1/* Routines to implement minimum-cost maximal flow algorithm used to smooth
2   basic block and edge frequency counts.
3   Copyright (C) 2008-2015 Free Software Foundation, Inc.
4   Contributed by Paul Yuan (yingbo.com@gmail.com) and
5                  Vinodha Ramasamy (vinodha@google.com).
6
7This file is part of GCC.
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3.  If not see
20<http://www.gnu.org/licenses/>.  */
21
22/* References:
23   [1] "Feedback-directed Optimizations in GCC with Estimated Edge Profiles
24        from Hardware Event Sampling", Vinodha Ramasamy, Paul Yuan, Dehao Chen,
25        and Robert Hundt; GCC Summit 2008.
26   [2] "Complementing Missing and Inaccurate Profiling Using a Minimum Cost
27        Circulation Algorithm", Roy Levin, Ilan Newman and Gadi Haber;
28        HiPEAC '08.
29
30   Algorithm to smooth basic block and edge counts:
31   1. create_fixup_graph: Create fixup graph by translating function CFG into
32      a graph that satisfies MCF algorithm requirements.
33   2. find_max_flow: Find maximal flow.
34   3. compute_residual_flow: Form residual network.
35   4. Repeat:
36      cancel_negative_cycle: While G contains a negative cost cycle C, reverse
37      the flow on the found cycle by the minimum residual capacity in that
38      cycle.
39   5. Form the minimal cost flow
40      f(u,v) = rf(v, u).
41   6. adjust_cfg_counts: Update initial edge weights with corrected weights.
42      delta(u.v) = f(u,v) -f(v,u).
43      w*(u,v) = w(u,v) + delta(u,v).  */
44
45#include "config.h"
46#include "system.h"
47#include "coretypes.h"
48#include "predict.h"
49#include "vec.h"
50#include "hashtab.h"
51#include "hash-set.h"
52#include "machmode.h"
53#include "tm.h"
54#include "hard-reg-set.h"
55#include "input.h"
56#include "function.h"
57#include "dominance.h"
58#include "cfg.h"
59#include "basic-block.h"
60#include "gcov-io.h"
61#include "profile.h"
62#include "dumpfile.h"
63
64/* CAP_INFINITY: Constant to represent infinite capacity.  */
65#define CAP_INFINITY INTTYPE_MAXIMUM (int64_t)
66
67/* COST FUNCTION.  */
68#define K_POS(b)        ((b))
69#define K_NEG(b)        (50 * (b))
70#define COST(k, w)      ((k) / mcf_ln ((w) + 2))
71/* Limit the number of iterations for cancel_negative_cycles() to ensure
72   reasonable compile time.  */
73#define MAX_ITER(n, e)  10 + (1000000 / ((n) * (e)))
74typedef enum
75{
76  INVALID_EDGE,
77  VERTEX_SPLIT_EDGE,	    /* Edge to represent vertex with w(e) = w(v).  */
78  REDIRECT_EDGE,	    /* Edge after vertex transformation.  */
79  REVERSE_EDGE,
80  SOURCE_CONNECT_EDGE,	    /* Single edge connecting to single source.  */
81  SINK_CONNECT_EDGE,	    /* Single edge connecting to single sink.  */
82  BALANCE_EDGE,		    /* Edge connecting with source/sink: cp(e) = 0.  */
83  REDIRECT_NORMALIZED_EDGE, /* Normalized edge for a redirect edge.  */
84  REVERSE_NORMALIZED_EDGE   /* Normalized edge for a reverse edge.  */
85} edge_type;
86
87/* Structure to represent an edge in the fixup graph.  */
88typedef struct fixup_edge_d
89{
90  int src;
91  int dest;
92  /* Flag denoting type of edge and attributes for the flow field.  */
93  edge_type type;
94  bool is_rflow_valid;
95  /* Index to the normalization vertex added for this edge.  */
96  int norm_vertex_index;
97  /* Flow for this edge.  */
98  gcov_type flow;
99  /* Residual flow for this edge - used during negative cycle canceling.  */
100  gcov_type rflow;
101  gcov_type weight;
102  gcov_type cost;
103  gcov_type max_capacity;
104} fixup_edge_type;
105
106typedef fixup_edge_type *fixup_edge_p;
107
108
109/* Structure to represent a vertex in the fixup graph.  */
110typedef struct fixup_vertex_d
111{
112  vec<fixup_edge_p> succ_edges;
113} fixup_vertex_type;
114
115typedef fixup_vertex_type *fixup_vertex_p;
116
117/* Fixup graph used in the MCF algorithm.  */
118typedef struct fixup_graph_d
119{
120  /* Current number of vertices for the graph.  */
121  int num_vertices;
122  /* Current number of edges for the graph.  */
123  int num_edges;
124  /* Index of new entry vertex.  */
125  int new_entry_index;
126  /* Index of new exit vertex.  */
127  int new_exit_index;
128  /* Fixup vertex list. Adjacency list for fixup graph.  */
129  fixup_vertex_p vertex_list;
130  /* Fixup edge list.  */
131  fixup_edge_p edge_list;
132} fixup_graph_type;
133
134typedef struct queue_d
135{
136  int *queue;
137  int head;
138  int tail;
139  int size;
140} queue_type;
141
142/* Structure used in the maximal flow routines to find augmenting path.  */
143typedef struct augmenting_path_d
144{
145  /* Queue used to hold vertex indices.  */
146  queue_type queue_list;
147  /* Vector to hold chain of pred vertex indices in augmenting path.  */
148  int *bb_pred;
149  /* Vector that indicates if basic block i has been visited.  */
150  int *is_visited;
151} augmenting_path_type;
152
153
154/* Function definitions.  */
155
156/* Dump routines to aid debugging.  */
157
158/* Print basic block with index N for FIXUP_GRAPH in n' and n'' format.  */
159
160static void
161print_basic_block (FILE *file, fixup_graph_type *fixup_graph, int n)
162{
163  if (n == ENTRY_BLOCK)
164    fputs ("ENTRY", file);
165  else if (n == ENTRY_BLOCK + 1)
166    fputs ("ENTRY''", file);
167  else if (n == 2 * EXIT_BLOCK)
168    fputs ("EXIT", file);
169  else if (n == 2 * EXIT_BLOCK + 1)
170    fputs ("EXIT''", file);
171  else if (n == fixup_graph->new_exit_index)
172    fputs ("NEW_EXIT", file);
173  else if (n == fixup_graph->new_entry_index)
174    fputs ("NEW_ENTRY", file);
175  else
176    {
177      fprintf (file, "%d", n / 2);
178      if (n % 2)
179	fputs ("''", file);
180      else
181	fputs ("'", file);
182    }
183}
184
185
186/* Print edge S->D for given fixup_graph with n' and n'' format.
