1/* Definitions of target machine for GNU compiler, for Intel 860.
2   Copyright (C) 1989, 91, 93, 95, 96, 1997 Free Software Foundation, Inc.
3   Hacked substantially by Ron Guilmette (rfg@monkeys.com) to cater to
4   the whims of the System V Release 4 assembler.
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING.  If not, write to
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA.  */
22
23
24/* Note that some other tm.h files include this one and then override
25   many of the definitions that relate to assembler syntax.  */
26
27
28/* Names to predefine in the preprocessor for this target machine.  */
29
30#define CPP_PREDEFINES "-Di860 -Dunix -Asystem(unix) -Asystem(svr4) -Acpu(i860) -Amachine(i860)"
31
32/* Print subsidiary information on the compiler version in use.  */
33#define TARGET_VERSION fprintf (stderr, " (i860)");
34
35/* Run-time compilation parameters selecting different hardware subsets
36   or supersets.
37
38   On the i860, we have one: TARGET_XP.  This option allows gcc to generate
39   additional instructions available only on the newer i860 XP (but not on
40   the older i860 XR).
41*/
42
43extern int target_flags;
44
45/* Nonzero if we should generate code to use the fpu.  */
46#define TARGET_XP (target_flags & 1)
47
48/* Macro to define tables used to set the flags.
49   This is a list in braces of pairs in braces,
50   each pair being { "NAME", VALUE }
51   where VALUE is the bits to set or minus the bits to clear.
52   An empty string NAME is used to identify the default VALUE.  */
53
54#define TARGET_SWITCHES  \
55  { {"xp", 1, "Generate code which uses the FPU"},			\
56    {"noxp", -1, "Do not generate code which uses the FPU"},		\
57    {"xr", -1, "Do not generate code which uses the FPU"},		\
58    { "", TARGET_DEFAULT, NULL}}
59
60#define TARGET_DEFAULT 0
61
62/* target machine storage layout */
63
64/* Define this if most significant bit is lowest numbered
65   in instructions that operate on numbered bit-fields.
66   This is a moot question on the i860 due to the lack of bit-field insns.  */
67#define BITS_BIG_ENDIAN 0
68
69/* Define this if most significant byte of a word is the lowest numbered.  */
70/* That is not true on i860 in the mode we will use.  */
71#define BYTES_BIG_ENDIAN 0
72
73/* Define this if most significant word of a multiword number is the lowest
74   numbered.  */
75/* For the i860 this goes with BYTES_BIG_ENDIAN.  */
76/* NOTE: GCC probably cannot support a big-endian i860
77   because GCC fundamentally assumes that the order of words
78   in memory as the same as the order in registers.
79   That's not true for the big-endian i860.
80   The big-endian i860 isn't important enough to
81   justify the trouble of changing this assumption.  */
82#define WORDS_BIG_ENDIAN 0
83
84/* number of bits in an addressable storage unit */
85#define BITS_PER_UNIT 8
86
87/* Width in bits of a "word", which is the contents of a machine register.
88   Note that this is not necessarily the width of data type `int';
89   if using 16-bit ints on a 68000, this would still be 32.
90   But on a machine with 16-bit registers, this would be 16.  */
91#define BITS_PER_WORD 32
92
93/* Width of a word, in units (bytes).  */
94#define UNITS_PER_WORD 4
95
96/* Width in bits of a pointer.
97   See also the macro `Pmode' defined below.  */
98#define POINTER_SIZE 32
99
100/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
101#define PARM_BOUNDARY 32
102
103/* Boundary (in *bits*) on which stack pointer should be aligned.  */
104#define STACK_BOUNDARY 128
105
106/* Allocation boundary (in *bits*) for the code of a function.  */
107#define FUNCTION_BOUNDARY 64
108
109/* Alignment of field after `int : 0' in a structure.  */
110#define EMPTY_FIELD_BOUNDARY 32
111
112/* Every structure's size must be a multiple of this.  */
113#define STRUCTURE_SIZE_BOUNDARY 8
114
115/* Minimum size in bits of the largest boundary to which any
116   and all fundamental data types supported by the hardware
117   might need to be aligned. No data type wants to be aligned
118   rounder than this.  The i860 supports 128-bit (long double)
119   floating point quantities, and the System V Release 4 i860
120   ABI requires these to be aligned to 16-byte (128-bit)
121   boundaries.  */
122#define BIGGEST_ALIGNMENT 128
123
124/* Set this nonzero if move instructions will actually fail to work
125   when given unaligned data.  */
126#define STRICT_ALIGNMENT 1
127
128/* If bit field type is int, dont let it cross an int,
129   and give entire struct the alignment of an int.  */
130#define PCC_BITFIELD_TYPE_MATTERS 1
131
132/* Standard register usage.  */
133
134/* Number of actual hardware registers.
135   The hardware registers are assigned numbers for the compiler
136   from 0 to just below FIRST_PSEUDO_REGISTER.
137   All registers that the compiler knows about must be given numbers,
138   even those that are not normally considered general registers.
139
140   i860 has 32 fullword registers and 32 floating point registers.  */
141
142#define FIRST_PSEUDO_REGISTER 64
143
144/* 1 for registers that have pervasive standard uses
145   and are not available for the register allocator.
146   On the i860, this includes the always-0 registers
147   and fp, sp, arg pointer, and the return address.
148   Also r31, used for special purposes for constant addresses.  */
149#define FIXED_REGISTERS  \
150 {1, 1, 1, 1, 0, 0, 0, 0,	\
151  0, 0, 0, 0, 0, 0, 0, 0,	\
152  0, 0, 0, 0, 0, 0, 0, 0,	\
153  0, 0, 0, 0, 0, 0, 0, 1,	\
154  1, 1, 0, 0, 0, 0, 0, 0,	\
155  0, 0, 0, 0, 0, 0, 0, 0,	\
156  0, 0, 0, 0, 0, 0, 0, 0,	\
157  0, 0, 0, 0, 0, 0, 0, 0}
158
159/* 1 for registers not available across function calls.
160   These must include the FIXED_REGISTERS and also any
161   registers that can be used without being saved.
162   On the i860, these are r0-r3, r16-r31, f0, f1, and f16-f31.  */
163#define CALL_USED_REGISTERS  \
164 {1, 1, 1, 1, 0, 0, 0, 0,	\
165  0, 0, 0, 0, 0, 0, 0, 0,	\
166  1, 1, 1, 1, 1, 1, 1, 1,	\
167  1, 1, 1, 1, 1, 1, 1, 1,	\
168  1, 1, 0, 0, 0, 0, 0, 0,	\
169  1, 1, 1, 1, 1, 1, 1, 1,	\
170  1, 1, 1, 1, 1, 1, 1, 1,	\
171  1, 1, 1, 1, 1, 1, 1, 1}
172
173/* Try to get a non-preserved register before trying to get one we will
174   have to preserve.  Try to get an FP register only *after* trying to
175   get a general register, because it is relatively expensive to move
176   into or out of an FP register.  */
177
178#define REG_ALLOC_ORDER			\
179 {31, 30, 29, 28, 27, 26, 25, 24,	\
180  23, 22, 21, 20, 19, 18, 17, 16,	\
181  15, 14, 13, 12, 11, 10,  9,  8,	\
182   7,  6,  5,  4,  3,  2,  1,  0,	\
183  63, 62, 61, 60, 59, 58, 57, 56,	\
184  55, 54, 53, 52, 51, 50, 49, 48,	\
185  47, 46, 45, 44, 43, 42, 41, 40,	\
186  39, 38, 37, 36, 35, 34, 33, 32}
187
188/* Return number of consecutive hard regs needed starting at reg REGNO
189   to hold something of mode MODE.
