1/*							j1l.c
2 *
3 *	Bessel function of order one
4 *
5 *
6 *
7 * SYNOPSIS:
8 *
9 * __float128 x, y, j1q();
10 *
11 * y = j1q( x );
12 *
13 *
14 *
15 * DESCRIPTION:
16 *
17 * Returns Bessel function of first kind, order one of the argument.
18 *
19 * The domain is divided into two major intervals [0, 2] and
20 * (2, infinity). In the first interval the rational approximation is
21 * J1(x) = .5x + x x^2 R(x^2)
22 *
23 * The second interval is further partitioned into eight equal segments
24 * of 1/x.
25 * J1(x) = sqrt(2/(pi x)) (P1(x) cos(X) - Q1(x) sin(X)),
26 * X = x - 3 pi / 4,
27 *
28 * and the auxiliary functions are given by
29 *
30 * J1(x)cos(X) + Y1(x)sin(X) = sqrt( 2/(pi x)) P1(x),
31 * P1(x) = 1 + 1/x^2 R(1/x^2)
32 *
33 * Y1(x)cos(X) - J1(x)sin(X) = sqrt( 2/(pi x)) Q1(x),
34 * Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)).
35 *
36 *
37 *
38 * ACCURACY:
39 *
40 *                      Absolute error:
41 * arithmetic   domain      # trials      peak         rms
42 *    IEEE      0, 30       100000      2.8e-34      2.7e-35
43 *
44 *
45 */
46
47/*							y1l.c
48 *
49 *	Bessel function of the second kind, order one
50 *
51 *
52 *
53 * SYNOPSIS:
54 *
55 * __float128, y, y1q();
56 *
57 * y = y1q( x );
58 *
59 *
60 *
61 * DESCRIPTION:
62 *
63 * Returns Bessel function of the second kind, of order
64 * one, of the argument.
65 *
66 * The domain is divided into two major intervals [0, 2] and
67 * (2, infinity). In the first interval the rational approximation is
68 * Y1(x) = 2/pi * (log(x) * J1(x) - 1/x) + x R(x^2) .
69 * In the second interval the approximation is the same as for J1(x), and
70 * Y1(x) = sqrt(2/(pi x)) (P1(x) sin(X) + Q1(x) cos(X)),
71 * X = x - 3 pi / 4.
72 *
73 * ACCURACY:
74 *
75 *  Absolute error, when y0(x) < 1; else relative error:
76 *
77 * arithmetic   domain     # trials      peak         rms
78 *    IEEE      0, 30       100000      2.7e-34     2.9e-35
79 *
80 */
81
82/* Copyright 2001 by Stephen L. Moshier (moshier@na-net.onrl.gov).
83
84    This library is free software; you can redistribute it and/or
85    modify it under the terms of the GNU Lesser General Public
86    License as published by the Free Software Foundation; either
87    version 2.1 of the License, or (at your option) any later version.
88
89    This library is distributed in the hope that it will be useful,
90    but WITHOUT ANY WARRANTY; without even the implied warranty of
91    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
92    Lesser General Public License for more details.
93
94    You should have received a copy of the GNU Lesser General Public
95    License along with this library; if not, write to the Free Software
96    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA */
97
98#include "quadmath-imp.h"
99
100/* 1 / sqrt(pi) */
101static const __float128 ONEOSQPI = 5.6418958354775628694807945156077258584405E-1Q;
102/* 2 / pi */
103static const __float128 TWOOPI = 6.3661977236758134307553505349005744813784E-1Q;
104static const __float128 zero = 0.0Q;
105
106/* J1(x) = .5x + x x^2 R(x^2)
107   Peak relative error 1.9e-35
108   0 <= x <= 2  */
109#define NJ0_2N 6
110static const __float128 J0_2N[NJ0_2N + 1] = {
111 -5.943799577386942855938508697619735179660E16Q,
112  1.812087021305009192259946997014044074711E15Q,
113 -2.761698314264509665075127515729146460895E13Q,
114  2.091089497823600978949389109350658815972E11Q,
115 -8.546413231387036372945453565654130054307E8Q,
116  1.797229225249742247475464052741320612261E6Q,
117 -1.559552840946694171346552770008812083969E3Q
118};
119#define NJ0_2D 6
120static const __float128 J0_2D[NJ0_2D + 1] = {
121  9.510079323819108569501613916191477479397E17Q,
122  1.063193817503280529676423936545854693915E16Q,
123  5.934143516050192600795972192791775226920E13Q,
124  2.168000911950620999091479265214368352883E11Q,
125  5.673775894803172808323058205986256928794E8Q,
126  1.080329960080981204840966206372671147224E6Q,
127  1.411951256636576283942477881535283304912E3Q,
128 /* 1.000000000000000000000000000000000000000E0Q */
129};
130
131/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
132   0 <= 1/x <= .0625
133   Peak relative error 3.6e-36  */
134#define NP16_IN 9
135static const __float128 P16_IN[NP16_IN + 1] = {
136  5.143674369359646114999545149085139822905E-16Q,
137  4.836645664124562546056389268546233577376E-13Q,
