1// Vector implementation -*- C++ -*-
2
3// Copyright (C) 2001-2015 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation.  Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose.  It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1996
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation.  Silicon Graphics makes no
47 * representations about the suitability of this  software for any
48 * purpose.  It is provided "as is" without express or implied warranty.
49 */
50
51/** @file bits/stl_vector.h
52 *  This is an internal header file, included by other library headers.
53 *  Do not attempt to use it directly. @headername{vector}
54 */
55
56#ifndef _STL_VECTOR_H
57#define _STL_VECTOR_H 1
58
59#include <bits/stl_iterator_base_funcs.h>
60#include <bits/functexcept.h>
61#include <bits/concept_check.h>
62#if __cplusplus >= 201103L
63#include <initializer_list>
64#endif
65
66namespace std _GLIBCXX_VISIBILITY(default)
67{
68_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
69
70  /// See bits/stl_deque.h's _Deque_base for an explanation.
71  template<typename _Tp, typename _Alloc>
72    struct _Vector_base
73    {
74      typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
75        rebind<_Tp>::other _Tp_alloc_type;
76      typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>::pointer
77       	pointer;
78
79      struct _Vector_impl
80      : public _Tp_alloc_type
81      {
82	pointer _M_start;
83	pointer _M_finish;
84	pointer _M_end_of_storage;
85
86	_Vector_impl()
87	: _Tp_alloc_type(), _M_start(), _M_finish(), _M_end_of_storage()
88	{ }
89
90	_Vector_impl(_Tp_alloc_type const& __a) _GLIBCXX_NOEXCEPT
91	: _Tp_alloc_type(__a), _M_start(), _M_finish(), _M_end_of_storage()
92	{ }
93
94#if __cplusplus >= 201103L
95	_Vector_impl(_Tp_alloc_type&& __a) noexcept
96	: _Tp_alloc_type(std::move(__a)),
97	  _M_start(), _M_finish(), _M_end_of_storage()
98	{ }
99#endif
100
101	void _M_swap_data(_Vector_impl& __x) _GLIBCXX_NOEXCEPT
102	{
103	  std::swap(_M_start, __x._M_start);
104	  std::swap(_M_finish, __x._M_finish);
105	  std::swap(_M_end_of_storage, __x._M_end_of_storage);
106	}
107      };
108
109    public:
110      typedef _Alloc allocator_type;
111
112      _Tp_alloc_type&
113      _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
114      { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
115
116      const _Tp_alloc_type&
117      _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
118      { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
119
120      allocator_type
121      get_allocator() const _GLIBCXX_NOEXCEPT
122      { return allocator_type(_M_get_Tp_allocator()); }
123
124      _Vector_base()
125      : _M_impl() { }
126
127      _Vector_base(const allocator_type& __a) _GLIBCXX_NOEXCEPT
128      : _M_impl(__a) { }
129
130      _Vector_base(size_t __n)
131      : _M_impl()
132      { _M_create_storage(__n); }
133
134      _Vector_base(size_t __n, const allocator_type& __a)
135      : _M_impl(__a)
136      { _M_create_storage(__n); }
137
138#if __cplusplus >= 201103L
139      _Vector_base(_Tp_alloc_type&& __a) noexcept
140      : _M_impl(std::move(__a)) { }
141
142      _Vector_base(_Vector_base&& __x) noexcept
143      : _M_impl(std::move(__x._M_get_Tp_allocator()))
144      { this->_M_impl._M_swap_data(__x._M_impl); }
145
146      _Vector_base(_Vector_base&& __x, const allocator_type& __a)
147      : _M_impl(__a)
148      {
149	if (__x.get_allocator() == __a)
150	  this->_M_impl._M_swap_data(__x._M_impl);
151	else
152	  {
153	    size_t __n = __x._M_impl._M_finish - __x._M_impl._M_start;
154	    _M_create_storage(__n);
155	  }
156      }
157#endif
158
159      ~_Vector_base() _GLIBCXX_NOEXCEPT
160      { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
161		      - this->_M_impl._M_start); }
162
163    public:
164      _Vector_impl _M_impl;
165
166      pointer
167      _M_allocate(size_t __n)
168      {
169	typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Tr;
170	return __n != 0 ? _Tr::allocate(_M_impl, __n) : pointer();
171      }
172
173      void
174      _M_deallocate(pointer __p, size_t __n)
175      {
176	typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Tr;
177	if (__p)
178	  _Tr::deallocate(_M_impl, __p, __n);
179      }
180
181    private:
182      void
183      _M_create_storage(size_t __n)
184      {
185	this->_M_impl._M_start = this->_M_allocate(__n);
186	this->_M_impl._M_finish = this->_M_impl._M_start;
187	this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
188      }
189    };
190
191
192  /**
193   *  @brief A standard container which offers fixed time access to
194   *  individual elements in any order.
195   *
196   *  @ingroup sequences
197   *
198   *  @tparam _Tp  Type of element.
199   *  @tparam _Alloc  Allocator type, defaults to allocator<_Tp>.
200   *
201   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
202   *  <a href="tables.html#66">reversible container</a>, and a
203   *  <a href="tables.html#67">sequence</a>, including the
204   *  <a href="tables.html#68">optional sequence requirements</a> with the
205   *  %exception of @c push_front and @c pop_front.
206   *
207   *  In some terminology a %vector can be described as a dynamic
208   *  C-style array, it offers fast and efficient access to individual
209   *  elements in any order and saves the user from worrying about
210   *  memory and size allocation.  Subscripting ( @c [] ) access is
211   *  also provided as with C-style arrays.
212  */
213  template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
214    class vector : protected _Vector_base<_Tp, _Alloc>
215    {
216      // Concept requirements.
217      typedef typename _Alloc::value_type                _Alloc_value_type;
218      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
219      __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
220
221      typedef _Vector_base<_Tp, _Alloc>			 _Base;
222      typedef typename _Base::_Tp_alloc_type		 _Tp_alloc_type;
223      typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type>  _Alloc_traits;
224
225    public:
226      typedef _Tp					 value_type;
227      typedef typename _Base::pointer                    pointer;
228      typedef typename _Alloc_traits::const_pointer      const_pointer;
229      typedef typename _Alloc_traits::reference          reference;
230      typedef typename _Alloc_traits::const_reference    const_reference;
231      typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
232      typedef __gnu_cxx::__normal_iterator<const_pointer, vector>
233      const_iterator;
234      typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
235      typedef std::reverse_iterator<iterator>		 reverse_iterator;
236      typedef size_t					 size_type;
237      typedef ptrdiff_t					 difference_type;
238      typedef _Alloc                        		 allocator_type;
239
240    protected:
241      using _Base::_M_allocate;
242      using _Base::_M_deallocate;
243      using _Base::_M_impl;
244      using _Base::_M_get_Tp_allocator;
245
246    public:
247      // [23.2.4.1] construct/copy/destroy
248      // (assign() and get_allocator() are also listed in this section)
249
250      /**
251       *  @brief  Creates a %vector with no elements.
