1251881Speter/* Copyright (C) 1995,1996,1997,1998,1999,2002,2003
2251881Speter	Free Software Foundation, Inc.
3251881Speter   This file is part of the GNU C Library.
4251881Speter
5251881Speter   The GNU C Library is free software; you can redistribute it and/or
6251881Speter   modify it under the terms of the GNU Lesser General Public
7251881Speter   License as published by the Free Software Foundation; either
8251881Speter   version 2.1 of the License, or (at your option) any later version.
9251881Speter
10251881Speter   The GNU C Library is distributed in the hope that it will be useful,
11251881Speter   but WITHOUT ANY WARRANTY; without even the implied warranty of
12251881Speter   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13251881Speter   Lesser General Public License for more details.
14251881Speter
15251881Speter   You should have received a copy of the GNU Lesser General Public
16251881Speter   License along with the GNU C Library; if not, write to the Free
17251881Speter   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
18251881Speter   02111-1307 USA.  */
19251881Speter
20251881Speter#include <float.h>
21251881Speter#include <math.h>
22251881Speter#include <stdlib.h>
23251881Speter#include "gmp-impl.h"
24251881Speter
25251881Speter/* Convert a `__float128' in IEEE854 quad-precision format to a
26251881Speter   multi-precision integer representing the significand scaled up by its
27251881Speter   number of bits (113 for long double) and an integral power of two
28251881Speter   (MPN frexpl). */
29251881Speter
30251881Spetermp_size_t
31251881Spetermpn_extract_flt128 (mp_ptr res_ptr, mp_size_t size,
32251881Speter		      int *expt, int *is_neg,
33251881Speter		      __float128 value)
34251881Speter{
35251881Speter  ieee854_float128 u;
36251881Speter  u.value = value;
37251881Speter
38251881Speter  *is_neg = u.ieee.negative;
39251881Speter  *expt = (int) u.ieee.exponent - IEEE854_FLOAT128_BIAS;
40251881Speter
41251881Speter#if BITS_PER_MP_LIMB == 32
42251881Speter  res_ptr[0] = u.ieee.mant_low; /* Low-order 32 bits of fraction.  */
43251881Speter  res_ptr[1] = (u.ieee.mant_low >> 32);
44251881Speter  res_ptr[2] = u.ieee.mant_high;
45251881Speter  res_ptr[3] = (u.ieee.mant_high >> 32); /* High-order 32 bits.  */
46251881Speter  #define N 4
47251881Speter#elif BITS_PER_MP_LIMB == 64
48251881Speter  res_ptr[0] = u.ieee.mant_low;
49251881Speter  res_ptr[1] = u.ieee.mant_high;
50251881Speter  #define N 2
51251881Speter#else
52251881Speter  #error "mp_limb size " BITS_PER_MP_LIMB "not accounted for"
53251881Speter#endif
54251881Speter/* The format does not fill the last limb.  There are some zeros.  */
55251881Speter#define NUM_LEADING_ZEROS (BITS_PER_MP_LIMB \
56251881Speter			   - (FLT128_MANT_DIG - ((N - 1) * BITS_PER_MP_LIMB)))
57251881Speter
58251881Speter  if (u.ieee.exponent == 0)
59251881Speter    {
60251881Speter      /* A biased exponent of zero is a special case.
61251881Speter	 Either it is a zero or it is a denormal number.  */
62251881Speter      if (res_ptr[0] == 0 && res_ptr[1] == 0
63251881Speter	  && res_ptr[N - 2] == 0 && res_ptr[N - 1] == 0) /* Assumes N<=4.  */
64251881Speter	/* It's zero.  */
65251881Speter	*expt = 0;
66251881Speter      else
67251881Speter	{
68251881Speter	  /* It is a denormal number, meaning it has no implicit leading
69251881Speter  	     one bit, and its exponent is in fact the format minimum.  */
70251881Speter	  int cnt;
71251881Speter
72251881Speter#if N == 2
73251881Speter	  if (res_ptr[N - 1] != 0)
74251881Speter	    {
75251881Speter	      count_leading_zeros (cnt, res_ptr[N - 1]);
76251881Speter	      cnt -= NUM_LEADING_ZEROS;
77251881Speter	      res_ptr[N - 1] = res_ptr[N - 1] << cnt
78251881Speter			       | (res_ptr[0] >> (BITS_PER_MP_LIMB - cnt));
79251881Speter	      res_ptr[0] <<= cnt;
80251881Speter	      *expt = FLT128_MIN_EXP - 1 - cnt;
81251881Speter	    }
82251881Speter	  else
83251881Speter	    {
84251881Speter	      count_leading_zeros (cnt, res_ptr[0]);
85251881Speter	      if (cnt >= NUM_LEADING_ZEROS)
86251881Speter		{
87251881Speter		  res_ptr[N - 1] = res_ptr[0] << (cnt - NUM_LEADING_ZEROS);
88251881Speter		  res_ptr[0] = 0;
89251881Speter		}
90251881Speter	      else
91251881Speter		{
92251881Speter		  res_ptr[N - 1] = res_ptr[0] >> (NUM_LEADING_ZEROS - cnt);
93251881Speter		  res_ptr[0] <<= BITS_PER_MP_LIMB - (NUM_LEADING_ZEROS - cnt);
94251881Speter		}
95251881Speter	      *expt = FLT128_MIN_EXP - 1
96251881Speter		- (BITS_PER_MP_LIMB - NUM_LEADING_ZEROS) - cnt;
97251881Speter	    }
98251881Speter#else
99251881Speter	  int j, k, l;
100251881Speter
101251881Speter	  for (j = N - 1; j > 0; j--)
102251881Speter	    if (res_ptr[j] != 0)
103251881Speter	      break;
104251881Speter
105251881Speter	  count_leading_zeros (cnt, res_ptr[j]);
106251881Speter	  cnt -= NUM_LEADING_ZEROS;
107251881Speter	  l = N - 1 - j;
108251881Speter	  if (cnt < 0)
109251881Speter	    {
110251881Speter	      cnt += BITS_PER_MP_LIMB;
111251881Speter	      l--;
112251881Speter	    }
113251881Speter	  if (!cnt)
114251881Speter	    for (k = N - 1; k >= l; k--)
115251881Speter	      res_ptr[k] = res_ptr[k-l];
116251881Speter	  else
117251881Speter	    {
118251881Speter	      for (k = N - 1; k > l; k--)
119251881Speter		res_ptr[k] = res_ptr[k-l] << cnt
120251881Speter			     | res_ptr[k-l-1] >> (BITS_PER_MP_LIMB - cnt);
121251881Speter	      res_ptr[k--] = res_ptr[0] << cnt;
122251881Speter	    }
123251881Speter
124251881Speter	  for (; k >= 0; k--)
125251881Speter	    res_ptr[k] = 0;
126251881Speter	  *expt = FLT128_MIN_EXP - 1 - l * BITS_PER_MP_LIMB - cnt;
127251881Speter#endif
128251881Speter	}
129251881Speter    }
130251881Speter  else
131251881Speter    /* Add the implicit leading one bit for a normalized number.  */
132251881Speter    res_ptr[N - 1] |= (mp_limb_t) 1 << (FLT128_MANT_DIG - 1
133251881Speter					- ((N - 1) * BITS_PER_MP_LIMB));
134251881Speter
135251881Speter  return N;
136251881Speter}
137251881Speter