1/* Definitions of target machine for GNU compiler for
2   Motorola m88100 in an 88open OCS/BCS environment.
3   Copyright (C) 1988, 92-97, 1998 Free Software Foundation, Inc.
4   Contributed by Michael Tiemann (tiemann@cygnus.com).
5   Currently maintained by (gcc@dg-rtp.dg.com)
6
7This file is part of GNU CC.
8
9GNU CC is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2, or (at your option)
12any later version.
13
14GNU CC is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with GNU CC; see the file COPYING.  If not, write to
21the Free Software Foundation, 59 Temple Place - Suite 330,
22Boston, MA 02111-1307, USA.  */
23
24/* The m88100 port of GNU CC adheres to the various standards from 88open.
25   These documents are available by writing:
26
27	88open Consortium Ltd.
28	100 Homeland Court, Suite 800
29	San Jose, CA  95112
30	(408) 436-6600
31
32   In brief, the current standards are:
33
34   Binary Compatibility Standard, Release 1.1A, May 1991
35	This provides for portability of application-level software at the
36	executable level for AT&T System V Release 3.2.
37
38   Object Compatibility Standard, Release 1.1A, May 1991
39	This provides for portability of application-level software at the
40	object file and library level for C, Fortran, and Cobol, and again,
41	largely for SVR3.
42
43   Under development are standards for AT&T System V Release 4, based on the
44   [generic] System V Application Binary Interface from AT&T.  These include:
45
46   System V Application Binary Interface, Motorola 88000 Processor Supplement
47	Another document from AT&T for SVR4 specific to the m88100.
48	Available from Prentice Hall.
49
50   System V Application Binary Interface, Motorola 88000 Processor Supplement,
51   Release 1.1, Draft H, May 6, 1991
52	A proposed update to the AT&T document from 88open.
53
54   System V ABI Implementation Guide for the M88000 Processor,
55   Release 1.0, January 1991
56	A companion ABI document from 88open.  */
57
58/* Other *.h files in config/m88k include this one and override certain items.
59   Currently these are sysv3.h, sysv4.h, dgux.h, dolph.h, tekXD88.h, and luna.h.
60   Additionally, sysv4.h and dgux.h include svr4.h first.  All other
61   m88k targets except luna.h are based on svr3.h.  */
62
63/* Choose SVR3 as the default.  */
64#if !defined(DBX_DEBUGGING_INFO) && !defined(DWARF_DEBUGGING_INFO)
65#include "svr3.h"
66#endif
67
68/* External types used.  */
69
70/* What instructions are needed to manufacture an integer constant.  */
71enum m88k_instruction {
72  m88k_zero,
73  m88k_or,
74  m88k_subu,
75  m88k_or_lo16,
76  m88k_or_lo8,
77  m88k_set,
78  m88k_oru_hi16,
79  m88k_oru_or
80};
81
82/* Which processor to schedule for.  The elements of the enumeration
83   must match exactly the cpu attribute in the m88k.md machine description. */
84
85enum processor_type {
86  PROCESSOR_M88100,
87  PROCESSOR_M88110,
88  PROCESSOR_M88000,
89};
90
91/* Recast the cpu class to be the cpu attribute.  */
92#define m88k_cpu_attr ((enum attr_cpu)m88k_cpu)
93
94/* External variables/functions defined in m88k.c.  */
95
96extern char *m88k_pound_sign;
97extern char *m88k_short_data;
98extern char *m88k_version;
99extern char m88k_volatile_code;
100
101extern unsigned m88k_gp_threshold;
102extern int m88k_prologue_done;
103extern int m88k_function_number;
104extern int m88k_fp_offset;
105extern int m88k_stack_size;
106extern int m88k_case_index;
107
108extern struct rtx_def *m88k_compare_reg;
109extern struct rtx_def *m88k_compare_op0;
110extern struct rtx_def *m88k_compare_op1;
111
112extern enum processor_type m88k_cpu;
113
114extern int null_prologue ();
115extern int integer_ok_for_set ();
116extern int m88k_debugger_offset ();
117
118
119extern void emit_bcnd ();
120extern void expand_block_move ();
121extern void m88k_layout_frame ();
122extern void m88k_expand_prologue ();
123extern void m88k_begin_prologue ();
124extern void m88k_end_prologue ();
125extern void m88k_expand_epilogue ();
126extern void m88k_begin_epilogue ();
127extern void m88k_end_epilogue ();
128extern void output_function_profiler ();
129extern void output_function_block_profiler ();
130extern void output_block_profiler ();
131extern void output_file_start ();
132extern void output_ascii ();
133extern void output_label ();
134extern void print_operand ();
135extern void print_operand_address ();
136
137extern char *output_load_const_int ();
138extern char *output_load_const_float ();
139extern char *output_load_const_double ();
140extern char *output_load_const_dimode ();
141extern char *output_and ();
142extern char *output_ior ();
143extern char *output_xor ();
144extern char *output_call ();
145
146extern struct rtx_def *emit_test ();
147extern struct rtx_def *legitimize_address ();
148extern struct rtx_def *legitimize_operand ();
149extern struct rtx_def *m88k_function_arg ();
150extern struct rtx_def *m88k_builtin_saveregs ();
151
152extern enum m88k_instruction classify_integer ();
153
154/* external variables defined elsewhere in the compiler */
155
156extern int target_flags;			/* -m compiler switches */
157extern int frame_pointer_needed;		/* current function has a FP */
158extern int current_function_pretend_args_size;	/* args size without ... */
159extern int flag_delayed_branch;			/* -fdelayed-branch */
160extern int flag_pic;				/* -fpic */
161extern char * reg_names[];
162
163/* Specify the default monitors.  The meaning of these values can
164   be obtained by doing "grep MONITOR_GCC *m88k*".  Generally, the
165   values downward from 0x8000 are tests that will soon go away.
166   values upward from 0x1 are generally useful tests that will remain.  */
167
168#ifndef MONITOR_GCC
169#define MONITOR_GCC 0
170#endif
171
172/*** Controlling the Compilation Driver, `gcc' ***/
173/* Show we can debug even without a frame pointer.  */
174#define CAN_DEBUG_WITHOUT_FP
175
176/* If -m88100 is in effect, add -D__m88100__; similarly for -m88110.
177   Here, the CPU_DEFAULT is assumed to be -m88100.  */
178#undef	CPP_SPEC
179#define	CPP_SPEC "%{!m88000:%{!m88100:%{m88110:-D__m88110__}}} \
180		  %{!m88000:%{!m88110:-D__m88100__}}"
181
182/* LIB_SPEC, LINK_SPEC, and STARTFILE_SPEC defined in svr3.h.
183   ASM_SPEC, ASM_FINAL_SPEC, LIB_SPEC, LINK_SPEC, and STARTFILE_SPEC redefined
184   in svr4.h.
185   CPP_SPEC, ASM_SPEC, ASM_FINAL_SPEC, LIB_SPEC, LINK_SPEC, and
186   STARTFILE_SPEC redefined in dgux.h.  */
187
188/*** Run-time Target Specification ***/
189
190/* Names to predefine in the preprocessor for this target machine.
191   Redefined in sysv3.h, sysv4.h, dgux.h, and luna.h.  */
192#define CPP_PREDEFINES "-Dm88000 -Dm88k -Dunix -D__CLASSIFY_TYPE__=2"
193
194#define TARGET_VERSION fprintf (stderr, " (%s%s)", \
195				VERSION_INFO1, VERSION_INFO2)
196
197/* Print subsidiary information on the compiler version in use.
198   Redefined in sysv4.h, and luna.h.  */
199#define VERSION_INFO1	"m88k, "
200#ifndef VERSION_INFO2
201#define VERSION_INFO2   "$Revision: 1.1 $"
202#endif
203
204#ifndef VERSION_STRING
205#define VERSION_STRING  version_string
206#ifdef __STDC__
207#define TM_RCS_ID      "@(#)" __FILE__ " $Revision: 1.1 $ " __DATE__
208#else
209#define TM_RCS_ID      "$What: <@(#) m88k.h,v	1.1.1.2.2.2> $"
210#endif  /* __STDC__ */
211#else
212#define TM_RCS_ID      "@(#)" __FILE__ " " VERSION_INFO2 " " __DATE__
213#endif  /* VERSION_STRING */
214
215/* Run-time compilation parameters selecting different hardware subsets.  */
216
217/* Macro to define tables used to set the flags.
218   This is a list in braces of pairs in braces,
219   each pair being { "NAME", VALUE }
220   where VALUE is the bits to set or minus the bits to clear.
221   An empty string NAME is used to identify the default VALUE.  */
222
223#define MASK_88100		0x00000001 /* Target m88100 */
224#define MASK_88110		0x00000002 /* Target m88110 */
225#define MASK_88000 		(MASK_88100 | MASK_88110)
226
227#define MASK_OCS_DEBUG_INFO	0x00000004 /* Emit .tdesc info */
228#define MASK_OCS_FRAME_POSITION	0x00000008 /* Debug frame = CFA, not r30 */
229#define MASK_SVR4		0x00000010 /* Target is AT&T System V.4 */
230#define MASK_SVR3		0x00000020 /* Target is AT&T System V.3 */
231#define MASK_NO_UNDERSCORES	0x00000040 /* Don't emit a leading `_' */
232#define MASK_BIG_PIC		0x00000080 /* PIC with large got-rel's -fPIC */
233#define MASK_TRAP_LARGE_SHIFT	0x00000100 /* Trap if shift not <= 31 */
234#define MASK_HANDLE_LARGE_SHIFT	0x00000200 /* Handle shift count >= 32 */
235#define MASK_CHECK_ZERO_DIV	0x00000400 /* Check for int div. by 0 */
236#define MASK_USE_DIV		0x00000800 /* No signed div. checks */
237#define MASK_IDENTIFY_REVISION	0x00001000 /* Emit ident, with GCC rev */
238#define MASK_WARN_PASS_STRUCT	0x00002000 /* Warn about passed structs */
239#define MASK_OPTIMIZE_ARG_AREA	0x00004000 /* Save stack space */
240#define MASK_NO_SERIALIZE_VOLATILE 0x00008000 /* Serialize volatile refs */
241#define MASK_EITHER_LARGE_SHIFT	(MASK_TRAP_LARGE_SHIFT | \
242				 MASK_HANDLE_LARGE_SHIFT)
243#define MASK_OMIT_LEAF_FRAME_POINTER 0x00020000 /* omit leaf frame pointers */
244
245
246#define TARGET_88100   		 ((target_flags & MASK_88000) == MASK_88100)
247#define TARGET_88110		 ((target_flags & MASK_88000) == MASK_88110)
248#define TARGET_88000		 ((target_flags & MASK_88000) == MASK_88000)
249
250#define TARGET_OCS_DEBUG_INFO	  (target_flags & MASK_OCS_DEBUG_INFO)
251#define TARGET_OCS_FRAME_POSITION (target_flags & MASK_OCS_FRAME_POSITION)
252#define TARGET_SVR4		  (target_flags & MASK_SVR4)
253#define TARGET_SVR3		  (target_flags & MASK_SVR3)
254#define TARGET_NO_UNDERSCORES	  (target_flags & MASK_NO_UNDERSCORES)
255#define TARGET_BIG_PIC		  (target_flags & MASK_BIG_PIC)
256#define TARGET_TRAP_LARGE_SHIFT   (target_flags & MASK_TRAP_LARGE_SHIFT)
257#define TARGET_HANDLE_LARGE_SHIFT (target_flags & MASK_HANDLE_LARGE_SHIFT)
258#define TARGET_CHECK_ZERO_DIV	  (target_flags & MASK_CHECK_ZERO_DIV)
259#define	TARGET_USE_DIV		  (target_flags & MASK_USE_DIV)
260#define TARGET_IDENTIFY_REVISION  (target_flags & MASK_IDENTIFY_REVISION)
261#define TARGET_WARN_PASS_STRUCT   (target_flags & MASK_WARN_PASS_STRUCT)
262#define TARGET_OPTIMIZE_ARG_AREA  (target_flags & MASK_OPTIMIZE_ARG_AREA)
263#define TARGET_SERIALIZE_VOLATILE (!(target_flags & MASK_NO_SERIALIZE_VOLATILE))
264
265#define TARGET_EITHER_LARGE_SHIFT (target_flags & MASK_EITHER_LARGE_SHIFT)
266#define TARGET_OMIT_LEAF_FRAME_POINTER (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
267
268/*  Redefined in sysv3.h, sysv4.h, and dgux.h.  */
269#define TARGET_DEFAULT	(MASK_CHECK_ZERO_DIV)
270#define CPU_DEFAULT MASK_88100
271
272#define TARGET_SWITCHES \
273  { \
274    { "88110",				 MASK_88110 }, \
275    { "88100",				 MASK_88100 }, \
276    { "88000",			         MASK_88000 }, \
277    { "ocs-debug-info",			 MASK_OCS_DEBUG_INFO }, \
278    { "no-ocs-debug-info",		-MASK_OCS_DEBUG_INFO }, \
279    { "ocs-frame-position",		 MASK_OCS_FRAME_POSITION }, \
280    { "no-ocs-frame-position",		-MASK_OCS_FRAME_POSITION }, \
281    { "svr4",			         MASK_SVR4 }, \
282    { "svr3",			        -MASK_SVR4 }, \
283    { "no-underscores",			 MASK_NO_UNDERSCORES }, \
284    { "big-pic",			 MASK_BIG_PIC }, \
285    { "trap-large-shift",		 MASK_TRAP_LARGE_SHIFT }, \
286    { "handle-large-shift",		 MASK_HANDLE_LARGE_SHIFT }, \
287    { "check-zero-division",		 MASK_CHECK_ZERO_DIV }, \
288    { "no-check-zero-division",		-MASK_CHECK_ZERO_DIV }, \
289    { "use-div-instruction",		 MASK_USE_DIV }, \
290    { "identify-revision",		 MASK_IDENTIFY_REVISION }, \
291    { "warn-passed-structs",		 MASK_WARN_PASS_STRUCT }, \
292    { "optimize-arg-area",		 MASK_OPTIMIZE_ARG_AREA }, \
293    { "no-optimize-arg-area",		-MASK_OPTIMIZE_ARG_AREA }, \
294    { "no-serialize-volatile",		 MASK_NO_SERIALIZE_VOLATILE }, \
295    { "serialize-volatile",		-MASK_NO_SERIALIZE_VOLATILE }, \
296    { "omit-leaf-frame-pointer",	 MASK_OMIT_LEAF_FRAME_POINTER }, \
297    { "no-omit-leaf-frame-pointer",     -MASK_OMIT_LEAF_FRAME_POINTER }, \
298    SUBTARGET_SWITCHES \
299    /* Default switches */ \
300    { "",				 TARGET_DEFAULT }, \
301  }
302
303/* Redefined in dgux.h.  */
304#define SUBTARGET_SWITCHES
305
306/* Macro to define table for command options with values.  */
307
308#define TARGET_OPTIONS { { "short-data-", &m88k_short_data }, \
309			 { "version-", &m88k_version } }
310
311/* Do any checking or such that is needed after processing the -m switches.  */
312
313#define OVERRIDE_OPTIONS						     \
314  do {									     \
315    register int i;							     \
316									     \
317    if ((target_flags & MASK_88000) == 0)				     \
318      target_flags |= CPU_DEFAULT;					     \
319									     \
320    if (TARGET_88110)							     \
321      {									     \
322        target_flags |= MASK_USE_DIV;					     \
323        target_flags &= ~MASK_CHECK_ZERO_DIV;				     \
324      }									     \
325      									     \
326    m88k_cpu = (TARGET_88000 ? PROCESSOR_M88000				     \
327		: (TARGET_88100 ? PROCESSOR_M88100 : PROCESSOR_M88110));		     \
328									     \
329    if (TARGET_BIG_PIC)							     \
330      flag_pic = 2;							     \
331									     \
332    if ((target_flags & MASK_EITHER_LARGE_SHIFT) == MASK_EITHER_LARGE_SHIFT) \
333      error ("-mtrap-large-shift and -mhandle-large-shift are incompatible");\
334									     \
335    if (TARGET_SVR4)						     	     \
336      {									     \
337	for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			     \
338	  reg_names[i]--;						     \
339	m88k_pound_sign = "#";						     \
340      }									     \
341    else								     \
342      {									     \
343	target_flags |= MASK_SVR3;					     \
344	target_flags &= ~MASK_SVR4;					     \
345      }									     \
346									     \
347    if (m88k_short_data)						     \
348      {									     \
349	char *p = m88k_short_data;					     \
350	while (*p)							     \
351	  if (*p >= '0' && *p <= '9')					     \
352	    p++;							     \
353	  else								     \
354	    {								     \
355	      error ("Invalid option `-mshort-data-%s'", m88k_short_data);   \
356	      break;							     \
357	    }								     \
358	m88k_gp_threshold = atoi (m88k_short_data);			     \
359	if (m88k_gp_threshold > 0x7fffffff)				     \
360	  error ("-mshort-data-%s is too large ", m88k_short_data);          \
361	if (flag_pic)							     \
362	  error ("-mshort-data-%s and PIC are incompatible", m88k_short_data); \
363      }									     \
364    if (TARGET_OMIT_LEAF_FRAME_POINTER)       /* keep nonleaf frame pointers */    \
365      flag_omit_frame_pointer = 1;                                         \
366  } while (0)
367
368/*** Storage Layout ***/
369
370/* Sizes in bits of the various types.  */
371#define CHAR_TYPE_SIZE		 8
372#define SHORT_TYPE_SIZE		16
373#define INT_TYPE_SIZE		32
374#define LONG_TYPE_SIZE		32
375#define LONG_LONG_TYPE_SIZE	64
376#define FLOAT_TYPE_SIZE		32
377#define	DOUBLE_TYPE_SIZE	64
378#define LONG_DOUBLE_TYPE_SIZE	64
379
380/* Define this if most significant bit is lowest numbered
381   in instructions that operate on numbered bit-fields.