187   PARAMETERS:
188   S is the index of the source vertex of the edge (input) and
189   D is the index of the destination vertex of the edge (input) for the given
190   fixup_graph (input).  */
191
192static void
193print_edge (FILE *file, fixup_graph_type *fixup_graph, int s, int d)
194{
195  print_basic_block (file, fixup_graph, s);
196  fputs ("->", file);
197  print_basic_block (file, fixup_graph, d);
198}
199
200
201/* Dump out the attributes of a given edge FEDGE in the fixup_graph to a
202   file.  */
203static void
204dump_fixup_edge (FILE *file, fixup_graph_type *fixup_graph, fixup_edge_p fedge)
205{
206  if (!fedge)
207    {
208      fputs ("NULL fixup graph edge.\n", file);
209      return;
210    }
211
212  print_edge (file, fixup_graph, fedge->src, fedge->dest);
213  fputs (": ", file);
214
215  if (fedge->type)
216    {
217      fprintf (file, "flow/capacity=%"PRId64 "/",
218	       fedge->flow);
219      if (fedge->max_capacity == CAP_INFINITY)
220	fputs ("+oo,", file);
221      else
222	fprintf (file, "%"PRId64 ",", fedge->max_capacity);
223    }
224
225  if (fedge->is_rflow_valid)
226    {
227      if (fedge->rflow == CAP_INFINITY)
228	fputs (" rflow=+oo.", file);
229      else
230	fprintf (file, " rflow=%"PRId64 ",", fedge->rflow);
231    }
232
233  fprintf (file, " cost=%"PRId64 ".", fedge->cost);
234
235  fprintf (file, "\t(%d->%d)", fedge->src, fedge->dest);
236
237  if (fedge->type)
238    {
239      switch (fedge->type)
240	{
241	case VERTEX_SPLIT_EDGE:
242	  fputs (" @VERTEX_SPLIT_EDGE", file);
243	  break;
244
245	case REDIRECT_EDGE:
246	  fputs (" @REDIRECT_EDGE", file);
247	  break;
248
249	case SOURCE_CONNECT_EDGE:
250	  fputs (" @SOURCE_CONNECT_EDGE", file);
251	  break;
252
253	case SINK_CONNECT_EDGE:
254	  fputs (" @SINK_CONNECT_EDGE", file);
255	  break;
256
257	case REVERSE_EDGE:
258	  fputs (" @REVERSE_EDGE", file);
259	  break;
260
261	case BALANCE_EDGE:
262	  fputs (" @BALANCE_EDGE", file);
263	  break;
264
265	case REDIRECT_NORMALIZED_EDGE:
266	case REVERSE_NORMALIZED_EDGE:
267	  fputs ("  @NORMALIZED_EDGE", file);
268	  break;
269
270	default:
271	  fputs (" @INVALID_EDGE", file);
272	  break;
273	}
274    }
275  fputs ("\n", file);
276}
277
278
279/* Print out the edges and vertices of the given FIXUP_GRAPH, into the dump
280   file. The input string MSG is printed out as a heading.  */
281
282static void
283dump_fixup_graph (FILE *file, fixup_graph_type *fixup_graph, const char *msg)
284{
285  int i, j;
286  int fnum_vertices, fnum_edges;
287
288  fixup_vertex_p fvertex_list, pfvertex;
289  fixup_edge_p pfedge;
290
291  gcc_assert (fixup_graph);
292  fvertex_list = fixup_graph->vertex_list;
293  fnum_vertices = fixup_graph->num_vertices;
294  fnum_edges = fixup_graph->num_edges;
295
296  fprintf (file, "\nDump fixup graph for %s(): %s.\n",
297	   current_function_name (), msg);
298  fprintf (file,
299	   "There are %d vertices and %d edges. new_exit_index is %d.\n\n",
300	   fnum_vertices, fnum_edges, fixup_graph->new_exit_index);
301
302  for (i = 0; i < fnum_vertices; i++)
303    {
304      pfvertex = fvertex_list + i;
305      fprintf (file, "vertex_list[%d]: %d succ fixup edges.\n",
306	       i, pfvertex->succ_edges.length ());
307
308      for (j = 0; pfvertex->succ_edges.iterate (j, &pfedge);
309	   j++)
310	{
311	  /* Distinguish forward edges and backward edges in the residual flow
312             network.  */
313	  if (pfedge->type)
314	    fputs ("(f) ", file);
315	  else if (pfedge->is_rflow_valid)
316	    fputs ("(b) ", file);
317	  dump_fixup_edge (file, fixup_graph, pfedge);
318	}
319    }
320
321  fputs ("\n", file);
322}
323
324
325/* Utility routines.  */
326/* ln() implementation: approximate calculation. Returns ln of X.  */
327
328static double
329mcf_ln (double x)
330{
331#define E       2.71828
332  int l = 1;
333  double m = E;
334
335  gcc_assert (x >= 0);
336
337  while (m < x)
338    {
339      m *= E;
340      l++;
341    }
342
343  return l;
344}
345
346
347/* sqrt() implementation: based on open source QUAKE3 code (magic sqrt
348   implementation) by John Carmack.  Returns sqrt of X.  */
349
350static double
351mcf_sqrt (double x)
352{
353#define MAGIC_CONST1    0x1fbcf800
354#define MAGIC_CONST2    0x5f3759df
355  union {
356    int intPart;
357    float floatPart;
358  } convertor, convertor2;
359
360  gcc_assert (x >= 0);
361
362  convertor.floatPart = x;
363  convertor2.floatPart = x;
364  convertor.intPart = MAGIC_CONST1 + (convertor.intPart >> 1);
365  convertor2.intPart = MAGIC_CONST2 - (convertor2.intPart >> 1);
366
367  return 0.5f * (convertor.floatPart + (x * convertor2.floatPart));
368}
369
370
371/* Common code shared between add_fixup_edge and add_rfixup_edge. Adds an edge
372   (SRC->DEST) to the edge_list maintained in FIXUP_GRAPH with cost of the edge
373   added set to COST.  */
