1/* Gimple decl, type, and expression support functions.
2
3   Copyright (C) 2007-2015 Free Software Foundation, Inc.
4   Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3.  If not see
20<http://www.gnu.org/licenses/>.  */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "hash-set.h"
27#include "machmode.h"
28#include "vec.h"
29#include "double-int.h"
30#include "input.h"
31#include "alias.h"
32#include "symtab.h"
33#include "wide-int.h"
34#include "inchash.h"
35#include "tree.h"
36#include "fold-const.h"
37#include "predict.h"
38#include "hard-reg-set.h"
39#include "input.h"
40#include "function.h"
41#include "basic-block.h"
42#include "tree-ssa-alias.h"
43#include "internal-fn.h"
44#include "tree-eh.h"
45#include "gimple-expr.h"
46#include "is-a.h"
47#include "gimple.h"
48#include "stringpool.h"
49#include "gimplify.h"
50#include "stor-layout.h"
51#include "demangle.h"
52#include "gimple-ssa.h"
53
54/* ----- Type related -----  */
55
56/* Return true if the conversion from INNER_TYPE to OUTER_TYPE is a
57   useless type conversion, otherwise return false.
58
59   This function implicitly defines the middle-end type system.  With
60   the notion of 'a < b' meaning that useless_type_conversion_p (a, b)
61   holds and 'a > b' meaning that useless_type_conversion_p (b, a) holds,
62   the following invariants shall be fulfilled:
63
64     1) useless_type_conversion_p is transitive.
65	If a < b and b < c then a < c.
66
67     2) useless_type_conversion_p is not symmetric.
68	From a < b does not follow a > b.
69
70     3) Types define the available set of operations applicable to values.
71	A type conversion is useless if the operations for the target type
72	is a subset of the operations for the source type.  For example
73	casts to void* are useless, casts from void* are not (void* can't
74	be dereferenced or offsetted, but copied, hence its set of operations
75	is a strict subset of that of all other data pointer types).  Casts
76	to const T* are useless (can't be written to), casts from const T*
77	to T* are not.  */
78
79bool
80useless_type_conversion_p (tree outer_type, tree inner_type)
81{
82  /* Do the following before stripping toplevel qualifiers.  */
83  if (POINTER_TYPE_P (inner_type)
84      && POINTER_TYPE_P (outer_type))
85    {
86      /* Do not lose casts between pointers to different address spaces.  */
87      if (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
88	  != TYPE_ADDR_SPACE (TREE_TYPE (inner_type)))
89	return false;
90    }
91
92  /* From now on qualifiers on value types do not matter.  */
93  inner_type = TYPE_MAIN_VARIANT (inner_type);
94  outer_type = TYPE_MAIN_VARIANT (outer_type);
95
96  if (inner_type == outer_type)
97    return true;
98
99  /* If we know the canonical types, compare them.  */
100  if (TYPE_CANONICAL (inner_type)
101      && TYPE_CANONICAL (inner_type) == TYPE_CANONICAL (outer_type))
102    return true;
103
104  /* Changes in machine mode are never useless conversions unless we
105     deal with aggregate types in which case we defer to later checks.  */
106  if (TYPE_MODE (inner_type) != TYPE_MODE (outer_type)
107      && !AGGREGATE_TYPE_P (inner_type))
108    return false;
109
110  /* If both the inner and outer types are integral types, then the
111     conversion is not necessary if they have the same mode and
112     signedness and precision, and both or neither are boolean.  */
113  if (INTEGRAL_TYPE_P (inner_type)
