1/* Generic symbol-table support for the BFD library.
2   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002, 2003, 2004
4   Free Software Foundation, Inc.
5   Written by Cygnus Support.
6
7   This file is part of BFD, the Binary File Descriptor library.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 2 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
22
23/*
24SECTION
25	Symbols
26
27	BFD tries to maintain as much symbol information as it can when
28	it moves information from file to file. BFD passes information
29	to applications though the <<asymbol>> structure. When the
30	application requests the symbol table, BFD reads the table in
31	the native form and translates parts of it into the internal
32	format. To maintain more than the information passed to
33	applications, some targets keep some information ``behind the
34	scenes'' in a structure only the particular back end knows
35	about. For example, the coff back end keeps the original
36	symbol table structure as well as the canonical structure when
37	a BFD is read in. On output, the coff back end can reconstruct
38	the output symbol table so that no information is lost, even
39	information unique to coff which BFD doesn't know or
40	understand. If a coff symbol table were read, but were written
41	through an a.out back end, all the coff specific information
42	would be lost. The symbol table of a BFD
43	is not necessarily read in until a canonicalize request is
44	made. Then the BFD back end fills in a table provided by the
45	application with pointers to the canonical information.  To
46	output symbols, the application provides BFD with a table of
47	pointers to pointers to <<asymbol>>s. This allows applications
48	like the linker to output a symbol as it was read, since the ``behind
49	the scenes'' information will be still available.
50@menu
51@* Reading Symbols::
52@* Writing Symbols::
53@* Mini Symbols::
54@* typedef asymbol::
55@* symbol handling functions::
56@end menu
57
58INODE
59Reading Symbols, Writing Symbols, Symbols, Symbols
60SUBSECTION
61	Reading symbols
62
63	There are two stages to reading a symbol table from a BFD:
64	allocating storage, and the actual reading process. This is an
65	excerpt from an application which reads the symbol table:
66
67|	  long storage_needed;
68|	  asymbol **symbol_table;
69|	  long number_of_symbols;
70|	  long i;
71|
72|	  storage_needed = bfd_get_symtab_upper_bound (abfd);
73|
74|         if (storage_needed < 0)
75|           FAIL
76|
77|	  if (storage_needed == 0)
78|	    return;
79|
80|	  symbol_table = xmalloc (storage_needed);
81|	    ...
82|	  number_of_symbols =
83|	     bfd_canonicalize_symtab (abfd, symbol_table);
84|
85|         if (number_of_symbols < 0)
86|           FAIL
87|
88|	  for (i = 0; i < number_of_symbols; i++)
89|	    process_symbol (symbol_table[i]);
90
91	All storage for the symbols themselves is in an objalloc
92	connected to the BFD; it is freed when the BFD is closed.
93
94INODE
95Writing Symbols, Mini Symbols, Reading Symbols, Symbols
96SUBSECTION
97	Writing symbols
98
99	Writing of a symbol table is automatic when a BFD open for
100	writing is closed. The application attaches a vector of
101	pointers to pointers to symbols to the BFD being written, and
102	fills in the symbol count. The close and cleanup code reads
103	through the table provided and performs all the necessary
104	operations. The BFD output code must always be provided with an
105	``owned'' symbol: one which has come from another BFD, or one
106	which has been created using <<bfd_make_empty_symbol>>.  Here is an
107	example showing the creation of a symbol table with only one element:
108
109|	#include "bfd.h"
110|	int main (void)
111|	{
112|	  bfd *abfd;
113|	  asymbol *ptrs[2];
114|	  asymbol *new;
115|
116|	  abfd = bfd_openw ("foo","a.out-sunos-big");
117|	  bfd_set_format (abfd, bfd_object);
118|	  new = bfd_make_empty_symbol (abfd);
119|	  new->name = "dummy_symbol";
120|	  new->section = bfd_make_section_old_way (abfd, ".text");
121|	  new->flags = BSF_GLOBAL;
122|	  new->value = 0x12345;
123|
124|	  ptrs[0] = new;
125|	  ptrs[1] = 0;
126|
127|	  bfd_set_symtab (abfd, ptrs, 1);
128|	  bfd_close (abfd);
129|	  return 0;
130|	}
131|
132|	./makesym
133|	nm foo
134|	00012345 A dummy_symbol
135
136	Many formats cannot represent arbitrary symbol information; for
137 	instance, the <<a.out>> object format does not allow an
138	arbitrary number of sections. A symbol pointing to a section
139	which is not one  of <<.text>>, <<.data>> or <<.bss>> cannot
140	be described.
141
142INODE
143Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144SUBSECTION
145	Mini Symbols
146
147	Mini symbols provide read-only access to the symbol table.
148	They use less memory space, but require more time to access.
149	They can be useful for tools like nm or objdump, which may
150	have to handle symbol tables of extremely large executables.
151
152	The <<bfd_read_minisymbols>> function will read the symbols
153	into memory in an internal form.  It will return a <<void *>>
154	pointer to a block of memory, a symbol count, and the size of
155	each symbol.  The pointer is allocated using <<malloc>>, and
156	should be freed by the caller when it is no longer needed.
157
158	The function <<bfd_minisymbol_to_symbol>> will take a pointer
159	to a minisymbol, and a pointer to a structure returned by
160	<<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161	The return value may or may not be the same as the value from
162	<<bfd_make_empty_symbol>> which was passed in.