382   Somewhat arbitrary.  It matches the bit field patterns.  */
383#define BITS_BIG_ENDIAN 1
384
385/* Define this if most significant byte of a word is the lowest numbered.
386   That is true on the m88000.  */
387#define BYTES_BIG_ENDIAN 1
388
389/* Define this if most significant word of a multiword number is the lowest
390   numbered.
391   For the m88000 we can decide arbitrarily since there are no machine
392   instructions for them.  */
393#define WORDS_BIG_ENDIAN 1
394
395/* Number of bits in an addressable storage unit */
396#define BITS_PER_UNIT 8
397
398/* Width in bits of a "word", which is the contents of a machine register.
399   Note that this is not necessarily the width of data type `int';
400   if using 16-bit ints on a 68000, this would still be 32.
401   But on a machine with 16-bit registers, this would be 16.  */
402#define BITS_PER_WORD 32
403
404/* Width of a word, in units (bytes).  */
405#define UNITS_PER_WORD 4
406
407/* Width in bits of a pointer.
408   See also the macro `Pmode' defined below.  */
409#define POINTER_SIZE 32
410
411/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
412#define PARM_BOUNDARY 32
413
414/* Largest alignment for stack parameters (if greater than PARM_BOUNDARY).  */
415#define MAX_PARM_BOUNDARY 64
416
417/* Boundary (in *bits*) on which stack pointer should be aligned.  */
418#define STACK_BOUNDARY 128
419
420/* Allocation boundary (in *bits*) for the code of a function.  On the
421   m88100, it is desirable to align to a cache line.  However, SVR3 targets
422   only provided 8 byte alignment.  The m88110 cache is small, so align
423   to an 8 byte boundary.  Pack code tightly when compiling crtstuff.c.  */
424#define FUNCTION_BOUNDARY (flag_inhibit_size_directive ? 32 : \
425			   (TARGET_88100 && TARGET_SVR4 ? 128 : 64))
426
427/* No data type wants to be aligned rounder than this.  */
428#define BIGGEST_ALIGNMENT 64
429
430/* The best alignment to use in cases where we have a choice.  */
431#define FASTEST_ALIGNMENT (TARGET_88100 ? 32 : 64)
432
433/* Make strings 4/8 byte aligned so strcpy from constants will be faster.  */
434#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
435  ((TREE_CODE (EXP) == STRING_CST	\
436    && (ALIGN) < FASTEST_ALIGNMENT)	\
437   ? FASTEST_ALIGNMENT : (ALIGN))
438
439/* Make arrays of chars 4/8 byte aligned for the same reasons.  */
440#define DATA_ALIGNMENT(TYPE, ALIGN)		\
441  (TREE_CODE (TYPE) == ARRAY_TYPE		\
442   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
443   && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
444
445/* Alignment of field after `int : 0' in a structure.
446   Ignored with PCC_BITFIELD_TYPE_MATTERS.  */
447/* #define EMPTY_FIELD_BOUNDARY 8 */
448
449/* Every structure's size must be a multiple of this.  */
450#define STRUCTURE_SIZE_BOUNDARY 8
451
452/* Set this nonzero if move instructions will actually fail to work
453   when given unaligned data.  */
454#define STRICT_ALIGNMENT 1
455
456/* A bitfield declared as `int' forces `int' alignment for the struct.  */
457#define PCC_BITFIELD_TYPE_MATTERS 1
458
459/* Maximum size (in bits) to use for the largest integral type that
460   replaces a BLKmode type. */
461/* #define MAX_FIXED_MODE_SIZE 0 */
462
463/* Check a `double' value for validity for a particular machine mode.
464   This is defined to avoid crashes outputting certain constants.
465   Since we output the number in hex, the assembler won't choke on it.  */
466/* #define CHECK_FLOAT_VALUE(MODE,VALUE) */
467
468/* A code distinguishing the floating point format of the target machine.  */
469/* #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT */
470
471/*** Register Usage ***/
472
473/* Number of actual hardware registers.
474   The hardware registers are assigned numbers for the compiler
475   from 0 to just below FIRST_PSEUDO_REGISTER.
476   All registers that the compiler knows about must be given numbers,
477   even those that are not normally considered general registers.
478
479   The m88100 has a General Register File (GRF) of 32 32-bit registers.
480   The m88110 adds an Extended Register File (XRF) of 32 80-bit registers.  */
481#define FIRST_PSEUDO_REGISTER 64
482#define FIRST_EXTENDED_REGISTER 32
483
484/*  General notes on extended registers, their use and misuse.
485
486    Possible good uses:
487
488    spill area instead of memory.
489      -waste if only used once
490
491    floating point calculations
492      -probably a waste unless we have run out of general purpose registers
493
494    freeing up general purpose registers
495      -e.g. may be able to have more loop invariants if floating
496       point is moved into extended registers.
497
498
499    I've noticed wasteful moves into and out of extended registers; e.g. a load
500    into x21, then inside a loop a move into r24, then r24 used as input to
501    an fadd.  Why not just load into r24 to begin with?  Maybe the new cse.c
502    will address this.  This wastes a move, but the load,store and move could
503    have been saved had extended registers been used throughout.
504    E.g. in the code following code, if z and xz are placed in extended
505    registers, there is no need to save preserve registers.
506
507	long c=1,d=1,e=1,f=1,g=1,h=1,i=1,j=1,k;
508
509	double z=0,xz=4.5;
510
511	foo(a,b)
512	long a,b;
513	{
514	  while (a < b)
515	    {
516	      k = b + c + d + e + f + g + h + a + i + j++;
517	      z += xz;
518	      a++;
519	    }
520	  printf("k= %d; z=%f;\n", k, z);
521	}
522
523    I've found that it is possible to change the constraints (putting * before
524    the 'r' constraints int the fadd.ddd instruction) and get the entire
525    addition and store to go into extended registers.  However, this also
526    forces simple addition and return of floating point arguments to a
527    function into extended registers.  Not the correct solution.
528
529    Found the following note in local-alloc.c which may explain why I can't
530    get both registers to be in extended registers since two are allocated in
531    local-alloc and one in global-alloc.  Doesn't explain (I don't believe)
532    why an extended register is used instead of just using the preserve
533    register.
534
535	from local-alloc.c:
536	We have provision to exempt registers, even when they are contained
537	within the block, that can be tied to others that are not contained in it.
538	This is so that global_alloc could process them both and tie them then.
539	But this is currently disabled since tying in global_alloc is not
540	yet implemented.
541
542    The explanation of why the preserved register is not used is as follows,
543    I believe.  The registers are being allocated in order.  Tying is not
544    done so efficiently, so when it comes time to do the first allocation,
545    there are no registers left to use without spilling except extended
546    registers.  Then when the next pseudo register needs a hard reg, there
547    are still no registers to be had for free, but this one must be a GRF
548    reg instead of an extended reg, so a preserve register is spilled.  Thus
549    the move from extended to GRF is necessitated.  I do not believe this can
550    be 'fixed' through the files in config/m88k.
551
552    gcc seems to sometimes make worse use of register allocation -- not counting
553    moves -- whenever extended registers are present.  For example in the
554    whetstone, the simple for loop (slightly modified)
555      for(i = 1; i <= n1; i++)
556	{
557	  x1 = (x1 + x2 + x3 - x4) * t;
558	  x2 = (x1 + x2 - x3 + x4) * t;
559	  x3 = (x1 - x2 + x3 + x4) * t;
560	  x4 = (x1 + x2 + x3 + x4) * t;
561	}
562    in general loads the high bits of the addresses of x2-x4 and i into registers
563    outside the loop.  Whenever extended registers are used, it loads all of
564    these inside the loop. My conjecture is that since the 88110 has so many
565    registers, and gcc makes no distinction at this point -- just that they are
566    not fixed, that in loop.c it believes it can expect a number of registers
567    to be available.  Then it allocates 'too many' in local-alloc which causes
568    problems later.  'Too many' are allocated because a large portion of the
569    registers are extended registers and cannot be used for certain purposes
570    ( e.g. hold the address of a variable).  When this loop is compiled on its
571    own, the problem does not occur.  I don't know the solution yet, though it
572    is probably in the base sources.  Possibly a different way to calculate
573    "threshold".  */
574
575/* 1 for registers that have pervasive standard uses and are not available
576   for the register allocator.  Registers r14-r25 and x22-x29 are expected
577   to be preserved across function calls.
578
579   On the 88000, the standard uses of the General Register File (GRF) are:
580   Reg 0	= Pseudo argument pointer (hardware fixed to 0).
581   Reg 1	= Subroutine return pointer (hardware).
582   Reg 2-9	= Parameter registers (OCS).
583   Reg 10	= OCS reserved temporary.
584   Reg 11	= Static link if needed [OCS reserved temporary].
585   Reg 12	= Address of structure return (OCS).
586   Reg 13	= OCS reserved temporary.
587   Reg 14-25	= Preserved register set.
588   Reg 26-29	= Reserved by OCS and ABI.
589   Reg 30	= Frame pointer (Common use).
590   Reg 31	= Stack pointer.
591
592   The following follows the current 88open UCS specification for the
593   Extended Register File (XRF):
594   Reg 32       = x0		Always equal to zero
595   Reg 33-53	= x1-x21	Temporary registers (Caller Save)
596   Reg 54-61	= x22-x29	Preserver registers (Callee Save)
597   Reg 62-63	= x30-x31	Reserved for future ABI use.
598
599   Note:  The current 88110 extended register mapping is subject to change.
600	  The bias towards caller-save registers is based on the
601	  presumption that memory traffic can potentially be reduced by
602	  allowing the "caller" to save only that part of the register
603	  which is actually being used.  (i.e. don't do a st.x if a st.d
604	  is sufficient).  Also, in scientific code (a.k.a. Fortran), the
605	  large number of variables defined in common blocks may require
606	  that almost all registers be saved across calls anyway.  */
607
608#define FIXED_REGISTERS \
609 {1, 0, 0, 0,  0, 0, 0, 0,   0, 0, 0, 0,  0, 0, 0, 0, \
610  0, 0, 0, 0,  0, 0, 0, 0,   0, 0, 1, 1,  1, 1, 1, 1, \
611  1, 0, 0, 0,  0, 0, 0, 0,   0, 0, 0, 0,  0, 0, 0, 0, \
612  0, 0, 0, 0,  0, 0, 0, 0,   0, 0, 0, 0,  0, 0, 1, 1}
613
614/* 1 for registers not available across function calls.
615   These must include the FIXED_REGISTERS and also any
616   registers that can be used without being saved.
617   The latter must include the registers where values are returned
618   and the register where structure-value addresses are passed.
619   Aside from that, you can include as many other registers as you like.  */
620
621#define CALL_USED_REGISTERS \
622 {1, 1, 1, 1,  1, 1, 1, 1,   1, 1, 1, 1,  1, 1, 0, 0, \
623  0, 0, 0, 0,  0, 0, 0, 0,   0, 0, 1, 1,  1, 1, 1, 1, \
624  1, 1, 1, 1,  1, 1, 1, 1,   1, 1, 1, 1,  1, 1, 1, 1, \
625  1, 1, 1, 1,  1, 1, 0, 0,   0, 0, 0, 0,  0, 0, 1, 1}
626
627/* Macro to conditionally modify fixed_regs/call_used_regs.  */
628#define CONDITIONAL_REGISTER_USAGE			\
629  {							\
630    if (! TARGET_88110)					\
631      {							\
632	register int i;					\
633	  for (i = FIRST_EXTENDED_REGISTER; i < FIRST_PSEUDO_REGISTER; i++) \
634	    {						\
635	      fixed_regs[i] = 1;			\
636	      call_used_regs[i] = 1;			\
637	    }						\
638      }							\
639    if (flag_pic)					\
640      {							\
641	/* Current hack to deal with -fpic -O2 problems.  */ \
642	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;	\
643	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;	\
644	global_regs[PIC_OFFSET_TABLE_REGNUM] = 1;	\
645      }							\
646  }
647
648/* These interfaces that don't apply to the m88000.  */
649/* OVERLAPPING_REGNO_P(REGNO) 0 */
650/* INSN_CLOBBERS_REGNO_P(INSN, REGNO) 0 */
651
652/* True if register is an extended register.  */
653#define XRF_REGNO_P(N) ((N) < FIRST_PSEUDO_REGISTER && (N) >= FIRST_EXTENDED_REGISTER)
654
655/* Return number of consecutive hard regs needed starting at reg REGNO
656   to hold something of mode MODE.
657   This is ordinarily the length in words of a value of mode MODE
658   but can be less for certain modes in special long registers.
659
660   On the m88000, GRF registers hold 32-bits and XRF registers hold 80-bits.
661   An XRF register can hold any mode, but two GRF registers are required
662   for larger modes.  */
663#define HARD_REGNO_NREGS(REGNO, MODE)					\
664  (XRF_REGNO_P (REGNO)                                                 \
665   ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
666
667/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
668
669   For double integers, we never put the value into an odd register so that
670   the operators don't run into the situation where the high part of one of
671   the inputs is the low part of the result register.  (It's ok if the output
672   registers are the same as the input registers.)  The XRF registers can
673   hold all modes, but only DF and SF modes can be manipulated in these
674   registers.  The compiler should be allowed to use these as a fast spill
675   area.  */
676#define HARD_REGNO_MODE_OK(REGNO, MODE)					\
677  (XRF_REGNO_P(REGNO)							\
678    ? (TARGET_88110 && GET_MODE_CLASS (MODE) == MODE_FLOAT)             \
679    : (((MODE) != DImode && (MODE) != DFmode && (MODE) != DCmode)	\
680       || ((REGNO) & 1) == 0))
681
682/* Value is 1 if it is a good idea to tie two pseudo registers
683   when one has mode MODE1 and one has mode MODE2.
