1/* Definitions of target machine for GNU compiler for Hitachi Super-H.
2   Copyright (C) 1993-1998 Free Software Foundation, Inc.
3   Contributed by Steve Chamberlain (sac@cygnus.com).
4   Improved by Jim Wilson (wilson@cygnus.com).
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING.  If not, write to
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA.  */
22
23
24#define TARGET_VERSION \
25  fputs (" (Hitachi SH)", stderr);
26
27/* Unfortunately, insn-attrtab.c doesn't include insn-codes.h.  We can't
28  include it here, because hconfig.h is also included by gencodes.c .  */
29extern int code_for_indirect_jump_scratch;
30
31/* Generate SDB debugging information.  */
32
33#define SDB_DEBUGGING_INFO
34
35/* Output DBX (stabs) debugging information if doing -gstabs.  */
36
37#include "dbxcoff.h"
38
39#define SDB_DELIM ";"
40
41#define CPP_SPEC "%{ml:-D__LITTLE_ENDIAN__} \
42%{m1:-D__sh1__} \
43%{m2:-D__sh2__} \
44%{m3:-D__sh3__} \
45%{m3e:-D__SH3E__} \
46%{m4-single-only:-D__SH4_SINGLE_ONLY__} \
47%{m4-single:-D__SH4_SINGLE__} \
48%{m4:-D__SH4__} \
49%{!m1:%{!m2:%{!m3:%{!m3e:%{!m4:%{!m4-single:%{!m4-single-only:-D__sh1__}}}}}}} \
50%{mhitachi:-D__HITACHI__}"
51
52#define CPP_PREDEFINES "-D__sh__ -Acpu(sh) -Amachine(sh)"
53
54#define ASM_SPEC  "%{ml:-little} %{mrelax:-relax}"
55
56#define LINK_SPEC "%{ml:-m shl} %{mrelax:-relax}"
57
58/* We can not debug without a frame pointer.  */
59/* #define CAN_DEBUG_WITHOUT_FP */
60
61#define CONDITIONAL_REGISTER_USAGE					\
62  if (! TARGET_SH4 || ! TARGET_FMOVD)					\
63    {									\
64      int regno;							\
65      for (regno = FIRST_XD_REG; regno <= LAST_XD_REG; regno++)		\
66	fixed_regs[regno] = call_used_regs[regno] = 1;			\
67      if (! TARGET_SH4)							\
68	{								\
69	  if (! TARGET_SH3E)						\
70	    {								\
71	      int regno;						\
72	      for (regno = FIRST_FP_REG; regno <= LAST_FP_REG; regno++)	\
73		fixed_regs[regno] = call_used_regs[regno] = 1;		\
74	      fixed_regs[FPUL_REG] = call_used_regs[FPUL_REG] = 1;	\
75	    }								\
76	}								\
77    }									\
78  /* Hitachi saves and restores mac registers on call.  */		\
79  if (TARGET_HITACHI)							\
80    {									\
81      call_used_regs[MACH_REG] = 0;					\
82      call_used_regs[MACL_REG] = 0;					\
83    }
84
85/* ??? Need to write documentation for all SH options and add it to the
86   invoke.texi file.  */
87
88/* Run-time compilation parameters selecting different hardware subsets.  */
89
90extern int target_flags;
91#define ISIZE_BIT      	(1<<1)
92#define DALIGN_BIT     	(1<<6)
93#define SH1_BIT	       	(1<<8)
94#define SH2_BIT	       	(1<<9)
95#define SH3_BIT	       	(1<<10)
96#define SH3E_BIT	(1<<11)
97#define HARD_SH4_BIT	(1<<5)
98#define FPU_SINGLE_BIT	(1<<7)
99#define SH4_BIT	       	(1<<12)
100#define FMOVD_BIT	(1<<4)
101#define SPACE_BIT 	(1<<13)
102#define BIGTABLE_BIT  	(1<<14)
103#define RELAX_BIT	(1<<15)
104#define HITACHI_BIT     (1<<22)
105#define PADSTRUCT_BIT  (1<<28)
106#define LITTLE_ENDIAN_BIT (1<<29)
107#define IEEE_BIT (1<<30)
108
109/* Nonzero if we should dump out instruction size info.  */
110#define TARGET_DUMPISIZE  (target_flags & ISIZE_BIT)
111
112/* Nonzero to align doubles on 64 bit boundaries.  */
113#define TARGET_ALIGN_DOUBLE (target_flags & DALIGN_BIT)
114
115/* Nonzero if we should generate code using type 1 insns.  */
116#define TARGET_SH1 (target_flags & SH1_BIT)
117
118/* Nonzero if we should generate code using type 2 insns.  */
119#define TARGET_SH2 (target_flags & SH2_BIT)
120
121/* Nonzero if we should generate code using type 3 insns.  */
122#define TARGET_SH3 (target_flags & SH3_BIT)
123
124/* Nonzero if we should generate code using type 3E insns.  */
125#define TARGET_SH3E (target_flags & SH3E_BIT)
126
127/* Nonzero if the cache line size is 32. */
128#define TARGET_CACHE32 (target_flags & HARD_SH4_BIT)
129
130/* Nonzero if we schedule for a superscalar implementation. */
131#define TARGET_SUPERSCALAR (target_flags & HARD_SH4_BIT)
132
133/* Nonzero if the target has separate instruction and data caches.  */
134#define TARGET_HARWARD (target_flags & HARD_SH4_BIT)
135
136/* Nonzero if compiling for SH4 hardware (to be used for insn costs etc.)  */
137#define TARGET_HARD_SH4 (target_flags & HARD_SH4_BIT)
138
139/* Nonzero if the default precision of th FPU is single */
140#define TARGET_FPU_SINGLE (target_flags & FPU_SINGLE_BIT)
141
142/* Nonzero if we should generate code using type 4 insns.  */
143#define TARGET_SH4 (target_flags & SH4_BIT)
144
145/* Nonzero if we should generate fmovd.  */
146#define TARGET_FMOVD (target_flags & FMOVD_BIT)
147
148/* Nonzero if we respect NANs.  */
149#define TARGET_IEEE (target_flags & IEEE_BIT)
150
151/* Nonzero if we should generate smaller code rather than faster code.  */
152#define TARGET_SMALLCODE   (target_flags & SPACE_BIT)
153
154/* Nonzero to use long jump tables.  */
155#define TARGET_BIGTABLE     (target_flags & BIGTABLE_BIT)
156
157/* Nonzero to generate pseudo-ops needed by the assembler and linker
158   to do function call relaxing.  */
159#define TARGET_RELAX (target_flags & RELAX_BIT)
160
161/* Nonzero if using Hitachi's calling convention.  */
162#define TARGET_HITACHI 		(target_flags & HITACHI_BIT)
163
164/* Nonzero if padding structures to a multiple of 4 bytes.  This is
165   incompatible with Hitachi's compiler, and gives unusual structure layouts
166   which confuse programmers.
167   ??? This option is not useful, but is retained in case there are people
168   who are still relying on it.  It may be deleted in the future.  */
169#define TARGET_PADSTRUCT       (target_flags & PADSTRUCT_BIT)
170
171/* Nonzero if generating code for a little endian SH.  */
172#define TARGET_LITTLE_ENDIAN     (target_flags & LITTLE_ENDIAN_BIT)
173
174#define TARGET_SWITCHES  			\
175{ {"1",	        SH1_BIT},			\
176  {"2",	        SH2_BIT},			\
177  {"3",	        SH3_BIT|SH2_BIT},		\
178  {"3e",	SH3E_BIT|SH3_BIT|SH2_BIT|FPU_SINGLE_BIT},	\
179  {"4-single-only",	SH3E_BIT|SH3_BIT|SH2_BIT|SH3E_BIT|HARD_SH4_BIT|FPU_SINGLE_BIT},	\
180  {"4-single",	SH4_BIT|SH3E_BIT|SH3_BIT|SH2_BIT|HARD_SH4_BIT|FPU_SINGLE_BIT},\
181  {"4",	        SH4_BIT|SH3E_BIT|SH3_BIT|SH2_BIT|HARD_SH4_BIT},	\
182  {"b",		-LITTLE_ENDIAN_BIT},  		\
183  {"bigtable", 	BIGTABLE_BIT},			\
184  {"dalign",  	DALIGN_BIT},			\
185  {"fmovd",  	FMOVD_BIT},			\
186  {"hitachi",	HITACHI_BIT},			\
187  {"ieee",  	IEEE_BIT},			\
188  {"isize", 	ISIZE_BIT},			\
189  {"l",		LITTLE_ENDIAN_BIT},  		\
190  {"no-ieee",  	-IEEE_BIT},			\
191  {"padstruct", PADSTRUCT_BIT},    		\
192  {"relax",	RELAX_BIT},			\
193  {"space", 	SPACE_BIT},			\
194  SUBTARGET_SWITCHES                            \
195  {"",   	TARGET_DEFAULT} 		\
196}
197
198/* This are meant to be redefined in the host dependent files */
199#define SUBTARGET_SWITCHES
200
201#define TARGET_DEFAULT  (0)
202
203#define OPTIMIZATION_OPTIONS(LEVEL,SIZE)				\
204do {									\
205  if (LEVEL)								\
206    flag_omit_frame_pointer = -1;					\
207  if (LEVEL)								\
208    sh_flag_remove_dead_before_cse = 1;					\
209  if (SIZE)								\
210    target_flags |= SPACE_BIT;						\
211} while (0)
212
213#define ASSEMBLER_DIALECT assembler_dialect
214
215extern int assembler_dialect;
216
217#define OVERRIDE_OPTIONS 						\
218do {									\
219  sh_cpu = CPU_SH1;							\
220  assembler_dialect = 0;						\
221  if (TARGET_SH2)							\
222    sh_cpu = CPU_SH2;							\
223  if (TARGET_SH3)							\
224    sh_cpu = CPU_SH3;							\
225  if (TARGET_SH3E)							\
226    sh_cpu = CPU_SH3E;							\
227  if (TARGET_SH4)							\
228    {									\
229      assembler_dialect = 1;						\
230      sh_cpu = CPU_SH4;							\
231    }									\
232  if (! TARGET_SH4 || ! TARGET_FMOVD)					\
233    {									\
234      /* Prevent usage of explicit register names for variables		\
235	 for registers not present / not addressable in the		\
236	 target architecture.  */					\
237      int regno;							\
238      for (regno = (TARGET_SH3E) ? 17 : 0; 				\
239	   regno <= 24; regno++)					\
240	fp_reg_names[regno][0] = 0;					\
241    }									\
242  if (flag_omit_frame_pointer < 0)					\
243   /* The debugging information is sufficient,				\
244      but gdb doesn't implement this yet */				\
245   if (0)								\
246    flag_omit_frame_pointer						\
247      = (PREFERRED_DEBUGGING_TYPE == DWARF_DEBUG			\
248	 || PREFERRED_DEBUGGING_TYPE == DWARF2_DEBUG);			\
249   else									\
250    flag_omit_frame_pointer = 0;					\
251									\
252  /* Never run scheduling before reload, since that can			\
253     break global alloc, and generates slower code anyway due		\
254     to the pressure on R0.  */						\
255  flag_schedule_insns = 0;						\
256  sh_addr_diff_vec_mode = TARGET_BIGTABLE ? SImode : HImode;		\
257} while (0)
258
259/* Target machine storage layout.  */
260
261/* Define to use software floating point emulator for REAL_ARITHMETIC and
262   decimal <-> binary conversion.  */
263#define REAL_ARITHMETIC
264
265/* Define this if most significant bit is lowest numbered
266   in instructions that operate on numbered bit-fields.  */
267
268#define BITS_BIG_ENDIAN  0
269
270/* Define this if most significant byte of a word is the lowest numbered.  */
271#define BYTES_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
272
273/* Define this if most significant word of a multiword number is the lowest
274   numbered.  */
275#define WORDS_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
276
277/* Define this to set the endianness to use in libgcc2.c, which can
278   not depend on target_flags.  */
279#if defined(__LITTLE_ENDIAN__)
280#define LIBGCC2_WORDS_BIG_ENDIAN 0
281#else
282#define LIBGCC2_WORDS_BIG_ENDIAN 1
283#endif
284
285/* Number of bits in an addressable storage unit.  */
286#define BITS_PER_UNIT  8
287
288/* Width in bits of a "word", which is the contents of a machine register.