163
164*/
165
166/*
167DOCDD
168INODE
169typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171*/
172/*
173SUBSECTION
174	typedef asymbol
175
176	An <<asymbol>> has the form:
177
178*/
179
180/*
181CODE_FRAGMENT
182
183.
184.typedef struct bfd_symbol
185.{
186.  {* A pointer to the BFD which owns the symbol. This information
187.     is necessary so that a back end can work out what additional
188.     information (invisible to the application writer) is carried
189.     with the symbol.
190.
191.     This field is *almost* redundant, since you can use section->owner
192.     instead, except that some symbols point to the global sections
193.     bfd_{abs,com,und}_section.  This could be fixed by making
194.     these globals be per-bfd (or per-target-flavor).  FIXME.  *}
195.  struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field.  *}
196.
197.  {* The text of the symbol. The name is left alone, and not copied; the
198.     application may not alter it.  *}
199.  const char *name;
200.
201.  {* The value of the symbol.  This really should be a union of a
202.     numeric value with a pointer, since some flags indicate that
203.     a pointer to another symbol is stored here.  *}
204.  symvalue value;
205.
206.  {* Attributes of a symbol.  *}
207.#define BSF_NO_FLAGS    0x00
208.
209.  {* The symbol has local scope; <<static>> in <<C>>. The value
210.     is the offset into the section of the data.  *}
211.#define BSF_LOCAL	0x01
212.
213.  {* The symbol has global scope; initialized data in <<C>>. The
214.     value is the offset into the section of the data.  *}
215.#define BSF_GLOBAL	0x02
216.
217.  {* The symbol has global scope and is exported. The value is
218.     the offset into the section of the data.  *}
219.#define BSF_EXPORT	BSF_GLOBAL {* No real difference.  *}
220.
221.  {* A normal C symbol would be one of:
222.     <<BSF_LOCAL>>, <<BSF_FORT_COMM>>,  <<BSF_UNDEFINED>> or
223.     <<BSF_GLOBAL>>.  *}
224.
225.  {* The symbol is a debugging record. The value has an arbitrary
226.     meaning, unless BSF_DEBUGGING_RELOC is also set.  *}
227.#define BSF_DEBUGGING	0x08
228.
229.  {* The symbol denotes a function entry point.  Used in ELF,
230.     perhaps others someday.  *}
231.#define BSF_FUNCTION    0x10
232.
233.  {* Used by the linker.  *}
234.#define BSF_KEEP        0x20
235.#define BSF_KEEP_G      0x40
236.
237.  {* A weak global symbol, overridable without warnings by
238.     a regular global symbol of the same name.  *}
239.#define BSF_WEAK        0x80
240.
241.  {* This symbol was created to point to a section, e.g. ELF's
242.     STT_SECTION symbols.  *}
243.#define BSF_SECTION_SYM 0x100
244.
245.  {* The symbol used to be a common symbol, but now it is
246.     allocated.  *}
247.#define BSF_OLD_COMMON  0x200
248.
249.  {* The default value for common data.  *}
250.#define BFD_FORT_COMM_DEFAULT_VALUE 0
251.
252.  {* In some files the type of a symbol sometimes alters its
253.     location in an output file - ie in coff a <<ISFCN>> symbol
254.     which is also <<C_EXT>> symbol appears where it was
255.     declared and not at the end of a section.  This bit is set
256.     by the target BFD part to convey this information.  *}
257.#define BSF_NOT_AT_END    0x400
258.
259.  {* Signal that the symbol is the label of constructor section.  *}
260.#define BSF_CONSTRUCTOR   0x800
261.
262.  {* Signal that the symbol is a warning symbol.  The name is a
263.     warning.  The name of the next symbol is the one to warn about;
264.     if a reference is made to a symbol with the same name as the next
265.     symbol, a warning is issued by the linker.  *}
266.#define BSF_WARNING       0x1000
267.
268.  {* Signal that the symbol is indirect.  This symbol is an indirect
269.     pointer to the symbol with the same name as the next symbol.  *}
270.#define BSF_INDIRECT      0x2000
271.
272.  {* BSF_FILE marks symbols that contain a file name.  This is used
273.     for ELF STT_FILE symbols.  *}
274.#define BSF_FILE          0x4000
275.
276.  {* Symbol is from dynamic linking information.  *}
277.#define BSF_DYNAMIC	   0x8000
278.
279.  {* The symbol denotes a data object.  Used in ELF, and perhaps
280.     others someday.  *}
281.#define BSF_OBJECT	   0x10000
282.
283.  {* This symbol is a debugging symbol.  The value is the offset
284.     into the section of the data.  BSF_DEBUGGING should be set
285.     as well.  *}
286.#define BSF_DEBUGGING_RELOC 0x20000
287.
288.  {* This symbol is thread local.  Used in ELF.  *}
289.#define BSF_THREAD_LOCAL  0x40000
290.
291.  flagword flags;
292.
293.  {* A pointer to the section to which this symbol is
294.     relative.  This will always be non NULL, there are special
295.     sections for undefined and absolute symbols.  *}
296.  struct bfd_section *section;
297.
298.  {* Back end special data.  *}
299.  union
300.    {
301.      void *p;
302.      bfd_vma i;
303.    }
304.  udata;
305.}
306.asymbol;
307.