114      && INTEGRAL_TYPE_P (outer_type))
115    {
116      /* Preserve changes in signedness or precision.  */
117      if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
118	  || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
119	return false;
120
121      /* Preserve conversions to/from BOOLEAN_TYPE if types are not
122	 of precision one.  */
123      if (((TREE_CODE (inner_type) == BOOLEAN_TYPE)
124	   != (TREE_CODE (outer_type) == BOOLEAN_TYPE))
125	  && TYPE_PRECISION (outer_type) != 1)
126	return false;
127
128      /* We don't need to preserve changes in the types minimum or
129	 maximum value in general as these do not generate code
130	 unless the types precisions are different.  */
131      return true;
132    }
133
134  /* Scalar floating point types with the same mode are compatible.  */
135  else if (SCALAR_FLOAT_TYPE_P (inner_type)
136	   && SCALAR_FLOAT_TYPE_P (outer_type))
137    return true;
138
139  /* Fixed point types with the same mode are compatible.  */
140  else if (FIXED_POINT_TYPE_P (inner_type)
141	   && FIXED_POINT_TYPE_P (outer_type))
142    return true;
143
144  /* We need to take special care recursing to pointed-to types.  */
145  else if (POINTER_TYPE_P (inner_type)
146	   && POINTER_TYPE_P (outer_type))
147    {
148      /* Do not lose casts to function pointer types.  */
149      if ((TREE_CODE (TREE_TYPE (outer_type)) == FUNCTION_TYPE
150	   || TREE_CODE (TREE_TYPE (outer_type)) == METHOD_TYPE)
151	  && !(TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE
152	       || TREE_CODE (TREE_TYPE (inner_type)) == METHOD_TYPE))
153	return false;
154
155      /* We do not care for const qualification of the pointed-to types
156	 as const qualification has no semantic value to the middle-end.  */
157
158      /* Otherwise pointers/references are equivalent.  */
159      return true;
160    }
161
162  /* Recurse for complex types.  */
163  else if (TREE_CODE (inner_type) == COMPLEX_TYPE
164	   && TREE_CODE (outer_type) == COMPLEX_TYPE)
165    return useless_type_conversion_p (TREE_TYPE (outer_type),
166				      TREE_TYPE (inner_type));
167
168  /* Recurse for vector types with the same number of subparts.  */
169  else if (TREE_CODE (inner_type) == VECTOR_TYPE
170	   && TREE_CODE (outer_type) == VECTOR_TYPE
171	   && TYPE_PRECISION (inner_type) == TYPE_PRECISION (outer_type))
172    return useless_type_conversion_p (TREE_TYPE (outer_type),
173				      TREE_TYPE (inner_type));
174
175  else if (TREE_CODE (inner_type) == ARRAY_TYPE
176	   && TREE_CODE (outer_type) == ARRAY_TYPE)
177    {
178      /* Preserve string attributes.  */
179      if (TYPE_STRING_FLAG (inner_type) != TYPE_STRING_FLAG (outer_type))
180	return false;
181
182      /* Conversions from array types with unknown extent to
183	 array types with known extent are not useless.  */
184      if (!TYPE_DOMAIN (inner_type)
185	  && TYPE_DOMAIN (outer_type))
186	return false;
187
188      /* Nor are conversions from array types with non-constant size to
189         array types with constant size or to different size.  */
190      if (TYPE_SIZE (outer_type)
191	  && TREE_CODE (TYPE_SIZE (outer_type)) == INTEGER_CST
192	  && (!TYPE_SIZE (inner_type)
193	      || TREE_CODE (TYPE_SIZE (inner_type)) != INTEGER_CST
194	      || !tree_int_cst_equal (TYPE_SIZE (outer_type),
195				      TYPE_SIZE (inner_type))))
196	return false;
197
198      /* Check conversions between arrays with partially known extents.