190   This is ordinarily the length in words of a value of mode MODE
191   but can be less for certain modes in special long registers.
192
193   On the i860, all registers hold 32 bits worth.  */
194#define HARD_REGNO_NREGS(REGNO, MODE)   \
195  (((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
196
197#define REGNO_MODE_ALIGNED(REGNO, MODE) \
198  (((REGNO) % ((GET_MODE_UNIT_SIZE (MODE) + 3) / 4)) == 0)
199
200/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
201
202   On the i860, we allow anything to go into any registers, but we require
203   any sort of value going into the FP registers to be properly aligned
204   (based on its size) within the FP register set.
205*/
206#define HARD_REGNO_MODE_OK(REGNO, MODE)					\
207  (((REGNO) < 32) 							\
208   || (MODE) == VOIDmode || (MODE) == BLKmode				\
209   || REGNO_MODE_ALIGNED (REGNO, MODE))
210
211/* Value is 1 if it is a good idea to tie two pseudo registers
212   when one has mode MODE1 and one has mode MODE2.
213   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
214   for any hard reg, then this must be 0 for correct output.  */
215/* I think that is not always true; alignment restrictions for doubles
216   should not prevent tying them with singles.  So try allowing that.
217   On the other hand, don't let fixed and floating be tied;
218   this restriction is not necessary, but may make better code.  */
219#define MODES_TIEABLE_P(MODE1, MODE2) \
220  ((GET_MODE_CLASS (MODE1) == MODE_FLOAT		\
221    || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)	\
222   == (GET_MODE_CLASS (MODE2) == MODE_FLOAT		\
223       || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
224
225/* Specify the registers used for certain standard purposes.
226   The values of these macros are register numbers.  */
227
228/* i860 pc isn't overloaded on a register that the compiler knows about.  */
229/* #define PC_REGNUM  */
230
231/* Register to use for pushing function arguments.  */
232#define STACK_POINTER_REGNUM 2
233
234/* Base register for access to local variables of the function.  */
235#define FRAME_POINTER_REGNUM 3
236
237/* Value should be nonzero if functions must have frame pointers.
238   Zero means the frame pointer need not be set up (and parms
239   may be accessed via the stack pointer) in functions that seem suitable.
240   This is computed in `reload', in reload1.c.  */
241#define FRAME_POINTER_REQUIRED 1
242
243/* Base register for access to arguments of the function.  */
244#define ARG_POINTER_REGNUM 28
245
246/* Register in which static-chain is passed to a function.  */
247#define STATIC_CHAIN_REGNUM 29
248
249/* Register in which address to store a structure value
250   is passed to a function.  */
251#define STRUCT_VALUE_REGNUM 16
252
253/* Register to use when a source of a floating-point zero is needed.  */
254#define F0_REGNUM	32
255
256/* Define the classes of registers for register constraints in the
257   machine description.  Also define ranges of constants.
258
259   One of the classes must always be named ALL_REGS and include all hard regs.
260   If there is more than one class, another class must be named NO_REGS
261   and contain no registers.
262
263   The name GENERAL_REGS must be the name of a class (or an alias for
264   another name such as ALL_REGS).  This is the class of registers
265   that is allowed by "g" or "r" in a register constraint.
266   Also, registers outside this class are allocated only when
267   instructions express preferences for them.
268
269   The classes must be numbered in nondecreasing order; that is,
270   a larger-numbered class must never be contained completely
271   in a smaller-numbered class.
272
273   For any two classes, it is very desirable that there be another
274   class that represents their union.  */
275
276/* The i860 has two kinds of registers, hence four classes.  */
277
278enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
279
280#define N_REG_CLASSES (int) LIM_REG_CLASSES
281
282/* Give names of register classes as strings for dump file.   */
283
284#define REG_CLASS_NAMES \
285 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
286
287/* Define which registers fit in which classes.
288   This is an initializer for a vector of HARD_REG_SET
289   of length N_REG_CLASSES.  */
290
291#define REG_CLASS_CONTENTS	\
292 {{0, 0}, {0xffffffff, 0},	\
293  {0, 0xffffffff}, {0xffffffff, 0xffffffff}}
294
295/* The same information, inverted:
296   Return the class number of the smallest class containing
297   reg number REGNO.  This could be a conditional expression
298   or could index an array.  */
299
300#define REGNO_REG_CLASS(REGNO) \
301 ((REGNO) >= 32 ? FP_REGS : GENERAL_REGS)
302
303/* The class value for index registers, and the one for base regs.  */
304#define INDEX_REG_CLASS GENERAL_REGS
305#define BASE_REG_CLASS GENERAL_REGS
306
307/* Get reg_class from a letter such as appears in the machine description.  */
308
309#define REG_CLASS_FROM_LETTER(C) \
310  ((C) == 'f' ? FP_REGS : NO_REGS)
311
312/* The letters I, J, K, L and M in a register constraint string
313   can be used to stand for particular ranges of immediate operands.
314   This macro defines what the ranges are.
315   C is the letter, and VALUE is a constant value.
316   Return 1 if VALUE is in the range specified by C.
317
318   For the i860, `I' is used for the range of constants
319   an add/subtract insn can actually contain.
320   But not including -0x8000, since we need
321   to negate the constant sometimes.
322   `J' is used for the range which is just zero (since that is R0).
323   `K' is used for the range allowed in bte.
324   `L' is used for the range allowed in logical insns.  */
325
326#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x7fff) < 0xffff)
327
328#define LOGIC_INT(X) ((unsigned) INTVAL (X) < 0x10000)
329
330#define SMALL_INTVAL(X) ((unsigned) ((X) + 0x7fff) < 0xffff)
331
332#define LOGIC_INTVAL(X) ((unsigned) (X) < 0x10000)
333
334#define CONST_OK_FOR_LETTER_P(VALUE, C)  \
335  ((C) == 'I' ? ((unsigned) (VALUE) + 0x7fff) < 0xffff	\
336   : (C) == 'J' ? (VALUE) == 0				\
337   : (C) == 'K' ? (unsigned) (VALUE) < 0x20	\
338   : (C) == 'L' ? (unsigned) (VALUE) < 0x10000	\
339   : 0)
340
341/* Return non-zero if the given VALUE is acceptable for the
342   constraint letter C.  For the i860, constraint letter 'G'
343   permits only a floating-point zero value.  */
344#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  	\
345  ((C) == 'G' && CONST_DOUBLE_LOW ((VALUE)) == 0	\
346   && CONST_DOUBLE_HIGH ((VALUE)) == 0)
347
348/* Given an rtx X being reloaded into a reg required to be
349   in class CLASS, return the class of reg to actually use.
350   In general this is just CLASS; but on some machines
351   in some cases it is preferable to use a more restrictive class.
352
353   If we are trying to put an integer constant into some register, prefer an
354   integer register to an FP register.  If we are trying to put a
355   non-zero floating-point constant into some register, use an integer
356   register if the constant is SFmode and GENERAL_REGS is one of our options.