308*/
309
310#include "bfd.h"
311#include "sysdep.h"
312#include "libbfd.h"
313#include "safe-ctype.h"
314#include "bfdlink.h"
315#include "aout/stab_gnu.h"
316
317/*
318DOCDD
319INODE
320symbol handling functions,  , typedef asymbol, Symbols
321SUBSECTION
322	Symbol handling functions
323*/
324
325/*
326FUNCTION
327	bfd_get_symtab_upper_bound
328
329DESCRIPTION
330	Return the number of bytes required to store a vector of pointers
331	to <<asymbols>> for all the symbols in the BFD @var{abfd},
332	including a terminal NULL pointer. If there are no symbols in
333	the BFD, then return 0.  If an error occurs, return -1.
334
335.#define bfd_get_symtab_upper_bound(abfd) \
336.     BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
337.
338*/
339
340/*
341FUNCTION
342	bfd_is_local_label
343
344SYNOPSIS
345        bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
346
347DESCRIPTION
348	Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
349	a compiler generated local label, else return FALSE.
350*/
351
352bfd_boolean
353bfd_is_local_label (bfd *abfd, asymbol *sym)
354{
355  /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
356     starts with '.' is local.  This would accidentally catch section names
357     if we didn't reject them here.  */
358  if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
359    return FALSE;
360  if (sym->name == NULL)
361    return FALSE;
362  return bfd_is_local_label_name (abfd, sym->name);
363}
364
365/*
366FUNCTION
367	bfd_is_local_label_name
368
369SYNOPSIS
370        bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
371
372DESCRIPTION
373	Return TRUE if a symbol with the name @var{name} in the BFD
374	@var{abfd} is a compiler generated local label, else return
375	FALSE.  This just checks whether the name has the form of a
376	local label.
377
378.#define bfd_is_local_label_name(abfd, name) \
379.  BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
380.
381*/
382
383/*
384FUNCTION
385	bfd_is_target_special_symbol
386
387SYNOPSIS
388        bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
389
390DESCRIPTION
391	Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
392	special to the particular target represented by the BFD.  Such symbols
393	should normally not be mentioned to the user.
394
395.#define bfd_is_target_special_symbol(abfd, sym) \
396.  BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
397.
398*/
399
400/*
401FUNCTION
402	bfd_canonicalize_symtab
403
404DESCRIPTION
405	Read the symbols from the BFD @var{abfd}, and fills in
406	the vector @var{location} with pointers to the symbols and
407	a trailing NULL.
408	Return the actual number of symbol pointers, not
409	including the NULL.
410
411.#define bfd_canonicalize_symtab(abfd, location) \
412.  BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
413.
414*/
415
416/*
417FUNCTION
418	bfd_set_symtab
419
420SYNOPSIS
421	bfd_boolean bfd_set_symtab
422	  (bfd *abfd, asymbol **location, unsigned int count);
423
424DESCRIPTION
425	Arrange that when the output BFD @var{abfd} is closed,
426	the table @var{location} of @var{count} pointers to symbols
427	will be written.
428*/
429
430bfd_boolean
431bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
432{
433  if (abfd->format != bfd_object || bfd_read_p (abfd))
434    {
435      bfd_set_error (bfd_error_invalid_operation);
436      return FALSE;
437    }
438
439  bfd_get_outsymbols (abfd) = location;
440  bfd_get_symcount (abfd) = symcount;
441  return TRUE;
442}
443
444/*
445FUNCTION
446	bfd_print_symbol_vandf
447
448SYNOPSIS
449	void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
450
451DESCRIPTION
452	Print the value and flags of the @var{symbol} supplied to the
453	stream @var{file}.
454*/
455void
456bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
457{
458  FILE *file = arg;
459
460  flagword type = symbol->flags;
461
462  if (symbol->section != NULL)
463    bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
464  else
465    bfd_fprintf_vma (abfd, file, symbol->value);
466
467  /* This presumes that a symbol can not be both BSF_DEBUGGING and
468     BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
469     BSF_OBJECT.  */
470  fprintf (file, " %c%c%c%c%c%c%c",
471	   ((type & BSF_LOCAL)
472	    ? (type & BSF_GLOBAL) ? '!' : 'l'
473	    : (type & BSF_GLOBAL) ? 'g' : ' '),
474	   (type & BSF_WEAK) ? 'w' : ' ',
475	   (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
476	   (type & BSF_WARNING) ? 'W' : ' ',
477	   (type & BSF_INDIRECT) ? 'I' : ' ',
478	   (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
479	   ((type & BSF_FUNCTION)
480	    ? 'F'
481	    : ((type & BSF_FILE)
482	       ? 'f'
483	       : ((type & BSF_OBJECT) ? 'O' : ' '))));
484}
485
486/*
487FUNCTION
488	bfd_make_empty_symbol
489
490DESCRIPTION
491	Create a new <<asymbol>> structure for the BFD @var{abfd}
492	and return a pointer to it.
493
494	This routine is necessary because each back end has private
495	information surrounding the <<asymbol>>. Building your own
496	<<asymbol>> and pointing to it will not create the private
497	information, and will cause problems later on.
498
499.#define bfd_make_empty_symbol(abfd) \
500.  BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
501.