199	 If the array min/max values are constant they have to match.
200	 Otherwise allow conversions to unknown and variable extents.
201	 In particular this declares conversions that may change the
202	 mode to BLKmode as useless.  */
203      if (TYPE_DOMAIN (inner_type)
204	  && TYPE_DOMAIN (outer_type)
205	  && TYPE_DOMAIN (inner_type) != TYPE_DOMAIN (outer_type))
206	{
207	  tree inner_min = TYPE_MIN_VALUE (TYPE_DOMAIN (inner_type));
208	  tree outer_min = TYPE_MIN_VALUE (TYPE_DOMAIN (outer_type));
209	  tree inner_max = TYPE_MAX_VALUE (TYPE_DOMAIN (inner_type));
210	  tree outer_max = TYPE_MAX_VALUE (TYPE_DOMAIN (outer_type));
211
212	  /* After gimplification a variable min/max value carries no
213	     additional information compared to a NULL value.  All that
214	     matters has been lowered to be part of the IL.  */
215	  if (inner_min && TREE_CODE (inner_min) != INTEGER_CST)
216	    inner_min = NULL_TREE;
217	  if (outer_min && TREE_CODE (outer_min) != INTEGER_CST)
218	    outer_min = NULL_TREE;
219	  if (inner_max && TREE_CODE (inner_max) != INTEGER_CST)
220	    inner_max = NULL_TREE;
221	  if (outer_max && TREE_CODE (outer_max) != INTEGER_CST)
222	    outer_max = NULL_TREE;
223
224	  /* Conversions NULL / variable <- cst are useless, but not
225	     the other way around.  */
226	  if (outer_min
227	      && (!inner_min
228		  || !tree_int_cst_equal (inner_min, outer_min)))
229	    return false;
230	  if (outer_max
231	      && (!inner_max
232		  || !tree_int_cst_equal (inner_max, outer_max)))
233	    return false;
234	}
235
236      /* Recurse on the element check.  */
237      return useless_type_conversion_p (TREE_TYPE (outer_type),
238					TREE_TYPE (inner_type));
239    }
240
241  else if ((TREE_CODE (inner_type) == FUNCTION_TYPE
242	    || TREE_CODE (inner_type) == METHOD_TYPE)
243	   && TREE_CODE (inner_type) == TREE_CODE (outer_type))
244    {
245      tree outer_parm, inner_parm;
246
247      /* If the return types are not compatible bail out.  */
248      if (!useless_type_conversion_p (TREE_TYPE (outer_type),
249				      TREE_TYPE (inner_type)))
250	return false;
251
252      /* Method types should belong to a compatible base class.  */
253      if (TREE_CODE (inner_type) == METHOD_TYPE
254	  && !useless_type_conversion_p (TYPE_METHOD_BASETYPE (outer_type),
255					 TYPE_METHOD_BASETYPE (inner_type)))
256	return false;
257
258      /* A conversion to an unprototyped argument list is ok.  */
259      if (!prototype_p (outer_type))
260	return true;
261
262      /* If the unqualified argument types are compatible the conversion
263	 is useless.  */
264      if (TYPE_ARG_TYPES (outer_type) == TYPE_ARG_TYPES (inner_type))
265	return true;
266
267      for (outer_parm = TYPE_ARG_TYPES (outer_type),
268	   inner_parm = TYPE_ARG_TYPES (inner_type);
269	   outer_parm && inner_parm;
270	   outer_parm = TREE_CHAIN (outer_parm),
271	   inner_parm = TREE_CHAIN (inner_parm))
272	if (!useless_type_conversion_p
273	       (TYPE_MAIN_VARIANT (TREE_VALUE (outer_parm)),
274		TYPE_MAIN_VARIANT (TREE_VALUE (inner_parm))))
275	  return false;
276
277      /* If there is a mismatch in the number of arguments the functions
278	 are not compatible.  */
279      if (outer_parm || inner_parm)
280	return false;
281
282      /* Defer to the target if necessary.  */
283      if (TYPE_ATTRIBUTES (inner_type) || TYPE_ATTRIBUTES (outer_type))
284	return comp_type_attributes (outer_type, inner_type) != 0;
285
286      return true;
287    }
288
289  /* For aggregates we rely on TYPE_CANONICAL exclusively and require
290     explicit conversions for types involving to be structurally
291     compared types.  */
292  else if (AGGREGATE_TYPE_P (inner_type)
293	   && TREE_CODE (inner_type) == TREE_CODE (outer_type))
294    return false;
295
296  return false;
297}
298
299
300/* ----- Decl related -----  */
301
302/* Set sequence SEQ to be the GIMPLE body for function FN.  */
303
304void
305gimple_set_body (tree fndecl, gimple_seq seq)
306{
307  struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
308  if (fn == NULL)
309    {
310      /* If FNDECL still does not have a function structure associated
311	 with it, then it does not make sense for it to receive a
312	 GIMPLE body.  */
313      gcc_assert (seq == NULL);
314    }
315  else
316    fn->gimple_body = seq;
317}
318
