1263970Sdes// hashtable.h header -*- C++ -*-
257429Smarkm
357429Smarkm// Copyright (C) 2007-2015 Free Software Foundation, Inc.
457429Smarkm//
557429Smarkm// This file is part of the GNU ISO C++ Library.  This library is free
657429Smarkm// software; you can redistribute it and/or modify it under the
757429Smarkm// terms of the GNU General Public License as published by the
876259Sgreen// Free Software Foundation; either version 3, or (at your option)
965668Skris// any later version.
1065668Skris
1165668Skris// This library is distributed in the hope that it will be useful,
1265668Skris// but WITHOUT ANY WARRANTY; without even the implied warranty of
1365668Skris// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
1457429Smarkm// GNU General Public License for more details.
1557429Smarkm
1657429Smarkm// Under Section 7 of GPL version 3, you are granted additional
1757429Smarkm// permissions described in the GCC Runtime Library Exception, version
18162852Sdes// 3.1, as published by the Free Software Foundation.
19162852Sdes
20162852Sdes// You should have received a copy of the GNU General Public License and
21162852Sdes// a copy of the GCC Runtime Library Exception along with this program;
22162852Sdes// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23162852Sdes// <http://www.gnu.org/licenses/>.
2476259Sgreen
2576259Sgreen/** @file bits/hashtable.h
2657429Smarkm *  This is an internal header file, included by other library headers.
2757429Smarkm *  Do not attempt to use it directly. @headername{unordered_map, unordered_set}
2857429Smarkm */
2957429Smarkm
3076259Sgreen#ifndef _HASHTABLE_H
3176259Sgreen#define _HASHTABLE_H 1
3276259Sgreen
3376259Sgreen#pragma GCC system_header
3476259Sgreen
3557429Smarkm#include <bits/hashtable_policy.h>
36263970Sdes
3757429Smarkmnamespace std _GLIBCXX_VISIBILITY(default)
3857429Smarkm{
3957429Smarkm_GLIBCXX_BEGIN_NAMESPACE_VERSION
4057429Smarkm
41162852Sdes  template<typename _Tp, typename _Hash>
4257429Smarkm    using __cache_default
43162852Sdes      =  __not_<__and_<// Do not cache for fast hasher.
44162852Sdes		       __is_fast_hash<_Hash>,
45162852Sdes		       // Mandatory to have erase not throwing.
46162852Sdes		       __detail::__is_noexcept_hash<_Tp, _Hash>>>;
47162852Sdes
48162852Sdes  /**
49162852Sdes   *  Primary class template _Hashtable.
50162852Sdes   *
51263970Sdes   *  @ingroup hashtable-detail
52263970Sdes   *
53162852Sdes   *  @tparam _Value  CopyConstructible type.
54162852Sdes   *
55162852Sdes   *  @tparam _Key    CopyConstructible type.
56162852Sdes   *
57162852Sdes   *  @tparam _Alloc  An allocator type
58162852Sdes   *  ([lib.allocator.requirements]) whose _Alloc::value_type is
5957429Smarkm   *  _Value.  As a conforming extension, we allow for
60162852Sdes   *  _Alloc::value_type != _Value.
6157429Smarkm   *
6276259Sgreen   *  @tparam _ExtractKey  Function object that takes an object of type
6376259Sgreen   *  _Value and returns a value of type _Key.
64162852Sdes   *
65162852Sdes   *  @tparam _Equal  Function object that takes two objects of type k
6657429Smarkm   *  and returns a bool-like value that is true if the two objects
6776259Sgreen   *  are considered equal.
6876259Sgreen   *
6976259Sgreen   *  @tparam _H1  The hash function. A unary function object with
7057429Smarkm   *  argument type _Key and result type size_t. Return values should
71263970Sdes   *  be distributed over the entire range [0, numeric_limits<size_t>:::max()].
72263970Sdes   *
7357429Smarkm   *  @tparam _H2  The range-hashing function (in the terminology of
7457429Smarkm   *  Tavori and Dreizin).  A binary function object whose argument
7557429Smarkm   *  types and result type are all size_t.  Given arguments r and N,
7657429Smarkm   *  the return value is in the range [0, N).
7757429Smarkm   *
7857429Smarkm   *  @tparam _Hash  The ranged hash function (Tavori and Dreizin). A
7992555Sdes   *  binary function whose argument types are _Key and size_t and
8076259Sgreen   *  whose result type is size_t.  Given arguments k and N, the
8157429Smarkm   *  return value is in the range [0, N).  Default: hash(k, N) =
8292555Sdes   *  h2(h1(k), N).  If _Hash is anything other than the default, _H1
8376259Sgreen   *  and _H2 are ignored.
8457429Smarkm   *
8557429Smarkm   *  @tparam _RehashPolicy  Policy class with three members, all of
8657429Smarkm   *  which govern the bucket count. _M_next_bkt(n) returns a bucket
87162852Sdes   *  count no smaller than n.  _M_bkt_for_elements(n) returns a
88162852Sdes   *  bucket count appropriate for an element count of n.
89162852Sdes   *  _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
90162852Sdes   *  current bucket count is n_bkt and the current element count is
91162852Sdes   *  n_elt, we need to increase the bucket count.  If so, returns
92162852Sdes   *  make_pair(true, n), where n is the new bucket count.  If not,
93162852Sdes   *  returns make_pair(false, <anything>)
94162852Sdes   *
95162852Sdes   *  @tparam _Traits  Compile-time class with three boolean
96162852Sdes   *  std::integral_constant members:  __cache_hash_code, __constant_iterators,
97162852Sdes   *   __unique_keys.
98162852Sdes   *
99162852Sdes   *  Each _Hashtable data structure has:
100162852Sdes   *
101162852Sdes   *  - _Bucket[]       _M_buckets
102162852Sdes   *  - _Hash_node_base _M_before_begin
103   *  - size_type       _M_bucket_count
104   *  - size_type       _M_element_count
105   *
106   *  with _Bucket being _Hash_node* and _Hash_node containing:
107   *
108   *  - _Hash_node*   _M_next
109   *  - Tp            _M_value
110   *  - size_t        _M_hash_code if cache_hash_code is true
111   *
112   *  In terms of Standard containers the hashtable is like the aggregation of:
113   *
114   *  - std::forward_list<_Node> containing the elements
115   *  - std::vector<std::forward_list<_Node>::iterator> representing the buckets
116   *
117   *  The non-empty buckets contain the node before the first node in the
118   *  bucket. This design makes it possible to implement something like a
119   *  std::forward_list::insert_after on container insertion and
120   *  std::forward_list::erase_after on container erase
121   *  calls. _M_before_begin is equivalent to
122   *  std::forward_list::before_begin. Empty buckets contain
123   *  nullptr.  Note that one of the non-empty buckets contains
124   *  &_M_before_begin which is not a dereferenceable node so the
125   *  node pointer in a bucket shall never be dereferenced, only its
126   *  next node can be.
127   *
128   *  Walking through a bucket's nodes requires a check on the hash code to
129   *  see if each node is still in the bucket. Such a design assumes a
130   *  quite efficient hash functor and is one of the reasons it is
131   *  highly advisable to set __cache_hash_code to true.
132   *
133   *  The container iterators are simply built from nodes. This way
134   *  incrementing the iterator is perfectly efficient independent of
135   *  how many empty buckets there are in the container.
136   *
137   *  On insert we compute the element's hash code and use it to find the
138   *  bucket index. If the element must be inserted in an empty bucket
139   *  we add it at the beginning of the singly linked list and make the
140   *  bucket point to _M_before_begin. The bucket that used to point to
141   *  _M_before_begin, if any, is updated to point to its new before
142   *  begin node.
143   *
144   *  On erase, the simple iterator design requires using the hash
145   *  functor to get the index of the bucket to update. For this
146   *  reason, when __cache_hash_code is set to false the hash functor must
147   *  not throw and this is enforced by a static assertion.
148   *
149   *  Functionality is implemented by decomposition into base classes,
150   *  where the derived _Hashtable class is used in _Map_base,
151   *  _Insert, _Rehash_base, and _Equality base classes to access the
152   *  "this" pointer. _Hashtable_base is used in the base classes as a
153   *  non-recursive, fully-completed-type so that detailed nested type
154   *  information, such as iterator type and node type, can be
155   *  used. This is similar to the "Curiously Recurring Template
156   *  Pattern" (CRTP) technique, but uses a reconstructed, not
157   *  explicitly passed, template pattern.