502*/
503
504/*
505FUNCTION
506	_bfd_generic_make_empty_symbol
507
508SYNOPSIS
509	asymbol *_bfd_generic_make_empty_symbol (bfd *);
510
511DESCRIPTION
512	Create a new <<asymbol>> structure for the BFD @var{abfd}
513	and return a pointer to it.  Used by core file routines,
514	binary back-end and anywhere else where no private info
515	is needed.
516*/
517
518asymbol *
519_bfd_generic_make_empty_symbol (bfd *abfd)
520{
521  bfd_size_type amt = sizeof (asymbol);
522  asymbol *new = bfd_zalloc (abfd, amt);
523  if (new)
524    new->the_bfd = abfd;
525  return new;
526}
527
528/*
529FUNCTION
530	bfd_make_debug_symbol
531
532DESCRIPTION
533	Create a new <<asymbol>> structure for the BFD @var{abfd},
534	to be used as a debugging symbol.  Further details of its use have
535	yet to be worked out.
536
537.#define bfd_make_debug_symbol(abfd,ptr,size) \
538.  BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
539.
540*/
541
542struct section_to_type
543{
544  const char *section;
545  char type;
546};
547
548/* Map section names to POSIX/BSD single-character symbol types.
549   This table is probably incomplete.  It is sorted for convenience of
550   adding entries.  Since it is so short, a linear search is used.  */
551static const struct section_to_type stt[] =
552{
553  {".bss", 'b'},
554  {"code", 't'},		/* MRI .text */
555  {".data", 'd'},
556  {"*DEBUG*", 'N'},
557  {".debug", 'N'},              /* MSVC's .debug (non-standard debug syms) */
558  {".drectve", 'i'},            /* MSVC's .drective section */
559  {".edata", 'e'},              /* MSVC's .edata (export) section */
560  {".fini", 't'},		/* ELF fini section */
561  {".idata", 'i'},              /* MSVC's .idata (import) section */
562  {".init", 't'},		/* ELF init section */
563  {".pdata", 'p'},              /* MSVC's .pdata (stack unwind) section */
564  {".rdata", 'r'},		/* Read only data.  */
565  {".rodata", 'r'},		/* Read only data.  */
566  {".sbss", 's'},		/* Small BSS (uninitialized data).  */
567  {".scommon", 'c'},		/* Small common.  */
568  {".sdata", 'g'},		/* Small initialized data.  */
569  {".text", 't'},
570  {"vars", 'd'},		/* MRI .data */
571  {"zerovars", 'b'},		/* MRI .bss */
572  {0, 0}
573};
574
575/* Return the single-character symbol type corresponding to
576   section S, or '?' for an unknown COFF section.
577
578   Check for any leading string which matches, so .text5 returns
579   't' as well as .text */
580
581static char
582coff_section_type (const char *s)
583{
584  const struct section_to_type *t;
585
586  for (t = &stt[0]; t->section; t++)
587    if (!strncmp (s, t->section, strlen (t->section)))
588      return t->type;
589
590  return '?';
591}
592
593/* Return the single-character symbol type corresponding to section
594   SECTION, or '?' for an unknown section.  This uses section flags to
595   identify sections.
596
597   FIXME These types are unhandled: c, i, e, p.  If we handled these also,
598   we could perhaps obsolete coff_section_type.  */
599
600static char
601decode_section_type (const struct bfd_section *section)
602{
603  if (section->flags & SEC_CODE)
604    return 't';
605  if (section->flags & SEC_DATA)
606    {
607      if (section->flags & SEC_READONLY)
608	return 'r';
609      else if (section->flags & SEC_SMALL_DATA)
610	return 'g';
611      else
612	return 'd';
613    }
614  if ((section->flags & SEC_HAS_CONTENTS) == 0)
615    {
616      if (section->flags & SEC_SMALL_DATA)
617	return 's';
618      else
619	return 'b';
620    }
621  if (section->flags & SEC_DEBUGGING)
622    return 'N';
623  if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
624    return 'n';
625
626  return '?';
627}
628
629/*
630FUNCTION
631	bfd_decode_symclass
632
633DESCRIPTION
634	Return a character corresponding to the symbol
635	class of @var{symbol}, or '?' for an unknown class.
636
637SYNOPSIS
638	int bfd_decode_symclass (asymbol *symbol);
639*/
640int
641bfd_decode_symclass (asymbol *symbol)
642{
643  char c;
644
645  if (bfd_is_com_section (symbol->section))
646    return 'C';
647  if (bfd_is_und_section (symbol->section))
648    {
649      if (symbol->flags & BSF_WEAK)
650	{
651	  /* If weak, determine if it's specifically an object
652	     or non-object weak.  */
653	  if (symbol->flags & BSF_OBJECT)
654	    return 'v';
655	  else
656	    return 'w';
657	}
658      else
659	return 'U';
660    }
661  if (bfd_is_ind_section (symbol->section))
662    return 'I';
663  if (symbol->flags & BSF_WEAK)
664    {
665      /* If weak, determine if it's specifically an object
666	 or non-object weak.  */
667      if (symbol->flags & BSF_OBJECT)
668	return 'V';
669      else
670	return 'W';
671    }
672  if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
673    return '?';
674
675  if (bfd_is_abs_section (symbol->section))
676    c = 'a';
677  else if (symbol->section)
678    {
679      c = coff_section_type (symbol->section->name);
680      if (c == '?')