319
320/* Return the body of GIMPLE statements for function FN.  After the
321   CFG pass, the function body doesn't exist anymore because it has
322   been split up into basic blocks.  In this case, it returns
323   NULL.  */
324
325gimple_seq
326gimple_body (tree fndecl)
327{
328  struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
329  return fn ? fn->gimple_body : NULL;
330}
331
332/* Return true when FNDECL has Gimple body either in unlowered
333   or CFG form.  */
334bool
335gimple_has_body_p (tree fndecl)
336{
337  struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
338  return (gimple_body (fndecl) || (fn && fn->cfg));
339}
340
341/* Return a printable name for symbol DECL.  */
342
343const char *
344gimple_decl_printable_name (tree decl, int verbosity)
345{
346  if (!DECL_NAME (decl))
347    return NULL;
348
349  if (DECL_ASSEMBLER_NAME_SET_P (decl))
350    {
351      const char *str, *mangled_str;
352      int dmgl_opts = DMGL_NO_OPTS;
353
354      if (verbosity >= 2)
355	{
356	  dmgl_opts = DMGL_VERBOSE
357		      | DMGL_ANSI
358		      | DMGL_GNU_V3
359		      | DMGL_RET_POSTFIX;
360	  if (TREE_CODE (decl) == FUNCTION_DECL)
361	    dmgl_opts |= DMGL_PARAMS;
362	}
363
364      mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
365      str = cplus_demangle_v3 (mangled_str, dmgl_opts);
366      return (str) ? str : mangled_str;
367    }
368
369  return IDENTIFIER_POINTER (DECL_NAME (decl));
370}
371
372
373/* Create a new VAR_DECL and copy information from VAR to it.  */
374
375tree
376copy_var_decl (tree var, tree name, tree type)
377{
378  tree copy = build_decl (DECL_SOURCE_LOCATION (var), VAR_DECL, name, type);
379
380  TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (var);
381  TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (var);
382  DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (var);
383  DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (var);
384  DECL_IGNORED_P (copy) = DECL_IGNORED_P (var);
385  DECL_CONTEXT (copy) = DECL_CONTEXT (var);
386  TREE_NO_WARNING (copy) = TREE_NO_WARNING (var);
387  TREE_USED (copy) = 1;
388  DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
389  DECL_ATTRIBUTES (copy) = DECL_ATTRIBUTES (var);
390  if (DECL_USER_ALIGN (var))
391    {
392      DECL_ALIGN (copy) = DECL_ALIGN (var);
393      DECL_USER_ALIGN (copy) = 1;
394    }
395
396  return copy;
397}
398
399/* Given SSA_NAMEs NAME1 and NAME2, return true if they are candidates for
400   coalescing together, false otherwise.
401
402   This must stay consistent with var_map_base_init in tree-ssa-live.c.  */
403
404bool
405gimple_can_coalesce_p (tree name1, tree name2)
406{
407  /* First check the SSA_NAME's associated DECL.  We only want to
408     coalesce if they have the same DECL or both have no associated DECL.  */
409  tree var1 = SSA_NAME_VAR (name1);
410  tree var2 = SSA_NAME_VAR (name2);
411  var1 = (var1 && (!VAR_P (var1) || !DECL_IGNORED_P (var1))) ? var1 : NULL_TREE;
412  var2 = (var2 && (!VAR_P (var2) || !DECL_IGNORED_P (var2))) ? var2 : NULL_TREE;
413  if (var1 != var2)
414    return false;
415
416  /* Now check the types.  If the types are the same, then we should
417     try to coalesce V1 and V2.  */
418  tree t1 = TREE_TYPE (name1);
419  tree t2 = TREE_TYPE (name2);
420  if (t1 == t2)
421    return true;
422
423  /* If the types are not the same, check for a canonical type match.  This
424     (for example) allows coalescing when the types are fundamentally the
425     same, but just have different names.
426
427     Note pointer types with different address spaces may have the same
428     canonical type.  Those are rejected for coalescing by the
429     types_compatible_p check.  */
430  if (TYPE_CANONICAL (t1)
431      && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2)
432      && types_compatible_p (t1, t2))
433    return true;
434
435  return false;
436}
437
438/* Strip off a legitimate source ending from the input string NAME of
439   length LEN.  Rather than having to know the names used by all of
440   our front ends, we strip off an ending of a period followed by
441   up to five characters.  (Java uses ".class".)  */
442
443static inline void
444remove_suffix (char *name, int len)
445{
446  int i;
447
448  for (i = 2;  i < 8 && len > i;  i++)
449    {
450      if (name[len - i] == '.')