252       */
253      vector()
254#if __cplusplus >= 201103L
255      noexcept(is_nothrow_default_constructible<_Alloc>::value)
256#endif
257      : _Base() { }
258
259      /**
260       *  @brief  Creates a %vector with no elements.
261       *  @param  __a  An allocator object.
262       */
263      explicit
264      vector(const allocator_type& __a) _GLIBCXX_NOEXCEPT
265      : _Base(__a) { }
266
267#if __cplusplus >= 201103L
268      /**
269       *  @brief  Creates a %vector with default constructed elements.
270       *  @param  __n  The number of elements to initially create.
271       *  @param  __a  An allocator.
272       *
273       *  This constructor fills the %vector with @a __n default
274       *  constructed elements.
275       */
276      explicit
277      vector(size_type __n, const allocator_type& __a = allocator_type())
278      : _Base(__n, __a)
279      { _M_default_initialize(__n); }
280
281      /**
282       *  @brief  Creates a %vector with copies of an exemplar element.
283       *  @param  __n  The number of elements to initially create.
284       *  @param  __value  An element to copy.
285       *  @param  __a  An allocator.
286       *
287       *  This constructor fills the %vector with @a __n copies of @a __value.
288       */
289      vector(size_type __n, const value_type& __value,
290	     const allocator_type& __a = allocator_type())
291      : _Base(__n, __a)
292      { _M_fill_initialize(__n, __value); }
293#else
294      /**
295       *  @brief  Creates a %vector with copies of an exemplar element.
296       *  @param  __n  The number of elements to initially create.
297       *  @param  __value  An element to copy.
298       *  @param  __a  An allocator.
299       *
300       *  This constructor fills the %vector with @a __n copies of @a __value.
301       */
302      explicit
303      vector(size_type __n, const value_type& __value = value_type(),
304	     const allocator_type& __a = allocator_type())
305      : _Base(__n, __a)
306      { _M_fill_initialize(__n, __value); }
307#endif
308
309      /**
310       *  @brief  %Vector copy constructor.
311       *  @param  __x  A %vector of identical element and allocator types.
312       *
313       *  The newly-created %vector uses a copy of the allocation
314       *  object used by @a __x.  All the elements of @a __x are copied,
315       *  but any extra memory in
316       *  @a __x (for fast expansion) will not be copied.
317       */
318      vector(const vector& __x)
319      : _Base(__x.size(),
320        _Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()))
321      { this->_M_impl._M_finish =
322	  std::__uninitialized_copy_a(__x.begin(), __x.end(),
323				      this->_M_impl._M_start,
324				      _M_get_Tp_allocator());
325      }
326
327#if __cplusplus >= 201103L
328      /**
329       *  @brief  %Vector move constructor.
330       *  @param  __x  A %vector of identical element and allocator types.
331       *
332       *  The newly-created %vector contains the exact contents of @a __x.
333       *  The contents of @a __x are a valid, but unspecified %vector.
334       */
335      vector(vector&& __x) noexcept
336      : _Base(std::move(__x)) { }
337
338      /// Copy constructor with alternative allocator
339      vector(const vector& __x, const allocator_type& __a)
340      : _Base(__x.size(), __a)
341      { this->_M_impl._M_finish =
342	  std::__uninitialized_copy_a(__x.begin(), __x.end(),
343				      this->_M_impl._M_start,
344				      _M_get_Tp_allocator());
345      }
346
347      /// Move constructor with alternative allocator
348      vector(vector&& __rv, const allocator_type& __m)
349      noexcept(_Alloc_traits::_S_always_equal())
350      : _Base(std::move(__rv), __m)
351      {
352	if (__rv.get_allocator() != __m)
353	  {
354	    this->_M_impl._M_finish =
355	      std::__uninitialized_move_a(__rv.begin(), __rv.end(),
356					  this->_M_impl._M_start,
357					  _M_get_Tp_allocator());
358	    __rv.clear();
359	  }
360      }
361
362      /**
363       *  @brief  Builds a %vector from an initializer list.
364       *  @param  __l  An initializer_list.
365       *  @param  __a  An allocator.
366       *
367       *  Create a %vector consisting of copies of the elements in the
368       *  initializer_list @a __l.
369       *
370       *  This will call the element type's copy constructor N times
371       *  (where N is @a __l.size()) and do no memory reallocation.
372       */
373      vector(initializer_list<value_type> __l,
374	     const allocator_type& __a = allocator_type())
375      : _Base(__a)
376      {
377	_M_range_initialize(__l.begin(), __l.end(),
378			    random_access_iterator_tag());
379      }
380#endif
381
382      /**
383       *  @brief  Builds a %vector from a range.
384       *  @param  __first  An input iterator.
385       *  @param  __last  An input iterator.
386       *  @param  __a  An allocator.
387       *
388       *  Create a %vector consisting of copies of the elements from
389       *  [first,last).
390       *
391       *  If the iterators are forward, bidirectional, or
392       *  random-access, then this will call the elements' copy
393       *  constructor N times (where N is distance(first,last)) and do
394       *  no memory reallocation.  But if only input iterators are
395       *  used, then this will do at most 2N calls to the copy
396       *  constructor, and logN memory reallocations.
397       */
398#if __cplusplus >= 201103L
399      template<typename _InputIterator,
400	       typename = std::_RequireInputIter<_InputIterator>>
401        vector(_InputIterator __first, _InputIterator __last,
402	       const allocator_type& __a = allocator_type())
403	: _Base(__a)
404        { _M_initialize_dispatch(__first, __last, __false_type()); }
405#else
406      template<typename _InputIterator>
407        vector(_InputIterator __first, _InputIterator __last,
408	       const allocator_type& __a = allocator_type())
409	: _Base(__a)
410        {
411	  // Check whether it's an integral type.  If so, it's not an iterator.