138  1.730945562285804805325011561498453013673E-10Q,
139  3.047976856147077889834905908605310585810E-8Q,
140  2.855227609107969710407464739188141162386E-6Q,
141  1.439362407936705484122143713643023998457E-4Q,
142  3.774489768532936551500999699815873422073E-3Q,
143  4.723962172984642566142399678920790598426E-2Q,
144  2.359289678988743939925017240478818248735E-1Q,
145  3.032580002220628812728954785118117124520E-1Q,
146};
147#define NP16_ID 9
148static const __float128 P16_ID[NP16_ID + 1] = {
149  4.389268795186898018132945193912677177553E-15Q,
150  4.132671824807454334388868363256830961655E-12Q,
151  1.482133328179508835835963635130894413136E-9Q,
152  2.618941412861122118906353737117067376236E-7Q,
153  2.467854246740858470815714426201888034270E-5Q,
154  1.257192927368839847825938545925340230490E-3Q,
155  3.362739031941574274949719324644120720341E-2Q,
156  4.384458231338934105875343439265370178858E-1Q,
157  2.412830809841095249170909628197264854651E0Q,
158  4.176078204111348059102962617368214856874E0Q,
159 /* 1.000000000000000000000000000000000000000E0 */
160};
161
162/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
163    0.0625 <= 1/x <= 0.125
164    Peak relative error 1.9e-36  */
165#define NP8_16N 11
166static const __float128 P8_16N[NP8_16N + 1] = {
167  2.984612480763362345647303274082071598135E-16Q,
168  1.923651877544126103941232173085475682334E-13Q,
169  4.881258879388869396043760693256024307743E-11Q,
170  6.368866572475045408480898921866869811889E-9Q,
171  4.684818344104910450523906967821090796737E-7Q,
172  2.005177298271593587095982211091300382796E-5Q,
173  4.979808067163957634120681477207147536182E-4Q,
174  6.946005761642579085284689047091173581127E-3Q,
175  5.074601112955765012750207555985299026204E-2Q,
176  1.698599455896180893191766195194231825379E-1Q,
177  1.957536905259237627737222775573623779638E-1Q,
178  2.991314703282528370270179989044994319374E-2Q,
179};
180#define NP8_16D 10
181static const __float128 P8_16D[NP8_16D + 1] = {
182  2.546869316918069202079580939942463010937E-15Q,
183  1.644650111942455804019788382157745229955E-12Q,
184  4.185430770291694079925607420808011147173E-10Q,
185  5.485331966975218025368698195861074143153E-8Q,
186  4.062884421686912042335466327098932678905E-6Q,
187  1.758139661060905948870523641319556816772E-4Q,
188  4.445143889306356207566032244985607493096E-3Q,
189  6.391901016293512632765621532571159071158E-2Q,
190  4.933040207519900471177016015718145795434E-1Q,
191  1.839144086168947712971630337250761842976E0Q,
192  2.715120873995490920415616716916149586579E0Q,
193 /* 1.000000000000000000000000000000000000000E0 */
194};
195
196/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
197  0.125 <= 1/x <= 0.1875
198  Peak relative error 1.3e-36  */
199#define NP5_8N 10
200static const __float128 P5_8N[NP5_8N + 1] = {
201  2.837678373978003452653763806968237227234E-12Q,
202  9.726641165590364928442128579282742354806E-10Q,
203  1.284408003604131382028112171490633956539E-7Q,
204  8.524624695868291291250573339272194285008E-6Q,
205  3.111516908953172249853673787748841282846E-4Q,
206  6.423175156126364104172801983096596409176E-3Q,
207  7.430220589989104581004416356260692450652E-2Q,
208  4.608315409833682489016656279567605536619E-1Q,
209  1.396870223510964882676225042258855977512E0Q,
210  1.718500293904122365894630460672081526236E0Q,
211  5.465927698800862172307352821870223855365E-1Q
212};
213#define NP5_8D 10
214static const __float128 P5_8D[NP5_8D + 1] = {
215  2.421485545794616609951168511612060482715E-11Q,
216  8.329862750896452929030058039752327232310E-9Q,
217  1.106137992233383429630592081375289010720E-6Q,
218  7.405786153760681090127497796448503306939E-5Q,
219  2.740364785433195322492093333127633465227E-3Q,
220  5.781246470403095224872243564165254652198E-2Q,
221  6.927711353039742469918754111511109983546E-1Q,
222  4.558679283460430281188304515922826156690E0Q,
223  1.534468499844879487013168065728837900009E1Q,
224  2.313927430889218597919624843161569422745E1Q,
225  1.194506341319498844336768473218382828637E1Q,
226 /* 1.000000000000000000000000000000000000000E0 */
227};
228
229/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
230   Peak relative error 1.4e-36
231   0.1875 <= 1/x <= 0.25  */
232#define NP4_5N 10
233static const __float128 P4_5N[NP4_5N + 1] = {
234  1.846029078268368685834261260420933914621E-10Q,