289   Note that this is not necessarily the width of data type `int';
290   if using 16-bit ints on a 68000, this would still be 32.
291   But on a machine with 16-bit registers, this would be 16.  */
292#define BITS_PER_WORD  32
293#define MAX_BITS_PER_WORD 32
294
295/* Width of a word, in units (bytes).  */
296#define UNITS_PER_WORD	4
297
298/* Width in bits of a pointer.
299   See also the macro `Pmode' defined below.  */
300#define POINTER_SIZE  32
301
302/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
303#define PARM_BOUNDARY  	32
304
305/* Boundary (in *bits*) on which stack pointer should be aligned.  */
306#define STACK_BOUNDARY  BIGGEST_ALIGNMENT
307
308/* The log (base 2) of the cache line size, in bytes.  Processors prior to
309   SH2 have no actual cache, but they fetch code in chunks of 4 bytes.
310   The SH2/3 have 16 byte cache lines, and the SH4 has a 32 byte cache line */
311#define CACHE_LOG (TARGET_CACHE32 ? 5 : TARGET_SH2 ? 4 : 2)
312
313/* Allocation boundary (in *bits*) for the code of a function.
314   32 bit alignment is faster, because instructions are always fetched as a
315   pair from a longword boundary.  */
316#define FUNCTION_BOUNDARY  (TARGET_SMALLCODE ? 16 : (1 << CACHE_LOG) * 8)
317
318/* Alignment of field after `int : 0' in a structure.  */
319#define EMPTY_FIELD_BOUNDARY  32
320
321/* No data type wants to be aligned rounder than this.  */
322#define BIGGEST_ALIGNMENT  (TARGET_ALIGN_DOUBLE ? 64 : 32)
323
324/* The best alignment to use in cases where we have a choice.  */
325#define FASTEST_ALIGNMENT 32
326
327/* Make strings word-aligned so strcpy from constants will be faster.  */
328#define CONSTANT_ALIGNMENT(EXP, ALIGN)	\
329  ((TREE_CODE (EXP) == STRING_CST	\
330    && (ALIGN) < FASTEST_ALIGNMENT)	\
331    ? FASTEST_ALIGNMENT : (ALIGN))
332
333#ifndef MAX_OFILE_ALIGNMENT
334#define MAX_OFILE_ALIGNMENT 128
335#endif
336
337/* Make arrays of chars word-aligned for the same reasons.  */
338#define DATA_ALIGNMENT(TYPE, ALIGN)		\
339  (TREE_CODE (TYPE) == ARRAY_TYPE		\
340   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
341   && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
342
343/* Number of bits which any structure or union's size must be a
344   multiple of.  Each structure or union's size is rounded up to a
345   multiple of this.  */
346#define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
347
348/* Set this nonzero if move instructions will actually fail to work
349   when given unaligned data.  */
350#define STRICT_ALIGNMENT 1
351
352/* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm.  */
353#define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \
354  barrier_align (LABEL_AFTER_BARRIER)
355
356#define LOOP_ALIGN(A_LABEL) \
357  ((! optimize || TARGET_HARWARD || TARGET_SMALLCODE) ? 0 : 2)
358
359#define LABEL_ALIGN(A_LABEL) \
360(									\
361  (PREV_INSN (A_LABEL)							\
362   && GET_CODE (PREV_INSN (A_LABEL)) == INSN				\
363   && GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE	\
364   && XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == 1)			\
365   /* explicit alignment insn in constant tables. */			\
366  ? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0))		\
367  : 0)
368
369/* Jump tables must be 32 bit aligned, no matter the size of the element.  */
370#define ADDR_VEC_ALIGN(ADDR_VEC) 2
371
372/* The base two logarithm of the known minimum alignment of an insn length.  */
373#define INSN_LENGTH_ALIGNMENT(A_INSN)					\
374  (GET_CODE (A_INSN) == INSN						\
375   ? 1									\
376   : GET_CODE (A_INSN) == JUMP_INSN || GET_CODE (A_INSN) == CALL_INSN	\
377   ? 1									\
378   : CACHE_LOG)
379
380/* Standard register usage.  */
381
382/* Register allocation for the Hitachi calling convention:
383
384        r0		arg return
385	r1..r3          scratch
386	r4..r7		args in
387	r8..r13		call saved
388	r14		frame pointer/call saved
389	r15		stack pointer
390	ap		arg pointer (doesn't really exist, always eliminated)
391	pr		subroutine return address
392	t               t bit
393	mach		multiply/accumulate result, high part
394	macl		multiply/accumulate result, low part.
395	fpul		fp/int communication register
396	rap		return address pointer register
397	fr0		fp arg return
398	fr1..fr3	scratch floating point registers
399	fr4..fr11	fp args in
400	fr12..fr15	call saved floating point registers  */
401
402/* Number of actual hardware registers.
403   The hardware registers are assigned numbers for the compiler
404   from 0 to just below FIRST_PSEUDO_REGISTER.
405   All registers that the compiler knows about must be given numbers,
406   even those that are not normally considered general registers.  */
407
408#define AP_REG   16
409#define PR_REG   17
410#define T_REG    18
411#define GBR_REG  19
412#define MACH_REG 20
413#define MACL_REG 21
414#define SPECIAL_REG(REGNO) ((REGNO) >= 18 && (REGNO) <= 21)
415#define FPUL_REG 22
416#define RAP_REG 23
417#define FIRST_FP_REG 24
418#define LAST_FP_REG 39
419#define FIRST_XD_REG 40
420#define LAST_XD_REG 47
421#define FPSCR_REG 48
422
423#define FIRST_PSEUDO_REGISTER 49
424
425/* 1 for registers that have pervasive standard uses
426   and are not available for the register allocator.
427
428   Mach register is fixed 'cause it's only 10 bits wide for SH1.
429   It is 32 bits wide for SH2.  */
430
431#define FIXED_REGISTERS  	\
432  { 0,  0,  0,  0, 		\
433    0,  0,  0,  0, 		\
434    0,  0,  0,  0, 		\
435    0,  0,  0,  1, 		\
436    1,  1,  1,  1, 		\
437    1,  1,  0,  1,		\
438    0,  0,  0,  0,		\
439    0,  0,  0,  0,		\
440    0,  0,  0,  0,		\
441    0,  0,  0,  0,		\
442    0,  0,  0,  0,		\
443    0,  0,  0,  0,		\
444    1,				\
445}
446
447/* 1 for registers not available across function calls.
448   These must include the FIXED_REGISTERS and also any
449   registers that can be used without being saved.
450   The latter must include the registers where values are returned
451   and the register where structure-value addresses are passed.
452   Aside from that, you can include as many other registers as you like.  */
453
454#define CALL_USED_REGISTERS 	\
455  { 1,  1,  1,  1,		\
456    1,  1,  1,  1, 		\
457    0,  0,  0,  0,		\
458    0,  0,  0,  1,		\
459    1,  0,  1,  1,		\
460    1,  1,  1,  1,		\
461    1,  1,  1,  1,		\
462    1,  1,  1,  1,		\
463    1,  1,  1,  1,		\
464    0,  0,  0,  0,		\
465    1,  1,  1,  1,		\
466    1,  1,  0,  0,		\
467    1,				\
468}
469
470/* Return number of consecutive hard regs needed starting at reg REGNO
471   to hold something of mode MODE.
472   This is ordinarily the length in words of a value of mode MODE
473   but can be less for certain modes in special long registers.
474
475   On the SH all but the XD regs are UNITS_PER_WORD bits wide.  */
476
477#define HARD_REGNO_NREGS(REGNO, MODE) \
478   ((REGNO) >= FIRST_XD_REG && (REGNO) <= LAST_XD_REG \
479    ? (GET_MODE_SIZE (MODE) / (2 * UNITS_PER_WORD)) \
480    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
481
482/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
483   We can allow any mode in any general register.  The special registers
484   only allow SImode.  Don't allow any mode in the PR.  */
485
486/* We cannot hold DCmode values in the XD registers because alter_reg
487   handles subregs of them incorrectly.  We could work around this by
488   spacing the XD registers like the DR registers, but this would require
489   additional memory in every compilation to hold larger register vectors.
490   We could hold SFmode / SCmode values in XD registers, but that
491   would require a tertiary reload when reloading from / to memory,
492   and a secondary reload to reload from / to general regs; that
493   seems to be a loosing proposition.  */
494#define HARD_REGNO_MODE_OK(REGNO, MODE)		\
495  (SPECIAL_REG (REGNO) ? (MODE) == SImode	\
496   : (REGNO) == FPUL_REG ? (MODE) == SImode || (MODE) == SFmode	\
497   : (REGNO) >= FIRST_FP_REG && (REGNO) <= LAST_FP_REG && (MODE) == SFmode \
498   ? 1 \
499   : (REGNO) >= FIRST_FP_REG && (REGNO) <= LAST_FP_REG \
500   ? ((MODE) == SFmode \
501      || (TARGET_SH3E && (MODE) == SCmode) \
502      || (((TARGET_SH4 && (MODE) == DFmode) || (MODE) == DCmode) \
503	  && (((REGNO) - FIRST_FP_REG) & 1) == 0)) \
504   : (REGNO) >= FIRST_XD_REG && (REGNO) <= LAST_XD_REG \
505   ? (MODE) == DFmode \
506   : (REGNO) == PR_REG ? 0			\
507   : (REGNO) == FPSCR_REG ? (MODE) == PSImode \
508   : 1)
509
510/* Value is 1 if it is a good idea to tie two pseudo registers
511   when one has mode MODE1 and one has mode MODE2.
512   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
513   for any hard reg, then this must be 0 for correct output.  */
514
515#define MODES_TIEABLE_P(MODE1, MODE2) \
516  ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
517
518/* Specify the registers used for certain standard purposes.
519   The values of these macros are register numbers.  */
520
521/* Define this if the program counter is overloaded on a register.  */
522/* #define PC_REGNUM		15*/
523
524/* Register to use for pushing function arguments.  */
525#define STACK_POINTER_REGNUM	15
526
527/* Base register for access to local variables of the function.  */
528#define FRAME_POINTER_REGNUM	14
529
530/* Fake register that holds the address on the stack of the
531   current function's return address.  */
532#define RETURN_ADDRESS_POINTER_REGNUM 23
533
534/* Value should be nonzero if functions must have frame pointers.
535   Zero means the frame pointer need not be set up (and parms may be accessed
536   via the stack pointer) in functions that seem suitable.  */
537
538#define FRAME_POINTER_REQUIRED	0
539
540/* Definitions for register eliminations.
541
542   We have three registers that can be eliminated on the SH.  First, the
543   frame pointer register can often be eliminated in favor of the stack
544   pointer register.  Secondly, the argument pointer register can always be
545   eliminated; it is replaced with either the stack or frame pointer.
546   Third, there is the return address pointer, which can also be replaced
547   with either the stack or the frame pointer.  */
548
549/* This is an array of structures.  Each structure initializes one pair
550   of eliminable registers.  The "from" register number is given first,
551   followed by "to".  Eliminations of the same "from" register are listed
552   in order of preference.  */
553
554/* If you add any registers here that are not actually hard registers,
555   and that have any alternative of elimination that doesn't always
556   apply, you need to amend calc_live_regs to exclude it, because
557   reload spills all eliminable registers where it sees an
558   can_eliminate == 0 entry, thus making them 'live' .
559   If you add any hard registers that can be eliminated in different
560   ways, you have to patch reload to spill them only when all alternatives
561   of elimination fail.  */
562
563#define ELIMINABLE_REGS						\
564{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},			\
565 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
566 { RETURN_ADDRESS_POINTER_REGNUM, FRAME_POINTER_REGNUM},	\
567 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},			\
568 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},}
569
570/* Given FROM and TO register numbers, say whether this elimination
571   is allowed.  */
572#define CAN_ELIMINATE(FROM, TO) \
573  (!((FROM) == FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
574
575/* Define the offset between two registers, one to be eliminated, and the other
576   its replacement, at the start of a routine.  */
577
578#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
579  OFFSET = initial_elimination_offset ((FROM), (TO))
580
581/* Base register for access to arguments of the function.  */
582#define ARG_POINTER_REGNUM	16
583
584/* Register in which the static-chain is passed to a function.  */
585#define STATIC_CHAIN_REGNUM	13
586
587/* The register in which a struct value address is passed.  */
588
589#define STRUCT_VALUE_REGNUM 2
590
591/* If the structure value address is not passed in a register, define
592   `STRUCT_VALUE' as an expression returning an RTX for the place
593   where the address is passed.  If it returns 0, the address is
594   passed as an "invisible" first argument.  */
595
596/*#define STRUCT_VALUE ((rtx)0)*/
597
598/* Don't default to pcc-struct-return, because we have already specified
599   exactly how to return structures in the RETURN_IN_MEMORY macro.  */
600
601#define DEFAULT_PCC_STRUCT_RETURN 0
602
603/* Define the classes of registers for register constraints in the
604   machine description.  Also define ranges of constants.