374
375static fixup_edge_p
376add_edge (fixup_graph_type *fixup_graph, int src, int dest, gcov_type cost)
377{
378  fixup_vertex_p curr_vertex = fixup_graph->vertex_list + src;
379  fixup_edge_p curr_edge = fixup_graph->edge_list + fixup_graph->num_edges;
380  curr_edge->src = src;
381  curr_edge->dest = dest;
382  curr_edge->cost = cost;
383  fixup_graph->num_edges++;
384  if (dump_file)
385    dump_fixup_edge (dump_file, fixup_graph, curr_edge);
386  curr_vertex->succ_edges.safe_push (curr_edge);
387  return curr_edge;
388}
389
390
391/* Add a fixup edge (src->dest) with attributes TYPE, WEIGHT, COST and
392   MAX_CAPACITY to the edge_list in the fixup graph.  */
393
394static void
395add_fixup_edge (fixup_graph_type *fixup_graph, int src, int dest,
396		edge_type type, gcov_type weight, gcov_type cost,
397		gcov_type max_capacity)
398{
399  fixup_edge_p curr_edge = add_edge (fixup_graph, src, dest, cost);
400  curr_edge->type = type;
401  curr_edge->weight = weight;
402  curr_edge->max_capacity = max_capacity;
403}
404
405
406/* Add a residual edge (SRC->DEST) with attributes RFLOW and COST
407   to the fixup graph.  */
408
409static void
410add_rfixup_edge (fixup_graph_type *fixup_graph, int src, int dest,
411		 gcov_type rflow, gcov_type cost)
412{
413  fixup_edge_p curr_edge = add_edge (fixup_graph, src, dest, cost);
414  curr_edge->rflow = rflow;
415  curr_edge->is_rflow_valid = true;
416  /* This edge is not a valid edge - merely used to hold residual flow.  */
417  curr_edge->type = INVALID_EDGE;
418}
419
420
421/* Return the pointer to fixup edge SRC->DEST or NULL if edge does not
422   exist in the FIXUP_GRAPH.  */
423
424static fixup_edge_p
425find_fixup_edge (fixup_graph_type *fixup_graph, int src, int dest)
426{
427  int j;
428  fixup_edge_p pfedge;
429  fixup_vertex_p pfvertex;
430
431  gcc_assert (src < fixup_graph->num_vertices);
432
433  pfvertex = fixup_graph->vertex_list + src;
434
435  for (j = 0; pfvertex->succ_edges.iterate (j, &pfedge);
436       j++)
437    if (pfedge->dest == dest)
438      return pfedge;
439
440  return NULL;
441}
442
443
444/* Cleanup routine to free structures in FIXUP_GRAPH.  */
445
446static void
447delete_fixup_graph (fixup_graph_type *fixup_graph)
448{
449  int i;
450  int fnum_vertices = fixup_graph->num_vertices;
451  fixup_vertex_p pfvertex = fixup_graph->vertex_list;
452
453  for (i = 0; i < fnum_vertices; i++, pfvertex++)
454    pfvertex->succ_edges.release ();
455
456  free (fixup_graph->vertex_list);
457  free (fixup_graph->edge_list);
458}
459
460
461/* Creates a fixup graph FIXUP_GRAPH from the function CFG.  */
462
463static void
464create_fixup_graph (fixup_graph_type *fixup_graph)
465{
466  double sqrt_avg_vertex_weight = 0;
467  double total_vertex_weight = 0;
468  double k_pos = 0;
469  double k_neg = 0;
470  /* Vector to hold D(v) = sum_out_edges(v) - sum_in_edges(v).  */
471  gcov_type *diff_out_in = NULL;
472  gcov_type supply_value = 1, demand_value = 0;
473  gcov_type fcost = 0;
474  int new_entry_index = 0, new_exit_index = 0;
475  int i = 0, j = 0;
476  int new_index = 0;
477  basic_block bb;
478  edge e;
479  edge_iterator ei;
480  fixup_edge_p pfedge, r_pfedge;
481  fixup_edge_p fedge_list;
482  int fnum_edges;
483
484  /* Each basic_block will be split into 2 during vertex transformation.  */
485  int fnum_vertices_after_transform =  2 * n_basic_blocks_for_fn (cfun);
486  int fnum_edges_after_transform =
487    n_edges_for_fn (cfun) + n_basic_blocks_for_fn (cfun);
488
489  /* Count the new SOURCE and EXIT vertices to be added.  */
490  int fmax_num_vertices =
491    (fnum_vertices_after_transform + n_edges_for_fn (cfun)
492     + n_basic_blocks_for_fn (cfun) + 2);
493
494  /* In create_fixup_graph: Each basic block and edge can be split into 3
495     edges. Number of balance edges = n_basic_blocks. So after
496     create_fixup_graph:
497     max_edges = 4 * n_basic_blocks + 3 * n_edges
498     Accounting for residual flow edges
499     max_edges = 2 * (4 * n_basic_blocks + 3 * n_edges)
500     = 8 * n_basic_blocks + 6 * n_edges
501     < 8 * n_basic_blocks + 8 * n_edges.  */
502  int fmax_num_edges = 8 * (n_basic_blocks_for_fn (cfun) +
503			    n_edges_for_fn (cfun));
504
505  /* Initial num of vertices in the fixup graph.  */
506  fixup_graph->num_vertices = n_basic_blocks_for_fn (cfun);
507
508  /* Fixup graph vertex list.  */
509  fixup_graph->vertex_list =
510    (fixup_vertex_p) xcalloc (fmax_num_vertices, sizeof (fixup_vertex_type));
511
512  /* Fixup graph edge list.  */
513  fixup_graph->edge_list =
514    (fixup_edge_p) xcalloc (fmax_num_edges, sizeof (fixup_edge_type));
515
516  diff_out_in =
517    (gcov_type *) xcalloc (1 + fnum_vertices_after_transform,
518			   sizeof (gcov_type));
519
520  /* Compute constants b, k_pos, k_neg used in the cost function calculation.