235  3.916295939611376119377869680335444207768E-8Q,
236  3.122158792018920627984597530935323997312E-6Q,
237  1.218073444893078303994045653603392272450E-4Q,
238  2.536420827983485448140477159977981844883E-3Q,
239  2.883011322006690823959367922241169171315E-2Q,
240  1.755255190734902907438042414495469810830E-1Q,
241  5.379317079922628599870898285488723736599E-1Q,
242  7.284904050194300773890303361501726561938E-1Q,
243  3.270110346613085348094396323925000362813E-1Q,
244  1.804473805689725610052078464951722064757E-2Q,
245};
246#define NP4_5D 9
247static const __float128 P4_5D[NP4_5D + 1] = {
248  1.575278146806816970152174364308980863569E-9Q,
249  3.361289173657099516191331123405675054321E-7Q,
250  2.704692281550877810424745289838790693708E-5Q,
251  1.070854930483999749316546199273521063543E-3Q,
252  2.282373093495295842598097265627962125411E-2Q,
253  2.692025460665354148328762368240343249830E-1Q,
254  1.739892942593664447220951225734811133759E0Q,
255  5.890727576752230385342377570386657229324E0Q,
256  9.517442287057841500750256954117735128153E0Q,
257  6.100616353935338240775363403030137736013E0Q,
258 /* 1.000000000000000000000000000000000000000E0 */
259};
260
261/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
262   Peak relative error 3.0e-36
263   0.25 <= 1/x <= 0.3125  */
264#define NP3r2_4N 9
265static const __float128 P3r2_4N[NP3r2_4N + 1] = {
266  8.240803130988044478595580300846665863782E-8Q,
267  1.179418958381961224222969866406483744580E-5Q,
268  6.179787320956386624336959112503824397755E-4Q,
269  1.540270833608687596420595830747166658383E-2Q,
270  1.983904219491512618376375619598837355076E-1Q,
271  1.341465722692038870390470651608301155565E0Q,
272  4.617865326696612898792238245990854646057E0Q,
273  7.435574801812346424460233180412308000587E0Q,
274  4.671327027414635292514599201278557680420E0Q,
275  7.299530852495776936690976966995187714739E-1Q,
276};
277#define NP3r2_4D 9
278static const __float128 P3r2_4D[NP3r2_4D + 1] = {
279  7.032152009675729604487575753279187576521E-7Q,
280  1.015090352324577615777511269928856742848E-4Q,
281  5.394262184808448484302067955186308730620E-3Q,
282  1.375291438480256110455809354836988584325E-1Q,
283  1.836247144461106304788160919310404376670E0Q,
284  1.314378564254376655001094503090935880349E1Q,
285  4.957184590465712006934452500894672343488E1Q,
286  9.287394244300647738855415178790263465398E1Q,
287  7.652563275535900609085229286020552768399E1Q,
288  2.147042473003074533150718117770093209096E1Q,
289 /* 1.000000000000000000000000000000000000000E0 */
290};
291
292/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
293   Peak relative error 1.0e-35
294   0.3125 <= 1/x <= 0.375  */
295#define NP2r7_3r2N 9
296static const __float128 P2r7_3r2N[NP2r7_3r2N + 1] = {
297  4.599033469240421554219816935160627085991E-7Q,
298  4.665724440345003914596647144630893997284E-5Q,
299  1.684348845667764271596142716944374892756E-3Q,
300  2.802446446884455707845985913454440176223E-2Q,
301  2.321937586453963310008279956042545173930E-1Q,
302  9.640277413988055668692438709376437553804E-1Q,
303  1.911021064710270904508663334033003246028E0Q,
304  1.600811610164341450262992138893970224971E0Q,
305  4.266299218652587901171386591543457861138E-1Q,
306  1.316470424456061252962568223251247207325E-2Q,
307};
308#define NP2r7_3r2D 8
309static const __float128 P2r7_3r2D[NP2r7_3r2D + 1] = {
310  3.924508608545520758883457108453520099610E-6Q,
311  4.029707889408829273226495756222078039823E-4Q,
312  1.484629715787703260797886463307469600219E-2Q,
313  2.553136379967180865331706538897231588685E-1Q,
314  2.229457223891676394409880026887106228740E0Q,
315  1.005708903856384091956550845198392117318E1Q,
316  2.277082659664386953166629360352385889558E1Q,
317  2.384726835193630788249826630376533988245E1Q,
318  9.700989749041320895890113781610939632410E0Q,
319 /* 1.000000000000000000000000000000000000000E0 */
320};
321
322/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
323   Peak relative error 1.7e-36
324   0.3125 <= 1/x <= 0.4375  */
325#define NP2r3_2r7N 9
326static const __float128 P2r3_2r7N[NP2r3_2r7N + 1] = {
327  3.916766777108274628543759603786857387402E-6Q,
328  3.212176636756546217390661984304645137013E-4Q,
329  9.255768488524816445220126081207248947118E-3Q,
330  1.214853146369078277453080641911700735354E-1Q,
