register.	For now, just assume that it is
1723	   legitimate to make the Dwarf info refer to the whole register
1724	   which contains the given subreg.  */
1725
1726	rtl = XEXP (rtl, 0);
1727	/* Drop thru.  */
1728
1729      case REG:
1730
1731	/* Whenever a register number forms a part of the description of
1732	   the method for calculating the (dynamic) address of a memory
1733	   resident object, DWARF rules require the register number to
1734	   be referred to as a "base register".  This distinction is not
1735	   based in any way upon what category of register the hardware
1736	   believes the given register belongs to.  This is strictly
1737	   DWARF terminology we're dealing with here.
1738
1739	   Note that in cases where the location of a memory-resident data
1740	   object could be expressed as:
1741
1742		    OP_ADD (OP_BASEREG (basereg), OP_CONST (0))
1743
1744	   the actual DWARF location descriptor that we generate may just
1745	   be OP_BASEREG (basereg).  This may look deceptively like the
1746	   object in question was allocated to a register (rather than
1747	   in memory) so DWARF consumers need to be aware of the subtle
1748	   distinction between OP_REG and OP_BASEREG.  */
1749
1750	ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_BASEREG);
1751	output_reg_number (rtl);
1752	break;
1753
1754      case MEM:
1755	output_mem_loc_descriptor (XEXP (rtl, 0));
1756	ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_DEREF4);
1757	break;
1758
1759      case CONST:
1760      case SYMBOL_REF:
1761	ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADDR);
1762	ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
1763	break;
1764
1765      case PLUS:
1766	output_mem_loc_descriptor (XEXP (rtl, 0));
1767	output_mem_loc_descriptor (XEXP (rtl, 1));
1768	ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
1769	break;
1770
1771      case CONST_INT:
1772	ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
1773	ASM_OUTPUT_DWARF_DATA4 (asm_out_file, INTVAL (rtl));
1774	break;
1775
1776      case MULT:
1777	/* If a pseudo-reg is optimized away, it is possible for it to
1778	   be replaced with a MEM containing a multiply.  Use a GNU extension
1779	   to describe it.  */
1780	output_mem_loc_descriptor (XEXP (rtl, 0));
1781	output_mem_loc_descriptor (XEXP (rtl, 1));
1782	ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_MULT);
1783	break;
1784
1785      default:
1786	abort ();
1787    }
1788}
1789
1790/* Output a proper Dwarf location descriptor for a variable or parameter
1791   which is either allocated in a register or in a memory location.  For
1792   a register, we just generate an OP_REG and the register number.  For a
1793   memory location we provide a Dwarf postfix expression describing how to
1794   generate the (dynamic) address of the object onto the address stack.  */
1795
1796static void
1797output_loc_descriptor (rtl)
1798     register rtx rtl;
1799{
1800  switch (GET_CODE (rtl))
1801    {
1802    case SUBREG:
1803
1804	/* The case of a subreg may arise when we have a local (register)
1805	   variable or a formal (register) parameter which doesn't quite
1806	   fill up an entire register.	For now, just assume that it is
1807	   legitimate to make the Dwarf info refer to the whole register
1808	   which contains the given subreg.  */
1809
1810	rtl = XEXP (rtl, 0);
1811	/* Drop thru.  */
1812
1813    case REG:
1814	ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_REG);
1815	output_reg_number (rtl);
1816	break;
1817
1818    case MEM:
1819      output_mem_loc_descriptor (XEXP (rtl, 0));
1820      break;
1821
1822    default:
1823      abort ();		/* Should never happen */
1824    }
1825}
1826
1827/* Given a tree node describing an array bound (either lower or upper)
1828   output a representation for that bound.  */
1829
1830static void
1831output_bound_representation (bound, dim_num, u_or_l)
1832     register tree bound;
1833     register unsigned dim_num; /* For multi-dimensional arrays.  */
1834     register char u_or_l;	/* Designates upper or lower bound.  */
1835{
1836  switch (TREE_CODE (bound))
1837    {
1838
1839    case ERROR_MARK:
1840      return;
1841
1842      /* All fixed-bounds are represented by INTEGER_CST nodes.	 */
1843
1844    case INTEGER_CST:
1845      ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1846			      (unsigned) TREE_INT_CST_LOW (bound));
1847      break;
1848
1849    default:
1850
1851      /* Dynamic bounds may be represented by NOP_EXPR nodes containing
1852	 SAVE_EXPR nodes, in which case we can do something, or as
1853	 an expression, which we cannot represent.  */
1854      {
1855	char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
1856	char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
1857
1858	sprintf (begin_label, BOUND_BEGIN_LABEL_FMT,
1859		 current_dienum, dim_num, u_or_l);
1860
1861	sprintf (end_label, BOUND_END_LABEL_FMT,
1862		 current_dienum, dim_num, u_or_l);
1863
1864	ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
1865	ASM_OUTPUT_LABEL (asm_out_file, begin_label);
1866
1867	/* If optimization is turned on, the SAVE_EXPRs that describe
1868	   how to access the upper bound values are essentially bogus.
1869	   They only describe (at best) how to get at these values at
1870	   the points in the generated code right after they have just
1871	   been computed.  Worse yet, in the typical case, the upper
1872	   bound values will not even *be* computed in the optimized
1873	   code, so these SAVE_EXPRs are entirely bogus.
1874
1875	   In order to compensate for this fact, we check here to see
1876	   if optimization is enabled, and if so, we effectively create
1877	   an empty location description for the (unknown and unknowable)
1878	   upper bound.
1879
1880	   This should not cause too much trouble for existing (stupid?)
1881	   debuggers because they have to deal with empty upper bounds
1882	   location descriptions anyway in order to be able to deal with
1883	   incomplete array types.
1884
1885	   Of course an intelligent debugger (GDB?) should be able to
1886	   comprehend that a missing upper bound specification in a
1887	   array type used for a storage class `auto' local array variable
1888	   indicates that the upper bound is both unknown (at compile-
1889	   time) and unknowable (at run-time) due to optimization. */
1890
1891	if (! optimize)
1892	  {
1893	    while (TREE_CODE (bound) == NOP_EXPR
1894		   || TREE_CODE (bound) == CONVERT_EXPR)
1895	      bound = TREE_OPERAND (bound, 0);
1896
1897	    if (TREE_CODE (bound) == SAVE_EXPR)
1898	      output_loc_descriptor
1899		(eliminate_regs (SAVE_EXPR_RTL (bound), 0, NULL_RTX));
1900	  }
1901
1902	ASM_OUTPUT_LABEL (asm_out_file, end_label);
1903      }
1904      break;
1905
1906    }
1907}
1908
1909/* Recursive function to output a sequence of value/name pairs for
1910   enumeration constants in reversed order.  This is called from
1911   enumeration_type_die.  */
1912
1913static void
1914output_enumeral_list (link)
1915     register tree link;
1916{
1917  if (link)
1918    {
1919      output_enumeral_list (TREE_CHAIN (link));
1920      ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1921			      (unsigned) TREE_INT_CST_LOW (TREE_VALUE (link)));
1922      ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
1923			       IDENTIFIER_POINTER (TREE_PURPOSE (link)));
1924    }
1925}
1926
1927/* Given an unsigned value, round it up to the lowest multiple of `boundary'
1928   which is not less than the value itself.  */
1929
1930static inline unsigned
1931ceiling (value, boundary)
1932     register unsigned value;
1933     register unsigned boundary;
1934{
1935  return (((value + boundary - 1) / boundary) * boundary);
1936}
1937
1938/* Given a pointer to what is assumed to be a FIELD_DECL node, return a
1939   pointer to the declared type for the relevant field variable, or return
1940   `integer_type_node' if the given node turns out to be an ERROR_MARK node.  */
1941
1942static inline tree
1943field_type (decl)
1944     register tree decl;
1945{
1946  register tree type;
1947
1948  if (TREE_CODE (decl) == ERROR_MARK)
1949    return integer_type_node;
1950
1951  type = DECL_BIT_FIELD_TYPE (decl);
1952  if (type == NULL)
1953    type = TREE_TYPE (decl);
1954  return type;
1955}
1956
1957/* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1958   node, return the alignment in bits for the type, or else return
1959   BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node.  */
1960
1961static inline unsigned
1962simple_type_align_in_bits (type)
1963     register tree type;
1964{
1965  return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
1966}
1967
1968/* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1969   node, return the size in bits for the type if it is a constant, or
1970   else return the alignment for the type if the type's size is not
1971   constant, or else return BITS_PER_WORD if the type actually turns out
1972   to be an ERROR_MARK node.  */
1973
1974static inline unsigned
1975simple_type_size_in_bits (type)
1976     register tree type;
1977{
1978  if (TREE_CODE (type) == ERROR_MARK)
1979    return BITS_PER_WORD;
1980  else
1981    {
1982      register tree type_size_tree = TYPE_SIZE (type);
1983
1984      if (TREE_CODE (type_size_tree) != INTEGER_CST)
1985	return TYPE_ALIGN (type);
1986
1987      return (unsigned) TREE_INT_CST_LOW (type_size_tree);
1988    }
1989}
1990
1991/* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
1992   return the byte offset of the lowest addressed byte of the "containing
1993   object" for the given FIELD_DECL, or return 0 if we are unable to deter-
1994   mine what that offset is, either because the argument turns out to be a
1995   pointer to an ERROR_MARK node, or because the offset is actually variable.
1996   (We can't handle the latter case just yet.)  */
1997
1998static unsigned
1999field_byte_offset (decl)
2000     register tree decl;
2001{
2002  register unsigned type_align_in_bytes;
2003  register unsigned type_align_in_bits;
2004  register unsigned type_size_in_bits;
2005  register unsigned object_offset_in_align_units;
2006  register unsigned object_offset_in_bits;
2007  register unsigned object_offset_in_bytes;
2008  register tree type;
2009  register tree bitpos_tree;
2010  register tree field_size_tree;
2011  register unsigned bitpos_int;
2012  register unsigned deepest_bitpos;
2013  register unsigned field_size_in_bits;
2014
2015  if (TREE_CODE (decl) == ERROR_MARK)
2016    return 0;
2017
2018  if (TREE_CODE (decl) != FIELD_DECL)
2019    abort ();
2020
2021  type = field_type (decl);
2022
2023  bitpos_tree = DECL_FIELD_BITPOS (decl);
2024  field_size_tree = DECL_SIZE (decl);
2025
2026  /* We cannot yet cope with fields whose positions or sizes are variable,
2027     so for now, when we see such things, we simply return 0.  Someday,
2028     we may be able to handle such cases, but it will be damn difficult.  */
2029
2030  if (TREE_CODE (bitpos_tree) != INTEGER_CST)
2031    return 0;
2032  bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);
2033
2034  if (TREE_CODE (field_size_tree) != INTEGER_CST)
2035    return 0;
2036  field_size_in_bits = (unsigned) TREE_INT_CST_LOW (field_size_tree);
2037
2038  type_size_in_bits = simple_type_size_in_bits (type);
2039
2040  type_align_in_bits = simple_type_align_in_bits (type);
2041  type_align_in_bytes = type_align_in_bits / BITS_PER_UNIT;
2042
2043  /* Note that the GCC front-end doesn't make any attempt to keep track
2044     of the starting bit offset (relative to the start of the containing
2045     structure type) of the hypothetical "containing object" for a bit-
2046     field.  Thus, when computing the byte offset value for the start of
2047     the "containing object" of a bit-field, we must deduce this infor-
2048     mation on our own.
2049
2050     This can be rather tricky to do in some cases.  For example, handling
2051     the following structure type definition when compiling for an i386/i486
2052     target (which only aligns long long's to 32-bit boundaries) can be very
2053     tricky:
2054
2055		struct S {
2056			int		field1;
2057			long long	field2:31;
2058		};
2059
2060     Fortunately, there is a simple rule-of-thumb which can be used in such
2061     cases.  When compiling for an i386/i486, GCC will allocate 8 bytes for
2062     the structure shown above.  It decides to do this based upon one simple
2063     rule for bit-field allocation.  Quite simply, GCC allocates each "con-
2064     taining object" for each bit-field at the first (i.e. lowest addressed)
2065     legitimate alignment boundary (based upon the required minimum alignment
2066     for the declared type of the field) which it can possibly use, subject
2067     to the condition that there is still enough available space remaining
2068     in the containing object (when allocated at the selected point) to
2069     fully accommodate all of the bits of the bit-field itself.
2070
2071     This simple rule makes it obvious why GCC allocates 8 bytes for each
2072     object of the structure type shown above.  When looking for a place to
2073     allocate the "containing object" for `field2', the compiler simply tries
2074     to allocate a 64-bit "containing object" at each successive 32-bit
2075     boundary (starting at zero) until it finds a place to allocate that 64-
2076     bit field such that at least 31 contiguous (and previously unallocated)
2077     bits remain within that selected 64 bit field.  (As it turns out, for
2078     the example above, the compiler finds that it is OK to allocate the
2079     "containing object" 64-bit field at bit-offset zero within the
2080     structure type.)
2081
2082     Here we attempt to work backwards from the limited set of facts we're
2083     given, and we try to deduce from those facts, where GCC must have
2084     believed that the containing object started (within the structure type).
2085
2086     The value we deduce is then used (by the callers of this routine) to
2087     generate AT_location and AT_bit_offset attributes for fields (both
2088     bit-fields and, in the case of AT_location, regular fields as well).
2089  */
2090
2091  /* Figure out the bit-distance from the start of the structure to the
2092     "deepest" bit of the bit-field.  */
2093  deepest_bitpos = bitpos_int + field_size_in_bits;
2094
2095  /* This is the tricky part.  Use some fancy footwork to deduce where the
2096     lowest addressed bit of the containing object must be.  */
2097  object_offset_in_bits
2098    = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2099
2100  /* Compute the offset of the containing object in "alignment units".  */
2101  object_offset_in_align_units = object_offset_in_bits / type_align_in_bits;
2102
2103  /* Compute the offset of the containing object in bytes.  */
2104  object_offset_in_bytes = object_offset_in_align_units * type_align_in_bytes;
2105
2106  /* The above code assumes that the field does not cross an alignment
2107     boundary.  This can happen if PCC_BITFIELD_TYPE_MATTERS is not defined,
2108     or if the structure is packed.  If this happens, then we get an object
2109     which starts after the bitfield, which means that the bit offset is
2110     negative.  Gdb fails when given negative bit offsets.  We avoid this
2111     by recomputing using the first bit of the bitfield.  This will give
2112     us an object which does not completely contain the bitfield, but it
2113     will be aligned, and it will contain the first bit of the bitfield.
2114
2115     However, only do this for a BYTES_BIG_ENDIAN target.  For a
2116     ! BYTES_BIG_ENDIAN target, bitpos_int + field_size_in_bits is the first
2117     first bit of the bitfield.  If we recompute using bitpos_int + 1 below,
2118     then we end up computing the object byte offset for the wrong word of the
2119     desired bitfield, which in turn causes the field offset to be negative
2120     in bit_offset_attribute.  */
2121  if (BYTES_BIG_ENDIAN
2122      && object_offset_in_bits > bitpos_int)
2123    {
2124      deepest_bitpos = bitpos_int + 1;
2125      object_offset_in_bits
2126	= ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2127      object_offset_in_align_units = (object_offset_in_bits
2128				      / type_align_in_bits);
2129      object_offset_in_bytes = (object_offset_in_align_units
2130				* type_align_in_bytes);
2131    }
2132
2133  return object_offset_in_bytes;
2134}
2135
2136/****************************** attributes *********************************/
2137
2138/* The following routines are responsible for writing out the various types
2139   of Dwarf attributes (and any following data bytes associated with them).
2140   These routines are listed in order based on the numerical codes of their
2141   associated attributes.  */
2142
2143/* Generate an AT_sibling attribute.  */
2144
2145static inline void
2146sibling_attribute ()
2147{
2148  char label[MAX_ARTIFICIAL_LABEL_BYTES];
2149
2150  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sibling);
2151  sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
2152  ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2153}
2154
2155/* Output the form of location attributes suitable for whole variables and
2156   whole parameters.  Note that the location attributes for struct fields
2157   are generated by the routine `data_member_location_attribute' below.  */
2158
2159static void
2160location_attribute (rtl)
2161     register rtx rtl;
2162{
2163  char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2164  char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2165
2166  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2167  sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2168  sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2169  ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2170  ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2171
2172  /* Handle a special case.  If we are about to output a location descriptor
2173     for a variable or parameter which has been optimized out of existence,
2174     don't do that.  Instead we output a zero-length location descriptor
2175     value as part of the location attribute.
2176
2177     A variable which has been optimized out of existence will have a
2178     DECL_RTL value which denotes a pseudo-reg.
2179
2180     Currently, in some rare cases, variables can have DECL_RTL values
2181     which look like (MEM (REG pseudo-reg#)).  These cases are due to
2182     bugs elsewhere in the compiler.  We treat such cases
2183     as if the variable(s) in question had been optimized out of existence.
2184
2185     Note that in all cases where we wish to express the fact that a
2186     variable has been optimized out of existence, we do not simply
2187     suppress the generation of the entire location attribute because
2188     the absence of a location attribute in certain kinds of DIEs is
2189     used to indicate something else entirely... i.e. that the DIE
2190     represents an object declaration, but not a definition.  So saith
2191     the PLSIG.
2192  */
2193
2194  if (! is_pseudo_reg (rtl)
2195      && (GET_CODE (rtl) != MEM || ! is_pseudo_reg (XEXP (rtl, 0))))
2196    output_loc_descriptor (rtl);
2197
2198  ASM_OUTPUT_LABEL (asm_out_file, end_label);
2199}
2200
2201/* Output the specialized form of location attribute used for data members
2202   of struct and union types.
2203
2204   In the special case of a FIELD_DECL node which represents a bit-field,
2205   the "offset" part of this special location descriptor must indicate the
2206   distance in bytes from the lowest-addressed byte of the containing
2207   struct or union type to the lowest-addressed byte of the "containing
2208   object" for the bit-field.  (See the `field_byte_offset' function above.)
2209
2210   For any given bit-field, the "containing object" is a hypothetical
2211   object (of some integral or enum type) within which the given bit-field
2212   lives.  The type of this hypothetical "containing object" is always the
2213   same as the declared type of the individual bit-field itself (for GCC
2214   anyway... the DWARF spec doesn't actually mandate this).
2215
2216   Note that it is the size (in bytes) of the hypothetical "containing
2217   object" which will be given in the AT_byte_size attribute for this
2218   bit-field.  (See the `byte_size_attribute' function below.)  It is
2219   also used when calculating the value of the AT_bit_offset attribute.