521     b = sqrt(avg_vertex_weight(cfg)); k_pos = b; k_neg = 50b.  */
522  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
523    total_vertex_weight += bb->count;
524
525  sqrt_avg_vertex_weight = mcf_sqrt (total_vertex_weight /
526				     n_basic_blocks_for_fn (cfun));
527
528  k_pos = K_POS (sqrt_avg_vertex_weight);
529  k_neg = K_NEG (sqrt_avg_vertex_weight);
530
531  /* 1. Vertex Transformation: Split each vertex v into two vertices v' and v'',
532     connected by an edge e from v' to v''. w(e) = w(v).  */
533
534  if (dump_file)
535    fprintf (dump_file, "\nVertex transformation:\n");
536
537  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
538  {
539    /* v'->v'': index1->(index1+1).  */
540    i = 2 * bb->index;
541    fcost = (gcov_type) COST (k_pos, bb->count);
542    add_fixup_edge (fixup_graph, i, i + 1, VERTEX_SPLIT_EDGE, bb->count,
543                    fcost, CAP_INFINITY);
544    fixup_graph->num_vertices++;
545
546    FOR_EACH_EDGE (e, ei, bb->succs)
547    {
548      /* Edges with ignore attribute set should be treated like they don't
549         exist.  */
550      if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
551        continue;
552      j = 2 * e->dest->index;
553      fcost = (gcov_type) COST (k_pos, e->count);
554      add_fixup_edge (fixup_graph, i + 1, j, REDIRECT_EDGE, e->count, fcost,
555                      CAP_INFINITY);
556    }
557  }
558
559  /* After vertex transformation.  */
560  gcc_assert (fixup_graph->num_vertices == fnum_vertices_after_transform);
561  /* Redirect edges are not added for edges with ignore attribute.  */
562  gcc_assert (fixup_graph->num_edges <= fnum_edges_after_transform);
563
564  fnum_edges_after_transform = fixup_graph->num_edges;
565
566  /* 2. Initialize D(v).  */
567  for (i = 0; i < fnum_edges_after_transform; i++)
568    {
569      pfedge = fixup_graph->edge_list + i;
570      diff_out_in[pfedge->src] += pfedge->weight;
571      diff_out_in[pfedge->dest] -= pfedge->weight;
572    }
573
574  /* Entry block - vertex indices 0, 1; EXIT block - vertex indices 2, 3.  */
575  for (i = 0; i <= 3; i++)
576    diff_out_in[i] = 0;
577
578  /* 3. Add reverse edges: needed to decrease counts during smoothing.  */
579  if (dump_file)
580    fprintf (dump_file, "\nReverse edges:\n");
581  for (i = 0; i < fnum_edges_after_transform; i++)
582    {
583      pfedge = fixup_graph->edge_list + i;
584      if ((pfedge->src == 0) || (pfedge->src == 2))
585        continue;
586      r_pfedge = find_fixup_edge (fixup_graph, pfedge->dest, pfedge->src);
587      if (!r_pfedge && pfedge->weight)
588	{
589	  /* Skip adding reverse edges for edges with w(e) = 0, as its maximum
590	     capacity is 0.  */
591	  fcost = (gcov_type) COST (k_neg, pfedge->weight);
592	  add_fixup_edge (fixup_graph, pfedge->dest, pfedge->src,
593			  REVERSE_EDGE, 0, fcost, pfedge->weight);
594	}
595    }
596
597  /* 4. Create single source and sink. Connect new source vertex s' to function
598     entry block. Connect sink vertex t' to function exit.  */
599  if (dump_file)
600    fprintf (dump_file, "\ns'->S, T->t':\n");
601
602  new_entry_index = fixup_graph->new_entry_index = fixup_graph->num_vertices;
603  fixup_graph->num_vertices++;
604  /* Set supply_value to 1 to avoid zero count function ENTRY.  */
605  add_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK, SOURCE_CONNECT_EDGE,
606		  1 /* supply_value */, 0, 1 /* supply_value */);
607
608  /* Create new exit with EXIT_BLOCK as single pred.  */
609  new_exit_index = fixup_graph->new_exit_index = fixup_graph->num_vertices;
610  fixup_graph->num_vertices++;
611  add_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index,
612                  SINK_CONNECT_EDGE,
613                  0 /* demand_value */, 0, 0 /* demand_value */);
614
615  /* Connect vertices with unbalanced D(v) to source/sink.  */
616  if (dump_file)
617    fprintf (dump_file, "\nD(v) balance:\n");
618  /* Skip vertices for ENTRY (0, 1) and EXIT (2,3) blocks, so start with i = 4.
619     diff_out_in[v''] will be 0, so skip v'' vertices, hence i += 2.  */
620  for (i = 4; i < new_entry_index; i += 2)
621    {
622      if (diff_out_in[i] > 0)
623	{
624	  add_fixup_edge (fixup_graph, i, new_exit_index, BALANCE_EDGE, 0, 0,
625			  diff_out_in[i]);
626	  demand_value += diff_out_in[i];
627	}
628      else if (diff_out_in[i] < 0)
629	{
630	  add_fixup_edge (fixup_graph, new_entry_index, i, BALANCE_EDGE, 0, 0,
631			  -diff_out_in[i]);
632	  supply_value -= diff_out_in[i];
633	}
634    }
635
636  /* Set supply = demand.  */
637  if (dump_file)
638    {
639      fprintf (dump_file, "\nAdjust supply and demand:\n");
640      fprintf (dump_file, "supply_value=%"PRId64 "\n",
641	       supply_value);
642      fprintf (dump_file, "demand_value=%"PRId64 "\n",
643	       demand_value);
644    }
645
646  if (demand_value > supply_value)
647    {
648      pfedge = find_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK);
649      pfedge->max_capacity += (demand_value - supply_value);
650    }
651  else
652    {
653      pfedge = find_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index);
654      pfedge->max_capacity += (supply_value - demand_value);
655    }
656
657  /* 6. Normalize edges: remove anti-parallel edges. Anti-parallel edges are
658     created by the vertex transformation step from self-edges in the original
659     CFG and by the reverse edges added earlier.  */