684   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
685   for any hard reg, then this must be 0 for correct output.  */
686#define MODES_TIEABLE_P(MODE1, MODE2) \
687  (((MODE1) == DFmode || (MODE1) == DCmode || (MODE1) == DImode \
688    || (TARGET_88110 && GET_MODE_CLASS (MODE1) == MODE_FLOAT)) \
689   == ((MODE2) == DFmode || (MODE2) == DCmode || (MODE2) == DImode \
690       || (TARGET_88110 && GET_MODE_CLASS (MODE2) == MODE_FLOAT)))
691
692/* Specify the registers used for certain standard purposes.
693   The values of these macros are register numbers.  */
694
695/* the m88000 pc isn't overloaded on a register that the compiler knows about.  */
696/* #define PC_REGNUM  */
697
698/* Register to use for pushing function arguments.  */
699#define STACK_POINTER_REGNUM 31
700
701/* Base register for access to local variables of the function.  */
702#define FRAME_POINTER_REGNUM 30
703
704/* Base register for access to arguments of the function.  */
705#define ARG_POINTER_REGNUM 0
706
707/* Register used in cases where a temporary is known to be safe to use.  */
708#define TEMP_REGNUM 10
709
710/* Register in which static-chain is passed to a function.  */
711#define STATIC_CHAIN_REGNUM 11
712
713/* Register in which address to store a structure value
714   is passed to a function.  */
715#define STRUCT_VALUE_REGNUM 12
716
717/* Register to hold the addressing base for position independent
718   code access to data items.  */
719#define PIC_OFFSET_TABLE_REGNUM 25
720
721/* Order in which registers are preferred (most to least).  Use temp
722   registers, then param registers top down.  Preserve registers are
723   top down to maximize use of double memory ops for register save.
724   The 88open reserved registers (r26-r29 and x30-x31) may commonly be used
725   in most environments with the -fcall-used- or -fcall-saved- options.  */
726#define REG_ALLOC_ORDER		  \
727 {				  \
728  13, 12, 11, 10, 29, 28, 27, 26, \
729  62, 63,  9,  8,  7,  6,  5,  4, \
730   3,  2,  1, 53, 52, 51, 50, 49, \
731  48, 47, 46, 45, 44, 43, 42, 41, \
732  40, 39, 38, 37, 36, 35, 34, 33, \
733  25, 24, 23, 22, 21, 20, 19, 18, \
734  17, 16, 15, 14, 61, 60, 59, 58, \
735  57, 56, 55, 54, 30, 31,  0, 32}
736
737/* Order for leaf functions.  */
738#define REG_LEAF_ALLOC_ORDER	  \
739 {				  \
740   9,  8,  7,  6, 13, 12, 11, 10, \
741  29, 28, 27, 26, 62, 63,  5,  4, \
742   3,  2,  0, 53, 52, 51, 50, 49, \
743  48, 47, 46, 45, 44, 43, 42, 41, \
744  40, 39, 38, 37, 36, 35, 34, 33, \
745  25, 24, 23, 22, 21, 20, 19, 18, \
746  17, 16, 15, 14, 61, 60, 59, 58, \
747  57, 56, 55, 54, 30, 31,  1, 32}
748
749/* Switch between the leaf and non-leaf orderings.  The purpose is to avoid
750   write-over scoreboard delays between caller and callee.  */
751#define ORDER_REGS_FOR_LOCAL_ALLOC				\
752{								\
753  static int leaf[] = REG_LEAF_ALLOC_ORDER;			\
754  static int nonleaf[] = REG_ALLOC_ORDER;			\
755								\
756  bcopy (regs_ever_live[1] ? nonleaf : leaf, reg_alloc_order,	\
757	 FIRST_PSEUDO_REGISTER * sizeof (int));			\
758}
759
760/*** Register Classes ***/
761
762/* Define the classes of registers for register constraints in the
763   machine description.  Also define ranges of constants.
764
765   One of the classes must always be named ALL_REGS and include all hard regs.
766   If there is more than one class, another class must be named NO_REGS
767   and contain no registers.
768
769   The name GENERAL_REGS must be the name of a class (or an alias for
770   another name such as ALL_REGS).  This is the class of registers
771   that is allowed by "g" or "r" in a register constraint.
772   Also, registers outside this class are allocated only when
773   instructions express preferences for them.
774
775   The classes must be numbered in nondecreasing order; that is,
776   a larger-numbered class must never be contained completely
777   in a smaller-numbered class.
778
779   For any two classes, it is very desirable that there be another
780   class that represents their union.  */
781
782/* The m88000 hardware has two kinds of registers.  In addition, we denote
783   the arg pointer as a separate class.  */
784
785enum reg_class { NO_REGS, AP_REG, XRF_REGS, GENERAL_REGS, AGRF_REGS,
786		 XGRF_REGS, ALL_REGS, LIM_REG_CLASSES };
787
788#define N_REG_CLASSES (int) LIM_REG_CLASSES
789
790/* Give names of register classes as strings for dump file.   */
791#define REG_CLASS_NAMES {"NO_REGS", "AP_REG", "XRF_REGS", "GENERAL_REGS", \
792			 "AGRF_REGS", "XGRF_REGS", "ALL_REGS" }
793
794/* Define which registers fit in which classes.
795   This is an initializer for a vector of HARD_REG_SET
796   of length N_REG_CLASSES.  */
797#define REG_CLASS_CONTENTS {{0x00000000, 0x00000000},	\
798			    {0x00000001, 0x00000000},	\
799			    {0x00000000, 0xffffffff},	\
800			    {0xfffffffe, 0x00000000},	\
801			    {0xffffffff, 0x00000000},	\
802			    {0xfffffffe, 0xffffffff},	\
803			    {0xffffffff, 0xffffffff}}
804
805/* The same information, inverted:
806   Return the class number of the smallest class containing
807   reg number REGNO.  This could be a conditional expression
808   or could index an array.  */
809#define REGNO_REG_CLASS(REGNO) \
810  ((REGNO) ? ((REGNO < 32) ? GENERAL_REGS : XRF_REGS) : AP_REG)
811
812/* The class value for index registers, and the one for base regs.  */
813#define BASE_REG_CLASS AGRF_REGS
814#define INDEX_REG_CLASS GENERAL_REGS
815
816/* Get reg_class from a letter such as appears in the machine description.
817   For the 88000, the following class/letter is defined for the XRF:
818	x - Extended register file  */
819#define REG_CLASS_FROM_LETTER(C) 	\
820   (((C) == 'x') ? XRF_REGS : NO_REGS)
821
822/* Macros to check register numbers against specific register classes.
823   These assume that REGNO is a hard or pseudo reg number.
824   They give nonzero only if REGNO is a hard reg of the suitable class
825   or a pseudo reg currently allocated to a suitable hard reg.
826   Since they use reg_renumber, they are safe only once reg_renumber
827   has been allocated, which happens in local-alloc.c.  */
828#define REGNO_OK_FOR_BASE_P(REGNO)				\
829  ((REGNO) < FIRST_EXTENDED_REGISTER				\
830   || (unsigned) reg_renumber[REGNO] < FIRST_EXTENDED_REGISTER)
831#define REGNO_OK_FOR_INDEX_P(REGNO)				\
832  (((REGNO) && (REGNO) < FIRST_EXTENDED_REGISTER)		\
833   || (unsigned) reg_renumber[REGNO] < FIRST_EXTENDED_REGISTER)
834
835/* Given an rtx X being reloaded into a reg required to be
836   in class CLASS, return the class of reg to actually use.
837   In general this is just CLASS; but on some machines
838   in some cases it is preferable to use a more restrictive class.
839   Double constants should be in a register iff they can be made cheaply.  */
840#define PREFERRED_RELOAD_CLASS(X,CLASS)	\
841   (CONSTANT_P(X) && (CLASS == XRF_REGS) ? NO_REGS : (CLASS))
842
843/* Return the register class of a scratch register needed to load IN
844   into a register of class CLASS in MODE.  On the m88k, when PIC, we
845   need a temporary when loading some addresses into a register.  */
846#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN)		\
847  ((flag_pic							\
848    && GET_CODE (IN) == CONST					\
849    && GET_CODE (XEXP (IN, 0)) == PLUS				\
850    && GET_CODE (XEXP (XEXP (IN, 0), 0)) == CONST_INT		\
851    && ! SMALL_INT (XEXP (XEXP (IN, 0), 1))) ? GENERAL_REGS : NO_REGS)
852
853/* Return the maximum number of consecutive registers
854   needed to represent mode MODE in a register of class CLASS.  */
855#define CLASS_MAX_NREGS(CLASS, MODE) \
856  ((((CLASS) == XRF_REGS) ? 1 \
857    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
858
859/* Letters in the range `I' through `P' in a register constraint string can
860   be used to stand for particular ranges of immediate operands.  The C
861   expression is true iff C is a known letter and VALUE is appropriate for
862   that letter.
863
864   For the m88000, the following constants are used:
865   `I' requires a non-negative 16-bit value.
866   `J' requires a non-positive 16-bit value.
867   `K' requires a non-negative value < 32.
868   `L' requires a constant with only the upper 16-bits set.
869   `M' requires constant values that can be formed with `set'.
870   `N' requires a negative value.
871   `O' requires zero.
872   `P' requires a non-negative value.  */
873
874/* Quick tests for certain values.  */
875#define SMALL_INT(X) (SMALL_INTVAL (INTVAL (X)))
876#define SMALL_INTVAL(I) ((unsigned) (I) < 0x10000)
877#define ADD_INT(X) (ADD_INTVAL (INTVAL (X)))
878#define ADD_INTVAL(I) ((unsigned) (I) + 0xffff < 0x1ffff)
879#define POWER_OF_2(I) ((I) && POWER_OF_2_or_0(I))
880#define POWER_OF_2_or_0(I) (((I) & ((unsigned)(I) - 1)) == 0)
881
882#define CONST_OK_FOR_LETTER_P(VALUE, C)			\
883  ((C) == 'I' ? SMALL_INTVAL (VALUE)			\
884   : (C) == 'J' ? SMALL_INTVAL (-(VALUE))		\
885   : (C) == 'K' ? (unsigned)(VALUE) < 32		\
886   : (C) == 'L' ? ((VALUE) & 0xffff) == 0		\
887   : (C) == 'M' ? integer_ok_for_set (VALUE)		\
888   : (C) == 'N' ? (VALUE) < 0				\
889   : (C) == 'O' ? (VALUE) == 0				\
890   : (C) == 'P' ? (VALUE) >= 0				\
891   : 0)
892
893/* Similar, but for floating constants, and defining letters G and H.
894   Here VALUE is the CONST_DOUBLE rtx itself.  For the m88000, the
895   constraints are:  `G' requires zero, and `H' requires one or two.  */
896#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)				\
897  ((C) == 'G' ? (CONST_DOUBLE_HIGH (VALUE) == 0				\
898		 && CONST_DOUBLE_LOW (VALUE) == 0)			\
899   : 0)
900
901/* Letters in the range `Q' through `U' in a register constraint string
902   may be defined in a machine-dependent fashion to stand for arbitrary
903   operand types.
904
905   For the m88k, `Q' handles addresses in a call context.  */
906
907#define EXTRA_CONSTRAINT(OP, C)				\
908  ((C) == 'Q' ? symbolic_address_p (OP) : 0)
909
910/*** Describing Stack Layout ***/
911
912/* Define this if pushing a word on the stack moves the stack pointer
913   to a smaller address.  */
914#define STACK_GROWS_DOWNWARD
915
916/* Define this if the addresses of local variable slots are at negative
917   offsets from the frame pointer.  */
918/* #define FRAME_GROWS_DOWNWARD */
919
920/* Offset from the frame pointer to the first local variable slot to be
921   allocated. For the m88k, the debugger wants the return address (r1)
922   stored at location r30+4, and the previous frame pointer stored at
923   location r30.  */
924#define STARTING_FRAME_OFFSET 8
925
926/* If we generate an insn to push BYTES bytes, this says how many the
927   stack pointer really advances by.  The m88k has no push instruction.  */
928/*  #define PUSH_ROUNDING(BYTES) */
929
930/* If defined, the maximum amount of space required for outgoing arguments
931   will be computed and placed into the variable
932   `current_function_outgoing_args_size'.  No space will be pushed
933   onto the stack for each call; instead, the function prologue should
934   increase the stack frame size by this amount.  */
935#define ACCUMULATE_OUTGOING_ARGS
936
937/* Offset from the stack pointer register to the first location at which
938   outgoing arguments are placed.  Use the default value zero.  */
939/* #define STACK_POINTER_OFFSET 0 */
940
941/* Offset of first parameter from the argument pointer register value.
942   Using an argument pointer, this is 0 for the m88k.  GCC knows
943   how to eliminate the argument pointer references if necessary.  */
944#define FIRST_PARM_OFFSET(FNDECL) 0
945
946/* Define this if functions should assume that stack space has been
947   allocated for arguments even when their values are passed in
948   registers.
949
950   The value of this macro is the size, in bytes, of the area reserved for
951   arguments passed in registers.
952
953   This space can either be allocated by the caller or be a part of the
954   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
955   says which.  */
956#define REG_PARM_STACK_SPACE(FNDECL) 32
957
958/* Define this macro if REG_PARM_STACK_SPACE is defined but stack
959   parameters don't skip the area specified by REG_PARM_STACK_SPACE.
960   Normally, when a parameter is not passed in registers, it is placed on
961   the stack beyond the REG_PARM_STACK_SPACE area.  Defining this macro
962   suppresses this behavior and causes the parameter to be passed on the
963   stack in its natural location.  */
964#define STACK_PARMS_IN_REG_PARM_AREA
965
966/* Define this if it is the responsibility of the caller to allocate the
967   area reserved for arguments passed in registers.  If
968   `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect of this
969   macro is to determine whether the space is included in
970   `current_function_outgoing_args_size'.  */
971/* #define OUTGOING_REG_PARM_STACK_SPACE */
972
973/* Offset from the stack pointer register to an item dynamically allocated
974   on the stack, e.g., by `alloca'.
975
976   The default value for this macro is `STACK_POINTER_OFFSET' plus the
977   length of the outgoing arguments.  The default is correct for most
978   machines.  See `function.c' for details.  */
979/* #define STACK_DYNAMIC_OFFSET(FUNDECL) ... */
980
981/* Value is the number of bytes of arguments automatically
982   popped when returning from a subroutine call.
983   FUNDECL is the declaration node of the function (as a tree),
984   FUNTYPE is the data type of the function (as a tree),
985   or for a library call it is an identifier node for the subroutine name.
986   SIZE is the number of bytes of arguments passed on the stack.  */
987#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
988
989/* Define how to find the value returned by a function.