412	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
413	  _M_initialize_dispatch(__first, __last, _Integral());
414	}
415#endif
416
417      /**
418       *  The dtor only erases the elements, and note that if the
419       *  elements themselves are pointers, the pointed-to memory is
420       *  not touched in any way.  Managing the pointer is the user's
421       *  responsibility.
422       */
423      ~vector() _GLIBCXX_NOEXCEPT
424      { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
425		      _M_get_Tp_allocator()); }
426
427      /**
428       *  @brief  %Vector assignment operator.
429       *  @param  __x  A %vector of identical element and allocator types.
430       *
431       *  All the elements of @a __x are copied, but any extra memory in
432       *  @a __x (for fast expansion) will not be copied.  Unlike the
433       *  copy constructor, the allocator object is not copied.
434       */
435      vector&
436      operator=(const vector& __x);
437
438#if __cplusplus >= 201103L
439      /**
440       *  @brief  %Vector move assignment operator.
441       *  @param  __x  A %vector of identical element and allocator types.
442       *
443       *  The contents of @a __x are moved into this %vector (without copying,
444       *  if the allocators permit it).
445       *  @a __x is a valid, but unspecified %vector.
446       */
447      vector&
448      operator=(vector&& __x) noexcept(_Alloc_traits::_S_nothrow_move())
449      {
450        constexpr bool __move_storage =
451          _Alloc_traits::_S_propagate_on_move_assign()
452          || _Alloc_traits::_S_always_equal();
453        _M_move_assign(std::move(__x),
454                       integral_constant<bool, __move_storage>());
455	return *this;
456      }
457
458      /**
459       *  @brief  %Vector list assignment operator.
460       *  @param  __l  An initializer_list.
461       *
462       *  This function fills a %vector with copies of the elements in the
463       *  initializer list @a __l.
464       *
465       *  Note that the assignment completely changes the %vector and
466       *  that the resulting %vector's size is the same as the number
467       *  of elements assigned.  Old data may be lost.
468       */
469      vector&
470      operator=(initializer_list<value_type> __l)
471      {
472	this->assign(__l.begin(), __l.end());
473	return *this;
474      }
475#endif
476
477      /**
478       *  @brief  Assigns a given value to a %vector.
479       *  @param  __n  Number of elements to be assigned.
480       *  @param  __val  Value to be assigned.
481       *
482       *  This function fills a %vector with @a __n copies of the given
483       *  value.  Note that the assignment completely changes the
484       *  %vector and that the resulting %vector's size is the same as
485       *  the number of elements assigned.  Old data may be lost.
486       */
487      void
488      assign(size_type __n, const value_type& __val)
489      { _M_fill_assign(__n, __val); }
490
491      /**
492       *  @brief  Assigns a range to a %vector.
493       *  @param  __first  An input iterator.
494       *  @param  __last   An input iterator.
495       *
496       *  This function fills a %vector with copies of the elements in the
497       *  range [__first,__last).
498       *
499       *  Note that the assignment completely changes the %vector and
500       *  that the resulting %vector's size is the same as the number
501       *  of elements assigned.  Old data may be lost.
502       */
503#if __cplusplus >= 201103L
504      template<typename _InputIterator,
505	       typename = std::_RequireInputIter<_InputIterator>>
506        void
507        assign(_InputIterator __first, _InputIterator __last)
508        { _M_assign_dispatch(__first, __last, __false_type()); }
509#else
510      template<typename _InputIterator>
511        void
512        assign(_InputIterator __first, _InputIterator __last)
513        {
514	  // Check whether it's an integral type.  If so, it's not an iterator.
515	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
516	  _M_assign_dispatch(__first, __last, _Integral());
517	}
518#endif
519
520#if __cplusplus >= 201103L
521      /**
522       *  @brief  Assigns an initializer list to a %vector.
523       *  @param  __l  An initializer_list.
524       *
525       *  This function fills a %vector with copies of the elements in the
526       *  initializer list @a __l.
527       *
528       *  Note that the assignment completely changes the %vector and
529       *  that the resulting %vector's size is the same as the number
530       *  of elements assigned.  Old data may be lost.
531       */
532      void
533      assign(initializer_list<value_type> __l)
534      { this->assign(__l.begin(), __l.end()); }
535#endif
536
537      /// Get a copy of the memory allocation object.
538      using _Base::get_allocator;
539
540      // iterators
541      /**
542       *  Returns a read/write iterator that points to the first
543       *  element in the %vector.  Iteration is done in ordinary
544       *  element order.
545       */
546      iterator
547      begin() _GLIBCXX_NOEXCEPT
548      { return iterator(this->_M_impl._M_start); }
549
550      /**
551       *  Returns a read-only (constant) iterator that points to the
552       *  first element in the %vector.  Iteration is done in ordinary
553       *  element order.
554       */
555      const_iterator
556      begin() const _GLIBCXX_NOEXCEPT
557      { return const_iterator(this->_M_impl._M_start); }
558
559      /**
560       *  Returns a read/write iterator that points one past the last
561       *  element in the %vector.  Iteration is done in ordinary
562       *  element order.
563       */
564      iterator
565      end() _GLIBCXX_NOEXCEPT
566      { return iterator(this->_M_impl._M_finish); }
567
568      /**
569       *  Returns a read-only (constant) iterator that points one past
570       *  the last element in the %vector.  Iteration is done in
571       *  ordinary element order.
572       */
573      const_iterator
574      end() const _GLIBCXX_NOEXCEPT
575      { return const_iterator(this->_M_impl._M_finish); }
576
577      /**
578       *  Returns a read/write reverse iterator that points to the
579       *  last element in the %vector.  Iteration is done in reverse
580       *  element order.
581       */
582      reverse_iterator
583      rbegin() _GLIBCXX_NOEXCEPT
584      { return reverse_iterator(end()); }
585
586      /**
587       *  Returns a read-only (constant) reverse iterator that points
588       *  to the last element in the %vector.  Iteration is done in
589       *  reverse element order.
590       */
591      const_reverse_iterator
592      rbegin() const _GLIBCXX_NOEXCEPT
593      { return const_reverse_iterator(end()); }
594
595      /**
596       *  Returns a read/write reverse iterator that points to one
597       *  before the first element in the %vector.  Iteration is done
598       *  in reverse element order.
599       */
600      reverse_iterator
601      rend() _GLIBCXX_NOEXCEPT
602      { return reverse_iterator(begin()); }
603
604      /**
605       *  Returns a read-only (constant) reverse iterator that points
606       *  to one before the first element in the %vector.  Iteration
607       *  is done in reverse element order.