451	{
452	  name[len - i] = '\0';
453	  break;
454	}
455    }
456}
457
458/* Create a new temporary name with PREFIX.  Return an identifier.  */
459
460static GTY(()) unsigned int tmp_var_id_num;
461
462tree
463create_tmp_var_name (const char *prefix)
464{
465  char *tmp_name;
466
467  if (prefix)
468    {
469      char *preftmp = ASTRDUP (prefix);
470
471      remove_suffix (preftmp, strlen (preftmp));
472      clean_symbol_name (preftmp);
473
474      prefix = preftmp;
475    }
476
477  ASM_FORMAT_PRIVATE_NAME (tmp_name, prefix ? prefix : "T", tmp_var_id_num++);
478  return get_identifier (tmp_name);
479}
480
481/* Create a new temporary variable declaration of type TYPE.
482   Do NOT push it into the current binding.  */
483
484tree
485create_tmp_var_raw (tree type, const char *prefix)
486{
487  tree tmp_var;
488
489  tmp_var = build_decl (input_location,
490			VAR_DECL, prefix ? create_tmp_var_name (prefix) : NULL,
491			type);
492
493  /* The variable was declared by the compiler.  */
494  DECL_ARTIFICIAL (tmp_var) = 1;
495  /* And we don't want debug info for it.  */
496  DECL_IGNORED_P (tmp_var) = 1;
497
498  /* Make the variable writable.  */
499  TREE_READONLY (tmp_var) = 0;
500
501  DECL_EXTERNAL (tmp_var) = 0;
502  TREE_STATIC (tmp_var) = 0;
503  TREE_USED (tmp_var) = 1;
504
505  return tmp_var;
506}
507
508/* Create a new temporary variable declaration of type TYPE.  DO push the
509   variable into the current binding.  Further, assume that this is called
510   only from gimplification or optimization, at which point the creation of
511   certain types are bugs.  */
512
513tree
514create_tmp_var (tree type, const char *prefix)
515{
516  tree tmp_var;
517
518  /* We don't allow types that are addressable (meaning we can't make copies),
519     or incomplete.  We also used to reject every variable size objects here,
520     but now support those for which a constant upper bound can be obtained.
521     The processing for variable sizes is performed in gimple_add_tmp_var,
522     point at which it really matters and possibly reached via paths not going
523     through this function, e.g. after direct calls to create_tmp_var_raw.  */
524  gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
525
526  tmp_var = create_tmp_var_raw (type, prefix);
527  gimple_add_tmp_var (tmp_var);
528  return tmp_var;
529}
530
531/* Create a new temporary variable declaration of type TYPE by calling
532   create_tmp_var and if TYPE is a vector or a complex number, mark the new
533   temporary as gimple register.  */
534
535tree
536create_tmp_reg (tree type, const char *prefix)
537{
538  tree tmp;
539
540  tmp = create_tmp_var (type, prefix);
541  if (TREE_CODE (type) == COMPLEX_TYPE
542      || TREE_CODE (type) == VECTOR_TYPE)
543    DECL_GIMPLE_REG_P (tmp) = 1;
544
545  return tmp;
546}
547
548/* Create a new temporary variable declaration of type TYPE by calling
549   create_tmp_var and if TYPE is a vector or a complex number, mark the new
550   temporary as gimple register.  */
551
552tree
553create_tmp_reg_fn (struct function *fn, tree type, const char *prefix)
554{
555  tree tmp;
556
557  tmp = create_tmp_var_raw (type, prefix);
558  gimple_add_tmp_var_fn (fn, tmp);
559  if (TREE_CODE (type) == COMPLEX_TYPE
560      || TREE_CODE (type) == VECTOR_TYPE)
561    DECL_GIMPLE_REG_P (tmp) = 1;
562
563  return tmp;
564}
565
566
567/* ----- Expression related -----  */
568
569/* Extract the operands and code for expression EXPR into *SUBCODE_P,
570   *OP1_P, *OP2_P and *OP3_P respectively.  */
571
572void
573extract_ops_from_tree (tree expr, enum tree_code *subcode_p, tree *op1_p,
574		       tree *op2_p, tree *op3_p)
575{
576  enum gimple_rhs_class grhs_class;
577
578  *subcode_p = TREE_CODE (expr);
579  grhs_class = get_gimple_rhs_class (*subcode_p);
580
581  if (grhs_class == GIMPLE_TERNARY_RHS)
582    {
583      *op1_p = TREE_OPERAND (expr, 0);
584      *op2_p = TREE_OPERAND (expr, 1);
585      *op3_p = TREE_OPERAND (expr, 2);
586    }
587  else if (grhs_class == GIMPLE_BINARY_RHS)
588    {
589      *op1_p = TREE_OPERAND (expr, 0);
590      *op2_p = TREE_OPERAND (expr, 1);
591      *op3_p = NULL_TREE;
592    }
593  else if (grhs_class == GIMPLE_UNARY_RHS)
594    {
595      *op1_p = TREE_OPERAND (expr, 0);