990   VALTYPE is the data type of the value (as a tree).
991   If the precise function being called is known, FUNC is its FUNCTION_DECL;
992   otherwise, FUNC is 0.  */
993#define FUNCTION_VALUE(VALTYPE, FUNC) \
994  gen_rtx (REG, \
995	   TYPE_MODE (VALTYPE) == BLKmode ? SImode : TYPE_MODE (VALTYPE), \
996	   2)
997
998/* Define this if it differs from FUNCTION_VALUE.  */
999/* #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) ... */
1000
1001/* Disable the promotion of some structures and unions to registers. */
1002#define RETURN_IN_MEMORY(TYPE) \
1003  (TYPE_MODE (TYPE) == BLKmode \
1004   || ((TREE_CODE (TYPE) == RECORD_TYPE || TREE_CODE(TYPE) == UNION_TYPE) \
1005       && !(TYPE_MODE (TYPE) == SImode \
1006	    || (TYPE_MODE (TYPE) == BLKmode \
1007		&& TYPE_ALIGN (TYPE) == BITS_PER_WORD \
1008		&& int_size_in_bytes (TYPE) == UNITS_PER_WORD))))
1009
1010/* Don't default to pcc-struct-return, because we have already specified
1011   exactly how to return structures in the RETURN_IN_MEMORY macro.  */
1012#define DEFAULT_PCC_STRUCT_RETURN 0
1013
1014/* Define how to find the value returned by a library function
1015   assuming the value has mode MODE.  */
1016#define LIBCALL_VALUE(MODE)  gen_rtx (REG, MODE, 2)
1017
1018/* True if N is a possible register number for a function value
1019   as seen by the caller.  */
1020#define FUNCTION_VALUE_REGNO_P(N) ((N) == 2)
1021
1022/* Determine whether a function argument is passed in a register, and
1023   which register.  See m88k.c.  */
1024#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1025  m88k_function_arg (CUM, MODE, TYPE, NAMED)
1026
1027/* Define this if it differs from FUNCTION_ARG.  */
1028/* #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) ... */
1029
1030/* A C expression for the number of words, at the beginning of an
1031   argument, must be put in registers.  The value must be zero for
1032   arguments that are passed entirely in registers or that are entirely
1033   pushed on the stack.  */
1034#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) (0)
1035
1036/* A C expression that indicates when an argument must be passed by
1037   reference.  If nonzero for an argument, a copy of that argument is
1038   made in memory and a pointer to the argument is passed instead of the
1039   argument itself.  The pointer is passed in whatever way is appropriate
1040   for passing a pointer to that type.  */
1041#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) (0)
1042
1043/* A C type for declaring a variable that is used as the first argument
1044   of `FUNCTION_ARG' and other related values.  It suffices to count
1045   the number of words of argument so far.  */
1046#define CUMULATIVE_ARGS int
1047
1048/* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a
1049   function whose data type is FNTYPE.  For a library call, FNTYPE is 0. */
1050#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) ((CUM) = 0)
1051
1052/* A C statement (sans semicolon) to update the summarizer variable
1053   CUM to advance past an argument in the argument list.  The values
1054   MODE, TYPE and NAMED describe that argument.  Once this is done,
1055   the variable CUM is suitable for analyzing the *following* argument
1056   with `FUNCTION_ARG', etc.  (TYPE is null for libcalls where that
1057   information may not be available.)  */
1058#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
1059  do {									\
1060    enum machine_mode __mode = (TYPE) ? TYPE_MODE (TYPE) : (MODE);	\
1061    if ((CUM & 1)							\
1062	&& (__mode == DImode || __mode == DFmode			\
1063	    || ((TYPE) && TYPE_ALIGN (TYPE) > BITS_PER_WORD)))		\
1064      CUM++;								\
1065    CUM += (((__mode != BLKmode)					\
1066	     ? GET_MODE_SIZE (MODE) : int_size_in_bytes (TYPE))		\
1067	    + 3) / 4;							\
1068  } while (0)
1069
1070/* True if N is a possible register number for function argument passing.
1071   On the m88000, these are registers 2 through 9.  */
1072#define FUNCTION_ARG_REGNO_P(N) ((N) <= 9 && (N) >= 2)
1073
1074/* A C expression which determines whether, and in which direction,
1075   to pad out an argument with extra space.  The value should be of
1076   type `enum direction': either `upward' to pad above the argument,
1077   `downward' to pad below, or `none' to inhibit padding.
1078
1079   This macro does not control the *amount* of padding; that is always
1080   just enough to reach the next multiple of `FUNCTION_ARG_BOUNDARY'.  */
1081#define FUNCTION_ARG_PADDING(MODE, TYPE) \
1082  ((MODE) == BLKmode \
1083   || ((TYPE) && (TREE_CODE (TYPE) == RECORD_TYPE \
1084		  || TREE_CODE (TYPE) == UNION_TYPE)) \
1085   ? upward : GET_MODE_BITSIZE (MODE) < PARM_BOUNDARY ? downward : none)
1086
1087/* If defined, a C expression that gives the alignment boundary, in bits,
1088   of an argument with the specified mode and type.  If it is not defined,
1089   `PARM_BOUNDARY' is used for all arguments.  */
1090#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1091  (((TYPE) ? TYPE_ALIGN (TYPE) : GET_MODE_BITSIZE (MODE)) <= PARM_BOUNDARY \
1092    ? PARM_BOUNDARY : 2 * PARM_BOUNDARY)
1093
1094/* Generate necessary RTL for __builtin_saveregs().
1095   ARGLIST is the argument list; see expr.c.  */
1096#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) m88k_builtin_saveregs (ARGLIST)
1097
1098/* Generate the assembly code for function entry. */
1099#define FUNCTION_PROLOGUE(FILE, SIZE) m88k_begin_prologue(FILE, SIZE)
1100
1101/* Perform special actions at the point where the prologue ends.  */
1102#define FUNCTION_END_PROLOGUE(FILE) m88k_end_prologue(FILE)
1103
1104/* Output assembler code to FILE to increment profiler label # LABELNO
1105   for profiling a function entry.  Redefined in sysv3.h, sysv4.h and
1106   dgux.h.  */
1107#define FUNCTION_PROFILER(FILE, LABELNO) \
1108  output_function_profiler (FILE, LABELNO, "mcount", 1)
1109
1110/* Maximum length in instructions of the code output by FUNCTION_PROFILER.  */
1111#define FUNCTION_PROFILER_LENGTH (5+3+1+5)
1112
1113/* Output assembler code to FILE to initialize basic-block profiling for
1114   the current module.  LABELNO is unique to each instance.  */
1115#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1116  output_function_block_profiler (FILE, LABELNO)
1117
1118/* Maximum length in instructions of the code output by
1119   FUNCTION_BLOCK_PROFILER.  */
1120#define FUNCTION_BLOCK_PROFILER_LENGTH (3+5+2+5)
1121
1122/* Output assembler code to FILE to increment the count associated with
1123   the basic block number BLOCKNO.  */
1124#define BLOCK_PROFILER(FILE, BLOCKNO) output_block_profiler (FILE, BLOCKNO)
1125
1126/* Maximum length in instructions of the code output by BLOCK_PROFILER.  */
1127#define BLOCK_PROFILER_LENGTH 4
1128
1129/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1130   the stack pointer does not matter.  The value is tested only in
1131   functions that have frame pointers.
1132   No definition is equivalent to always zero.  */
1133#define EXIT_IGNORE_STACK (1)
1134
1135/* Generate the assembly code for function exit. */
1136#define FUNCTION_EPILOGUE(FILE, SIZE) m88k_end_epilogue(FILE, SIZE)
1137
1138/* Perform special actions at the point where the epilogue begins.  */
1139#define FUNCTION_BEGIN_EPILOGUE(FILE) m88k_begin_epilogue(FILE)
1140
1141/* Value should be nonzero if functions must have frame pointers.
1142   Zero means the frame pointer need not be set up (and parms
1143   may be accessed via the stack pointer) in functions that seem suitable.
1144   This is computed in `reload', in reload1.c.  */
1145#define FRAME_POINTER_REQUIRED \
1146(current_function_varargs 					\
1147 || (TARGET_OMIT_LEAF_FRAME_POINTER && !leaf_function_p ()) 	\
1148 || (write_symbols != NO_DEBUG && !TARGET_OCS_FRAME_POSITION))
1149
1150/* Definitions for register eliminations.
1151
1152   We have two registers that can be eliminated on the m88k.  First, the
1153   frame pointer register can often be eliminated in favor of the stack
1154   pointer register.  Secondly, the argument pointer register can always be
1155   eliminated; it is replaced with either the stack or frame pointer.  */
1156
1157/* This is an array of structures.  Each structure initializes one pair
1158   of eliminable registers.  The "from" register number is given first,
1159   followed by "to".  Eliminations of the same "from" register are listed
1160   in order of preference.  */
1161#define ELIMINABLE_REGS				\
1162{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1163 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},	\
1164 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1165
1166/* Given FROM and TO register numbers, say whether this elimination
1167   is allowed.  */
1168#define CAN_ELIMINATE(FROM, TO) \
1169  (!((FROM) == FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
1170
1171/* Define the offset between two registers, one to be eliminated, and the other
1172   its replacement, at the start of a routine.  */
1173#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			 \
1174{ m88k_layout_frame ();							 \
1175  if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM)	 \
1176      (OFFSET) = m88k_fp_offset;					 \
1177  else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1178    (OFFSET) = m88k_stack_size - m88k_fp_offset;			 \
1179  else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1180    (OFFSET) = m88k_stack_size;						 \
1181  else									 \
1182    abort ();								 \
1183}
1184
1185/*** Trampolines for Nested Functions ***/
1186
1187/* Output assembler code for a block containing the constant parts
1188   of a trampoline, leaving space for the variable parts.
1189
1190   This block is placed on the stack and filled in.  It is aligned
1191   0 mod 128 and those portions that are executed are constant.
1192   This should work for instruction caches that have cache lines up
1193   to the aligned amount (128 is arbitrary), provided no other code
1194   producer is attempting to play the same game.  This of course is
1195   in violation of any number of 88open standards.  */
1196
1197#define TRAMPOLINE_TEMPLATE(FILE)					\
1198{									\
1199  char buf[256];							\
1200  static int labelno = 0;						\
1201  labelno++;								\
1202  ASM_GENERATE_INTERNAL_LABEL (buf, "LTRMP", labelno);			\
1203  /* Save the return address (r1) in the static chain reg (r11).  */	\
1204  fprintf (FILE, "\tor\t %s,%s,0\n", reg_names[11], reg_names[1]);	\
1205  /* Locate this block; transfer to the next instruction.  */		\
1206  fprintf (FILE, "\tbsr\t %s\n", &buf[1]);					\
1207  ASM_OUTPUT_INTERNAL_LABEL (FILE, "LTRMP", labelno);			\
1208  /* Save r10; use it as the relative pointer; restore r1.  */		\
1209  fprintf (FILE, "\tst\t %s,%s,24\n", reg_names[10], reg_names[1]);	\
1210  fprintf (FILE, "\tor\t %s,%s,0\n", reg_names[10], reg_names[1]);	\
1211  fprintf (FILE, "\tor\t %s,%s,0\n", reg_names[1], reg_names[11]);	\
1212  /* Load the function's address and go there.  */			\
1213  fprintf (FILE, "\tld\t %s,%s,32\n", reg_names[11], reg_names[10]);	\
1214  fprintf (FILE, "\tjmp.n\t %s\n", reg_names[11]);			\
1215  /* Restore r10 and load the static chain register.  */		\
1216  fprintf (FILE, "\tld.d\t %s,%s,24\n", reg_names[10], reg_names[10]);	\
1217  /* Storage: r10 save area, static chain, function address.  */	\
1218  ASM_OUTPUT_INT (FILE, const0_rtx);					\
1219  ASM_OUTPUT_INT (FILE, const0_rtx);					\
1220  ASM_OUTPUT_INT (FILE, const0_rtx);					\
1221}
1222
1223/* Length in units of the trampoline for entering a nested function.
1224   This is really two components.  The first 32 bytes are fixed and
1225   must be copied; the last 12 bytes are just storage that's filled
1226   in later.  So for allocation purposes, it's 32+12 bytes, but for
1227   initialization purposes, it's 32 bytes.  */
1228
1229#define TRAMPOLINE_SIZE (32+12)
1230
1231/* Alignment required for a trampoline.  128 is used to find the
1232   beginning of a line in the instruction cache and to allow for
1233   instruction cache lines of up to 128 bytes.  */
1234
1235#define TRAMPOLINE_ALIGNMENT 128
1236
1237/* Emit RTL insns to initialize the variable parts of a trampoline.
1238   FNADDR is an RTX for the address of the function's pure code.
1239   CXT is an RTX for the static chain value for the function.  */
1240
1241#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)			\
1242{									\
1243  emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 40)), FNADDR); \
1244  emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 36)), CXT); \
1245}
1246
1247/*** Library Subroutine Names ***/
1248
1249/* Define this macro if GNU CC should generate calls to the System V
1250   (and ANSI C) library functions `memcpy' and `memset' rather than
1251   the BSD functions `bcopy' and `bzero'.  */
1252#define TARGET_MEM_FUNCTIONS
1253
1254/*** Addressing Modes ***/
1255
1256#define EXTRA_CC_MODES CCEVENmode
1257
1258#define EXTRA_CC_NAMES "CCEVEN"
1259
1260#define SELECT_CC_MODE(OP,X,Y) CCmode
1261
1262/* #define HAVE_POST_INCREMENT 0 */
1263/* #define HAVE_POST_DECREMENT 0 */
1264
1265/* #define HAVE_PRE_DECREMENT 0 */
1266/* #define HAVE_PRE_INCREMENT 0 */
1267
1268/* Recognize any constant value that is a valid address.
1269   When PIC, we do not accept an address that would require a scratch reg
1270   to load into a register.  */
1271
1272#define CONSTANT_ADDRESS_P(X)   \
1273  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
1274   || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH                 \
1275   || (GET_CODE (X) == CONST                                            \
1276       && ! (flag_pic && pic_address_needs_scratch (X))))
1277
1278
1279/* Maximum number of registers that can appear in a valid memory address.  */
1280#define MAX_REGS_PER_ADDRESS 2
1281
1282/* The condition for memory shift insns.  */
1283#define SCALED_ADDRESS_P(ADDR)			\
1284  (GET_CODE (ADDR) == PLUS			\
1285   && (GET_CODE (XEXP (ADDR, 0)) == MULT	\
1286       || GET_CODE (XEXP (ADDR, 1)) == MULT))
1287
1288/* Can the reference to X be made short?  */
1289#define SHORT_ADDRESS_P(X,TEMP) \
1290  ((TEMP) = (GET_CODE (X) == CONST ? get_related_value (X) : X), \
1291   ((TEMP) && GET_CODE (TEMP) == SYMBOL_REF && SYMBOL_REF_FLAG (TEMP)))
1292
1293/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1294   that is a valid memory address for an instruction.
1295   The MODE argument is the machine mode for the MEM expression
1296   that wants to use this address.