357   Otherwise, put the constant into memory.
358
359   When reloading something smaller than a word, use a general reg
360   rather than an FP reg.  */
361
362#define PREFERRED_RELOAD_CLASS(X,CLASS)  \
363  ((CLASS) == ALL_REGS && GET_CODE (X) == CONST_INT ? GENERAL_REGS	\
364   : ((GET_MODE (X) == HImode || GET_MODE (X) == QImode)		\
365      && (CLASS) == ALL_REGS)						\
366   ? GENERAL_REGS							\
367   : (GET_CODE (X) == CONST_DOUBLE					\
368      && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT			\
369      && ! CONST_DOUBLE_OK_FOR_LETTER_P (X, 'G'))			\
370   ? ((CLASS) == ALL_REGS && GET_MODE (X) == SFmode ? GENERAL_REGS	\
371      : (CLASS) == GENERAL_REGS && GET_MODE (X) == SFmode ? (CLASS)	\
372      : NO_REGS)							\
373   : (CLASS))
374
375/* Return the register class of a scratch register needed to copy IN into
376   a register in CLASS in MODE.  If it can be done directly, NO_REGS is
377   returned.  */
378
379#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
380  ((CLASS) == FP_REGS && CONSTANT_P (IN) ? GENERAL_REGS : NO_REGS)
381
382/* Return the maximum number of consecutive registers
383   needed to represent mode MODE in a register of class CLASS.  */
384/* On the i860, this is the size of MODE in words.  */
385#define CLASS_MAX_NREGS(CLASS, MODE)	\
386  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
387
388/* Stack layout; function entry, exit and calling.  */
389
390/* Define this if pushing a word on the stack
391   makes the stack pointer a smaller address.  */
392#define STACK_GROWS_DOWNWARD
393
394/* Define this if the nominal address of the stack frame
395   is at the high-address end of the local variables;
396   that is, each additional local variable allocated
397   goes at a more negative offset in the frame.  */
398#define FRAME_GROWS_DOWNWARD
399
400/* Offset within stack frame to start allocating local variables at.
401   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
402   first local allocated.  Otherwise, it is the offset to the BEGINNING
403   of the first local allocated.  */
404#define STARTING_FRAME_OFFSET 0
405
406/* If we generate an insn to push BYTES bytes,
407   this says how many the stack pointer really advances by.
408   On the i860, don't define this because there are no push insns.  */
409/*  #define PUSH_ROUNDING(BYTES) */
410
411/* Offset of first parameter from the argument pointer register value.  */
412#define FIRST_PARM_OFFSET(FNDECL) 0
413
414/* Value is the number of bytes of arguments automatically
415   popped when returning from a subroutine call.
416   FUNDECL is the declaration node of the function (as a tree),
417   FUNTYPE is the data type of the function (as a tree),
418   or for a library call it is an identifier node for the subroutine name.
419   SIZE is the number of bytes of arguments passed on the stack.  */
420
421#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
422
423/* Define how to find the value returned by a function.
424   VALTYPE is the data type of the value (as a tree).
425   If the precise function being called is known, FUNC is its FUNCTION_DECL;
426   otherwise, FUNC is 0.  */
427
428/* On the i860, the value register depends on the mode.  */
429
430#define FUNCTION_VALUE(VALTYPE, FUNC)  \
431  gen_rtx (REG, TYPE_MODE (VALTYPE),				\
432	   (GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT	\
433	    ? 40 : 16))
434
435/* Define how to find the value returned by a library function
436   assuming the value has mode MODE.  */
437
438#define LIBCALL_VALUE(MODE)				\
439  gen_rtx (REG, MODE,					\
440	   (GET_MODE_CLASS ((MODE)) == MODE_FLOAT	\
441	    ? 40 : 16))
442
443/* 1 if N is a possible register number for a function value
444   as seen by the caller.  */
445
446#define FUNCTION_VALUE_REGNO_P(N) ((N) == 40 || (N) == 16)
447
448/* 1 if N is a possible register number for function argument passing.
449   On the i860, these are r16-r27 and f8-f15.  */
450
451#define FUNCTION_ARG_REGNO_P(N)		\
452  (((N) < 28 && (N) > 15) || ((N) < 48 && (N) >= 40))
453
454/* Define a data type for recording info about an argument list
455   during the scan of that argument list.  This data type should
456   hold all necessary information about the function itself
457   and about the args processed so far, enough to enable macros
458   such as FUNCTION_ARG to determine where the next arg should go.
459
460   On the i860, we must count separately the number of general registers used
461   and the number of float registers used.  */
462
463struct cumulative_args { int ints, floats; };
464#define CUMULATIVE_ARGS struct cumulative_args
465
466/* Initialize a variable CUM of type CUMULATIVE_ARGS
467   for a call to a function whose data type is FNTYPE.
468   For a library call, FNTYPE is 0.
469
470   On the i860, the general-reg offset normally starts at 0,
471   but starts at 4 bytes
472   when the function gets a structure-value-address as an
473   invisible first argument.  */
474
475#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT)	\
476 ((CUM).ints = ((FNTYPE) != 0 && aggregate_value_p (TREE_TYPE ((FNTYPE))) \
477		? 4 : 0),			\
478  (CUM).floats = 0)
479
480/* Machine-specific subroutines of the following macros.  */
481#define CEILING(X,Y)  (((X) + (Y) - 1) / (Y))
482#define ROUNDUP(X,Y)  (CEILING ((X), (Y)) * (Y))
483
484/* Update the data in CUM to advance over an argument
485   of mode MODE and data type TYPE.
486   (TYPE is null for libcalls where that information may not be available.)
487   Floats, and doubleword ints, are returned in f regs;
488   other ints, in r regs.
489   Aggregates, even short ones, are passed in memory.  */
490
491#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)		\
492 ((TYPE) != 0 && (TREE_CODE ((TYPE)) == RECORD_TYPE		\
493		  || TREE_CODE ((TYPE)) == UNION_TYPE)		\
494  ? 0								\
495  : GET_MODE_CLASS ((MODE)) == MODE_FLOAT || (MODE) == DImode	\
496  ? ((CUM).floats = (ROUNDUP ((CUM).floats, GET_MODE_SIZE ((MODE)))	\
497		     + ROUNDUP (GET_MODE_SIZE (MODE), 4)))	\
498  : GET_MODE_CLASS ((MODE)) == MODE_INT				\
499  ? ((CUM).ints = (ROUNDUP ((CUM).ints, GET_MODE_SIZE ((MODE))) \
500		   + ROUNDUP (GET_MODE_SIZE (MODE), 4)))	\
501  : 0)
502
503/* Determine where to put an argument to a function.
504   Value is zero to push the argument on the stack,
505   or a hard register in which to store the argument.
506
507   MODE is the argument's machine mode.
508   TYPE is the data type of the argument (as a tree).
509    This is null for libcalls where that information may
510    not be available.
511   CUM is a variable of type CUMULATIVE_ARGS which gives info about
512    the preceding args and about the function being called.
513   NAMED is nonzero if this argument is a named parameter
514    (otherwise it is an extra parameter matching an ellipsis).  */
515
516/* On the i860, the first 12 words of integer arguments go in r16-r27,
517   and the first 8 words of floating arguments go in f8-f15.
518   DImode values are treated as floats.  */
519
520#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED)		\
521 ((TYPE) != 0 && (TREE_CODE ((TYPE)) == RECORD_TYPE	\
522		  || TREE_CODE ((TYPE)) == UNION_TYPE)	\
523  ? 0							\
524  : GET_MODE_CLASS ((MODE)) == MODE_FLOAT || (MODE) == DImode	\
525  ? (ROUNDUP ((CUM).floats, GET_MODE_SIZE ((MODE))) < 32	\
526     ? gen_rtx (REG, (MODE),				\
527		40+(ROUNDUP ((CUM).floats,		\
528			     GET_MODE_SIZE ((MODE)))	\
529		    / 4))				\
530     : 0)						\
531  : GET_MODE_CLASS ((MODE)) == MODE_INT			\
532  ? (ROUNDUP ((CUM).ints, GET_MODE_SIZE ((MODE))) < 48	\
533     ? gen_rtx (REG, (MODE),				\
534		16+(ROUNDUP ((CUM).ints,		\
535			     GET_MODE_SIZE ((MODE)))	\
536		    / 4))				\
537     : 0)						\
538  : 0)
539
540/* For an arg passed partly in registers and partly in memory,
541   this is the number of registers used.
