1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2@c 2001, 2003, 2004
3@c Free Software Foundation, Inc.
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
17@cindex i80306 support
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
24@menu
25* i386-Options::                Options
26* i386-Syntax::                 AT&T Syntax versus Intel Syntax
27* i386-Mnemonics::              Instruction Naming
28* i386-Regs::                   Register Naming
29* i386-Prefixes::               Instruction Prefixes
30* i386-Memory::                 Memory References
31* i386-Jumps::                  Handling of Jump Instructions
32* i386-Float::                  Floating Point
33* i386-SIMD::                   Intel's MMX and AMD's 3DNow! SIMD Operations
34* i386-16bit::                  Writing 16-bit Code
35* i386-Arch::                   Specifying an x86 CPU architecture
36* i386-Bugs::                   AT&T Syntax bugs
37* i386-Notes::                  Notes
38@end menu
39
40@node i386-Options
41@section Options
42
43@cindex options for i386
44@cindex options for x86-64
45@cindex i386 options
46@cindex x86-64 options 
47
48The i386 version of @code{@value{AS}} has a few machine
49dependent options:
50
51@table @code
52@cindex @samp{--32} option, i386
53@cindex @samp{--32} option, x86-64
54@cindex @samp{--64} option, i386
55@cindex @samp{--64} option, x86-64
56@item --32 | --64
57Select the word size, either 32 bits or 64 bits. Selecting 32-bit
58implies Intel i386 architecture, while 64-bit implies AMD x86-64
59architecture.
60
61These options are only available with the ELF object file format, and
62require that the necessary BFD support has been included (on a 32-bit
63platform you have to add --enable-64-bit-bfd to configure enable 64-bit
64usage and use x86-64 as target platform).
65
66@item -n
67By default, x86 GAS replaces multiple nop instructions used for
68alignment within code sections with multi-byte nop instructions such
69as leal 0(%esi,1),%esi.  This switch disables the optimization.
70
71@cindex @samp{--divide} option, i386
72@item --divide
73On SVR4-derived platforms, the character @samp{/} is treated as a comment
74character, which means that it cannot be used in expressions.  The
75@samp{--divide} option turns @samp{/} into a normal character.  This does
76not disable @samp{/} at the beginning of a line starting a comment, or
77affect using @samp{#} for starting a comment.
78
79@end table
80
81@node i386-Syntax
82@section AT&T Syntax versus Intel Syntax
83
84@cindex i386 intel_syntax pseudo op
85@cindex intel_syntax pseudo op, i386
86@cindex i386 att_syntax pseudo op
87@cindex att_syntax pseudo op, i386
88@cindex i386 syntax compatibility
89@cindex syntax compatibility, i386
90@cindex x86-64 intel_syntax pseudo op
91@cindex intel_syntax pseudo op, x86-64
92@cindex x86-64 att_syntax pseudo op
93@cindex att_syntax pseudo op, x86-64
94@cindex x86-64 syntax compatibility
95@cindex syntax compatibility, x86-64
96
97@code{@value{AS}} now supports assembly using Intel assembler syntax.
98@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
99back to the usual AT&T mode for compatibility with the output of
100@code{@value{GCC}}.  Either of these directives may have an optional
101argument, @code{prefix}, or @code{noprefix} specifying whether registers
102require a @samp{%} prefix.  AT&T System V/386 assembler syntax is quite
103different from Intel syntax.  We mention these differences because
104almost all 80386 documents use Intel syntax.  Notable differences
105between the two syntaxes are:
106
107@cindex immediate operands, i386
108@cindex i386 immediate operands
109@cindex register operands, i386
110@cindex i386 register operands
111@cindex jump/call operands, i386
112@cindex i386 jump/call operands
113@cindex operand delimiters, i386
114
115@cindex immediate operands, x86-64
116@cindex x86-64 immediate operands
117@cindex register operands, x86-64
118@cindex x86-64 register operands
119@cindex jump/call operands, x86-64
120@cindex x86-64 jump/call operands
121@cindex operand delimiters, x86-64
122@itemize @bullet
123@item
124AT&T immediate operands are preceded by @samp{$}; Intel immediate
125operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
126AT&T register operands are preceded by @samp{%}; Intel register operands
127are undelimited.  AT&T absolute (as opposed to PC relative) jump/call
128operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
129
130@cindex i386 source, destination operands
131@cindex source, destination operands; i386
132@cindex x86-64 source, destination operands
133@cindex source, destination operands; x86-64
134@item
135AT&T and Intel syntax use the opposite order for source and destination
136operands.  Intel @samp{add eax, 4} is @samp{addl $4, %eax}.  The
137@samp{source, dest} convention is maintained for compatibility with
138previous Unix assemblers.  Note that instructions with more than one
139source operand, such as the @samp{enter} instruction, do @emph{not} have
140reversed order.  @ref{i386-Bugs}.