1297
1298   On the m88000, a legitimate address has the form REG, REG+REG,
1299   REG+SMALLINT, REG+(REG*modesize) (REG[REG]), or SMALLINT.
1300
1301   The register elimination process should deal with the argument
1302   pointer and frame pointer changing to REG+SMALLINT.  */
1303
1304#define LEGITIMATE_INDEX_P(X, MODE)			\
1305   ((GET_CODE (X) == CONST_INT				\
1306     && SMALL_INT (X))					\
1307    || (REG_P (X)					\
1308	&& REG_OK_FOR_INDEX_P (X))			\
1309    || (GET_CODE (X) == MULT				\
1310	&& REG_P (XEXP (X, 0))				\
1311	&& REG_OK_FOR_INDEX_P (XEXP (X, 0))		\
1312	&& GET_CODE (XEXP (X, 1)) == CONST_INT		\
1313	&& INTVAL (XEXP (X, 1)) == GET_MODE_SIZE (MODE)))
1314
1315#define RTX_OK_FOR_BASE_P(X)						\
1316  ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))			\
1317  || (GET_CODE (X) == SUBREG						\
1318      && GET_CODE (SUBREG_REG (X)) == REG				\
1319      && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1320
1321#define RTX_OK_FOR_INDEX_P(X)						\
1322  ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))			\
1323  || (GET_CODE (X) == SUBREG						\
1324      && GET_CODE (SUBREG_REG (X)) == REG				\
1325      && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1326
1327#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)		\
1328{							\
1329  register rtx _x;					\
1330  if (REG_P (X))					\
1331    {							\
1332      if (REG_OK_FOR_BASE_P (X))			\
1333	goto ADDR;					\
1334    }							\
1335  else if (GET_CODE (X) == PLUS)			\
1336    {							\
1337      register rtx _x0 = XEXP (X, 0);			\
1338      register rtx _x1 = XEXP (X, 1);			\
1339      if ((flag_pic					\
1340	   && _x0 == pic_offset_table_rtx		\
1341	   && (flag_pic == 2				\
1342	       ? RTX_OK_FOR_BASE_P (_x1)		\
1343	       : (GET_CODE (_x1) == SYMBOL_REF		\
1344		  || GET_CODE (_x1) == LABEL_REF)))	\
1345	  || (REG_P (_x0)				\
1346	      && (REG_OK_FOR_BASE_P (_x0)		\
1347		  && LEGITIMATE_INDEX_P (_x1, MODE)))	\
1348	  || (REG_P (_x1)				\
1349	      && (REG_OK_FOR_BASE_P (_x1)		\
1350		  && LEGITIMATE_INDEX_P (_x0, MODE))))	\
1351	goto ADDR;					\
1352    }							\
1353  else if (GET_CODE (X) == LO_SUM)			\
1354    {							\
1355      register rtx _x0 = XEXP (X, 0);			\
1356      register rtx _x1 = XEXP (X, 1);			\
1357      if (((REG_P (_x0)					\
1358	    && REG_OK_FOR_BASE_P (_x0))			\
1359	   || (GET_CODE (_x0) == SUBREG			\
1360	       && REG_P (SUBREG_REG (_x0))		\
1361	       && REG_OK_FOR_BASE_P (SUBREG_REG (_x0)))) \
1362	  && CONSTANT_P (_x1))				\
1363	goto ADDR;					\
1364    }							\
1365  else if (GET_CODE (X) == CONST_INT			\
1366	   && SMALL_INT (X))				\
1367    goto ADDR;						\
1368  else if (SHORT_ADDRESS_P (X, _x))			\
1369    goto ADDR;						\
1370}
1371
1372/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1373   and check its validity for a certain class.
1374   We have two alternate definitions for each of them.
1375   The usual definition accepts all pseudo regs; the other rejects
1376   them unless they have been allocated suitable hard regs.
1377   The symbol REG_OK_STRICT causes the latter definition to be used.
1378
1379   Most source files want to accept pseudo regs in the hope that
1380   they will get allocated to the class that the insn wants them to be in.
1381   Source files for reload pass need to be strict.
1382   After reload, it makes no difference, since pseudo regs have
1383   been eliminated by then.  */
1384
1385#ifndef REG_OK_STRICT
1386
1387/* Nonzero if X is a hard reg that can be used as an index
1388   or if it is a pseudo reg.  Not the argument pointer.  */
1389#define REG_OK_FOR_INDEX_P(X)                                         \
1390  (!XRF_REGNO_P(REGNO (X)))
1391/* Nonzero if X is a hard reg that can be used as a base reg
1392   or if it is a pseudo reg.  */
1393#define REG_OK_FOR_BASE_P(X) (REG_OK_FOR_INDEX_P (X))
1394
1395#else
1396
1397/* Nonzero if X is a hard reg that can be used as an index.  */
1398#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1399/* Nonzero if X is a hard reg that can be used as a base reg.  */
1400#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1401
1402#endif
1403
1404/* Try machine-dependent ways of modifying an illegitimate address
1405   to be legitimate.  If we find one, return the new, valid address.
1406   This macro is used in only one place: `memory_address' in explow.c.
1407
1408   OLDX is the address as it was before break_out_memory_refs was called.
1409   In some cases it is useful to look at this to decide what needs to be done.
1410
1411   MODE and WIN are passed so that this macro can use
1412   GO_IF_LEGITIMATE_ADDRESS.
1413
1414   It is always safe for this macro to do nothing.  It exists to recognize
1415   opportunities to optimize the output.  */
1416
1417/* On the m88000, change REG+N into REG+REG, and REG+(X*Y) into REG+REG.  */
1418
1419#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
1420{								\
1421  if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1)))	\
1422    (X) = gen_rtx (PLUS, SImode, XEXP (X, 0),			\
1423		   copy_to_mode_reg (SImode, XEXP (X, 1)));	\
1424  if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0)))	\
1425    (X) = gen_rtx (PLUS, SImode, XEXP (X, 1),			\
1426		   copy_to_mode_reg (SImode, XEXP (X, 0)));	\
1427  if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT)	\
1428    (X) = gen_rtx (PLUS, SImode, XEXP (X, 1),			\
1429		   force_operand (XEXP (X, 0), 0));		\
1430  if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT)	\
1431    (X) = gen_rtx (PLUS, SImode, XEXP (X, 0),			\
1432		   force_operand (XEXP (X, 1), 0));		\
1433  if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS)	\
1434    (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
1435		   XEXP (X, 1));				\
1436  if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS)	\
1437    (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0),			\
1438		   force_operand (XEXP (X, 1), NULL_RTX));	\
1439  if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST	\
1440	   || GET_CODE (X) == LABEL_REF)			\
1441    (X) = legitimize_address (flag_pic, X, 0, 0);		\
1442  if (memory_address_p (MODE, X))				\
1443    goto WIN; }
1444
1445/* Go to LABEL if ADDR (a legitimate address expression)
1446   has an effect that depends on the machine mode it is used for.
1447   On the m88000 this is never true.  */
1448
1449#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1450
1451/* Nonzero if the constant value X is a legitimate general operand.
1452   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1453#define LEGITIMATE_CONSTANT_P(X) (1)
1454
1455/* Define this, so that when PIC, reload won't try to reload invalid
1456   addresses which require two reload registers.  */
1457
1458#define LEGITIMATE_PIC_OPERAND_P(X)  (! pic_address_needs_scratch (X))
1459
1460
1461/*** Condition Code Information ***/
1462
1463/* C code for a data type which is used for declaring the `mdep'
1464   component of `cc_status'.  It defaults to `int'.  */
1465/* #define CC_STATUS_MDEP int */
1466
1467/* A C expression to initialize the `mdep' field to "empty".  */
1468/* #define CC_STATUS_MDEP_INIT (cc_status.mdep = 0) */
1469
1470/* Macro to zap the normal portions of CC_STATUS, but leave the
1471   machine dependent parts (ie, literal synthesis) alone.  */
1472/* #define CC_STATUS_INIT_NO_MDEP \
1473  (cc_status.flags = 0, cc_status.value1 = 0, cc_status.value2 = 0) */
1474
1475/* When using a register to hold the condition codes, the cc_status
1476   mechanism cannot be used.  */
1477#define NOTICE_UPDATE_CC(EXP, INSN) (0)
1478
1479/*** Miscellaneous Parameters ***/
1480
1481/* Define the codes that are matched by predicates in m88k.c.  */
1482#define PREDICATE_CODES	  						\
1483  {"move_operand", {SUBREG, REG, CONST_INT, LO_SUM, MEM}},		\
1484  {"call_address_operand", {SUBREG, REG, SYMBOL_REF, LABEL_REF, CONST}}, \
1485  {"arith_operand", {SUBREG, REG, CONST_INT}},				\
1486  {"arith5_operand", {SUBREG, REG, CONST_INT}},				\
1487  {"arith32_operand", {SUBREG, REG, CONST_INT}},			\
1488  {"arith64_operand", {SUBREG, REG, CONST_INT}},			\
1489  {"int5_operand", {CONST_INT}},					\
1490  {"int32_operand", {CONST_INT}},					\
1491  {"add_operand", {SUBREG, REG, CONST_INT}},				\
1492  {"reg_or_bbx_mask_operand", {SUBREG, REG, CONST_INT}},		\
1493  {"real_or_0_operand", {SUBREG, REG, CONST_DOUBLE}},			\
1494  {"reg_or_0_operand", {SUBREG, REG, CONST_INT}},                       \
1495  {"relop", {EQ, NE, LT, LE, GE, GT, LTU, LEU, GEU, GTU}},		\
1496  {"even_relop", {EQ, LT, GT, LTU, GTU}},		\
1497  {"odd_relop", { NE, LE, GE, LEU, GEU}},		\
1498  {"partial_ccmode_register_operand", { SUBREG, REG}},			\
1499  {"relop_no_unsigned", {EQ, NE, LT, LE, GE, GT}},			\
1500  {"equality_op", {EQ, NE}},						\
1501  {"pc_or_label_ref", {PC, LABEL_REF}},
1502
1503/* The case table contains either words or branch instructions.  This says
1504   which.  We always claim that the vector is PC-relative.  It is position
1505   independent when -fpic is used.  */
1506#define CASE_VECTOR_INSNS (TARGET_88100 || flag_pic)
1507
1508/* An alias for a machine mode name.  This is the machine mode that
1509   elements of a jump-table should have.  */
1510#define CASE_VECTOR_MODE SImode
1511
1512/* Define as C expression which evaluates to nonzero if the tablejump
1513   instruction expects the table to contain offsets from the address of the
1514   table.
1515   Do not define this if the table should contain absolute addresses. */
1516#define CASE_VECTOR_PC_RELATIVE 1
1517
1518/* Define this if control falls through a `case' insn when the index
1519   value is out of range.  This means the specified default-label is
1520   actually ignored by the `case' insn proper.  */
1521/* #define CASE_DROPS_THROUGH */
1522
1523/* Define this to be the smallest number of different values for which it
1524   is best to use a jump-table instead of a tree of conditional branches.
1525   The default is 4 for machines with a casesi instruction and 5 otherwise.
1526   The best 88110 number is around 7, though the exact number isn't yet
1527   known.  A third alternative for the 88110 is to use a binary tree of
1528   bb1 instructions on bits 2/1/0 if the range is dense.  This may not
1529   win very much though.  */
1530#define CASE_VALUES_THRESHOLD (TARGET_88100 ? 4 : 7)
1531
1532/* Specify the tree operation to be used to convert reals to integers.  */
1533#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1534
1535/* This is the kind of divide that is easiest to do in the general case.  */
1536#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1537
1538/* Define this as 1 if `char' should by default be signed; else as 0.  */
1539#define DEFAULT_SIGNED_CHAR 1
1540
1541/* The 88open ABI says size_t is unsigned int.  */
1542#define SIZE_TYPE "unsigned int"
1543
1544/* Allow and ignore #sccs directives */
1545#define SCCS_DIRECTIVE
1546
1547/* Handle #pragma pack and sometimes #pragma weak.  */
1548#define HANDLE_SYSV_PRAGMA
1549
1550/* Tell when to handle #pragma weak.  This is only done for V.4.  */
1551#define SUPPORTS_WEAK TARGET_SVR4
1552#define SUPPORTS_ONE_ONLY TARGET_SVR4
1553
1554/* Max number of bytes we can move from memory to memory
1555   in one reasonably fast instruction.  */
1556#define MOVE_MAX 8
1557
1558/* Define if normal loads of shorter-than-word items from memory clears
1559   the rest of the bigs in the register.  */
1560#define BYTE_LOADS_ZERO_EXTEND
1561
1562/* Zero if access to memory by bytes is faster.  */
1563#define SLOW_BYTE_ACCESS 1
1564
1565/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1566   is done just by pretending it is already truncated.  */
1567#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1568
1569/* Define this if addresses of constant functions
1570   shouldn't be put through pseudo regs where they can be cse'd.
1571   Desirable on machines where ordinary constants are expensive
1572   but a CALL with constant address is cheap.  */
1573#define NO_FUNCTION_CSE
1574
1575/* Define this macro if an argument declared as `char' or
1576   `short' in a prototype should actually be passed as an
1577   `int'.  In addition to avoiding errors in certain cases of
1578   mismatch, it also makes for better code on certain machines.  */
1579#define PROMOTE_PROTOTYPES
1580
1581/* Define this macro if a float function always returns float
1582   (even in traditional mode).  Redefined in luna.h.  */
1583#define TRADITIONAL_RETURN_FLOAT
1584
1585/* We assume that the store-condition-codes instructions store 0 for false
1586   and some other value for true.  This is the value stored for true.  */
1587#define STORE_FLAG_VALUE -1
1588
1589/* Specify the machine mode that pointers have.
1590   After generation of rtl, the compiler makes no further distinction
1591   between pointers and any other objects of this machine mode.  */
1592#define Pmode SImode
1593
1594/* A function address in a call instruction
1595   is a word address (for indexing purposes)
1596   so give the MEM rtx word mode.  */
1597#define FUNCTION_MODE SImode
1598
1599/* A barrier will be aligned so account for the possible expansion.
1600   A volatile load may be preceded by a serializing instruction.
1601   Account for profiling code output at NOTE_INSN_PROLOGUE_END.
1602   Account for block profiling code at basic block boundaries.  */
1603#define ADJUST_INSN_LENGTH(RTX, LENGTH)					\
1604  if (GET_CODE (RTX) == BARRIER						\
1605      || (TARGET_SERIALIZE_VOLATILE					\
1606	  && GET_CODE (RTX) == INSN					\
1607	  && GET_CODE (PATTERN (RTX)) == SET				\
1608	  && ((GET_CODE (SET_SRC (PATTERN (RTX))) == MEM		\
1609	       && MEM_VOLATILE_P (SET_SRC (PATTERN (RTX)))))))		\
1610    LENGTH += 1;							\
1611  else if (GET_CODE (RTX) == NOTE					\
1612	   && NOTE_LINE_NUMBER (RTX) == NOTE_INSN_PROLOGUE_END)		\
1613    {									\
1614      if (profile_block_flag)						\
1615	LENGTH += FUNCTION_BLOCK_PROFILER_LENGTH;			\
1616      if (profile_flag)							\
1617	LENGTH += (FUNCTION_PROFILER_LENGTH + REG_PUSH_LENGTH		\
1618		   + REG_POP_LENGTH);					\
1619    }									\
1620  else if (profile_block_flag						\
1621	   && (GET_CODE (RTX) == CODE_LABEL				\
1622	       || GET_CODE (RTX) == JUMP_INSN				\
1623	       || (GET_CODE (RTX) == INSN				\
1624		   && GET_CODE (PATTERN (RTX)) == SEQUENCE		\
1625		   && GET_CODE (XVECEXP (PATTERN (RTX), 0, 0)) == JUMP_INSN)))\
1626    LENGTH += BLOCK_PROFILER_LENGTH;
1627
1628/* Track the state of the last volatile memory reference.  Clear the
1629   state with CC_STATUS_INIT for now.  */
1630#define CC_STATUS_INIT m88k_volatile_code = '\0'
1631
1632/* Compute the cost of computing a constant rtl expression RTX
1633   whose rtx-code is CODE.  The body of this macro is a portion
1634   of a switch statement.  If the code is computed here,
1635   return it with a return statement.  Otherwise, break from the switch.
1636
1637   We assume that any 16 bit integer can easily be recreated, so we
1638   indicate 0 cost, in an attempt to get GCC not to optimize things
1639   like comparison against a constant.
1640
1641   The cost of CONST_DOUBLE is zero (if it can be placed in an insn, it
1642   is as good as a register; since it can't be placed in any insn, it
1643   won't do anything in cse, but it will cause expand_binop to pass the
1644   constant to the define_expands).  */
1645#define CONST_COSTS(RTX,CODE,OUTER_CODE)		\
1646  case CONST_INT:					\
1647    if (SMALL_INT (RTX))				\
1648      return 0;						\
1649    else if (SMALL_INTVAL (- INTVAL (RTX)))		\
1650      return 2;						\
1651    else if (classify_integer (SImode, INTVAL (RTX)) != m88k_oru_or) \
1652      return 4;						\
1653    return 7;						\
1654  case HIGH:						\
1655    return 2;						\
1656  case CONST:						\
1657  case LABEL_REF:					\
1658  case SYMBOL_REF:					\
1659    if (flag_pic)					\
1660      return (flag_pic == 2) ? 11 : 8;			\
1661    return 5;						\
1662  case CONST_DOUBLE:					\
1663    return 0;
1664
1665/* Provide the costs of an addressing mode that contains ADDR.