158   *
159   *  Base class templates are:
160   *    - __detail::_Hashtable_base
161   *    - __detail::_Map_base
162   *    - __detail::_Insert
163   *    - __detail::_Rehash_base
164   *    - __detail::_Equality
165   */
166  template<typename _Key, typename _Value, typename _Alloc,
167	   typename _ExtractKey, typename _Equal,
168	   typename _H1, typename _H2, typename _Hash,
169	   typename _RehashPolicy, typename _Traits>
170    class _Hashtable
171    : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
172				       _H1, _H2, _Hash, _Traits>,
173      public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
174				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
175      public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
176			       _H1, _H2, _Hash, _RehashPolicy, _Traits>,
177      public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
178				    _H1, _H2, _Hash, _RehashPolicy, _Traits>,
179      public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
180				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
181      private __detail::_Hashtable_alloc<
182	typename __alloctr_rebind<_Alloc,
183	  __detail::_Hash_node<_Value,
184			       _Traits::__hash_cached::value> >::__type>
185    {
186      using __traits_type = _Traits;
187      using __hash_cached = typename __traits_type::__hash_cached;
188      using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
189      using __node_alloc_type =
190	typename __alloctr_rebind<_Alloc, __node_type>::__type;
191
192      using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
193
194      using __value_alloc_traits =
195	typename __hashtable_alloc::__value_alloc_traits;
196      using __node_alloc_traits =
197	typename __hashtable_alloc::__node_alloc_traits;
198      using __node_base = typename __hashtable_alloc::__node_base;
199      using __bucket_type = typename __hashtable_alloc::__bucket_type;
200
201    public:
202      typedef _Key						key_type;
203      typedef _Value						value_type;
204      typedef _Alloc						allocator_type;
205      typedef _Equal						key_equal;
206
207      // mapped_type, if present, comes from _Map_base.
208      // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
209      typedef typename __value_alloc_traits::pointer		pointer;
210      typedef typename __value_alloc_traits::const_pointer	const_pointer;
211      typedef value_type&					reference;
212      typedef const value_type&					const_reference;
213
214    private:
215      using __rehash_type = _RehashPolicy;
216      using __rehash_state = typename __rehash_type::_State;
217
218      using __constant_iterators = typename __traits_type::__constant_iterators;
219      using __unique_keys = typename __traits_type::__unique_keys;
220
221      using __key_extract = typename std::conditional<
222					     __constant_iterators::value,
223				       	     __detail::_Identity,
224					     __detail::_Select1st>::type;
225
226      using __hashtable_base = __detail::
227			       _Hashtable_base<_Key, _Value, _ExtractKey,
228					      _Equal, _H1, _H2, _Hash, _Traits>;
229
230      using __hash_code_base =  typename __hashtable_base::__hash_code_base;
231      using __hash_code =  typename __hashtable_base::__hash_code;
232      using __ireturn_type = typename __hashtable_base::__ireturn_type;
233
234      using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
235					     _Equal, _H1, _H2, _Hash,
236					     _RehashPolicy, _Traits>;
237
238      using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
239						   _ExtractKey, _Equal,
240						   _H1, _H2, _Hash,
241						   _RehashPolicy, _Traits>;
242
243      using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
244					    _Equal, _H1, _H2, _Hash,
245					    _RehashPolicy, _Traits>;
246
247      using __reuse_or_alloc_node_type =
248	__detail::_ReuseOrAllocNode<__node_alloc_type>;
249
250      // Metaprogramming for picking apart hash caching.
251      template<typename _Cond>
252	using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
253
254      template<typename _Cond>
255	using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
256
257      // Compile-time diagnostics.
258
259      // _Hash_code_base has everything protected, so use this derived type to
260      // access it.
261      struct __hash_code_base_access : __hash_code_base
262      { using __hash_code_base::_M_bucket_index; };
263
264      // Getting a bucket index from a node shall not throw because it is used
265      // in methods (erase, swap...) that shall not throw.
266      static_assert(noexcept(declval<const __hash_code_base_access&>()
267			     ._M_bucket_index((const __node_type*)nullptr,
268					      (std::size_t)0)),
269		    "Cache the hash code or qualify your functors involved"
270		    " in hash code and bucket index computation with noexcept");
271
272      // Following two static assertions are necessary to guarantee
273      // that local_iterator will be default constructible.
274
275      // When hash codes are cached local iterator inherits from H2 functor
276      // which must then be default constructible.
277      static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
278		    "Functor used to map hash code to bucket index"
279		    " must be default constructible");
280
281      template<typename _Keya, typename _Valuea, typename _Alloca,
282	       typename _ExtractKeya, typename _Equala,
283	       typename _H1a, typename _H2a, typename _Hasha,
284	       typename _RehashPolicya, typename _Traitsa,
285	       bool _Unique_keysa>
286	friend struct __detail::_Map_base;
287
288      template<typename _Keya, typename _Valuea, typename _Alloca,
289	       typename _ExtractKeya, typename _Equala,
290	       typename _H1a, typename _H2a, typename _Hasha,
291	       typename _RehashPolicya, typename _Traitsa>
292	friend struct __detail::_Insert_base;
293
294      template<typename _Keya, typename _Valuea, typename _Alloca,
295	       typename _ExtractKeya, typename _Equala,
296	       typename _H1a, typename _H2a, typename _Hasha,
297	       typename _RehashPolicya, typename _Traitsa,
298	       bool _Constant_iteratorsa, bool _Unique_keysa>
299	friend struct __detail::_Insert;
300
301    public:
302      using size_type = typename __hashtable_base::size_type;
303      using difference_type = typename __hashtable_base::difference_type;
304
305      using iterator = typename __hashtable_base::iterator;
306      using const_iterator = typename __hashtable_base::const_iterator;
307
308      using local_iterator = typename __hashtable_base::local_iterator;
309      using const_local_iterator = typename __hashtable_base::
310				   const_local_iterator;
311
312    private:
313      __bucket_type*		_M_buckets		= &_M_single_bucket;
314      size_type			_M_bucket_count		= 1;
315      __node_base		_M_before_begin;
316      size_type			_M_element_count	= 0;
317      _RehashPolicy		_M_rehash_policy;
318
319      // A single bucket used when only need for 1 bucket. Especially
320      // interesting in move semantic to leave hashtable with only 1 buckets
321      // which is not allocated so that we can have those operations noexcept
322      // qualified.
323      // Note that we can't leave hashtable with 0 bucket without adding
324      // numerous checks in the code to avoid 0 modulus.
325      __bucket_type		_M_single_bucket	= nullptr;
326
327      bool
328      _M_uses_single_bucket(__bucket_type* __bkts) const
329      { return __builtin_expect(__bkts == &_M_single_bucket, false); }
330
331      bool
332      _M_uses_single_bucket() const
333      { return _M_uses_single_bucket(_M_buckets); }
334
335      __hashtable_alloc&
336      _M_base_alloc() { return *this; }
337
338      __bucket_type*
339      _M_allocate_buckets(size_type __n)
340      {
341	if (__builtin_expect(__n == 1, false))
342	  {
343	    _M_single_bucket = nullptr;
344	    return &_M_single_bucket;
345	  }
346
347	return __hashtable_alloc::_M_allocate_buckets(__n);
348      }
349
350      void
351      _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
352      {
353	if (_M_uses_single_bucket(__bkts))
354	  return;
355
356	__hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
357      }
358
359      void
360      _M_deallocate_buckets()
361      { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
362
363      // Gets bucket begin, deals with the fact that non-empty buckets contain
364      // their before begin node.
365      __node_type*
366      _M_bucket_begin(size_type __bkt) const;
367
368      __node_type*
369      _M_begin() const
370      { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
371
372      template<typename _NodeGenerator>
373	void
374	_M_assign(const _Hashtable&, const _NodeGenerator&);
375
376      void
377      _M_move_assign(_Hashtable&&, std::true_type);
378
379      void
380      _M_move_assign(_Hashtable&&, std::false_type);
381
382      void
383      _M_reset() noexcept;
384
385      _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
386		 const _Equal& __eq, const _ExtractKey& __exk,
387		 const allocator_type& __a)
388	: __hashtable_base(__exk, __h1, __h2, __h, __eq),
389	  __hashtable_alloc(__node_alloc_type(__a))
390      { }
391
392    public:
393      // Constructor, destructor, assignment, swap
394      _Hashtable() = default;
395      _Hashtable(size_type __bucket_hint,
396		 const _H1&, const _H2&, const _Hash&,
397		 const _Equal&, const _ExtractKey&,
398		 const allocator_type&);
399
400      template<typename _InputIterator>
401	_Hashtable(_InputIterator __first, _InputIterator __last,
402		   size_type __bucket_hint,
403		   const _H1&, const _H2&, const _Hash&,
404		   const _Equal&, const _ExtractKey&,
405		   const allocator_type&);
406
407      _Hashtable(const _Hashtable&);
408
409      _Hashtable(_Hashtable&&) noexcept;
410
411      _Hashtable(const _Hashtable&, const allocator_type&);
412
413      _Hashtable(_Hashtable&&, const allocator_type&);
414
415      // Use delegating constructors.