608       */
609      const_reverse_iterator
610      rend() const _GLIBCXX_NOEXCEPT
611      { return const_reverse_iterator(begin()); }
612
613#if __cplusplus >= 201103L
614      /**
615       *  Returns a read-only (constant) iterator that points to the
616       *  first element in the %vector.  Iteration is done in ordinary
617       *  element order.
618       */
619      const_iterator
620      cbegin() const noexcept
621      { return const_iterator(this->_M_impl._M_start); }
622
623      /**
624       *  Returns a read-only (constant) iterator that points one past
625       *  the last element in the %vector.  Iteration is done in
626       *  ordinary element order.
627       */
628      const_iterator
629      cend() const noexcept
630      { return const_iterator(this->_M_impl._M_finish); }
631
632      /**
633       *  Returns a read-only (constant) reverse iterator that points
634       *  to the last element in the %vector.  Iteration is done in
635       *  reverse element order.
636       */
637      const_reverse_iterator
638      crbegin() const noexcept
639      { return const_reverse_iterator(end()); }
640
641      /**
642       *  Returns a read-only (constant) reverse iterator that points
643       *  to one before the first element in the %vector.  Iteration
644       *  is done in reverse element order.
645       */
646      const_reverse_iterator
647      crend() const noexcept
648      { return const_reverse_iterator(begin()); }
649#endif
650
651      // [23.2.4.2] capacity
652      /**  Returns the number of elements in the %vector.  */
653      size_type
654      size() const _GLIBCXX_NOEXCEPT
655      { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
656
657      /**  Returns the size() of the largest possible %vector.  */
658      size_type
659      max_size() const _GLIBCXX_NOEXCEPT
660      { return _Alloc_traits::max_size(_M_get_Tp_allocator()); }
661
662#if __cplusplus >= 201103L
663      /**
664       *  @brief  Resizes the %vector to the specified number of elements.
665       *  @param  __new_size  Number of elements the %vector should contain.
666       *
667       *  This function will %resize the %vector to the specified
668       *  number of elements.  If the number is smaller than the
669       *  %vector's current size the %vector is truncated, otherwise
670       *  default constructed elements are appended.
671       */
672      void
673      resize(size_type __new_size)
674      {
675	if (__new_size > size())
676	  _M_default_append(__new_size - size());
677	else if (__new_size < size())
678	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
679      }
680
681      /**
682       *  @brief  Resizes the %vector to the specified number of elements.
683       *  @param  __new_size  Number of elements the %vector should contain.
684       *  @param  __x  Data with which new elements should be populated.
685       *
686       *  This function will %resize the %vector to the specified
687       *  number of elements.  If the number is smaller than the
688       *  %vector's current size the %vector is truncated, otherwise
689       *  the %vector is extended and new elements are populated with
690       *  given data.
691       */
692      void
693      resize(size_type __new_size, const value_type& __x)
694      {
695	if (__new_size > size())
696	  insert(end(), __new_size - size(), __x);
697	else if (__new_size < size())
698	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
699      }
700#else
701      /**
702       *  @brief  Resizes the %vector to the specified number of elements.
703       *  @param  __new_size  Number of elements the %vector should contain.
704       *  @param  __x  Data with which new elements should be populated.
705       *
706       *  This function will %resize the %vector to the specified
707       *  number of elements.  If the number is smaller than the
708       *  %vector's current size the %vector is truncated, otherwise
709       *  the %vector is extended and new elements are populated with
710       *  given data.
711       */
712      void
713      resize(size_type __new_size, value_type __x = value_type())
714      {
715	if (__new_size > size())
716	  insert(end(), __new_size - size(), __x);
717	else if (__new_size < size())
718	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
719      }
720#endif
721
722#if __cplusplus >= 201103L
723      /**  A non-binding request to reduce capacity() to size().  */
724      void
725      shrink_to_fit()
726      { _M_shrink_to_fit(); }
727#endif
728
729      /**
730       *  Returns the total number of elements that the %vector can
731       *  hold before needing to allocate more memory.
732       */
733      size_type
734      capacity() const _GLIBCXX_NOEXCEPT
735      { return size_type(this->_M_impl._M_end_of_storage
736			 - this->_M_impl._M_start); }
737
738      /**
739       *  Returns true if the %vector is empty.  (Thus begin() would
740       *  equal end().)
741       */
742      bool
743      empty() const _GLIBCXX_NOEXCEPT
744      { return begin() == end(); }
745
746      /**
747       *  @brief  Attempt to preallocate enough memory for specified number of
748       *          elements.
749       *  @param  __n  Number of elements required.
750       *  @throw  std::length_error  If @a n exceeds @c max_size().
751       *
752       *  This function attempts to reserve enough memory for the
753       *  %vector to hold the specified number of elements.  If the
754       *  number requested is more than max_size(), length_error is
755       *  thrown.
756       *
757       *  The advantage of this function is that if optimal code is a
758       *  necessity and the user can determine the number of elements
759       *  that will be required, the user can reserve the memory in
760       *  %advance, and thus prevent a possible reallocation of memory
761       *  and copying of %vector data.
762       */
763      void
764      reserve(size_type __n);
765
766      // element access
767      /**
768       *  @brief  Subscript access to the data contained in the %vector.
769       *  @param __n The index of the element for which data should be
770       *  accessed.
771       *  @return  Read/write reference to data.
772       *
773       *  This operator allows for easy, array-style, data access.
774       *  Note that data access with this operator is unchecked and
775       *  out_of_range lookups are not defined. (For checked lookups
776       *  see at().)
777       */
778      reference
779      operator[](size_type __n) _GLIBCXX_NOEXCEPT
780      { return *(this->_M_impl._M_start + __n); }
781
782      /**
783       *  @brief  Subscript access to the data contained in the %vector.
784       *  @param __n The index of the element for which data should be
785       *  accessed.
786       *  @return  Read-only (constant) reference to data.
787       *
788       *  This operator allows for easy, array-style, data access.
789       *  Note that data access with this operator is unchecked and
790       *  out_of_range lookups are not defined. (For checked lookups
791       *  see at().)
792       */
793      const_reference
794      operator[](size_type __n) const _GLIBCXX_NOEXCEPT
795      { return *(this->_M_impl._M_start + __n); }
796
797    protected:
798      /// Safety check used only from at().
799      void
800      _M_range_check(size_type __n) const
801      {
802	if (__n >= this->size())
803	  __throw_out_of_range_fmt(__N("vector::_M_range_check: __n "
804				       "(which is %zu) >= this->size() "
805				       "(which is %zu)"),
806				   __n, this->size());
807      }
808
809    public:
810      /**
811       *  @brief  Provides access to the data contained in the %vector.