141
142@cindex mnemonic suffixes, i386
143@cindex sizes operands, i386
144@cindex i386 size suffixes
145@cindex mnemonic suffixes, x86-64
146@cindex sizes operands, x86-64
147@cindex x86-64 size suffixes
148@item
149In AT&T syntax the size of memory operands is determined from the last
150character of the instruction mnemonic.  Mnemonic suffixes of @samp{b},
151@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
152(32-bit) and quadruple word (64-bit) memory references.  Intel syntax accomplishes
153this by prefixing memory operands (@emph{not} the instruction mnemonics) with
154@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}.  Thus,
155Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
156syntax.
157
158@cindex return instructions, i386
159@cindex i386 jump, call, return
160@cindex return instructions, x86-64
161@cindex x86-64 jump, call, return
162@item
163Immediate form long jumps and calls are
164@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
165Intel syntax is
166@samp{call/jmp far @var{section}:@var{offset}}.  Also, the far return
167instruction
168is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
169@samp{ret far @var{stack-adjust}}.
170
171@cindex sections, i386
172@cindex i386 sections
173@cindex sections, x86-64
174@cindex x86-64 sections
175@item
176The AT&T assembler does not provide support for multiple section
177programs.  Unix style systems expect all programs to be single sections.
178@end itemize
179
180@node i386-Mnemonics
181@section Instruction Naming
182
183@cindex i386 instruction naming
184@cindex instruction naming, i386
185@cindex x86-64 instruction naming
186@cindex instruction naming, x86-64
187
188Instruction mnemonics are suffixed with one character modifiers which
189specify the size of operands.  The letters @samp{b}, @samp{w}, @samp{l}
190and @samp{q} specify byte, word, long and quadruple word operands.  If
191no suffix is specified by an instruction then @code{@value{AS}} tries to
192fill in the missing suffix based on the destination register operand
193(the last one by convention).  Thus, @samp{mov %ax, %bx} is equivalent
194to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
195@samp{movw $1, bx}.  Note that this is incompatible with the AT&T Unix
196assembler which assumes that a missing mnemonic suffix implies long
197operand size.  (This incompatibility does not affect compiler output
198since compilers always explicitly specify the mnemonic suffix.)
199
200Almost all instructions have the same names in AT&T and Intel format.
201There are a few exceptions.  The sign extend and zero extend
202instructions need two sizes to specify them.  They need a size to
203sign/zero extend @emph{from} and a size to zero extend @emph{to}.  This
204is accomplished by using two instruction mnemonic suffixes in AT&T
205syntax.  Base names for sign extend and zero extend are
206@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
207and @samp{movzx} in Intel syntax).  The instruction mnemonic suffixes
208are tacked on to this base name, the @emph{from} suffix before the
209@emph{to} suffix.  Thus, @samp{movsbl %al, %edx} is AT&T syntax for
210``move sign extend @emph{from} %al @emph{to} %edx.''  Possible suffixes,
211thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
212@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
213@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
214quadruple word).
215
216@cindex conversion instructions, i386
217@cindex i386 conversion instructions
218@cindex conversion instructions, x86-64
219@cindex x86-64 conversion instructions
220The Intel-syntax conversion instructions
221
222@itemize @bullet
223@item
224@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
225
226@item
227@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
228
229@item
230@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
231
232@item
233@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
234
235@item
236@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
237(x86-64 only),
238
239@item
240@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
241@samp{%rdx:%rax} (x86-64 only),
242@end itemize
243
244@noindent
245are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
246@samp{cqto} in AT&T naming.  @code{@value{AS}} accepts either naming for these
247instructions.
248
249@cindex jump instructions, i386
250@cindex call instructions, i386
251@cindex jump instructions, x86-64
252@cindex call instructions, x86-64
253Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
254AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
255convention.