542   For args passed entirely in registers or entirely in memory, zero.  */
543
544#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
545
546/* If defined, a C expression that gives the alignment boundary, in
547   bits, of an argument with the specified mode and type.  If it is
548   not defined,  `PARM_BOUNDARY' is used for all arguments.  */
549
550#define FUNCTION_ARG_BOUNDARY(MODE, TYPE)			\
551  (((TYPE) != 0)						\
552   ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY)			\
553      ? PARM_BOUNDARY						\
554      : TYPE_ALIGN(TYPE))					\
555   : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY)		\
556      ? PARM_BOUNDARY						\
557      : GET_MODE_ALIGNMENT(MODE)))
558
559/* This macro generates the assembly code for function entry.
560
561   FILE is a stdio stream to output the code to.
562   SIZE is an int: how many units of temporary storage to allocate.
563*/
564
565#define FUNCTION_PROLOGUE(FILE, SIZE) function_prologue ((FILE), (SIZE))
566
567/* Output a no-op just before the beginning of the function,
568   to ensure that there does not appear to be a delayed branch there.
569   Such a thing would confuse interrupt recovery.  */
570#define ASM_OUTPUT_FUNCTION_PREFIX(FILE,NAME) \
571  fprintf (FILE, "\tnop\n")
572
573/* Output assembler code to FILE to increment profiler label # LABELNO
574   for profiling a function entry.  */
575
576#define FUNCTION_PROFILER(FILE, LABELNO)  \
577   abort ();
578
579/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
580   the stack pointer does not matter.  The value is tested only in
581   functions that have frame pointers.
582   No definition is equivalent to always zero.  */
583
584#define EXIT_IGNORE_STACK 1
585
586/* This macro generates the assembly code for function exit.
587
588   FILE is a stdio stream to output the code to.
589   SIZE is an int: how many units of temporary storage to allocate.
590
591   The function epilogue should not depend on the current stack pointer!
592   It should use the frame pointer only.  This is mandatory because
593   of alloca; we also take advantage of it to omit stack adjustments
594   before returning.
595*/
596
597#define FUNCTION_EPILOGUE(FILE, SIZE) function_epilogue ((FILE), (SIZE))
598
599/* Store in the variable DEPTH the initial difference between the
600   frame pointer reg contents and the stack pointer reg contents,
601   as of the start of the function body.  This depends on the layout
602   of the fixed parts of the stack frame and on how registers are saved.
603
604   On the i860, FRAME_POINTER_REQUIRED is always 1, so the definition of this
605   macro doesn't matter.  But it must be defined.  */
606
607#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
608  do { (DEPTH) = 0; } while (0)
609
610/* Output assembler code for a block containing the constant parts
611   of a trampoline, leaving space for the variable parts.  */
612
613/* On the i860, the trampoline contains five instructions:
614     orh #TOP_OF_FUNCTION,r0,r31
615     or #BOTTOM_OF_FUNCTION,r31,r31
616     orh #TOP_OF_STATIC,r0,r29
617     bri r31
618     or #BOTTOM_OF_STATIC,r29,r29  */
619#define TRAMPOLINE_TEMPLATE(FILE)					\
620{									\
621  ASM_OUTPUT_INT (FILE, GEN_INT (0xec1f0000));	\
622  ASM_OUTPUT_INT (FILE, GEN_INT (0xe7ff0000));	\
623  ASM_OUTPUT_INT (FILE, GEN_INT (0xec1d0000));	\
624  ASM_OUTPUT_INT (FILE, GEN_INT (0x4000f800));	\
625  ASM_OUTPUT_INT (FILE, GEN_INT (0xe7bd0000));	\
626}
627
628/* Length in units of the trampoline for entering a nested function.  */
629
630#define TRAMPOLINE_SIZE 20
631
632/* Emit RTL insns to initialize the variable parts of a trampoline.
633   FNADDR is an RTX for the address of the function's pure code.
634   CXT is an RTX for the static chain value for the function.
635
636   Store hi function at +0, low function at +4,
637   hi static at +8, low static at +16  */
638
639#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)			\
640{									\
641  rtx cxt = force_reg (Pmode, CXT);					\
642  rtx fn = force_reg (Pmode, FNADDR);					\
643  rtx hi_cxt = expand_shift (RSHIFT_EXPR, SImode, cxt,			\
644			     size_int (16), 0, 0);			\
645  rtx hi_fn = expand_shift (RSHIFT_EXPR, SImode, fn,			\
646			    size_int (16), 0, 0);			\
647  emit_move_insn (gen_rtx (MEM, HImode, plus_constant (TRAMP, 16)),	\
648		  gen_lowpart (HImode, cxt));				\
649  emit_move_insn (gen_rtx (MEM, HImode, plus_constant (TRAMP, 4)),	\
650		  gen_lowpart (HImode, fn));				\
651  emit_move_insn (gen_rtx (MEM, HImode, plus_constant (TRAMP, 8)),	\
652		  gen_lowpart (HImode, hi_cxt));			\
653  emit_move_insn (gen_rtx (MEM, HImode, plus_constant (TRAMP, 0)),	\
654		  gen_lowpart (HImode, hi_fn));				\
655}
656
657/* Addressing modes, and classification of registers for them.  */
658
659/* #define HAVE_POST_INCREMENT 0 */
660/* #define HAVE_POST_DECREMENT 0 */
661
662/* #define HAVE_PRE_DECREMENT 0 */
663/* #define HAVE_PRE_INCREMENT 0 */
664
665/* Macros to check register numbers against specific register classes.  */
666
667/* These assume that REGNO is a hard or pseudo reg number.
668   They give nonzero only if REGNO is a hard reg of the suitable class
669   or a pseudo reg currently allocated to a suitable hard reg.
670   Since they use reg_renumber, they are safe only once reg_renumber
671   has been allocated, which happens in local-alloc.c.  */
672
673#define REGNO_OK_FOR_INDEX_P(REGNO) \
674((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
675#define REGNO_OK_FOR_BASE_P(REGNO) \
676((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
677#define REGNO_OK_FOR_FP_P(REGNO) \
678(((REGNO) ^ 0x20) < 32 || (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32)
679
680/* Now macros that check whether X is a register and also,
681   strictly, whether it is in a specified class.
682
683   These macros are specific to the i860, and may be used only
684   in code for printing assembler insns and in conditions for
685   define_optimization.  */
686
687/* 1 if X is an fp register.  */
688
689#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
690
691/* Maximum number of registers that can appear in a valid memory address.  */
692
693#define MAX_REGS_PER_ADDRESS 2
694
695/* Recognize any constant value that is a valid address.  */
696
697#define CONSTANT_ADDRESS_P(X)   \
698  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
699   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
700   || GET_CODE (X) == HIGH)
701
702/* Nonzero if the constant value X is a legitimate general operand.
703   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
704
705   On the Sparc, this is anything but a CONST_DOUBLE.
706   Let's try permitting CONST_DOUBLEs and see what happens.  */
707
708#define LEGITIMATE_CONSTANT_P(X) 1
709
710/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
711   and check its validity for a certain class.
712   We have two alternate definitions for each of them.
713   The usual definition accepts all pseudo regs; the other rejects
714   them unless they have been allocated suitable hard regs.
715   The symbol REG_OK_STRICT causes the latter definition to be used.
716
717   Most source files want to accept pseudo regs in the hope that
718   they will get allocated to the class that the insn wants them to be in.