812       *  @param __n The index of the element for which data should be
813       *  accessed.
814       *  @return  Read/write reference to data.
815       *  @throw  std::out_of_range  If @a __n is an invalid index.
816       *
817       *  This function provides for safer data access.  The parameter
818       *  is first checked that it is in the range of the vector.  The
819       *  function throws out_of_range if the check fails.
820       */
821      reference
822      at(size_type __n)
823      {
824	_M_range_check(__n);
825	return (*this)[__n];
826      }
827
828      /**
829       *  @brief  Provides access to the data contained in the %vector.
830       *  @param __n The index of the element for which data should be
831       *  accessed.
832       *  @return  Read-only (constant) reference to data.
833       *  @throw  std::out_of_range  If @a __n is an invalid index.
834       *
835       *  This function provides for safer data access.  The parameter
836       *  is first checked that it is in the range of the vector.  The
837       *  function throws out_of_range if the check fails.
838       */
839      const_reference
840      at(size_type __n) const
841      {
842	_M_range_check(__n);
843	return (*this)[__n];
844      }
845
846      /**
847       *  Returns a read/write reference to the data at the first
848       *  element of the %vector.
849       */
850      reference
851      front() _GLIBCXX_NOEXCEPT
852      { return *begin(); }
853
854      /**
855       *  Returns a read-only (constant) reference to the data at the first
856       *  element of the %vector.
857       */
858      const_reference
859      front() const _GLIBCXX_NOEXCEPT
860      { return *begin(); }
861
862      /**
863       *  Returns a read/write reference to the data at the last
864       *  element of the %vector.
865       */
866      reference
867      back() _GLIBCXX_NOEXCEPT
868      { return *(end() - 1); }
869
870      /**
871       *  Returns a read-only (constant) reference to the data at the
872       *  last element of the %vector.
873       */
874      const_reference
875      back() const _GLIBCXX_NOEXCEPT
876      { return *(end() - 1); }
877
878      // _GLIBCXX_RESOLVE_LIB_DEFECTS
879      // DR 464. Suggestion for new member functions in standard containers.
880      // data access
881      /**
882       *   Returns a pointer such that [data(), data() + size()) is a valid
883       *   range.  For a non-empty %vector, data() == &front().
884       */
885#if __cplusplus >= 201103L
886      _Tp*
887#else
888      pointer
889#endif
890      data() _GLIBCXX_NOEXCEPT
891      { return _M_data_ptr(this->_M_impl._M_start); }
892
893#if __cplusplus >= 201103L
894      const _Tp*
895#else
896      const_pointer
897#endif
898      data() const _GLIBCXX_NOEXCEPT
899      { return _M_data_ptr(this->_M_impl._M_start); }
900
901      // [23.2.4.3] modifiers
902      /**
903       *  @brief  Add data to the end of the %vector.
904       *  @param  __x  Data to be added.
905       *
906       *  This is a typical stack operation.  The function creates an
907       *  element at the end of the %vector and assigns the given data
908       *  to it.  Due to the nature of a %vector this operation can be
909       *  done in constant time if the %vector has preallocated space
910       *  available.
911       */
912      void
913      push_back(const value_type& __x)
914      {
915	if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
916	  {
917	    _Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish,
918	                             __x);
919	    ++this->_M_impl._M_finish;
920	  }
921	else
922#if __cplusplus >= 201103L
923	  _M_emplace_back_aux(__x);
924#else
925	  _M_insert_aux(end(), __x);
926#endif
927      }
928
929#if __cplusplus >= 201103L
930      void
931      push_back(value_type&& __x)
932      { emplace_back(std::move(__x)); }
933
934      template<typename... _Args>
935        void
936        emplace_back(_Args&&... __args);
937#endif
938
939      /**
940       *  @brief  Removes last element.
941       *
942       *  This is a typical stack operation. It shrinks the %vector by one.
943       *
944       *  Note that no data is returned, and if the last element's
945       *  data is needed, it should be retrieved before pop_back() is
946       *  called.
947       */
948      void
949      pop_back() _GLIBCXX_NOEXCEPT
950      {
951	--this->_M_impl._M_finish;
952	_Alloc_traits::destroy(this->_M_impl, this->_M_impl._M_finish);
953      }
954
955#if __cplusplus >= 201103L
956      /**
957       *  @brief  Inserts an object in %vector before specified iterator.
958       *  @param  __position  A const_iterator into the %vector.
959       *  @param  __args  Arguments.
960       *  @return  An iterator that points to the inserted data.
961       *
962       *  This function will insert an object of type T constructed
963       *  with T(std::forward<Args>(args)...) before the specified location.
964       *  Note that this kind of operation could be expensive for a %vector
965       *  and if it is frequently used the user should consider using
966       *  std::list.
967       */
968      template<typename... _Args>
969        iterator
970        emplace(const_iterator __position, _Args&&... __args);
971
972      /**
973       *  @brief  Inserts given value into %vector before specified iterator.
974       *  @param  __position  A const_iterator into the %vector.
975       *  @param  __x  Data to be inserted.
976       *  @return  An iterator that points to the inserted data.
977       *
978       *  This function will insert a copy of the given value before
979       *  the specified location.  Note that this kind of operation
980       *  could be expensive for a %vector and if it is frequently
981       *  used the user should consider using std::list.
982       */
983      iterator
984      insert(const_iterator __position, const value_type& __x);
985#else
986      /**
987       *  @brief  Inserts given value into %vector before specified iterator.
988       *  @param  __position  An iterator into the %vector.
989       *  @param  __x  Data to be inserted.
990       *  @return  An iterator that points to the inserted data.
991       *
992       *  This function will insert a copy of the given value before
993       *  the specified location.  Note that this kind of operation
994       *  could be expensive for a %vector and if it is frequently
995       *  used the user should consider using std::list.
996       */
997      iterator
998      insert(iterator __position, const value_type& __x);
999#endif
1000
1001#if __cplusplus >= 201103L
1002      /**
1003       *  @brief  Inserts given rvalue into %vector before specified iterator.
1004       *  @param  __position  A const_iterator into the %vector.
1005       *  @param  __x  Data to be inserted.
1006       *  @return  An iterator that points to the inserted data.
1007       *
1008       *  This function will insert a copy of the given rvalue before
1009       *  the specified location.  Note that this kind of operation
1010       *  could be expensive for a %vector and if it is frequently
1011       *  used the user should consider using std::list.