605
606   One of the classes must always be named ALL_REGS and include all hard regs.
607   If there is more than one class, another class must be named NO_REGS
608   and contain no registers.
609
610   The name GENERAL_REGS must be the name of a class (or an alias for
611   another name such as ALL_REGS).  This is the class of registers
612   that is allowed by "g" or "r" in a register constraint.
613   Also, registers outside this class are allocated only when
614   instructions express preferences for them.
615
616   The classes must be numbered in nondecreasing order; that is,
617   a larger-numbered class must never be contained completely
618   in a smaller-numbered class.
619
620   For any two classes, it is very desirable that there be another
621   class that represents their union.  */
622
623/* The SH has two sorts of general registers, R0 and the rest.  R0 can
624   be used as the destination of some of the arithmetic ops. There are
625   also some special purpose registers; the T bit register, the
626   Procedure Return Register and the Multiply Accumulate Registers.  */
627/* Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
628   reg_class_subunion.  We don't want to have an actual union class
629   of these, because it would only be used when both classes are calculated
630   to give the same cost, but there is only one FPUL register.
631   Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
632   applying to the actual instruction alternative considered.  E.g., the
633   y/r alternative of movsi_ie is considered to have no more cost that
634   the r/r alternative, which is patently untrue.  */
635
636enum reg_class
637{
638  NO_REGS,
639  R0_REGS,
640  PR_REGS,
641  T_REGS,
642  MAC_REGS,
643  FPUL_REGS,
644  GENERAL_REGS,
645  FP0_REGS,
646  FP_REGS,
647  DF_REGS,
648  FPSCR_REGS,
649  GENERAL_FP_REGS,
650  ALL_REGS,
651  LIM_REG_CLASSES
652};
653
654#define N_REG_CLASSES  (int) LIM_REG_CLASSES
655
656/* Give names of register classes as strings for dump file.  */
657#define REG_CLASS_NAMES	\
658{			\
659  "NO_REGS",		\
660  "R0_REGS",		\
661  "PR_REGS",		\
662  "T_REGS",		\
663  "MAC_REGS",		\
664  "FPUL_REGS",		\
665  "GENERAL_REGS",	\
666  "FP0_REGS",		\
667  "FP_REGS",		\
668  "DF_REGS",		\
669  "FPSCR_REGS",		\
670  "GENERAL_FP_REGS",	\
671  "ALL_REGS",		\
672}
673
674/* Define which registers fit in which classes.
675   This is an initializer for a vector of HARD_REG_SET
676   of length N_REG_CLASSES.  */
677
678#define REG_CLASS_CONTENTS				\
679{							\
680  { 0x00000000, 0x00000000 }, /* NO_REGS	*/	\
681  { 0x00000001, 0x00000000 }, /* R0_REGS	*/	\
682  { 0x00020000, 0x00000000 }, /* PR_REGS	*/	\
683  { 0x00040000, 0x00000000 }, /* T_REGS		*/	\
684  { 0x00300000, 0x00000000 }, /* MAC_REGS	*/	\
685  { 0x00400000, 0x00000000 }, /* FPUL_REGS	*/	\
686  { 0x0081FFFF, 0x00000000 }, /* GENERAL_REGS	*/	\
687  { 0x01000000, 0x00000000 }, /* FP0_REGS	*/	\
688  { 0xFF000000, 0x000000FF }, /* FP_REGS	*/	\
689  { 0xFF000000, 0x0000FFFF }, /* DF_REGS	*/	\
690  { 0x00000000, 0x00010000 }, /* FPSCR_REGS	*/	\
691  { 0xFF81FFFF, 0x0000FFFF }, /* GENERAL_FP_REGS */	\
692  { 0xFFFFFFFF, 0x0001FFFF }, /* ALL_REGS	*/	\
693}
694
695/* The same information, inverted:
696   Return the class number of the smallest class containing
697   reg number REGNO.  This could be a conditional expression
698   or could index an array.  */
699
700extern int regno_reg_class[];
701#define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
702
703/* When defined, the compiler allows registers explicitly used in the
704   rtl to be used as spill registers but prevents the compiler from
705   extending the lifetime of these registers.  */
706
707#define SMALL_REGISTER_CLASSES 1
708
709/* The order in which register should be allocated.  */
710/* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
711   and GENERAL_FP_REGS the alternate class.  Since FP0 is likely to be
712   spilled or used otherwise, we better have the FP_REGS allocated first.  */
713#define REG_ALLOC_ORDER \
714  { 25,26,27,28,29,30,31,24,32,33,34,35,36,37,38,39,	\
715    40,41,42,43,44,45,46,47,48,				\
716    1,2,3,7,6,5,4,0,8,9,10,11,12,13,14,			\
717    22,15,16,17,18,19,20,21,23 }
718
719/* The class value for index registers, and the one for base regs.  */
720#define INDEX_REG_CLASS  R0_REGS
721#define BASE_REG_CLASS	 GENERAL_REGS
722
723/* Get reg_class from a letter such as appears in the machine
724   description.  */
725extern enum reg_class reg_class_from_letter[];
726
727#define REG_CLASS_FROM_LETTER(C) \
728   ( (C) >= 'a' && (C) <= 'z' ? reg_class_from_letter[(C)-'a'] : NO_REGS )
729
730/* The letters I, J, K, L and M in a register constraint string
731   can be used to stand for particular ranges of immediate operands.
732   This macro defines what the ranges are.
733   C is the letter, and VALUE is a constant value.
734   Return 1 if VALUE is in the range specified by C.
735	I: arithmetic operand -127..128, as used in add, sub, etc
736	K: shift operand 1,2,8 or 16
737	L: logical operand 0..255, as used in and, or, etc.
738	M: constant 1
739	N: constant 0  */
740
741#define CONST_OK_FOR_I(VALUE) (((int)(VALUE))>= -128 && ((int)(VALUE)) <= 127)
742#define CONST_OK_FOR_K(VALUE) ((VALUE)==1||(VALUE)==2||(VALUE)==8||(VALUE)==16)
743#define CONST_OK_FOR_L(VALUE) (((int)(VALUE))>=    0 && ((int)(VALUE)) <= 255)
744#define CONST_OK_FOR_M(VALUE) ((VALUE)==1)
745#define CONST_OK_FOR_N(VALUE) ((VALUE)==0)
746#define CONST_OK_FOR_LETTER_P(VALUE, C)		\
747     ((C) == 'I' ? CONST_OK_FOR_I (VALUE)	\
748    : (C) == 'K' ? CONST_OK_FOR_K (VALUE)	\
749    : (C) == 'L' ? CONST_OK_FOR_L (VALUE)	\
750    : (C) == 'M' ? CONST_OK_FOR_M (VALUE)	\
751    : (C) == 'N' ? CONST_OK_FOR_N (VALUE)	\
752    : 0)
753
754/* Similar, but for floating constants, and defining letters G and H.
755   Here VALUE is the CONST_DOUBLE rtx itself.  */
756
757#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)	\
758((C) == 'G' ? fp_zero_operand (VALUE)		\
759 : (C) == 'H' ? fp_one_operand (VALUE)		\
760 : (C) == 'F')
761
762/* Given an rtx X being reloaded into a reg required to be
763   in class CLASS, return the class of reg to actually use.
764   In general this is just CLASS; but on some machines
765   in some cases it is preferable to use a more restrictive class.  */
766
767#define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
768
769#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
770  ((((((CLASS) == FP_REGS || (CLASS) == FP0_REGS			\
771	|| (CLASS) == DF_REGS)						\
772      && (GET_CODE (X) == REG && REGNO (X) <= AP_REG))			\
773     || (((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS)		\
774	 && GET_CODE (X) == REG						\
775	 && REGNO (X) >= FIRST_FP_REG && REGNO (X) <= LAST_FP_REG))	\
776    && MODE == SFmode)							\
777   ? FPUL_REGS								\
778   : ((CLASS) == FPUL_REGS						\
779      && (GET_CODE (X) == MEM						\
780	  || (GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER)))\
781   ? GENERAL_REGS							\
782   : (((CLASS) == MAC_REGS || (CLASS) == PR_REGS)			\
783      && GET_CODE (X) == REG && REGNO (X) > 15				\
784      && (CLASS) != REGNO_REG_CLASS (REGNO (X)))			\
785   ? GENERAL_REGS : NO_REGS)
786
787#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X)  \
788  ((((CLASS) == FP_REGS || (CLASS) == FP0_REGS || (CLASS) == DF_REGS)	\
789    && immediate_operand ((X), (MODE))					\
790    && ! ((fp_zero_operand (X) || fp_one_operand (X)) && (MODE) == SFmode))\
791   ? R0_REGS								\
792   : CLASS == FPUL_REGS && immediate_operand ((X), (MODE))		\
793   ? (GET_CODE (X) == CONST_INT && CONST_OK_FOR_I (INTVAL (X))		\
794      ? GENERAL_REGS							\
795      : R0_REGS)							\
796   : (CLASS == FPSCR_REGS						\
797      && ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER)	\
798	  || GET_CODE (X) == MEM && GET_CODE (XEXP ((X), 0)) == PLUS))	\
799   ? GENERAL_REGS							\
800   : SECONDARY_OUTPUT_RELOAD_CLASS((CLASS),(MODE),(X)))
801
802/* Return the maximum number of consecutive registers
803   needed to represent mode MODE in a register of class CLASS.
804
805   On SH this is the size of MODE in words.  */
806#define CLASS_MAX_NREGS(CLASS, MODE) \
807     ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
808
809/* If defined, gives a class of registers that cannot be used as the
810   operand of a SUBREG that changes the size of the object.  */
811
812#define CLASS_CANNOT_CHANGE_SIZE	DF_REGS
813
814/* Stack layout; function entry, exit and calling.  */
815
816/* Define the number of registers that can hold parameters.
817   These macros are used only in other macro definitions below.  */
818
819#define NPARM_REGS(MODE) \
820  (TARGET_SH3E && (MODE) == SFmode \
821   ? 8 \
822   : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
823		    || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
824   ? 8 \
825   : 4)
826
827#define FIRST_PARM_REG 4
828#define FIRST_RET_REG  0
829
830#define FIRST_FP_PARM_REG (FIRST_FP_REG + 4)
831#define FIRST_FP_RET_REG FIRST_FP_REG
832
833/* Define this if pushing a word on the stack
834   makes the stack pointer a smaller address.  */
835#define STACK_GROWS_DOWNWARD
836
837/*  Define this macro if the addresses of local variable slots are at
838    negative offsets from the frame pointer.
839
840    The SH only has positive indexes, so grow the frame up.  */
841/* #define FRAME_GROWS_DOWNWARD */
842
843/* Offset from the frame pointer to the first local variable slot to
844   be allocated.  */
845#define STARTING_FRAME_OFFSET  0
846
847/* If we generate an insn to push BYTES bytes,
848   this says how many the stack pointer really advances by.  */
849/* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
850   When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
851   do correct alignment.  */
852#if 0
853#define PUSH_ROUNDING(NPUSHED)  (((NPUSHED) + 3) & ~3)
854#endif
855
856/* Offset of first parameter from the argument pointer register value.  */
857#define FIRST_PARM_OFFSET(FNDECL)  0
858
859/* Value is the number of byte of arguments automatically
860   popped when returning from a subroutine call.
861   FUNDECL is the declaration node of the function (as a tree),
862   FUNTYPE is the data type of the function (as a tree),
863   or for a library call it is an identifier node for the subroutine name.