660  if (dump_file)
661    fprintf (dump_file, "\nNormalize edges:\n");
662
663  fnum_edges = fixup_graph->num_edges;
664  fedge_list = fixup_graph->edge_list;
665
666  for (i = 0; i < fnum_edges; i++)
667    {
668      pfedge = fedge_list + i;
669      r_pfedge = find_fixup_edge (fixup_graph, pfedge->dest, pfedge->src);
670      if (((pfedge->type == VERTEX_SPLIT_EDGE)
671	   || (pfedge->type == REDIRECT_EDGE)) && r_pfedge)
672	{
673	  new_index = fixup_graph->num_vertices;
674	  fixup_graph->num_vertices++;
675
676	  if (dump_file)
677	    {
678	      fprintf (dump_file, "\nAnti-parallel edge:\n");
679	      dump_fixup_edge (dump_file, fixup_graph, pfedge);
680	      dump_fixup_edge (dump_file, fixup_graph, r_pfedge);
681	      fprintf (dump_file, "New vertex is %d.\n", new_index);
682	      fprintf (dump_file, "------------------\n");
683	    }
684
685	  pfedge->cost /= 2;
686	  pfedge->norm_vertex_index = new_index;
687	  if (dump_file)
688	    {
689	      fprintf (dump_file, "After normalization:\n");
690	      dump_fixup_edge (dump_file, fixup_graph, pfedge);
691	    }
692
693	  /* Add a new fixup edge: new_index->src.  */
694	  add_fixup_edge (fixup_graph, new_index, pfedge->src,
695			  REVERSE_NORMALIZED_EDGE, 0, r_pfedge->cost,
696			  r_pfedge->max_capacity);
697	  gcc_assert (fixup_graph->num_vertices <= fmax_num_vertices);
698
699	  /* Edge: r_pfedge->src -> r_pfedge->dest
700             ==> r_pfedge->src -> new_index.  */
701	  r_pfedge->dest = new_index;
702	  r_pfedge->type = REVERSE_NORMALIZED_EDGE;
703	  r_pfedge->cost = pfedge->cost;
704	  r_pfedge->max_capacity = pfedge->max_capacity;
705	  if (dump_file)
706	    dump_fixup_edge (dump_file, fixup_graph, r_pfedge);
707	}
708    }
709
710  if (dump_file)
711    dump_fixup_graph (dump_file, fixup_graph, "After create_fixup_graph()");
712
713  /* Cleanup.  */
714  free (diff_out_in);
715}
716
717
718/* Allocates space for the structures in AUGMENTING_PATH.  The space needed is
719   proportional to the number of nodes in the graph, which is given by
720   GRAPH_SIZE.  */
721
722static void
723init_augmenting_path (augmenting_path_type *augmenting_path, int graph_size)
724{
725  augmenting_path->queue_list.queue = (int *)
726    xcalloc (graph_size + 2, sizeof (int));
727  augmenting_path->queue_list.size = graph_size + 2;
728  augmenting_path->bb_pred = (int *) xcalloc (graph_size, sizeof (int));
729  augmenting_path->is_visited = (int *) xcalloc (graph_size, sizeof (int));
730}
731
732/* Free the structures in AUGMENTING_PATH.  */
733static void
734free_augmenting_path (augmenting_path_type *augmenting_path)
735{
736  free (augmenting_path->queue_list.queue);
737  free (augmenting_path->bb_pred);
738  free (augmenting_path->is_visited);
739}
740
741
742/* Queue routines. Assumes queue will never overflow.  */
743
744static void
745init_queue (queue_type *queue_list)
746{
747  gcc_assert (queue_list);
748  queue_list->head = 0;
749  queue_list->tail = 0;
750}
751
752/* Return true if QUEUE_LIST is empty.  */
753static bool
754is_empty (queue_type *queue_list)
755{
756  return (queue_list->head == queue_list->tail);
757}
758
759/* Insert element X into QUEUE_LIST.  */
760static void
761enqueue (queue_type *queue_list, int x)
762{
763  gcc_assert (queue_list->tail < queue_list->size);
764  queue_list->queue[queue_list->tail] = x;
765  (queue_list->tail)++;
766}
767
768/* Return the first element in QUEUE_LIST.  */
769static int
770dequeue (queue_type *queue_list)
771{
772  int x;
773  gcc_assert (queue_list->head >= 0);
774  x = queue_list->queue[queue_list->head];
775  (queue_list->head)++;
776  return x;
777}
778
779
780/* Finds a negative cycle in the residual network using
781   the Bellman-Ford algorithm. The flow on the found cycle is reversed by the
782   minimum residual capacity of that cycle. ENTRY and EXIT vertices are not
783   considered.
784
785Parameters:
786   FIXUP_GRAPH - Residual graph  (input/output)
787   The following are allocated/freed by the caller:
788   PI - Vector to hold predecessors in path  (pi = pred index)
789   D - D[I] holds minimum cost of path from i to sink
790   CYCLE - Vector to hold the minimum cost cycle
791
792Return:
793   true if a negative cycle was found, false otherwise.  */
794
795static bool
796cancel_negative_cycle (fixup_graph_type *fixup_graph,
797		       int *pi, gcov_type *d, int *cycle)
798{
799  int i, j, k;
800  int fnum_vertices, fnum_edges;
801  fixup_edge_p fedge_list, pfedge, r_pfedge;
802  bool found_cycle = false;
803  int cycle_start = 0, cycle_end = 0;
804  gcov_type sum_cost = 0, cycle_flow = 0;
805  int new_entry_index;
806  bool propagated = false;
807
808  gcc_assert (fixup_graph);
809  fnum_vertices = fixup_graph->num_vertices;
810  fnum_edges = fixup_graph->num_edges;
811  fedge_list = fixup_graph->edge_list;
812  new_entry_index = fixup_graph->new_entry_index;
813
814  /* Initialize.  */
815  /* Skip ENTRY.  */
816  for (i = 1; i < fnum_vertices; i++)
817    {
818      d[i] = CAP_INFINITY;
819      pi[i] = -1;
820      cycle[i] = -1;
821    }
822  d[ENTRY_BLOCK] = 0;
823
824  /* Relax.  */
825  for (k = 1; k < fnum_vertices; k++)
826  {
827    propagated = false;
828    for (i = 0; i < fnum_edges; i++)
829      {
830	pfedge = fedge_list + i;
831	if (pfedge->src == new_entry_index)
832	  continue;
833	if (pfedge->is_rflow_valid && pfedge->rflow
834            && d[pfedge->src] != CAP_INFINITY