596      *op2_p = NULL_TREE;
597      *op3_p = NULL_TREE;
598    }
599  else if (grhs_class == GIMPLE_SINGLE_RHS)
600    {
601      *op1_p = expr;
602      *op2_p = NULL_TREE;
603      *op3_p = NULL_TREE;
604    }
605  else
606    gcc_unreachable ();
607}
608
609/* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND.  */
610
611void
612gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
613                               tree *lhs_p, tree *rhs_p)
614{
615  gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
616	      || TREE_CODE (cond) == TRUTH_NOT_EXPR
617	      || is_gimple_min_invariant (cond)
618	      || SSA_VAR_P (cond));
619
620  extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
621
622  /* Canonicalize conditionals of the form 'if (!VAL)'.  */
623  if (*code_p == TRUTH_NOT_EXPR)
624    {
625      *code_p = EQ_EXPR;
626      gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
627      *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
628    }
629  /* Canonicalize conditionals of the form 'if (VAL)'  */
630  else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
631    {
632      *code_p = NE_EXPR;
633      gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
634      *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
635    }
636}
637
638/*  Return true if T is a valid LHS for a GIMPLE assignment expression.  */
639
640bool
641is_gimple_lvalue (tree t)
642{
643  return (is_gimple_addressable (t)
644	  || TREE_CODE (t) == WITH_SIZE_EXPR
645	  /* These are complex lvalues, but don't have addresses, so they
646	     go here.  */
647	  || TREE_CODE (t) == BIT_FIELD_REF);
648}
649
650/*  Return true if T is a GIMPLE condition.  */
651
652bool
653is_gimple_condexpr (tree t)
654{
655  return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
656				&& !tree_could_throw_p (t)
657				&& is_gimple_val (TREE_OPERAND (t, 0))
658				&& is_gimple_val (TREE_OPERAND (t, 1))));
659}
660
661/* Return true if T is a gimple address.  */
662
663bool
664is_gimple_address (const_tree t)
665{
666  tree op;
667
668  if (TREE_CODE (t) != ADDR_EXPR)
669    return false;
670
671  op = TREE_OPERAND (t, 0);
672  while (handled_component_p (op))
673    {
674      if ((TREE_CODE (op) == ARRAY_REF
675	   || TREE_CODE (op) == ARRAY_RANGE_REF)
676	  && !is_gimple_val (TREE_OPERAND (op, 1)))
677	    return false;
678
679      op = TREE_OPERAND (op, 0);
680    }
681
682  if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
683    return true;
684
685  switch (TREE_CODE (op))
686    {
687    case PARM_DECL:
688    case RESULT_DECL:
689    case LABEL_DECL:
690    case FUNCTION_DECL:
691    case VAR_DECL:
692    case CONST_DECL:
693      return true;
694
695    default:
696      return false;
697    }
698}
699
700/* Return true if T is a gimple invariant address.  */
701
702bool
703is_gimple_invariant_address (const_tree t)
704{
705  const_tree op;
706
707  if (TREE_CODE (t) != ADDR_EXPR)
708    return false;
709
710  op = strip_invariant_refs (TREE_OPERAND (t, 0));
711  if (!op)
712    return false;
713
714  if (TREE_CODE (op) == MEM_REF)
715    {
716      const_tree op0 = TREE_OPERAND (op, 0);
717      return (TREE_CODE (op0) == ADDR_EXPR
718	      && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
719		  || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
720    }
721
722  return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
723}
724
725/* Return true if T is a gimple invariant address at IPA level
726   (so addresses of variables on stack are not allowed).  */
727
728bool
729is_gimple_ip_invariant_address (const_tree t)
730{
731  const_tree op;
732
733  if (TREE_CODE (t) != ADDR_EXPR)
734    return false;
735
736  op = strip_invariant_refs (TREE_OPERAND (t, 0));
737  if (!op)
738    return false;
739
740  if (TREE_CODE (op) == MEM_REF)
741    {
742      const_tree op0 = TREE_OPERAND (op, 0);
743      return (TREE_CODE (op0) == ADDR_EXPR
744	      && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
745		  || decl_address_ip_invariant_p (TREE_OPERAND (op0, 0))));
746    }
747
748  return CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op);
749}
750
751/* Return true if T is a GIMPLE minimal invariant.  It's a restricted