416      explicit
417      _Hashtable(const allocator_type& __a)
418	: __hashtable_alloc(__node_alloc_type(__a))
419      { }
420
421      explicit
422      _Hashtable(size_type __n,
423		 const _H1& __hf = _H1(),
424		 const key_equal& __eql = key_equal(),
425		 const allocator_type& __a = allocator_type())
426      : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
427		   __key_extract(), __a)
428      { }
429
430      template<typename _InputIterator>
431	_Hashtable(_InputIterator __f, _InputIterator __l,
432		   size_type __n = 0,
433		   const _H1& __hf = _H1(),
434		   const key_equal& __eql = key_equal(),
435		   const allocator_type& __a = allocator_type())
436	: _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
437		     __key_extract(), __a)
438	{ }
439
440      _Hashtable(initializer_list<value_type> __l,
441		 size_type __n = 0,
442		 const _H1& __hf = _H1(),
443		 const key_equal& __eql = key_equal(),
444		 const allocator_type& __a = allocator_type())
445      : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
446		   __key_extract(), __a)
447      { }
448
449      _Hashtable&
450      operator=(const _Hashtable& __ht);
451
452      _Hashtable&
453      operator=(_Hashtable&& __ht)
454      noexcept(__node_alloc_traits::_S_nothrow_move())
455      {
456        constexpr bool __move_storage =
457          __node_alloc_traits::_S_propagate_on_move_assign()
458          || __node_alloc_traits::_S_always_equal();
459        _M_move_assign(std::move(__ht),
460                       integral_constant<bool, __move_storage>());
461	return *this;
462      }
463
464      _Hashtable&
465      operator=(initializer_list<value_type> __l)
466      {
467	__reuse_or_alloc_node_type __roan(_M_begin(), *this);
468	_M_before_begin._M_nxt = nullptr;
469	clear();
470	this->_M_insert_range(__l.begin(), __l.end(), __roan);
471	return *this;
472      }
473
474      ~_Hashtable() noexcept;
475
476      void
477      swap(_Hashtable&)
478      noexcept(__node_alloc_traits::_S_nothrow_swap());
479
480      // Basic container operations
481      iterator
482      begin() noexcept
483      { return iterator(_M_begin()); }
484
485      const_iterator
486      begin() const noexcept
487      { return const_iterator(_M_begin()); }
488
489      iterator
490      end() noexcept
491      { return iterator(nullptr); }
492
493      const_iterator
494      end() const noexcept
495      { return const_iterator(nullptr); }
496
497      const_iterator
498      cbegin() const noexcept
499      { return const_iterator(_M_begin()); }
500
501      const_iterator
502      cend() const noexcept
503      { return const_iterator(nullptr); }
504
505      size_type
506      size() const noexcept
507      { return _M_element_count; }
508
509      bool
510      empty() const noexcept
511      { return size() == 0; }
512
513      allocator_type
514      get_allocator() const noexcept
515      { return allocator_type(this->_M_node_allocator()); }
516
517      size_type
518      max_size() const noexcept
519      { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
520
521      // Observers
522      key_equal
523      key_eq() const
524      { return this->_M_eq(); }
525
526      // hash_function, if present, comes from _Hash_code_base.
527
528      // Bucket operations
529      size_type
530      bucket_count() const noexcept
531      { return _M_bucket_count; }
532
533      size_type
534      max_bucket_count() const noexcept
535      { return max_size(); }
536
537      size_type
538      bucket_size(size_type __n) const
539      { return std::distance(begin(__n), end(__n)); }
540
541      size_type
542      bucket(const key_type& __k) const
543      { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
544
545      local_iterator
546      begin(size_type __n)
547      {
548	return local_iterator(*this, _M_bucket_begin(__n),
549			      __n, _M_bucket_count);
550      }
551
552      local_iterator
553      end(size_type __n)
554      { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
555
556      const_local_iterator
557      begin(size_type __n) const
558      {
559	return const_local_iterator(*this, _M_bucket_begin(__n),
560				    __n, _M_bucket_count);
561      }
562
563      const_local_iterator
564      end(size_type __n) const
565      { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
566
567      // DR 691.
568      const_local_iterator
569      cbegin(size_type __n) const
570      {
571	return const_local_iterator(*this, _M_bucket_begin(__n),
572				    __n, _M_bucket_count);
573      }
574
575      const_local_iterator
576      cend(size_type __n) const
577      { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
578
579      float
580      load_factor() const noexcept
581      {
582	return static_cast<float>(size()) / static_cast<float>(bucket_count());
583      }
584
585      // max_load_factor, if present, comes from _Rehash_base.
586
587      // Generalization of max_load_factor.  Extension, not found in
588      // TR1.  Only useful if _RehashPolicy is something other than
589      // the default.
590      const _RehashPolicy&
591      __rehash_policy() const
592      { return _M_rehash_policy; }
593
594      void
595      __rehash_policy(const _RehashPolicy&);
596
597      // Lookup.
598      iterator
599      find(const key_type& __k);
600
601      const_iterator
602      find(const key_type& __k) const;
603
604      size_type
605      count(const key_type& __k) const;
606
607      std::pair<iterator, iterator>
608      equal_range(const key_type& __k);
609
610      std::pair<const_iterator, const_iterator>
611      equal_range(const key_type& __k) const;
612
613    protected:
614      // Bucket index computation helpers.
615      size_type
616      _M_bucket_index(__node_type* __n) const noexcept
617      { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
618
619      size_type
620      _M_bucket_index(const key_type& __k, __hash_code __c) const
621      { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
622
623      // Find and insert helper functions and types
624      // Find the node before the one matching the criteria.
625      __node_base*
626      _M_find_before_node(size_type, const key_type&, __hash_code) const;
627
628      __node_type*
629      _M_find_node(size_type __bkt, const key_type& __key,
630		   __hash_code __c) const
631      {
632	__node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
633	if (__before_n)
634	  return static_cast<__node_type*>(__before_n->_M_nxt);
635	return nullptr;
636      }
637
638      // Insert a node at the beginning of a bucket.
639      void
640      _M_insert_bucket_begin(size_type, __node_type*);
641
642      // Remove the bucket first node
643      void
644      _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
645			     size_type __next_bkt);
646
647      // Get the node before __n in the bucket __bkt
648      __node_base*
649      _M_get_previous_node(size_type __bkt, __node_base* __n);
650
651      // Insert node with hash code __code, in bucket bkt if no rehash (assumes
652      // no element with its key already present). Take ownership of the node,
653      // deallocate it on exception.
654      iterator
655      _M_insert_unique_node(size_type __bkt, __hash_code __code,
656			    __node_type* __n);
657
658      // Insert node with hash code __code. Take ownership of the node,
659      // deallocate it on exception.
660      iterator
661      _M_insert_multi_node(__node_type* __hint,
662			   __hash_code __code, __node_type* __n);
663
664      template<typename... _Args>
665	std::pair<iterator, bool>
666	_M_emplace(std::true_type, _Args&&... __args);
667
668      template<typename... _Args>
669	iterator
670	_M_emplace(std::false_type __uk, _Args&&... __args)
671	{ return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
672
673      // Emplace with hint, useless when keys are unique.
674      template<typename... _Args>
675	iterator
676	_M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
677	{ return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
678
679      template<typename... _Args>
680	iterator
681	_M_emplace(const_iterator, std::false_type, _Args&&... __args);
682
683      template<typename _Arg, typename _NodeGenerator>
684	std::pair<iterator, bool>
685	_M_insert(_Arg&&, const _NodeGenerator&, std::true_type);
686
687      template<typename _Arg, typename _NodeGenerator>
688	iterator
689	_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
690		  std::false_type __uk)
691	{
692	  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
693			   __uk);
694	}
695
696      // Insert with hint, not used when keys are unique.
697      template<typename _Arg, typename _NodeGenerator>
698	iterator
699	_M_insert(const_iterator, _Arg&& __arg,
700		  const _NodeGenerator& __node_gen, std::true_type __uk)
701	{
702	  return
703	    _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
704	}
705
706      // Insert with hint when keys are not unique.
707      template<typename _Arg, typename _NodeGenerator>
708	iterator
709	_M_insert(const_iterator, _Arg&&,
710		  const _NodeGenerator&, std::false_type);
711
712      size_type
713      _M_erase(std::true_type, const key_type&);
714
715      size_type
716      _M_erase(std::false_type, const key_type&);
717
718      iterator
719      _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
720
721    public:
722      // Emplace
723      template<typename... _Args>
724	__ireturn_type
725	emplace(_Args&&... __args)
726	{ return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
727
728      template<typename... _Args>
729	iterator
730	emplace_hint(const_iterator __hint, _Args&&... __args)
731	{
732	  return _M_emplace(__hint, __unique_keys(),
733			    std::forward<_Args>(__args)...);
734	}
735
736      // Insert member functions via inheritance.
737
738      // Erase
739      iterator
740      erase(const_iterator);
741
742      // LWG 2059.