256
257@node i386-Regs
258@section Register Naming
259
260@cindex i386 registers
261@cindex registers, i386
262@cindex x86-64 registers
263@cindex registers, x86-64
264Register operands are always prefixed with @samp{%}.  The 80386 registers
265consist of
266
267@itemize @bullet
268@item
269the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
270@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
271frame pointer), and @samp{%esp} (the stack pointer).
272
273@item
274the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
275@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
276
277@item
278the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
279@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
280are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
281@samp{%cx}, and @samp{%dx})
282
283@item
284the 6 section registers @samp{%cs} (code section), @samp{%ds}
285(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
286and @samp{%gs}.
287
288@item
289the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
290@samp{%cr3}.
291
292@item
293the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
294@samp{%db3}, @samp{%db6}, and @samp{%db7}.
295
296@item
297the 2 test registers @samp{%tr6} and @samp{%tr7}.
298
299@item
300the 8 floating point register stack @samp{%st} or equivalently
301@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
302@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
303These registers are overloaded by 8 MMX registers @samp{%mm0},
304@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
305@samp{%mm6} and @samp{%mm7}.
306
307@item
308the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
309@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
310@end itemize
311
312The AMD x86-64 architecture extends the register set by:
313
314@itemize @bullet
315@item
316enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
317accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
318@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
319pointer)
320
321@item
322the 8 extended registers @samp{%r8}--@samp{%r15}.
323
324@item
325the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
326
327@item
328the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
329
330@item
331the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
332
333@item
334the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
335
336@item
337the 8 debug registers: @samp{%db8}--@samp{%db15}.
338
339@item
340the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
341@end itemize
342
343@node i386-Prefixes
344@section Instruction Prefixes
345
346@cindex i386 instruction prefixes
347@cindex instruction prefixes, i386
348@cindex prefixes, i386
349Instruction prefixes are used to modify the following instruction.  They
350are used to repeat string instructions, to provide section overrides, to
351perform bus lock operations, and to change operand and address sizes.
352(Most instructions that normally operate on 32-bit operands will use
35316-bit operands if the instruction has an ``operand size'' prefix.)
354Instruction prefixes are best written on the same line as the instruction
355they act upon. For example, the @samp{scas} (scan string) instruction is
356repeated with:
357
358@smallexample
359        repne scas %es:(%edi),%al
360@end smallexample
361
362You may also place prefixes on the lines immediately preceding the
363instruction, but this circumvents checks that @code{@value{AS}} does
364with prefixes, and will not work with all prefixes.
365
366Here is a list of instruction prefixes:
367
368@cindex section override prefixes, i386
369@itemize @bullet
370@item
371Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
372@samp{fs}, @samp{gs}.  These are automatically added by specifying
373using the @var{section}:@var{memory-operand} form for memory references.
374
375@cindex size prefixes, i386
376@item
377Operand/Address size prefixes @samp{data16} and @samp{addr16}
378change 32-bit operands/addresses into 16-bit operands/addresses,
379while @samp{data32} and @samp{addr32} change 16-bit ones (in a
380@code{.code16} section) into 32-bit operands/addresses.  These prefixes
381@emph{must} appear on the same line of code as the instruction they
382modify. For example, in a 16-bit @code{.code16} section, you might
383write:
384
385@smallexample
386        addr32 jmpl *(%ebx)
387@end smallexample
388
389@cindex bus lock prefixes, i386
390@cindex inhibiting interrupts, i386
391@item
392The bus lock prefix @samp{lock} inhibits interrupts during execution of
393the instruction it precedes.  (This is only valid with certain
394instructions; see a 80386 manual for details).
395
396@cindex coprocessor wait, i386
397@item
398The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
399complete the current instruction.  This should never be needed for the
40080386/80387 combination.
401
402@cindex repeat prefixes, i386
403@item
404The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
405to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
406times if the current address size is 16-bits).
407@cindex REX prefixes, i386
408@item
409The @samp{rex} family of prefixes is used by x86-64 to encode
410extensions to i386 instruction set.  The @samp{rex} prefix has four
411bits --- an operand size overwrite (@code{64}) used to change operand size
412from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
413register set.
414
415You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
416instruction emits @samp{rex} prefix with all the bits set.  By omitting
417the @code{64}, @code{x}, @code{y} or @code{z} you may write other
418prefixes as well.  Normally, there is no need to write the prefixes
419explicitly, since gas will automatically generate them based on the
420instruction operands.