1666   If ADDR is not a valid address, its cost is irrelevant.
1667   REG+REG is made slightly more expensive because it might keep
1668   a register live for longer than we might like.  */
1669#define ADDRESS_COST(ADDR)				\
1670  (GET_CODE (ADDR) == REG ? 1 :				\
1671   GET_CODE (ADDR) == LO_SUM ? 1 :			\
1672   GET_CODE (ADDR) == HIGH ? 2 :			\
1673   GET_CODE (ADDR) == MULT ? 1 :			\
1674   GET_CODE (ADDR) != PLUS ? 4 :			\
1675   (REG_P (XEXP (ADDR, 0)) && REG_P (XEXP (ADDR, 1))) ? 2 : 1)
1676
1677/* Provide the costs of a rtl expression.  This is in the body of a
1678   switch on CODE.  */
1679#define RTX_COSTS(X,CODE,OUTER_CODE)				\
1680  case MEM:						\
1681    return COSTS_N_INSNS (2);				\
1682  case MULT:						\
1683    return COSTS_N_INSNS (3);				\
1684  case DIV:						\
1685  case UDIV:						\
1686  case MOD:						\
1687  case UMOD:						\
1688    return COSTS_N_INSNS (38);
1689
1690/* A C expressions returning the cost of moving data of MODE from a register
1691   to or from memory.  This is more costly than between registers.  */
1692#define MEMORY_MOVE_COST(MODE,CLASS,IN) 4
1693
1694/* Provide the cost of a branch.  Exact meaning under development.  */
1695#define BRANCH_COST (TARGET_88100 ? 1 : 2)
1696
1697/* A C statement (sans semicolon) to update the integer variable COST
1698   based on the relationship between INSN that is dependent on
1699   DEP_INSN through the dependence LINK.  The default is to make no
1700   adjustment to COST.  On the m88k, ignore the cost of anti- and
1701   output-dependencies.  On the m88100, a store can issue two cycles
1702   before the value (not the address) has finished computing.  */
1703#define ADJUST_COST(INSN,LINK,DEP_INSN,COST)				\
1704  do {									\
1705    if (REG_NOTE_KIND (LINK) != 0)					\
1706      (COST) = 0; /* Anti or output dependence.  */			\
1707    else if (! TARGET_88100						\
1708	     && recog_memoized (INSN) >= 0				\
1709	     && get_attr_type (INSN) == TYPE_STORE			\
1710	     && SET_SRC (PATTERN (INSN)) == SET_DEST (PATTERN (DEP_INSN))) \
1711      (COST) -= 4; /* 88110 store reservation station.  */		\
1712  } while (0)
1713
1714/* Do not break .stabs pseudos into continuations.  */
1715#define DBX_CONTIN_LENGTH 0
1716
1717/*** Output of Assembler Code ***/
1718
1719/* Control the assembler format that we output.  */
1720
1721/* A C string constant describing how to begin a comment in the target
1722   assembler language.  The compiler assumes that the comment will end at
1723   the end of the line.  */
1724#define ASM_COMMENT_START ";"
1725
1726/* Allow pseudo-ops to be overridden.  Override these in svr[34].h.  */
1727#undef	INT_ASM_OP
1728#undef	ASCII_DATA_ASM_OP
1729#undef	CONST_SECTION_ASM_OP
1730#undef	CTORS_SECTION_ASM_OP
1731#undef	DTORS_SECTION_ASM_OP
1732#undef  ASM_OUTPUT_SECTION_NAME
1733#undef	INIT_SECTION_ASM_OP
1734#undef	FINI_SECTION_ASM_OP
1735#undef	TYPE_ASM_OP
1736#undef	SIZE_ASM_OP
1737#undef	SET_ASM_OP
1738#undef	SKIP_ASM_OP
1739#undef	COMMON_ASM_OP
1740#undef	ALIGN_ASM_OP
1741#undef	IDENT_ASM_OP
1742
1743/* These are used in varasm.c as well.  */
1744#define TEXT_SECTION_ASM_OP	"text"
1745#define DATA_SECTION_ASM_OP	"data"
1746
1747/* Other sections.  */
1748#define CONST_SECTION_ASM_OP (TARGET_SVR4			\
1749			      ? "section\t .rodata,\"a\""	\
1750			      : "section\t .rodata,\"x\"")
1751#define TDESC_SECTION_ASM_OP (TARGET_SVR4			\
1752			      ? "section\t .tdesc,\"a\""	\
1753			      : "section\t .tdesc,\"x\"")
1754
1755/* These must be constant strings for crtstuff.c.  */
1756#define CTORS_SECTION_ASM_OP	"section\t .ctors,\"d\""
1757#define DTORS_SECTION_ASM_OP	"section\t .dtors,\"d\""
1758#define INIT_SECTION_ASM_OP	"section\t .init,\"x\""
1759#define FINI_SECTION_ASM_OP	"section\t .fini,\"x\""
1760
1761/* These are pretty much common to all assemblers.  */
1762#define IDENT_ASM_OP		"ident"
1763#define FILE_ASM_OP		"file"
1764#define SECTION_ASM_OP		"section"
1765#define SET_ASM_OP		"def"
1766#define GLOBAL_ASM_OP		"global"
1767#define ALIGN_ASM_OP		"align"
1768#define SKIP_ASM_OP		"zero"
1769#define COMMON_ASM_OP		"comm"
1770#define BSS_ASM_OP		"bss"
1771#define FLOAT_ASM_OP		"float"
1772#define DOUBLE_ASM_OP		"double"
1773#define INT_ASM_OP		"word"
1774#define ASM_LONG		INT_ASM_OP
1775#define SHORT_ASM_OP		"half"
1776#define CHAR_ASM_OP		"byte"
1777#define ASCII_DATA_ASM_OP	"string"
1778
1779/* These are particular to the global pool optimization.  */
1780#define SBSS_ASM_OP		"sbss"
1781#define SCOMM_ASM_OP		"scomm"
1782#define SDATA_SECTION_ASM_OP	"sdata"
1783
1784/* These are specific to PIC.  */
1785#define TYPE_ASM_OP		"type"
1786#define SIZE_ASM_OP		"size"
1787#ifndef AS_BUG_POUND_TYPE /* Faulty assemblers require @ rather than #.  */
1788#undef	TYPE_OPERAND_FMT
1789#define TYPE_OPERAND_FMT	"#%s"
1790#endif
1791
1792/* This is how we tell the assembler that a symbol is weak.  */
1793
1794#undef ASM_WEAKEN_LABEL
1795#define ASM_WEAKEN_LABEL(FILE,NAME) \
1796  do { fputs ("\tweak\t", FILE); assemble_name (FILE, NAME); \
1797       fputc ('\n', FILE); } while (0)
1798
1799/* These are specific to version 03.00 assembler syntax.  */
1800#define INTERNAL_ASM_OP		"local"
1801#define VERSION_ASM_OP		"version"
1802#define UNALIGNED_SHORT_ASM_OP	"uahalf"
1803#define UNALIGNED_INT_ASM_OP	"uaword"
1804#define PUSHSECTION_ASM_OP	"section"
1805#define POPSECTION_ASM_OP	"previous"
1806
1807/* These are specific to the version 04.00 assembler syntax.  */
1808#define REQUIRES_88110_ASM_OP	"requires_88110"
1809
1810/* Output any initial stuff to the assembly file.  Always put out
1811   a file directive, even if not debugging.
1812
1813   Immediately after putting out the file, put out a "sem.<value>"
1814   declaration.  This should be harmless on other systems, and
1815   is used in DG/UX by the debuggers to supplement COFF.  The
1816   fields in the integer value are as follows:
1817
1818   Bits	Value	Meaning
1819   ----	-----	-------
1820   0-1	0	No information about stack locations
1821	1	Auto/param locations are based on r30
1822	2	Auto/param locations are based on CFA
1823
1824   3-2	0	No information on dimension order
1825	1	Array dims in sym table matches source language
1826	2	Array dims in sym table is in reverse order
1827
1828   5-4	0	No information about the case of global names
1829	1	Global names appear in the symbol table as in the source
1830	2	Global names have been converted to lower case
1831	3	Global names have been converted to upper case.  */
1832
1833#ifdef SDB_DEBUGGING_INFO
1834#define ASM_COFFSEM(FILE)						\
1835    if (write_symbols == SDB_DEBUG)					\
1836      {									\
1837	fprintf (FILE, "\nsem.%x:\t\t; %s\n",				\
1838		 (((TARGET_OCS_FRAME_POSITION) ? 2 : 1) << 0) + (1 << 2) + (1 << 4),\
1839		 (TARGET_OCS_FRAME_POSITION)				\
1840			? "frame is CFA, normal array dims, case unchanged" \
1841			: "frame is r30, normal array dims, case unchanged"); \
1842      }
1843#else
1844#define ASM_COFFSEM(FILE)
1845#endif
1846
1847/* Output the first line of the assembly file.  Redefined in dgux.h.  */
1848
1849#define ASM_FIRST_LINE(FILE)						\
1850  do {									\
1851    if (TARGET_SVR4)							\
1852      {									\
1853	if (TARGET_88110)						\
1854	  fprintf (FILE, "\t%s\t \"%s\"\n", VERSION_ASM_OP, "04.00");   \
1855	else								\
1856	  fprintf (FILE, "\t%s\t \"%s\"\n", VERSION_ASM_OP, "03.00");   \
1857      }									\
1858  } while (0)
1859
1860/* Override svr[34].h.  */
1861#undef	ASM_FILE_START
1862#define ASM_FILE_START(FILE) \
1863  output_file_start (FILE, f_options, sizeof f_options / sizeof f_options[0], \
1864		     W_options, sizeof W_options / sizeof W_options[0])
1865
1866#undef	ASM_FILE_END
1867
1868#define ASM_OUTPUT_SOURCE_FILENAME(FILE, NAME) \
1869  fprintf (FILE, "\t%s\t \"%s\"\n", FILE_ASM_OP, NAME)
1870
1871#ifdef SDB_DEBUGGING_INFO
1872#undef ASM_OUTPUT_SOURCE_LINE
1873#define ASM_OUTPUT_SOURCE_LINE(FILE, LINE)			\
1874  if (m88k_prologue_done)					\
1875    fprintf (FILE, "\n\tln\t %d\t\t\t\t; Real source line %d\n",\
1876	     LINE - sdb_begin_function_line, LINE)
1877#endif
1878
1879/* Code to handle #ident directives.  Override svr[34].h definition.  */
1880#undef	ASM_OUTPUT_IDENT
1881#ifdef DBX_DEBUGGING_INFO
1882#define ASM_OUTPUT_IDENT(FILE, NAME)
1883#else
1884#define ASM_OUTPUT_IDENT(FILE, NAME) \
1885  output_ascii (FILE, IDENT_ASM_OP, 4000, NAME, strlen (NAME));
1886#endif
1887
1888/* Output to assembler file text saying following lines
1889   may contain character constants, extra white space, comments, etc.  */
1890#define ASM_APP_ON ""
1891
1892/* Output to assembler file text saying following lines
1893   no longer contain unusual constructs.  */
1894#define ASM_APP_OFF ""
1895
1896/* Format the assembly opcode so that the arguments are all aligned.
1897   The maximum instruction size is 8 characters (fxxx.xxx), so a tab and a
1898   space will do to align the output.  Abandon the output if a `%' is
1899   encountered.  */
1900#define ASM_OUTPUT_OPCODE(STREAM, PTR)					\
1901  {									\
1902    int ch;								\
1903    char *orig_ptr;							\
1904									\
1905    for (orig_ptr = (PTR);						\
1906	 (ch = *(PTR)) && ch != ' ' && ch != '\t' && ch != '\n' && ch != '%'; \
1907	 (PTR)++)							\
1908      putc (ch, STREAM);						\
1909									\
1910    if (ch == ' ' && orig_ptr != (PTR) && (PTR) - orig_ptr < 8)		\
1911      putc ('\t', STREAM);						\
1912  }
1913
1914/* How to refer to registers in assembler output.
1915   This sequence is indexed by compiler's hard-register-number.
1916   Updated by OVERRIDE_OPTIONS to include the # for version 03.00 syntax.  */
1917
1918#define REGISTER_NAMES \
1919  {"#r0"+1, "#r1"+1, "#r2"+1, "#r3"+1, "#r4"+1, "#r5"+1, "#r6"+1, "#r7"+1, \
1920   "#r8"+1, "#r9"+1, "#r10"+1,"#r11"+1,"#r12"+1,"#r13"+1,"#r14"+1,"#r15"+1,\
1921   "#r16"+1,"#r17"+1,"#r18"+1,"#r19"+1,"#r20"+1,"#r21"+1,"#r22"+1,"#r23"+1,\
1922   "#r24"+1,"#r25"+1,"#r26"+1,"#r27"+1,"#r28"+1,"#r29"+1,"#r30"+1,"#r31"+1,\
1923   "#x0"+1, "#x1"+1, "#x2"+1, "#x3"+1, "#x4"+1, "#x5"+1, "#x6"+1, "#x7"+1, \
1924   "#x8"+1, "#x9"+1, "#x10"+1,"#x11"+1,"#x12"+1,"#x13"+1,"#x14"+1,"#x15"+1,\
1925   "#x16"+1,"#x17"+1,"#x18"+1,"#x19"+1,"#x20"+1,"#x21"+1,"#x22"+1,"#x23"+1,\
1926   "#x24"+1,"#x25"+1,"#x26"+1,"#x27"+1,"#x28"+1,"#x29"+1,"#x30"+1,"#x31"+1}
1927
1928/* Define additional names for use in asm clobbers and asm declarations.
1929
1930   We define the fake Condition Code register as an alias for reg 0 (which
1931   is our `condition code' register), so that condition codes can easily
1932   be clobbered by an asm.  The carry bit in the PSR is now used.  */
1933
1934#define ADDITIONAL_REGISTER_NAMES	{"psr", 0, "cc", 0}
1935
1936/* How to renumber registers for dbx and gdb.  */
1937#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1938
1939/* Tell when to declare ASM names.  Override svr4.h to provide this hook.  */
1940#undef	DECLARE_ASM_NAME
1941#define DECLARE_ASM_NAME TARGET_SVR4
1942
1943/* Write the extra assembler code needed to declare a function properly.  */
1944#undef	ASM_DECLARE_FUNCTION_NAME
1945#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL)			\
1946  do {									\
1947    if (DECLARE_ASM_NAME)						\
1948      {									\
1949	fprintf (FILE, "\t%s\t ", TYPE_ASM_OP);				\
1950	assemble_name (FILE, NAME);					\
1951	putc (',', FILE);						\
1952	fprintf (FILE, TYPE_OPERAND_FMT, "function");			\
1953	putc ('\n', FILE);						\
1954      }									\
1955    ASM_OUTPUT_LABEL(FILE, NAME);					\
1956  } while (0)
1957
1958/* Write the extra assembler code needed to declare an object properly.  */
1959#undef	ASM_DECLARE_OBJECT_NAME
1960#define ASM_DECLARE_OBJECT_NAME(FILE, NAME, DECL)			    \
1961  do {									    \
1962    if (DECLARE_ASM_NAME)						    \
1963      {									    \
1964	fprintf (FILE, "\t%s\t ", TYPE_ASM_OP);				    \
1965	assemble_name (FILE, NAME);					    \
1966	putc (',', FILE);						    \
1967	fprintf (FILE, TYPE_OPERAND_FMT, "object");			    \
1968	putc ('\n', FILE);						    \
1969        size_directive_output = 0;					    \
1970	if (!flag_inhibit_size_directive && DECL_SIZE (DECL))		    \
1971	  {								    \
1972            size_directive_output = 1;					    \
1973	    fprintf (FILE, "\t%s\t ", SIZE_ASM_OP);			    \
1974	    assemble_name (FILE, NAME);					    \
1975	    fprintf (FILE, ",%d\n",  int_size_in_bytes (TREE_TYPE (DECL))); \
1976	  }								    \
1977      }									    \
1978    ASM_OUTPUT_LABEL(FILE, NAME);					    \
1979  } while (0)
1980
1981/* Output the size directive for a decl in rest_of_decl_compilation
1982   in the case where we did not do so before the initializer.