743      iterator
744      erase(iterator __it)
745      { return erase(const_iterator(__it)); }
746
747      size_type
748      erase(const key_type& __k)
749      { return _M_erase(__unique_keys(), __k); }
750
751      iterator
752      erase(const_iterator, const_iterator);
753
754      void
755      clear() noexcept;
756
757      // Set number of buckets to be appropriate for container of n element.
758      void rehash(size_type __n);
759
760      // DR 1189.
761      // reserve, if present, comes from _Rehash_base.
762
763    private:
764      // Helper rehash method used when keys are unique.
765      void _M_rehash_aux(size_type __n, std::true_type);
766
767      // Helper rehash method used when keys can be non-unique.
768      void _M_rehash_aux(size_type __n, std::false_type);
769
770      // Unconditionally change size of bucket array to n, restore
771      // hash policy state to __state on exception.
772      void _M_rehash(size_type __n, const __rehash_state& __state);
773    };
774
775
776  // Definitions of class template _Hashtable's out-of-line member functions.
777  template<typename _Key, typename _Value,
778	   typename _Alloc, typename _ExtractKey, typename _Equal,
779	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
780	   typename _Traits>
781    auto
782    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
783	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
784    _M_bucket_begin(size_type __bkt) const
785    -> __node_type*
786    {
787      __node_base* __n = _M_buckets[__bkt];
788      return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
789    }
790
791  template<typename _Key, typename _Value,
792	   typename _Alloc, typename _ExtractKey, typename _Equal,
793	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
794	   typename _Traits>
795    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
796	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
797    _Hashtable(size_type __bucket_hint,
798	       const _H1& __h1, const _H2& __h2, const _Hash& __h,
799	       const _Equal& __eq, const _ExtractKey& __exk,
800	       const allocator_type& __a)
801      : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
802    {
803      auto __bkt = _M_rehash_policy._M_next_bkt(__bucket_hint);
804      if (__bkt > _M_bucket_count)
805	{
806	  _M_buckets = _M_allocate_buckets(__bkt);
807	  _M_bucket_count = __bkt;
808	}
809    }
810
811  template<typename _Key, typename _Value,
812	   typename _Alloc, typename _ExtractKey, typename _Equal,
813	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
814	   typename _Traits>
815    template<typename _InputIterator>
816      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
817		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
818      _Hashtable(_InputIterator __f, _InputIterator __l,
819		 size_type __bucket_hint,
820		 const _H1& __h1, const _H2& __h2, const _Hash& __h,
821		 const _Equal& __eq, const _ExtractKey& __exk,
822		 const allocator_type& __a)
823	: _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
824      {
825	auto __nb_elems = __detail::__distance_fw(__f, __l);
826	auto __bkt_count =
827	  _M_rehash_policy._M_next_bkt(
828	    std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
829		     __bucket_hint));
830
831	if (__bkt_count > _M_bucket_count)
832	  {
833	    _M_buckets = _M_allocate_buckets(__bkt_count);
834	    _M_bucket_count = __bkt_count;
835	  }
836
837	__try
838	  {
839	    for (; __f != __l; ++__f)
840	      this->insert(*__f);
841	  }
842	__catch(...)
843	  {
844	    clear();
845	    _M_deallocate_buckets();
846	    __throw_exception_again;
847	  }
848      }
849
850  template<typename _Key, typename _Value,
851	   typename _Alloc, typename _ExtractKey, typename _Equal,
852	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
853	   typename _Traits>
854    auto
855    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
856	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
857    operator=(const _Hashtable& __ht)
858    -> _Hashtable&
859    {
860      if (&__ht == this)
861	return *this;
862
863      if (__node_alloc_traits::_S_propagate_on_copy_assign())
864	{
865	  auto& __this_alloc = this->_M_node_allocator();
866	  auto& __that_alloc = __ht._M_node_allocator();
867	  if (!__node_alloc_traits::_S_always_equal()
868	      && __this_alloc != __that_alloc)
869	    {
870	      // Replacement allocator cannot free existing storage.
871	      this->_M_deallocate_nodes(_M_begin());
872	      _M_before_begin._M_nxt = nullptr;
873	      _M_deallocate_buckets();
874	      _M_buckets = nullptr;
875	      std::__alloc_on_copy(__this_alloc, __that_alloc);
876	      __hashtable_base::operator=(__ht);
877	      _M_bucket_count = __ht._M_bucket_count;
878	      _M_element_count = __ht._M_element_count;
879	      _M_rehash_policy = __ht._M_rehash_policy;
880	      __try
881		{
882		  _M_assign(__ht,
883			    [this](const __node_type* __n)
884			    { return this->_M_allocate_node(__n->_M_v()); });
885		}
886	      __catch(...)
887		{
888		  // _M_assign took care of deallocating all memory. Now we
889		  // must make sure this instance remains in a usable state.
890		  _M_reset();
891		  __throw_exception_again;
892		}
893	      return *this;
894	    }
895	  std::__alloc_on_copy(__this_alloc, __that_alloc);
896	}
897
898      // Reuse allocated buckets and nodes.
899      __bucket_type* __former_buckets = nullptr;
900      std::size_t __former_bucket_count = _M_bucket_count;
901      const __rehash_state& __former_state = _M_rehash_policy._M_state();
902
903      if (_M_bucket_count != __ht._M_bucket_count)
904	{
905	  __former_buckets = _M_buckets;
906	  _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
907	  _M_bucket_count = __ht._M_bucket_count;
908	}
909      else
910	__builtin_memset(_M_buckets, 0,
911			 _M_bucket_count * sizeof(__bucket_type));
912
913      __try
914	{
915	  __hashtable_base::operator=(__ht);
916	  _M_element_count = __ht._M_element_count;
917	  _M_rehash_policy = __ht._M_rehash_policy;
918	  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
919	  _M_before_begin._M_nxt = nullptr;
920	  _M_assign(__ht,
921		    [&__roan](const __node_type* __n)
922		    { return __roan(__n->_M_v()); });
923	  if (__former_buckets)
924	    _M_deallocate_buckets(__former_buckets, __former_bucket_count);
925	}
926      __catch(...)
927	{
928	  if (__former_buckets)
929	    {
930	      // Restore previous buckets.
931	      _M_deallocate_buckets();
932	      _M_rehash_policy._M_reset(__former_state);
933	      _M_buckets = __former_buckets;
934	      _M_bucket_count = __former_bucket_count;
935	    }
936	  __builtin_memset(_M_buckets, 0,
937			   _M_bucket_count * sizeof(__bucket_type));
938	  __throw_exception_again;
939	}
940      return *this;
941    }
942
943  template<typename _Key, typename _Value,
944	   typename _Alloc, typename _ExtractKey, typename _Equal,
945	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
946	   typename _Traits>
947    template<typename _NodeGenerator>
948      void
949      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
950		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
951      _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
952      {
953	__bucket_type* __buckets = nullptr;
954	if (!_M_buckets)
955	  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
956
957	__try
958	  {
959	    if (!__ht._M_before_begin._M_nxt)
960	      return;
961
962	    // First deal with the special first node pointed to by
963	    // _M_before_begin.
964	    __node_type* __ht_n = __ht._M_begin();
965	    __node_type* __this_n = __node_gen(__ht_n);
966	    this->_M_copy_code(__this_n, __ht_n);
967	    _M_before_begin._M_nxt = __this_n;
968	    _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
969
970	    // Then deal with other nodes.
971	    __node_base* __prev_n = __this_n;
972	    for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
973	      {
974		__this_n = __node_gen(__ht_n);
975		__prev_n->_M_nxt = __this_n;
976		this->_M_copy_code(__this_n, __ht_n);
977		size_type __bkt = _M_bucket_index(__this_n);
978		if (!_M_buckets[__bkt])
979		  _M_buckets[__bkt] = __prev_n;
980		__prev_n = __this_n;
981	      }
982	  }
983	__catch(...)
984	  {
985	    clear();
986	    if (__buckets)
987	      _M_deallocate_buckets();
988	    __throw_exception_again;
989	  }
990      }
991
992  template<typename _Key, typename _Value,
993	   typename _Alloc, typename _ExtractKey, typename _Equal,
994	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
995	   typename _Traits>
996    void
997    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
998	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
999    _M_reset() noexcept
1000    {
1001      _M_rehash_policy._M_reset();
1002      _M_bucket_count = 1;
1003      _M_single_bucket = nullptr;
1004      _M_buckets = &_M_single_bucket;
1005      _M_before_begin._M_nxt = nullptr;
1006      _M_element_count = 0;
1007    }
1008
1009  template<typename _Key, typename _Value,
1010	   typename _Alloc, typename _ExtractKey, typename _Equal,
1011	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1012	   typename _Traits>
1013    void
1014    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1015	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1016    _M_move_assign(_Hashtable&& __ht, std::true_type)
1017    {
1018      this->_M_deallocate_nodes(_M_begin());
1019      _M_deallocate_buckets();
1020      __hashtable_base::operator=(std::move(__ht));
1021      _M_rehash_policy = __ht._M_rehash_policy;
1022      if (!__ht._M_uses_single_bucket())
1023	_M_buckets = __ht._M_buckets;
1024      else
1025	{
1026	  _M_buckets = &_M_single_bucket;
1027	  _M_single_bucket = __ht._M_single_bucket;
1028	}
1029      _M_bucket_count = __ht._M_bucket_count;
1030      _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1031      _M_element_count = __ht._M_element_count;
1032      std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1033
1034      // Fix buckets containing the _M_before_begin pointers that can't be
1035      // moved.