2220   (See the `bit_offset_attribute' function below.)  */
2221
2222static void
2223data_member_location_attribute (t)
2224     register tree t;
2225{
2226  register unsigned object_offset_in_bytes;
2227  char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2228  char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2229
2230  if (TREE_CODE (t) == TREE_VEC)
2231    object_offset_in_bytes = TREE_INT_CST_LOW (BINFO_OFFSET (t));
2232  else
2233    object_offset_in_bytes = field_byte_offset (t);
2234
2235  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2236  sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2237  sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2238  ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2239  ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2240  ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
2241  ASM_OUTPUT_DWARF_DATA4 (asm_out_file, object_offset_in_bytes);
2242  ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2243  ASM_OUTPUT_LABEL (asm_out_file, end_label);
2244}
2245
2246/* Output an AT_const_value attribute for a variable or a parameter which
2247   does not have a "location" either in memory or in a register.  These
2248   things can arise in GNU C when a constant is passed as an actual
2249   parameter to an inlined function.  They can also arise in C++ where
2250   declared constants do not necessarily get memory "homes".  */
2251
2252static void
2253const_value_attribute (rtl)
2254     register rtx rtl;
2255{
2256  char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2257  char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2258
2259  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_const_value_block4);
2260  sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2261  sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2262  ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2263  ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2264
2265  switch (GET_CODE (rtl))
2266    {
2267      case CONST_INT:
2268	/* Note that a CONST_INT rtx could represent either an integer or
2269	   a floating-point constant.  A CONST_INT is used whenever the
2270	   constant will fit into a single word.  In all such cases, the
2271	   original mode of the constant value is wiped out, and the
2272	   CONST_INT rtx is assigned VOIDmode.  Since we no longer have
2273	   precise mode information for these constants, we always just
2274	   output them using 4 bytes.  */
2275
2276	ASM_OUTPUT_DWARF_DATA4 (asm_out_file, (unsigned) INTVAL (rtl));
2277	break;
2278
2279      case CONST_DOUBLE:
2280	/* Note that a CONST_DOUBLE rtx could represent either an integer
2281	   or a floating-point constant.  A CONST_DOUBLE is used whenever
2282	   the constant requires more than one word in order to be adequately
2283	   represented.  In all such cases, the original mode of the constant
2284	   value is preserved as the mode of the CONST_DOUBLE rtx, but for
2285	   simplicity we always just output CONST_DOUBLEs using 8 bytes.  */
2286
2287	ASM_OUTPUT_DWARF_DATA8 (asm_out_file,
2288				(unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (rtl),
2289				(unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (rtl));
2290	break;
2291
2292      case CONST_STRING:
2293	ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, XSTR (rtl, 0));
2294	break;
2295
2296      case SYMBOL_REF:
2297      case LABEL_REF:
2298      case CONST:
2299	ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2300	break;
2301
2302      case PLUS:
2303	/* In cases where an inlined instance of an inline function is passed
2304	   the address of an `auto' variable (which is local to the caller)
2305	   we can get a situation where the DECL_RTL of the artificial
2306	   local variable (for the inlining) which acts as a stand-in for
2307	   the corresponding formal parameter (of the inline function)
2308	   will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).
2309	   This is not exactly a compile-time constant expression, but it
2310	   isn't the address of the (artificial) local variable either.
2311	   Rather, it represents the *value* which the artificial local
2312	   variable always has during its lifetime.  We currently have no
2313	   way to represent such quasi-constant values in Dwarf, so for now
2314	   we just punt and generate an AT_const_value attribute with form
2315	   FORM_BLOCK4 and a length of zero.  */
2316	break;
2317
2318      default:
2319	abort ();  /* No other kinds of rtx should be possible here.  */
2320    }
2321
2322  ASM_OUTPUT_LABEL (asm_out_file, end_label);
2323}
2324
2325/* Generate *either* an AT_location attribute or else an AT_const_value
2326   data attribute for a variable or a parameter.  We generate the
2327   AT_const_value attribute only in those cases where the given
2328   variable or parameter does not have a true "location" either in
2329   memory or in a register.  This can happen (for example) when a
2330   constant is passed as an actual argument in a call to an inline
2331   function.  (It's possible that these things can crop up in other
2332   ways also.)  Note that one type of constant value which can be
2333   passed into an inlined function is a constant pointer.  This can
2334   happen for example if an actual argument in an inlined function
2335   call evaluates to a compile-time constant address.  */
2336
2337static void
2338location_or_const_value_attribute (decl)
2339     register tree decl;
2340{
2341  register rtx rtl;
2342
2343  if (TREE_CODE (decl) == ERROR_MARK)
2344    return;
2345
2346  if ((TREE_CODE (decl) != VAR_DECL) && (TREE_CODE (decl) != PARM_DECL))
2347    {
2348      /* Should never happen.  */
2349      abort ();
2350      return;
2351    }
2352
2353  /* Here we have to decide where we are going to say the parameter "lives"
2354     (as far as the debugger is concerned).  We only have a couple of choices.
2355     GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.  DECL_RTL
2356     normally indicates where the parameter lives during most of the activa-
2357     tion of the function.  If optimization is enabled however, this could
2358     be either NULL or else a pseudo-reg.  Both of those cases indicate that
2359     the parameter doesn't really live anywhere (as far as the code generation
2360     parts of GCC are concerned) during most of the function's activation.
2361     That will happen (for example) if the parameter is never referenced
2362     within the function.
2363
2364     We could just generate a location descriptor here for all non-NULL
2365     non-pseudo values of DECL_RTL and ignore all of the rest, but we can
2366     be a little nicer than that if we also consider DECL_INCOMING_RTL in
2367     cases where DECL_RTL is NULL or is a pseudo-reg.
2368
2369     Note however that we can only get away with using DECL_INCOMING_RTL as
2370     a backup substitute for DECL_RTL in certain limited cases.  In cases
2371     where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl)
2372     we can be sure that the parameter was passed using the same type as it
2373     is declared to have within the function, and that its DECL_INCOMING_RTL
2374     points us to a place where a value of that type is passed.  In cases
2375     where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types
2376     however, we cannot (in general) use DECL_INCOMING_RTL as a backup
2377     substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL
2378     points us to a value of some type which is *different* from the type
2379     of the parameter itself.  Thus, if we tried to use DECL_INCOMING_RTL
2380     to generate a location attribute in such cases, the debugger would
2381     end up (for example) trying to fetch a `float' from a place which
2382     actually contains the first part of a `double'.  That would lead to
2383     really incorrect and confusing output at debug-time, and we don't
2384     want that now do we?
2385
2386     So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL
2387     in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl).  There are a
2388     couple of cute exceptions however.  On little-endian machines we can
2389     get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is
2390     not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is
2391     an integral type which is smaller than TREE_TYPE(decl).  These cases
2392     arise when (on a little-endian machine) a non-prototyped function has
2393     a parameter declared to be of type `short' or `char'.  In such cases,
2394     TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be
2395     `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
2396     passed `int' value.  If the debugger then uses that address to fetch a
2397     `short' or a `char' (on a little-endian machine) the result will be the
2398     correct data, so we allow for such exceptional cases below.
2399
2400     Note that our goal here is to describe the place where the given formal
2401     parameter lives during most of the function's activation (i.e. between
2402     the end of the prologue and the start of the epilogue).  We'll do that
2403     as best as we can.  Note however that if the given formal parameter is
2404     modified sometime during the execution of the function, then a stack
2405     backtrace (at debug-time) will show the function as having been called
2406     with the *new* value rather than the value which was originally passed
2407     in.  This happens rarely enough that it is not a major problem, but it
2408     *is* a problem, and I'd like to fix it.  A future version of dwarfout.c
2409     may generate two additional attributes for any given TAG_formal_parameter
2410     DIE which will describe the "passed type" and the "passed location" for
2411     the given formal parameter in addition to the attributes we now generate
2412     to indicate the "declared type" and the "active location" for each
2413     parameter.  This additional set of attributes could be used by debuggers
2414     for stack backtraces.
2415
2416     Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL
2417     can be NULL also.  This happens (for example) for inlined-instances of
2418     inline function formal parameters which are never referenced.  This really
2419     shouldn't be happening.  All PARM_DECL nodes should get valid non-NULL
2420     DECL_INCOMING_RTL values, but integrate.c doesn't currently generate
2421     these values for inlined instances of inline function parameters, so
2422     when we see such cases, we are just out-of-luck for the time
2423     being (until integrate.c gets fixed).
2424  */
2425
2426  /* Use DECL_RTL as the "location" unless we find something better.  */
2427  rtl = DECL_RTL (decl);
2428
2429  if (TREE_CODE (decl) == PARM_DECL)
2430    if (rtl == NULL_RTX || is_pseudo_reg (rtl))
2431      {
2432	/* This decl represents a formal parameter which was optimized out.  */
2433        register tree declared_type = type_main_variant (TREE_TYPE (decl));
2434        register tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
2435
2436	/* Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2437	   *all* cases where (rtl == NULL_RTX) just below.  */
2438
2439	if (declared_type == passed_type)
2440	  rtl = DECL_INCOMING_RTL (decl);
2441	else if (! BYTES_BIG_ENDIAN)
2442	  if (TREE_CODE (declared_type) == INTEGER_TYPE)
2443	    if (TYPE_SIZE (declared_type) <= TYPE_SIZE (passed_type))
2444	      rtl = DECL_INCOMING_RTL (decl);
2445      }
2446
2447  if (rtl == NULL_RTX)
2448    return;
2449
2450  rtl = eliminate_regs (rtl, 0, NULL_RTX);
2451#ifdef LEAF_REG_REMAP
2452  if (current_function_uses_only_leaf_regs)
2453    leaf_renumber_regs_insn (rtl);
2454#endif
2455
2456  switch (GET_CODE (rtl))
2457    {
2458    case ADDRESSOF:
2459      /* The address of a variable that was optimized away; don't emit
2460	 anything.  */
2461      break;
2462
2463    case CONST_INT:
2464    case CONST_DOUBLE:
2465    case CONST_STRING:
2466    case SYMBOL_REF:
2467    case LABEL_REF:
2468    case CONST:
2469    case PLUS:	/* DECL_RTL could be (plus (reg ...) (const_int ...)) */
2470      const_value_attribute (rtl);
2471      break;
2472
2473    case MEM:
2474    case REG:
2475    case SUBREG:
2476      location_attribute (rtl);
2477      break;
2478
2479    case CONCAT:
2480      /* ??? CONCAT is used for complex variables, which may have the real
2481	 part stored in one place and the imag part stored somewhere else.
2482	 DWARF1 has no way to describe a variable that lives in two different
2483	 places, so we just describe where the first part lives, and hope that
2484	 the second part is stored after it.  */
2485      location_attribute (XEXP (rtl, 0));
2486      break;
2487
2488    default:
2489      abort ();		/* Should never happen.  */
2490    }
2491}
2492
2493/* Generate an AT_name attribute given some string value to be included as
2494   the value of the attribute.	*/
2495
2496static inline void
2497name_attribute (name_string)
2498     register char *name_string;
2499{
2500  if (name_string && *name_string)
2501    {
2502      ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_name);
2503      ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, name_string);
2504    }
2505}
2506
2507static inline void
2508fund_type_attribute (ft_code)
2509     register unsigned ft_code;
2510{
2511  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_fund_type);
2512  ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, ft_code);
2513}
2514
2515static void
2516mod_fund_type_attribute (type, decl_const, decl_volatile)
2517     register tree type;
2518     register int decl_const;
2519     register int decl_volatile;
2520{
2521  char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2522  char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2523
2524  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_fund_type);
2525  sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2526  sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2527  ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2528  ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2529  write_modifier_bytes (type, decl_const, decl_volatile);
2530  ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2531			      fundamental_type_code (root_type (type)));
2532  ASM_OUTPUT_LABEL (asm_out_file, end_label);
2533}
2534
2535static inline void
2536user_def_type_attribute (type)
2537     register tree type;
2538{
2539  char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2540
2541  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_user_def_type);
2542  sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (type));
2543  ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2544}
2545
2546static void
2547mod_u_d_type_attribute (type, decl_const, decl_volatile)
2548     register tree type;
2549     register int decl_const;
2550     register int decl_volatile;
2551{
2552  char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2553  char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2554  char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2555
2556  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_u_d_type);
2557  sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2558  sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2559  ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2560  ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2561  write_modifier_bytes (type, decl_const, decl_volatile);
2562  sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (root_type (type)));
2563  ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2564  ASM_OUTPUT_LABEL (asm_out_file, end_label);
2565}
2566
2567#ifdef USE_ORDERING_ATTRIBUTE
2568static inline void
2569ordering_attribute (ordering)
2570     register unsigned ordering;
2571{
2572  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_ordering);
2573  ASM_OUTPUT_DWARF_DATA2 (asm_out_file, ordering);
2574}
2575#endif /* defined(USE_ORDERING_ATTRIBUTE) */
2576
2577/* Note that the block of subscript information for an array type also
2578   includes information about the element type of type given array type.  */
2579
2580static void
2581subscript_data_attribute (type)
2582     register tree type;
2583{
2584  register unsigned dimension_number;
2585  char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2586  char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2587
2588  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_subscr_data);
2589  sprintf (begin_label, SS_BEGIN_LABEL_FMT, current_dienum);
2590  sprintf (end_label, SS_END_LABEL_FMT, current_dienum);
2591  ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2592  ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2593
2594  /* The GNU compilers represent multidimensional array types as sequences
2595     of one dimensional array types whose element types are themselves array
2596     types.  Here we squish that down, so that each multidimensional array
2597     type gets only one array_type DIE in the Dwarf debugging info.  The
2598     draft Dwarf specification say that we are allowed to do this kind
2599     of compression in C (because there is no difference between an
2600     array or arrays and a multidimensional array in C) but for other
2601     source languages (e.g. Ada) we probably shouldn't do this.  */
2602
2603  for (dimension_number = 0;
2604	TREE_CODE (type) == ARRAY_TYPE;
2605	type = TREE_TYPE (type), dimension_number++)
2606    {
2607      register tree domain = TYPE_DOMAIN (type);
2608
2609      /* Arrays come in three flavors.	Unspecified bounds, fixed
2610	 bounds, and (in GNU C only) variable bounds.  Handle all
2611	 three forms here.  */
2612
2613      if (domain)
2614	{
2615	  /* We have an array type with specified bounds.  */
2616
2617	  register tree lower = TYPE_MIN_VALUE (domain);
2618	  register tree upper = TYPE_MAX_VALUE (domain);
2619
2620	  /* Handle only fundamental types as index types for now.  */
2621
2622	  if (! type_is_fundamental (domain))
2623	    abort ();
2624
2625	  /* Output the representation format byte for this dimension.  */
2626
2627	  ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file,
2628		  FMT_CODE (1, TREE_CODE (lower) == INTEGER_CST,
2629			    (upper && TREE_CODE (upper) == INTEGER_CST)));
2630
2631	  /* Output the index type for this dimension.	*/
2632
2633	  ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2634				      fundamental_type_code (domain));
2635
2636	  /* Output the representation for the lower bound.  */
2637
2638	  output_bound_representation (lower, dimension_number, 'l');
2639
2640	  /* Output the representation for the upper bound.  */
2641
2642	  output_bound_representation (upper, dimension_number, 'u');
2643	}
2644      else
2645	{
2646	  /* We have an array type with an unspecified length.	For C and
2647	     C++ we can assume that this really means that (a) the index
2648	     type is an integral type, and (b) the lower bound is zero.
2649	     Note that Dwarf defines the representation of an unspecified
2650	     (upper) bound as being a zero-length location description.	 */
2651
2652	  /* Output the array-bounds format byte.  */
2653
2654	  ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_FT_C_X);
2655
2656	  /* Output the (assumed) index type.  */
2657
2658	  ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, FT_integer);
2659
2660	  /* Output the (assumed) lower bound (constant) value.	 */
2661
2662	  ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
2663
2664	  /* Output the (empty) location description for the upper bound.  */
2665
2666	  ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
2667	}
2668    }
2669
2670  /* Output the prefix byte that says that the element type is coming up.  */
2671
2672  ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_ET);
2673
2674  /* Output a representation of the type of the elements of this array type.  */
2675
2676  type_attribute (type, 0, 0);
2677
2678  ASM_OUTPUT_LABEL (asm_out_file, end_label);
2679}
2680
2681static void
2682byte_size_attribute (tree_node)
2683     register tree tree_node;
2684{
2685  register unsigned size;
2686
2687  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_byte_size);
2688  switch (TREE_CODE (tree_node))
2689    {
2690      case ERROR_MARK:
2691	size = 0;
2692	break;
2693
2694      case ENUMERAL_TYPE:
2695      case RECORD_TYPE:
2696      case UNION_TYPE:
2697      case QUAL_UNION_TYPE:
2698      case ARRAY_TYPE:
2699	size = int_size_in_bytes (tree_node);
2700	break;
2701
2702      case FIELD_DECL:
2703	/* For a data member of a struct or union, the AT_byte_size is
2704	   generally given as the number of bytes normally allocated for
2705	   an object of the *declared* type of the member itself.  This
2706	   is true even for bit-fields.  */
2707	size = simple_type_size_in_bits (field_type (tree_node))
2708	       / BITS_PER_UNIT;
2709	break;
2710
2711      default:
2712	abort ();
2713    }
2714
2715  /* Note that `size' might be -1 when we get to this point.  If it
2716     is, that indicates that the byte size of the entity in question
2717     is variable.  We have no good way of expressing this fact in Dwarf
2718     at the present time, so just let the -1 pass on through.  */
2719
2720  ASM_OUTPUT_DWARF_DATA4 (asm_out_file, size);
2721}
2722
2723/* For a FIELD_DECL node which represents a bit-field, output an attribute
2724   which specifies the distance in bits from the highest order bit of the
2725   "containing object" for the bit-field to the highest order bit of the
2726   bit-field itself.
2727
2728   For any given bit-field, the "containing object" is a hypothetical
2729   object (of some integral or enum type) within which the given bit-field
2730   lives.  The type of this hypothetical "containing object" is always the
2731   same as the declared type of the individual bit-field itself.
2732
2733   The determination of the exact location of the "containing object" for
2734   a bit-field is rather complicated.  It's handled by the `field_byte_offset'
2735   function (above).