421@end itemize
422
423@node i386-Memory
424@section Memory References
425
426@cindex i386 memory references
427@cindex memory references, i386
428@cindex x86-64 memory references
429@cindex memory references, x86-64
430An Intel syntax indirect memory reference of the form
431
432@smallexample
433@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
434@end smallexample
435
436@noindent
437is translated into the AT&T syntax
438
439@smallexample
440@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
441@end smallexample
442
443@noindent
444where @var{base} and @var{index} are the optional 32-bit base and
445index registers, @var{disp} is the optional displacement, and
446@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
447to calculate the address of the operand.  If no @var{scale} is
448specified, @var{scale} is taken to be 1.  @var{section} specifies the
449optional section register for the memory operand, and may override the
450default section register (see a 80386 manual for section register
451defaults). Note that section overrides in AT&T syntax @emph{must}
452be preceded by a @samp{%}.  If you specify a section override which
453coincides with the default section register, @code{@value{AS}} does @emph{not}
454output any section register override prefixes to assemble the given
455instruction.  Thus, section overrides can be specified to emphasize which
456section register is used for a given memory operand.
457
458Here are some examples of Intel and AT&T style memory references:
459
460@table @asis
461@item AT&T: @samp{-4(%ebp)}, Intel:  @samp{[ebp - 4]}
462@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
463missing, and the default section is used (@samp{%ss} for addressing with
464@samp{%ebp} as the base register).  @var{index}, @var{scale} are both missing.
465
466@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
467@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
468@samp{foo}.  All other fields are missing.  The section register here
469defaults to @samp{%ds}.
470
471@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
472This uses the value pointed to by @samp{foo} as a memory operand.
473Note that @var{base} and @var{index} are both missing, but there is only
474@emph{one} @samp{,}.  This is a syntactic exception.
475
476@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
477This selects the contents of the variable @samp{foo} with section
478register @var{section} being @samp{%gs}.
479@end table
480
481Absolute (as opposed to PC relative) call and jump operands must be
482prefixed with @samp{*}.  If no @samp{*} is specified, @code{@value{AS}}
483always chooses PC relative addressing for jump/call labels.
484
485Any instruction that has a memory operand, but no register operand,
486@emph{must} specify its size (byte, word, long, or quadruple) with an
487instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
488respectively).
489
490The x86-64 architecture adds an RIP (instruction pointer relative)
491addressing.  This addressing mode is specified by using @samp{rip} as a
492base register.  Only constant offsets are valid. For example:
493
494@table @asis
495@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
496Points to the address 1234 bytes past the end of the current
497instruction.
498
499@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
500Points to the @code{symbol} in RIP relative way, this is shorter than
501the default absolute addressing.
502@end table
503
504Other addressing modes remain unchanged in x86-64 architecture, except
505registers used are 64-bit instead of 32-bit.
506
507@node i386-Jumps
508@section Handling of Jump Instructions
509
510@cindex jump optimization, i386
511@cindex i386 jump optimization
512@cindex jump optimization, x86-64
513@cindex x86-64 jump optimization
514Jump instructions are always optimized to use the smallest possible
515displacements.  This is accomplished by using byte (8-bit) displacement
516jumps whenever the target is sufficiently close.  If a byte displacement
517is insufficient a long displacement is used.  We do not support
518word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
519instruction with the @samp{data16} instruction prefix), since the 80386
520insists upon masking @samp{%eip} to 16 bits after the word displacement
521is added. (See also @pxref{i386-Arch})
522
523Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
524@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
525displacements, so that if you use these instructions (@code{@value{GCC}} does
526not use them) you may get an error message (and incorrect code).  The AT&T
52780386 assembler tries to get around this problem by expanding @samp{jcxz foo}
528to
529
530@smallexample
531         jcxz cx_zero
532         jmp cx_nonzero
533cx_zero: jmp foo
534cx_nonzero:
535@end smallexample
536
537@node i386-Float
538@section Floating Point
539
540@cindex i386 floating point
541@cindex floating point, i386
542@cindex x86-64 floating point
543@cindex floating point, x86-64
544All 80387 floating point types except packed BCD are supported.
545(BCD support may be added without much difficulty).  These data
546types are 16-, 32-, and 64- bit integers, and single (32-bit),
547double (64-bit), and extended (80-bit) precision floating point.
548Each supported type has an instruction mnemonic suffix and a constructor
549associated with it.  Instruction mnemonic suffixes specify the operand's
550data type.  Constructors build these data types into memory.