681	c = decode_section_type (symbol->section);
682    }
683  else
684    return '?';
685  if (symbol->flags & BSF_GLOBAL)
686    c = TOUPPER (c);
687  return c;
688
689  /* We don't have to handle these cases just yet, but we will soon:
690     N_SETV: 'v';
691     N_SETA: 'l';
692     N_SETT: 'x';
693     N_SETD: 'z';
694     N_SETB: 's';
695     N_INDR: 'i';
696     */
697}
698
699/*
700FUNCTION
701	bfd_is_undefined_symclass
702
703DESCRIPTION
704	Returns non-zero if the class symbol returned by
705	bfd_decode_symclass represents an undefined symbol.
706	Returns zero otherwise.
707
708SYNOPSIS
709	bfd_boolean bfd_is_undefined_symclass (int symclass);
710*/
711
712bfd_boolean
713bfd_is_undefined_symclass (int symclass)
714{
715  return symclass == 'U' || symclass == 'w' || symclass == 'v';
716}
717
718/*
719FUNCTION
720	bfd_symbol_info
721
722DESCRIPTION
723	Fill in the basic info about symbol that nm needs.
724	Additional info may be added by the back-ends after
725	calling this function.
726
727SYNOPSIS
728	void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
729*/
730
731void
732bfd_symbol_info (asymbol *symbol, symbol_info *ret)
733{
734  ret->type = bfd_decode_symclass (symbol);
735
736  if (bfd_is_undefined_symclass (ret->type))
737    ret->value = 0;
738  else
739    ret->value = symbol->value + symbol->section->vma;
740
741  ret->name = symbol->name;
742}
743
744/*
745FUNCTION
746	bfd_copy_private_symbol_data
747
748SYNOPSIS
749	bfd_boolean bfd_copy_private_symbol_data
750	  (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
751
752DESCRIPTION
753	Copy private symbol information from @var{isym} in the BFD
754	@var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
755	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
756	returns are:
757
758	o <<bfd_error_no_memory>> -
759	Not enough memory exists to create private data for @var{osec}.
760
761.#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
762.  BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
763.            (ibfd, isymbol, obfd, osymbol))
764.
765*/
766
767/* The generic version of the function which returns mini symbols.
768   This is used when the backend does not provide a more efficient
769   version.  It just uses BFD asymbol structures as mini symbols.  */
770
771long
772_bfd_generic_read_minisymbols (bfd *abfd,
773			       bfd_boolean dynamic,
774			       void **minisymsp,
775			       unsigned int *sizep)
776{
777  long storage;
778  asymbol **syms = NULL;
779  long symcount;
780
781  if (dynamic)
782    storage = bfd_get_dynamic_symtab_upper_bound (abfd);
783  else
784    storage = bfd_get_symtab_upper_bound (abfd);
785  if (storage < 0)
786    goto error_return;
787  if (storage == 0)
788    return 0;
789
790  syms = bfd_malloc (storage);
791  if (syms == NULL)
792    goto error_return;
793
794  if (dynamic)
795    symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
796  else
797    symcount = bfd_canonicalize_symtab (abfd, syms);
798  if (symcount < 0)
799    goto error_return;
800
801  *minisymsp = syms;
802  *sizep = sizeof (asymbol *);
803  return symcount;
804
805 error_return:
806  bfd_set_error (bfd_error_no_symbols);
807  if (syms != NULL)
808    free (syms);
809  return -1;
810}
811
812/* The generic version of the function which converts a minisymbol to
813   an asymbol.  We don't worry about the sym argument we are passed;
814   we just return the asymbol the minisymbol points to.  */
815
816asymbol *
817_bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
818				   bfd_boolean dynamic ATTRIBUTE_UNUSED,
819				   const void *minisym,
820				   asymbol *sym ATTRIBUTE_UNUSED)
821{
822  return *(asymbol **) minisym;
823}
824
825/* Look through stabs debugging information in .stab and .stabstr
826   sections to find the source file and line closest to a desired
827   location.  This is used by COFF and ELF targets.  It sets *pfound
828   to TRUE if it finds some information.  The *pinfo field is used to
829   pass cached information in and out of this routine; this first time
830   the routine is called for a BFD, *pinfo should be NULL.  The value
831   placed in *pinfo should be saved with the BFD, and passed back each
832   time this function is called.  */
833
834/* We use a cache by default.  */
835
836#define ENABLE_CACHING
837
838/* We keep an array of indexentry structures to record where in the
839   stabs section we should look to find line number information for a
840   particular address.  */
841
842struct indexentry
843{
844  bfd_vma val;
845  bfd_byte *stab;
846  bfd_byte *str;
847  char *directory_name;
848  char *file_name;
849  char *function_name;
850};
851
852/* Compare two indexentry structures.  This is called via qsort.  */
853
854static int
855cmpindexentry (const void *a, const void *b)
856{
857  const struct indexentry *contestantA = a;
858  const struct indexentry *contestantB = b;
859
860  if (contestantA->val < contestantB->val)
861    return -1;
862  else if (contestantA->val > contestantB->val)
863    return 1;
864  else
865    return 0;
866}
867
868/* A pointer to this structure is stored in *pinfo.  */
869
870struct stab_find_info
871{