2736
2737   Note that it is the size (in bytes) of the hypothetical "containing
2738   object" which will be given in the AT_byte_size attribute for this
2739   bit-field.  (See `byte_size_attribute' above.) */
2740
2741static inline void
2742bit_offset_attribute (decl)
2743    register tree decl;
2744{
2745  register unsigned object_offset_in_bytes = field_byte_offset (decl);
2746  register tree type = DECL_BIT_FIELD_TYPE (decl);
2747  register tree bitpos_tree = DECL_FIELD_BITPOS (decl);
2748  register unsigned bitpos_int;
2749  register unsigned highest_order_object_bit_offset;
2750  register unsigned highest_order_field_bit_offset;
2751  register unsigned bit_offset;
2752
2753  /* Must be a bit field.  */
2754  if (!type
2755      || TREE_CODE (decl) != FIELD_DECL)
2756    abort ();
2757
2758  /* We can't yet handle bit-fields whose offsets are variable, so if we
2759     encounter such things, just return without generating any attribute
2760     whatsoever.  */
2761
2762  if (TREE_CODE (bitpos_tree) != INTEGER_CST)
2763    return;
2764  bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);
2765
2766  /* Note that the bit offset is always the distance (in bits) from the
2767     highest-order bit of the "containing object" to the highest-order
2768     bit of the bit-field itself.  Since the "high-order end" of any
2769     object or field is different on big-endian and little-endian machines,
2770     the computation below must take account of these differences.  */
2771
2772  highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
2773  highest_order_field_bit_offset = bitpos_int;
2774
2775  if (! BYTES_BIG_ENDIAN)
2776    {
2777      highest_order_field_bit_offset
2778	+= (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl));
2779
2780      highest_order_object_bit_offset += simple_type_size_in_bits (type);
2781    }
2782
2783  bit_offset =
2784    (! BYTES_BIG_ENDIAN
2785     ? highest_order_object_bit_offset - highest_order_field_bit_offset
2786     : highest_order_field_bit_offset - highest_order_object_bit_offset);
2787
2788  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_offset);
2789  ASM_OUTPUT_DWARF_DATA2 (asm_out_file, bit_offset);
2790}
2791
2792/* For a FIELD_DECL node which represents a bit field, output an attribute
2793   which specifies the length in bits of the given field.  */
2794
2795static inline void
2796bit_size_attribute (decl)
2797    register tree decl;
2798{
2799  /* Must be a field and a bit field.  */
2800  if (TREE_CODE (decl) != FIELD_DECL
2801      || ! DECL_BIT_FIELD_TYPE (decl))
2802    abort ();
2803
2804  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_size);
2805  ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
2806			  (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl)));
2807}
2808
2809/* The following routine outputs the `element_list' attribute for enumeration
2810   type DIEs.  The element_lits attribute includes the names and values of
2811   all of the enumeration constants associated with the given enumeration
2812   type.  */
2813
2814static inline void
2815element_list_attribute (element)
2816     register tree element;
2817{
2818  char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2819  char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2820
2821  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_element_list);
2822  sprintf (begin_label, EE_BEGIN_LABEL_FMT, current_dienum);
2823  sprintf (end_label, EE_END_LABEL_FMT, current_dienum);
2824  ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2825  ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2826
2827  /* Here we output a list of value/name pairs for each enumeration constant
2828     defined for this enumeration type (as required), but we do it in REVERSE
2829     order.  The order is the one required by the draft #5 Dwarf specification
2830     published by the UI/PLSIG.  */
2831
2832  output_enumeral_list (element);   /* Recursively output the whole list.  */
2833
2834  ASM_OUTPUT_LABEL (asm_out_file, end_label);
2835}
2836
2837/* Generate an AT_stmt_list attribute.	These are normally present only in
2838   DIEs with a TAG_compile_unit tag.  */
2839
2840static inline void
2841stmt_list_attribute (label)
2842    register char *label;
2843{
2844  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_stmt_list);
2845  /* Don't use ASM_OUTPUT_DWARF_DATA4 here.  */
2846  ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
2847}
2848
2849/* Generate an AT_low_pc attribute for a label DIE, a lexical_block DIE or
2850   for a subroutine DIE.  */
2851
2852static inline void
2853low_pc_attribute (asm_low_label)
2854     register char *asm_low_label;
2855{
2856  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_low_pc);
2857  ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_low_label);
2858}
2859
2860/* Generate an AT_high_pc attribute for a lexical_block DIE or for a
2861   subroutine DIE.  */
2862
2863static inline void
2864high_pc_attribute (asm_high_label)
2865    register char *asm_high_label;
2866{
2867  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_high_pc);
2868  ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_high_label);
2869}
2870
2871/* Generate an AT_body_begin attribute for a subroutine DIE.  */
2872
2873static inline void
2874body_begin_attribute (asm_begin_label)
2875     register char *asm_begin_label;
2876{
2877  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_begin);
2878  ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_begin_label);
2879}
2880
2881/* Generate an AT_body_end attribute for a subroutine DIE.  */
2882
2883static inline void
2884body_end_attribute (asm_end_label)
2885     register char *asm_end_label;
2886{
2887  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_end);
2888  ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_end_label);
2889}
2890
2891/* Generate an AT_language attribute given a LANG value.  These attributes
2892   are used only within TAG_compile_unit DIEs.  */
2893
2894static inline void
2895language_attribute (language_code)
2896     register unsigned language_code;
2897{
2898  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_language);
2899  ASM_OUTPUT_DWARF_DATA4 (asm_out_file, language_code);
2900}
2901
2902static inline void
2903member_attribute (context)
2904    register tree context;
2905{
2906  char label[MAX_ARTIFICIAL_LABEL_BYTES];
2907
2908  /* Generate this attribute only for members in C++.  */
2909
2910  if (context != NULL && is_tagged_type (context))
2911    {
2912      ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_member);
2913      sprintf (label, TYPE_NAME_FMT, TYPE_UID (context));
2914      ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2915    }
2916}
2917
2918#if 0
2919static inline void
2920string_length_attribute (upper_bound)
2921     register tree upper_bound;
2922{
2923  char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2924  char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2925
2926  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_string_length);
2927  sprintf (begin_label, SL_BEGIN_LABEL_FMT, current_dienum);
2928  sprintf (end_label, SL_END_LABEL_FMT, current_dienum);
2929  ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2930  ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2931  output_bound_representation (upper_bound, 0, 'u');
2932  ASM_OUTPUT_LABEL (asm_out_file, end_label);
2933}
2934#endif
2935
2936static inline void
2937comp_dir_attribute (dirname)
2938     register char *dirname;
2939{
2940  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_comp_dir);
2941  ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
2942}
2943
2944static inline void
2945sf_names_attribute (sf_names_start_label)
2946     register char *sf_names_start_label;
2947{
2948  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sf_names);
2949  /* Don't use ASM_OUTPUT_DWARF_DATA4 here.  */
2950  ASM_OUTPUT_DWARF_ADDR (asm_out_file, sf_names_start_label);
2951}
2952
2953static inline void
2954src_info_attribute (src_info_start_label)
2955     register char *src_info_start_label;
2956{
2957  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_info);
2958  /* Don't use ASM_OUTPUT_DWARF_DATA4 here.  */
2959  ASM_OUTPUT_DWARF_ADDR (asm_out_file, src_info_start_label);
2960}
2961
2962static inline void
2963mac_info_attribute (mac_info_start_label)
2964     register char *mac_info_start_label;
2965{
2966  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mac_info);
2967  /* Don't use ASM_OUTPUT_DWARF_DATA4 here.  */
2968  ASM_OUTPUT_DWARF_ADDR (asm_out_file, mac_info_start_label);
2969}
2970
2971static inline void
2972prototyped_attribute (func_type)
2973     register tree func_type;
2974{
2975  if ((strcmp (language_string, "GNU C") == 0)
2976      && (TYPE_ARG_TYPES (func_type) != NULL))
2977    {
2978      ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_prototyped);
2979      ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
2980    }
2981}
2982
2983static inline void
2984producer_attribute (producer)
2985     register char *producer;
2986{
2987  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_producer);
2988  ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, producer);
2989}
2990
2991static inline void
2992inline_attribute (decl)
2993     register tree decl;
2994{
2995  if (DECL_INLINE (decl))
2996    {
2997      ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_inline);
2998      ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
2999    }
3000}
3001
3002static inline void
3003containing_type_attribute (containing_type)
3004     register tree containing_type;
3005{
3006  char label[MAX_ARTIFICIAL_LABEL_BYTES];
3007
3008  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_containing_type);
3009  sprintf (label, TYPE_NAME_FMT, TYPE_UID (containing_type));
3010  ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3011}
3012
3013static inline void
3014abstract_origin_attribute (origin)
3015     register tree origin;
3016{
3017  char label[MAX_ARTIFICIAL_LABEL_BYTES];
3018
3019  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_abstract_origin);
3020  switch (TREE_CODE_CLASS (TREE_CODE (origin)))
3021    {
3022    case 'd':
3023      sprintf (label, DECL_NAME_FMT, DECL_UID (origin));
3024      break;
3025
3026    case 't':
3027      sprintf (label, TYPE_NAME_FMT, TYPE_UID (origin));
3028      break;
3029
3030    default:
3031      abort ();		/* Should never happen.  */
3032
3033    }
3034  ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3035}
3036
3037#ifdef DWARF_DECL_COORDINATES
3038static inline void
3039src_coords_attribute (src_fileno, src_lineno)
3040     register unsigned src_fileno;
3041     register unsigned src_lineno;
3042{
3043  ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_coords);
3044  ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_fileno);
3045  ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_lineno);
3046}
3047#endif /* defined(DWARF_DECL_COORDINATES) */
3048
3049static inline void
3050pure_or_virtual_attribute (func_decl)
3051     register tree func_decl;
3052{
3053  if (DECL_VIRTUAL_P (func_decl))
3054    {
3055#if 0 /* DECL_ABSTRACT_VIRTUAL_P is C++-specific.  */
3056      if (DECL_ABSTRACT_VIRTUAL_P (func_decl))
3057        ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_pure_virtual);
3058      else
3059#endif
3060        ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
3061      ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3062    }
3063}
3064
3065/************************* end of attributes *****************************/
3066
3067/********************* utility routines for DIEs *************************/
3068
3069/* Output an AT_name attribute and an AT_src_coords attribute for the
3070   given decl, but only if it actually has a name.  */
3071
3072static void
3073name_and_src_coords_attributes (decl)
3074    register tree decl;
3075{
3076  register tree decl_name = DECL_NAME (decl);
3077
3078  if (decl_name && IDENTIFIER_POINTER (decl_name))
3079    {
3080      name_attribute (IDENTIFIER_POINTER (decl_name));
3081#ifdef DWARF_DECL_COORDINATES
3082      {
3083	register unsigned file_index;
3084
3085	/* This is annoying, but we have to pop out of the .debug section
3086	   for a moment while we call `lookup_filename' because calling it
3087	   may cause a temporary switch into the .debug_sfnames section and
3088	   most svr4 assemblers are not smart enough to be able to nest
3089	   section switches to any depth greater than one.  Note that we
3090	   also can't skirt this issue by delaying all output to the
3091	   .debug_sfnames section unit the end of compilation because that
3092	   would cause us to have inter-section forward references and
3093	   Fred Fish sez that m68k/svr4 assemblers botch those.  */
3094
3095	ASM_OUTPUT_POP_SECTION (asm_out_file);
3096	file_index = lookup_filename (DECL_SOURCE_FILE (decl));
3097	ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
3098
3099        src_coords_attribute (file_index, DECL_SOURCE_LINE (decl));
3100      }
3101#endif /* defined(DWARF_DECL_COORDINATES) */
3102    }
3103}
3104
3105/* Many forms of DIEs contain a "type description" part.  The following
3106   routine writes out these "type descriptor" parts.  */
3107
3108static void
3109type_attribute (type, decl_const, decl_volatile)
3110     register tree type;
3111     register int decl_const;
3112     register int decl_volatile;
3113{
3114  register enum tree_code code = TREE_CODE (type);
3115  register int root_type_modified;
3116
3117  if (code == ERROR_MARK)
3118    return;
3119
3120  /* Handle a special case.  For functions whose return type is void,
3121     we generate *no* type attribute.  (Note that no object may have
3122     type `void', so this only applies to function return types.  */
3123
3124  if (code == VOID_TYPE)
3125    return;
3126
3127  /* If this is a subtype, find the underlying type.  Eventually,
3128     this should write out the appropriate subtype info.  */
3129  while ((code == INTEGER_TYPE || code == REAL_TYPE)
3130	 && TREE_TYPE (type) != 0)
3131    type = TREE_TYPE (type), code = TREE_CODE (type);
3132
3133  root_type_modified = (code == POINTER_TYPE || code == REFERENCE_TYPE
3134			|| decl_const || decl_volatile
3135			|| TYPE_READONLY (type) || TYPE_VOLATILE (type));
3136
3137  if (type_is_fundamental (root_type (type)))
3138    {
3139      if (root_type_modified)
3140	mod_fund_type_attribute (type, decl_const, decl_volatile);
3141      else
3142	fund_type_attribute (fundamental_type_code (type));
3143    }
3144  else
3145    {
3146      if (root_type_modified)
3147	mod_u_d_type_attribute (type, decl_const, decl_volatile);
3148      else
3149	/* We have to get the type_main_variant here (and pass that to the
3150	   `user_def_type_attribute' routine) because the ..._TYPE node we
3151	   have might simply be a *copy* of some original type node (where
3152	   the copy was created to help us keep track of typedef names)
3153	   and that copy might have a different TYPE_UID from the original
3154	   ..._TYPE node.  (Note that when `equate_type_number_to_die_number'
3155	   is labeling a given type DIE for future reference, it always and
3156	   only creates labels for DIEs representing *main variants*, and it
3157	   never even knows about non-main-variants.)  */
3158	user_def_type_attribute (type_main_variant (type));
3159    }
3160}
3161
3162/* Given a tree pointer to a struct, class, union, or enum type node, return
3163   a pointer to the (string) tag name for the given type, or zero if the
3164   type was declared without a tag.  */
3165
3166static char *
3167type_tag (type)
3168     register tree type;
3169{
3170  register char *name = 0;
3171
3172  if (TYPE_NAME (type) != 0)
3173    {
3174      register tree t = 0;
3175
3176      /* Find the IDENTIFIER_NODE for the type name.  */
3177      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3178	t = TYPE_NAME (type);
3179
3180      /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
3181         a TYPE_DECL node, regardless of whether or not a `typedef' was
3182         involved.  */
3183      else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
3184	       && ! DECL_IGNORED_P (TYPE_NAME (type)))
3185	  t = DECL_NAME (TYPE_NAME (type));
3186
3187      /* Now get the name as a string, or invent one.  */
3188      if (t != 0)
3189	name = IDENTIFIER_POINTER (t);
3190    }
3191
3192  return (name == 0 || *name == '\0') ? 0 : name;
3193}
3194
3195static inline void
3196dienum_push ()
3197{
3198  /* Start by checking if the pending_sibling_stack needs to be expanded.
3199     If necessary, expand it.  */
3200
3201  if (pending_siblings == pending_siblings_allocated)
3202    {
3203      pending_siblings_allocated += PENDING_SIBLINGS_INCREMENT;
3204      pending_sibling_stack
3205	= (unsigned *) xrealloc (pending_sibling_stack,
3206				 pending_siblings_allocated * sizeof(unsigned));
3207    }
3208
3209  pending_siblings++;
3210  NEXT_DIE_NUM = next_unused_dienum++;
3211}
3212
3213/* Pop the sibling stack so that the most recently pushed DIEnum becomes the
3214   NEXT_DIE_NUM.  */
3215
3216static inline void
3217dienum_pop ()
3218{
3219  pending_siblings--;
3220}
3221
3222static inline tree
3223member_declared_type (member)
3224     register tree member;
3225{
3226  return (DECL_BIT_FIELD_TYPE (member))
3227	   ? DECL_BIT_FIELD_TYPE (member)
3228	   : TREE_TYPE (member);
3229}
3230
3231/* Get the function's label, as described by its RTL.
3232   This may be different from the DECL_NAME name used
3233   in the source file.  */
3234
3235static char *
3236function_start_label (decl)
3237    register tree decl;
3238{
3239  rtx x;
3240  char *fnname;
3241
3242  x = DECL_RTL (decl);
3243  if (GET_CODE (x) != MEM)
3244    abort ();
3245  x = XEXP (x, 0);
3246  if (GET_CODE (x) != SYMBOL_REF)
3247	       abort ();
3248  fnname = XSTR (x, 0);
3249  return fnname;
3250}
3251
3252
3253/******************************* DIEs ************************************/
3254
3255/* Output routines for individual types of DIEs.  */
3256
3257/* Note that every type of DIE (except a null DIE) gets a sibling.  */
3258
3259static void
3260output_array_type_die (arg)
3261     register void *arg;
3262{
3263  register tree type = arg;
3264
3265  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_array_type);
3266  sibling_attribute ();
3267  equate_type_number_to_die_number (type);
3268  member_attribute (TYPE_CONTEXT (type));
3269
3270  /* I believe that we can default the array ordering.  SDB will probably
3271     do the right things even if AT_ordering is not present.  It's not
3272     even an issue until we start to get into multidimensional arrays
3273     anyway.  If SDB is ever caught doing the Wrong Thing for multi-
3274     dimensional arrays, then we'll have to put the AT_ordering attribute
3275     back in.  (But if and when we find out that we need to put these in,
3276     we will only do so for multidimensional arrays.  After all, we don't
3277     want to waste space in the .debug section now do we?)  */
3278
3279#ifdef USE_ORDERING_ATTRIBUTE
3280  ordering_attribute (ORD_row_major);
3281#endif /* defined(USE_ORDERING_ATTRIBUTE) */
3282
3283  subscript_data_attribute (type);
3284}
3285
3286static void
3287output_set_type_die (arg)
3288     register void *arg;
3289{
3290  register tree type = arg;
3291
3292  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_set_type);
3293  sibling_attribute ();
3294  equate_type_number_to_die_number (type);
3295  member_attribute (TYPE_CONTEXT (type));
3296  type_attribute (TREE_TYPE (type), 0, 0);
3297}
3298
3299#if 0
3300/* Implement this when there is a GNU FORTRAN or GNU Ada front end.  */
3301
3302static void
3303output_entry_point_die (arg)
3304     register void *arg;
3305{
3306  register tree decl = arg;
3307  register tree origin = decl_ultimate_origin (decl);
3308
3309  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_entry_point);
3310  sibling_attribute ();
3311  dienum_push ();
3312  if (origin != NULL)
3313    abstract_origin_attribute (origin);
3314  else
3315    {
3316      name_and_src_coords_attributes (decl);
3317      member_attribute (DECL_CONTEXT (decl));
3318      type_attribute (TREE_TYPE (TREE_TYPE (decl)), 0, 0);
3319    }
3320  if (DECL_ABSTRACT (decl))
3321    equate_decl_number_to_die_number (decl);
3322  else
3323    low_pc_attribute (function_start_label (decl));
3324}
3325#endif
3326
3327/* Output a DIE to represent an inlined instance of an enumeration type.  */
3328
3329static void
3330output_inlined_enumeration_type_die (arg)
3331     register void *arg;
3332{
3333  register tree type = arg;
3334
3335  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3336  sibling_attribute ();
3337  if (!TREE_ASM_WRITTEN (type))
3338    abort ();
3339  abstract_origin_attribute (type);
3340}
3341
3342/* Output a DIE to represent an inlined instance of a structure type.  */
3343
3344static void
3345output_inlined_structure_type_die (arg)
3346     register void *arg;
3347{
3348  register tree type = arg;
3349
3350  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3351  sibling_attribute ();
3352  if (!TREE_ASM_WRITTEN (type))
3353    abort ();
3354  abstract_origin_attribute (type);
3355}
3356
3357/* Output a DIE to represent an inlined instance of a union type.  */
3358
3359static void
3360output_inlined_union_type_die (arg)
3361     register void *arg;
3362{
3363  register tree type = arg;
3364
3365  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3366  sibling_attribute ();
3367  if (!TREE_ASM_WRITTEN (type))
3368    abort ();
3369  abstract_origin_attribute (type);
3370}
3371
3372/* Output a DIE to represent an enumeration type.  Note that these DIEs
3373   include all of the information about the enumeration values also.
3374   This information is encoded into the element_list attribute.	 */
3375
3376static void
3377output_enumeration_type_die (arg)
3378     register void *arg;
3379{
3380  register tree type = arg;
3381
3382  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3383  sibling_attribute ();
3384  equate_type_number_to_die_number (type);
3385  name_attribute (type_tag (type));
3386  member_attribute (TYPE_CONTEXT (type));
3387
3388  /* Handle a GNU C/C++ extension, i.e. incomplete enum types.  If the
3389     given enum type is incomplete, do not generate the AT_byte_size
3390     attribute or the AT_element_list attribute.  */
3391
3392  if (TYPE_SIZE (type))
3393    {
3394      byte_size_attribute (type);
3395      element_list_attribute (TYPE_FIELDS (type));
3396    }
3397}
3398
3399/* Output a DIE to represent either a real live formal parameter decl or
3400   to represent just the type of some formal parameter position in some
3401   function type.