331  7.855163309847214136198449861311404633665E-1Q,
332  2.520058073282978403655488662066019816540E0Q,
333  3.825136484837545257209234285382183711466E0Q,
334  2.432569427554248006229715163865569506873E0Q,
335  4.877934835018231178495030117729800489743E-1Q,
336  1.109902737860249670981355149101343427885E-2Q,
337};
338#define NP2r3_2r7D 8
339static const __float128 P2r3_2r7D[NP2r3_2r7D + 1] = {
340  3.342307880794065640312646341190547184461E-5Q,
341  2.782182891138893201544978009012096558265E-3Q,
342  8.221304931614200702142049236141249929207E-2Q,
343  1.123728246291165812392918571987858010949E0Q,
344  7.740482453652715577233858317133423434590E0Q,
345  2.737624677567945952953322566311201919139E1Q,
346  4.837181477096062403118304137851260715475E1Q,
347  3.941098643468580791437772701093795299274E1Q,
348  1.245821247166544627558323920382547533630E1Q,
349 /* 1.000000000000000000000000000000000000000E0 */
350};
351
352/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2),
353   Peak relative error 1.7e-35
354   0.4375 <= 1/x <= 0.5  */
355#define NP2_2r3N 8
356static const __float128 P2_2r3N[NP2_2r3N + 1] = {
357  3.397930802851248553545191160608731940751E-4Q,
358  2.104020902735482418784312825637833698217E-2Q,
359  4.442291771608095963935342749477836181939E-1Q,
360  4.131797328716583282869183304291833754967E0Q,
361  1.819920169779026500146134832455189917589E1Q,
362  3.781779616522937565300309684282401791291E1Q,
363  3.459605449728864218972931220783543410347E1Q,
364  1.173594248397603882049066603238568316561E1Q,
365  9.455702270242780642835086549285560316461E-1Q,
366};
367#define NP2_2r3D 8
368static const __float128 P2_2r3D[NP2_2r3D + 1] = {
369  2.899568897241432883079888249845707400614E-3Q,
370  1.831107138190848460767699919531132426356E-1Q,
371  3.999350044057883839080258832758908825165E0Q,
372  3.929041535867957938340569419874195303712E1Q,
373  1.884245613422523323068802689915538908291E2Q,
374  4.461469948819229734353852978424629815929E2Q,
375  5.004998753999796821224085972610636347903E2Q,
376  2.386342520092608513170837883757163414100E2Q,
377  3.791322528149347975999851588922424189957E1Q,
378 /* 1.000000000000000000000000000000000000000E0 */
379};
380
381/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
382   Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
383   Peak relative error 8.0e-36
384   0 <= 1/x <= .0625  */
385#define NQ16_IN 10
386static const __float128 Q16_IN[NQ16_IN + 1] = {
387  -3.917420835712508001321875734030357393421E-18Q,
388  -4.440311387483014485304387406538069930457E-15Q,
389  -1.951635424076926487780929645954007139616E-12Q,
390  -4.318256438421012555040546775651612810513E-10Q,
391  -5.231244131926180765270446557146989238020E-8Q,
392  -3.540072702902043752460711989234732357653E-6Q,
393  -1.311017536555269966928228052917534882984E-4Q,
394  -2.495184669674631806622008769674827575088E-3Q,
395  -2.141868222987209028118086708697998506716E-2Q,
396  -6.184031415202148901863605871197272650090E-2Q,
397  -1.922298704033332356899546792898156493887E-2Q,
398};
399#define NQ16_ID 9
400static const __float128 Q16_ID[NQ16_ID + 1] = {
401  3.820418034066293517479619763498400162314E-17Q,
402  4.340702810799239909648911373329149354911E-14Q,
403  1.914985356383416140706179933075303538524E-11Q,
404  4.262333682610888819476498617261895474330E-9Q,
405  5.213481314722233980346462747902942182792E-7Q,
406  3.585741697694069399299005316809954590558E-5Q,
407  1.366513429642842006385029778105539457546E-3Q,
408  2.745282599850704662726337474371355160594E-2Q,
409  2.637644521611867647651200098449903330074E-1Q,
410  1.006953426110765984590782655598680488746E0Q,
411 /* 1.000000000000000000000000000000000000000E0 */
412 };
413
414/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
415   Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
416   Peak relative error 1.9e-36
417   0.0625 <= 1/x <= 0.125  */
418#define NQ8_16N 11
419static const __float128 Q8_16N[NQ8_16N + 1] = {
420  -2.028630366670228670781362543615221542291E-17Q,
421  -1.519634620380959966438130374006858864624E-14Q,
422  -4.540596528116104986388796594639405114524E-12Q,
423  -7.085151756671466559280490913558388648274E-10Q,
424  -6.351062671323970823761883833531546885452E-8Q,
425  -3.390817171111032905297982523519503522491E-6Q,
426  -1.082340897018886970282138836861233213972E-4Q,
427  -2.020120801187226444822977006648252379508E-3Q,