719   Source files for reload pass need to be strict.
720   After reload, it makes no difference, since pseudo regs have
721   been eliminated by then.  */
722
723#ifndef REG_OK_STRICT
724
725/* Nonzero if X is a hard reg that can be used as an index
726   or if it is a pseudo reg.  */
727#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 14)
728/* Nonzero if X is a hard reg that can be used as a base reg
729   or if it is a pseudo reg.  */
730#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 14)
731
732#else
733
734/* Nonzero if X is a hard reg that can be used as an index.  */
735#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
736/* Nonzero if X is a hard reg that can be used as a base reg.  */
737#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
738
739#endif
740
741/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
742   that is a valid memory address for an instruction.
743   The MODE argument is the machine mode for the MEM expression
744   that wants to use this address.
745
746   On the i860, the actual addresses must be REG+REG or REG+SMALLINT.
747   But we can treat a SYMBOL_REF as legitimate if it is part of this
748   function's constant-pool, because such addresses can actually
749   be output as REG+SMALLINT.
750
751   The displacement in an address must be a multiple of the alignment.
752
753   Try making SYMBOL_REF (and other things which are CONSTANT_ADDRESS_P)
754   a legitimate address, regardless.  Because the only insns which can use
755   memory are load or store insns, the added hair in the machine description
756   is not that bad.  It should also speed up the compiler by halving the number
757   of insns it must manage for each (MEM (SYMBOL_REF ...)) involved.  */
758
759#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)		\
760{ if (GET_CODE (X) == REG)				\
761    { if (REG_OK_FOR_BASE_P (X)) goto ADDR; }		\
762  else if (GET_CODE (X) == PLUS)			\
763    {							\
764      if (GET_CODE (XEXP (X, 0)) == REG			\
765	  && REG_OK_FOR_BASE_P (XEXP (X, 0)))		\
766	{						\
767	  if (GET_CODE (XEXP (X, 1)) == CONST_INT	\
768	      && INTVAL (XEXP (X, 1)) >= -0x8000	\
769	      && INTVAL (XEXP (X, 1)) < 0x8000		\
770	      && (INTVAL (XEXP (X, 1)) & (GET_MODE_SIZE (MODE) - 1)) == 0) \
771	    goto ADDR;					\
772	}						\
773      else if (GET_CODE (XEXP (X, 1)) == REG		\
774	  && REG_OK_FOR_BASE_P (XEXP (X, 1)))		\
775	{						\
776	  if (GET_CODE (XEXP (X, 0)) == CONST_INT	\
777	      && INTVAL (XEXP (X, 0)) >= -0x8000	\
778	      && INTVAL (XEXP (X, 0)) < 0x8000		\
779	      && (INTVAL (XEXP (X, 0)) & (GET_MODE_SIZE (MODE) - 1)) == 0) \
780	    goto ADDR;					\
781	}						\
782    }							\
783  else if (CONSTANT_ADDRESS_P (X))			\
784    goto ADDR;						\
785}
786
787/* Try machine-dependent ways of modifying an illegitimate address
788   to be legitimate.  If we find one, return the new, valid address.
789   This macro is used in only one place: `memory_address' in explow.c.
790
791   OLDX is the address as it was before break_out_memory_refs was called.
792   In some cases it is useful to look at this to decide what needs to be done.
793
794   MODE and WIN are passed so that this macro can use
795   GO_IF_LEGITIMATE_ADDRESS.
796
797   It is always safe for this macro to do nothing.  It exists to recognize
798   opportunities to optimize the output.  */
799
800/* On the i860, change COMPLICATED + CONSTANT to REG+CONSTANT.
801   Also change a symbolic constant to a REG,
802   though that may not be necessary.  */
803
804#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)	\
805{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT)	\
806    (X) = gen_rtx (PLUS, SImode, XEXP (X, 1),			\
807		   force_operand (XEXP (X, 0), 0));		\
808  if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT)	\
809    (X) = gen_rtx (PLUS, SImode, XEXP (X, 0),			\
810		   force_operand (XEXP (X, 1), 0));		\
811  if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS)	\
812    (X) = gen_rtx (PLUS, SImode, XEXP (X, 1),			\
813		   force_operand (XEXP (X, 0), 0));		\
814  if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS)	\
815    (X) = gen_rtx (PLUS, SImode, XEXP (X, 0),			\
816		   force_operand (XEXP (X, 1), 0));		\
817  if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) != REG	\
818      && GET_CODE (XEXP (X, 0)) != CONST_INT)			\
819    (X) = gen_rtx (PLUS, SImode, XEXP (X, 1),			\
820		   copy_to_mode_reg (SImode, XEXP (X, 0)));	\
821  if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) != REG	\
822      && GET_CODE (XEXP (X, 1)) != CONST_INT)			\
823    (X) = gen_rtx (PLUS, SImode, XEXP (X, 0),			\
824		   copy_to_mode_reg (SImode, XEXP (X, 1)));	\
825  if (GET_CODE (x) == SYMBOL_REF)				\
826    (X) = copy_to_reg (X);					\
827  if (GET_CODE (x) == CONST)					\
828    (X) = copy_to_reg (X);					\
829  if (memory_address_p (MODE, X))				\
830    goto WIN; }
831
832/* Go to LABEL if ADDR (a legitimate address expression)
833   has an effect that depends on the machine mode it is used for.
834   On the i860 this is never true.
835   There are some addresses that are invalid in wide modes
836   but valid for narrower modes, but they shouldn't affect
837   the places that use this macro.  */
838
839#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
840
841/* Specify the machine mode that this machine uses
842   for the index in the tablejump instruction.  */
843#define CASE_VECTOR_MODE SImode
844
845/* Define as C expression which evaluates to nonzero if the tablejump
846   instruction expects the table to contain offsets from the address of the
847   table.
848   Do not define this if the table should contain absolute addresses. */
849/* #define CASE_VECTOR_PC_RELATIVE 1 */
850
851/* Specify the tree operation to be used to convert reals to integers.  */
852#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
853
854/* This is the kind of divide that is easiest to do in the general case.  */
855#define EASY_DIV_EXPR TRUNC_DIV_EXPR
856
857/* Must pass floats to libgcc functions as doubles.  */
858#define LIBGCC_NEEDS_DOUBLE 1
859
860#define DIVSI3_LIBCALL "*.div"
861#define UDIVSI3_LIBCALL "*.udiv"
862#define REMSI3_LIBCALL "*.rem"
863#define UREMSI3_LIBCALL "*.urem"
864
865/* Define this as 1 if `char' should by default be signed; else as 0.  */
866#define DEFAULT_SIGNED_CHAR 1
867
868/* Max number of bytes we can move from memory to memory
869   in one reasonably fast instruction.  */
870#define MOVE_MAX 16
871
872/* Nonzero if access to memory by bytes is slow and undesirable.  */
873#define SLOW_BYTE_ACCESS 0
874
875/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
876   is done just by pretending it is already truncated.  */
877#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
878
879/* Value is 1 if it generates better code to perform an unsigned comparison
880   on the given literal integer value in the given mode when we are only
881   looking for an equal/non-equal result.  */
882/* For the i860, if the immediate value has its high-order 27 bits zero,
883   then we want to engineer an unsigned comparison for EQ/NE because
884   such values can fit in the 5-bit immediate field of a bte or btne
885   instruction (which gets zero extended before comparing).  For all
886   other immediate values on the i860, we will use signed compares
887   because that avoids the need for doing explicit xor's to zero_extend
888   the non-constant operand in cases where it was (mem:QI ...) or a
889   (mem:HI ...) which always gets automatically sign-extended by the
890   hardware upon loading.  */
891
892#define LITERAL_COMPARE_BETTER_UNSIGNED(intval, mode)                   \
893  (((unsigned) (intval) & 0x1f) == (unsigned) (intval))
894
895/* Specify the machine mode that pointers have.