835	    && (d[pfedge->dest] > d[pfedge->src] + pfedge->cost))
836	  {
837	    d[pfedge->dest] = d[pfedge->src] + pfedge->cost;
838	    pi[pfedge->dest] = pfedge->src;
839            propagated = true;
840	  }
841      }
842    if (!propagated)
843      break;
844  }
845
846  if (!propagated)
847  /* No negative cycles exist.  */
848    return 0;
849
850  /* Detect.  */
851  for (i = 0; i < fnum_edges; i++)
852    {
853      pfedge = fedge_list + i;
854      if (pfedge->src == new_entry_index)
855	continue;
856      if (pfedge->is_rflow_valid && pfedge->rflow
857          && d[pfedge->src] != CAP_INFINITY
858	  && (d[pfedge->dest] > d[pfedge->src] + pfedge->cost))
859	{
860	  found_cycle = true;
861	  break;
862	}
863    }
864
865  if (!found_cycle)
866    return 0;
867
868  /* Augment the cycle with the cycle's minimum residual capacity.  */
869  found_cycle = false;
870  cycle[0] = pfedge->dest;
871  j = pfedge->dest;
872
873  for (i = 1; i < fnum_vertices; i++)
874    {
875      j = pi[j];
876      cycle[i] = j;
877      for (k = 0; k < i; k++)
878	{
879	  if (cycle[k] == j)
880	    {
881	      /* cycle[k] -> ... -> cycle[i].  */
882	      cycle_start = k;
883	      cycle_end = i;
884	      found_cycle = true;
885	      break;
886	    }
887	}
888      if (found_cycle)
889	break;
890    }
891
892  gcc_assert (cycle[cycle_start] == cycle[cycle_end]);
893  if (dump_file)
894    fprintf (dump_file, "\nNegative cycle length is %d:\n",
895	     cycle_end - cycle_start);
896
897  sum_cost = 0;
898  cycle_flow = CAP_INFINITY;
899  for (k = cycle_start; k < cycle_end; k++)
900    {
901      pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]);
902      cycle_flow = MIN (cycle_flow, pfedge->rflow);
903      sum_cost += pfedge->cost;
904      if (dump_file)
905	fprintf (dump_file, "%d ", cycle[k]);
906    }
907
908  if (dump_file)
909    {
910      fprintf (dump_file, "%d", cycle[k]);
911      fprintf (dump_file,
912	       ": (%"PRId64 ", %"PRId64
913	       ")\n", sum_cost, cycle_flow);
914      fprintf (dump_file,
915	       "Augment cycle with %"PRId64 "\n",
916	       cycle_flow);
917    }
918
919  for (k = cycle_start; k < cycle_end; k++)
920    {
921      pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]);
922      r_pfedge = find_fixup_edge (fixup_graph, cycle[k], cycle[k + 1]);
923      pfedge->rflow -= cycle_flow;
924      if (pfedge->type)
925	pfedge->flow += cycle_flow;
926      r_pfedge->rflow += cycle_flow;
927      if (r_pfedge->type)
928	r_pfedge->flow -= cycle_flow;
929    }
930
931  return true;
932}
933
934
935/* Computes the residual flow for FIXUP_GRAPH by setting the rflow field of
936   the edges. ENTRY and EXIT vertices should not be considered.  */
937
938static void
939compute_residual_flow (fixup_graph_type *fixup_graph)
940{
941  int i;
942  int fnum_edges;
943  fixup_edge_p fedge_list, pfedge;
944
945  gcc_assert (fixup_graph);
946
947  if (dump_file)
948    fputs ("\ncompute_residual_flow():\n", dump_file);
949
950  fnum_edges = fixup_graph->num_edges;
951  fedge_list = fixup_graph->edge_list;
952
953  for (i = 0; i < fnum_edges; i++)
954    {
955      pfedge = fedge_list + i;
956      pfedge->rflow = pfedge->max_capacity - pfedge->flow;
957      pfedge->is_rflow_valid = true;
958      add_rfixup_edge (fixup_graph, pfedge->dest, pfedge->src, pfedge->flow,
959		       -pfedge->cost);
960    }
961}
962
963
964/* Uses Edmonds-Karp algorithm - BFS to find augmenting path from SOURCE to
965   SINK. The fields in the edge vector in the FIXUP_GRAPH are not modified by
966   this routine. The vector bb_pred in the AUGMENTING_PATH structure is updated
967   to reflect the path found.
968   Returns: 0 if no augmenting path is found, 1 otherwise.  */
969
970static int
971find_augmenting_path (fixup_graph_type *fixup_graph,
972		      augmenting_path_type *augmenting_path, int source,
973		      int sink)
974{
975  int u = 0;
976  int i;
977  fixup_vertex_p fvertex_list, pfvertex;
978  fixup_edge_p pfedge;
979  int *bb_pred, *is_visited;
980  queue_type *queue_list;
981
982  gcc_assert (augmenting_path);
983  bb_pred = augmenting_path->bb_pred;
984  gcc_assert (bb_pred);
985  is_visited = augmenting_path->is_visited;
986  gcc_assert (is_visited);
987  queue_list = &(augmenting_path->queue_list);
988
989  gcc_assert (fixup_graph);
990
991  fvertex_list = fixup_graph->vertex_list;
992
993  for (u = 0; u < fixup_graph->num_vertices; u++)
994    is_visited[u] = 0;
995
996  init_queue (queue_list);
997  enqueue (queue_list, source);
998  bb_pred[source] = -1;
999
1000  while (!is_empty (queue_list))
1001    {
1002      u = dequeue (queue_list);
1003      is_visited[u] = 1;
1004      pfvertex = fvertex_list + u;
1005      for (i = 0; pfvertex->succ_edges.iterate (i, &pfedge);
1006	   i++)
1007	{
1008	  int dest = pfedge->dest;
1009	  if ((pfedge->rflow > 0) && (is_visited[dest] == 0))
1010	    {
1011	      enqueue (queue_list, dest);
1012	      bb_pred[dest] = u;
1013	      is_visited[dest] = 1;
1014	      if (dest == sink)
1015		return 1;
1016	    }
1017	}
1018    }
1019
1020  return 0;
1021}
1022
1023
1024/* Routine to find the maximal flow:
1025   Algorithm:
1026   1. Initialize flow to 0
1027   2. Find an augmenting path form source to sink.
1028   3. Send flow equal to the path's residual capacity along the edges of this path.
1029   4. Repeat steps 2 and 3 until no new augmenting path is found.