3402
3403   Note that this routine is a bit unusual because its argument may be
3404   a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
3405   represents an inlining of some PARM_DECL) or else some sort of a
3406   ..._TYPE node.  If it's the former then this function is being called
3407   to output a DIE to represent a formal parameter object (or some inlining
3408   thereof).  If it's the latter, then this function is only being called
3409   to output a TAG_formal_parameter DIE to stand as a placeholder for some
3410   formal argument type of some subprogram type.  */
3411
3412static void
3413output_formal_parameter_die (arg)
3414     register void *arg;
3415{
3416  register tree node = arg;
3417
3418  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_formal_parameter);
3419  sibling_attribute ();
3420
3421  switch (TREE_CODE_CLASS (TREE_CODE (node)))
3422    {
3423    case 'd':	/* We were called with some kind of a ..._DECL node.  */
3424      {
3425	register tree origin = decl_ultimate_origin (node);
3426
3427	if (origin != NULL)
3428	  abstract_origin_attribute (origin);
3429	else
3430	  {
3431	    name_and_src_coords_attributes (node);
3432	    type_attribute (TREE_TYPE (node),
3433			    TREE_READONLY (node), TREE_THIS_VOLATILE (node));
3434	  }
3435	if (DECL_ABSTRACT (node))
3436	  equate_decl_number_to_die_number (node);
3437	else
3438	  location_or_const_value_attribute (node);
3439      }
3440      break;
3441
3442    case 't':	/* We were called with some kind of a ..._TYPE node.  */
3443      type_attribute (node, 0, 0);
3444      break;
3445
3446    default:
3447      abort ();	/* Should never happen.  */
3448    }
3449}
3450
3451/* Output a DIE to represent a declared function (either file-scope
3452   or block-local) which has "external linkage" (according to ANSI-C).  */
3453
3454static void
3455output_global_subroutine_die (arg)
3456     register void *arg;
3457{
3458  register tree decl = arg;
3459  register tree origin = decl_ultimate_origin (decl);
3460
3461  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_subroutine);
3462  sibling_attribute ();
3463  dienum_push ();
3464  if (origin != NULL)
3465    abstract_origin_attribute (origin);
3466  else
3467    {
3468      register tree type = TREE_TYPE (decl);
3469
3470      name_and_src_coords_attributes (decl);
3471      inline_attribute (decl);
3472      prototyped_attribute (type);
3473      member_attribute (DECL_CONTEXT (decl));
3474      type_attribute (TREE_TYPE (type), 0, 0);
3475      pure_or_virtual_attribute (decl);
3476    }
3477  if (DECL_ABSTRACT (decl))
3478    equate_decl_number_to_die_number (decl);
3479  else
3480    {
3481      if (! DECL_EXTERNAL (decl) && ! in_class
3482	  && decl == current_function_decl)
3483	{
3484	  char label[MAX_ARTIFICIAL_LABEL_BYTES];
3485
3486	  low_pc_attribute (function_start_label (decl));
3487	  sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3488	  high_pc_attribute (label);
3489	  if (use_gnu_debug_info_extensions)
3490	    {
3491	      sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3492	      body_begin_attribute (label);
3493	      sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3494	      body_end_attribute (label);
3495	    }
3496	}
3497    }
3498}
3499
3500/* Output a DIE to represent a declared data object (either file-scope
3501   or block-local) which has "external linkage" (according to ANSI-C).  */
3502
3503static void
3504output_global_variable_die (arg)
3505     register void *arg;
3506{
3507  register tree decl = arg;
3508  register tree origin = decl_ultimate_origin (decl);
3509
3510  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_variable);
3511  sibling_attribute ();
3512  if (origin != NULL)
3513    abstract_origin_attribute (origin);
3514  else
3515    {
3516      name_and_src_coords_attributes (decl);
3517      member_attribute (DECL_CONTEXT (decl));
3518      type_attribute (TREE_TYPE (decl),
3519		      TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3520    }
3521  if (DECL_ABSTRACT (decl))
3522    equate_decl_number_to_die_number (decl);
3523  else
3524    {
3525      if (! DECL_EXTERNAL (decl) && ! in_class
3526	  && current_function_decl == decl_function_context (decl))
3527	location_or_const_value_attribute (decl);
3528    }
3529}
3530
3531static void
3532output_label_die (arg)
3533     register void *arg;
3534{
3535  register tree decl = arg;
3536  register tree origin = decl_ultimate_origin (decl);
3537
3538  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_label);
3539  sibling_attribute ();
3540  if (origin != NULL)
3541    abstract_origin_attribute (origin);
3542  else
3543    name_and_src_coords_attributes (decl);
3544  if (DECL_ABSTRACT (decl))
3545    equate_decl_number_to_die_number (decl);
3546  else
3547    {
3548      register rtx insn = DECL_RTL (decl);
3549
3550      /* Deleted labels are programmer specified labels which have been
3551	 eliminated because of various optimisations.  We still emit them
3552	 here so that it is possible to put breakpoints on them.  */
3553      if (GET_CODE (insn) == CODE_LABEL
3554	  || ((GET_CODE (insn) == NOTE
3555	       && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
3556	{
3557	  char label[MAX_ARTIFICIAL_LABEL_BYTES];
3558
3559	  /* When optimization is enabled (via -O) some parts of the compiler
3560	     (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
3561	     represent source-level labels which were explicitly declared by
3562	     the user.  This really shouldn't be happening though, so catch
3563	     it if it ever does happen.  */
3564
3565	  if (INSN_DELETED_P (insn))
3566	    abort ();	/* Should never happen.  */
3567
3568	  sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
3569				          (unsigned) INSN_UID (insn));
3570	  low_pc_attribute (label);
3571	}
3572    }
3573}
3574
3575static void
3576output_lexical_block_die (arg)
3577     register void *arg;
3578{
3579  register tree stmt = arg;
3580
3581  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_lexical_block);
3582  sibling_attribute ();
3583  dienum_push ();
3584  if (! BLOCK_ABSTRACT (stmt))
3585    {
3586      char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3587      char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3588
3589      sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, next_block_number);
3590      low_pc_attribute (begin_label);
3591      sprintf (end_label, BLOCK_END_LABEL_FMT, next_block_number);
3592      high_pc_attribute (end_label);
3593    }
3594}
3595
3596static void
3597output_inlined_subroutine_die (arg)
3598     register void *arg;
3599{
3600  register tree stmt = arg;
3601
3602  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inlined_subroutine);
3603  sibling_attribute ();
3604  dienum_push ();
3605  abstract_origin_attribute (block_ultimate_origin (stmt));
3606  if (! BLOCK_ABSTRACT (stmt))
3607    {
3608      char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3609      char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3610
3611      sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, next_block_number);
3612      low_pc_attribute (begin_label);
3613      sprintf (end_label, BLOCK_END_LABEL_FMT, next_block_number);
3614      high_pc_attribute (end_label);
3615    }
3616}
3617
3618/* Output a DIE to represent a declared data object (either file-scope
3619   or block-local) which has "internal linkage" (according to ANSI-C).  */
3620
3621static void
3622output_local_variable_die (arg)
3623     register void *arg;
3624{
3625  register tree decl = arg;
3626  register tree origin = decl_ultimate_origin (decl);
3627
3628  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_local_variable);
3629  sibling_attribute ();
3630  if (origin != NULL)
3631    abstract_origin_attribute (origin);
3632  else
3633    {
3634      name_and_src_coords_attributes (decl);
3635      member_attribute (DECL_CONTEXT (decl));
3636      type_attribute (TREE_TYPE (decl),
3637		      TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3638    }
3639  if (DECL_ABSTRACT (decl))
3640    equate_decl_number_to_die_number (decl);
3641  else
3642    location_or_const_value_attribute (decl);
3643}
3644
3645static void
3646output_member_die (arg)
3647     register void *arg;
3648{
3649  register tree decl = arg;
3650
3651  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_member);
3652  sibling_attribute ();
3653  name_and_src_coords_attributes (decl);
3654  member_attribute (DECL_CONTEXT (decl));
3655  type_attribute (member_declared_type (decl),
3656		  TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3657  if (DECL_BIT_FIELD_TYPE (decl))	/* If this is a bit field...  */
3658    {
3659      byte_size_attribute (decl);
3660      bit_size_attribute (decl);
3661      bit_offset_attribute (decl);
3662    }
3663  data_member_location_attribute (decl);
3664}
3665
3666#if 0
3667/* Don't generate either pointer_type DIEs or reference_type DIEs.  Use
3668   modified types instead.
3669
3670   We keep this code here just in case these types of DIEs may be
3671   needed to represent certain things in other languages (e.g. Pascal)
3672   someday.  */
3673
3674static void
3675output_pointer_type_die (arg)
3676     register void *arg;
3677{
3678  register tree type = arg;
3679
3680  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_pointer_type);
3681  sibling_attribute ();
3682  equate_type_number_to_die_number (type);
3683  member_attribute (TYPE_CONTEXT (type));
3684  type_attribute (TREE_TYPE (type), 0, 0);
3685}
3686
3687static void
3688output_reference_type_die (arg)
3689     register void *arg;
3690{
3691  register tree type = arg;
3692
3693  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_reference_type);
3694  sibling_attribute ();
3695  equate_type_number_to_die_number (type);
3696  member_attribute (TYPE_CONTEXT (type));
3697  type_attribute (TREE_TYPE (type), 0, 0);
3698}
3699#endif
3700
3701static void
3702output_ptr_to_mbr_type_die (arg)
3703     register void *arg;
3704{
3705  register tree type = arg;
3706
3707  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_ptr_to_member_type);
3708  sibling_attribute ();
3709  equate_type_number_to_die_number (type);
3710  member_attribute (TYPE_CONTEXT (type));
3711  containing_type_attribute (TYPE_OFFSET_BASETYPE (type));
3712  type_attribute (TREE_TYPE (type), 0, 0);
3713}
3714
3715static void
3716output_compile_unit_die (arg)
3717     register void *arg;
3718{
3719  register char *main_input_filename = arg;
3720
3721  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_compile_unit);
3722  sibling_attribute ();
3723  dienum_push ();
3724  name_attribute (main_input_filename);
3725
3726  {
3727    char producer[250];
3728
3729    sprintf (producer, "%s %s", language_string, version_string);
3730    producer_attribute (producer);
3731  }
3732
3733  if (strcmp (language_string, "GNU C++") == 0)
3734    language_attribute (LANG_C_PLUS_PLUS);
3735  else if (strcmp (language_string, "GNU Ada") == 0)
3736    language_attribute (LANG_ADA83);
3737  else if (strcmp (language_string, "GNU F77") == 0)
3738    language_attribute (LANG_FORTRAN77);
3739  else if (strcmp (language_string, "GNU Pascal") == 0)
3740    language_attribute (LANG_PASCAL83);
3741  else if (flag_traditional)
3742    language_attribute (LANG_C);
3743  else
3744    language_attribute (LANG_C89);
3745  low_pc_attribute (TEXT_BEGIN_LABEL);
3746  high_pc_attribute (TEXT_END_LABEL);
3747  if (debug_info_level >= DINFO_LEVEL_NORMAL)
3748    stmt_list_attribute (LINE_BEGIN_LABEL);
3749  last_filename = xstrdup (main_input_filename);
3750
3751  {
3752    char *wd = getpwd ();
3753    if (wd)
3754      comp_dir_attribute (wd);
3755  }
3756
3757  if (debug_info_level >= DINFO_LEVEL_NORMAL && use_gnu_debug_info_extensions)
3758    {
3759      sf_names_attribute (SFNAMES_BEGIN_LABEL);
3760      src_info_attribute (SRCINFO_BEGIN_LABEL);
3761      if (debug_info_level >= DINFO_LEVEL_VERBOSE)
3762        mac_info_attribute (MACINFO_BEGIN_LABEL);
3763    }
3764}
3765
3766static void
3767output_string_type_die (arg)
3768     register void *arg;
3769{
3770  register tree type = arg;
3771
3772  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_string_type);
3773  sibling_attribute ();
3774  equate_type_number_to_die_number (type);
3775  member_attribute (TYPE_CONTEXT (type));
3776  /* this is a fixed length string */
3777  byte_size_attribute (type);
3778}
3779
3780static void
3781output_inheritance_die (arg)
3782     register void *arg;
3783{
3784  register tree binfo = arg;
3785
3786  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inheritance);
3787  sibling_attribute ();
3788  type_attribute (BINFO_TYPE (binfo), 0, 0);
3789  data_member_location_attribute (binfo);
3790  if (TREE_VIA_VIRTUAL (binfo))
3791    {
3792      ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
3793      ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3794    }
3795  if (TREE_VIA_PUBLIC (binfo))
3796    {
3797      ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_public);
3798      ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3799    }
3800  else if (TREE_VIA_PROTECTED (binfo))
3801    {
3802      ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_protected);
3803      ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3804    }
3805}
3806
3807static void
3808output_structure_type_die (arg)
3809     register void *arg;
3810{
3811  register tree type = arg;
3812
3813  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3814  sibling_attribute ();
3815  equate_type_number_to_die_number (type);
3816  name_attribute (type_tag (type));
3817  member_attribute (TYPE_CONTEXT (type));
3818
3819  /* If this type has been completed, then give it a byte_size attribute
3820     and prepare to give a list of members.  Otherwise, don't do either of
3821     these things.  In the latter case, we will not be generating a list
3822     of members (since we don't have any idea what they might be for an
3823     incomplete type).	*/
3824
3825  if (TYPE_SIZE (type))
3826    {
3827      dienum_push ();
3828      byte_size_attribute (type);
3829    }
3830}
3831
3832/* Output a DIE to represent a declared function (either file-scope
3833   or block-local) which has "internal linkage" (according to ANSI-C).  */
3834
3835static void
3836output_local_subroutine_die (arg)
3837     register void *arg;
3838{
3839  register tree decl = arg;
3840  register tree origin = decl_ultimate_origin (decl);
3841
3842  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine);
3843  sibling_attribute ();
3844  dienum_push ();
3845  if (origin != NULL)
3846    abstract_origin_attribute (origin);
3847  else
3848    {
3849      register tree type = TREE_TYPE (decl);
3850
3851      name_and_src_coords_attributes (decl);
3852      inline_attribute (decl);
3853      prototyped_attribute (type);
3854      member_attribute (DECL_CONTEXT (decl));
3855      type_attribute (TREE_TYPE (type), 0, 0);
3856      pure_or_virtual_attribute (decl);
3857    }
3858  if (DECL_ABSTRACT (decl))
3859    equate_decl_number_to_die_number (decl);
3860  else
3861    {
3862      /* Avoid getting screwed up in cases where a function was declared
3863	 static but where no definition was ever given for it.  */
3864
3865      if (TREE_ASM_WRITTEN (decl))
3866	{
3867	  char label[MAX_ARTIFICIAL_LABEL_BYTES];
3868	  low_pc_attribute (function_start_label (decl));
3869	  sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3870	  high_pc_attribute (label);
3871	  if (use_gnu_debug_info_extensions)
3872	    {
3873	      sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3874	      body_begin_attribute (label);
3875	      sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3876	      body_end_attribute (label);
3877	    }
3878	}
3879    }
3880}
3881
3882static void
3883output_subroutine_type_die (arg)
3884     register void *arg;
3885{
3886  register tree type = arg;
3887  register tree return_type = TREE_TYPE (type);
3888
3889  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine_type);
3890  sibling_attribute ();
3891  dienum_push ();
3892  equate_type_number_to_die_number (type);
3893  prototyped_attribute (type);
3894  member_attribute (TYPE_CONTEXT (type));
3895  type_attribute (return_type, 0, 0);
3896}
3897
3898static void
3899output_typedef_die (arg)
3900     register void *arg;
3901{
3902  register tree decl = arg;
3903  register tree origin = decl_ultimate_origin (decl);
3904
3905  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_typedef);
3906  sibling_attribute ();
3907  if (origin != NULL)
3908    abstract_origin_attribute (origin);
3909  else
3910    {
3911      name_and_src_coords_attributes (decl);
3912      member_attribute (DECL_CONTEXT (decl));
3913      type_attribute (TREE_TYPE (decl),
3914		      TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3915    }
3916  if (DECL_ABSTRACT (decl))
3917    equate_decl_number_to_die_number (decl);
3918}
3919
3920static void
3921output_union_type_die (arg)
3922     register void *arg;
3923{
3924  register tree type = arg;
3925
3926  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3927  sibling_attribute ();
3928  equate_type_number_to_die_number (type);
3929  name_attribute (type_tag (type));
3930  member_attribute (TYPE_CONTEXT (type));
3931
3932  /* If this type has been completed, then give it a byte_size attribute
3933     and prepare to give a list of members.  Otherwise, don't do either of
3934     these things.  In the latter case, we will not be generating a list
3935     of members (since we don't have any idea what they might be for an
3936     incomplete type).	*/
3937
3938  if (TYPE_SIZE (type))
3939    {
3940      dienum_push ();
3941      byte_size_attribute (type);
3942    }
3943}
3944
3945/* Generate a special type of DIE used as a stand-in for a trailing ellipsis
3946   at the end of an (ANSI prototyped) formal parameters list.  */
3947
3948static void
3949output_unspecified_parameters_die (arg)
3950     register void *arg;
3951{
3952  register tree decl_or_type = arg;
3953
3954  ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_unspecified_parameters);
3955  sibling_attribute ();
3956
3957  /* This kludge is here only for the sake of being compatible with what
3958     the USL CI5 C compiler does.  The specification of Dwarf Version 1
3959     doesn't say that TAG_unspecified_parameters DIEs should contain any
3960     attributes other than the AT_sibling attribute, but they are certainly
3961     allowed to contain additional attributes, and the CI5 compiler
3962     generates AT_name, AT_fund_type, and AT_location attributes within
3963     TAG_unspecified_parameters DIEs which appear in the child lists for
3964     DIEs representing function definitions, so we do likewise here.  */
3965
3966  if (TREE_CODE (decl_or_type) == FUNCTION_DECL && DECL_INITIAL (decl_or_type))
3967    {
3968      name_attribute ("...");
3969      fund_type_attribute (FT_pointer);
3970      /* location_attribute (?); */
3971    }
3972}
3973
3974static void
3975output_padded_null_die (arg)
3976     register void *arg ATTRIBUTE_UNUSED;
3977{
3978  ASM_OUTPUT_ALIGN (asm_out_file, 2);	/* 2**2 == 4 */
3979}
3980
3981/*************************** end of DIEs *********************************/
3982
3983/* Generate some type of DIE.  This routine generates the generic outer
3984   wrapper stuff which goes around all types of DIE's (regardless of their
3985   TAGs.  All forms of DIEs start with a DIE-specific label, followed by a
3986   DIE-length word, followed by the guts of the DIE itself.  After the guts
3987   of the DIE, there must always be a terminator label for the DIE.  */
3988
3989static void
3990output_die (die_specific_output_function, param)
3991     register void (*die_specific_output_function) PROTO ((void *));
3992     register void *param;
3993{
3994  char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3995  char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3996
3997  current_dienum = NEXT_DIE_NUM;
3998  NEXT_DIE_NUM = next_unused_dienum;
3999
4000  sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
4001  sprintf (end_label, DIE_END_LABEL_FMT, current_dienum);
4002
4003  /* Write a label which will act as the name for the start of this DIE.  */
4004
4005  ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4006
4007  /* Write the DIE-length word.	 */
4008
4009  ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
4010
4011  /* Fill in the guts of the DIE.  */
4012
4013  next_unused_dienum++;
4014  die_specific_output_function (param);
4015
4016  /* Write a label which will act as the name for the end of this DIE.	*/
4017
4018  ASM_OUTPUT_LABEL (asm_out_file, end_label);
4019}
4020
4021static void
4022end_sibling_chain ()
4023{
4024  char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4025
4026  current_dienum = NEXT_DIE_NUM;
4027  NEXT_DIE_NUM = next_unused_dienum;
4028
4029  sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
4030
4031  /* Write a label which will act as the name for the start of this DIE.  */
4032
4033  ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4034
4035  /* Write the DIE-length word.	 */
4036
4037  ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 4);
4038
4039  dienum_pop ();
4040}
4041
4042/* Generate a list of nameless TAG_formal_parameter DIEs (and perhaps a
4043   TAG_unspecified_parameters DIE) to represent the types of the formal
4044   parameters as specified in some function type specification (except
4045   for those which appear as part of a function *definition*).