864   SIZE is the number of bytes of arguments passed on the stack.
865
866   On the SH, the caller does not pop any of its arguments that were passed
867   on the stack.  */
868#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE)  0
869
870/* Nonzero if we do not know how to pass TYPE solely in registers.
871   Values that come in registers with inconvenient padding are stored
872   to memory at the function start.  */
873
874#define MUST_PASS_IN_STACK(MODE,TYPE)			\
875  ((TYPE) != 0						\
876   && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST	\
877       || TREE_ADDRESSABLE (TYPE)))
878/* Some subroutine macros specific to this machine. */
879
880#define BASE_RETURN_VALUE_REG(MODE) \
881  ((TARGET_SH3E && ((MODE) == SFmode))			\
882   ? FIRST_FP_RET_REG					\
883   : TARGET_SH3E && (MODE) == SCmode		\
884   ? FIRST_FP_RET_REG					\
885   : (TARGET_SH4					\
886      && ((MODE) == DFmode || (MODE) == SFmode		\
887	  || (MODE) == DCmode || (MODE) == SCmode ))	\
888   ? FIRST_FP_RET_REG					\
889   : FIRST_RET_REG)
890
891#define BASE_ARG_REG(MODE) \
892  ((TARGET_SH3E && ((MODE) == SFmode))			\
893   ? FIRST_FP_PARM_REG					\
894   : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT	\
895		    || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\
896   ? FIRST_FP_PARM_REG					\
897   : FIRST_PARM_REG)
898
899/* Define how to find the value returned by a function.
900   VALTYPE is the data type of the value (as a tree).
901   If the precise function being called is known, FUNC is its FUNCTION_DECL;
902   otherwise, FUNC is 0.
903   For the SH, this is like LIBCALL_VALUE, except that we must change the
904   mode like PROMOTE_MODE does.
905   ??? PROMOTE_MODE is ignored for non-scalar types.  The set of types
906   tested here has to be kept in sync with the one in explow.c:promote_mode.  */
907
908#define FUNCTION_VALUE(VALTYPE, FUNC)					\
909  gen_rtx (REG,								\
910	   ((GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_INT		\
911	     && GET_MODE_SIZE (TYPE_MODE (VALTYPE)) < UNITS_PER_WORD	\
912	     && (TREE_CODE (VALTYPE) == INTEGER_TYPE			\
913		 || TREE_CODE (VALTYPE) == ENUMERAL_TYPE		\
914		 || TREE_CODE (VALTYPE) == BOOLEAN_TYPE			\
915		 || TREE_CODE (VALTYPE) == CHAR_TYPE			\
916		 || TREE_CODE (VALTYPE) == REAL_TYPE			\
917		 || TREE_CODE (VALTYPE) == OFFSET_TYPE))		\
918	    ? SImode : TYPE_MODE (VALTYPE)),				\
919	   BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
920
921/* Define how to find the value returned by a library function
922   assuming the value has mode MODE.  */
923#define LIBCALL_VALUE(MODE) \
924  gen_rtx (REG, (MODE), BASE_RETURN_VALUE_REG (MODE))
925
926/* 1 if N is a possible register number for a function value. */
927#define FUNCTION_VALUE_REGNO_P(REGNO) \
928  ((REGNO) == FIRST_RET_REG || (TARGET_SH3E && (REGNO) == FIRST_FP_RET_REG))
929
930/* 1 if N is a possible register number for function argument passing.  */
931#define FUNCTION_ARG_REGNO_P(REGNO) \
932  (((REGNO) >= FIRST_PARM_REG && (REGNO) < (FIRST_PARM_REG + 4))        \
933   || (TARGET_SH3E                                                      \
934       && (REGNO) >= FIRST_FP_PARM_REG && (REGNO) < (FIRST_FP_PARM_REG + 8)))
935
936/* Define a data type for recording info about an argument list
937   during the scan of that argument list.  This data type should
938   hold all necessary information about the function itself
939   and about the args processed so far, enough to enable macros
940   such as FUNCTION_ARG to determine where the next arg should go.
941
942   On SH, this is a single integer, which is a number of words
943   of arguments scanned so far (including the invisible argument,
944   if any, which holds the structure-value-address).
945   Thus NARGREGS or more means all following args should go on the stack.  */
946
947enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
948struct sh_args {
949    int arg_count[2];
950};
951
952#define CUMULATIVE_ARGS  struct sh_args
953
954#define GET_SH_ARG_CLASS(MODE) \
955  ((TARGET_SH3E && (MODE) == SFmode) \
956   ? SH_ARG_FLOAT \
957   : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
958		    || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
959   ? SH_ARG_FLOAT : SH_ARG_INT)
960
961#define ROUND_ADVANCE(SIZE) \
962  (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
963
964/* Round a register number up to a proper boundary for an arg of mode
965   MODE.
966
967   The SH doesn't care about double alignment, so we only
968   round doubles to even regs when asked to explicitly.  */
969
970#define ROUND_REG(CUM, MODE) \
971   (((TARGET_ALIGN_DOUBLE					\
972      || (TARGET_SH4 && ((MODE) == DFmode || (MODE) == DCmode)	\
973	  && (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (MODE)))\
974     && GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD)		\
975    ? ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)]		\
976       + ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] & 1))	\
977    : (CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)])
978
979/* Initialize a variable CUM of type CUMULATIVE_ARGS
980   for a call to a function whose data type is FNTYPE.
981   For a library call, FNTYPE is 0.
982
983   On SH, the offset always starts at 0: the first parm reg is always
984   the same reg for a given argument class.  */
985
986#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
987  do {								\
988    (CUM).arg_count[(int) SH_ARG_INT] = 0;			\
989    (CUM).arg_count[(int) SH_ARG_FLOAT] = 0;			\
990  } while (0)
991
992/* Update the data in CUM to advance over an argument
993   of mode MODE and data type TYPE.
994   (TYPE is null for libcalls where that information may not be
995   available.)  */
996
997#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
998 if (! TARGET_SH4 || PASS_IN_REG_P ((CUM), (MODE), (TYPE))) \
999   ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)]	\
1000    = (ROUND_REG ((CUM), (MODE))			\
1001       + ((MODE) == BLKmode				\
1002	  ? ROUND_ADVANCE (int_size_in_bytes (TYPE))	\
1003	  : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))))
1004
1005/* Return boolean indicating arg of mode MODE will be passed in a reg.
1006   This macro is only used in this file. */
1007
1008#define PASS_IN_REG_P(CUM, MODE, TYPE) \
1009  (((TYPE) == 0 \
1010    || (! TREE_ADDRESSABLE ((tree)(TYPE))) \
1011	&& (! TARGET_HITACHI || ! AGGREGATE_TYPE_P (TYPE))) \
1012   && (TARGET_SH3E \
1013       ? ((MODE) == BLKmode \
1014	  ? (((CUM).arg_count[(int) SH_ARG_INT] * UNITS_PER_WORD \
1015	      + int_size_in_bytes (TYPE)) \
1016	     <= NPARM_REGS (SImode) * UNITS_PER_WORD) \
1017	  : ((ROUND_REG((CUM), (MODE)) \
1018	      + HARD_REGNO_NREGS (BASE_ARG_REG (MODE), (MODE))) \
1019	     <= NPARM_REGS (MODE))) \
1020       : ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE)))
1021
1022/* Define where to put the arguments to a function.
1023   Value is zero to push the argument on the stack,
1024   or a hard register in which to store the argument.
1025
1026   MODE is the argument's machine mode.
1027   TYPE is the data type of the argument (as a tree).
1028    This is null for libcalls where that information may
1029    not be available.
1030   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1031    the preceding args and about the function being called.
1032   NAMED is nonzero if this argument is a named parameter
1033    (otherwise it is an extra parameter matching an ellipsis).
1034
1035   On SH the first args are normally in registers
1036   and the rest are pushed.  Any arg that starts within the first
1037   NPARM_REGS words is at least partially passed in a register unless
1038   its data type forbids.  */
1039
1040extern int current_function_varargs;
1041
1042#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1043  ((PASS_IN_REG_P ((CUM), (MODE), (TYPE))				\
1044    && ((NAMED)								\
1045	|| (! TARGET_HITACHI && (TARGET_SH3E || ! current_function_varargs)))) \
1046   ? gen_rtx (REG, (MODE),						\
1047	      ((BASE_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))) 	\
1048	       ^ ((MODE) == SFmode && TARGET_SH4			\
1049		  && TARGET_LITTLE_ENDIAN != 0)))			\
1050   : 0)
1051
1052#define PRETEND_OUTGOING_VARARGS_NAMED (! TARGET_HITACHI)
1053
1054/* For an arg passed partly in registers and partly in memory,
1055   this is the number of registers used.
1056   For args passed entirely in registers or entirely in memory, zero.
1057
1058   We sometimes split args.  */
1059
1060#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1061  ((PASS_IN_REG_P ((CUM), (MODE), (TYPE))			\
1062    && ! TARGET_SH4						\
1063    && (ROUND_REG ((CUM), (MODE))				\
1064	+ ((MODE) != BLKmode					\
1065	   ? ROUND_ADVANCE (GET_MODE_SIZE (MODE))		\
1066	   : ROUND_ADVANCE (int_size_in_bytes (TYPE)))		\
1067	- NPARM_REGS (MODE) > 0))				\
1068   ? NPARM_REGS (MODE) - ROUND_REG ((CUM), (MODE))		\
1069   : 0)
1070
1071extern int current_function_anonymous_args;
1072
1073/* Perform any needed actions needed for a function that is receiving a
1074   variable number of arguments.  */
1075
1076#define SETUP_INCOMING_VARARGS(ASF, MODE, TYPE, PAS, ST) \
1077  current_function_anonymous_args = 1;
1078
1079/* Call the function profiler with a given profile label.
1080   We use two .aligns, so as to make sure that both the .long is aligned
1081   on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
1082   from the trapa instruction.  */
1083
1084#define FUNCTION_PROFILER(STREAM,LABELNO)			\
1085{								\
1086	fprintf((STREAM), "\t.align\t2\n");			\
1087	fprintf((STREAM), "\ttrapa\t#33\n");			\
1088 	fprintf((STREAM), "\t.align\t2\n");			\
1089	asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO));	\
1090}
1091
1092/* Define this macro if the code for function profiling should come
1093   before the function prologue.  Normally, the profiling code comes
1094   after.  */
1095
1096#define PROFILE_BEFORE_PROLOGUE
1097
1098/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1099   the stack pointer does not matter.  The value is tested only in
1100   functions that have frame pointers.
1101   No definition is equivalent to always zero.  */
1102
1103#define EXIT_IGNORE_STACK 1
1104
1105/* Generate the assembly code for function exit
1106   Just dump out any accumulated constant table.  */
1107
1108#define FUNCTION_EPILOGUE(STREAM, SIZE)  function_epilogue ((STREAM), (SIZE))
1109
1110/*
1111   On the SH, the trampoline looks like
1112   2 0002 DD02     	   	mov.l	l2,r13
1113   1 0000 D301     		mov.l	l1,r3
1114   3 0004 4D2B     		jmp	@r13
1115   4 0006 0009     		nop
1116   5 0008 00000000 	l1:  	.long   function
1117   6 000c 00000000 	l2:	.long   area  */
1118
1119/* Length in units of the trampoline for entering a nested function.  */
1120#define TRAMPOLINE_SIZE  16
1121
1122/* Alignment required for a trampoline in bits .  */
1123#define TRAMPOLINE_ALIGNMENT \
1124  ((CACHE_LOG < 3 || TARGET_SMALLCODE && ! TARGET_HARWARD) ? 32 : 64)
1125
1126/* Emit RTL insns to initialize the variable parts of a trampoline.
1127   FNADDR is an RTX for the address of the function's pure code.
1128   CXT is an RTX for the static chain value for the function.  */
1129
1130#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)			\
1131{									\
1132  emit_move_insn (gen_rtx (MEM, SImode, (TRAMP)),			\
1133		  GEN_INT (TARGET_LITTLE_ENDIAN ? 0xd301dd02 : 0xdd02d301));\
1134  emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 4)),	\
1135		  GEN_INT (TARGET_LITTLE_ENDIAN ? 0x00094d2b : 0x4d2b0009));\
1136  emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 8)),	\
1137		  (CXT));						\
1138  emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 12)),	\
1139		  (FNADDR));						\
1140  if (TARGET_HARWARD)							\
1141    emit_insn (gen_ic_invalidate_line (TRAMP));				\
1142}
1143
1144/* A C expression whose value is RTL representing the value of the return
1145   address for the frame COUNT steps up from the current frame.