896   After generation of rtl, the compiler makes no further distinction
897   between pointers and any other objects of this machine mode.  */
898#define Pmode SImode
899
900/* A function address in a call instruction
901   is a byte address (for indexing purposes)
902   so give the MEM rtx a byte's mode.  */
903#define FUNCTION_MODE SImode
904
905/* Define this if addresses of constant functions
906   shouldn't be put through pseudo regs where they can be cse'd.
907   Desirable on machines where ordinary constants are expensive
908   but a CALL with constant address is cheap.  */
909#define NO_FUNCTION_CSE
910
911/* Compute the cost of computing a constant rtl expression RTX
912   whose rtx-code is CODE.  The body of this macro is a portion
913   of a switch statement.  If the code is computed here,
914   return it with a return statement.  Otherwise, break from the switch.  */
915
916#define CONST_COSTS(RTX,CODE, OUTER_CODE)			\
917  case CONST_INT:						\
918    if (INTVAL (RTX) == 0)					\
919      return 0;							\
920    if (INTVAL (RTX) < 0x2000 && INTVAL (RTX) >= -0x2000) return 1; \
921  case CONST:							\
922  case LABEL_REF:						\
923  case SYMBOL_REF:						\
924    return 4;							\
925  case CONST_DOUBLE:						\
926    return 6;
927
928/* Specify the cost of a branch insn; roughly the number of extra insns that
929   should be added to avoid a branch.
930
931   Set this to 3 on the i860 since branches may often take three cycles.  */
932
933#define BRANCH_COST 3
934
935/* Tell final.c how to eliminate redundant test instructions.  */
936
937/* Here we define machine-dependent flags and fields in cc_status
938   (see `conditions.h').  */
939
940/* This holds the value sourcing h%r31.  We keep this info
941   around so that mem/mem ops, such as increment and decrement,
942   etc, can be performed reasonably.  */
943#define CC_STATUS_MDEP rtx
944
945#define CC_STATUS_MDEP_INIT (cc_status.mdep = 0)
946
947#define CC_NEGATED	01000
948
949/* We use this macro in those places in the i860.md file where we would
950   normally just do a CC_STATUS_INIT (for other machines).  This macro
951   differs from CC_STATUS_INIT in that it doesn't mess with the special
952   bits or fields which describe what is currently in the special r31
953   scratch register, but it does clear out everything that actually
954   relates to the condition code bit of the i860.  */
955
956#define CC_STATUS_PARTIAL_INIT						\
957 (cc_status.flags &= (CC_KNOW_HI_R31 | CC_HI_R31_ADJ),			\
958  cc_status.value1 = 0,							\
959  cc_status.value2 = 0)
960
961/* Nonzero if we know the value of h%r31.  */
962#define CC_KNOW_HI_R31 0100000
963
964/* Nonzero if h%r31 is actually ha%something, rather than h%something.  */
965#define CC_HI_R31_ADJ 0200000
966
967/* Store in cc_status the expressions
968   that the condition codes will describe
969   after execution of an instruction whose pattern is EXP.
970   Do not alter them if the instruction would not alter the cc's.  */
971
972/* On the i860, only compare insns set a useful condition code.  */
973
974#define NOTICE_UPDATE_CC(EXP, INSN) \
975{ cc_status.flags &= (CC_KNOW_HI_R31 | CC_HI_R31_ADJ);	\
976  cc_status.value1 = 0; cc_status.value2 = 0; }
977
978/* Control the assembler format that we output.  */
979
980/* Assembler pseudos to introduce constants of various size.  */
981
982#define ASM_BYTE_OP "\t.byte"
983#define ASM_SHORT "\t.short"
984#define ASM_LONG "\t.long"
985#define ASM_DOUBLE "\t.double"
986
987/* Output at beginning of assembler file.  */
988/* The .file command should always begin the output.  */
989
990#define ASM_FILE_START(FILE)
991#if 0
992#define ASM_FILE_START(FILE)					\
993  do { output_file_directive ((FILE), main_input_filename);	\
994       if (optimize) ASM_FILE_START_1 (FILE);			\
995     } while (0)
996#endif
997
998#define ASM_FILE_START_1(FILE)
999
1000/* Output to assembler file text saying following lines
1001   may contain character constants, extra white space, comments, etc.  */
1002
1003#define ASM_APP_ON ""
1004
1005/* Output to assembler file text saying following lines
1006   no longer contain unusual constructs.  */
1007
1008#define ASM_APP_OFF ""
1009
1010/* Output before read-only data.  */
1011
1012#define TEXT_SECTION_ASM_OP ".text"
1013
1014/* Output before writable data.  */
1015
1016#define DATA_SECTION_ASM_OP ".data"
1017
1018/* How to refer to registers in assembler output.
1019   This sequence is indexed by compiler's hard-register-number (see above).  */
1020
1021#define REGISTER_NAMES \
1022{"r0", "r1", "sp", "fp", "r4", "r5", "r6", "r7", "r8", "r9",		\
1023 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19",	\
1024 "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29",	\
1025 "r30", "r31",								\
1026 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9",		\
1027 "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19",	\
1028 "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29",	\
1029 "f30", "f31" }
1030
1031/* How to renumber registers for dbx and gdb.  */
1032
1033#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1034
1035/* This is how to output the definition of a user-level label named NAME,
1036   such as the label on a static function or variable NAME.  */
1037
1038#define ASM_OUTPUT_LABEL(FILE,NAME)	\
1039  do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1040
1041/* This is how to output a command to make the user-level label named NAME
1042   defined for reference from other files.  */
1043
1044#define ASM_GLOBALIZE_LABEL(FILE,NAME)					\
1045  do { fputs (".globl ", FILE);					\
1046	assemble_name (FILE, NAME);					\
1047	fputs ("\n", FILE);						\
1048  } while (0)
1049
1050/* The prefix to add to user-visible assembler symbols.
1051
1052   This definition is overridden in i860v4.h because under System V
1053   Release 4, user-level symbols are *not* prefixed with underscores in
1054   the generated assembly code.  */
1055
1056#define USER_LABEL_PREFIX "_"
1057
1058/* This is how to output an internal numbered label where
1059   PREFIX is the class of label and NUM is the number within the class.  */
1060
1061#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM)	\
1062  fprintf (FILE, ".%s%d:\n", PREFIX, NUM)
1063
1064/* This is how to output an internal numbered label which
1065   labels a jump table.  */
1066
1067#undef ASM_OUTPUT_CASE_LABEL
1068#define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, JUMPTABLE)		\
1069do { ASM_OUTPUT_ALIGN ((FILE), 2);					\
1070     ASM_OUTPUT_INTERNAL_LABEL ((FILE), PREFIX, NUM);			\
1071   } while (0)
1072
1073/* Output at the end of a jump table.  */
1074
1075#define ASM_OUTPUT_CASE_END(FILE,NUM,INSN)	\
1076  fprintf (FILE, ".text\n")
1077
1078/* This is how to store into the string LABEL
1079   the symbol_ref name of an internal numbered label where
1080   PREFIX is the class of label and NUM is the number within the class.
1081   This is suitable for output with `assemble_name'.  */
1082
1083#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1084  sprintf (LABEL, "*.%s%d", PREFIX, NUM)
1085
1086/* This is how to output an assembler line defining a `double' constant.  */
1087
1088#define ASM_OUTPUT_DOUBLE(FILE,VALUE)  \
1089  fprintf (FILE, "\t.double %.20e\n", (VALUE))
1090
1091/* This is how to output an assembler line defining a `float' constant.  */
1092
1093#define ASM_OUTPUT_FLOAT(FILE,VALUE)  \
1094  fprintf (FILE, "\t.float %.12e\n", (VALUE))
1095
1096/* This is how to output an assembler line defining an `int' constant.  */
1097
1098#define ASM_OUTPUT_INT(FILE,VALUE)  \
1099( fprintf (FILE, "\t.long "),			\
1100  output_addr_const (FILE, (VALUE)),		\
1101  fprintf (FILE, "\n"))
1102
1103/* Likewise for `char' and `short' constants.  */
1104
1105#define ASM_OUTPUT_SHORT(FILE,VALUE)  \
1106( fprintf (FILE, "\t.short "),			\
1107  output_addr_const (FILE, (VALUE)),		\
1108  fprintf (FILE, "\n"))
1109
1110#define ASM_OUTPUT_CHAR(FILE,VALUE)  \
1111( fprintf (FILE, "\t.byte "),			\
1112  output_addr_const (FILE, (VALUE)),		\
1113  fprintf (FILE, "\n"))
1114
1115/* This is how to output an assembler line for a numeric constant byte.  */
1116
1117#define ASM_OUTPUT_BYTE(FILE,VALUE)  \
1118  fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1119
1120/* This is how to output code to push a register on the stack.