1036      if (_M_begin())
1037	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1038      __ht._M_reset();
1039    }
1040
1041  template<typename _Key, typename _Value,
1042	   typename _Alloc, typename _ExtractKey, typename _Equal,
1043	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1044	   typename _Traits>
1045    void
1046    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1047	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1048    _M_move_assign(_Hashtable&& __ht, std::false_type)
1049    {
1050      if (__ht._M_node_allocator() == this->_M_node_allocator())
1051	_M_move_assign(std::move(__ht), std::true_type());
1052      else
1053	{
1054	  // Can't move memory, move elements then.
1055	  __bucket_type* __former_buckets = nullptr;
1056	  size_type __former_bucket_count = _M_bucket_count;
1057	  const __rehash_state& __former_state = _M_rehash_policy._M_state();
1058
1059	  if (_M_bucket_count != __ht._M_bucket_count)
1060	    {
1061	      __former_buckets = _M_buckets;
1062	      _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1063	      _M_bucket_count = __ht._M_bucket_count;
1064	    }
1065	  else
1066	    __builtin_memset(_M_buckets, 0,
1067			     _M_bucket_count * sizeof(__bucket_type));
1068
1069	  __try
1070	    {
1071	      __hashtable_base::operator=(std::move(__ht));
1072	      _M_element_count = __ht._M_element_count;
1073	      _M_rehash_policy = __ht._M_rehash_policy;
1074	      __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1075	      _M_before_begin._M_nxt = nullptr;
1076	      _M_assign(__ht,
1077			[&__roan](__node_type* __n)
1078			{ return __roan(std::move_if_noexcept(__n->_M_v())); });
1079	      __ht.clear();
1080	    }
1081	  __catch(...)
1082	    {
1083	      if (__former_buckets)
1084		{
1085		  _M_deallocate_buckets();
1086		  _M_rehash_policy._M_reset(__former_state);
1087		  _M_buckets = __former_buckets;
1088		  _M_bucket_count = __former_bucket_count;
1089		}
1090	      __builtin_memset(_M_buckets, 0,
1091			       _M_bucket_count * sizeof(__bucket_type));
1092	      __throw_exception_again;
1093	    }
1094	}
1095    }
1096
1097  template<typename _Key, typename _Value,
1098	   typename _Alloc, typename _ExtractKey, typename _Equal,
1099	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1100	   typename _Traits>
1101    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1102	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1103    _Hashtable(const _Hashtable& __ht)
1104    : __hashtable_base(__ht),
1105      __map_base(__ht),
1106      __rehash_base(__ht),
1107      __hashtable_alloc(
1108	__node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1109      _M_buckets(nullptr),
1110      _M_bucket_count(__ht._M_bucket_count),
1111      _M_element_count(__ht._M_element_count),
1112      _M_rehash_policy(__ht._M_rehash_policy)
1113    {
1114      _M_assign(__ht,
1115		[this](const __node_type* __n)
1116		{ return this->_M_allocate_node(__n->_M_v()); });
1117    }
1118
1119  template<typename _Key, typename _Value,
1120	   typename _Alloc, typename _ExtractKey, typename _Equal,
1121	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1122	   typename _Traits>
1123    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1124	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1125    _Hashtable(_Hashtable&& __ht) noexcept
1126    : __hashtable_base(__ht),
1127      __map_base(__ht),
1128      __rehash_base(__ht),
1129      __hashtable_alloc(std::move(__ht._M_base_alloc())),
1130      _M_buckets(__ht._M_buckets),
1131      _M_bucket_count(__ht._M_bucket_count),
1132      _M_before_begin(__ht._M_before_begin._M_nxt),
1133      _M_element_count(__ht._M_element_count),
1134      _M_rehash_policy(__ht._M_rehash_policy)
1135    {
1136      // Update, if necessary, buckets if __ht is using its single bucket.
1137      if (__ht._M_uses_single_bucket())
1138	{
1139	  _M_buckets = &_M_single_bucket;
1140	  _M_single_bucket = __ht._M_single_bucket;
1141	}
1142
1143      // Update, if necessary, bucket pointing to before begin that hasn't
1144      // moved.
1145      if (_M_begin())
1146	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1147
1148      __ht._M_reset();
1149    }
1150
1151  template<typename _Key, typename _Value,
1152	   typename _Alloc, typename _ExtractKey, typename _Equal,
1153	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1154	   typename _Traits>
1155    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1156	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1157    _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1158    : __hashtable_base(__ht),
1159      __map_base(__ht),
1160      __rehash_base(__ht),
1161      __hashtable_alloc(__node_alloc_type(__a)),
1162      _M_buckets(),
1163      _M_bucket_count(__ht._M_bucket_count),
1164      _M_element_count(__ht._M_element_count),
1165      _M_rehash_policy(__ht._M_rehash_policy)
1166    {
1167      _M_assign(__ht,
1168		[this](const __node_type* __n)
1169		{ return this->_M_allocate_node(__n->_M_v()); });
1170    }
1171
1172  template<typename _Key, typename _Value,
1173	   typename _Alloc, typename _ExtractKey, typename _Equal,
1174	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1175	   typename _Traits>
1176    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1177	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1178    _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1179    : __hashtable_base(__ht),
1180      __map_base(__ht),
1181      __rehash_base(__ht),
1182      __hashtable_alloc(__node_alloc_type(__a)),
1183      _M_buckets(nullptr),
1184      _M_bucket_count(__ht._M_bucket_count),
1185      _M_element_count(__ht._M_element_count),
1186      _M_rehash_policy(__ht._M_rehash_policy)
1187    {
1188      if (__ht._M_node_allocator() == this->_M_node_allocator())
1189	{
1190	  if (__ht._M_uses_single_bucket())
1191	    {
1192	      _M_buckets = &_M_single_bucket;
1193	      _M_single_bucket = __ht._M_single_bucket;
1194	    }
1195	  else
1196	    _M_buckets = __ht._M_buckets;
1197
1198	  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1199	  // Update, if necessary, bucket pointing to before begin that hasn't
1200	  // moved.
1201	  if (_M_begin())
1202	    _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1203	  __ht._M_reset();
1204	}
1205      else
1206	{
1207	  _M_assign(__ht,
1208		    [this](__node_type* __n)
1209		    {
1210		      return this->_M_allocate_node(
1211					std::move_if_noexcept(__n->_M_v()));
1212		    });
1213	  __ht.clear();
1214	}
1215    }
1216
1217  template<typename _Key, typename _Value,
1218	   typename _Alloc, typename _ExtractKey, typename _Equal,
1219	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1220	   typename _Traits>
1221    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1222	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1223    ~_Hashtable() noexcept
1224    {
1225      clear();
1226      _M_deallocate_buckets();
1227    }
1228
1229  template<typename _Key, typename _Value,
1230	   typename _Alloc, typename _ExtractKey, typename _Equal,
1231	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1232	   typename _Traits>
1233    void
1234    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1235	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1236    swap(_Hashtable& __x)
1237    noexcept(__node_alloc_traits::_S_nothrow_swap())
1238    {
1239      // The only base class with member variables is hash_code_base.
1240      // We define _Hash_code_base::_M_swap because different
1241      // specializations have different members.
1242      this->_M_swap(__x);
1243
1244      std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1245      std::swap(_M_rehash_policy, __x._M_rehash_policy);
1246
1247      // Deal properly with potentially moved instances.
1248      if (this->_M_uses_single_bucket())
1249	{
1250	  if (!__x._M_uses_single_bucket())
1251	    {
1252	      _M_buckets = __x._M_buckets;
1253	      __x._M_buckets = &__x._M_single_bucket;
1254	    }
1255	}
1256      else if (__x._M_uses_single_bucket())
1257	{
1258	  __x._M_buckets = _M_buckets;
1259	  _M_buckets = &_M_single_bucket;
1260	}
1261      else
1262	std::swap(_M_buckets, __x._M_buckets);
1263
1264      std::swap(_M_bucket_count, __x._M_bucket_count);
1265      std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1266      std::swap(_M_element_count, __x._M_element_count);
1267      std::swap(_M_single_bucket, __x._M_single_bucket);
1268
1269      // Fix buckets containing the _M_before_begin pointers that can't be
1270      // swapped.