1146   FRAMEADDR is already the frame pointer of the COUNT frame, so we
1147   can ignore COUNT.  */
1148
1149#define RETURN_ADDR_RTX(COUNT, FRAME)	\
1150  (((COUNT) == 0)				\
1151   ? gen_rtx (MEM, Pmode, gen_rtx (REG, Pmode, RETURN_ADDRESS_POINTER_REGNUM)) \
1152   : (rtx) 0)
1153
1154/* Generate necessary RTL for __builtin_saveregs().
1155   ARGLIST is the argument list; see expr.c.  */
1156extern struct rtx_def *sh_builtin_saveregs ();
1157#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sh_builtin_saveregs (ARGLIST)
1158
1159/* Addressing modes, and classification of registers for them.  */
1160#define HAVE_POST_INCREMENT  1
1161/*#define HAVE_PRE_INCREMENT   1*/
1162/*#define HAVE_POST_DECREMENT  1*/
1163#define HAVE_PRE_DECREMENT   1
1164
1165#define USE_LOAD_POST_INCREMENT(mode)    ((mode == SImode || mode == DImode) \
1166                                           ? 0 : 1)
1167#define USE_LOAD_PRE_DECREMENT(mode)     0
1168#define USE_STORE_POST_INCREMENT(mode)   0
1169#define USE_STORE_PRE_DECREMENT(mode)    ((mode == SImode || mode == DImode) \
1170                                           ? 0 : 1)
1171
1172#define MOVE_BY_PIECES_P(SIZE, ALIGN)  (move_by_pieces_ninsns (SIZE, ALIGN) \
1173                                        < (TARGET_SMALLCODE ? 2 :           \
1174                                           ((ALIGN >= 4) ? 16 : 2)))
1175
1176/* Macros to check register numbers against specific register classes.  */
1177
1178/* These assume that REGNO is a hard or pseudo reg number.
1179   They give nonzero only if REGNO is a hard reg of the suitable class
1180   or a pseudo reg currently allocated to a suitable hard reg.
1181   Since they use reg_renumber, they are safe only once reg_renumber
1182   has been allocated, which happens in local-alloc.c.  */
1183
1184#define REGNO_OK_FOR_BASE_P(REGNO) \
1185  ((REGNO) < PR_REG || (unsigned) reg_renumber[(REGNO)] < PR_REG)
1186#define REGNO_OK_FOR_INDEX_P(REGNO) \
1187  ((REGNO) == 0 || (unsigned) reg_renumber[(REGNO)] == 0)
1188
1189/* Maximum number of registers that can appear in a valid memory
1190   address.  */
1191
1192#define MAX_REGS_PER_ADDRESS 2
1193
1194/* Recognize any constant value that is a valid address.  */
1195
1196#define CONSTANT_ADDRESS_P(X)	(GET_CODE (X) == LABEL_REF)
1197
1198/* Nonzero if the constant value X is a legitimate general operand.  */
1199
1200#define LEGITIMATE_CONSTANT_P(X) \
1201  (GET_CODE (X) != CONST_DOUBLE						\
1202   || GET_MODE (X) == DFmode || GET_MODE (X) == SFmode			\
1203   || (TARGET_SH3E && (fp_zero_operand (X) || fp_one_operand (X))))
1204
1205/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1206   and check its validity for a certain class.
1207   We have two alternate definitions for each of them.
1208   The usual definition accepts all pseudo regs; the other rejects
1209   them unless they have been allocated suitable hard regs.
1210   The symbol REG_OK_STRICT causes the latter definition to be used.  */
1211
1212#ifndef REG_OK_STRICT
1213
1214/* Nonzero if X is a hard reg that can be used as a base reg
1215   or if it is a pseudo reg.  */
1216#define REG_OK_FOR_BASE_P(X) \
1217  (REGNO (X) <= 16 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1218
1219/* Nonzero if X is a hard reg that can be used as an index
1220   or if it is a pseudo reg.  */
1221#define REG_OK_FOR_INDEX_P(X) \
1222  (REGNO (X) == 0 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1223
1224/* Nonzero if X/OFFSET is a hard reg that can be used as an index
1225   or if X is a pseudo reg.  */
1226#define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
1227  ((REGNO (X) == 0 && OFFSET == 0) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1228
1229#else
1230
1231/* Nonzero if X is a hard reg that can be used as a base reg.  */
1232#define REG_OK_FOR_BASE_P(X) \
1233  REGNO_OK_FOR_BASE_P (REGNO (X))
1234
1235/* Nonzero if X is a hard reg that can be used as an index.  */
1236#define REG_OK_FOR_INDEX_P(X) \
1237  REGNO_OK_FOR_INDEX_P (REGNO (X))
1238
1239/* Nonzero if X/OFFSET is a hard reg that can be used as an index.  */
1240#define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
1241  (REGNO_OK_FOR_INDEX_P (REGNO (X)) && (OFFSET) == 0)
1242
1243#endif
1244
1245/* The 'Q' constraint is a pc relative load operand.  */
1246#define EXTRA_CONSTRAINT_Q(OP)                          		\
1247  (GET_CODE (OP) == MEM && 						\
1248   ((GET_CODE (XEXP ((OP), 0)) == LABEL_REF)				\
1249    || (GET_CODE (XEXP ((OP), 0)) == CONST                		\
1250	&& GET_CODE (XEXP (XEXP ((OP), 0), 0)) == PLUS 			\
1251	&& GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == LABEL_REF	\
1252	&& GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 1)) == CONST_INT)))
1253
1254#define EXTRA_CONSTRAINT(OP, C)		\
1255  ((C) == 'Q' ? EXTRA_CONSTRAINT_Q (OP)	\
1256   : 0)
1257
1258/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1259   that is a valid memory address for an instruction.
1260   The MODE argument is the machine mode for the MEM expression
1261   that wants to use this address.
1262
1263   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS.  */
1264
1265#define MODE_DISP_OK_4(X,MODE) \
1266(GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64	\
1267 && ! (INTVAL (X) & 3) && ! (TARGET_SH3E && (MODE) == SFmode))
1268
1269#define MODE_DISP_OK_8(X,MODE) \
1270((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60)	\
1271 && ! (INTVAL(X) & 3) && ! (TARGET_SH4 && (MODE) == DFmode))
1272
1273#define BASE_REGISTER_RTX_P(X)				\
1274  ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))	\
1275   || (GET_CODE (X) == SUBREG				\
1276       && GET_CODE (SUBREG_REG (X)) == REG		\
1277       && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1278
1279/* Since this must be r0, which is a single register class, we must check
1280   SUBREGs more carefully, to be sure that we don't accept one that extends
1281   outside the class.  */
1282#define INDEX_REGISTER_RTX_P(X)				\
1283  ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))	\
1284   || (GET_CODE (X) == SUBREG				\
1285       && GET_CODE (SUBREG_REG (X)) == REG		\
1286       && SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_WORD (X))))
1287
1288/* Jump to LABEL if X is a valid address RTX.  This must also take
1289   REG_OK_STRICT into account when deciding about valid registers, but it uses
1290   the above macros so we are in luck.
1291
1292   Allow  REG
1293	  REG+disp
1294	  REG+r0
1295	  REG++
1296	  --REG  */
1297
1298/* ??? The SH3e does not have the REG+disp addressing mode when loading values
1299   into the FRx registers.  We implement this by setting the maximum offset
1300   to zero when the value is SFmode.  This also restricts loading of SFmode
1301   values into the integer registers, but that can't be helped.  */
1302
1303/* The SH allows a displacement in a QI or HI amode, but only when the
1304   other operand is R0. GCC doesn't handle this very well, so we forgo
1305   all of that.
1306
1307   A legitimate index for a QI or HI is 0, SI can be any number 0..63,
1308   DI can be any number 0..60.  */
1309
1310#define GO_IF_LEGITIMATE_INDEX(MODE, OP, LABEL)  			\
1311  do {									\
1312    if (GET_CODE (OP) == CONST_INT) 					\
1313      {									\
1314	if (MODE_DISP_OK_4 ((OP), (MODE)))  goto LABEL;		      	\
1315	if (MODE_DISP_OK_8 ((OP), (MODE)))  goto LABEL;		      	\
1316      }									\
1317  } while(0)
1318
1319#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL)			\
1320{									\
1321  if (BASE_REGISTER_RTX_P (X))						\
1322    goto LABEL;								\
1323  else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC)	\
1324	   && BASE_REGISTER_RTX_P (XEXP ((X), 0)))			\
1325    goto LABEL;								\
1326  else if (GET_CODE (X) == PLUS						\
1327	   && ((MODE) != PSImode || reload_completed))			\
1328    {									\
1329      rtx xop0 = XEXP ((X), 0);						\
1330      rtx xop1 = XEXP ((X), 1);						\
1331      if (GET_MODE_SIZE (MODE) <= 8 && BASE_REGISTER_RTX_P (xop0))	\
1332	GO_IF_LEGITIMATE_INDEX ((MODE), xop1, LABEL);			\
1333      if (GET_MODE_SIZE (MODE) <= 4					\
1334	  || TARGET_SH4 && TARGET_FMOVD && MODE == DFmode)	\
1335	{								\
1336	  if (BASE_REGISTER_RTX_P (xop1) && INDEX_REGISTER_RTX_P (xop0))\
1337	    goto LABEL;							\
1338	  if (INDEX_REGISTER_RTX_P (xop1) && BASE_REGISTER_RTX_P (xop0))\
1339	    goto LABEL;							\
1340	}								\
1341    }									\
1342}
1343
1344/* Try machine-dependent ways of modifying an illegitimate address
1345   to be legitimate.  If we find one, return the new, valid address.
1346   This macro is used in only one place: `memory_address' in explow.c.
1347
1348   OLDX is the address as it was before break_out_memory_refs was called.
1349   In some cases it is useful to look at this to decide what needs to be done.
1350
1351   MODE and WIN are passed so that this macro can use
1352   GO_IF_LEGITIMATE_ADDRESS.
1353
1354   It is always safe for this macro to do nothing.  It exists to recognize
1355   opportunities to optimize the output.
1356
1357   For the SH, if X is almost suitable for indexing, but the offset is
1358   out of range, convert it into a normal form so that cse has a chance
1359   of reducing the number of address registers used.  */
1360
1361#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
1362{								\
1363  if (GET_CODE (X) == PLUS					\
1364      && (GET_MODE_SIZE (MODE) == 4				\
1365	  || GET_MODE_SIZE (MODE) == 8)				\
1366      && GET_CODE (XEXP ((X), 1)) == CONST_INT			\
1367      && BASE_REGISTER_RTX_P (XEXP ((X), 0))			\
1368      && ! (TARGET_SH4 && (MODE) == DFmode)			\
1369      && ! (TARGET_SH3E && (MODE) == SFmode))			\
1370    {								\
1371      rtx index_rtx = XEXP ((X), 1);				\
1372      HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base;	\
1373      rtx sum;							\
1374								\
1375      GO_IF_LEGITIMATE_INDEX ((MODE), index_rtx, WIN);		\
1376      /* On rare occasions, we might get an unaligned pointer	\
1377	 that is indexed in a way to give an aligned address.	\
1378	 Therefore, keep the lower two bits in offset_base.  */ \
1379      /* Instead of offset_base 128..131 use 124..127, so that	\
1380	 simple add suffices.  */				\
1381      if (offset > 127)						\
1382	{							\
1383	  offset_base = ((offset + 4) & ~60) - 4;		\
1384	}							\
1385      else							\
1386	offset_base = offset & ~60;				\
1387      /* Sometimes the normal form does not suit DImode.  We	\
1388	 could avoid that by using smaller ranges, but that	\
1389	 would give less optimized code when SImode is		\
1390	 prevalent.  */						\
1391      if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64)	\
1392	{							\
1393	  sum = expand_binop (Pmode, add_optab, XEXP ((X), 0),	\
1394			      GEN_INT (offset_base), NULL_RTX, 0, \
1395			      OPTAB_LIB_WIDEN);			\
1396                                                                \
1397	  (X) = gen_rtx (PLUS, Pmode, sum, GEN_INT (offset - offset_base)); \
1398	  goto WIN;						\
1399	}							\
1400    }								\
1401}
1402
1403/* A C compound statement that attempts to replace X, which is an address
1404   that needs reloading, with a valid memory address for an operand of
1405   mode MODE.  WIN is a C statement label elsewhere in the code.