1983   Once we find the error_mark_node, we know that the value of
1984   size_directive_output was set
1985   by ASM_DECLARE_OBJECT_NAME when it was run for the same decl.  */
1986
1987#undef ASM_FINISH_DECLARE_OBJECT
1988#define ASM_FINISH_DECLARE_OBJECT(FILE, DECL, TOP_LEVEL, AT_END)	 \
1989do {									 \
1990     char *name = XSTR (XEXP (DECL_RTL (DECL), 0), 0);			 \
1991     if (!flag_inhibit_size_directive && DECL_SIZE (DECL)		 \
1992	 && DECLARE_ASM_NAME						 \
1993         && ! AT_END && TOP_LEVEL					 \
1994	 && DECL_INITIAL (DECL) == error_mark_node			 \
1995	 && !size_directive_output)					 \
1996       {								 \
1997	 size_directive_output = 1;					 \
1998	 fprintf (FILE, "\t%s\t ", SIZE_ASM_OP);			 \
1999	 assemble_name (FILE, name);					 \
2000	 fprintf (FILE, ",%d\n",  int_size_in_bytes (TREE_TYPE (DECL))); \
2001       }								 \
2002   } while (0)
2003
2004/* This is how to declare the size of a function.  */
2005#undef	ASM_DECLARE_FUNCTION_SIZE
2006#define ASM_DECLARE_FUNCTION_SIZE(FILE, FNAME, DECL)			\
2007  do {									\
2008    if (DECLARE_ASM_NAME)						\
2009      {									\
2010	if (!flag_inhibit_size_directive)				\
2011	  {								\
2012	    char label[256];						\
2013	    static int labelno = 0;					\
2014	    labelno++;							\
2015	    ASM_GENERATE_INTERNAL_LABEL (label, "Lfe", labelno);	\
2016	    ASM_OUTPUT_INTERNAL_LABEL (FILE, "Lfe", labelno);		\
2017	    fprintf (FILE, "\t%s\t ", SIZE_ASM_OP);			\
2018	    assemble_name (FILE, (FNAME));				\
2019	    fprintf (FILE, ",%s-", &label[1]);				\
2020	    assemble_name (FILE, (FNAME));				\
2021	    putc ('\n', FILE);						\
2022	  }								\
2023      }									\
2024  } while (0)
2025
2026/* This is how to output the definition of a user-level label named NAME,
2027   such as the label on a static function or variable NAME.  */
2028#define ASM_OUTPUT_LABEL(FILE,NAME)	\
2029  do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
2030
2031/* This is how to output a command to make the user-level label named NAME
2032   defined for reference from other files.  */
2033#define ASM_GLOBALIZE_LABEL(FILE,NAME)			\
2034  do {							\
2035    fprintf (FILE, "\t%s\t ", GLOBAL_ASM_OP);		\
2036    assemble_name (FILE, NAME);				\
2037    putc ('\n', FILE);					\
2038  } while (0)
2039
2040/* The prefix to add to user-visible assembler symbols.
2041   Override svr[34].h.  */
2042#undef USER_LABEL_PREFIX
2043#define USER_LABEL_PREFIX "_"
2044
2045/* This is how to output a reference to a user-level label named NAME.
2046   Override svr[34].h.  */
2047#undef	ASM_OUTPUT_LABELREF
2048#define ASM_OUTPUT_LABELREF(FILE,NAME)			\
2049  {							\
2050    if (!TARGET_NO_UNDERSCORES && !TARGET_SVR4) 	\
2051      fputc ('_', FILE);				\
2052    fputs (NAME, FILE);					\
2053  }
2054
2055/* This is how to output an internal numbered label where
2056   PREFIX is the class of label and NUM is the number within the class.
2057   For V.4, labels use `.' rather than `@'.  */
2058
2059#undef ASM_OUTPUT_INTERNAL_LABEL
2060#ifdef AS_BUG_DOT_LABELS /* The assembler requires a declaration of local.  */
2061#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM)			\
2062  fprintf (FILE, TARGET_SVR4 ? ".%s%d:\n\t%s\t .%s%d\n" : "@%s%d:\n", \
2063	   PREFIX, NUM, INTERNAL_ASM_OP, PREFIX, NUM)
2064#else
2065#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM)			\
2066  fprintf (FILE, TARGET_SVR4 ? ".%s%d:\n" : "@%s%d:\n", PREFIX, NUM)
2067#endif /* AS_BUG_DOT_LABELS */
2068
2069/* This is how to store into the string LABEL
2070   the symbol_ref name of an internal numbered label where
2071   PREFIX is the class of label and NUM is the number within the class.
2072   This is suitable for output with `assemble_name'.  This must agree
2073   with ASM_OUTPUT_INTERNAL_LABEL above, except for being prefixed
2074   with an `*'.  */
2075
2076#undef ASM_GENERATE_INTERNAL_LABEL
2077#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)			\
2078  sprintf (LABEL, TARGET_SVR4 ? "*.%s%d" : "*@%s%d", PREFIX, NUM)
2079
2080/* Internal macro to get a single precision floating point value into
2081   an int, so we can print its value in hex.  */
2082#define FLOAT_TO_INT_INTERNAL( FVALUE, IVALUE )				\
2083  { union {								\
2084      REAL_VALUE_TYPE d;						\
2085      struct {								\
2086	unsigned sign      :  1;					\
2087	unsigned exponent1 :  1;					\
2088	unsigned exponent2 :  3;					\
2089	unsigned exponent3 :  7;					\
2090	unsigned mantissa1 : 20;					\
2091	unsigned mantissa2 :  3;					\
2092	unsigned mantissa3 : 29;					\
2093      } s;								\
2094    } _u;								\
2095									\
2096    union {								\
2097      int i;								\
2098      struct {								\
2099        unsigned sign      :  1;					\
2100	unsigned exponent1 :  1;					\
2101	unsigned exponent3 :  7;					\
2102        unsigned mantissa1 : 20;					\
2103        unsigned mantissa2 :  3;					\
2104      } s;								\
2105    } _u2;								\
2106									\
2107    _u.d = REAL_VALUE_TRUNCATE (SFmode, FVALUE);			\
2108    _u2.s.sign = _u.s.sign;						\
2109    _u2.s.exponent1 = _u.s.exponent1;					\
2110    _u2.s.exponent3 = _u.s.exponent3;					\
2111    _u2.s.mantissa1 = _u.s.mantissa1;					\
2112    _u2.s.mantissa2 = _u.s.mantissa2;					\
2113    IVALUE = _u2.i;							\
2114  }
2115
2116/* This is how to output an assembler line defining a `double' constant.
2117   Use "word" pseudos to avoid printing NaNs, infinity, etc.  */
2118#define ASM_OUTPUT_DOUBLE(FILE,VALUE)					\
2119  do {									\
2120    union { REAL_VALUE_TYPE d; long l[2]; } x;				\
2121    x.d = (VALUE);							\
2122    fprintf (FILE, "\t%s\t 0x%.8x, 0x%.8x\n", INT_ASM_OP,			\
2123	     x.l[0], x.l[1]);						\
2124  } while (0)
2125
2126/* This is how to output an assembler line defining a `float' constant.  */
2127#define ASM_OUTPUT_FLOAT(FILE,VALUE)					\
2128  do {									\
2129    int i;								\
2130    FLOAT_TO_INT_INTERNAL (VALUE, i);					\
2131    fprintf (FILE, "\t%s\t 0x%.8x\n", INT_ASM_OP, i);			\
2132  } while (0)
2133
2134/* Likewise for `int', `short', and `char' constants.  */
2135#define ASM_OUTPUT_INT(FILE,VALUE)					\
2136( fprintf (FILE, "\t%s\t ", INT_ASM_OP),				\
2137  output_addr_const (FILE, (VALUE)),					\
2138  fprintf (FILE, "\n"))
2139
2140#define ASM_OUTPUT_SHORT(FILE,VALUE)					\
2141( fprintf (FILE, "\t%s\t ", SHORT_ASM_OP),				\
2142  output_addr_const (FILE, (VALUE)),					\
2143  fprintf (FILE, "\n"))
2144
2145#define ASM_OUTPUT_CHAR(FILE,VALUE)					\
2146( fprintf (FILE, "\t%s\t ", CHAR_ASM_OP),				\
2147  output_addr_const (FILE, (VALUE)),					\
2148  fprintf (FILE, "\n"))
2149
2150/* This is how to output an assembler line for a numeric constant byte.  */
2151#define ASM_OUTPUT_BYTE(FILE,VALUE)  \
2152  fprintf (FILE, "\t%s\t 0x%x\n", CHAR_ASM_OP, (VALUE))
2153
2154/* The single-byte pseudo-op is the default.  Override svr[34].h.  */
2155#undef	ASM_BYTE_OP
2156#define ASM_BYTE_OP "byte"
2157#undef	ASM_OUTPUT_ASCII
2158#define ASM_OUTPUT_ASCII(FILE, P, SIZE)  \
2159  output_ascii (FILE, ASCII_DATA_ASM_OP, 48, P, SIZE)
2160
2161/* Override svr4.h.  Change to the readonly data section for a table of
2162   addresses.  final_scan_insn changes back to the text section.  */
2163#undef	ASM_OUTPUT_CASE_LABEL
2164#define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, TABLE)			\
2165  do {									\
2166    if (! CASE_VECTOR_INSNS)						\
2167      {									\
2168        readonly_data_section ();					\
2169        ASM_OUTPUT_ALIGN (FILE, 2);					\
2170      }									\
2171    ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM);			\
2172  } while (0)
2173
2174/* Epilogue for case labels.  This jump instruction is called by casesi
2175   to transfer to the appropriate branch instruction within the table.
2176   The label `@L<n>e' is coined to mark the end of the table.  */
2177#define ASM_OUTPUT_CASE_END(FILE, NUM, TABLE)				\
2178  do {									\
2179    if (CASE_VECTOR_INSNS)						\
2180      {									\
2181	char label[256]; 						\
2182	ASM_GENERATE_INTERNAL_LABEL (label, "L", NUM);			\
2183	fprintf (FILE, "%se:\n", &label[1]);				\
2184	if (! flag_delayed_branch)					\
2185	  fprintf (FILE, "\tlda\t %s,%s[%s]\n", reg_names[1],		\
2186		   reg_names[1], reg_names[m88k_case_index]);		\
2187	fprintf (FILE, "\tjmp\t %s\n", reg_names[1]);			\
2188      }									\
2189  } while (0)
2190
2191/* This is how to output an element of a case-vector that is absolute.  */
2192#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)				\
2193  do {									\
2194    char buffer[256];							\
2195    ASM_GENERATE_INTERNAL_LABEL (buffer, "L", VALUE);			\
2196    fprintf (FILE, CASE_VECTOR_INSNS ? "\tbr\t %s\n" : "\tword\t %s\n",	\
2197	     &buffer[1]);						\
2198  } while (0)
2199
2200/* This is how to output an element of a case-vector that is relative.  */
2201#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2202  ASM_OUTPUT_ADDR_VEC_ELT (FILE, VALUE)
2203
2204/* This is how to output an assembler line
2205   that says to advance the location counter
2206   to a multiple of 2**LOG bytes.  */
2207#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2208  if ((LOG) != 0)			\
2209    fprintf (FILE, "\t%s\t %d\n", ALIGN_ASM_OP, 1<<(LOG))
2210
2211/* On the m88100, align the text address to half a cache boundary when it
2212   can only be reached by jumping.  Pack code tightly when compiling
2213   crtstuff.c.  */
2214#define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
2215  (TARGET_88100 && !flag_inhibit_size_directive ? 3 : 2)
2216
2217/* Override svr[34].h.  */
2218#undef	ASM_OUTPUT_SKIP
2219#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
2220  fprintf (FILE, "\t%s\t %u\n", SKIP_ASM_OP, (SIZE))
2221
2222/* Override svr4.h.  */
2223#undef	ASM_OUTPUT_EXTERNAL_LIBCALL
2224
2225/* This says how to output an assembler line to define a global common
2226   symbol.  Size can be zero for the unusual case of a `struct { int : 0; }'.
2227   Override svr[34].h.  */
2228#undef	ASM_OUTPUT_COMMON
2229#undef	ASM_OUTPUT_ALIGNED_COMMON
2230#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)	\
2231( fprintf ((FILE), "\t%s\t ",				\
2232	   ((SIZE) ? (SIZE) : 1) <= m88k_gp_threshold ? SCOMM_ASM_OP : COMMON_ASM_OP), \
2233  assemble_name ((FILE), (NAME)),			\
2234  fprintf ((FILE), ",%u\n", (SIZE) ? (SIZE) : 1))
2235
2236/* This says how to output an assembler line to define a local common
2237   symbol.  Override svr[34].h.  */
2238#undef	ASM_OUTPUT_LOCAL
2239#undef	ASM_OUTPUT_ALIGNED_LOCAL
2240#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)	\
2241( fprintf ((FILE), "\t%s\t ",				\
2242	   ((SIZE) ? (SIZE) : 1) <= m88k_gp_threshold ? SBSS_ASM_OP : BSS_ASM_OP), \
2243  assemble_name ((FILE), (NAME)),			\
2244  fprintf ((FILE), ",%u,%d\n", (SIZE) ? (SIZE) : 1, (SIZE) <= 4 ? 4 : 8))
2245
2246/* Store in OUTPUT a string (made with alloca) containing
2247   an assembler-name for a local static variable named NAME.
2248   LABELNO is an integer which is different for each call.  */
2249#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
2250( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
2251  sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2252
2253/* This is how to output an insn to push a register on the stack.