1271      if (_M_begin())
1272	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1273
1274      if (__x._M_begin())
1275	__x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1276	  = &__x._M_before_begin;
1277    }
1278
1279  template<typename _Key, typename _Value,
1280	   typename _Alloc, typename _ExtractKey, typename _Equal,
1281	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1282	   typename _Traits>
1283    void
1284    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1285	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1286    __rehash_policy(const _RehashPolicy& __pol)
1287    {
1288      auto __do_rehash =
1289	__pol._M_need_rehash(_M_bucket_count, _M_element_count, 0);
1290      if (__do_rehash.first)
1291	_M_rehash(__do_rehash.second, _M_rehash_policy._M_state());
1292      _M_rehash_policy = __pol;
1293    }
1294
1295  template<typename _Key, typename _Value,
1296	   typename _Alloc, typename _ExtractKey, typename _Equal,
1297	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1298	   typename _Traits>
1299    auto
1300    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1301	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1302    find(const key_type& __k)
1303    -> iterator
1304    {
1305      __hash_code __code = this->_M_hash_code(__k);
1306      std::size_t __n = _M_bucket_index(__k, __code);
1307      __node_type* __p = _M_find_node(__n, __k, __code);
1308      return __p ? iterator(__p) : end();
1309    }
1310
1311  template<typename _Key, typename _Value,
1312	   typename _Alloc, typename _ExtractKey, typename _Equal,
1313	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1314	   typename _Traits>
1315    auto
1316    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1317	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1318    find(const key_type& __k) const
1319    -> const_iterator
1320    {
1321      __hash_code __code = this->_M_hash_code(__k);
1322      std::size_t __n = _M_bucket_index(__k, __code);
1323      __node_type* __p = _M_find_node(__n, __k, __code);
1324      return __p ? const_iterator(__p) : end();
1325    }
1326
1327  template<typename _Key, typename _Value,
1328	   typename _Alloc, typename _ExtractKey, typename _Equal,
1329	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1330	   typename _Traits>
1331    auto
1332    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1333	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1334    count(const key_type& __k) const
1335    -> size_type
1336    {
1337      __hash_code __code = this->_M_hash_code(__k);
1338      std::size_t __n = _M_bucket_index(__k, __code);
1339      __node_type* __p = _M_bucket_begin(__n);
1340      if (!__p)
1341	return 0;
1342
1343      std::size_t __result = 0;
1344      for (;; __p = __p->_M_next())
1345	{
1346	  if (this->_M_equals(__k, __code, __p))
1347	    ++__result;
1348	  else if (__result)
1349	    // All equivalent values are next to each other, if we
1350	    // found a non-equivalent value after an equivalent one it
1351	    // means that we won't find any new equivalent value.
1352	    break;
1353	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1354	    break;
1355	}
1356      return __result;
1357    }
1358
1359  template<typename _Key, typename _Value,
1360	   typename _Alloc, typename _ExtractKey, typename _Equal,
1361	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1362	   typename _Traits>
1363    auto
1364    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1365	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1366    equal_range(const key_type& __k)
1367    -> pair<iterator, iterator>
1368    {
1369      __hash_code __code = this->_M_hash_code(__k);
1370      std::size_t __n = _M_bucket_index(__k, __code);
1371      __node_type* __p = _M_find_node(__n, __k, __code);
1372
1373      if (__p)
1374	{
1375	  __node_type* __p1 = __p->_M_next();
1376	  while (__p1 && _M_bucket_index(__p1) == __n
1377		 && this->_M_equals(__k, __code, __p1))
1378	    __p1 = __p1->_M_next();
1379
1380	  return std::make_pair(iterator(__p), iterator(__p1));
1381	}
1382      else
1383	return std::make_pair(end(), end());
1384    }
1385
1386  template<typename _Key, typename _Value,
1387	   typename _Alloc, typename _ExtractKey, typename _Equal,
1388	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1389	   typename _Traits>
1390    auto
1391    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1392	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1393    equal_range(const key_type& __k) const
1394    -> pair<const_iterator, const_iterator>
1395    {
1396      __hash_code __code = this->_M_hash_code(__k);
1397      std::size_t __n = _M_bucket_index(__k, __code);
1398      __node_type* __p = _M_find_node(__n, __k, __code);
1399
1400      if (__p)
1401	{
1402	  __node_type* __p1 = __p->_M_next();
1403	  while (__p1 && _M_bucket_index(__p1) == __n
1404		 && this->_M_equals(__k, __code, __p1))
1405	    __p1 = __p1->_M_next();
1406
1407	  return std::make_pair(const_iterator(__p), const_iterator(__p1));
1408	}
1409      else
1410	return std::make_pair(end(), end());
1411    }
1412
1413  // Find the node whose key compares equal to k in the bucket n.
1414  // Return nullptr if no node is found.
1415  template<typename _Key, typename _Value,
1416	   typename _Alloc, typename _ExtractKey, typename _Equal,
1417	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1418	   typename _Traits>
1419    auto
1420    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1421	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1422    _M_find_before_node(size_type __n, const key_type& __k,
1423			__hash_code __code) const
1424    -> __node_base*
1425    {
1426      __node_base* __prev_p = _M_buckets[__n];
1427      if (!__prev_p)
1428	return nullptr;
1429
1430      for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1431	   __p = __p->_M_next())
1432	{
1433	  if (this->_M_equals(__k, __code, __p))
1434	    return __prev_p;
1435
1436	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1437	    break;
1438	  __prev_p = __p;
1439	}
1440      return nullptr;
1441    }
1442
1443  template<typename _Key, typename _Value,
1444	   typename _Alloc, typename _ExtractKey, typename _Equal,
1445	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1446	   typename _Traits>
1447    void
1448    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1449	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1450    _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1451    {
1452      if (_M_buckets[__bkt])
1453	{
1454	  // Bucket is not empty, we just need to insert the new node
1455	  // after the bucket before begin.
1456	  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1457	  _M_buckets[__bkt]->_M_nxt = __node;
1458	}
1459      else
1460	{
1461	  // The bucket is empty, the new node is inserted at the
1462	  // beginning of the singly-linked list and the bucket will
1463	  // contain _M_before_begin pointer.
1464	  __node->_M_nxt = _M_before_begin._M_nxt;
1465	  _M_before_begin._M_nxt = __node;
1466	  if (__node->_M_nxt)
1467	    // We must update former begin bucket that is pointing to
1468	    // _M_before_begin.
1469	    _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1470	  _M_buckets[__bkt] = &_M_before_begin;
1471	}
1472    }
1473
1474  template<typename _Key, typename _Value,
1475	   typename _Alloc, typename _ExtractKey, typename _Equal,
1476	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1477	   typename _Traits>
1478    void
1479    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1480	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1481    _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1482			   size_type __next_bkt)
1483    {
1484      if (!__next || __next_bkt != __bkt)
1485	{
1486	  // Bucket is now empty
1487	  // First update next bucket if any
1488	  if (__next)
1489	    _M_buckets[__next_bkt] = _M_buckets[__bkt];
1490
1491	  // Second update before begin node if necessary
1492	  if (&_M_before_begin == _M_buckets[__bkt])
1493	    _M_before_begin._M_nxt = __next;
1494	  _M_buckets[__bkt] = nullptr;
1495	}
1496    }
1497
1498  template<typename _Key, typename _Value,
1499	   typename _Alloc, typename _ExtractKey, typename _Equal,
1500	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1501	   typename _Traits>
1502    auto
1503    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1504	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1505    _M_get_previous_node(size_type __bkt, __node_base* __n)
1506    -> __node_base*
1507    {
1508      __node_base* __prev_n = _M_buckets[__bkt];
1509      while (__prev_n->_M_nxt != __n)
1510	__prev_n = __prev_n->_M_nxt;
1511      return __prev_n;
1512    }
1513
1514  template<typename _Key, typename _Value,
1515	   typename _Alloc, typename _ExtractKey, typename _Equal,
1516	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1517	   typename _Traits>
1518    template<typename... _Args>
1519      auto
1520      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1521		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1522      _M_emplace(std::true_type, _Args&&... __args)
1523      -> pair<iterator, bool>
1524      {
1525	// First build the node to get access to the hash code
1526	__node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1527	const key_type& __k = this->_M_extract()(__node->_M_v());
1528	__hash_code __code;
1529	__try
1530	  {
1531	    __code = this->_M_hash_code(__k);
1532	  }
1533	__catch(...)
1534	  {
1535	    this->_M_deallocate_node(__node);
1536	    __throw_exception_again;
1537	  }
1538
1539	size_type __bkt = _M_bucket_index(__k, __code);
1540	if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1541	  {
1542	    // There is already an equivalent node, no insertion
1543	    this->_M_deallocate_node(__node);
1544	    return std::make_pair(iterator(__p), false);
1545	  }
1546
1547	// Insert the node
1548	return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1549			      true);
1550      }
1551
1552  template<typename _Key, typename _Value,
1553	   typename _Alloc, typename _ExtractKey, typename _Equal,
1554	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1555	   typename _Traits>
1556    template<typename... _Args>
1557      auto
1558      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1559		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1560      _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1561      -> iterator
1562      {
1563	// First build the node to get its hash code.