428  -2.093169910981725694937457070649605557555E-2Q,
429  -1.092176538874275712359269481414448063393E-1Q,
430  -2.374790947854765809203590474789108718733E-1Q,
431  -1.365364204556573800719985118029601401323E-1Q,
432};
433#define NQ8_16D 11
434static const __float128 Q8_16D[NQ8_16D + 1] = {
435  1.978397614733632533581207058069628242280E-16Q,
436  1.487361156806202736877009608336766720560E-13Q,
437  4.468041406888412086042576067133365913456E-11Q,
438  7.027822074821007443672290507210594648877E-9Q,
439  6.375740580686101224127290062867976007374E-7Q,
440  3.466887658320002225888644977076410421940E-5Q,
441  1.138625640905289601186353909213719596986E-3Q,
442  2.224470799470414663443449818235008486439E-2Q,
443  2.487052928527244907490589787691478482358E-1Q,
444  1.483927406564349124649083853892380899217E0Q,
445  4.182773513276056975777258788903489507705E0Q,
446  4.419665392573449746043880892524360870944E0Q,
447 /* 1.000000000000000000000000000000000000000E0 */
448};
449
450/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
451   Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
452   Peak relative error 1.5e-35
453   0.125 <= 1/x <= 0.1875  */
454#define NQ5_8N 10
455static const __float128 Q5_8N[NQ5_8N + 1] = {
456  -3.656082407740970534915918390488336879763E-13Q,
457  -1.344660308497244804752334556734121771023E-10Q,
458  -1.909765035234071738548629788698150760791E-8Q,
459  -1.366668038160120210269389551283666716453E-6Q,
460  -5.392327355984269366895210704976314135683E-5Q,
461  -1.206268245713024564674432357634540343884E-3Q,
462  -1.515456784370354374066417703736088291287E-2Q,
463  -1.022454301137286306933217746545237098518E-1Q,
464  -3.373438906472495080504907858424251082240E-1Q,
465  -4.510782522110845697262323973549178453405E-1Q,
466  -1.549000892545288676809660828213589804884E-1Q,
467};
468#define NQ5_8D 10
469static const __float128 Q5_8D[NQ5_8D + 1] = {
470  3.565550843359501079050699598913828460036E-12Q,
471  1.321016015556560621591847454285330528045E-9Q,
472  1.897542728662346479999969679234270605975E-7Q,
473  1.381720283068706710298734234287456219474E-5Q,
474  5.599248147286524662305325795203422873725E-4Q,
475  1.305442352653121436697064782499122164843E-2Q,
476  1.750234079626943298160445750078631894985E-1Q,
477  1.311420542073436520965439883806946678491E0Q,
478  5.162757689856842406744504211089724926650E0Q,
479  9.527760296384704425618556332087850581308E0Q,
480  6.604648207463236667912921642545100248584E0Q,
481 /* 1.000000000000000000000000000000000000000E0 */
482};
483
484/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
485   Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
486   Peak relative error 1.3e-35
487   0.1875 <= 1/x <= 0.25  */
488#define NQ4_5N 10
489static const __float128 Q4_5N[NQ4_5N + 1] = {
490  -4.079513568708891749424783046520200903755E-11Q,
491  -9.326548104106791766891812583019664893311E-9Q,
492  -8.016795121318423066292906123815687003356E-7Q,
493  -3.372350544043594415609295225664186750995E-5Q,
494  -7.566238665947967882207277686375417983917E-4Q,
495  -9.248861580055565402130441618521591282617E-3Q,
496  -6.033106131055851432267702948850231270338E-2Q,
497  -1.966908754799996793730369265431584303447E-1Q,
498  -2.791062741179964150755788226623462207560E-1Q,
499  -1.255478605849190549914610121863534191666E-1Q,
500  -4.320429862021265463213168186061696944062E-3Q,
501};
502#define NQ4_5D 9
503static const __float128 Q4_5D[NQ4_5D + 1] = {
504  3.978497042580921479003851216297330701056E-10Q,
505  9.203304163828145809278568906420772246666E-8Q,
506  8.059685467088175644915010485174545743798E-6Q,
507  3.490187375993956409171098277561669167446E-4Q,
508  8.189109654456872150100501732073810028829E-3Q,
509  1.072572867311023640958725265762483033769E-1Q,
510  7.790606862409960053675717185714576937994E-1Q,
511  3.016049768232011196434185423512777656328E0Q,
512  5.722963851442769787733717162314477949360E0Q,
513  4.510527838428473279647251350931380867663E0Q,
514 /* 1.000000000000000000000000000000000000000E0 */
515};
516
517/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
518   Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
519   Peak relative error 2.1e-35
520   0.25 <= 1/x <= 0.3125  */
521#define NQ3r2_4N 9
522static const __float128 Q3r2_4N[NQ3r2_4N + 1] = {
523  -1.087480809271383885936921889040388133627E-8Q,