551
552@cindex @code{float} directive, i386
553@cindex @code{single} directive, i386
554@cindex @code{double} directive, i386
555@cindex @code{tfloat} directive, i386
556@cindex @code{float} directive, x86-64
557@cindex @code{single} directive, x86-64
558@cindex @code{double} directive, x86-64
559@cindex @code{tfloat} directive, x86-64
560@itemize @bullet
561@item
562Floating point constructors are @samp{.float} or @samp{.single},
563@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
564These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
565and @samp{t}. @samp{t} stands for 80-bit (ten byte) real.  The 80387
566only supports this format via the @samp{fldt} (load 80-bit real to stack
567top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
568
569@cindex @code{word} directive, i386
570@cindex @code{long} directive, i386
571@cindex @code{int} directive, i386
572@cindex @code{quad} directive, i386
573@cindex @code{word} directive, x86-64
574@cindex @code{long} directive, x86-64
575@cindex @code{int} directive, x86-64
576@cindex @code{quad} directive, x86-64
577@item
578Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
579@samp{.quad} for the 16-, 32-, and 64-bit integer formats.  The
580corresponding instruction mnemonic suffixes are @samp{s} (single),
581@samp{l} (long), and @samp{q} (quad).  As with the 80-bit real format,
582the 64-bit @samp{q} format is only present in the @samp{fildq} (load
583quad integer to stack top) and @samp{fistpq} (store quad integer and pop
584stack) instructions.
585@end itemize
586
587Register to register operations should not use instruction mnemonic suffixes.
588@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
589wrote @samp{fst %st, %st(1)}, since all register to register operations
590use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
591which converts @samp{%st} from 80-bit to 64-bit floating point format,
592then stores the result in the 4 byte location @samp{mem})
593
594@node i386-SIMD
595@section Intel's MMX and AMD's 3DNow! SIMD Operations
596
597@cindex MMX, i386
598@cindex 3DNow!, i386
599@cindex SIMD, i386
600@cindex MMX, x86-64
601@cindex 3DNow!, x86-64
602@cindex SIMD, x86-64
603
604@code{@value{AS}} supports Intel's MMX instruction set (SIMD
605instructions for integer data), available on Intel's Pentium MMX
606processors and Pentium II processors, AMD's K6 and K6-2 processors,
607Cyrix' M2 processor, and probably others.  It also supports AMD's 3DNow!
608instruction set (SIMD instructions for 32-bit floating point data)
609available on AMD's K6-2 processor and possibly others in the future.
610
611Currently, @code{@value{AS}} does not support Intel's floating point
612SIMD, Katmai (KNI).
613
614The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
615@samp{%mm1}, ... @samp{%mm7}.  They contain eight 8-bit integers, four
61616-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
617floating point values.  The MMX registers cannot be used at the same time
618as the floating point stack.
619
620See Intel and AMD documentation, keeping in mind that the operand order in
621instructions is reversed from the Intel syntax.
622
623@node i386-16bit
624@section Writing 16-bit Code
625
626@cindex i386 16-bit code
627@cindex 16-bit code, i386
628@cindex real-mode code, i386
629@cindex @code{code16gcc} directive, i386
630@cindex @code{code16} directive, i386
631@cindex @code{code32} directive, i386
632@cindex @code{code64} directive, i386
633@cindex @code{code64} directive, x86-64
634While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
635or 64-bit x86-64 code depending on the default configuration,
636it also supports writing code to run in real mode or in 16-bit protected
637mode code segments.  To do this, put a @samp{.code16} or
638@samp{.code16gcc} directive before the assembly language instructions to
639be run in 16-bit mode.  You can switch @code{@value{AS}} back to writing
640normal 32-bit code with the @samp{.code32} directive.
641
642@samp{.code16gcc} provides experimental support for generating 16-bit
643code from gcc, and differs from @samp{.code16} in that @samp{call},
644@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
645@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
646default to 32-bit size.  This is so that the stack pointer is
647manipulated in the same way over function calls, allowing access to
648function parameters at the same stack offsets as in 32-bit mode.
649@samp{.code16gcc} also automatically adds address size prefixes where
650necessary to use the 32-bit addressing modes that gcc generates.
651
652The code which @code{@value{AS}} generates in 16-bit mode will not
653necessarily run on a 16-bit pre-80386 processor.  To write code that
654runs on such a processor, you must refrain from using @emph{any} 32-bit
655constructs which require @code{@value{AS}} to output address or operand
656size prefixes.