1030
1031Parameters:
1032SOURCE: index of source vertex (input)
1033SINK: index of sink vertex    (input)
1034FIXUP_GRAPH: adjacency matrix representing the graph. The flow of the edges will be
1035             set to have a valid maximal flow by this routine. (input)
1036Return: Maximum flow possible.  */
1037
1038static gcov_type
1039find_max_flow (fixup_graph_type *fixup_graph, int source, int sink)
1040{
1041  int fnum_edges;
1042  augmenting_path_type augmenting_path;
1043  int *bb_pred;
1044  gcov_type max_flow = 0;
1045  int i, u;
1046  fixup_edge_p fedge_list, pfedge, r_pfedge;
1047
1048  gcc_assert (fixup_graph);
1049
1050  fnum_edges = fixup_graph->num_edges;
1051  fedge_list = fixup_graph->edge_list;
1052
1053  /* Initialize flow to 0.  */
1054  for (i = 0; i < fnum_edges; i++)
1055    {
1056      pfedge = fedge_list + i;
1057      pfedge->flow = 0;
1058    }
1059
1060  compute_residual_flow (fixup_graph);
1061
1062  init_augmenting_path (&augmenting_path, fixup_graph->num_vertices);
1063
1064  bb_pred = augmenting_path.bb_pred;
1065  while (find_augmenting_path (fixup_graph, &augmenting_path, source, sink))
1066    {
1067      /* Determine the amount by which we can increment the flow.  */
1068      gcov_type increment = CAP_INFINITY;
1069      for (u = sink; u != source; u = bb_pred[u])
1070	{
1071	  pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u);
1072	  increment = MIN (increment, pfedge->rflow);
1073	}
1074      max_flow += increment;
1075
1076      /* Now increment the flow. EXIT vertex index is 1.  */
1077      for (u = sink; u != source; u = bb_pred[u])
1078	{
1079	  pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u);
1080	  r_pfedge = find_fixup_edge (fixup_graph, u, bb_pred[u]);
1081	  if (pfedge->type)
1082	    {
1083	      /* forward edge.  */
1084	      pfedge->flow += increment;
1085	      pfedge->rflow -= increment;
1086	      r_pfedge->rflow += increment;
1087	    }
1088	  else
1089	    {
1090	      /* backward edge.  */
1091	      gcc_assert (r_pfedge->type);
1092	      r_pfedge->rflow += increment;
1093	      r_pfedge->flow -= increment;
1094	      pfedge->rflow -= increment;
1095	    }
1096	}
1097
1098      if (dump_file)
1099	{
1100	  fprintf (dump_file, "\nDump augmenting path:\n");
1101	  for (u = sink; u != source; u = bb_pred[u])
1102	    {
1103	      print_basic_block (dump_file, fixup_graph, u);
1104	      fprintf (dump_file, "<-");
1105	    }
1106	  fprintf (dump_file,
1107		   "ENTRY  (path_capacity=%"PRId64 ")\n",
1108		   increment);
1109	  fprintf (dump_file,
1110		   "Network flow is %"PRId64 ".\n",
1111		   max_flow);
1112	}
1113    }
1114
1115  free_augmenting_path (&augmenting_path);
1116  if (dump_file)
1117    dump_fixup_graph (dump_file, fixup_graph, "After find_max_flow()");
1118  return max_flow;
1119}
1120
1121
1122/* Computes the corrected edge and basic block weights using FIXUP_GRAPH
1123   after applying the find_minimum_cost_flow() routine.  */
1124
1125static void
1126adjust_cfg_counts (fixup_graph_type *fixup_graph)
1127{
1128  basic_block bb;
1129  edge e;
1130  edge_iterator ei;
1131  int i, j;
1132  fixup_edge_p pfedge, pfedge_n;
1133
1134  gcc_assert (fixup_graph);
1135
1136  if (dump_file)
1137    fprintf (dump_file, "\nadjust_cfg_counts():\n");
1138
1139  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
1140		  EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1141    {
1142      i = 2 * bb->index;
1143
1144      /* Fixup BB.  */
1145      if (dump_file)
1146        fprintf (dump_file,
1147                 "BB%d: %"PRId64 "", bb->index, bb->count);
1148
1149      pfedge = find_fixup_edge (fixup_graph, i, i + 1);
1150      if (pfedge->flow)
1151        {
1152          bb->count += pfedge->flow;
1153	  if (dump_file)
1154	    {
1155	      fprintf (dump_file, " + %"PRId64 "(",
1156	               pfedge->flow);
1157	      print_edge (dump_file, fixup_graph, i, i + 1);
1158	      fprintf (dump_file, ")");
1159	    }
1160        }
1161
1162      pfedge_n =
1163        find_fixup_edge (fixup_graph, i + 1, pfedge->norm_vertex_index);
1164      /* Deduct flow from normalized reverse edge.  */
1165      if (pfedge->norm_vertex_index && pfedge_n->flow)
1166        {
1167          bb->count -= pfedge_n->flow;
1168	  if (dump_file)
1169	    {
1170	      fprintf (dump_file, " - %"PRId64 "(",
1171		       pfedge_n->flow);
1172	      print_edge (dump_file, fixup_graph, i + 1,
1173			  pfedge->norm_vertex_index);
1174	      fprintf (dump_file, ")");
1175	    }
1176        }
1177      if (dump_file)
1178        fprintf (dump_file, " = %"PRId64 "\n", bb->count);
1179
1180      /* Fixup edge.  */
1181      FOR_EACH_EDGE (e, ei, bb->succs)
1182        {
1183          /* Treat edges with ignore attribute set as if they don't exist.  */
1184          if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
1185	    continue;
1186
1187          j = 2 * e->dest->index;
1188          if (dump_file)
1189	    fprintf (dump_file, "%d->%d: %"PRId64 "",
1190		     bb->index, e->dest->index, e->count);
1191
1192          pfedge = find_fixup_edge (fixup_graph, i + 1, j);
1193
1194          if (bb->index != e->dest->index)
1195	    {
1196	      /* Non-self edge.  */
1197	      if (pfedge->flow)
1198	        {
1199	          e->count += pfedge->flow;
1200	          if (dump_file)
1201		    {
1202		      fprintf (dump_file, " + %"PRId64 "(",
1203			       pfedge->flow);
1204		      print_edge (dump_file, fixup_graph, i + 1, j);
1205		      fprintf (dump_file, ")");
1206		    }
1207	        }
1208
1209	      pfedge_n =
1210	        find_fixup_edge (fixup_graph, j, pfedge->norm_vertex_index);
1211	      /* Deduct flow from normalized reverse edge.  */
1212	      if (pfedge->norm_vertex_index && pfedge_n->flow)
1213	        {
1214	          e->count -= pfedge_n->flow;
1215	          if (dump_file)
1216		    {
1217		      fprintf (dump_file, " - %"PRId64 "(",
1218			       pfedge_n->flow);
1219		      print_edge (dump_file, fixup_graph, j,
1220			          pfedge->norm_vertex_index);
1221		      fprintf (dump_file, ")");
1222		    }
1223	        }
1224	    }
1225          else
1226	    {
1227	      /* Handle self edges. Self edge is split with a normalization
1228                 vertex. Here i=j.  */
1229	      pfedge = find_fixup_edge (fixup_graph, j, i + 1);