1406
1407   Like for LEGITIMIZE_ADDRESS, for the SH we try to get a normal form
1408   of the address.  That will allow inheritance of the address reloads.  */
1409
1410#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	\
1411{									\
1412  if (GET_CODE (X) == PLUS						\
1413      && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8)	\
1414      && GET_CODE (XEXP (X, 1)) == CONST_INT				\
1415      && BASE_REGISTER_RTX_P (XEXP (X, 0))				\
1416      && ! (TARGET_SH4 && (MODE) == DFmode)				\
1417      && ! ((MODE) == PSImode && (TYPE) == RELOAD_FOR_INPUT_ADDRESS))	\
1418    {									\
1419      rtx index_rtx = XEXP (X, 1);					\
1420      HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base;		\
1421      rtx sum;								\
1422									\
1423      if (TARGET_SH3E && MODE == SFmode)				\
1424	{								\
1425	  X = copy_rtx (X);						\
1426	  push_reload (index_rtx, NULL_RTX, &XEXP (X, 1), NULL_PTR,	\
1427		       INDEX_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM),	\
1428		       (TYPE));						\
1429	  goto WIN;							\
1430	}								\
1431      /* Instead of offset_base 128..131 use 124..127, so that		\
1432	 simple add suffices.  */					\
1433      if (offset > 127)							\
1434	{								\
1435	  offset_base = ((offset + 4) & ~60) - 4;			\
1436	}								\
1437      else								\
1438	offset_base = offset & ~60;					\
1439      /* Sometimes the normal form does not suit DImode.  We		\
1440	 could avoid that by using smaller ranges, but that		\
1441	 would give less optimized code when SImode is			\
1442	 prevalent.  */							\
1443      if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64)		\
1444	{								\
1445	  sum = gen_rtx (PLUS, Pmode, XEXP (X, 0),			\
1446			 GEN_INT (offset_base));			\
1447	  X = gen_rtx (PLUS, Pmode, sum, GEN_INT (offset - offset_base));\
1448	  push_reload (sum, NULL_RTX, &XEXP (X, 0), NULL_PTR,	\
1449		       BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM),	\
1450		       (TYPE));						\
1451	  goto WIN;							\
1452	}								\
1453    }									\
1454  /* We must re-recognize what we created before.  */			\
1455  else if (GET_CODE (X) == PLUS						\
1456	   && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8)	\
1457	   && GET_CODE (XEXP (X, 0)) == PLUS				\
1458	   && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT		\
1459	   && BASE_REGISTER_RTX_P (XEXP (XEXP (X, 0), 0))		\
1460	   && GET_CODE (XEXP (X, 1)) == CONST_INT			\
1461	   && ! (TARGET_SH3E && MODE == SFmode))			\
1462    {									\
1463      /* Because this address is so complex, we know it must have	\
1464	 been created by LEGITIMIZE_RELOAD_ADDRESS before; thus,	\
1465	 it is already unshared, and needs no further unsharing.  */	\
1466      push_reload (XEXP ((X), 0), NULL_RTX, &XEXP ((X), 0), NULL_PTR,	\
1467		   BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), (TYPE));\
1468      goto WIN;								\
1469    }									\
1470}
1471
1472/* Go to LABEL if ADDR (a legitimate address expression)
1473   has an effect that depends on the machine mode it is used for.
1474
1475   ??? Strictly speaking, we should also include all indexed addressing,
1476   because the index scale factor is the length of the operand.
1477   However, the impact of GO_IF_MODE_DEPENDENT_ADDRESS would be to
1478   high if we did that.  So we rely on reload to fix things up.  */
1479
1480#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)			\
1481{									\
1482  if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_INC)		\
1483    goto LABEL;								\
1484}
1485
1486/* Specify the machine mode that this machine uses
1487   for the index in the tablejump instruction.  */
1488#define CASE_VECTOR_MODE (TARGET_BIGTABLE ? SImode : HImode)
1489
1490#define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
1491((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \
1492 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
1493 : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
1494 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
1495 : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \
1496 : SImode)
1497
1498/* Define as C expression which evaluates to nonzero if the tablejump
1499   instruction expects the table to contain offsets from the address of the
1500   table.
1501   Do not define this if the table should contain absolute addresses. */
1502#define CASE_VECTOR_PC_RELATIVE 1
1503
1504/* Specify the tree operation to be used to convert reals to integers.  */
1505#define IMPLICIT_FIX_EXPR  FIX_ROUND_EXPR
1506
1507/* This is the kind of divide that is easiest to do in the general case.  */
1508#define EASY_DIV_EXPR  TRUNC_DIV_EXPR
1509
1510/* Since the SH3e has only `float' support, it is desirable to make all
1511   floating point types equivalent to `float'.  */
1512#define DOUBLE_TYPE_SIZE ((TARGET_SH3E && ! TARGET_SH4) ? 32 : 64)
1513
1514/* 'char' is signed by default.  */
1515#define DEFAULT_SIGNED_CHAR  1
1516
1517/* The type of size_t unsigned int.  */
1518#define SIZE_TYPE "unsigned int"
1519
1520#define WCHAR_TYPE "short unsigned int"
1521#define WCHAR_TYPE_SIZE 16
1522
1523/* Don't cse the address of the function being compiled.  */
1524/*#define NO_RECURSIVE_FUNCTION_CSE 1*/
1525
1526/* Max number of bytes we can move from memory to memory
1527   in one reasonably fast instruction.  */
1528#define MOVE_MAX 4
1529
1530/* Max number of bytes we want move_by_pieces to be able to copy
1531   efficiently.  */
1532#define MOVE_MAX_PIECES (TARGET_SH4 ? 8 : 4)
1533
1534/* Define if operations between registers always perform the operation
1535   on the full register even if a narrower mode is specified.  */
1536#define WORD_REGISTER_OPERATIONS
1537
1538/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1539   will either zero-extend or sign-extend.  The value of this macro should
1540   be the code that says which one of the two operations is implicitly
1541   done, NIL if none.  */
1542#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1543
1544/* Define if loading short immediate values into registers sign extends.  */
1545#define SHORT_IMMEDIATES_SIGN_EXTEND
1546
1547/* Define this if zero-extension is slow (more than one real instruction).
1548   On the SH, it's only one instruction.  */
1549/* #define SLOW_ZERO_EXTEND */
1550
1551/* Nonzero if access to memory by bytes is no faster than for words.  */
1552#define SLOW_BYTE_ACCESS 1
1553
1554/* Force sizeof(bool) == 1 to maintain binary compatibility; otherwise, the
1555   change in SLOW_BYTE_ACCESS would have changed it to 4.  */
1556
1557#define BOOL_TYPE_SIZE (flag_new_abi ? INT_TYPE_SIZE : CHAR_TYPE_SIZE)
1558
1559/* We assume that the store-condition-codes instructions store 0 for false
1560   and some other value for true.  This is the value stored for true.  */
1561
1562#define STORE_FLAG_VALUE 1
1563
1564/* Immediate shift counts are truncated by the output routines (or was it
1565   the assembler?).  Shift counts in a register are truncated by SH.  Note
1566   that the native compiler puts too large (> 32) immediate shift counts
1567   into a register and shifts by the register, letting the SH decide what
1568   to do instead of doing that itself.  */
1569/* ??? The library routines in lib1funcs.asm truncate the shift count.
1570   However, the SH3 has hardware shifts that do not truncate exactly as gcc
1571   expects - the sign bit is significant - so it appears that we need to
1572   leave this zero for correct SH3 code.  */
1573#define SHIFT_COUNT_TRUNCATED (! TARGET_SH3)
1574
1575/* All integers have the same format so truncation is easy.  */
1576#define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC)  1
1577
1578/* Define this if addresses of constant functions
1579   shouldn't be put through pseudo regs where they can be cse'd.
1580   Desirable on machines where ordinary constants are expensive
1581   but a CALL with constant address is cheap.  */
1582/*#define NO_FUNCTION_CSE 1*/
1583
1584/* Chars and shorts should be passed as ints.  */
1585#define PROMOTE_PROTOTYPES 1
1586
1587/* The machine modes of pointers and functions.  */
1588#define Pmode  SImode
1589#define FUNCTION_MODE  Pmode
1590
1591/* The relative costs of various types of constants.  Note that cse.c defines
1592   REG = 1, SUBREG = 2, any node = (2 + sum of subnodes).  */
1593
1594#define CONST_COSTS(RTX, CODE, OUTER_CODE)	\
1595  case CONST_INT:				\
1596    if (INTVAL (RTX) == 0)			\
1597      return 0;					\
1598    else if (CONST_OK_FOR_I (INTVAL (RTX)))	\
1599      return 1;					\
1600    else if (((OUTER_CODE) == AND || (OUTER_CODE) == IOR || (OUTER_CODE) == XOR) \
1601	     && CONST_OK_FOR_L (INTVAL (RTX)))	\
1602      return 1;					\
1603    else					\
1604      return 8;					\
1605  case CONST: 					\
1606  case LABEL_REF:				\
1607  case SYMBOL_REF:				\
1608    return 5;					\
1609  case CONST_DOUBLE:				\
1610      return 10;
1611
1612#define RTX_COSTS(X, CODE, OUTER_CODE)			\
1613  case PLUS:						\
1614    return (COSTS_N_INSNS (1)				\
1615	    + rtx_cost (XEXP ((X), 0), PLUS)		\
1616	    + (rtx_equal_p (XEXP ((X), 0), XEXP ((X), 1))\
1617	       ? 0 : rtx_cost (XEXP ((X), 1), PLUS)));\
1618  case AND:						\
1619    return COSTS_N_INSNS (andcosts (X));		\
1620  case MULT:						\
1621    return COSTS_N_INSNS (multcosts (X));		\
1622  case ASHIFT:						\
1623  case ASHIFTRT:					\
1624  case LSHIFTRT:					\
1625    /* Add one extra unit for the matching constraint.	\
1626       Otherwise loop strength reduction would think that\
1627       a shift with different sourc and destination is	\
1628       as cheap as adding a constant to a register.  */	\
1629    return (COSTS_N_INSNS (shiftcosts (X))		\
1630	    + rtx_cost (XEXP ((X), 0), (CODE))		\
1631	    + 1);					\
1632  case DIV:						\
1633  case UDIV:						\
1634  case MOD:						\
1635  case UMOD:						\
1636    return COSTS_N_INSNS (20);				\
1637  case FLOAT:						\
1638  case FIX:						\
1639    return 100;
1640
1641/* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
1642   are actually function calls with some special constraints on arguments
1643   and register usage.
1644
1645   These macros tell reorg that the references to arguments and
1646   register clobbers for insns of type sfunc do not appear to happen
1647   until after the millicode call.  This allows reorg to put insns
1648   which set the argument registers into the delay slot of the millicode
1649   call -- thus they act more like traditional CALL_INSNs.