2254   It need not be very fast code.  */
2255#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)  \
2256  fprintf (FILE, "\tsubu\t %s,%s,%d\n\tst\t %s,%s,0\n",	\
2257	   reg_names[STACK_POINTER_REGNUM],		\
2258	   reg_names[STACK_POINTER_REGNUM],		\
2259	   (STACK_BOUNDARY / BITS_PER_UNIT),		\
2260	   reg_names[REGNO],				\
2261	   reg_names[STACK_POINTER_REGNUM])
2262
2263/* Length in instructions of the code output by ASM_OUTPUT_REG_PUSH.  */
2264#define REG_PUSH_LENGTH 2
2265
2266/* This is how to output an insn to pop a register from the stack.  */
2267#define ASM_OUTPUT_REG_POP(FILE,REGNO)  \
2268  fprintf (FILE, "\tld\t %s,%s,0\n\taddu\t %s,%s,%d\n",	\
2269	   reg_names[REGNO],				\
2270	   reg_names[STACK_POINTER_REGNUM],		\
2271	   reg_names[STACK_POINTER_REGNUM],		\
2272	   reg_names[STACK_POINTER_REGNUM],		\
2273	   (STACK_BOUNDARY / BITS_PER_UNIT))
2274
2275/* Length in instructions of the code output by ASM_OUTPUT_REG_POP.  */
2276#define REG_POP_LENGTH 2
2277
2278/* Define the parentheses used to group arithmetic operations
2279   in assembler code.  */
2280#define ASM_OPEN_PAREN "("
2281#define ASM_CLOSE_PAREN ")"
2282
2283/* Define results of standard character escape sequences.  */
2284#define TARGET_BELL 007
2285#define TARGET_BS 010
2286#define TARGET_TAB 011
2287#define TARGET_NEWLINE 012
2288#define TARGET_VT 013
2289#define TARGET_FF 014
2290#define TARGET_CR 015
2291
2292/* Macros to deal with OCS debug information */
2293
2294#define OCS_START_PREFIX	"Ltb"
2295#define OCS_END_PREFIX		"Lte"
2296
2297#define PUT_OCS_FUNCTION_START(FILE) \
2298  { ASM_OUTPUT_INTERNAL_LABEL (FILE, OCS_START_PREFIX, m88k_function_number); }
2299
2300#define PUT_OCS_FUNCTION_END(FILE) \
2301  { ASM_OUTPUT_INTERNAL_LABEL (FILE, OCS_END_PREFIX, m88k_function_number); }
2302
2303/* Macros for debug information */
2304#define DEBUGGER_AUTO_OFFSET(X) \
2305  (m88k_debugger_offset (X, 0) \
2306   + (TARGET_OCS_FRAME_POSITION ? 0 : m88k_stack_size - m88k_fp_offset))
2307
2308#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
2309  (m88k_debugger_offset (X, OFFSET) \
2310   + (TARGET_OCS_FRAME_POSITION ? 0 : m88k_stack_size - m88k_fp_offset))
2311
2312/* Macros to deal with SDB debug information */
2313#ifdef SDB_DEBUGGING_INFO
2314
2315/* Output structure tag names even when it causes a forward reference. */
2316#define SDB_ALLOW_FORWARD_REFERENCES
2317
2318/* Print out extra debug information in the assembler file */
2319#define PUT_SDB_SCL(a)						\
2320  do {								\
2321    register int s = (a);					\
2322    register char *scl;						\
2323    switch (s)							\
2324      {								\
2325      case C_EFCN:	scl = "end of function";	break;	\
2326      case C_NULL:	scl = "NULL storage class";	break;	\
2327      case C_AUTO:	scl = "automatic";		break;	\
2328      case C_EXT:	scl = "external";		break;	\
2329      case C_STAT:	scl = "static";			break;	\
2330      case C_REG:	scl = "register";		break;	\
2331      case C_EXTDEF:	scl = "external definition";	break;	\
2332      case C_LABEL:	scl = "label";			break;	\
2333      case C_ULABEL:	scl = "undefined label";	break;	\
2334      case C_MOS:	scl = "structure member";	break;	\
2335      case C_ARG:	scl = "argument";		break;	\
2336      case C_STRTAG:	scl = "structure tag";		break;	\
2337      case C_MOU:	scl = "union member";		break;	\
2338      case C_UNTAG:	scl = "union tag";		break;	\
2339      case C_TPDEF:	scl = "typedef";		break;	\
2340      case C_USTATIC:	scl = "uninitialized static";	break;	\
2341      case C_ENTAG:	scl = "enumeration tag";	break;	\
2342      case C_MOE:	scl = "member of enumeration";	break;	\
2343      case C_REGPARM:	scl = "register parameter";	break;	\
2344      case C_FIELD:	scl = "bit field";		break;	\
2345      case C_BLOCK:	scl = "block start/end";	break;	\
2346      case C_FCN:	scl = "function start/end";	break;	\
2347      case C_EOS:	scl = "end of structure";	break;	\
2348      case C_FILE:	scl = "filename";		break;	\
2349      case C_LINE:	scl = "line";			break;	\
2350      case C_ALIAS:	scl = "duplicated tag";		break;	\
2351      case C_HIDDEN:	scl = "hidden";			break;	\
2352      default:		scl = "unknown";		break;	\
2353      }								\
2354								\
2355    fprintf(asm_out_file, "\tscl\t %d\t\t\t\t; %s\n", s, scl);	\
2356  } while (0)
2357
2358#define PUT_SDB_TYPE(a)						\
2359  do {								\
2360    register int t = (a);					\
2361    static char buffer[100];					\
2362    register char *p = buffer, *q;				\
2363    register int typ = t;					\
2364    register int i,d;						\
2365								\
2366    for (i = 0; i <= 5; i++)					\
2367      {								\
2368	switch ((typ >> ((i*N_TSHIFT) + N_BTSHFT)) & 03)	\
2369	  {							\
2370	  case DT_PTR:						\
2371	    strcpy (p, "ptr to ");				\
2372	    p += sizeof("ptr to");				\
2373	    break;						\
2374								\
2375	  case DT_ARY:						\
2376	    strcpy (p, "array of ");				\
2377	    p += sizeof("array of");				\
2378	    break;						\
2379								\
2380	  case DT_FCN:						\
2381	    strcpy (p, "func ret ");				\
2382	    p += sizeof("func ret");				\
2383	    break;						\
2384	  }							\
2385      }								\
2386								\
2387  switch (typ & N_BTMASK)					\
2388    {								\
2389    case T_NULL:	q = "<no type>";	break;		\
2390    case T_CHAR:	q = "char";		break;		\
2391    case T_SHORT:	q = "short";		break;		\
2392    case T_INT:		q = "int";		break;		\
2393    case T_LONG:	q = "long";		break;		\
2394    case T_FLOAT:	q = "float";		break;		\
2395    case T_DOUBLE:	q = "double";		break;		\
2396    case T_STRUCT:	q = "struct";		break;		\
2397    case T_UNION:	q = "union";		break;		\
2398    case T_ENUM:	q = "enum";		break;		\
2399    case T_MOE:		q = "enum member";	break;		\
2400    case T_UCHAR:	q = "unsigned char";	break;		\
2401    case T_USHORT:	q = "unsigned short";	break;		\
2402    case T_UINT:	q = "unsigned int";	break;		\
2403    case T_ULONG:	q = "unsigned long";	break;		\
2404    default:		q = "void";		break;		\
2405    }								\
2406								\
2407    strcpy (p, q);						\
2408    fprintf(asm_out_file, "\ttype\t %d\t\t\t\t; %s\n",		\
2409	    t, buffer);						\
2410  } while (0)
2411
2412#define PUT_SDB_INT_VAL(a) \
2413  fprintf (asm_out_file, "\tval\t %d\n", (a))
2414
2415#define PUT_SDB_VAL(a)					\
2416( fprintf (asm_out_file, "\tval\t "),			\
2417  output_addr_const (asm_out_file, (a)),		\
2418  fputc ('\n', asm_out_file))
2419
2420#define PUT_SDB_DEF(a)						\
2421  do { fprintf (asm_out_file, "\tsdef\t ");			\
2422    ASM_OUTPUT_LABELREF (asm_out_file, a);			\
2423    fputc ('\n', asm_out_file);					\
2424  } while (0)
2425
2426#define PUT_SDB_PLAIN_DEF(a) \
2427  fprintf(asm_out_file,"\tsdef\t .%s\n", a)
2428
2429/* Simply and endef now.  */
2430#define PUT_SDB_ENDEF \
2431  fputs("\tendef\n\n", asm_out_file)
2432
2433#define PUT_SDB_SIZE(a) \
2434  fprintf (asm_out_file, "\tsize\t %d\n", (a))
2435
2436/* Max dimensions to store for debug information (limited by COFF).  */
2437#define SDB_MAX_DIM 6
2438
2439/* New method for dim operations.  */
2440#define PUT_SDB_START_DIM \
2441  fputs("\tdim\t ", asm_out_file)
2442
2443/* How to end the DIM sequence.  */
2444#define PUT_SDB_LAST_DIM(a) \
2445  fprintf(asm_out_file, "%d\n", a)
2446
2447#define PUT_SDB_TAG(a)						\
2448  do {								\
2449    fprintf (asm_out_file, "\ttag\t ");				\
2450    ASM_OUTPUT_LABELREF (asm_out_file, a);			\
2451    fputc ('\n', asm_out_file);					\
2452  } while( 0 )
2453
2454#define PUT_SDB_BLOCK_OR_FUNCTION(NAME, SCL, LINE)		\
2455  do {								\
2456    fprintf (asm_out_file, "\n\tsdef\t %s\n\tval\t .\n",	\
2457	     NAME);						\
2458    PUT_SDB_SCL( SCL );						\
2459    fprintf (asm_out_file, "\tline\t %d\n\tendef\n\n",		\
2460	     (LINE));						\
2461  } while (0)
2462
2463#define PUT_SDB_BLOCK_START(LINE) \
2464  PUT_SDB_BLOCK_OR_FUNCTION (".bb", C_BLOCK, (LINE))
2465
2466#define PUT_SDB_BLOCK_END(LINE) \
2467  PUT_SDB_BLOCK_OR_FUNCTION (".eb", C_BLOCK, (LINE))
2468
2469#define PUT_SDB_FUNCTION_START(LINE)				\
2470  do {								\
2471    fprintf (asm_out_file, "\tln\t 1\n");			\
2472    PUT_SDB_BLOCK_OR_FUNCTION (".bf", C_FCN, (LINE));		\
2473  } while (0)
2474
2475#define PUT_SDB_FUNCTION_END(LINE)				\
2476  do {								\
2477    PUT_SDB_BLOCK_OR_FUNCTION (".ef", C_FCN, (LINE));		\
2478  } while (0)
2479
2480#define PUT_SDB_EPILOGUE_END(NAME)				\
2481  do {								\
2482    text_section ();						\
2483    fprintf (asm_out_file, "\n\tsdef\t ");			\
2484    ASM_OUTPUT_LABELREF(asm_out_file, (NAME));			\
2485    fputc('\n', asm_out_file);					\
2486    PUT_SDB_SCL( C_EFCN );					\
2487    fprintf (asm_out_file, "\tendef\n\n");			\
2488  } while (0)
2489
2490#define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
2491  sprintf ((BUFFER), ".%dfake", (NUMBER));
2492
2493#endif /* SDB_DEBUGGING_INFO */
2494
2495/* Support const and tdesc sections.  Generally, a const section will
2496   be distinct from the text section whenever we do V.4-like things
2497   and so follows DECLARE_ASM_NAME.  Note that strings go in text
2498   rather than const.  Override svr[34].h.  */
2499
2500#undef	USE_CONST_SECTION
2501#undef	EXTRA_SECTIONS
2502
2503#define USE_CONST_SECTION DECLARE_ASM_NAME
2504
2505#if defined(USING_SVR4_H)
2506
2507#define EXTRA_SECTIONS in_const, in_tdesc, in_sdata, in_ctors, in_dtors
2508#define INIT_SECTION_FUNCTION
2509#define FINI_SECTION_FUNCTION
2510
2511#else
2512#if defined(USING_SVR3_H)
2513
2514#define EXTRA_SECTIONS in_const, in_tdesc, in_sdata, in_ctors, in_dtors, \
2515		       in_init, in_fini
2516
2517#else /* luna or other not based on svr[34].h.  */
2518
2519#undef INIT_SECTION_ASM_OP
2520#define EXTRA_SECTIONS in_const, in_tdesc, in_sdata
2521#define CONST_SECTION_FUNCTION						\
2522void									\
2523const_section ()							\
2524{									\
2525  text_section();							\
2526}
2527#define CTORS_SECTION_FUNCTION
2528#define DTORS_SECTION_FUNCTION
2529#define INIT_SECTION_FUNCTION
2530#define FINI_SECTION_FUNCTION
2531
2532#endif /* USING_SVR3_H */
2533#endif /* USING_SVR4_H */
2534
2535#undef	EXTRA_SECTION_FUNCTIONS
2536#define EXTRA_SECTION_FUNCTIONS						\
2537  CONST_SECTION_FUNCTION						\
2538									\
2539void									\
2540tdesc_section ()							\
2541{									\
2542  if (in_section != in_tdesc)						\
2543    {									\
2544      fprintf (asm_out_file, "%s\n", TDESC_SECTION_ASM_OP);		\
2545      in_section = in_tdesc;						\
2546    }									\
2547}									\
2548									\
2549void									\
2550sdata_section ()							\
2551{									\
2552  if (in_section != in_sdata)						\
2553    {									\
2554      fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP);		\
2555      in_section = in_sdata;						\
2556    }									\
2557}									\
2558									\
2559  CTORS_SECTION_FUNCTION						\
2560  DTORS_SECTION_FUNCTION						\
2561  INIT_SECTION_FUNCTION							\
2562  FINI_SECTION_FUNCTION
2563
2564/* A C statement or statements to switch to the appropriate
2565   section for output of DECL.  DECL is either a `VAR_DECL' node
2566   or a constant of some sort.  RELOC indicates whether forming
2567   the initial value of DECL requires link-time relocations.
2568
2569   For strings, the section is selected before the segment info is encoded.  */
2570#undef	SELECT_SECTION
2571#define SELECT_SECTION(DECL,RELOC)					\
2572{									\
2573  if (TREE_CODE (DECL) == STRING_CST)					\
2574    {									\
2575      if (! flag_writable_strings)					\
2576	const_section ();						\
2577      else if ( TREE_STRING_LENGTH (DECL) <= m88k_gp_threshold)		\
2578	sdata_section ();						\
2579      else								\
2580	data_section ();						\
2581    }									\
2582  else if (TREE_CODE (DECL) == VAR_DECL)				\
2583    {									\
2584      if (SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)))			\
2585	sdata_section ();						\
2586      else if ((flag_pic && RELOC)					\
2587	       || !TREE_READONLY (DECL) || TREE_SIDE_EFFECTS (DECL)	\
2588	       || !DECL_INITIAL (DECL)					\
2589	       || (DECL_INITIAL (DECL) != error_mark_node		\
2590		   && !TREE_CONSTANT (DECL_INITIAL (DECL))))		\
2591	data_section ();						\
2592      else								\
2593	const_section ();						\
2594    }									\
2595  else									\
2596    const_section ();							\
2597}
2598
2599/* Jump tables consist of branch instructions and should be output in
2600   the text section.  When we use a table of addresses, we explicitly
2601   change to the readonly data section.  */
2602#define JUMP_TABLES_IN_TEXT_SECTION 1
2603
2604/* Define this macro if references to a symbol must be treated differently
2605   depending on something about the variable or function named by the
2606   symbol (such as what section it is in).
2607
2608   The macro definition, if any, is executed immediately after the rtl for
2609   DECL has been created and stored in `DECL_RTL (DECL)'.  The value of the
2610   rtl will be a `mem' whose address is a `symbol_ref'.
2611
2612   For the m88k, determine if the item should go in the global pool.  */
2613#define ENCODE_SECTION_INFO(DECL)					\
2614  do {									\
2615    if (m88k_gp_threshold > 0)						\
2616      if (TREE_CODE (DECL) == VAR_DECL)					\
2617	{								\
2618	  if (!TREE_READONLY (DECL) || TREE_SIDE_EFFECTS (DECL))	\
2619	    {								\
2620	      int size = int_size_in_bytes (TREE_TYPE (DECL));		\
2621									\
2622	      if (size > 0 && size <= m88k_gp_threshold)		\
2623		SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;	\
2624	    }								\
2625	}								\
2626      else if (TREE_CODE (DECL) == STRING_CST				\
2627	       && flag_writable_strings					\
2628	       && TREE_STRING_LENGTH (DECL) <= m88k_gp_threshold)	\
2629	SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 1;		\
2630  } while (0)
2631
2632/* Print operand X (an rtx) in assembler syntax to file FILE.
2633   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2634   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2635#define PRINT_OPERAND_PUNCT_VALID_P(c) \
2636  ((c) == '#' || (c) == '.' || (c) == '!' || (c) == '*' || (c) == ';')
2637
2638#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2639
2640/* Print a memory address as an operand to reference that memory location.  */
2641#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2642
2643/* This says not to strength reduce the addr calculations within loops
2644   (otherwise it does not take advantage of m88k scaled loads and stores */
2645
2646#define DONT_REDUCE_ADDR
2647