1121   It need not be very fast code.  */
1122
1123#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)					\
1124  fprintf (FILE, "\taddu -16,%ssp,%ssp\n\t%sst.l %s%s,0(%ssp)\n",	\
1125	i860_reg_prefix, i860_reg_prefix,				\
1126	((REGNO) < 32 ? "" : "f"),					\
1127	i860_reg_prefix, reg_names[REGNO],				\
1128	i860_reg_prefix)
1129
1130/* This is how to output an insn to pop a register from the stack.
1131   It need not be very fast code.  */
1132
1133#define ASM_OUTPUT_REG_POP(FILE,REGNO)					\
1134  fprintf (FILE, "\t%sld.l 0(%ssp),%s%s\n\taddu 16,%ssp,%ssp\n",	\
1135	((REGNO) < 32 ? "" : "f"),					\
1136	i860_reg_prefix,						\
1137	i860_reg_prefix, reg_names[REGNO],				\
1138	i860_reg_prefix, i860_reg_prefix)
1139
1140/* This is how to output an element of a case-vector that is absolute.  */
1141
1142#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1143  fprintf (FILE, "\t.long .L%d\n", VALUE)
1144
1145/* This is how to output an element of a case-vector that is relative.
1146   (The i860 does not use such vectors,
1147   but we must define this macro anyway.)  */
1148
1149#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)  \
1150  fprintf (FILE, "\t.word .L%d-.L%d\n", VALUE, REL)
1151
1152/* This is how to output an assembler line
1153   that says to advance the location counter
1154   to a multiple of 2**LOG bytes.  */
1155
1156#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1157  if ((LOG) != 0)			\
1158    fprintf (FILE, "\t.align %d\n", 1 << (LOG))
1159
1160#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1161  fprintf (FILE, "\t.blkb %u\n", (SIZE))
1162
1163/* This says how to output an assembler line
1164   to define a global common symbol.  */
1165
1166#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1167( fputs (".comm ", (FILE)),			\
1168  assemble_name ((FILE), (NAME)),		\
1169  fprintf ((FILE), ",%u\n", (ROUNDED)))
1170
1171/* This says how to output an assembler line
1172   to define a local common symbol.  */
1173
1174#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)  \
1175( fputs (".lcomm ", (FILE)),			\
1176  assemble_name ((FILE), (NAME)),		\
1177  fprintf ((FILE), ",%u\n", (ROUNDED)))
1178
1179/* Store in OUTPUT a string (made with alloca) containing
1180   an assembler-name for a local static variable named NAME.
1181   LABELNO is an integer which is different for each call.  */
1182
1183#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
1184( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
1185  sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1186
1187/* Define the parentheses used to group arithmetic operations
1188   in assembler code.  */
1189
1190#define ASM_OPEN_PAREN "("
1191#define ASM_CLOSE_PAREN ")"
1192
1193/* Define results of standard character escape sequences.  */
1194#define TARGET_BELL 007
1195#define TARGET_BS 010
1196#define TARGET_TAB 011
1197#define TARGET_NEWLINE 012
1198#define TARGET_VT 013
1199#define TARGET_FF 014
1200#define TARGET_CR 015
1201
1202/* Print operand X (an rtx) in assembler syntax to file FILE.
1203   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1204   For `%' followed by punctuation, CODE is the punctuation and X is null.
1205
1206   In the following comments, the term "constant address" is used frequently.
1207   For an exact definition of what constitutes a "constant address" see the
1208   output_addr_const routine in final.c
1209
1210   On the i860, the following target-specific special codes are recognized:
1211
1212	`r'	The operand can be anything, but if it is an immediate zero
1213		value (either integer or floating point) then it will be
1214		represented as `r0' or as `f0' (respectively).
1215
1216	`m'	The operand is a memory ref (to a constant address) but print
1217		its address as a constant.
1218
1219	`L'	The operand is a numeric constant, a constant address, or
1220		a memory ref to a constant address.  Print the correct
1221		notation to yield the low part of the given value or
1222		address or the low part of the address of the referred
1223		to memory object.
1224
1225	`H'	The operand is a numeric constant, a constant address, or
1226		a memory ref to a constant address.  Print the correct
1227		notation to yield the high part of the given value or
1228		address or the high part of the address of the referred
1229		to memory object.
1230
1231	`h'	The operand is a numeric constant, a constant address, or
1232		a memory ref to a constant address.  Either print the
1233		correct notation to yield the plain high part of the
1234		given value or address (or the plain high part of the
1235		address of the memory object) or else print the correct
1236		notation to yield the "adjusted" high part of the given
1237		address (or of the address of the referred to memory object).
1238
1239		The choice of what to print depends upon whether the address
1240		in question is relocatable or not.  If it is relocatable,
1241		print the notation to get the adjusted high part.  Otherwise
1242		just print the notation to get the plain high part.  Note
1243		that "adjusted" high parts are generally used *only* when
1244		the next following instruction uses the low part of the
1245		address as an offset, as in `offset(reg)'.
1246
1247	`R'	The operand is a floating-pointer register.  Print the
1248		name of the next following (32-bit) floating-point register.
1249		(This is used when moving a value into just the most
1250		significant part of a floating-point register pair.)
1251
1252	`?'	(takes no operand) Substitute the value of i860_reg_prefix
1253		at this point.  The value of i860_reg_prefix is typically
1254		a null string for most i860 targets, but for System V
1255		Release 4 the i860 assembler syntax requires that all
1256		names of registers be prefixed with a percent-sign, so
1257		for SVR4, the value of i860_reg_prefix is initialized to
1258		"%" in i860.c.
1259*/
1260
1261extern char *i860_reg_prefix;
1262extern unsigned long sfmode_constant_to_ulong ();
1263
1264#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '?')