657
658Note that writing 16-bit code instructions by explicitly specifying a
659prefix or an instruction mnemonic suffix within a 32-bit code section
660generates different machine instructions than those generated for a
66116-bit code segment.  In a 32-bit code section, the following code
662generates the machine opcode bytes @samp{66 6a 04}, which pushes the
663value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
664
665@smallexample
666        pushw $4
667@end smallexample
668
669The same code in a 16-bit code section would generate the machine
670opcode bytes @samp{6a 04} (ie. without the operand size prefix), which
671is correct since the processor default operand size is assumed to be 16
672bits in a 16-bit code section.
673
674@node i386-Bugs
675@section AT&T Syntax bugs
676
677The UnixWare assembler, and probably other AT&T derived ix86 Unix
678assemblers, generate floating point instructions with reversed source
679and destination registers in certain cases.  Unfortunately, gcc and
680possibly many other programs use this reversed syntax, so we're stuck
681with it.
682
683For example
684
685@smallexample
686        fsub %st,%st(3)
687@end smallexample
688@noindent
689results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
690than the expected @samp{%st(3) - %st}.  This happens with all the
691non-commutative arithmetic floating point operations with two register
692operands where the source register is @samp{%st} and the destination
693register is @samp{%st(i)}.
694
695@node i386-Arch
696@section Specifying CPU Architecture
697
698@cindex arch directive, i386
699@cindex i386 arch directive
700@cindex arch directive, x86-64
701@cindex x86-64 arch directive
702
703@code{@value{AS}} may be told to assemble for a particular CPU
704(sub-)architecture with the @code{.arch @var{cpu_type}} directive.  This
705directive enables a warning when gas detects an instruction that is not
706supported on the CPU specified.  The choices for @var{cpu_type} are:
707
708@multitable @columnfractions .20 .20 .20 .20
709@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
710@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
711@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
712@item @samp{k6} @tab @samp{athlon} @samp{sledgehammer}
713@item @samp{.mmx} @samp{.sse} @samp{.sse2} @samp{.sse3} @samp{.3dnow}
714@end multitable
715
716Apart from the warning, there are only two other effects on
717@code{@value{AS}} operation;  Firstly, if you specify a CPU other than
718@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
719will automatically use a two byte opcode sequence.  The larger three
720byte opcode sequence is used on the 486 (and when no architecture is
721specified) because it executes faster on the 486.  Note that you can
722explicitly request the two byte opcode by writing @samp{sarl %eax}.
723Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
724@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
725conditional jumps will be promoted when necessary to a two instruction
726sequence consisting of a conditional jump of the opposite sense around
727an unconditional jump to the target.
728
729Following the CPU architecture (but not a sub-architecture, which are those
730starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
731control automatic promotion of conditional jumps. @samp{jumps} is the
732default, and enables jump promotion;  All external jumps will be of the long
733variety, and file-local jumps will be promoted as necessary.
734(@pxref{i386-Jumps})  @samp{nojumps} leaves external conditional jumps as
735byte offset jumps, and warns about file-local conditional jumps that
736@code{@value{AS}} promotes.
737Unconditional jumps are treated as for @samp{jumps}.
738
739For example
740
741@smallexample
742 .arch i8086,nojumps
743@end smallexample
744
745@node i386-Notes
746@section Notes
747
748@cindex i386 @code{mul}, @code{imul} instructions
749@cindex @code{mul} instruction, i386
750@cindex @code{imul} instruction, i386
751@cindex @code{mul} instruction, x86-64
752@cindex @code{imul} instruction, x86-64
753There is some trickery concerning the @samp{mul} and @samp{imul}
754instructions that deserves mention.  The 16-, 32-, 64- and 128-bit expanding
755multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
756for @samp{imul}) can be output only in the one operand form.  Thus,
757@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
758the expanding multiply would clobber the @samp{%edx} register, and this
759would confuse @code{@value{GCC}} output.  Use @samp{imul %ebx} to get the
76064-bit product in @samp{%edx:%eax}.
761
762We have added a two operand form of @samp{imul} when the first operand
763is an immediate mode expression and the second operand is a register.
764This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
765example, can be done with @samp{imul $69, %eax} rather than @samp{imul
766$69, %eax, %eax}.
767
768