872  /* The .stab section.  */
873  asection *stabsec;
874  /* The .stabstr section.  */
875  asection *strsec;
876  /* The contents of the .stab section.  */
877  bfd_byte *stabs;
878  /* The contents of the .stabstr section.  */
879  bfd_byte *strs;
880
881  /* A table that indexes stabs by memory address.  */
882  struct indexentry *indextable;
883  /* The number of entries in indextable.  */
884  int indextablesize;
885
886#ifdef ENABLE_CACHING
887  /* Cached values to restart quickly.  */
888  struct indexentry *cached_indexentry;
889  bfd_vma cached_offset;
890  bfd_byte *cached_stab;
891  char *cached_file_name;
892#endif
893
894  /* Saved ptr to malloc'ed filename.  */
895  char *filename;
896};
897
898bfd_boolean
899_bfd_stab_section_find_nearest_line (bfd *abfd,
900				     asymbol **symbols,
901				     asection *section,
902				     bfd_vma offset,
903				     bfd_boolean *pfound,
904				     const char **pfilename,
905				     const char **pfnname,
906				     unsigned int *pline,
907				     void **pinfo)
908{
909  struct stab_find_info *info;
910  bfd_size_type stabsize, strsize;
911  bfd_byte *stab, *str;
912  bfd_byte *last_stab = NULL;
913  bfd_size_type stroff;
914  struct indexentry *indexentry;
915  char *file_name;
916  char *directory_name;
917  int saw_fun;
918  bfd_boolean saw_line, saw_func;
919
920  *pfound = FALSE;
921  *pfilename = bfd_get_filename (abfd);
922  *pfnname = NULL;
923  *pline = 0;
924
925  /* Stabs entries use a 12 byte format:
926       4 byte string table index
927       1 byte stab type
928       1 byte stab other field
929       2 byte stab desc field
930       4 byte stab value
931     FIXME: This will have to change for a 64 bit object format.
932
933     The stabs symbols are divided into compilation units.  For the
934     first entry in each unit, the type of 0, the value is the length
935     of the string table for this unit, and the desc field is the
936     number of stabs symbols for this unit.  */
937
938#define STRDXOFF (0)
939#define TYPEOFF (4)
940#define OTHEROFF (5)
941#define DESCOFF (6)
942#define VALOFF (8)
943#define STABSIZE (12)
944
945  info = *pinfo;
946  if (info != NULL)
947    {
948      if (info->stabsec == NULL || info->strsec == NULL)
949	{
950	  /* No stabs debugging information.  */
951	  return TRUE;
952	}
953
954      stabsize = (info->stabsec->rawsize
955		  ? info->stabsec->rawsize
956		  : info->stabsec->size);
957      strsize = (info->strsec->rawsize
958		 ? info->strsec->rawsize
959		 : info->strsec->size);
960    }
961  else
962    {
963      long reloc_size, reloc_count;
964      arelent **reloc_vector;
965      int i;
966      char *name;
967      char *function_name;
968      bfd_size_type amt = sizeof *info;
969
970      info = bfd_zalloc (abfd, amt);
971      if (info == NULL)
972	return FALSE;
973
974      /* FIXME: When using the linker --split-by-file or
975	 --split-by-reloc options, it is possible for the .stab and
976	 .stabstr sections to be split.  We should handle that.  */
977
978      info->stabsec = bfd_get_section_by_name (abfd, ".stab");
979      info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
980
981      if (info->stabsec == NULL || info->strsec == NULL)
982	{
983	  /* No stabs debugging information.  Set *pinfo so that we
984             can return quickly in the info != NULL case above.  */
985	  *pinfo = info;
986	  return TRUE;
987	}
988
989      stabsize = (info->stabsec->rawsize
990		  ? info->stabsec->rawsize
991		  : info->stabsec->size);
992      strsize = (info->strsec->rawsize
993		 ? info->strsec->rawsize
994		 : info->strsec->size);
995
996      info->stabs = bfd_alloc (abfd, stabsize);
997      info->strs = bfd_alloc (abfd, strsize);
998      if (info->stabs == NULL || info->strs == NULL)
999	return FALSE;
1000
1001      if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1002				      0, stabsize)
1003	  || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1004					 0, strsize))
1005	return FALSE;
1006
1007      /* If this is a relocatable object file, we have to relocate
1008	 the entries in .stab.  This should always be simple 32 bit
1009	 relocations against symbols defined in this object file, so
1010	 this should be no big deal.  */
1011      reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1012      if (reloc_size < 0)
1013	return FALSE;
1014      reloc_vector = bfd_malloc (reloc_size);
1015      if (reloc_vector == NULL && reloc_size != 0)
1016	return FALSE;
1017      reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1018					    symbols);
1019      if (reloc_count < 0)
1020	{
1021	  if (reloc_vector != NULL)
1022	    free (reloc_vector);
1023	  return FALSE;
1024	}
1025      if (reloc_count > 0)
1026	{
1027	  arelent **pr;
1028
1029	  for (pr = reloc_vector; *pr != NULL; pr++)
1030	    {
1031	      arelent *r;
1032	      unsigned long val;
1033	      asymbol *sym;
1034
1035	      r = *pr;
1036	      /* Ignore R_*_NONE relocs.  */
1037	      if (r->howto->dst_mask == 0)
1038		continue;
1039
1040	      if (r->howto->rightshift != 0
1041		  || r->howto->size != 2
1042		  || r->howto->bitsize != 32
1043		  || r->howto->pc_relative