524  -1.690067828697463740906962973479310170932E-6Q,
525  -9.608064416995105532790745641974762550982E-5Q,
526  -2.594198839156517191858208513873961837410E-3Q,
527  -3.610954144421543968160459863048062977822E-2Q,
528  -2.629866798251843212210482269563961685666E-1Q,
529  -9.709186825881775885917984975685752956660E-1Q,
530  -1.667521829918185121727268867619982417317E0Q,
531  -1.109255082925540057138766105229900943501E0Q,
532  -1.812932453006641348145049323713469043328E-1Q,
533};
534#define NQ3r2_4D 9
535static const __float128 Q3r2_4D[NQ3r2_4D + 1] = {
536  1.060552717496912381388763753841473407026E-7Q,
537  1.676928002024920520786883649102388708024E-5Q,
538  9.803481712245420839301400601140812255737E-4Q,
539  2.765559874262309494758505158089249012930E-2Q,
540  4.117921827792571791298862613287549140706E-1Q,
541  3.323769515244751267093378361930279161413E0Q,
542  1.436602494405814164724810151689705353670E1Q,
543  3.163087869617098638064881410646782408297E1Q,
544  3.198181264977021649489103980298349589419E1Q,
545  1.203649258862068431199471076202897823272E1Q,
546 /* 1.000000000000000000000000000000000000000E0  */
547};
548
549/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
550   Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
551   Peak relative error 1.6e-36
552   0.3125 <= 1/x <= 0.375  */
553#define NQ2r7_3r2N 9
554static const __float128 Q2r7_3r2N[NQ2r7_3r2N + 1] = {
555  -1.723405393982209853244278760171643219530E-7Q,
556  -2.090508758514655456365709712333460087442E-5Q,
557  -9.140104013370974823232873472192719263019E-4Q,
558  -1.871349499990714843332742160292474780128E-2Q,
559  -1.948930738119938669637865956162512983416E-1Q,
560  -1.048764684978978127908439526343174139788E0Q,
561  -2.827714929925679500237476105843643064698E0Q,
562  -3.508761569156476114276988181329773987314E0Q,
563  -1.669332202790211090973255098624488308989E0Q,
564  -1.930796319299022954013840684651016077770E-1Q,
565};
566#define NQ2r7_3r2D 9
567static const __float128 Q2r7_3r2D[NQ2r7_3r2D + 1] = {
568  1.680730662300831976234547482334347983474E-6Q,
569  2.084241442440551016475972218719621841120E-4Q,
570  9.445316642108367479043541702688736295579E-3Q,
571  2.044637889456631896650179477133252184672E-1Q,
572  2.316091982244297350829522534435350078205E0Q,
573  1.412031891783015085196708811890448488865E1Q,
574  4.583830154673223384837091077279595496149E1Q,
575  7.549520609270909439885998474045974122261E1Q,
576  5.697605832808113367197494052388203310638E1Q,
577  1.601496240876192444526383314589371686234E1Q,
578  /* 1.000000000000000000000000000000000000000E0 */
579};
580
581/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
582   Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
583   Peak relative error 9.5e-36
584   0.375 <= 1/x <= 0.4375  */
585#define NQ2r3_2r7N 9
586static const __float128 Q2r3_2r7N[NQ2r3_2r7N + 1] = {
587  -8.603042076329122085722385914954878953775E-7Q,
588  -7.701746260451647874214968882605186675720E-5Q,
589  -2.407932004380727587382493696877569654271E-3Q,
590  -3.403434217607634279028110636919987224188E-2Q,
591  -2.348707332185238159192422084985713102877E-1Q,
592  -7.957498841538254916147095255700637463207E-1Q,
593  -1.258469078442635106431098063707934348577E0Q,
594  -8.162415474676345812459353639449971369890E-1Q,
595  -1.581783890269379690141513949609572806898E-1Q,
596  -1.890595651683552228232308756569450822905E-3Q,
597};
598#define NQ2r3_2r7D 8
599static const __float128 Q2r3_2r7D[NQ2r3_2r7D + 1] = {
600  8.390017524798316921170710533381568175665E-6Q,
601  7.738148683730826286477254659973968763659E-4Q,
602  2.541480810958665794368759558791634341779E-2Q,
603  3.878879789711276799058486068562386244873E-1Q,
604  3.003783779325811292142957336802456109333E0Q,
605  1.206480374773322029883039064575464497400E1Q,
606  2.458414064785315978408974662900438351782E1Q,
607  2.367237826273668567199042088835448715228E1Q,
608  9.231451197519171090875569102116321676763E0Q,
609 /* 1.000000000000000000000000000000000000000E0 */
610};
611
612/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x),
613   Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)),
614   Peak relative error 1.4e-36
615   0.4375 <= 1/x <= 0.5  */
616#define NQ2_2r3N 9
617static const __float128 Q2_2r3N[NQ2_2r3N + 1] = {
618  -5.552507516089087822166822364590806076174E-6Q,