4046
4047   Note that we must be careful here to output all of the parameter
4048   DIEs *before* we output any DIEs needed to represent the types of
4049   the formal parameters.  This keeps svr4 SDB happy because it
4050   (incorrectly) thinks that the first non-parameter DIE it sees ends
4051   the formal parameter list.  */
4052
4053static void
4054output_formal_types (function_or_method_type)
4055     register tree function_or_method_type;
4056{
4057  register tree link;
4058  register tree formal_type = NULL;
4059  register tree first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
4060
4061  /* Set TREE_ASM_WRITTEN while processing the parameters, lest we
4062     get bogus recursion when outputting tagged types local to a
4063     function declaration.  */
4064  int save_asm_written = TREE_ASM_WRITTEN (function_or_method_type);
4065  TREE_ASM_WRITTEN (function_or_method_type) = 1;
4066
4067  /* In the case where we are generating a formal types list for a C++
4068     non-static member function type, skip over the first thing on the
4069     TYPE_ARG_TYPES list because it only represents the type of the
4070     hidden `this pointer'.  The debugger should be able to figure
4071     out (without being explicitly told) that this non-static member
4072     function type takes a `this pointer' and should be able to figure
4073     what the type of that hidden parameter is from the AT_member
4074     attribute of the parent TAG_subroutine_type DIE.  */
4075
4076  if (TREE_CODE (function_or_method_type) == METHOD_TYPE)
4077    first_parm_type = TREE_CHAIN (first_parm_type);
4078
4079  /* Make our first pass over the list of formal parameter types and output
4080     a TAG_formal_parameter DIE for each one.  */
4081
4082  for (link = first_parm_type; link; link = TREE_CHAIN (link))
4083    {
4084      formal_type = TREE_VALUE (link);
4085      if (formal_type == void_type_node)
4086	break;
4087
4088      /* Output a (nameless) DIE to represent the formal parameter itself.  */
4089
4090      output_die (output_formal_parameter_die, formal_type);
4091    }
4092
4093  /* If this function type has an ellipsis, add a TAG_unspecified_parameters
4094     DIE to the end of the parameter list.  */
4095
4096  if (formal_type != void_type_node)
4097    output_die (output_unspecified_parameters_die, function_or_method_type);
4098
4099  /* Make our second (and final) pass over the list of formal parameter types
4100     and output DIEs to represent those types (as necessary).  */
4101
4102  for (link = TYPE_ARG_TYPES (function_or_method_type);
4103       link;
4104       link = TREE_CHAIN (link))
4105    {
4106      formal_type = TREE_VALUE (link);
4107      if (formal_type == void_type_node)
4108	break;
4109
4110      output_type (formal_type, function_or_method_type);
4111    }
4112
4113  TREE_ASM_WRITTEN (function_or_method_type) = save_asm_written;
4114}
4115
4116/* Remember a type in the pending_types_list.  */
4117
4118static void
4119pend_type (type)
4120     register tree type;
4121{
4122  if (pending_types == pending_types_allocated)
4123    {
4124      pending_types_allocated += PENDING_TYPES_INCREMENT;
4125      pending_types_list
4126	= (tree *) xrealloc (pending_types_list,
4127			     sizeof (tree) * pending_types_allocated);
4128    }
4129  pending_types_list[pending_types++] = type;
4130
4131  /* Mark the pending type as having been output already (even though
4132     it hasn't been).  This prevents the type from being added to the
4133     pending_types_list more than once.  */
4134
4135  TREE_ASM_WRITTEN (type) = 1;
4136}
4137
4138/* Return non-zero if it is legitimate to output DIEs to represent a
4139   given type while we are generating the list of child DIEs for some
4140   DIE (e.g. a function or lexical block DIE) associated with a given scope.
4141
4142   See the comments within the function for a description of when it is
4143   considered legitimate to output DIEs for various kinds of types.
4144
4145   Note that TYPE_CONTEXT(type) may be NULL (to indicate global scope)
4146   or it may point to a BLOCK node (for types local to a block), or to a
4147   FUNCTION_DECL node (for types local to the heading of some function
4148   definition), or to a FUNCTION_TYPE node (for types local to the
4149   prototyped parameter list of a function type specification), or to a
4150   RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE node
4151   (in the case of C++ nested types).
4152
4153   The `scope' parameter should likewise be NULL or should point to a
4154   BLOCK node, a FUNCTION_DECL node, a FUNCTION_TYPE node, a RECORD_TYPE
4155   node, a UNION_TYPE node, or a QUAL_UNION_TYPE node.
4156
4157   This function is used only for deciding when to "pend" and when to
4158   "un-pend" types to/from the pending_types_list.
4159
4160   Note that we sometimes make use of this "type pending" feature in a
4161   rather twisted way to temporarily delay the production of DIEs for the
4162   types of formal parameters.  (We do this just to make svr4 SDB happy.)
4163   It order to delay the production of DIEs representing types of formal
4164   parameters, callers of this function supply `fake_containing_scope' as
4165   the `scope' parameter to this function.  Given that fake_containing_scope
4166   is a tagged type which is *not* the containing scope for *any* other type,
4167   the desired effect is achieved, i.e. output of DIEs representing types
4168   is temporarily suspended, and any type DIEs which would have otherwise
4169   been output are instead placed onto the pending_types_list.  Later on,
4170   we force these (temporarily pended) types to be output simply by calling
4171   `output_pending_types_for_scope' with an actual argument equal to the
4172   true scope of the types we temporarily pended.  */
4173
4174static inline int
4175type_ok_for_scope (type, scope)
4176    register tree type;
4177    register tree scope;
4178{
4179  /* Tagged types (i.e. struct, union, and enum types) must always be
4180     output only in the scopes where they actually belong (or else the
4181     scoping of their own tag names and the scoping of their member
4182     names will be incorrect).  Non-tagged-types on the other hand can
4183     generally be output anywhere, except that svr4 SDB really doesn't
4184     want to see them nested within struct or union types, so here we
4185     say it is always OK to immediately output any such a (non-tagged)
4186     type, so long as we are not within such a context.  Note that the
4187     only kinds of non-tagged types which we will be dealing with here
4188     (for C and C++ anyway) will be array types and function types.  */
4189
4190  return is_tagged_type (type)
4191	 ? (TYPE_CONTEXT (type) == scope
4192	    /* Ignore namespaces for the moment.  */
4193	    || (scope == NULL_TREE
4194		&& TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL)
4195	    || (scope == NULL_TREE && is_tagged_type (TYPE_CONTEXT (type))
4196		&& TREE_ASM_WRITTEN (TYPE_CONTEXT (type))))
4197	 : (scope == NULL_TREE || ! is_tagged_type (scope));
4198}
4199
4200/* Output any pending types (from the pending_types list) which we can output
4201   now (taking into account the scope that we are working on now).
4202
4203   For each type output, remove the given type from the pending_types_list
4204   *before* we try to output it.
4205
4206   Note that we have to process the list in beginning-to-end order,
4207   because the call made here to output_type may cause yet more types
4208   to be added to the end of the list, and we may have to output some
4209   of them too.  */
4210
4211static void
4212output_pending_types_for_scope (containing_scope)
4213     register tree containing_scope;
4214{
4215  register unsigned i;
4216
4217  for (i = 0; i < pending_types; )
4218    {
4219      register tree type = pending_types_list[i];
4220
4221      if (type_ok_for_scope (type, containing_scope))
4222	{
4223	  register tree *mover;
4224	  register tree *limit;
4225
4226	  pending_types--;
4227	  limit = &pending_types_list[pending_types];
4228	  for (mover = &pending_types_list[i]; mover < limit; mover++)
4229	    *mover = *(mover+1);
4230
4231	  /* Un-mark the type as having been output already (because it
4232	     hasn't been, really).  Then call output_type to generate a
4233	     Dwarf representation of it.  */
4234
4235	  TREE_ASM_WRITTEN (type) = 0;
4236	  output_type (type, containing_scope);
4237
4238	  /* Don't increment the loop counter in this case because we
4239	     have shifted all of the subsequent pending types down one
4240	     element in the pending_types_list array.  */
4241	}
4242      else
4243	i++;
4244    }
4245}
4246
4247/* Remember a type in the incomplete_types_list.  */
4248
4249static void
4250add_incomplete_type (type)
4251     tree type;
4252{
4253  if (incomplete_types == incomplete_types_allocated)
4254    {
4255      incomplete_types_allocated += INCOMPLETE_TYPES_INCREMENT;
4256      incomplete_types_list
4257	= (tree *) xrealloc (incomplete_types_list,
4258			     sizeof (tree) * incomplete_types_allocated);
4259    }
4260
4261  incomplete_types_list[incomplete_types++] = type;
4262}
4263
4264/* Walk through the list of incomplete types again, trying once more to
4265   emit full debugging info for them.  */
4266
4267static void
4268retry_incomplete_types ()
4269{
4270  register tree type;
4271
4272  finalizing = 1;
4273  while (incomplete_types)
4274    {
4275      --incomplete_types;
4276      type = incomplete_types_list[incomplete_types];
4277      output_type (type, NULL_TREE);
4278    }
4279}
4280
4281static void
4282output_type (type, containing_scope)
4283     register tree type;
4284     register tree containing_scope;
4285{
4286  if (type == 0 || type == error_mark_node)
4287    return;
4288
4289  /* We are going to output a DIE to represent the unqualified version of
4290     this type (i.e. without any const or volatile qualifiers) so get
4291     the main variant (i.e. the unqualified version) of this type now.  */
4292
4293  type = type_main_variant (type);
4294
4295  if (TREE_ASM_WRITTEN (type))
4296    {
4297      if (finalizing && AGGREGATE_TYPE_P (type))
4298	{
4299	  register tree member;
4300
4301	  /* Some of our nested types might not have been defined when we
4302	     were written out before; force them out now.  */
4303
4304	  for (member = TYPE_FIELDS (type); member;
4305	       member = TREE_CHAIN (member))
4306	    if (TREE_CODE (member) == TYPE_DECL
4307		&& ! TREE_ASM_WRITTEN (TREE_TYPE (member)))
4308	      output_type (TREE_TYPE (member), containing_scope);
4309	}
4310      return;
4311    }
4312
4313  /* If this is a nested type whose containing class hasn't been
4314     written out yet, writing it out will cover this one, too.  */
4315
4316  if (TYPE_CONTEXT (type)
4317      && TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't'
4318      && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
4319    {
4320      output_type (TYPE_CONTEXT (type), containing_scope);
4321      return;
4322    }
4323
4324  /* Don't generate any DIEs for this type now unless it is OK to do so
4325     (based upon what `type_ok_for_scope' tells us).  */
4326
4327  if (! type_ok_for_scope (type, containing_scope))
4328    {
4329      pend_type (type);
4330      return;
4331    }
4332
4333  switch (TREE_CODE (type))
4334    {
4335      case ERROR_MARK:
4336	break;
4337
4338      case POINTER_TYPE:
4339      case REFERENCE_TYPE:
4340	/* Prevent infinite recursion in cases where this is a recursive
4341	   type.  Recursive types are possible in Ada.  */
4342	TREE_ASM_WRITTEN (type) = 1;
4343	/* For these types, all that is required is that we output a DIE
4344	   (or a set of DIEs) to represent the "basis" type.  */
4345	output_type (TREE_TYPE (type), containing_scope);
4346	break;
4347
4348      case OFFSET_TYPE:
4349	/* This code is used for C++ pointer-to-data-member types.  */
4350	/* Output a description of the relevant class type.  */
4351	output_type (TYPE_OFFSET_BASETYPE (type), containing_scope);
4352	/* Output a description of the type of the object pointed to.  */
4353	output_type (TREE_TYPE (type), containing_scope);
4354	/* Now output a DIE to represent this pointer-to-data-member type
4355	   itself.  */
4356	output_die (output_ptr_to_mbr_type_die, type);
4357	break;
4358
4359      case SET_TYPE:
4360	output_type (TYPE_DOMAIN (type), containing_scope);
4361	output_die (output_set_type_die, type);
4362	break;
4363
4364      case FILE_TYPE:
4365	output_type (TREE_TYPE (type), containing_scope);
4366	abort ();	/* No way to represent these in Dwarf yet!  */
4367	break;
4368
4369      case FUNCTION_TYPE:
4370	/* Force out return type (in case it wasn't forced out already).  */
4371	output_type (TREE_TYPE (type), containing_scope);
4372	output_die (output_subroutine_type_die, type);
4373	output_formal_types (type);
4374	end_sibling_chain ();
4375	break;
4376
4377      case METHOD_TYPE:
4378	/* Force out return type (in case it wasn't forced out already).  */
4379	output_type (TREE_TYPE (type), containing_scope);
4380	output_die (output_subroutine_type_die, type);
4381	output_formal_types (type);
4382	end_sibling_chain ();
4383	break;
4384
4385      case ARRAY_TYPE:
4386	if (TYPE_STRING_FLAG (type) && TREE_CODE(TREE_TYPE(type)) == CHAR_TYPE)
4387	  {
4388	    output_type (TREE_TYPE (type), containing_scope);
4389	    output_die (output_string_type_die, type);
4390	  }
4391	else
4392	  {
4393	    register tree element_type;
4394
4395	    element_type = TREE_TYPE (type);
4396	    while (TREE_CODE (element_type) == ARRAY_TYPE)
4397	      element_type = TREE_TYPE (element_type);
4398
4399	    output_type (element_type, containing_scope);
4400	    output_die (output_array_type_die, type);
4401	  }
4402	break;
4403
4404      case ENUMERAL_TYPE:
4405      case RECORD_TYPE:
4406      case UNION_TYPE:
4407      case QUAL_UNION_TYPE:
4408
4409	/* For a non-file-scope tagged type, we can always go ahead and
4410	   output a Dwarf description of this type right now, even if
4411	   the type in question is still incomplete, because if this
4412	   local type *was* ever completed anywhere within its scope,
4413	   that complete definition would already have been attached to
4414	   this RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
4415	   node by the time we reach this point.  That's true because of the
4416	   way the front-end does its processing of file-scope declarations (of
4417	   functions and class types) within which other types might be
4418	   nested.  The C and C++ front-ends always gobble up such "local
4419	   scope" things en-mass before they try to output *any* debugging
4420	   information for any of the stuff contained inside them and thus,
4421	   we get the benefit here of what is (in effect) a pre-resolution
4422	   of forward references to tagged types in local scopes.
4423
4424	   Note however that for file-scope tagged types we cannot assume
4425	   that such pre-resolution of forward references has taken place.
4426	   A given file-scope tagged type may appear to be incomplete when
4427	   we reach this point, but it may yet be given a full definition
4428	   (at file-scope) later on during compilation.  In order to avoid
4429	   generating a premature (and possibly incorrect) set of Dwarf
4430	   DIEs for such (as yet incomplete) file-scope tagged types, we
4431	   generate nothing at all for as-yet incomplete file-scope tagged
4432	   types here unless we are making our special "finalization" pass
4433	   for file-scope things at the very end of compilation.  At that
4434	   time, we will certainly know as much about each file-scope tagged
4435	   type as we are ever going to know, so at that point in time, we
4436	   can safely generate correct Dwarf descriptions for these file-
4437	   scope tagged types.  */
4438
4439	if (TYPE_SIZE (type) == 0
4440	    && (TYPE_CONTEXT (type) == NULL
4441		|| (TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't'
4442		    && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_TYPE
4443		    && TREE_CODE (TYPE_CONTEXT (type)) != METHOD_TYPE))
4444	    && !finalizing)
4445	  {
4446	    /* We can't do this for function-local types, and we don't need
4447               to.  */
4448	    if (TREE_PERMANENT (type))
4449	      add_incomplete_type (type);
4450	    return;	/* EARLY EXIT!  Avoid setting TREE_ASM_WRITTEN.  */
4451	  }
4452
4453	/* Prevent infinite recursion in cases where the type of some
4454	   member of this type is expressed in terms of this type itself.  */
4455
4456	TREE_ASM_WRITTEN (type) = 1;
4457
4458	/* Output a DIE to represent the tagged type itself.  */
4459
4460	switch (TREE_CODE (type))
4461	  {
4462	  case ENUMERAL_TYPE:
4463	    output_die (output_enumeration_type_die, type);
4464	    return;  /* a special case -- nothing left to do so just return */
4465
4466	  case RECORD_TYPE:
4467	    output_die (output_structure_type_die, type);
4468	    break;
4469
4470	  case UNION_TYPE:
4471	  case QUAL_UNION_TYPE:
4472	    output_die (output_union_type_die, type);
4473	    break;
4474
4475	  default:
4476	    abort ();	/* Should never happen.  */
4477	  }
4478
4479	/* If this is not an incomplete type, output descriptions of
4480	   each of its members.
4481
4482	   Note that as we output the DIEs necessary to represent the
4483	   members of this record or union type, we will also be trying
4484	   to output DIEs to represent the *types* of those members.
4485	   However the `output_type' function (above) will specifically
4486	   avoid generating type DIEs for member types *within* the list
4487	   of member DIEs for this (containing) type execpt for those
4488	   types (of members) which are explicitly marked as also being
4489	   members of this (containing) type themselves.  The g++ front-
4490	   end can force any given type to be treated as a member of some
4491	   other (containing) type by setting the TYPE_CONTEXT of the
4492	   given (member) type to point to the TREE node representing the
4493	   appropriate (containing) type.