1564	__node_type* __node =
1565	  this->_M_allocate_node(std::forward<_Args>(__args)...);
1566
1567	__hash_code __code;
1568	__try
1569	  {
1570	    __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1571	  }
1572	__catch(...)
1573	  {
1574	    this->_M_deallocate_node(__node);
1575	    __throw_exception_again;
1576	  }
1577
1578	return _M_insert_multi_node(__hint._M_cur, __code, __node);
1579      }
1580
1581  template<typename _Key, typename _Value,
1582	   typename _Alloc, typename _ExtractKey, typename _Equal,
1583	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1584	   typename _Traits>
1585    auto
1586    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1587	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1588    _M_insert_unique_node(size_type __bkt, __hash_code __code,
1589			  __node_type* __node)
1590    -> iterator
1591    {
1592      const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1593      std::pair<bool, std::size_t> __do_rehash
1594	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1595
1596      __try
1597	{
1598	  if (__do_rehash.first)
1599	    {
1600	      _M_rehash(__do_rehash.second, __saved_state);
1601	      __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1602	    }
1603
1604	  this->_M_store_code(__node, __code);
1605
1606	  // Always insert at the beginning of the bucket.
1607	  _M_insert_bucket_begin(__bkt, __node);
1608	  ++_M_element_count;
1609	  return iterator(__node);
1610	}
1611      __catch(...)
1612	{
1613	  this->_M_deallocate_node(__node);
1614	  __throw_exception_again;
1615	}
1616    }
1617
1618  // Insert node, in bucket bkt if no rehash (assumes no element with its key
1619  // already present). Take ownership of the node, deallocate it on exception.
1620  template<typename _Key, typename _Value,
1621	   typename _Alloc, typename _ExtractKey, typename _Equal,
1622	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1623	   typename _Traits>
1624    auto
1625    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1626	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1627    _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1628			 __node_type* __node)
1629    -> iterator
1630    {
1631      const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1632      std::pair<bool, std::size_t> __do_rehash
1633	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1634
1635      __try
1636	{
1637	  if (__do_rehash.first)
1638	    _M_rehash(__do_rehash.second, __saved_state);
1639
1640	  this->_M_store_code(__node, __code);
1641	  const key_type& __k = this->_M_extract()(__node->_M_v());
1642	  size_type __bkt = _M_bucket_index(__k, __code);
1643
1644	  // Find the node before an equivalent one or use hint if it exists and
1645	  // if it is equivalent.
1646	  __node_base* __prev
1647	    = __builtin_expect(__hint != nullptr, false)
1648	      && this->_M_equals(__k, __code, __hint)
1649		? __hint
1650		: _M_find_before_node(__bkt, __k, __code);
1651	  if (__prev)
1652	    {
1653	      // Insert after the node before the equivalent one.
1654	      __node->_M_nxt = __prev->_M_nxt;
1655	      __prev->_M_nxt = __node;
1656	      if (__builtin_expect(__prev == __hint, false))
1657	      	// hint might be the last bucket node, in this case we need to
1658	      	// update next bucket.
1659	      	if (__node->_M_nxt
1660	      	    && !this->_M_equals(__k, __code, __node->_M_next()))
1661	      	  {
1662	      	    size_type __next_bkt = _M_bucket_index(__node->_M_next());
1663	      	    if (__next_bkt != __bkt)
1664	      	      _M_buckets[__next_bkt] = __node;
1665	      	  }
1666	    }
1667	  else
1668	    // The inserted node has no equivalent in the
1669	    // hashtable. We must insert the new node at the
1670	    // beginning of the bucket to preserve equivalent
1671	    // elements' relative positions.
1672	    _M_insert_bucket_begin(__bkt, __node);
1673	  ++_M_element_count;
1674	  return iterator(__node);
1675	}
1676      __catch(...)
1677	{
1678	  this->_M_deallocate_node(__node);
1679	  __throw_exception_again;
1680	}
1681    }
1682
1683  // Insert v if no element with its key is already present.
1684  template<typename _Key, typename _Value,
1685	   typename _Alloc, typename _ExtractKey, typename _Equal,
1686	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1687	   typename _Traits>
1688    template<typename _Arg, typename _NodeGenerator>
1689      auto
1690      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1691		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1692      _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, std::true_type)
1693      -> pair<iterator, bool>
1694      {
1695	const key_type& __k = this->_M_extract()(__v);
1696	__hash_code __code = this->_M_hash_code(__k);
1697	size_type __bkt = _M_bucket_index(__k, __code);
1698
1699	__node_type* __n = _M_find_node(__bkt, __k, __code);
1700	if (__n)
1701	  return std::make_pair(iterator(__n), false);
1702
1703	__n = __node_gen(std::forward<_Arg>(__v));
1704	return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
1705      }
1706
1707  // Insert v unconditionally.
1708  template<typename _Key, typename _Value,
1709	   typename _Alloc, typename _ExtractKey, typename _Equal,
1710	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1711	   typename _Traits>
1712    template<typename _Arg, typename _NodeGenerator>
1713      auto
1714      _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1715		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1716      _M_insert(const_iterator __hint, _Arg&& __v,
1717		const _NodeGenerator& __node_gen, std::false_type)
1718      -> iterator
1719      {
1720	// First compute the hash code so that we don't do anything if it
1721	// throws.
1722	__hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1723
1724	// Second allocate new node so that we don't rehash if it throws.
1725	__node_type* __node = __node_gen(std::forward<_Arg>(__v));
1726
1727	return _M_insert_multi_node(__hint._M_cur, __code, __node);
1728      }
1729
1730  template<typename _Key, typename _Value,
1731	   typename _Alloc, typename _ExtractKey, typename _Equal,
1732	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1733	   typename _Traits>
1734    auto
1735    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1736	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1737    erase(const_iterator __it)
1738    -> iterator
1739    {
1740      __node_type* __n = __it._M_cur;
1741      std::size_t __bkt = _M_bucket_index(__n);
1742
1743      // Look for previous node to unlink it from the erased one, this
1744      // is why we need buckets to contain the before begin to make
1745      // this search fast.
1746      __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1747      return _M_erase(__bkt, __prev_n, __n);
1748    }
1749
1750  template<typename _Key, typename _Value,
1751	   typename _Alloc, typename _ExtractKey, typename _Equal,
1752	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1753	   typename _Traits>
1754    auto
1755    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1756	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1757    _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1758    -> iterator
1759    {
1760      if (__prev_n == _M_buckets[__bkt])
1761	_M_remove_bucket_begin(__bkt, __n->_M_next(),
1762	   __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1763      else if (__n->_M_nxt)
1764	{
1765	  size_type __next_bkt = _M_bucket_index(__n->_M_next());
1766	  if (__next_bkt != __bkt)
1767	    _M_buckets[__next_bkt] = __prev_n;
1768	}
1769
1770      __prev_n->_M_nxt = __n->_M_nxt;
1771      iterator __result(__n->_M_next());
1772      this->_M_deallocate_node(__n);
1773      --_M_element_count;
1774
1775      return __result;
1776    }
1777
1778  template<typename _Key, typename _Value,
1779	   typename _Alloc, typename _ExtractKey, typename _Equal,
1780	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1781	   typename _Traits>
1782    auto
1783    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1784	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1785    _M_erase(std::true_type, const key_type& __k)
1786    -> size_type
1787    {
1788      __hash_code __code = this->_M_hash_code(__k);
1789      std::size_t __bkt = _M_bucket_index(__k, __code);
1790
1791      // Look for the node before the first matching node.
1792      __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1793      if (!__prev_n)
1794	return 0;
1795
1796      // We found a matching node, erase it.
1797      __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1798      _M_erase(__bkt, __prev_n, __n);
1799      return 1;
1800    }
1801
1802  template<typename _Key, typename _Value,
1803	   typename _Alloc, typename _ExtractKey, typename _Equal,
1804	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1805	   typename _Traits>
1806    auto
1807    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1808	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1809    _M_erase(std::false_type, const key_type& __k)
1810    -> size_type
1811    {
1812      __hash_code __code = this->_M_hash_code(__k);
1813      std::size_t __bkt = _M_bucket_index(__k, __code);
1814
1815      // Look for the node before the first matching node.
1816      __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1817      if (!__prev_n)
1818	return 0;
1819
1820      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1821      // 526. Is it undefined if a function in the standard changes
1822      // in parameters?
1823      // We use one loop to find all matching nodes and another to deallocate
1824      // them so that the key stays valid during the first loop. It might be
1825      // invalidated indirectly when destroying nodes.