619  -4.135067659799500521040944087433752970297E-4Q,
620  -1.059928728869218962607068840646564457980E-2Q,
621  -1.212070036005832342565792241385459023801E-1Q,
622  -6.688350110633603958684302153362735625156E-1Q,
623  -1.793587878197360221340277951304429821582E0Q,
624  -2.225407682237197485644647380483725045326E0Q,
625  -1.123402135458940189438898496348239744403E0Q,
626  -1.679187241566347077204805190763597299805E-1Q,
627  -1.458550613639093752909985189067233504148E-3Q,
628};
629#define NQ2_2r3D 8
630static const __float128 Q2_2r3D[NQ2_2r3D + 1] = {
631  5.415024336507980465169023996403597916115E-5Q,
632  4.179246497380453022046357404266022870788E-3Q,
633  1.136306384261959483095442402929502368598E-1Q,
634  1.422640343719842213484515445393284072830E0Q,
635  8.968786703393158374728850922289204805764E0Q,
636  2.914542473339246127533384118781216495934E1Q,
637  4.781605421020380669870197378210457054685E1Q,
638  3.693865837171883152382820584714795072937E1Q,
639  1.153220502744204904763115556224395893076E1Q,
640  /* 1.000000000000000000000000000000000000000E0 */
641};
642
643
644/* Evaluate P[n] x^n  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
645
646static __float128
647neval (__float128 x, const __float128 *p, int n)
648{
649  __float128 y;
650
651  p += n;
652  y = *p--;
653  do
654    {
655      y = y * x + *p--;
656    }
657  while (--n > 0);
658  return y;
659}
660
661
662/* Evaluate x^n+1  +  P[n] x^(n)  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
663
664static __float128
665deval (__float128 x, const __float128 *p, int n)
666{
667  __float128 y;
668
669  p += n;
670  y = x + *p--;
671  do
672    {
673      y = y * x + *p--;
674    }
675  while (--n > 0);
676  return y;
677}
678
679
680/* Bessel function of the first kind, order one.  */
681
682__float128
683j1q (__float128 x)
684{
685  __float128 xx, xinv, z, p, q, c, s, cc, ss;
686
687  if (! finiteq (x))
688    {
689      if (x != x)
690	return x;
691      else
692	return 0.0Q;
693    }
694  if (x == 0.0Q)
695    return x;
696  xx = fabsq (x);
697  if (xx <= 2.0Q)
698    {
699      /* 0 <= x <= 2 */
700      z = xx * xx;
701      p = xx * z * neval (z, J0_2N, NJ0_2N) / deval (z, J0_2D, NJ0_2D);
702      p += 0.5Q * xx;
703      if (x < 0)
704	p = -p;
705      return p;
706    }
707
708  xinv = 1.0Q / xx;
709  z = xinv * xinv;
710  if (xinv <= 0.25)
711    {
712      if (xinv <= 0.125)
713	{
714	  if (xinv <= 0.0625)
715	    {
716	      p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
717	      q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
718	    }
719	  else
720	    {
721	      p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
722	      q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
723	    }
724	}
725      else if (xinv <= 0.1875)
726	{
727	  p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
728	  q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
729	}
730      else
731	{
732	  p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
733	  q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
734	}
735    }				/* .25 */
736  else /* if (xinv <= 0.5) */
737    {
738      if (xinv <= 0.375)
739	{
740	  if (xinv <= 0.3125)
741	    {
742	      p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
743	      q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
744	    }
745	  else
746	    {
747	      p = neval (z, P2r7_3r2N, NP2r7_3r2N)
748		  / deval (z, P2r7_3r2D, NP2r7_3r2D);
749	      q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
750		  / deval (z, Q2r7_3r2D, NQ2r7_3r2D);
751	    }
752	}
753      else if (xinv <= 0.4375)
754	{
755	  p = neval (z, P2r3_2r7N, NP2r3_2r7N)
756	      / deval (z, P2r3_2r7D, NP2r3_2r7D);
757	  q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
758	      / deval (z, Q2r3_2r7D, NQ2r3_2r7D);
759	}
760      else
761	{
762	  p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
763	  q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
764	}
765    }
766  p = 1.0Q + z * p;
767  q = z * q;
768  q = q * xinv + 0.375Q * xinv;
769  /* X = x - 3 pi/4
770     cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4)
771     = 1/sqrt(2) * (-cos(x) + sin(x))
772     sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4)
773     = -1/sqrt(2) * (sin(x) + cos(x))
774     cf. Fdlibm.  */
775  sincosq (xx, &s, &c);
776  ss = -s - c;