4494	*/
4495
4496	if (TYPE_SIZE (type))
4497	  {
4498	    /* First output info about the base classes.  */
4499	    if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type))
4500	      {
4501		register tree bases = TYPE_BINFO_BASETYPES (type);
4502		register int n_bases = TREE_VEC_LENGTH (bases);
4503		register int i;
4504
4505		for (i = 0; i < n_bases; i++)
4506		  {
4507		    tree binfo = TREE_VEC_ELT (bases, i);
4508		    output_type (BINFO_TYPE (binfo), containing_scope);
4509		    output_die (output_inheritance_die, binfo);
4510		  }
4511	      }
4512
4513	    ++in_class;
4514
4515	    {
4516	      register tree normal_member;
4517
4518	      /* Now output info about the data members and type members.  */
4519
4520	      for (normal_member = TYPE_FIELDS (type);
4521		   normal_member;
4522		   normal_member = TREE_CHAIN (normal_member))
4523	        output_decl (normal_member, type);
4524	    }
4525
4526	    {
4527	      register tree func_member;
4528
4529	      /* Now output info about the function members (if any).  */
4530
4531	      for (func_member = TYPE_METHODS (type);
4532		   func_member;
4533		   func_member = TREE_CHAIN (func_member))
4534		output_decl (func_member, type);
4535	    }
4536
4537	    --in_class;
4538
4539	    /* RECORD_TYPEs, UNION_TYPEs, and QUAL_UNION_TYPEs are themselves
4540	       scopes (at least in C++) so we must now output any nested
4541	       pending types which are local just to this type.  */
4542
4543	    output_pending_types_for_scope (type);
4544
4545	    end_sibling_chain ();	/* Terminate member chain.  */
4546	  }
4547
4548	break;
4549
4550      case VOID_TYPE:
4551      case INTEGER_TYPE:
4552      case REAL_TYPE:
4553      case COMPLEX_TYPE:
4554      case BOOLEAN_TYPE:
4555      case CHAR_TYPE:
4556	break;		/* No DIEs needed for fundamental types.  */
4557
4558      case LANG_TYPE:	/* No Dwarf representation currently defined.  */
4559	break;
4560
4561      default:
4562	abort ();
4563    }
4564
4565  TREE_ASM_WRITTEN (type) = 1;
4566}
4567
4568static void
4569output_tagged_type_instantiation (type)
4570     register tree type;
4571{
4572  if (type == 0 || type == error_mark_node)
4573    return;
4574
4575  /* We are going to output a DIE to represent the unqualified version of
4576     this type (i.e. without any const or volatile qualifiers) so make
4577     sure that we have the main variant (i.e. the unqualified version) of
4578     this type now.  */
4579
4580  if (type != type_main_variant (type))
4581    abort ();
4582
4583  if (!TREE_ASM_WRITTEN (type))
4584    abort ();
4585
4586  switch (TREE_CODE (type))
4587    {
4588      case ERROR_MARK:
4589	break;
4590
4591      case ENUMERAL_TYPE:
4592	output_die (output_inlined_enumeration_type_die, type);
4593	break;
4594
4595      case RECORD_TYPE:
4596	output_die (output_inlined_structure_type_die, type);
4597	break;
4598
4599      case UNION_TYPE:
4600      case QUAL_UNION_TYPE:
4601	output_die (output_inlined_union_type_die, type);
4602	break;
4603
4604      default:
4605	abort ();	/* Should never happen.  */
4606    }
4607}
4608
4609/* Output a TAG_lexical_block DIE followed by DIEs to represent all of
4610   the things which are local to the given block.  */
4611
4612static void
4613output_block (stmt, depth)
4614    register tree stmt;
4615    int depth;
4616{
4617  register int must_output_die = 0;
4618  register tree origin;
4619  register enum tree_code origin_code;
4620
4621  /* Ignore blocks never really used to make RTL.  */
4622
4623  if (! stmt || ! TREE_USED (stmt))
4624    return;
4625
4626  /* Determine the "ultimate origin" of this block.  This block may be an
4627     inlined instance of an inlined instance of inline function, so we
4628     have to trace all of the way back through the origin chain to find
4629     out what sort of node actually served as the original seed for the
4630     creation of the current block.  */
4631
4632  origin = block_ultimate_origin (stmt);
4633  origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
4634
4635  /* Determine if we need to output any Dwarf DIEs at all to represent this
4636     block.  */
4637
4638  if (origin_code == FUNCTION_DECL)
4639    /* The outer scopes for inlinings *must* always be represented.  We
4640       generate TAG_inlined_subroutine DIEs for them.  (See below.)  */
4641    must_output_die = 1;
4642  else
4643    {
4644      /* In the case where the current block represents an inlining of the
4645	 "body block" of an inline function, we must *NOT* output any DIE
4646	 for this block because we have already output a DIE to represent
4647	 the whole inlined function scope and the "body block" of any
4648	 function doesn't really represent a different scope according to
4649	 ANSI C rules.  So we check here to make sure that this block does
4650	 not represent a "body block inlining" before trying to set the
4651	 `must_output_die' flag.  */
4652
4653      if (! is_body_block (origin ? origin : stmt))
4654	{
4655	  /* Determine if this block directly contains any "significant"
4656	     local declarations which we will need to output DIEs for.  */
4657
4658	  if (debug_info_level > DINFO_LEVEL_TERSE)
4659	    /* We are not in terse mode so *any* local declaration counts
4660	       as being a "significant" one.  */
4661	    must_output_die = (BLOCK_VARS (stmt) != NULL);
4662	  else
4663	    {
4664	      register tree decl;
4665
4666	      /* We are in terse mode, so only local (nested) function
4667	         definitions count as "significant" local declarations.  */
4668
4669	      for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4670		if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
4671		  {
4672		    must_output_die = 1;
4673		    break;
4674		  }
4675	    }
4676	}
4677    }
4678
4679  /* It would be a waste of space to generate a Dwarf TAG_lexical_block
4680     DIE for any block which contains no significant local declarations
4681     at all.  Rather, in such cases we just call `output_decls_for_scope'
4682     so that any needed Dwarf info for any sub-blocks will get properly
4683     generated.  Note that in terse mode, our definition of what constitutes
4684     a "significant" local declaration gets restricted to include only
4685     inlined function instances and local (nested) function definitions.  */
4686
4687  if (origin_code == FUNCTION_DECL && BLOCK_ABSTRACT (stmt))
4688    /* We don't care about an abstract inlined subroutine.  */;
4689  else if (must_output_die)
4690    {
4691      output_die ((origin_code == FUNCTION_DECL)
4692		    ? output_inlined_subroutine_die
4693		    : output_lexical_block_die,
4694		  stmt);
4695      output_decls_for_scope (stmt, depth);
4696      end_sibling_chain ();
4697    }
4698  else
4699    output_decls_for_scope (stmt, depth);
4700}
4701
4702/* Output all of the decls declared within a given scope (also called
4703   a `binding contour') and (recursively) all of it's sub-blocks.  */
4704
4705static void
4706output_decls_for_scope (stmt, depth)
4707     register tree stmt;
4708     int depth;
4709{
4710  /* Ignore blocks never really used to make RTL.  */
4711
4712  if (! stmt || ! TREE_USED (stmt))
4713    return;
4714
4715  if (! BLOCK_ABSTRACT (stmt) && depth > 0)
4716    next_block_number++;
4717
4718  /* Output the DIEs to represent all of the data objects, functions,
4719     typedefs, and tagged types declared directly within this block
4720     but not within any nested sub-blocks.  */
4721
4722  {
4723    register tree decl;
4724
4725    for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4726      output_decl (decl, stmt);
4727  }
4728
4729  output_pending_types_for_scope (stmt);
4730
4731  /* Output the DIEs to represent all sub-blocks (and the items declared
4732     therein) of this block.	 */
4733
4734  {
4735    register tree subblocks;
4736
4737    for (subblocks = BLOCK_SUBBLOCKS (stmt);
4738         subblocks;
4739         subblocks = BLOCK_CHAIN (subblocks))
4740      output_block (subblocks, depth + 1);
4741  }
4742}
4743
4744/* Is this a typedef we can avoid emitting?  */
4745
4746inline static int
4747is_redundant_typedef (decl)
4748     register tree decl;
4749{
4750  if (TYPE_DECL_IS_STUB (decl))
4751    return 1;
4752  if (DECL_ARTIFICIAL (decl)
4753      && DECL_CONTEXT (decl)
4754      && is_tagged_type (DECL_CONTEXT (decl))
4755      && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
4756      && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
4757    /* Also ignore the artificial member typedef for the class name.  */
4758    return 1;
4759  return 0;
4760}
4761
4762/* Output Dwarf .debug information for a decl described by DECL.  */
4763
4764static void
4765output_decl (decl, containing_scope)
4766     register tree decl;
4767     register tree containing_scope;
4768{
4769  /* Make a note of the decl node we are going to be working on.  We may
4770     need to give the user the source coordinates of where it appeared in
4771     case we notice (later on) that something about it looks screwy.  */
4772
4773  dwarf_last_decl = decl;
4774
4775  if (TREE_CODE (decl) == ERROR_MARK)
4776    return;
4777
4778  /* If a structure is declared within an initialization, e.g. as the
4779     operand of a sizeof, then it will not have a name.  We don't want
4780     to output a DIE for it, as the tree nodes are in the temporary obstack */
4781
4782  if ((TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4783       || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
4784      && ((DECL_NAME (decl) == 0 && TYPE_NAME (TREE_TYPE (decl)) == 0)
4785	  || (TYPE_FIELDS (TREE_TYPE (decl))
4786	      && (TREE_CODE (TYPE_FIELDS (TREE_TYPE (decl))) == ERROR_MARK))))
4787    return;
4788
4789  /* If this ..._DECL node is marked to be ignored, then ignore it.
4790     But don't ignore a function definition, since that would screw
4791     up our count of blocks, and that it turn will completely screw up the
4792     labels we will reference in subsequent AT_low_pc and AT_high_pc
4793     attributes (for subsequent blocks).  */
4794
4795  if (DECL_IGNORED_P (decl) && TREE_CODE (decl) != FUNCTION_DECL)
4796    return;
4797
4798  switch (TREE_CODE (decl))
4799    {
4800    case CONST_DECL:
4801      /* The individual enumerators of an enum type get output when we
4802	 output the Dwarf representation of the relevant enum type itself.  */
4803      break;
4804
4805    case FUNCTION_DECL:
4806      /* If we are in terse mode, don't output any DIEs to represent
4807	 mere function declarations.  Also, if we are conforming
4808	 to the DWARF version 1 specification, don't output DIEs for
4809	 mere function declarations.  */
4810
4811      if (DECL_INITIAL (decl) == NULL_TREE)
4812#if (DWARF_VERSION > 1)
4813	if (debug_info_level <= DINFO_LEVEL_TERSE)
4814#endif
4815	  break;
4816
4817      /* Before we describe the FUNCTION_DECL itself, make sure that we
4818	 have described its return type.  */
4819
4820      output_type (TREE_TYPE (TREE_TYPE (decl)), containing_scope);
4821
4822      {
4823	/* And its containing type.  */
4824	register tree origin = decl_class_context (decl);
4825	if (origin)
4826	  output_type (origin, containing_scope);
4827      }
4828
4829      /* If the following DIE will represent a function definition for a
4830	 function with "extern" linkage, output a special "pubnames" DIE
4831	 label just ahead of the actual DIE.  A reference to this label
4832	 was already generated in the .debug_pubnames section sub-entry
4833	 for this function definition.  */
4834
4835      if (TREE_PUBLIC (decl))
4836	{
4837	  char label[MAX_ARTIFICIAL_LABEL_BYTES];
4838
4839	  sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
4840	  ASM_OUTPUT_LABEL (asm_out_file, label);
4841	}
4842
4843      /* Now output a DIE to represent the function itself.  */
4844
4845      output_die (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl)
4846				? output_global_subroutine_die
4847				: output_local_subroutine_die,
4848		  decl);
4849
4850      /* Now output descriptions of the arguments for this function.
4851	 This gets (unnecessarily?) complex because of the fact that
4852	 the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate
4853	 cases where there was a trailing `...' at the end of the formal
4854	 parameter list.  In order to find out if there was a trailing
4855	 ellipsis or not, we must instead look at the type associated
4856	 with the FUNCTION_DECL.  This will be a node of type FUNCTION_TYPE.
4857	 If the chain of type nodes hanging off of this FUNCTION_TYPE node
4858	 ends with a void_type_node then there should *not* be an ellipsis
4859	 at the end.  */
4860
4861      /* In the case where we are describing a mere function declaration, all
4862	 we need to do here (and all we *can* do here) is to describe
4863	 the *types* of its formal parameters.  */
4864
4865      if (decl != current_function_decl || in_class)
4866	output_formal_types (TREE_TYPE (decl));
4867      else
4868	{
4869	  /* Generate DIEs to represent all known formal parameters */
4870
4871	  register tree arg_decls = DECL_ARGUMENTS (decl);
4872	  register tree parm;
4873
4874	  /* WARNING!  Kludge zone ahead!  Here we have a special
4875	     hack for svr4 SDB compatibility.  Instead of passing the
4876	     current FUNCTION_DECL node as the second parameter (i.e.
4877	     the `containing_scope' parameter) to `output_decl' (as
4878	     we ought to) we instead pass a pointer to our own private
4879	     fake_containing_scope node.  That node is a RECORD_TYPE
4880	     node which NO OTHER TYPE may ever actually be a member of.
4881
4882	     This pointer will ultimately get passed into `output_type'
4883	     as its `containing_scope' parameter.  `Output_type' will
4884	     then perform its part in the hack... i.e. it will pend
4885	     the type of the formal parameter onto the pending_types
4886	     list.  Later on, when we are done generating the whole
4887	     sequence of formal parameter DIEs for this function
4888	     definition, we will un-pend all previously pended types
4889	     of formal parameters for this function definition.
4890
4891	     This whole kludge prevents any type DIEs from being
4892	     mixed in with the formal parameter DIEs.  That's good
4893	     because svr4 SDB believes that the list of formal
4894	     parameter DIEs for a function ends wherever the first
4895	     non-formal-parameter DIE appears.  Thus, we have to
4896	     keep the formal parameter DIEs segregated.  They must
4897	     all appear (consecutively) at the start of the list of
4898	     children for the DIE representing the function definition.
4899	     Then (and only then) may we output any additional DIEs
4900	     needed to represent the types of these formal parameters.
4901	  */
4902
4903	  /*
4904	     When generating DIEs, generate the unspecified_parameters
4905	     DIE instead if we come across the arg "__builtin_va_alist"
4906	  */
4907
4908	  for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
4909	    if (TREE_CODE (parm) == PARM_DECL)
4910              {
4911		if (DECL_NAME(parm) &&
4912		    !strcmp(IDENTIFIER_POINTER(DECL_NAME(parm)),
4913			    "__builtin_va_alist") )
4914		  output_die (output_unspecified_parameters_die, decl);
4915	        else
4916		  output_decl (parm, fake_containing_scope);
4917	      }
4918
4919	  /*
4920	     Now that we have finished generating all of the DIEs to
4921	     represent the formal parameters themselves, force out
4922	     any DIEs needed to represent their types.  We do this
4923	     simply by un-pending all previously pended types which
4924	     can legitimately go into the chain of children DIEs for
4925	     the current FUNCTION_DECL.
4926	  */
4927
4928	  output_pending_types_for_scope (decl);
4929
4930	  /*
4931	    Decide whether we need a unspecified_parameters DIE at the end.
4932	    There are 2 more cases to do this for:
4933	    1) the ansi ... declaration - this is detectable when the end
4934		of the arg list is not a void_type_node
4935	    2) an unprototyped function declaration (not a definition).  This
4936		just means that we have no info about the parameters at all.
4937	  */
4938
4939	  {
4940	    register tree fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
4941
4942	    if (fn_arg_types)
4943	      {
4944	      /* this is the prototyped case, check for ...  */
4945	      if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
4946	        output_die (output_unspecified_parameters_die, decl);
4947              }
4948            else
4949              {
4950	      /* this is unprototyped, check for undefined (just declaration) */
4951              if (!DECL_INITIAL (decl))
4952                output_die (output_unspecified_parameters_die, decl);
4953              }
4954	  }
4955
4956	  /* Output Dwarf info for all of the stuff within the body of the
4957	     function (if it has one - it may be just a declaration).  */
4958
4959	  {
4960	    register tree outer_scope = DECL_INITIAL (decl);
4961
4962	    if (outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
4963	      {
4964		/* Note that here, `outer_scope' is a pointer to the outermost
4965		   BLOCK node created to represent a function.
4966		   This outermost BLOCK actually represents the outermost
4967		   binding contour for the function, i.e. the contour in which
4968		   the function's formal parameters and labels get declared.
4969
4970		   Curiously, it appears that the front end doesn't actually
4971		   put the PARM_DECL nodes for the current function onto the
4972		   BLOCK_VARS list for this outer scope.  (They are strung
4973		   off of the DECL_ARGUMENTS list for the function instead.)
4974		   The BLOCK_VARS list for the `outer_scope' does provide us
4975		   with a list of the LABEL_DECL nodes for the function however,
4976		   and we output DWARF info for those here.
4977
4978		   Just within the `outer_scope' there will be a BLOCK node
4979		   representing the function's outermost pair of curly braces,
4980		   and any blocks used for the base and member initializers of
4981		   a C++ constructor function.  */
4982
4983		output_decls_for_scope (outer_scope, 0);
4984
4985		/* Finally, force out any pending types which are local to the
4986		   outermost block of this function definition.  These will
4987		   all have a TYPE_CONTEXT which points to the FUNCTION_DECL
4988		   node itself.  */
4989
4990		output_pending_types_for_scope (decl);
4991	      }
4992	  }
4993	}
4994
4995      /* Generate a terminator for the list of stuff `owned' by this
4996	 function.  */
4997
4998      end_sibling_chain ();
4999
5000      break;
5001
5002    case TYPE_DECL:
5003      /* If we are in terse mode, don't generate any DIEs to represent
5004	 any actual typedefs.  Note that even when we are in terse mode,
5005	 we must still output DIEs to represent those tagged types which
5006	 are used (directly or indirectly) in the specification of either
5007	 a return type or a formal parameter type of some function.  */
5008
5009      if (debug_info_level <= DINFO_LEVEL_TERSE)
5010	if (! TYPE_DECL_IS_STUB (decl)
5011	    || (! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)) && ! in_class))
5012          return;
5013
5014      /* In the special case of a TYPE_DECL node representing
5015	 the declaration of some type tag, if the given TYPE_DECL is
5016	 marked as having been instantiated from some other (original)
5017	 TYPE_DECL node (e.g. one which was generated within the original
5018	 definition of an inline function) we have to generate a special
5019	 (abbreviated) TAG_structure_type, TAG_union_type, or
5020	 TAG_enumeration-type DIE here.  */
5021
5022      if (TYPE_DECL_IS_STUB (decl) && DECL_ABSTRACT_ORIGIN (decl))
5023	{
5024	  output_tagged_type_instantiation (TREE_TYPE (decl));
5025	  return;
5026	}
5027
5028      output_type (TREE_TYPE (decl), containing_scope);
5029
5030      if (! is_redundant_typedef (decl))
5031	/* Output a DIE to represent the typedef itself.  */
5032	output_die (output_typedef_die, decl);
5033      break;
5034
5035    case LABEL_DECL:
5036      if (debug_info_level >= DINFO_LEVEL_NORMAL)
5037	output_die (output_label_die, decl);
5038      break;
5039
5040    case VAR_DECL:
5041      /* If we are conforming to the DWARF version 1 specification, don't
5042	 generated any DIEs to represent mere external object declarations.  */
5043
5044#if (DWARF_VERSION <= 1)
5045      if (DECL_EXTERNAL (decl) && ! TREE_PUBLIC (decl))
5046	break;
5047#endif
5048
5049      /* If we are in terse mode, don't generate any DIEs to represent
5050	 any variable declarations or definitions.  */
5051
5052      if (debug_info_level <= DINFO_LEVEL_TERSE)
5053        break;
5054
5055      /* Output any DIEs that are needed to specify the type of this data
5056	 object.  */
5057
5058      output_type (TREE_TYPE (decl), containing_scope);
5059
5060      {
5061	/* And its containing type.  */
5062	register tree origin = decl_class_context (decl);
5063	if (origin)
5064	  output_type (origin, containing_scope);
5065      }
5066
5067      /* If the following DIE will represent a data object definition for a
5068	 data object with "extern" linkage, output a special "pubnames" DIE
5069	 label just ahead of the actual DIE.  A reference to this label
5070	 was already generated in the .debug_pubnames section sub-entry
5071	 for this data object definition.  */
5072
5073      if (TREE_PUBLIC (decl) && ! DECL_ABSTRACT (decl))
5074	{
5075	  char label[MAX_ARTIFICIAL_LABEL_BYTES];
5076
5077	  sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
5078	  ASM_OUTPUT_LABEL (asm_out_file, label);
5079	}
5080
5081      /* Now output the DIE to represent the data object itself.  This gets
5082	 complicated because of the possibility that the VAR_DECL really
5083	 represents an inlined instance of a formal parameter for an inline
5084	 function.  */
5085
5086      {
5087        register void (*func) PROTO((void *));
5088	register tree origin = decl_ultimate_origin (decl);
5089
5090	if (origin != NULL && TREE_CODE (origin) == PARM_DECL)
5091	  func = output_formal_parameter_die;
5092	else
5093	  {
5094	    if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
5095	      func = output_global_variable_die;
5096	    else
5097	      func = output_local_variable_die;
5098	  }
5099	output_die (func, decl);
5100      }
5101      break;
5102
5103    case FIELD_DECL:
5104      /* Ignore the nameless fields that are used to skip bits.  */
5105      if (DECL_NAME (decl) != 0)
5106	{
5107	  output_type (member_declared_type (decl), containing_scope);
5108          output_die (output_member_die, decl);
5109	}
5110      break;
5111
5112    case PARM_DECL:
5113     /* Force out the type of this formal, if it was not forced out yet.