1012       */
1013      iterator
1014      insert(const_iterator __position, value_type&& __x)
1015      { return emplace(__position, std::move(__x)); }
1016
1017      /**
1018       *  @brief  Inserts an initializer_list into the %vector.
1019       *  @param  __position  An iterator into the %vector.
1020       *  @param  __l  An initializer_list.
1021       *
1022       *  This function will insert copies of the data in the
1023       *  initializer_list @a l into the %vector before the location
1024       *  specified by @a position.
1025       *
1026       *  Note that this kind of operation could be expensive for a
1027       *  %vector and if it is frequently used the user should
1028       *  consider using std::list.
1029       */
1030      iterator
1031      insert(const_iterator __position, initializer_list<value_type> __l)
1032      { return this->insert(__position, __l.begin(), __l.end()); }
1033#endif
1034
1035#if __cplusplus >= 201103L
1036      /**
1037       *  @brief  Inserts a number of copies of given data into the %vector.
1038       *  @param  __position  A const_iterator into the %vector.
1039       *  @param  __n  Number of elements to be inserted.
1040       *  @param  __x  Data to be inserted.
1041       *  @return  An iterator that points to the inserted data.
1042       *
1043       *  This function will insert a specified number of copies of
1044       *  the given data before the location specified by @a position.
1045       *
1046       *  Note that this kind of operation could be expensive for a
1047       *  %vector and if it is frequently used the user should
1048       *  consider using std::list.
1049       */
1050      iterator
1051      insert(const_iterator __position, size_type __n, const value_type& __x)
1052      {
1053	difference_type __offset = __position - cbegin();
1054	_M_fill_insert(begin() + __offset, __n, __x);
1055	return begin() + __offset;
1056      }
1057#else
1058      /**
1059       *  @brief  Inserts a number of copies of given data into the %vector.
1060       *  @param  __position  An iterator into the %vector.
1061       *  @param  __n  Number of elements to be inserted.
1062       *  @param  __x  Data to be inserted.
1063       *
1064       *  This function will insert a specified number of copies of
1065       *  the given data before the location specified by @a position.
1066       *
1067       *  Note that this kind of operation could be expensive for a
1068       *  %vector and if it is frequently used the user should
1069       *  consider using std::list.
1070       */
1071      void
1072      insert(iterator __position, size_type __n, const value_type& __x)
1073      { _M_fill_insert(__position, __n, __x); }
1074#endif
1075
1076#if __cplusplus >= 201103L
1077      /**
1078       *  @brief  Inserts a range into the %vector.
1079       *  @param  __position  A const_iterator into the %vector.
1080       *  @param  __first  An input iterator.
1081       *  @param  __last   An input iterator.
1082       *  @return  An iterator that points to the inserted data.
1083       *
1084       *  This function will insert copies of the data in the range
1085       *  [__first,__last) into the %vector before the location specified
1086       *  by @a pos.
1087       *
1088       *  Note that this kind of operation could be expensive for a
1089       *  %vector and if it is frequently used the user should
1090       *  consider using std::list.
1091       */
1092      template<typename _InputIterator,
1093	       typename = std::_RequireInputIter<_InputIterator>>
1094        iterator
1095        insert(const_iterator __position, _InputIterator __first,
1096	       _InputIterator __last)
1097        {
1098	  difference_type __offset = __position - cbegin();
1099	  _M_insert_dispatch(begin() + __offset,
1100			     __first, __last, __false_type());
1101	  return begin() + __offset;
1102	}
1103#else
1104      /**
1105       *  @brief  Inserts a range into the %vector.
1106       *  @param  __position  An iterator into the %vector.
1107       *  @param  __first  An input iterator.
1108       *  @param  __last   An input iterator.
1109       *
1110       *  This function will insert copies of the data in the range
1111       *  [__first,__last) into the %vector before the location specified
1112       *  by @a pos.
1113       *
1114       *  Note that this kind of operation could be expensive for a
1115       *  %vector and if it is frequently used the user should
1116       *  consider using std::list.
1117       */
1118      template<typename _InputIterator>
1119        void
1120        insert(iterator __position, _InputIterator __first,
1121	       _InputIterator __last)
1122        {
1123	  // Check whether it's an integral type.  If so, it's not an iterator.
1124	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1125	  _M_insert_dispatch(__position, __first, __last, _Integral());
1126	}
1127#endif
1128
1129      /**
1130       *  @brief  Remove element at given position.
1131       *  @param  __position  Iterator pointing to element to be erased.
1132       *  @return  An iterator pointing to the next element (or end()).
1133       *
1134       *  This function will erase the element at the given position and thus
1135       *  shorten the %vector by one.
1136       *
1137       *  Note This operation could be expensive and if it is
1138       *  frequently used the user should consider using std::list.
1139       *  The user is also cautioned that this function only erases
1140       *  the element, and that if the element is itself a pointer,
1141       *  the pointed-to memory is not touched in any way.  Managing
1142       *  the pointer is the user's responsibility.
1143       */
1144      iterator
1145#if __cplusplus >= 201103L
1146      erase(const_iterator __position)
1147      { return _M_erase(begin() + (__position - cbegin())); }
1148#else
1149      erase(iterator __position)
1150      { return _M_erase(__position); }
1151#endif
1152
1153      /**
1154       *  @brief  Remove a range of elements.
1155       *  @param  __first  Iterator pointing to the first element to be erased.
1156       *  @param  __last  Iterator pointing to one past the last element to be
1157       *                  erased.
1158       *  @return  An iterator pointing to the element pointed to by @a __last
1159       *           prior to erasing (or end()).
1160       *
1161       *  This function will erase the elements in the range
1162       *  [__first,__last) and shorten the %vector accordingly.
1163       *
1164       *  Note This operation could be expensive and if it is
1165       *  frequently used the user should consider using std::list.
1166       *  The user is also cautioned that this function only erases
1167       *  the elements, and that if the elements themselves are
1168       *  pointers, the pointed-to memory is not touched in any way.
1169       *  Managing the pointer is the user's responsibility.
1170       */
1171      iterator
1172#if __cplusplus >= 201103L
1173      erase(const_iterator __first, const_iterator __last)
1174      {
1175	const auto __beg = begin();
1176	const auto __cbeg = cbegin();
1177	return _M_erase(__beg + (__first - __cbeg), __beg + (__last - __cbeg));
1178      }
1179#else
1180      erase(iterator __first, iterator __last)
1181      { return _M_erase(__first, __last); }
1182#endif
1183
1184      /**
1185       *  @brief  Swaps data with another %vector.