1650
1651   get_attr_is_sfunc will try to recognize the given insn, so make sure to
1652   filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1653   in particular.  */
1654
1655#define INSN_SETS_ARE_DELAYED(X) 		\
1656  ((GET_CODE (X) == INSN			\
1657    && GET_CODE (PATTERN (X)) != SEQUENCE	\
1658    && GET_CODE (PATTERN (X)) != USE		\
1659    && GET_CODE (PATTERN (X)) != CLOBBER	\
1660    && get_attr_is_sfunc (X)))
1661
1662#define INSN_REFERENCES_ARE_DELAYED(X) 		\
1663  ((GET_CODE (X) == INSN			\
1664    && GET_CODE (PATTERN (X)) != SEQUENCE	\
1665    && GET_CODE (PATTERN (X)) != USE		\
1666    && GET_CODE (PATTERN (X)) != CLOBBER	\
1667    && get_attr_is_sfunc (X)))
1668
1669/* Compute the cost of an address.  For the SH, all valid addresses are
1670   the same cost.  */
1671/* ??? Perhaps we should make reg+reg addresses have higher cost because
1672   they add to register pressure on r0.  */
1673
1674#define ADDRESS_COST(RTX) 1
1675
1676/* Compute extra cost of moving data between one register class
1677   and another.  */
1678
1679/* Regclass always uses 2 for moves in the same register class;
1680   If SECONDARY*_RELOAD_CLASS says something about the src/dst pair,
1681   it uses this information.  Hence, the general register <-> floating point
1682   register information here is not used for SFmode.  */
1683#define REGISTER_MOVE_COST(SRCCLASS, DSTCLASS) \
1684  ((((DSTCLASS) == T_REGS) || ((DSTCLASS) == PR_REG)) ? 10		\
1685   : ((((DSTCLASS) == FP0_REGS || (DSTCLASS) == FP_REGS || (DSTCLASS) == DF_REGS) \
1686       && ((SRCCLASS) == GENERAL_REGS || (SRCCLASS) == R0_REGS))	\
1687      || (((DSTCLASS) == GENERAL_REGS || (DSTCLASS) == R0_REGS)		\
1688	  && ((SRCCLASS) == FP0_REGS || (SRCCLASS) == FP_REGS		\
1689	      || (SRCCLASS) == DF_REGS)))				\
1690   ? TARGET_FMOVD ? 8 : 12						\
1691   : (((DSTCLASS) == FPUL_REGS						\
1692       && ((SRCCLASS) == GENERAL_REGS || (SRCCLASS) == R0_REGS))	\
1693      || (SRCCLASS == FPUL_REGS						\
1694	  && ((DSTCLASS) == GENERAL_REGS || (DSTCLASS) == R0_REGS)))	\
1695   ? 5									\
1696   : (((DSTCLASS) == FPUL_REGS						\
1697       && ((SRCCLASS) == PR_REGS || (SRCCLASS) == MAC_REGS))		\
1698      || ((SRCCLASS) == FPUL_REGS					\
1699	  && ((DSTCLASS) == PR_REGS || (DSTCLASS) == MAC_REGS)))	\
1700   ? 7									\
1701   : 2)
1702
1703/* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option?  This
1704   would be so that people would slow memory systems could generate
1705   different code that does fewer memory accesses.  */
1706
1707/* Assembler output control.  */
1708
1709/* A C string constant describing how to begin a comment in the target
1710   assembler language.  The compiler assumes that the comment will end at
1711   the end of the line.  */
1712#define ASM_COMMENT_START "!"
1713
1714/* The text to go at the start of the assembler file.  */
1715#define ASM_FILE_START(STREAM) \
1716  output_file_start (STREAM)
1717
1718#define ASM_FILE_END(STREAM)
1719
1720#define ASM_APP_ON  		""
1721#define ASM_APP_OFF  		""
1722#define FILE_ASM_OP 		"\t.file\n"
1723#define IDENT_ASM_OP 		"\t.ident\n"
1724#define SET_ASM_OP		".set"
1725
1726/* How to change between sections.  */
1727
1728#define TEXT_SECTION_ASM_OP  		"\t.text"
1729#define DATA_SECTION_ASM_OP  		"\t.data"
1730#define CTORS_SECTION_ASM_OP 		"\t.section\t.ctors\n"
1731#define DTORS_SECTION_ASM_OP 		"\t.section\t.dtors\n"
1732#define EXTRA_SECTIONS 			in_ctors, in_dtors
1733#define EXTRA_SECTION_FUNCTIONS					\
1734void								\
1735ctors_section()							\
1736{								\
1737  if (in_section != in_ctors)					\
1738    {								\
1739      fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP);	\
1740      in_section = in_ctors;					\
1741    }								\
1742}								\
1743void								\
1744dtors_section()							\
1745{								\
1746  if (in_section != in_dtors)					\
1747    {								\
1748      fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP);	\
1749      in_section = in_dtors;					\
1750    }								\
1751}
1752
1753/* Define this so that jump tables go in same section as the current function,
1754   which could be text or it could be a user defined section.  */
1755#define JUMP_TABLES_IN_TEXT_SECTION 1
1756
1757/* A C statement to output something to the assembler file to switch to section
1758   NAME for object DECL which is either a FUNCTION_DECL, a VAR_DECL or
1759   NULL_TREE.  Some target formats do not support arbitrary sections.  Do not
1760   define this macro in such cases.  */
1761
1762#define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME, RELOC) \
1763   do { fprintf (FILE, ".section\t%s\n", NAME); } while (0)
1764
1765#define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \
1766   do { ctors_section();  asm_fprintf((FILE),"\t.long\t%U%s\n", (NAME)); } while (0)
1767
1768#define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \
1769   do {  dtors_section();  asm_fprintf((FILE),"\t.long\t%U%s\n", (NAME)); } while (0)
1770
1771#undef DO_GLOBAL_CTORS_BODY
1772
1773#define DO_GLOBAL_CTORS_BODY			\
1774{						\
1775  typedef (*pfunc)();				\
1776  extern pfunc __ctors[];			\
1777  extern pfunc __ctors_end[];			\
1778  pfunc *p;					\
1779  for (p = __ctors_end; p > __ctors; )		\
1780    {						\
1781      (*--p)();					\
1782    }						\
1783}
1784
1785#undef DO_GLOBAL_DTORS_BODY
1786#define DO_GLOBAL_DTORS_BODY			\
1787{						\
1788  typedef (*pfunc)();				\
1789  extern pfunc __dtors[];			\
1790  extern pfunc __dtors_end[];			\
1791  pfunc *p;					\
1792  for (p = __dtors; p < __dtors_end; p++)	\
1793    {						\
1794      (*p)();					\
1795    }						\
1796}
1797
1798#define ASM_OUTPUT_REG_PUSH(file, v) \
1799  fprintf ((file), "\tmov.l\tr%s,-@r15\n", (v));
1800
1801#define ASM_OUTPUT_REG_POP(file, v) \
1802  fprintf ((file), "\tmov.l\t@r15+,r%s\n", (v));
1803
1804/* The assembler's names for the registers.  RFP need not always be used as
1805   the Real framepointer; it can also be used as a normal general register.
1806   Note that the name `fp' is horribly misleading since `fp' is in fact only
1807   the argument-and-return-context pointer.  */
1808
1809extern char fp_reg_names[][5];
1810
1811#define REGISTER_NAMES  				\
1812{				                   	\
1813  "r0", "r1", "r2",  "r3",  "r4",  "r5",  "r6",  "r7", 	\
1814  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",	\
1815  "ap", "pr", "t",   "gbr", "mach","macl", fp_reg_names[16], "rap", \
1816  fp_reg_names[0],  fp_reg_names[1] , fp_reg_names[2],  fp_reg_names[3], \
1817  fp_reg_names[4],  fp_reg_names[5],  fp_reg_names[6],  fp_reg_names[7], \
1818  fp_reg_names[8],  fp_reg_names[9],  fp_reg_names[10], fp_reg_names[11], \
1819  fp_reg_names[12], fp_reg_names[13], fp_reg_names[14], fp_reg_names[15], \
1820  fp_reg_names[17], fp_reg_names[18], fp_reg_names[19], fp_reg_names[20], \
1821  fp_reg_names[21], fp_reg_names[22], fp_reg_names[23], fp_reg_names[24], \
1822  "fpscr", \
1823}
1824
1825#define DEBUG_REGISTER_NAMES  				\
1826{				                   	\
1827  "r0", "r1", "r2",  "r3",  "r4",  "r5",  "r6",  "r7", 	\
1828  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",	\
1829  "ap", "pr", "t",  "gbr", "mach","macl", "fpul","rap", \
1830  "fr0","fr1","fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
1831  "fr8","fr9","fr10","fr11","fr12","fr13","fr14","fr15",\
1832  "xd0","xd2","xd4", "xd6", "xd8", "xd10","xd12","xd14", \
1833  "fpscr", \
1834}
1835
1836/* DBX register number for a given compiler register number.  */
1837/* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
1838   to match gdb.  */
1839#define DBX_REGISTER_NUMBER(REGNO)	\
1840  (((REGNO) >= 22 && (REGNO) <= 39) ? ((REGNO) + 1) : (REGNO))
1841
1842/* Output a label definition.  */
1843#define ASM_OUTPUT_LABEL(FILE,NAME) \
1844  do { assemble_name ((FILE), (NAME)); fputs (":\n", (FILE)); } while (0)
1845
1846/* This is how to output an assembler line
1847   that says to advance the location counter
1848   to a multiple of 2**LOG bytes.  */
1849
1850#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1851  if ((LOG) != 0)			\
1852    fprintf ((FILE), "\t.align %d\n", (LOG))
1853
1854/* Output a function label definition.  */
1855#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
1856    ASM_OUTPUT_LABEL((STREAM), (NAME))
1857
1858/* Output a globalising directive for a label.  */
1859#define ASM_GLOBALIZE_LABEL(STREAM,NAME)	\
1860  (fprintf ((STREAM), "\t.global\t"),		\
1861   assemble_name ((STREAM), (NAME)),		\
1862   fputc ('\n', (STREAM)))
1863
1864/* The prefix to add to user-visible assembler symbols. */
1865
1866#define USER_LABEL_PREFIX "_"
1867
1868/* The prefix to add to an internally generated label. */
1869
1870#define LOCAL_LABEL_PREFIX ""
1871
1872/* Make an internal label into a string.  */
1873#define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
1874  sprintf ((STRING), "*%s%s%d", LOCAL_LABEL_PREFIX, (PREFIX), (NUM))
1875
1876/* Output an internal label definition.  */
1877#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1878  asm_fprintf ((FILE), "%L%s%d:\n", (PREFIX), (NUM))
1879
1880/* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE)	    */
1881
1882/* Construct a private name.  */
1883#define ASM_FORMAT_PRIVATE_NAME(OUTVAR,NAME,NUMBER)	\
1884  ((OUTVAR) = (char *) alloca (strlen (NAME) + 10),	\
1885   sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)))
1886
1887/* Output a relative address table.  */
1888
1889#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL)  		\
1890  switch (GET_MODE (BODY))						\
1891    {									\
1892    case SImode:							\
1893      asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL));	\
1894      break;								\
1895    case HImode:							\
1896      asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL));	\
1897      break;								\
1898    case QImode:							\
1899      asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL));	\
1900      break;								\
1901    }
1902
1903/* Output an absolute table element.  */
1904
1905#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE)  				\
1906  if (TARGET_BIGTABLE) 							\
1907    asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE)); 			\
1908  else									\
1909    asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE)); 			\
1910
1911/* Output various types of constants.  */
1912
1913/* This is how to output an assembler line defining a `double'.  */
1914
1915#define ASM_OUTPUT_DOUBLE(FILE,VALUE)			\
1916do { char dstr[30];					\
1917     REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr);	\
1918     fprintf ((FILE), "\t.double %s\n", dstr);		\
1919   } while (0)
1920
1921/* This is how to output an assembler line defining a `float' constant.  */
1922#define ASM_OUTPUT_FLOAT(FILE,VALUE)			\
1923do { char dstr[30];					\
1924     REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr);	\
1925     fprintf ((FILE), "\t.float %s\n", dstr);		\
1926   } while (0)
1927
1928#define ASM_OUTPUT_INT(STREAM, EXP)		\
1929  (fprintf ((STREAM), "\t.long\t"),      	\
1930   output_addr_const ((STREAM), (EXP)),  	\
1931   fputc ('\n', (STREAM)))
1932
1933#define ASM_OUTPUT_SHORT(STREAM, EXP)	\
1934  (fprintf ((STREAM), "\t.short\t"),	\
1935   output_addr_const ((STREAM), (EXP)),	\
1936   fputc ('\n', (STREAM)))
1937
1938#define ASM_OUTPUT_CHAR(STREAM, EXP)		\
1939  (fprintf ((STREAM), "\t.byte\t"),      	\
1940   output_addr_const ((STREAM), (EXP)),  	\
1941   fputc ('\n', (STREAM)))
1942
1943#define ASM_OUTPUT_BYTE(STREAM, VALUE)  	\
1944  fprintf ((STREAM), "\t.byte\t%d\n", (VALUE)) 	\
1945
1946/* The next two are used for debug info when compiling with -gdwarf.  */
1947#define UNALIGNED_SHORT_ASM_OP	".uaword"
1948#define UNALIGNED_INT_ASM_OP	".ualong"
1949
1950/* Loop alignment is now done in machine_dependent_reorg, so that
1951   branch shortening can know about it.  */
1952
1953/* This is how to output an assembler line
1954   that says to advance the location counter by SIZE bytes.  */
1955
1956#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1957  fprintf ((FILE), "\t.space %d\n", (SIZE))
1958
1959/* This says how to output an assembler line
1960   to define a global common symbol.  */
1961
1962#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)	\
1963( fputs ("\t.comm ", (FILE)),			\
1964  assemble_name ((FILE), (NAME)),		\
1965  fprintf ((FILE), ",%d\n", (SIZE)))
1966
1967/* This says how to output an assembler line
1968   to define a local common symbol.  */
1969
1970#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)	\
1971( fputs ("\t.lcomm ", (FILE)),				\
1972  assemble_name ((FILE), (NAME)),			\
1973  fprintf ((FILE), ",%d\n", (SIZE)))
1974
1975/* The assembler's parentheses characters.  */
1976#define ASM_OPEN_PAREN "("
1977#define ASM_CLOSE_PAREN ")"
1978
1979/* Target characters.  */
1980#define TARGET_BELL	007
1981#define TARGET_BS	010
1982#define TARGET_TAB	011
1983#define TARGET_NEWLINE	012
1984#define TARGET_VT	013
1985#define TARGET_FF	014
1986#define TARGET_CR	015
1987
1988/* A C statement to be executed just prior to the output of
1989   assembler code for INSN, to modify the extracted operands so
1990   they will be output differently.