1265
1266/* The following macro definition is overridden in i860v4.h
1267   because the svr4 i860 assembler required a different syntax
1268   for getting parts of constant/relocatable values.  */
1269
1270#define PRINT_OPERAND_PART(FILE, X, PART_CODE)				\
1271  do { fprintf (FILE, "%s%%", PART_CODE);				\
1272	output_address (X);						\
1273  } while (0)
1274
1275#define OPERAND_LOW_PART	"l"
1276#define OPERAND_HIGH_PART	"h"
1277/* NOTE: All documentation available for the i860 sez that you must
1278   use "ha" to get the relocated high part of a relocatable, but
1279   reality sez different.  */
1280#define OPERAND_HIGH_ADJ_PART	"ha"
1281
1282#define PRINT_OPERAND(FILE, X, CODE)					\
1283{ if ((CODE) == '?')							\
1284    fprintf (FILE, "%s", i860_reg_prefix);				\
1285  else if (CODE == 'R')							\
1286    fprintf (FILE, "%s%s", i860_reg_prefix, reg_names[REGNO (X) + 1]);	\
1287  else if (GET_CODE (X) == REG)						\
1288    fprintf (FILE, "%s%s", i860_reg_prefix, reg_names[REGNO (X)]);	\
1289  else if ((CODE) == 'm')						\
1290    output_address (XEXP (X, 0));					\
1291  else if ((CODE) == 'L')						\
1292    {									\
1293      if (GET_CODE (X) == MEM)						\
1294	PRINT_OPERAND_PART (FILE, XEXP (X, 0), OPERAND_LOW_PART);	\
1295      else								\
1296	PRINT_OPERAND_PART (FILE, X, OPERAND_LOW_PART);			\
1297    }									\
1298  else if ((CODE) == 'H')						\
1299    {									\
1300      if (GET_CODE (X) == MEM)						\
1301	PRINT_OPERAND_PART (FILE, XEXP (X, 0), OPERAND_HIGH_PART);	\
1302      else								\
1303	PRINT_OPERAND_PART (FILE, X, OPERAND_HIGH_PART);		\
1304    }									\
1305  else if ((CODE) == 'h')						\
1306    {									\
1307      if (GET_CODE (X) == MEM)						\
1308	PRINT_OPERAND_PART (FILE, XEXP (X, 0), OPERAND_HIGH_ADJ_PART);	\
1309      else								\
1310	PRINT_OPERAND_PART (FILE, X, OPERAND_HIGH_ADJ_PART);		\
1311    }									\
1312  else if (GET_CODE (X) == MEM)						\
1313    output_address (XEXP (X, 0));					\
1314  else if ((CODE) == 'r' && (X) == const0_rtx)				\
1315    fprintf (FILE, "%sr0", i860_reg_prefix);				\
1316  else if ((CODE) == 'r' && (X) == CONST0_RTX (GET_MODE (X)))		\
1317    fprintf (FILE, "%sf0", i860_reg_prefix);				\
1318  else if (GET_CODE (X) == CONST_DOUBLE)				\
1319    fprintf (FILE, "0x%x", sfmode_constant_to_ulong (X));		\
1320  else									\
1321    output_addr_const (FILE, X); }
1322
1323/* Print a memory address as an operand to reference that memory location.  */
1324
1325#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
1326{ register rtx base, index = 0;					\
1327  int offset = 0;						\
1328  register rtx addr = ADDR;					\
1329  if (GET_CODE (addr) == REG)					\
1330    {								\
1331      fprintf (FILE, "0(%s%s)",					\
1332	i860_reg_prefix, reg_names[REGNO (addr)]);		\
1333    }								\
1334  else if (GET_CODE (addr) == CONST_DOUBLE			\
1335            && GET_MODE (addr) == SFmode)			\
1336    fprintf (FILE, "0x%x", sfmode_constant_to_ulong (addr));	\
1337  else if (GET_CODE (addr) == PLUS)				\
1338    {								\
1339      if ((GET_CODE (XEXP (addr, 0)) == CONST_INT)		\
1340	  && (GET_CODE (XEXP (addr, 1)) == REG))		\
1341	fprintf (FILE, "%d(%s%s)", INTVAL (XEXP (addr, 0)),	\
1342	    i860_reg_prefix, reg_names[REGNO (XEXP (addr, 1))]);\
1343      else if ((GET_CODE (XEXP (addr, 1)) == CONST_INT)		\
1344	  && (GET_CODE (XEXP (addr, 0)) == REG))		\
1345	fprintf (FILE, "%d(%s%s)", INTVAL (XEXP (addr, 1)),	\
1346	    i860_reg_prefix, reg_names[REGNO (XEXP (addr, 0))]);\
1347      else if ((GET_CODE (XEXP (addr, 0)) == REG)		\
1348	  && (GET_CODE (XEXP (addr, 1)) == REG))		\
1349	fprintf (FILE, "%s%s(%s%s)",				\
1350	    i860_reg_prefix, reg_names[REGNO (XEXP (addr, 0))],	\
1351	    i860_reg_prefix, reg_names[REGNO (XEXP (addr, 1))]);\
1352      else							\
1353	output_addr_const (FILE, addr);				\
1354    }								\
1355  else								\
1356    {								\
1357      output_addr_const (FILE, addr);				\
1358    }								\
1359}
1360
1361/* The following #defines are used when compiling the routines in
1362   libgcc1.c.  Since the i860 calling conventions require single
1363   precision floats to be passed in the floating-point registers
1364   (rather than in the general registers) we have to build the
1365   libgcc1.c routines in such a way that they know the actual types
1366   of their formal arguments and the actual types of their return
1367   values.  Otherwise, gcc will generate calls to the libgcc1.c
1368   routines, passing arguments in the floating-point registers,
1369   but the libgcc1.c routines will expect their arguments on the
1370   stack (where the i860 calling conventions require structs &
1371   unions to be passed).  */
1372
1373#define FLOAT_VALUE_TYPE	float
1374#define INTIFY(FLOATVAL)	(FLOATVAL)
1375#define FLOATIFY(INTVAL)	(INTVAL)
1376#define FLOAT_ARG_TYPE		float
1377
1378
1379/* Optionally define this if you have added predicates to
1380   `MACHINE.c'.  This macro is called within an initializer of an
1381   array of structures.  The first field in the structure is the
1382   name of a predicate and the second field is an array of rtl
1383   codes.  For each predicate, list all rtl codes that can be in
1384   expressions matched by the predicate.  The list should have a
1385   trailing comma.  Here is an example of two entries in the list
1386   for a typical RISC machine:
1387
1388   #define PREDICATE_CODES \
1389     {"gen_reg_rtx_operand", {SUBREG, REG}},  \
1390     {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
1391
1392   Defining this macro does not affect the generated code (however,
1393   incorrect definitions that omit an rtl code that may be matched
1394   by the predicate can cause the compiler to malfunction).
1395   Instead, it allows the table built by `genrecog' to be more
1396   compact and efficient, thus speeding up the compiler.  The most
1397   important predicates to include in the list specified by this
1398   macro are thoses used in the most insn patterns.  */
1399
1400#define PREDICATE_CODES							\
1401   {"reg_or_0_operand",		{REG, SUBREG, CONST_INT}},		\
1402   {"arith_operand",		{REG, SUBREG, CONST_INT}},		\
1403   {"logic_operand",		{REG, SUBREG, CONST_INT}},		\
1404   {"shift_operand",		{REG, SUBREG, CONST_INT}},		\
1405   {"compare_operand",		{REG, SUBREG, CONST_INT}},		\
1406   {"arith_const_operand",	{CONST_INT}},				\
1407   {"logic_const_operand",	{CONST_INT}},				\
1408   {"bte_operand",		{REG, SUBREG, CONST_INT}},		\
1409   {"indexed_operand",		{MEM}},					\
1410   {"load_operand",		{MEM}},					\
1411   {"small_int",		{CONST_INT}},				\
1412   {"logic_int",		{CONST_INT}},				\
1413   {"call_insn_operand",	{MEM}},
1414
1415/* Define the information needed to generate branch insns.  This is stored
1416   from the compare operation.  Note that we can't use "rtx" here since it
1417   hasn't been defined!  */
1418
1419extern struct rtx_def *i860_compare_op0, *i860_compare_op1;
1420
1421/* Declare things which are defined in i860.c but called from
1422   insn-output.c.  */
1423
1424extern unsigned long sfmode_constant_to_ulong ();
1425extern char *output_load ();
1426extern char *output_store ();
1427extern char *output_move_double ();
1428extern char *output_fp_move_double ();
1429extern char *output_block_move ();
1430extern char *output_delay_insn ();
1431extern char *output_delayed_branch ();
1432extern void output_load_address ();
1433