1044		  || r->howto->bitpos != 0
1045		  || r->howto->dst_mask != 0xffffffff)
1046		{
1047		  (*_bfd_error_handler)
1048		    (_("Unsupported .stab relocation"));
1049		  bfd_set_error (bfd_error_invalid_operation);
1050		  if (reloc_vector != NULL)
1051		    free (reloc_vector);
1052		  return FALSE;
1053		}
1054
1055	      val = bfd_get_32 (abfd, info->stabs + r->address);
1056	      val &= r->howto->src_mask;
1057	      sym = *r->sym_ptr_ptr;
1058	      val += sym->value + sym->section->vma + r->addend;
1059	      bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1060	    }
1061	}
1062
1063      if (reloc_vector != NULL)
1064	free (reloc_vector);
1065
1066      /* First time through this function, build a table matching
1067	 function VM addresses to stabs, then sort based on starting
1068	 VM address.  Do this in two passes: once to count how many
1069	 table entries we'll need, and a second to actually build the
1070	 table.  */
1071
1072      info->indextablesize = 0;
1073      saw_fun = 1;
1074      for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1075	{
1076	  if (stab[TYPEOFF] == (bfd_byte) N_SO)
1077	    {
1078	      /* N_SO with null name indicates EOF */
1079	      if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1080		continue;
1081
1082	      /* if we did not see a function def, leave space for one.  */
1083	      if (saw_fun == 0)
1084		++info->indextablesize;
1085
1086	      saw_fun = 0;
1087
1088	      /* two N_SO's in a row is a filename and directory. Skip */
1089	      if (stab + STABSIZE < info->stabs + stabsize
1090		  && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1091		{
1092		  stab += STABSIZE;
1093		}
1094	    }
1095	  else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1096	    {
1097	      saw_fun = 1;
1098	      ++info->indextablesize;
1099	    }
1100	}
1101
1102      if (saw_fun == 0)
1103	++info->indextablesize;
1104
1105      if (info->indextablesize == 0)
1106	return TRUE;
1107      ++info->indextablesize;
1108
1109      amt = info->indextablesize;
1110      amt *= sizeof (struct indexentry);
1111      info->indextable = bfd_alloc (abfd, amt);
1112      if (info->indextable == NULL)
1113	return FALSE;
1114
1115      file_name = NULL;
1116      directory_name = NULL;
1117      saw_fun = 1;
1118
1119      for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1120	   i < info->indextablesize && stab < info->stabs + stabsize;
1121	   stab += STABSIZE)
1122	{
1123	  switch (stab[TYPEOFF])
1124	    {
1125	    case 0:
1126	      /* This is the first entry in a compilation unit.  */
1127	      if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1128		break;
1129	      str += stroff;
1130	      stroff = bfd_get_32 (abfd, stab + VALOFF);
1131	      break;
1132
1133	    case N_SO:
1134	      /* The main file name.  */
1135
1136	      /* The following code creates a new indextable entry with
1137	         a NULL function name if there were no N_FUNs in a file.
1138	         Note that a N_SO without a file name is an EOF and
1139	         there could be 2 N_SO following it with the new filename
1140	         and directory.  */
1141	      if (saw_fun == 0)
1142		{
1143		  info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1144		  info->indextable[i].stab = last_stab;
1145		  info->indextable[i].str = str;
1146		  info->indextable[i].directory_name = directory_name;
1147		  info->indextable[i].file_name = file_name;
1148		  info->indextable[i].function_name = NULL;
1149		  ++i;
1150		}
1151	      saw_fun = 0;
1152
1153	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1154	      if (*file_name == '\0')
1155		{
1156		  directory_name = NULL;
1157		  file_name = NULL;
1158		  saw_fun = 1;
1159		}
1160	      else
1161		{
1162		  last_stab = stab;
1163		  if (stab + STABSIZE >= info->stabs + stabsize
1164		      || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1165		    {
1166		      directory_name = NULL;
1167		    }
1168		  else
1169		    {
1170		      /* Two consecutive N_SOs are a directory and a
1171			 file name.  */
1172		      stab += STABSIZE;
1173		      directory_name = file_name;
1174		      file_name = ((char *) str
1175				   + bfd_get_32 (abfd, stab + STRDXOFF));
1176		    }
1177		}
1178	      break;
1179
1180	    case N_SOL:
1181	      /* The name of an include file.  */
1182	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1183	      break;
1184
1185	    case N_FUN:
1186	      /* A function name.  */
1187	      saw_fun = 1;
1188	      name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1189
1190	      if (*name == '\0')
1191		name = NULL;
1192
1193	      function_name = name;
1194
1195	      if (name == NULL)
1196		continue;
1197
1198	      info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1199	      info->indextable[i].stab = stab;
1200	      info->indextable[i].str = str;
1201	      info->indextable[i].directory_name = directory_name;
1202	      info->indextable[i].file_name = file_name;
1203	      info->indextable[i].function_name = function_name;
1204	      ++i;
1205	      break;
1206	    }
1207	}
1208
1209      if (saw_fun == 0)
1210	{