1991
1992   Here the argument OPVEC is the vector containing the operands
1993   extracted from INSN, and NOPERANDS is the number of elements of
1994   the vector which contain meaningful data for this insn.
1995   The contents of this vector are what will be used to convert the insn
1996   template into assembler code, so you can change the assembler output
1997   by changing the contents of the vector.  */
1998
1999#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2000  final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
2001
2002/* Print operand X (an rtx) in assembler syntax to file FILE.
2003   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2004   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2005
2006#define PRINT_OPERAND(STREAM, X, CODE)  print_operand ((STREAM), (X), (CODE))
2007
2008/* Print a memory address as an operand to reference that memory location.  */
2009
2010#define PRINT_OPERAND_ADDRESS(STREAM,X)  print_operand_address ((STREAM), (X))
2011
2012#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2013  ((CHAR) == '.' || (CHAR) == '#' || (CHAR) == '@' || (CHAR) == ','	\
2014   || (CHAR) == '$')
2015
2016extern struct rtx_def *sh_compare_op0;
2017extern struct rtx_def *sh_compare_op1;
2018extern struct rtx_def *prepare_scc_operands();
2019
2020/* Which processor to schedule for.  The elements of the enumeration must
2021   match exactly the cpu attribute in the sh.md file.  */
2022
2023enum processor_type {
2024  PROCESSOR_SH1,
2025  PROCESSOR_SH2,
2026  PROCESSOR_SH3,
2027  PROCESSOR_SH3E,
2028  PROCESSOR_SH4
2029};
2030
2031#define sh_cpu_attr ((enum attr_cpu)sh_cpu)
2032extern enum processor_type sh_cpu;
2033
2034extern enum machine_mode sh_addr_diff_vec_mode;
2035
2036extern int optimize; /* needed for gen_casesi.  */
2037
2038/* Declare functions defined in sh.c and used in templates.  */
2039
2040extern char *output_branch();
2041extern char *output_ieee_ccmpeq();
2042extern char *output_branchy_insn();
2043extern char *output_shift();
2044extern char *output_movedouble();
2045extern char *output_movepcrel();
2046extern char *output_jump_label_table();
2047extern char *output_far_jump();
2048
2049enum mdep_reorg_phase_e
2050{
2051  SH_BEFORE_MDEP_REORG,
2052  SH_INSERT_USES_LABELS,
2053  SH_SHORTEN_BRANCHES0,
2054  SH_FIXUP_PCLOAD,
2055  SH_SHORTEN_BRANCHES1,
2056  SH_AFTER_MDEP_REORG
2057};
2058
2059extern enum mdep_reorg_phase_e mdep_reorg_phase;
2060
2061void machine_dependent_reorg ();
2062struct rtx_def *sfunc_uses_reg ();
2063int barrier_align ();
2064
2065#define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg(X)
2066
2067/* Generate calls to memcpy, memcmp and memset.  */
2068
2069#define TARGET_MEM_FUNCTIONS
2070
2071/* Define this macro if you want to implement any pragmas.  If defined, it
2072   is a C expression whose value is 1 if the pragma was handled by the
2073   macro, zero otherwise.  */
2074#define HANDLE_PRAGMA(GETC, UNGETC, NODE) sh_handle_pragma (GETC, UNGETC, NODE)
2075extern int sh_handle_pragma ();
2076
2077/* Set when processing a function with pragma interrupt turned on.  */
2078
2079extern int pragma_interrupt;
2080
2081/* Set to an RTX containing the address of the stack to switch to
2082   for interrupt functions.  */
2083extern struct rtx_def *sp_switch;
2084
2085/* A C expression whose value is nonzero if IDENTIFIER with arguments ARGS
2086   is a valid machine specific attribute for DECL.
2087   The attributes in ATTRIBUTES have previously been assigned to DECL.  */
2088extern int sh_valid_machine_decl_attribute ();
2089#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, IDENTIFIER, ARGS) \
2090sh_valid_machine_decl_attribute (DECL, ATTRIBUTES, IDENTIFIER, ARGS)
2091
2092extern void sh_pragma_insert_attributes ();
2093#define PRAGMA_INSERT_ATTRIBUTES(node, pattr, prefix_attr) \
2094  sh_pragma_insert_attributes (node, pattr, prefix_attr)
2095
2096extern int sh_flag_remove_dead_before_cse;
2097extern int rtx_equal_function_value_matters;
2098extern struct rtx_def *fpscr_rtx;
2099extern struct rtx_def *get_fpscr_rtx ();
2100
2101
2102/* Instructions with unfilled delay slots take up an extra two bytes for
2103   the nop in the delay slot.  */
2104
2105#define ADJUST_INSN_LENGTH(X, LENGTH)				\
2106  if (((GET_CODE (X) == INSN					\
2107	&& GET_CODE (PATTERN (X)) != USE			\
2108	&& GET_CODE (PATTERN (X)) != CLOBBER)			\
2109       || GET_CODE (X) == CALL_INSN				\
2110       || (GET_CODE (X) == JUMP_INSN				\
2111	   && GET_CODE (PATTERN (X)) != ADDR_DIFF_VEC		\
2112	   && GET_CODE (PATTERN (X)) != ADDR_VEC))		\
2113      && GET_CODE (PATTERN (NEXT_INSN (PREV_INSN (X)))) != SEQUENCE \
2114      && get_attr_needs_delay_slot (X) == NEEDS_DELAY_SLOT_YES)	\
2115    (LENGTH) += 2;
2116
2117/* Define the codes that are matched by predicates in sh.c.  */
2118#define PREDICATE_CODES \
2119  {"arith_operand", {SUBREG, REG, CONST_INT}},				\
2120  {"arith_reg_operand", {SUBREG, REG}},					\
2121  {"arith_reg_or_0_operand", {SUBREG, REG, CONST_INT}},			\
2122  {"binary_float_operator", {PLUS, MULT}},				\
2123  {"commutative_float_operator", {PLUS, MULT}},				\
2124  {"fp_arith_reg_operand", {SUBREG, REG}},				\
2125  {"fp_extended_operand", {SUBREG, REG, FLOAT_EXTEND}},			\
2126  {"fpscr_operand", {REG}},						\
2127  {"general_movsrc_operand", {SUBREG, REG, CONST_INT, MEM}},		\
2128  {"general_movdst_operand", {SUBREG, REG, CONST_INT, MEM}},		\
2129  {"logical_operand", {SUBREG, REG, CONST_INT}},			\
2130  {"noncommutative_float_operator", {MINUS, DIV}},			\
2131  {"register_operand", {SUBREG, REG}},
2132
2133/* Define this macro if it is advisable to hold scalars in registers
2134   in a wider mode than that declared by the program.  In such cases,
2135   the value is constrained to be within the bounds of the declared
2136   type, but kept valid in the wider mode.  The signedness of the
2137   extension may differ from that of the type.
2138
2139   Leaving the unsignedp unchanged gives better code than always setting it
2140   to 0.  This is despite the fact that we have only signed char and short
2141   load instructions.  */
2142#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2143  if (GET_MODE_CLASS (MODE) == MODE_INT			\
2144      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)		\
2145    (MODE) = SImode;
2146
2147/* Defining PROMOTE_FUNCTION_ARGS eliminates some unnecessary zero/sign
2148   extensions applied to char/short functions arguments.  Defining
2149   PROMOTE_FUNCTION_RETURN does the same for function returns.  */
2150
2151#define PROMOTE_FUNCTION_ARGS
2152#define PROMOTE_FUNCTION_RETURN
2153
2154/* ??? Define ACCUMULATE_OUTGOING_ARGS?  This is more efficient than pushing
2155   and poping arguments.  However, we do have push/pop instructions, and
2156   rather limited offsets (4 bits) in load/store instructions, so it isn't
2157   clear if this would give better code.  If implemented, should check for
2158   compatibility problems.  */
2159
2160/* A C statement (sans semicolon) to update the integer variable COST
2161   based on the relationship between INSN that is dependent on
2162   DEP_INSN through the dependence LINK.  The default is to make no
2163   adjustment to COST.  This can be used for example to specify to
2164   the scheduler that an output- or anti-dependence does not incur
2165   the same cost as a data-dependence.  */
2166
2167#define ADJUST_COST(insn,link,dep_insn,cost)				\
2168do {									\
2169  rtx reg;								\
2170									\
2171  if (GET_CODE(insn) == CALL_INSN)					\
2172    {									\
2173      /* The only input for a call that is timing-critical is the	\
2174	 function's address.  */					\
2175      rtx call = PATTERN (insn);					\
2176									\
2177      if (GET_CODE (call) == PARALLEL)					\
2178	call = XVECEXP (call, 0 ,0);					\
2179      if (GET_CODE (call) == SET)					\
2180	call = SET_SRC (call);						\
2181      if (GET_CODE (call) == CALL && GET_CODE (XEXP (call, 0)) == MEM	\
2182	  && ! reg_set_p (XEXP (XEXP (call, 0), 0), dep_insn))		\
2183	(cost) = 0;							\
2184    }									\
2185  /* All sfunc calls are parallels with at least four components.	\
2186     Exploit this to avoid unnecessary calls to sfunc_uses_reg.  */	\
2187  else if (GET_CODE (PATTERN (insn)) == PARALLEL			\
2188	   && XVECLEN (PATTERN (insn), 0) >= 4				\
2189	   && (reg = sfunc_uses_reg (insn)))				\
2190    {									\
2191      /* Likewise, the most timing critical input for an sfuncs call	\
2192	 is the function address.  However, sfuncs typically start	\
2193	 using their arguments pretty quickly.				\
2194	 Assume a four cycle delay before they are needed.  */		\
2195      if (! reg_set_p (reg, dep_insn))					\
2196	cost -= TARGET_SUPERSCALAR ? 40 : 4;				\
2197    }									\
2198  /* Adjust load_si / pcload_si type insns latency.  Use the known	\
2199     nominal latency and form of the insn to speed up the check.  */	\
2200  else if (cost == 3							\
2201	   && GET_CODE (PATTERN (dep_insn)) == SET			\
2202	   /* Latency for dmpy type insns is also 3, so check the that	\
2203	      it's actually a move insn.  */				\
2204	   && general_movsrc_operand (SET_SRC (PATTERN (dep_insn)), SImode))\
2205    cost = 2;								\
2206  else if (cost == 30							\
2207	   && GET_CODE (PATTERN (dep_insn)) == SET			\
2208	   && GET_MODE (SET_SRC (PATTERN (dep_insn))) == SImode)	\
2209    cost = 20;								\
2210} while (0)								\
2211
2212/* For the sake of libgcc2.c, indicate target supports atexit.  */
2213#define HAVE_ATEXIT
2214
2215#define SH_DYNAMIC_SHIFT_COST \
2216  (TARGET_HARD_SH4 ? 1 : TARGET_SH3 ? (TARGET_SMALLCODE ? 1 : 2) : 20)
2217