1186       *  @param  __x  A %vector of the same element and allocator types.
1187       *
1188       *  This exchanges the elements between two vectors in constant time.
1189       *  (Three pointers, so it should be quite fast.)
1190       *  Note that the global std::swap() function is specialized such that
1191       *  std::swap(v1,v2) will feed to this function.
1192       */
1193      void
1194      swap(vector& __x)
1195#if __cplusplus >= 201103L
1196      noexcept(_Alloc_traits::_S_nothrow_swap())
1197#endif
1198      {
1199	this->_M_impl._M_swap_data(__x._M_impl);
1200	_Alloc_traits::_S_on_swap(_M_get_Tp_allocator(),
1201	                          __x._M_get_Tp_allocator());
1202      }
1203
1204      /**
1205       *  Erases all the elements.  Note that this function only erases the
1206       *  elements, and that if the elements themselves are pointers, the
1207       *  pointed-to memory is not touched in any way.  Managing the pointer is
1208       *  the user's responsibility.
1209       */
1210      void
1211      clear() _GLIBCXX_NOEXCEPT
1212      { _M_erase_at_end(this->_M_impl._M_start); }
1213
1214    protected:
1215      /**
1216       *  Memory expansion handler.  Uses the member allocation function to
1217       *  obtain @a n bytes of memory, and then copies [first,last) into it.
1218       */
1219      template<typename _ForwardIterator>
1220        pointer
1221        _M_allocate_and_copy(size_type __n,
1222			     _ForwardIterator __first, _ForwardIterator __last)
1223        {
1224	  pointer __result = this->_M_allocate(__n);
1225	  __try
1226	    {
1227	      std::__uninitialized_copy_a(__first, __last, __result,
1228					  _M_get_Tp_allocator());
1229	      return __result;
1230	    }
1231	  __catch(...)
1232	    {
1233	      _M_deallocate(__result, __n);
1234	      __throw_exception_again;
1235	    }
1236	}
1237
1238
1239      // Internal constructor functions follow.
1240
1241      // Called by the range constructor to implement [23.1.1]/9
1242
1243      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1244      // 438. Ambiguity in the "do the right thing" clause
1245      template<typename _Integer>
1246        void
1247        _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
1248        {
1249	  this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));
1250	  this->_M_impl._M_end_of_storage =
1251	    this->_M_impl._M_start + static_cast<size_type>(__n);
1252	  _M_fill_initialize(static_cast<size_type>(__n), __value);
1253	}
1254
1255      // Called by the range constructor to implement [23.1.1]/9
1256      template<typename _InputIterator>
1257        void
1258        _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1259			       __false_type)
1260        {
1261	  typedef typename std::iterator_traits<_InputIterator>::
1262	    iterator_category _IterCategory;
1263	  _M_range_initialize(__first, __last, _IterCategory());
1264	}
1265
1266      // Called by the second initialize_dispatch above
1267      template<typename _InputIterator>
1268        void
1269        _M_range_initialize(_InputIterator __first,
1270			    _InputIterator __last, std::input_iterator_tag)
1271        {
1272	  for (; __first != __last; ++__first)
1273#if __cplusplus >= 201103L
1274	    emplace_back(*__first);
1275#else
1276	    push_back(*__first);
1277#endif
1278	}
1279
1280      // Called by the second initialize_dispatch above
1281      template<typename _ForwardIterator>
1282        void
1283        _M_range_initialize(_ForwardIterator __first,
1284			    _ForwardIterator __last, std::forward_iterator_tag)
1285        {
1286	  const size_type __n = std::distance(__first, __last);
1287	  this->_M_impl._M_start = this->_M_allocate(__n);
1288	  this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
1289	  this->_M_impl._M_finish =
1290	    std::__uninitialized_copy_a(__first, __last,
1291					this->_M_impl._M_start,
1292					_M_get_Tp_allocator());
1293	}
1294
1295      // Called by the first initialize_dispatch above and by the
1296      // vector(n,value,a) constructor.
1297      void
1298      _M_fill_initialize(size_type __n, const value_type& __value)
1299      {
1300	this->_M_impl._M_finish =
1301	  std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
1302					_M_get_Tp_allocator());
1303      }
1304
1305#if __cplusplus >= 201103L
1306      // Called by the vector(n) constructor.
1307      void
1308      _M_default_initialize(size_type __n)
1309      {
1310	this->_M_impl._M_finish =
1311	  std::__uninitialized_default_n_a(this->_M_impl._M_start, __n,
1312					   _M_get_Tp_allocator());
1313      }
1314#endif
1315
1316      // Internal assign functions follow.  The *_aux functions do the actual
1317      // assignment work for the range versions.
1318
1319      // Called by the range assign to implement [23.1.1]/9
1320
1321      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1322      // 438. Ambiguity in the "do the right thing" clause
1323      template<typename _Integer>
1324        void
1325        _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1326        { _M_fill_assign(__n, __val); }
1327
1328      // Called by the range assign to implement [23.1.1]/9
1329      template<typename _InputIterator>
1330        void
1331        _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1332			   __false_type)
1333        {
1334	  typedef typename std::iterator_traits<_InputIterator>::
1335	    iterator_category _IterCategory;
1336	  _M_assign_aux(__first, __last, _IterCategory());
1337	}
1338
1339      // Called by the second assign_dispatch above
1340      template<typename _InputIterator>
1341        void
1342        _M_assign_aux(_InputIterator __first, _InputIterator __last,
1343		      std::input_iterator_tag);
1344
1345      // Called by the second assign_dispatch above
1346      template<typename _ForwardIterator>
1347        void
1348        _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1349		      std::forward_iterator_tag);
1350
1351      // Called by assign(n,t), and the range assign when it turns out
1352      // to be the same thing.
1353      void
1354      _M_fill_assign(size_type __n, const value_type& __val);
1355
1356
1357      // Internal insert functions follow.