1230	      pfedge_n =
1231	        find_fixup_edge (fixup_graph, i + 1, pfedge->norm_vertex_index);
1232	      e->count += pfedge_n->flow;
1233	      bb->count += pfedge_n->flow;
1234	      if (dump_file)
1235	        {
1236	          fprintf (dump_file, "(self edge)");
1237	          fprintf (dump_file, " + %"PRId64 "(",
1238		           pfedge_n->flow);
1239	          print_edge (dump_file, fixup_graph, i + 1,
1240			      pfedge->norm_vertex_index);
1241	          fprintf (dump_file, ")");
1242	        }
1243	    }
1244
1245          if (bb->count)
1246	    e->probability = REG_BR_PROB_BASE * e->count / bb->count;
1247          if (dump_file)
1248	    fprintf (dump_file, " = %"PRId64 "\t(%.1f%%)\n",
1249		     e->count, e->probability * 100.0 / REG_BR_PROB_BASE);
1250        }
1251    }
1252
1253  ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
1254		     sum_edge_counts (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
1255  EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
1256		     sum_edge_counts (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
1257
1258  /* Compute edge probabilities.  */
1259  FOR_ALL_BB_FN (bb, cfun)
1260    {
1261      if (bb->count)
1262        {
1263          FOR_EACH_EDGE (e, ei, bb->succs)
1264            e->probability = REG_BR_PROB_BASE * e->count / bb->count;
1265        }
1266      else
1267        {
1268          int total = 0;
1269          FOR_EACH_EDGE (e, ei, bb->succs)
1270            if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
1271              total++;
1272          if (total)
1273            {
1274              FOR_EACH_EDGE (e, ei, bb->succs)
1275                {
1276                  if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
1277                    e->probability = REG_BR_PROB_BASE / total;
1278                  else
1279                    e->probability = 0;
1280                }
1281            }
1282          else
1283            {
1284              total += EDGE_COUNT (bb->succs);
1285              FOR_EACH_EDGE (e, ei, bb->succs)
1286                  e->probability = REG_BR_PROB_BASE / total;
1287            }
1288        }
1289    }
1290
1291  if (dump_file)
1292    {
1293      fprintf (dump_file, "\nCheck %s() CFG flow conservation:\n",
1294	       current_function_name ());
1295      FOR_EACH_BB_FN (bb, cfun)
1296        {
1297          if ((bb->count != sum_edge_counts (bb->preds))
1298               || (bb->count != sum_edge_counts (bb->succs)))
1299            {
1300              fprintf (dump_file,
1301                       "BB%d(%"PRId64 ")  **INVALID**: ",
1302                       bb->index, bb->count);
1303              fprintf (stderr,
1304                       "******** BB%d(%"PRId64
1305                       ")  **INVALID**: \n", bb->index, bb->count);
1306              fprintf (dump_file, "in_edges=%"PRId64 " ",
1307                       sum_edge_counts (bb->preds));
1308              fprintf (dump_file, "out_edges=%"PRId64 "\n",
1309                       sum_edge_counts (bb->succs));
1310            }
1311         }
1312    }
1313}
1314
1315
1316/* Implements the negative cycle canceling algorithm to compute a minimum cost
1317   flow.
1318Algorithm:
13191. Find maximal flow.
13202. Form residual network
13213. Repeat:
1322  While G contains a negative cost cycle C, reverse the flow on the found cycle
1323  by the minimum residual capacity in that cycle.
13244. Form the minimal cost flow
1325  f(u,v) = rf(v, u)
1326Input:
1327  FIXUP_GRAPH - Initial fixup graph.
1328  The flow field is modified to represent the minimum cost flow.  */
1329
1330static void
1331find_minimum_cost_flow (fixup_graph_type *fixup_graph)
1332{
1333  /* Holds the index of predecessor in path.  */
1334  int *pred;
1335  /* Used to hold the minimum cost cycle.  */
1336  int *cycle;
1337  /* Used to record the number of iterations of cancel_negative_cycle.  */
1338  int iteration;
1339  /* Vector d[i] holds the minimum cost of path from i to sink.  */
1340  gcov_type *d;
1341  int fnum_vertices;
1342  int new_exit_index;
1343  int new_entry_index;
1344
1345  gcc_assert (fixup_graph);
1346  fnum_vertices = fixup_graph->num_vertices;
1347  new_exit_index = fixup_graph->new_exit_index;
1348  new_entry_index = fixup_graph->new_entry_index;
1349
1350  find_max_flow (fixup_graph, new_entry_index, new_exit_index);
1351
1352  /* Initialize the structures for find_negative_cycle().  */
1353  pred = (int *) xcalloc (fnum_vertices, sizeof (int));
1354  d = (gcov_type *) xcalloc (fnum_vertices, sizeof (gcov_type));
1355  cycle = (int *) xcalloc (fnum_vertices, sizeof (int));
1356
1357  /* Repeatedly find and cancel negative cost cycles, until
1358     no more negative cycles exist. This also updates the flow field
1359     to represent the minimum cost flow so far.  */
1360  iteration = 0;
1361  while (cancel_negative_cycle (fixup_graph, pred, d, cycle))
1362    {
1363      iteration++;
1364      if (iteration > MAX_ITER (fixup_graph->num_vertices,
1365                                fixup_graph->num_edges))
1366        break;
1367    }
1368
1369  if (dump_file)
1370    dump_fixup_graph (dump_file, fixup_graph,
1371		      "After find_minimum_cost_flow()");
1372
1373  /* Cleanup structures.  */
1374  free (pred);
1375  free (d);
1376  free (cycle);
1377}
1378
1379
1380/* Compute the sum of the edge counts in TO_EDGES.  */
1381
1382gcov_type
1383sum_edge_counts (vec<edge, va_gc> *to_edges)
1384{
1385  gcov_type sum = 0;
1386  edge e;
1387  edge_iterator ei;
1388
1389  FOR_EACH_EDGE (e, ei, to_edges)
1390    {
1391      if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
1392        continue;
1393      sum += e->count;
1394    }
1395  return sum;
1396}
1397
1398
1399/* Main routine. Smoothes the initial assigned basic block and edge counts using
1400   a minimum cost flow algorithm, to ensure that the flow consistency rule is
1401   obeyed: sum of outgoing edges = sum of incoming edges for each basic
1402   block.  */
1403
1404void
1405mcf_smooth_cfg (void)
1406{
1407  fixup_graph_type fixup_graph;
1408  memset (&fixup_graph, 0, sizeof (fixup_graph));
1409  create_fixup_graph (&fixup_graph);
1410  find_minimum_cost_flow (&fixup_graph);
1411  adjust_cfg_counts (&fixup_graph);
1412  delete_fixup_graph (&fixup_graph);
1413}
1414