1211	  info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1212	  info->indextable[i].stab = last_stab;
1213	  info->indextable[i].str = str;
1214	  info->indextable[i].directory_name = directory_name;
1215	  info->indextable[i].file_name = file_name;
1216	  info->indextable[i].function_name = NULL;
1217	  ++i;
1218	}
1219
1220      info->indextable[i].val = (bfd_vma) -1;
1221      info->indextable[i].stab = info->stabs + stabsize;
1222      info->indextable[i].str = str;
1223      info->indextable[i].directory_name = NULL;
1224      info->indextable[i].file_name = NULL;
1225      info->indextable[i].function_name = NULL;
1226      ++i;
1227
1228      info->indextablesize = i;
1229      qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1230	     cmpindexentry);
1231
1232      *pinfo = info;
1233    }
1234
1235  /* We are passed a section relative offset.  The offsets in the
1236     stabs information are absolute.  */
1237  offset += bfd_get_section_vma (abfd, section);
1238
1239#ifdef ENABLE_CACHING
1240  if (info->cached_indexentry != NULL
1241      && offset >= info->cached_offset
1242      && offset < (info->cached_indexentry + 1)->val)
1243    {
1244      stab = info->cached_stab;
1245      indexentry = info->cached_indexentry;
1246      file_name = info->cached_file_name;
1247    }
1248  else
1249#endif
1250    {
1251      long low, high;
1252      long mid = -1;
1253
1254      /* Cache non-existent or invalid.  Do binary search on
1255         indextable.  */
1256      indexentry = NULL;
1257
1258      low = 0;
1259      high = info->indextablesize - 1;
1260      while (low != high)
1261	{
1262	  mid = (high + low) / 2;
1263	  if (offset >= info->indextable[mid].val
1264	      && offset < info->indextable[mid + 1].val)
1265	    {
1266	      indexentry = &info->indextable[mid];
1267	      break;
1268	    }
1269
1270	  if (info->indextable[mid].val > offset)
1271	    high = mid;
1272	  else
1273	    low = mid + 1;
1274	}
1275
1276      if (indexentry == NULL)
1277	return TRUE;
1278
1279      stab = indexentry->stab + STABSIZE;
1280      file_name = indexentry->file_name;
1281    }
1282
1283  directory_name = indexentry->directory_name;
1284  str = indexentry->str;
1285
1286  saw_line = FALSE;
1287  saw_func = FALSE;
1288  for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1289    {
1290      bfd_boolean done;
1291      bfd_vma val;
1292
1293      done = FALSE;
1294
1295      switch (stab[TYPEOFF])
1296	{
1297	case N_SOL:
1298	  /* The name of an include file.  */
1299	  val = bfd_get_32 (abfd, stab + VALOFF);
1300	  if (val <= offset)
1301	    {
1302	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1303	      *pline = 0;
1304	    }
1305	  break;
1306
1307	case N_SLINE:
1308	case N_DSLINE:
1309	case N_BSLINE:
1310	  /* A line number.  If the function was specified, then the value
1311	     is relative to the start of the function.  Otherwise, the
1312	     value is an absolute address.  */
1313	  val = ((indexentry->function_name ? indexentry->val : 0)
1314		 + bfd_get_32 (abfd, stab + VALOFF));
1315	  /* If this line starts before our desired offset, or if it's
1316	     the first line we've been able to find, use it.  The
1317	     !saw_line check works around a bug in GCC 2.95.3, which emits
1318	     the first N_SLINE late.  */
1319	  if (!saw_line || val <= offset)
1320	    {
1321	      *pline = bfd_get_16 (abfd, stab + DESCOFF);
1322
1323#ifdef ENABLE_CACHING
1324	      info->cached_stab = stab;
1325	      info->cached_offset = val;
1326	      info->cached_file_name = file_name;
1327	      info->cached_indexentry = indexentry;
1328#endif
1329	    }
1330	  if (val > offset)
1331	    done = TRUE;
1332	  saw_line = TRUE;
1333	  break;
1334
1335	case N_FUN:
1336	case N_SO:
1337	  if (saw_func || saw_line)
1338	    done = TRUE;
1339	  saw_func = TRUE;
1340	  break;
1341	}
1342
1343      if (done)
1344	break;
1345    }
1346
1347  *pfound = TRUE;
1348
1349  if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1350      || directory_name == NULL)
1351    *pfilename = file_name;
1352  else
1353    {
1354      size_t dirlen;
1355
1356      dirlen = strlen (directory_name);
1357      if (info->filename == NULL
1358	  || strncmp (info->filename, directory_name, dirlen) != 0
1359	  || strcmp (info->filename + dirlen, file_name) != 0)
1360	{
1361	  size_t len;
1362
1363	  if (info->filename != NULL)
1364	    free (info->filename);
1365	  len = strlen (file_name) + 1;
1366	  info->filename = bfd_malloc (dirlen + len);
1367	  if (info->filename == NULL)
1368	    return FALSE;
1369	  memcpy (info->filename, directory_name, dirlen);
1370	  memcpy (info->filename + dirlen, file_name, len);
1371	}
1372
1373      *pfilename = info->filename;
1374    }
1375
1376  if (indexentry->function_name != NULL)
1377    {
1378      char *s;
1379
1380      /* This will typically be something like main:F(0,1), so we want
1381         to clobber the colon.  It's OK to change the name, since the
1382         string is in our own local storage anyhow.  */
1383      s = strchr (indexentry->function_name, ':');
1384      if (s != NULL)
1385	*s = '\0';
1386
1387      *pfnname = indexentry->function_name;
1388    }
1389
1390  return TRUE;
1391}
1392