1358
1359      // Called by the range insert to implement [23.1.1]/9
1360
1361      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1362      // 438. Ambiguity in the "do the right thing" clause
1363      template<typename _Integer>
1364        void
1365        _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
1366			   __true_type)
1367        { _M_fill_insert(__pos, __n, __val); }
1368
1369      // Called by the range insert to implement [23.1.1]/9
1370      template<typename _InputIterator>
1371        void
1372        _M_insert_dispatch(iterator __pos, _InputIterator __first,
1373			   _InputIterator __last, __false_type)
1374        {
1375	  typedef typename std::iterator_traits<_InputIterator>::
1376	    iterator_category _IterCategory;
1377	  _M_range_insert(__pos, __first, __last, _IterCategory());
1378	}
1379
1380      // Called by the second insert_dispatch above
1381      template<typename _InputIterator>
1382        void
1383        _M_range_insert(iterator __pos, _InputIterator __first,
1384			_InputIterator __last, std::input_iterator_tag);
1385
1386      // Called by the second insert_dispatch above
1387      template<typename _ForwardIterator>
1388        void
1389        _M_range_insert(iterator __pos, _ForwardIterator __first,
1390			_ForwardIterator __last, std::forward_iterator_tag);
1391
1392      // Called by insert(p,n,x), and the range insert when it turns out to be
1393      // the same thing.
1394      void
1395      _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1396
1397#if __cplusplus >= 201103L
1398      // Called by resize(n).
1399      void
1400      _M_default_append(size_type __n);
1401
1402      bool
1403      _M_shrink_to_fit();
1404#endif
1405
1406      // Called by insert(p,x)
1407#if __cplusplus < 201103L
1408      void
1409      _M_insert_aux(iterator __position, const value_type& __x);
1410#else
1411      template<typename... _Args>
1412        void
1413        _M_insert_aux(iterator __position, _Args&&... __args);
1414
1415      template<typename... _Args>
1416        void
1417        _M_emplace_back_aux(_Args&&... __args);
1418#endif
1419
1420      // Called by the latter.
1421      size_type
1422      _M_check_len(size_type __n, const char* __s) const
1423      {
1424	if (max_size() - size() < __n)
1425	  __throw_length_error(__N(__s));
1426
1427	const size_type __len = size() + std::max(size(), __n);
1428	return (__len < size() || __len > max_size()) ? max_size() : __len;
1429      }
1430
1431      // Internal erase functions follow.
1432
1433      // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
1434      // _M_assign_aux.
1435      void
1436      _M_erase_at_end(pointer __pos) _GLIBCXX_NOEXCEPT
1437      {
1438	std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
1439	this->_M_impl._M_finish = __pos;
1440      }
1441
1442      iterator
1443      _M_erase(iterator __position);
1444
1445      iterator
1446      _M_erase(iterator __first, iterator __last);
1447
1448#if __cplusplus >= 201103L
1449    private:
1450      // Constant-time move assignment when source object's memory can be
1451      // moved, either because the source's allocator will move too
1452      // or because the allocators are equal.
1453      void
1454      _M_move_assign(vector&& __x, std::true_type) noexcept
1455      {
1456	vector __tmp(get_allocator());
1457	this->_M_impl._M_swap_data(__tmp._M_impl);
1458	this->_M_impl._M_swap_data(__x._M_impl);
1459	std::__alloc_on_move(_M_get_Tp_allocator(), __x._M_get_Tp_allocator());
1460      }
1461
1462      // Do move assignment when it might not be possible to move source
1463      // object's memory, resulting in a linear-time operation.
1464      void
1465      _M_move_assign(vector&& __x, std::false_type)
1466      {
1467	if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator())
1468	  _M_move_assign(std::move(__x), std::true_type());
1469	else
1470	  {
1471	    // The rvalue's allocator cannot be moved and is not equal,
1472	    // so we need to individually move each element.
1473	    this->assign(std::__make_move_if_noexcept_iterator(__x.begin()),
1474			 std::__make_move_if_noexcept_iterator(__x.end()));
1475	    __x.clear();
1476	  }
1477      }
1478#endif
1479
1480#if __cplusplus >= 201103L
1481      template<typename _Up>
1482	_Up*
1483	_M_data_ptr(_Up* __ptr) const
1484	{ return __ptr; }
1485
1486      template<typename _Ptr>
1487	typename std::pointer_traits<_Ptr>::element_type*
1488	_M_data_ptr(_Ptr __ptr) const
1489	{ return empty() ? nullptr : std::__addressof(*__ptr); }
1490#else
1491      template<typename _Ptr>
1492	_Ptr
1493	_M_data_ptr(_Ptr __ptr) const
1494	{ return __ptr; }
1495#endif
1496    };
1497
1498
1499  /**
1500   *  @brief  Vector equality comparison.
1501   *  @param  __x  A %vector.
1502   *  @param  __y  A %vector of the same type as @a __x.
1503   *  @return  True iff the size and elements of the vectors are equal.
1504   *
1505   *  This is an equivalence relation.  It is linear in the size of the
1506   *  vectors.  Vectors are considered equivalent if their sizes are equal,
1507   *  and if corresponding elements compare equal.
1508  */
1509  template<typename _Tp, typename _Alloc>
1510    inline bool
1511    operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1512    { return (__x.size() == __y.size()
1513	      && std::equal(__x.begin(), __x.end(), __y.begin())); }
1514
1515  /**
1516   *  @brief  Vector ordering relation.
1517   *  @param  __x  A %vector.
1518   *  @param  __y  A %vector of the same type as @a __x.
1519   *  @return  True iff @a __x is lexicographically less than @a __y.
1520   *
1521   *  This is a total ordering relation.  It is linear in the size of the
1522   *  vectors.  The elements must be comparable with @c <.
1523   *
1524   *  See std::lexicographical_compare() for how the determination is made.
1525  */
1526  template<typename _Tp, typename _Alloc>
1527    inline bool
1528    operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1529    { return std::lexicographical_compare(__x.begin(), __x.end(),
1530					  __y.begin(), __y.end()); }
1531
1532  /// Based on operator==
1533  template<typename _Tp, typename _Alloc>
1534    inline bool
1535    operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1536    { return !(__x == __y); }
1537
1538  /// Based on operator<
1539  template<typename _Tp, typename _Alloc>
1540    inline bool
1541    operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1542    { return __y < __x; }
1543
1544  /// Based on operator<
1545  template<typename _Tp, typename _Alloc>
1546    inline bool
1547    operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1548    { return !(__y < __x); }
1549
1550  /// Based on operator<
1551  template<typename _Tp, typename _Alloc>
1552    inline bool
1553    operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1554    { return !(__x < __y); }
1555
1556  /// See std::vector::swap().
1557  template<typename _Tp, typename _Alloc>
1558    inline void
1559    swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
1560    { __x.swap(__y); }
1561
1562_GLIBCXX_END_NAMESPACE_CONTAINER
1563} // namespace std
1564
1565#endif /* _STL_VECTOR_H */
1566