1826      __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1827      __node_type* __n_last = __n;
1828      std::size_t __n_last_bkt = __bkt;
1829      do
1830	{
1831	  __n_last = __n_last->_M_next();
1832	  if (!__n_last)
1833	    break;
1834	  __n_last_bkt = _M_bucket_index(__n_last);
1835	}
1836      while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1837
1838      // Deallocate nodes.
1839      size_type __result = 0;
1840      do
1841	{
1842	  __node_type* __p = __n->_M_next();
1843	  this->_M_deallocate_node(__n);
1844	  __n = __p;
1845	  ++__result;
1846	  --_M_element_count;
1847	}
1848      while (__n != __n_last);
1849
1850      if (__prev_n == _M_buckets[__bkt])
1851	_M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1852      else if (__n_last && __n_last_bkt != __bkt)
1853	_M_buckets[__n_last_bkt] = __prev_n;
1854      __prev_n->_M_nxt = __n_last;
1855      return __result;
1856    }
1857
1858  template<typename _Key, typename _Value,
1859	   typename _Alloc, typename _ExtractKey, typename _Equal,
1860	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1861	   typename _Traits>
1862    auto
1863    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1864	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1865    erase(const_iterator __first, const_iterator __last)
1866    -> iterator
1867    {
1868      __node_type* __n = __first._M_cur;
1869      __node_type* __last_n = __last._M_cur;
1870      if (__n == __last_n)
1871	return iterator(__n);
1872
1873      std::size_t __bkt = _M_bucket_index(__n);
1874
1875      __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1876      bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1877      std::size_t __n_bkt = __bkt;
1878      for (;;)
1879	{
1880	  do
1881	    {
1882	      __node_type* __tmp = __n;
1883	      __n = __n->_M_next();
1884	      this->_M_deallocate_node(__tmp);
1885	      --_M_element_count;
1886	      if (!__n)
1887		break;
1888	      __n_bkt = _M_bucket_index(__n);
1889	    }
1890	  while (__n != __last_n && __n_bkt == __bkt);
1891	  if (__is_bucket_begin)
1892	    _M_remove_bucket_begin(__bkt, __n, __n_bkt);
1893	  if (__n == __last_n)
1894	    break;
1895	  __is_bucket_begin = true;
1896	  __bkt = __n_bkt;
1897	}
1898
1899      if (__n && (__n_bkt != __bkt || __is_bucket_begin))
1900	_M_buckets[__n_bkt] = __prev_n;
1901      __prev_n->_M_nxt = __n;
1902      return iterator(__n);
1903    }
1904
1905  template<typename _Key, typename _Value,
1906	   typename _Alloc, typename _ExtractKey, typename _Equal,
1907	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1908	   typename _Traits>
1909    void
1910    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1911	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1912    clear() noexcept
1913    {
1914      this->_M_deallocate_nodes(_M_begin());
1915      __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
1916      _M_element_count = 0;
1917      _M_before_begin._M_nxt = nullptr;
1918    }
1919
1920  template<typename _Key, typename _Value,
1921	   typename _Alloc, typename _ExtractKey, typename _Equal,
1922	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1923	   typename _Traits>
1924    void
1925    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1926	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1927    rehash(size_type __n)
1928    {
1929      const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1930      std::size_t __buckets
1931	= std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
1932		   __n);
1933      __buckets = _M_rehash_policy._M_next_bkt(__buckets);
1934
1935      if (__buckets != _M_bucket_count)
1936	_M_rehash(__buckets, __saved_state);
1937      else
1938	// No rehash, restore previous state to keep a consistent state.
1939	_M_rehash_policy._M_reset(__saved_state);
1940    }
1941
1942  template<typename _Key, typename _Value,
1943	   typename _Alloc, typename _ExtractKey, typename _Equal,
1944	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1945	   typename _Traits>
1946    void
1947    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1948	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1949    _M_rehash(size_type __n, const __rehash_state& __state)
1950    {
1951      __try
1952	{
1953	  _M_rehash_aux(__n, __unique_keys());
1954	}
1955      __catch(...)
1956	{
1957	  // A failure here means that buckets allocation failed.  We only
1958	  // have to restore hash policy previous state.
1959	  _M_rehash_policy._M_reset(__state);
1960	  __throw_exception_again;
1961	}
1962    }
1963
1964  // Rehash when there is no equivalent elements.
1965  template<typename _Key, typename _Value,
1966	   typename _Alloc, typename _ExtractKey, typename _Equal,
1967	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1968	   typename _Traits>
1969    void
1970    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1971	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1972    _M_rehash_aux(size_type __n, std::true_type)
1973    {
1974      __bucket_type* __new_buckets = _M_allocate_buckets(__n);
1975      __node_type* __p = _M_begin();
1976      _M_before_begin._M_nxt = nullptr;
1977      std::size_t __bbegin_bkt = 0;
1978      while (__p)
1979	{
1980	  __node_type* __next = __p->_M_next();
1981	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
1982	  if (!__new_buckets[__bkt])
1983	    {
1984	      __p->_M_nxt = _M_before_begin._M_nxt;
1985	      _M_before_begin._M_nxt = __p;
1986	      __new_buckets[__bkt] = &_M_before_begin;
1987	      if (__p->_M_nxt)
1988		__new_buckets[__bbegin_bkt] = __p;
1989	      __bbegin_bkt = __bkt;
1990	    }
1991	  else
1992	    {
1993	      __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
1994	      __new_buckets[__bkt]->_M_nxt = __p;
1995	    }
1996	  __p = __next;
1997	}
1998
1999      _M_deallocate_buckets();
2000      _M_bucket_count = __n;
2001      _M_buckets = __new_buckets;
2002    }
2003
2004  // Rehash when there can be equivalent elements, preserve their relative
2005  // order.
2006  template<typename _Key, typename _Value,
2007	   typename _Alloc, typename _ExtractKey, typename _Equal,
2008	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2009	   typename _Traits>
2010    void
2011    _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2012	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2013    _M_rehash_aux(size_type __n, std::false_type)
2014    {
2015      __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2016
2017      __node_type* __p = _M_begin();
2018      _M_before_begin._M_nxt = nullptr;
2019      std::size_t __bbegin_bkt = 0;
2020      std::size_t __prev_bkt = 0;
2021      __node_type* __prev_p = nullptr;
2022      bool __check_bucket = false;
2023
2024      while (__p)
2025	{
2026	  __node_type* __next = __p->_M_next();
2027	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2028
2029	  if (__prev_p && __prev_bkt == __bkt)
2030	    {
2031	      // Previous insert was already in this bucket, we insert after
2032	      // the previously inserted one to preserve equivalent elements
2033	      // relative order.
2034	      __p->_M_nxt = __prev_p->_M_nxt;
2035	      __prev_p->_M_nxt = __p;
2036
2037	      // Inserting after a node in a bucket require to check that we
2038	      // haven't change the bucket last node, in this case next
2039	      // bucket containing its before begin node must be updated. We
2040	      // schedule a check as soon as we move out of the sequence of
2041	      // equivalent nodes to limit the number of checks.
2042	      __check_bucket = true;
2043	    }
2044	  else
2045	    {
2046	      if (__check_bucket)
2047		{
2048		  // Check if we shall update the next bucket because of
2049		  // insertions into __prev_bkt bucket.
2050		  if (__prev_p->_M_nxt)
2051		    {
2052		      std::size_t __next_bkt
2053			= __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2054							    __n);
2055		      if (__next_bkt != __prev_bkt)
2056			__new_buckets[__next_bkt] = __prev_p;
2057		    }
2058		  __check_bucket = false;
2059		}
2060
2061	      if (!__new_buckets[__bkt])
2062		{
2063		  __p->_M_nxt = _M_before_begin._M_nxt;
2064		  _M_before_begin._M_nxt = __p;
2065		  __new_buckets[__bkt] = &_M_before_begin;
2066		  if (__p->_M_nxt)
2067		    __new_buckets[__bbegin_bkt] = __p;
2068		  __bbegin_bkt = __bkt;
2069		}
2070	      else
2071		{
2072		  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2073		  __new_buckets[__bkt]->_M_nxt = __p;
2074		}
2075	    }
2076	  __prev_p = __p;
2077	  __prev_bkt = __bkt;
2078	  __p = __next;
2079	}
2080
2081      if (__check_bucket && __prev_p->_M_nxt)
2082	{
2083	  std::size_t __next_bkt
2084	    = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2085	  if (__next_bkt != __prev_bkt)
2086	    __new_buckets[__next_bkt] = __prev_p;
2087	}
2088
2089      _M_deallocate_buckets();
2090      _M_bucket_count = __n;
2091      _M_buckets = __new_buckets;
2092    }
2093
2094_GLIBCXX_END_NAMESPACE_VERSION
2095} // namespace std
2096
2097#endif // _HASHTABLE_H
2098