5114	Note that here we can run afowl of a bug in "classic" svr4 SDB.
5115	It should be able to grok the presence of type DIEs within a list
5116	of TAG_formal_parameter DIEs, but it doesn't.  */
5117
5118      output_type (TREE_TYPE (decl), containing_scope);
5119      output_die (output_formal_parameter_die, decl);
5120      break;
5121
5122    default:
5123      abort ();
5124    }
5125}
5126
5127void
5128dwarfout_file_scope_decl (decl, set_finalizing)
5129     register tree decl;
5130     register int set_finalizing;
5131{
5132  if (TREE_CODE (decl) == ERROR_MARK)
5133    return;
5134
5135  /* If this ..._DECL node is marked to be ignored, then ignore it.  We
5136     gotta hope that the node in question doesn't represent a function
5137     definition.  If it does, then totally ignoring it is bound to screw
5138     up our count of blocks, and that it turn will completely screw up the
5139     labels we will reference in subsequent AT_low_pc and AT_high_pc
5140     attributes (for subsequent blocks).  (It's too bad that BLOCK nodes
5141     don't carry their own sequence numbers with them!)  */
5142
5143  if (DECL_IGNORED_P (decl))
5144    {
5145      if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
5146	abort ();
5147      return;
5148    }
5149
5150  switch (TREE_CODE (decl))
5151    {
5152    case FUNCTION_DECL:
5153
5154      /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of
5155	 a builtin function.  Explicit programmer-supplied declarations of
5156	 these same functions should NOT be ignored however.  */
5157
5158      if (DECL_EXTERNAL (decl) && DECL_FUNCTION_CODE (decl))
5159        return;
5160
5161      /* What we would really like to do here is to filter out all mere
5162	 file-scope declarations of file-scope functions which are never
5163	 referenced later within this translation unit (and keep all of
5164	 ones that *are* referenced later on) but we aren't clairvoyant,
5165	 so we have no idea which functions will be referenced in the
5166	 future (i.e. later on within the current translation unit).
5167	 So here we just ignore all file-scope function declarations
5168	 which are not also definitions.  If and when the debugger needs
5169	 to know something about these functions, it wil have to hunt
5170	 around and find the DWARF information associated with the
5171	 *definition* of the function.
5172
5173	 Note that we can't just check `DECL_EXTERNAL' to find out which
5174	 FUNCTION_DECL nodes represent definitions and which ones represent
5175	 mere declarations.  We have to check `DECL_INITIAL' instead.  That's
5176	 because the C front-end supports some weird semantics for "extern
5177	 inline" function definitions.  These can get inlined within the
5178	 current translation unit (an thus, we need to generate DWARF info
5179	 for their abstract instances so that the DWARF info for the
5180	 concrete inlined instances can have something to refer to) but
5181	 the compiler never generates any out-of-lines instances of such
5182	 things (despite the fact that they *are* definitions).  The
5183	 important point is that the C front-end marks these "extern inline"
5184	 functions as DECL_EXTERNAL, but we need to generate DWARF for them
5185	 anyway.
5186
5187	 Note that the C++ front-end also plays some similar games for inline
5188	 function definitions appearing within include files which also
5189	 contain `#pragma interface' pragmas.  */
5190
5191      if (DECL_INITIAL (decl) == NULL_TREE)
5192	return;
5193
5194      if (TREE_PUBLIC (decl)
5195	  && ! DECL_EXTERNAL (decl)
5196	  && ! DECL_ABSTRACT (decl))
5197	{
5198	  char label[MAX_ARTIFICIAL_LABEL_BYTES];
5199
5200	  /* Output a .debug_pubnames entry for a public function
5201	     defined in this compilation unit.  */
5202
5203	  fputc ('\n', asm_out_file);
5204	  ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5205	  sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5206	  ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5207	  ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5208				   IDENTIFIER_POINTER (DECL_NAME (decl)));
5209	  ASM_OUTPUT_POP_SECTION (asm_out_file);
5210	}
5211
5212      break;
5213
5214    case VAR_DECL:
5215
5216      /* Ignore this VAR_DECL if it refers to a file-scope extern data
5217	 object declaration and if the declaration was never even
5218	 referenced from within this entire compilation unit.  We
5219	 suppress these DIEs in order to save space in the .debug section
5220	 (by eliminating entries which are probably useless).  Note that
5221	 we must not suppress block-local extern declarations (whether
5222	 used or not) because that would screw-up the debugger's name
5223	 lookup mechanism and cause it to miss things which really ought
5224	 to be in scope at a given point.  */
5225
5226      if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
5227	return;
5228
5229      if (TREE_PUBLIC (decl)
5230	  && ! DECL_EXTERNAL (decl)
5231	  && GET_CODE (DECL_RTL (decl)) == MEM
5232	  && ! DECL_ABSTRACT (decl))
5233	{
5234	  char label[MAX_ARTIFICIAL_LABEL_BYTES];
5235
5236	  if (debug_info_level >= DINFO_LEVEL_NORMAL)
5237	    {
5238	      /* Output a .debug_pubnames entry for a public variable
5239	         defined in this compilation unit.  */
5240
5241	      fputc ('\n', asm_out_file);
5242	      ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5243	      sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5244	      ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5245	      ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5246				       IDENTIFIER_POINTER (DECL_NAME (decl)));
5247	      ASM_OUTPUT_POP_SECTION (asm_out_file);
5248	    }
5249
5250	  if (DECL_INITIAL (decl) == NULL)
5251	    {
5252	      /* Output a .debug_aranges entry for a public variable
5253		 which is tentatively defined in this compilation unit.  */
5254
5255	      fputc ('\n', asm_out_file);
5256	      ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5257	      ASM_OUTPUT_DWARF_ADDR (asm_out_file,
5258			      IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
5259	      ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
5260			(unsigned) int_size_in_bytes (TREE_TYPE (decl)));
5261	      ASM_OUTPUT_POP_SECTION (asm_out_file);
5262	    }
5263	}
5264
5265      /* If we are in terse mode, don't generate any DIEs to represent
5266	 any variable declarations or definitions.  */
5267
5268      if (debug_info_level <= DINFO_LEVEL_TERSE)
5269        return;
5270
5271      break;
5272
5273    case TYPE_DECL:
5274      /* Don't bother trying to generate any DIEs to represent any of the
5275	 normal built-in types for the language we are compiling, except
5276	 in cases where the types in question are *not* DWARF fundamental
5277	 types.  We make an exception in the case of non-fundamental types
5278	 for the sake of objective C (and perhaps C++) because the GNU
5279	 front-ends for these languages may in fact create certain "built-in"
5280	 types which are (for example) RECORD_TYPEs.  In such cases, we
5281	 really need to output these (non-fundamental) types because other
5282	 DIEs may contain references to them.  */
5283
5284      /* Also ignore language dependent types here, because they are probably
5285	 also built-in types.  If we didn't ignore them, then we would get
5286	 references to undefined labels because output_type doesn't support
5287	 them.   So, for now, we need to ignore them to avoid assembler
5288	 errors.  */
5289
5290      /* ??? This code is different than the equivalent code in dwarf2out.c.
5291	 The dwarf2out.c code is probably more correct.  */
5292
5293      if (DECL_SOURCE_LINE (decl) == 0
5294	  && (type_is_fundamental (TREE_TYPE (decl))
5295	      || TREE_CODE (TREE_TYPE (decl)) == LANG_TYPE))
5296	return;
5297
5298      /* If we are in terse mode, don't generate any DIEs to represent
5299	 any actual typedefs.  Note that even when we are in terse mode,
5300	 we must still output DIEs to represent those tagged types which
5301	 are used (directly or indirectly) in the specification of either
5302	 a return type or a formal parameter type of some function.  */
5303
5304      if (debug_info_level <= DINFO_LEVEL_TERSE)
5305	if (! TYPE_DECL_IS_STUB (decl)
5306	    || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)))
5307          return;
5308
5309      break;
5310
5311    default:
5312      return;
5313    }
5314
5315  fputc ('\n', asm_out_file);
5316  ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5317  finalizing = set_finalizing;
5318  output_decl (decl, NULL_TREE);
5319
5320  /* NOTE:  The call above to `output_decl' may have caused one or more
5321     file-scope named types (i.e. tagged types) to be placed onto the
5322     pending_types_list.  We have to get those types off of that list
5323     at some point, and this is the perfect time to do it.  If we didn't
5324     take them off now, they might still be on the list when cc1 finally
5325     exits.  That might be OK if it weren't for the fact that when we put
5326     types onto the pending_types_list, we set the TREE_ASM_WRITTEN flag
5327     for these types, and that causes them never to be output unless
5328     `output_pending_types_for_scope' takes them off of the list and un-sets
5329     their TREE_ASM_WRITTEN flags.  */
5330
5331  output_pending_types_for_scope (NULL_TREE);
5332
5333  /* The above call should have totally emptied the pending_types_list
5334     if this is not a nested function or class.  If this is a nested type,
5335     then the remaining pending_types will be emitted when the containing type
5336     is handled.  */
5337
5338  if (! DECL_CONTEXT (decl))
5339    {
5340      if (pending_types != 0)
5341	abort ();
5342    }
5343
5344  ASM_OUTPUT_POP_SECTION (asm_out_file);
5345
5346  if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
5347    current_funcdef_number++;
5348}
5349
5350/* Output a marker (i.e. a label) for the beginning of the generated code
5351   for a lexical block.	 */
5352
5353void
5354dwarfout_begin_block (blocknum)
5355     register unsigned blocknum;
5356{
5357  char label[MAX_ARTIFICIAL_LABEL_BYTES];
5358
5359  function_section (current_function_decl);
5360  sprintf (label, BLOCK_BEGIN_LABEL_FMT, blocknum);
5361  ASM_OUTPUT_LABEL (asm_out_file, label);
5362}
5363
5364/* Output a marker (i.e. a label) for the end of the generated code
5365   for a lexical block.	 */
5366
5367void
5368dwarfout_end_block (blocknum)
5369     register unsigned blocknum;
5370{
5371  char label[MAX_ARTIFICIAL_LABEL_BYTES];
5372
5373  function_section (current_function_decl);
5374  sprintf (label, BLOCK_END_LABEL_FMT, blocknum);
5375  ASM_OUTPUT_LABEL (asm_out_file, label);
5376}
5377
5378/* Output a marker (i.e. a label) at a point in the assembly code which
5379   corresponds to a given source level label.  */
5380
5381void
5382dwarfout_label (insn)
5383     register rtx insn;
5384{
5385  if (debug_info_level >= DINFO_LEVEL_NORMAL)
5386    {
5387      char label[MAX_ARTIFICIAL_LABEL_BYTES];
5388
5389      function_section (current_function_decl);
5390      sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
5391				      (unsigned) INSN_UID (insn));
5392      ASM_OUTPUT_LABEL (asm_out_file, label);
5393    }
5394}
5395
5396/* Output a marker (i.e. a label) for the point in the generated code where
5397   the real body of the function begins (after parameters have been moved
5398   to their home locations).  */
5399
5400void
5401dwarfout_begin_function ()
5402{
5403  char label[MAX_ARTIFICIAL_LABEL_BYTES];
5404
5405  if (! use_gnu_debug_info_extensions)
5406    return;
5407  function_section (current_function_decl);
5408  sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
5409  ASM_OUTPUT_LABEL (asm_out_file, label);
5410}
5411
5412/* Output a marker (i.e. a label) for the point in the generated code where
5413   the real body of the function ends (just before the epilogue code).  */
5414
5415void
5416dwarfout_end_function ()
5417{
5418  char label[MAX_ARTIFICIAL_LABEL_BYTES];
5419
5420  if (! use_gnu_debug_info_extensions)
5421    return;
5422  function_section (current_function_decl);
5423  sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
5424  ASM_OUTPUT_LABEL (asm_out_file, label);
5425}
5426
5427/* Output a marker (i.e. a label) for the absolute end of the generated code
5428   for a function definition.  This gets called *after* the epilogue code
5429   has been generated.	*/
5430
5431void
5432dwarfout_end_epilogue ()
5433{
5434  char label[MAX_ARTIFICIAL_LABEL_BYTES];
5435
5436  /* Output a label to mark the endpoint of the code generated for this
5437     function.	*/
5438
5439  sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
5440  ASM_OUTPUT_LABEL (asm_out_file, label);
5441}
5442
5443static void
5444shuffle_filename_entry (new_zeroth)
5445     register filename_entry *new_zeroth;
5446{
5447  filename_entry temp_entry;
5448  register filename_entry *limit_p;
5449  register filename_entry *move_p;
5450
5451  if (new_zeroth == &filename_table[0])
5452    return;
5453
5454  temp_entry = *new_zeroth;
5455
5456  /* Shift entries up in the table to make room at [0].  */
5457
5458  limit_p = &filename_table[0];
5459  for (move_p = new_zeroth; move_p > limit_p; move_p--)
5460    *move_p = *(move_p-1);
5461
5462  /* Install the found entry at [0].  */
5463
5464  filename_table[0] = temp_entry;
5465}
5466
5467/* Create a new (string) entry for the .debug_sfnames section.  */
5468
5469static void
5470generate_new_sfname_entry ()
5471{
5472  char label[MAX_ARTIFICIAL_LABEL_BYTES];
5473
5474  fputc ('\n', asm_out_file);
5475  ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
5476  sprintf (label, SFNAMES_ENTRY_LABEL_FMT, filename_table[0].number);
5477  ASM_OUTPUT_LABEL (asm_out_file, label);
5478  ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5479    			   filename_table[0].name
5480			     ? filename_table[0].name
5481			     : "");
5482  ASM_OUTPUT_POP_SECTION (asm_out_file);
5483}
5484
5485/* Lookup a filename (in the list of filenames that we know about here in
5486   dwarfout.c) and return its "index".  The index of each (known) filename
5487   is just a unique number which is associated with only that one filename.
5488   We need such numbers for the sake of generating labels (in the
5489   .debug_sfnames section) and references to those unique labels (in the
5490   .debug_srcinfo and .debug_macinfo sections).
5491
5492   If the filename given as an argument is not found in our current list,
5493   add it to the list and assign it the next available unique index number.
5494
5495   Whatever we do (i.e. whether we find a pre-existing filename or add a new
5496   one), we shuffle the filename found (or added) up to the zeroth entry of
5497   our list of filenames (which is always searched linearly).  We do this so
5498   as to optimize the most common case for these filename lookups within
5499   dwarfout.c.  The most common case by far is the case where we call
5500   lookup_filename to lookup the very same filename that we did a lookup
5501   on the last time we called lookup_filename.  We make sure that this
5502   common case is fast because such cases will constitute 99.9% of the
5503   lookups we ever do (in practice).
5504
5505   If we add a new filename entry to our table, we go ahead and generate
5506   the corresponding entry in the .debug_sfnames section right away.