777  cc = s - c;
778  z = cosq (xx + xx);
779  if ((s * c) > 0)
780    cc = z / ss;
781  else
782    ss = z / cc;
783  z = ONEOSQPI * (p * cc - q * ss) / sqrtq (xx);
784  if (x < 0)
785    z = -z;
786  return z;
787}
788
789
790/* Y1(x) = 2/pi * (log(x) * J1(x) - 1/x) + x R(x^2)
791   Peak relative error 6.2e-38
792   0 <= x <= 2   */
793#define NY0_2N 7
794static __float128 Y0_2N[NY0_2N + 1] = {
795  -6.804415404830253804408698161694720833249E19Q,
796  1.805450517967019908027153056150465849237E19Q,
797  -8.065747497063694098810419456383006737312E17Q,
798  1.401336667383028259295830955439028236299E16Q,
799  -1.171654432898137585000399489686629680230E14Q,
800  5.061267920943853732895341125243428129150E11Q,
801  -1.096677850566094204586208610960870217970E9Q,
802  9.541172044989995856117187515882879304461E5Q,
803};
804#define NY0_2D 7
805static __float128 Y0_2D[NY0_2D + 1] = {
806  3.470629591820267059538637461549677594549E20Q,
807  4.120796439009916326855848107545425217219E18Q,
808  2.477653371652018249749350657387030814542E16Q,
809  9.954678543353888958177169349272167762797E13Q,
810  2.957927997613630118216218290262851197754E11Q,
811  6.748421382188864486018861197614025972118E8Q,
812  1.173453425218010888004562071020305709319E6Q,
813  1.450335662961034949894009554536003377187E3Q,
814  /* 1.000000000000000000000000000000000000000E0 */
815};
816
817
818/* Bessel function of the second kind, order one.  */
819
820__float128
821y1q (__float128 x)
822{
823  __float128 xx, xinv, z, p, q, c, s, cc, ss;
824
825  if (! finiteq (x))
826    {
827      if (x != x)
828	return x;
829      else
830	return 0.0Q;
831    }
832  if (x <= 0.0Q)
833    {
834      if (x < 0.0Q)
835	return (zero / (zero * x));
836      return -HUGE_VALQ + x;
837    }
838  xx = fabsq (x);
839  if (xx <= 0x1p-114)
840    return -TWOOPI / x;
841  if (xx <= 2.0Q)
842   {
843      /* 0 <= x <= 2 */
844      z = xx * xx;
845      p = xx * neval (z, Y0_2N, NY0_2N) / deval (z, Y0_2D, NY0_2D);
846      p = -TWOOPI / xx + p;
847      p = TWOOPI * logq (x) * j1q (x) + p;
848      return p;
849    }
850
851  xinv = 1.0Q / xx;
852  z = xinv * xinv;
853  if (xinv <= 0.25)
854    {
855      if (xinv <= 0.125)
856	{
857	  if (xinv <= 0.0625)
858	    {
859	      p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
860	      q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
861	    }
862	  else
863	    {
864	      p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
865	      q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
866	    }
867	}
868      else if (xinv <= 0.1875)
869	{
870	  p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
871	  q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
872	}
873      else
874	{
875	  p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
876	  q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
877	}
878    }				/* .25 */
879  else /* if (xinv <= 0.5) */
880    {
881      if (xinv <= 0.375)
882	{
883	  if (xinv <= 0.3125)
884	    {
885	      p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
886	      q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
887	    }
888	  else
889	    {
890	      p = neval (z, P2r7_3r2N, NP2r7_3r2N)
891		  / deval (z, P2r7_3r2D, NP2r7_3r2D);
892	      q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
893		  / deval (z, Q2r7_3r2D, NQ2r7_3r2D);
894	    }
895	}
896      else if (xinv <= 0.4375)
897	{
898	  p = neval (z, P2r3_2r7N, NP2r3_2r7N)
899	      / deval (z, P2r3_2r7D, NP2r3_2r7D);
900	  q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
901	      / deval (z, Q2r3_2r7D, NQ2r3_2r7D);
902	}
903      else
904	{
905	  p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
906	  q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
907	}
908    }
909  p = 1.0Q + z * p;
910  q = z * q;
911  q = q * xinv + 0.375Q * xinv;
912  /* X = x - 3 pi/4
913     cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4)
914     = 1/sqrt(2) * (-cos(x) + sin(x))
915     sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4)
916     = -1/sqrt(2) * (sin(x) + cos(x))
917     cf. Fdlibm.  */
918  sincosq (xx, &s, &c);
919  ss = -s - c;
920  cc = s - c;
921  z = cosq (xx + xx);
922  if ((s * c) > 0)
923    cc = z / ss;
924  else
925    ss = z / cc;
926  z = ONEOSQPI * (p * ss + q * cc) / sqrtq (xx);
927  return z;
928}
929