5507   Doing so allows us to avoid tickling an assembler bug (present in some
5508   m68k assemblers) which yields assembly-time errors in cases where the
5509   difference of two label addresses is taken and where the two labels
5510   are in a section *other* than the one where the difference is being
5511   calculated, and where at least one of the two symbol references is a
5512   forward reference.  (This bug could be tickled by our .debug_srcinfo
5513   entries if we don't output their corresponding .debug_sfnames entries
5514   before them.) */
5515
5516static unsigned
5517lookup_filename (file_name)
5518     char *file_name;
5519{
5520  register filename_entry *search_p;
5521  register filename_entry *limit_p = &filename_table[ft_entries];
5522
5523  for (search_p = filename_table; search_p < limit_p; search_p++)
5524    if (!strcmp (file_name, search_p->name))
5525      {
5526	/* When we get here, we have found the filename that we were
5527	   looking for in the filename_table.  Now we want to make sure
5528	   that it gets moved to the zero'th entry in the table (if it
5529	   is not already there) so that subsequent attempts to find the
5530	   same filename will find it as quickly as possible.  */
5531
5532	shuffle_filename_entry (search_p);
5533        return filename_table[0].number;
5534      }
5535
5536  /* We come here whenever we have a new filename which is not registered
5537     in the current table.  Here we add it to the table.  */
5538
5539  /* Prepare to add a new table entry by making sure there is enough space
5540     in the table to do so.  If not, expand the current table.  */
5541
5542  if (ft_entries == ft_entries_allocated)
5543    {
5544      ft_entries_allocated += FT_ENTRIES_INCREMENT;
5545      filename_table
5546	= (filename_entry *)
5547	  xrealloc (filename_table,
5548		    ft_entries_allocated * sizeof (filename_entry));
5549    }
5550
5551  /* Initially, add the new entry at the end of the filename table.  */
5552
5553  filename_table[ft_entries].number = ft_entries;
5554  filename_table[ft_entries].name = xstrdup (file_name);
5555
5556  /* Shuffle the new entry into filename_table[0].  */
5557
5558  shuffle_filename_entry (&filename_table[ft_entries]);
5559
5560  if (debug_info_level >= DINFO_LEVEL_NORMAL)
5561    generate_new_sfname_entry ();
5562
5563  ft_entries++;
5564  return filename_table[0].number;
5565}
5566
5567static void
5568generate_srcinfo_entry (line_entry_num, files_entry_num)
5569     unsigned line_entry_num;
5570     unsigned files_entry_num;
5571{
5572  char label[MAX_ARTIFICIAL_LABEL_BYTES];
5573
5574  fputc ('\n', asm_out_file);
5575  ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5576  sprintf (label, LINE_ENTRY_LABEL_FMT, line_entry_num);
5577  ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, LINE_BEGIN_LABEL);
5578  sprintf (label, SFNAMES_ENTRY_LABEL_FMT, files_entry_num);
5579  ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, SFNAMES_BEGIN_LABEL);
5580  ASM_OUTPUT_POP_SECTION (asm_out_file);
5581}
5582
5583void
5584dwarfout_line (filename, line)
5585     register char *filename;
5586     register unsigned line;
5587{
5588  if (debug_info_level >= DINFO_LEVEL_NORMAL
5589      /* We can't emit line number info for functions in separate sections,
5590	 because the assembler can't subtract labels in different sections.  */
5591      && DECL_SECTION_NAME (current_function_decl) == NULL_TREE)
5592    {
5593      char label[MAX_ARTIFICIAL_LABEL_BYTES];
5594      static unsigned last_line_entry_num = 0;
5595      static unsigned prev_file_entry_num = (unsigned) -1;
5596      register unsigned this_file_entry_num;
5597
5598      function_section (current_function_decl);
5599      sprintf (label, LINE_CODE_LABEL_FMT, ++last_line_entry_num);
5600      ASM_OUTPUT_LABEL (asm_out_file, label);
5601
5602      fputc ('\n', asm_out_file);
5603
5604      if (use_gnu_debug_info_extensions)
5605	this_file_entry_num = lookup_filename (filename);
5606      else
5607	this_file_entry_num = (unsigned) -1;
5608
5609      ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5610      if (this_file_entry_num != prev_file_entry_num)
5611        {
5612          char line_entry_label[MAX_ARTIFICIAL_LABEL_BYTES];
5613
5614          sprintf (line_entry_label, LINE_ENTRY_LABEL_FMT, last_line_entry_num);
5615          ASM_OUTPUT_LABEL (asm_out_file, line_entry_label);
5616        }
5617
5618      {
5619        register char *tail = rindex (filename, '/');
5620
5621        if (tail != NULL)
5622          filename = tail;
5623      }
5624
5625      fprintf (asm_out_file, "\t%s\t%u\t%s %s:%u\n",
5626	       UNALIGNED_INT_ASM_OP, line, ASM_COMMENT_START,
5627	       filename, line);
5628      ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
5629      ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, TEXT_BEGIN_LABEL);
5630      ASM_OUTPUT_POP_SECTION (asm_out_file);
5631
5632      if (this_file_entry_num != prev_file_entry_num)
5633        generate_srcinfo_entry (last_line_entry_num, this_file_entry_num);
5634      prev_file_entry_num = this_file_entry_num;
5635    }
5636}
5637
5638/* Generate an entry in the .debug_macinfo section.  */
5639
5640static void
5641generate_macinfo_entry (type_and_offset, string)
5642     register char *type_and_offset;
5643     register char *string;
5644{
5645  if (! use_gnu_debug_info_extensions)
5646    return;
5647
5648  fputc ('\n', asm_out_file);
5649  ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5650  fprintf (asm_out_file, "\t%s\t%s\n", UNALIGNED_INT_ASM_OP, type_and_offset);
5651  ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, string);
5652  ASM_OUTPUT_POP_SECTION (asm_out_file);
5653}
5654
5655void
5656dwarfout_start_new_source_file (filename)
5657     register char *filename;
5658{
5659  char label[MAX_ARTIFICIAL_LABEL_BYTES];
5660  char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*3];
5661
5662  sprintf (label, SFNAMES_ENTRY_LABEL_FMT, lookup_filename (filename));
5663  sprintf (type_and_offset, "0x%08x+%s-%s",
5664	   ((unsigned) MACINFO_start << 24),
5665	   /* Hack: skip leading '*' .  */
5666	   (*label == '*') + label,
5667	   (*SFNAMES_BEGIN_LABEL == '*') + SFNAMES_BEGIN_LABEL);
5668  generate_macinfo_entry (type_and_offset, "");
5669}
5670
5671void
5672dwarfout_resume_previous_source_file (lineno)
5673     register unsigned lineno;
5674{
5675  char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5676
5677  sprintf (type_and_offset, "0x%08x+%u",
5678	   ((unsigned) MACINFO_resume << 24), lineno);
5679  generate_macinfo_entry (type_and_offset, "");
5680}
5681
5682/* Called from check_newline in c-parse.y.  The `buffer' parameter
5683   contains the tail part of the directive line, i.e. the part which
5684   is past the initial whitespace, #, whitespace, directive-name,
5685   whitespace part.  */
5686
5687void
5688dwarfout_define (lineno, buffer)
5689     register unsigned lineno;
5690     register char *buffer;
5691{
5692  static int initialized = 0;
5693  char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5694
5695  if (!initialized)
5696    {
5697      dwarfout_start_new_source_file (primary_filename);
5698      initialized = 1;
5699    }
5700  sprintf (type_and_offset, "0x%08x+%u",
5701	   ((unsigned) MACINFO_define << 24), lineno);
5702  generate_macinfo_entry (type_and_offset, buffer);
5703}
5704
5705/* Called from check_newline in c-parse.y.  The `buffer' parameter
5706   contains the tail part of the directive line, i.e. the part which
5707   is past the initial whitespace, #, whitespace, directive-name,
5708   whitespace part.  */
5709
5710void
5711dwarfout_undef (lineno, buffer)
5712     register unsigned lineno;
5713     register char *buffer;
5714{
5715  char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5716
5717  sprintf (type_and_offset, "0x%08x+%u",
5718	   ((unsigned) MACINFO_undef << 24), lineno);
5719  generate_macinfo_entry (type_and_offset, buffer);
5720}
5721
5722/* Set up for Dwarf output at the start of compilation.	 */
5723
5724void
5725dwarfout_init (asm_out_file, main_input_filename)
5726     register FILE *asm_out_file;
5727     register char *main_input_filename;
5728{
5729  /* Remember the name of the primary input file.  */
5730
5731  primary_filename = main_input_filename;
5732
5733  /* Allocate the initial hunk of the pending_sibling_stack.  */
5734
5735  pending_sibling_stack
5736    = (unsigned *)
5737	xmalloc (PENDING_SIBLINGS_INCREMENT * sizeof (unsigned));
5738  pending_siblings_allocated = PENDING_SIBLINGS_INCREMENT;
5739  pending_siblings = 1;
5740
5741  /* Allocate the initial hunk of the filename_table.  */
5742
5743  filename_table
5744    = (filename_entry *)
5745	xmalloc (FT_ENTRIES_INCREMENT * sizeof (filename_entry));
5746  ft_entries_allocated = FT_ENTRIES_INCREMENT;
5747  ft_entries = 0;
5748
5749  /* Allocate the initial hunk of the pending_types_list.  */
5750
5751  pending_types_list
5752    = (tree *) xmalloc (PENDING_TYPES_INCREMENT * sizeof (tree));
5753  pending_types_allocated = PENDING_TYPES_INCREMENT;
5754  pending_types = 0;
5755
5756  /* Create an artificial RECORD_TYPE node which we can use in our hack
5757     to get the DIEs representing types of formal parameters to come out
5758     only *after* the DIEs for the formal parameters themselves.  */
5759
5760  fake_containing_scope = make_node (RECORD_TYPE);
5761
5762  /* Output a starting label for the .text section.  */
5763
5764  fputc ('\n', asm_out_file);
5765  ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
5766  ASM_OUTPUT_LABEL (asm_out_file, TEXT_BEGIN_LABEL);
5767  ASM_OUTPUT_POP_SECTION (asm_out_file);
5768
5769  /* Output a starting label for the .data section.  */
5770
5771  fputc ('\n', asm_out_file);
5772  ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
5773  ASM_OUTPUT_LABEL (asm_out_file, DATA_BEGIN_LABEL);
5774  ASM_OUTPUT_POP_SECTION (asm_out_file);
5775
5776#if 0 /* GNU C doesn't currently use .data1.  */
5777  /* Output a starting label for the .data1 section.  */
5778
5779  fputc ('\n', asm_out_file);
5780  ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
5781  ASM_OUTPUT_LABEL (asm_out_file, DATA1_BEGIN_LABEL);
5782  ASM_OUTPUT_POP_SECTION (asm_out_file);
5783#endif
5784
5785  /* Output a starting label for the .rodata section.  */
5786
5787  fputc ('\n', asm_out_file);
5788  ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
5789  ASM_OUTPUT_LABEL (asm_out_file, RODATA_BEGIN_LABEL);
5790  ASM_OUTPUT_POP_SECTION (asm_out_file);
5791
5792#if 0 /* GNU C doesn't currently use .rodata1.  */
5793  /* Output a starting label for the .rodata1 section.  */
5794
5795  fputc ('\n', asm_out_file);
5796  ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
5797  ASM_OUTPUT_LABEL (asm_out_file, RODATA1_BEGIN_LABEL);
5798  ASM_OUTPUT_POP_SECTION (asm_out_file);
5799#endif
5800
5801  /* Output a starting label for the .bss section.  */
5802
5803  fputc ('\n', asm_out_file);
5804  ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
5805  ASM_OUTPUT_LABEL (asm_out_file, BSS_BEGIN_LABEL);
5806  ASM_OUTPUT_POP_SECTION (asm_out_file);
5807
5808  if (debug_info_level >= DINFO_LEVEL_NORMAL)
5809    {
5810      if (use_gnu_debug_info_extensions)
5811	{
5812	  /* Output a starting label and an initial (compilation directory)
5813	     entry for the .debug_sfnames section.  The starting label will be
5814	     referenced by the initial entry in the .debug_srcinfo section.  */
5815
5816	  fputc ('\n', asm_out_file);
5817	  ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
5818	  ASM_OUTPUT_LABEL (asm_out_file, SFNAMES_BEGIN_LABEL);
5819	  {
5820	    register char *pwd;
5821	    register unsigned len;
5822	    register char *dirname;
5823
5824	    pwd = getpwd ();
5825	    if (!pwd)
5826	      pfatal_with_name ("getpwd");
5827	    len = strlen (pwd);
5828	    dirname = (char *) xmalloc (len + 2);
5829
5830	    strcpy (dirname, pwd);
5831	    strcpy (dirname + len, "/");
5832	    ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
5833	    free (dirname);
5834	  }
5835	  ASM_OUTPUT_POP_SECTION (asm_out_file);
5836	}
5837
5838      if (debug_info_level >= DINFO_LEVEL_VERBOSE
5839	  && use_gnu_debug_info_extensions)
5840	{
5841          /* Output a starting label for the .debug_macinfo section.  This
5842	     label will be referenced by the AT_mac_info attribute in the
5843	     TAG_compile_unit DIE.  */
5844
5845          fputc ('\n', asm_out_file);
5846          ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5847          ASM_OUTPUT_LABEL (asm_out_file, MACINFO_BEGIN_LABEL);
5848          ASM_OUTPUT_POP_SECTION (asm_out_file);
5849	}
5850
5851      /* Generate the initial entry for the .line section.  */
5852
5853      fputc ('\n', asm_out_file);
5854      ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5855      ASM_OUTPUT_LABEL (asm_out_file, LINE_BEGIN_LABEL);
5856      ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, LINE_END_LABEL, LINE_BEGIN_LABEL);
5857      ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5858      ASM_OUTPUT_POP_SECTION (asm_out_file);
5859
5860      if (use_gnu_debug_info_extensions)
5861	{
5862	  /* Generate the initial entry for the .debug_srcinfo section.  */
5863
5864	  fputc ('\n', asm_out_file);
5865	  ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5866	  ASM_OUTPUT_LABEL (asm_out_file, SRCINFO_BEGIN_LABEL);
5867	  ASM_OUTPUT_DWARF_ADDR (asm_out_file, LINE_BEGIN_LABEL);
5868	  ASM_OUTPUT_DWARF_ADDR (asm_out_file, SFNAMES_BEGIN_LABEL);
5869	  ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5870	  ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_END_LABEL);
5871#ifdef DWARF_TIMESTAMPS
5872	  ASM_OUTPUT_DWARF_DATA4 (asm_out_file, time (NULL));
5873#else
5874	  ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
5875#endif
5876	  ASM_OUTPUT_POP_SECTION (asm_out_file);
5877	}
5878
5879      /* Generate the initial entry for the .debug_pubnames section.  */
5880
5881      fputc ('\n', asm_out_file);
5882      ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5883      ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
5884      ASM_OUTPUT_POP_SECTION (asm_out_file);
5885
5886      /* Generate the initial entry for the .debug_aranges section.  */
5887
5888      fputc ('\n', asm_out_file);
5889      ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5890      ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
5891      ASM_OUTPUT_POP_SECTION (asm_out_file);
5892    }
5893
5894  /* Setup first DIE number == 1.  */
5895  NEXT_DIE_NUM = next_unused_dienum++;
5896
5897  /* Generate the initial DIE for the .debug section.  Note that the
5898     (string) value given in the AT_name attribute of the TAG_compile_unit
5899     DIE will (typically) be a relative pathname and that this pathname
5900     should be taken as being relative to the directory from which the
5901     compiler was invoked when the given (base) source file was compiled.  */
5902
5903  fputc ('\n', asm_out_file);
5904  ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5905  ASM_OUTPUT_LABEL (asm_out_file, DEBUG_BEGIN_LABEL);
5906  output_die (output_compile_unit_die, main_input_filename);
5907  ASM_OUTPUT_POP_SECTION (asm_out_file);
5908
5909  fputc ('\n', asm_out_file);
5910}
5911
5912/* Output stuff that dwarf requires at the end of every file.  */
5913
5914void
5915dwarfout_finish ()
5916{
5917  char label[MAX_ARTIFICIAL_LABEL_BYTES];
5918
5919  retry_incomplete_types ();
5920
5921  fputc ('\n', asm_out_file);
5922  ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5923
5924  /* Mark the end of the chain of siblings which represent all file-scope
5925     declarations in this compilation unit.  */
5926
5927  /* The (null) DIE which represents the terminator for the (sibling linked)
5928     list of file-scope items is *special*.  Normally, we would just call
5929     end_sibling_chain at this point in order to output a word with the
5930     value `4' and that word would act as the terminator for the list of
5931     DIEs describing file-scope items.  Unfortunately, if we were to simply
5932     do that, the label that would follow this DIE in the .debug section
5933     (i.e. `..D2') would *not* be properly aligned (as it must be on some
5934     machines) to a 4 byte boundary.
5935
5936     In order to force the label `..D2' to get aligned to a 4 byte boundary,
5937     the trick used is to insert extra (otherwise useless) padding bytes
5938     into the (null) DIE that we know must precede the ..D2 label in the
5939     .debug section.  The amount of padding required can be anywhere between
5940     0 and 3 bytes.  The length word at the start of this DIE (i.e. the one
5941     with the padding) would normally contain the value 4, but now it will
5942     also have to include the padding bytes, so it will instead have some
5943     value in the range 4..7.
5944
5945     Fortunately, the rules of Dwarf say that any DIE whose length word
5946     contains *any* value less than 8 should be treated as a null DIE, so
5947     this trick works out nicely.  Clever, eh?  Don't give me any credit
5948     (or blame).  I didn't think of this scheme.  I just conformed to it.
5949  */
5950
5951  output_die (output_padded_null_die, (void *) 0);
5952  dienum_pop ();
5953
5954  sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
5955  ASM_OUTPUT_LABEL (asm_out_file, label);	/* should be ..D2 */
5956  ASM_OUTPUT_POP_SECTION (asm_out_file);
5957
5958  /* Output a terminator label for the .text section.  */
5959
5960  fputc ('\n', asm_out_file);
5961  ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
5962  ASM_OUTPUT_LABEL (asm_out_file, TEXT_END_LABEL);
5963  ASM_OUTPUT_POP_SECTION (asm_out_file);
5964
5965  /* Output a terminator label for the .data section.  */
5966
5967  fputc ('\n', asm_out_file);
5968  ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
5969  ASM_OUTPUT_LABEL (asm_out_file, DATA_END_LABEL);
5970  ASM_OUTPUT_POP_SECTION (asm_out_file);
5971
5972#if 0 /* GNU C doesn't currently use .data1.  */
5973  /* Output a terminator label for the .data1 section.  */
5974
5975  fputc ('\n', asm_out_file);
5976  ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
5977  ASM_OUTPUT_LABEL (asm_out_file, DATA1_END_LABEL);
5978  ASM_OUTPUT_POP_SECTION (asm_out_file);
5979#endif
5980
5981  /* Output a terminator label for the .rodata section.  */
5982
5983  fputc ('\n', asm_out_file);
5984  ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
5985  ASM_OUTPUT_LABEL (asm_out_file, RODATA_END_LABEL);
5986  ASM_OUTPUT_POP_SECTION (asm_out_file);
5987
5988#if 0 /* GNU C doesn't currently use .rodata1.  */
5989  /* Output a terminator label for the .rodata1 section.  */
5990
5991  fputc ('\n', asm_out_file);
5992  ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
5993  ASM_OUTPUT_LABEL (asm_out_file, RODATA1_END_LABEL);
5994  ASM_OUTPUT_POP_SECTION (asm_out_file);
5995#endif
5996
5997  /* Output a terminator label for the .bss section.  */
5998
5999  fputc ('\n', asm_out_file);
6000  ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
6001  ASM_OUTPUT_LABEL (asm_out_file, BSS_END_LABEL);
6002  ASM_OUTPUT_POP_SECTION (asm_out_file);
6003
6004  if (debug_info_level >= DINFO_LEVEL_NORMAL)
6005    {
6006      /* Output a terminating entry for the .line section.  */
6007
6008      fputc ('\n', asm_out_file);
6009      ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
6010      ASM_OUTPUT_LABEL (asm_out_file, LINE_LAST_ENTRY_LABEL);
6011      ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6012      ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
6013      ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6014      ASM_OUTPUT_LABEL (asm_out_file, LINE_END_LABEL);
6015      ASM_OUTPUT_POP_SECTION (asm_out_file);
6016
6017      if (use_gnu_debug_info_extensions)
6018	{
6019	  /* Output a terminating entry for the .debug_srcinfo section.  */
6020
6021	  fputc ('\n', asm_out_file);
6022	  ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
6023	  ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
6024				   LINE_LAST_ENTRY_LABEL, LINE_BEGIN_LABEL);
6025	  ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
6026	  ASM_OUTPUT_POP_SECTION (asm_out_file);
6027	}
6028
6029      if (debug_info_level >= DINFO_LEVEL_VERBOSE)
6030	{
6031	  /* Output terminating entries for the .debug_macinfo section.  */
6032
6033	  dwarfout_resume_previous_source_file (0);
6034
6035	  fputc ('\n', asm_out_file);
6036	  ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
6037	  ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6038	  ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
6039	  ASM_OUTPUT_POP_SECTION (asm_out_file);
6040	}
6041
6042      /* Generate the terminating entry for the .debug_pubnames section.  */
6043
6044      fputc ('\n', asm_out_file);
6045      ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
6046      ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6047      ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
6048      ASM_OUTPUT_POP_SECTION (asm_out_file);
6049
6050      /* Generate the terminating entries for the .debug_aranges section.
6051
6052	 Note that we want to do this only *after* we have output the end
6053	 labels (for the various program sections) which we are going to
6054	 refer to here.  This allows us to work around a bug in the m68k
6055	 svr4 assembler.  That assembler gives bogus assembly-time errors
6056	 if (within any given section) you try to take the difference of
6057	 two relocatable symbols, both of which are located within some
6058	 other section, and if one (or both?) of the symbols involved is
6059	 being forward-referenced.  By generating the .debug_aranges
6060	 entries at this late point in the assembly output, we skirt the
6061	 issue simply by avoiding forward-references.
6062      */
6063
6064      fputc ('\n', asm_out_file);
6065      ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
6066
6067      ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6068      ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6069
6070      ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA_BEGIN_LABEL);
6071      ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA_END_LABEL, DATA_BEGIN_LABEL);
6072
6073#if 0 /* GNU C doesn't currently use .data1.  */
6074      ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA1_BEGIN_LABEL);
6075      ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA1_END_LABEL,
6076					     DATA1_BEGIN_LABEL);
6077#endif
6078
6079      ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA_BEGIN_LABEL);
6080      ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA_END_LABEL,
6081					     RODATA_BEGIN_LABEL);
6082
6083#if 0 /* GNU C doesn't currently use .rodata1.  */
6084      ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA1_BEGIN_LABEL);
6085      ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA1_END_LABEL,
6086					     RODATA1_BEGIN_LABEL);
6087#endif
6088
6089      ASM_OUTPUT_DWARF_ADDR (asm_out_file, BSS_BEGIN_LABEL);
6090      ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, BSS_END_LABEL, BSS_BEGIN_LABEL);
6091
6092      ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6093      ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6094
6095      ASM_OUTPUT_POP_SECTION (asm_out_file);
6096    }
6097
6098  /* There should not be any pending types left at the end.  We need
6099     this now because it may not have been checked on the last call to
6100     dwarfout_file_scope_decl.  */
6101  if (pending_types != 0)
6102    abort ();
6103}
6104
6105#endif /* DWARF_DEBUGGING_INFO */
6106