752   form of function invariant.  */
753
754bool
755is_gimple_min_invariant (const_tree t)
756{
757  if (TREE_CODE (t) == ADDR_EXPR)
758    return is_gimple_invariant_address (t);
759
760  return is_gimple_constant (t);
761}
762
763/* Return true if T is a GIMPLE interprocedural invariant.  It's a restricted
764   form of gimple minimal invariant.  */
765
766bool
767is_gimple_ip_invariant (const_tree t)
768{
769  if (TREE_CODE (t) == ADDR_EXPR)
770    return is_gimple_ip_invariant_address (t);
771
772  return is_gimple_constant (t);
773}
774
775/* Return true if T is a non-aggregate register variable.  */
776
777bool
778is_gimple_reg (tree t)
779{
780  if (virtual_operand_p (t))
781    return false;
782
783  if (TREE_CODE (t) == SSA_NAME)
784    return true;
785
786  if (!is_gimple_variable (t))
787    return false;
788
789  if (!is_gimple_reg_type (TREE_TYPE (t)))
790    return false;
791
792  /* A volatile decl is not acceptable because we can't reuse it as
793     needed.  We need to copy it into a temp first.  */
794  if (TREE_THIS_VOLATILE (t))
795    return false;
796
797  /* We define "registers" as things that can be renamed as needed,
798     which with our infrastructure does not apply to memory.  */
799  if (needs_to_live_in_memory (t))
800    return false;
801
802  /* Hard register variables are an interesting case.  For those that
803     are call-clobbered, we don't know where all the calls are, since
804     we don't (want to) take into account which operations will turn
805     into libcalls at the rtl level.  For those that are call-saved,
806     we don't currently model the fact that calls may in fact change
807     global hard registers, nor do we examine ASM_CLOBBERS at the tree
808     level, and so miss variable changes that might imply.  All around,
809     it seems safest to not do too much optimization with these at the
810     tree level at all.  We'll have to rely on the rtl optimizers to
811     clean this up, as there we've got all the appropriate bits exposed.  */
812  if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
813    return false;
814
815  /* Complex and vector values must have been put into SSA-like form.
816     That is, no assignments to the individual components.  */
817  if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
818      || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
819    return DECL_GIMPLE_REG_P (t);
820
821  return true;
822}
823
824
825/* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant.  */
826
827bool
828is_gimple_val (tree t)
829{
830  /* Make loads from volatiles and memory vars explicit.  */
831  if (is_gimple_variable (t)
832      && is_gimple_reg_type (TREE_TYPE (t))
833      && !is_gimple_reg (t))
834    return false;
835
836  return (is_gimple_variable (t) || is_gimple_min_invariant (t));
837}
838
839/* Similarly, but accept hard registers as inputs to asm statements.  */
840
841bool
842is_gimple_asm_val (tree t)
843{
844  if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
845    return true;
846
847  return is_gimple_val (t);
848}
849
850/* Return true if T is a GIMPLE minimal lvalue.  */
851
852bool
853is_gimple_min_lval (tree t)
854{
855  if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
856    return false;
857  return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
858}
859
860/* Return true if T is a valid function operand of a CALL_EXPR.  */
861
862bool
863is_gimple_call_addr (tree t)
864{
865  return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
866}
867
868/* Return true if T is a valid address operand of a MEM_REF.  */
869
870bool
871is_gimple_mem_ref_addr (tree t)
872{
873  return (is_gimple_reg (t)
874	  || TREE_CODE (t) == INTEGER_CST
875	  || (TREE_CODE (t) == ADDR_EXPR
876	      && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
877		  || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
878}
879
880/* Mark X addressable.  Unlike the langhook we expect X to be in gimple
881   form and we don't do any syntax checking.  */
882
883void
884mark_addressable (tree x)
885{
886  while (handled_component_p (x))
887    x = TREE_OPERAND (x, 0);
888  if (TREE_CODE (x) == MEM_REF
889      && TREE_CODE (TREE_OPERAND (x, 0)) == ADDR_EXPR)
890    x = TREE_OPERAND (TREE_OPERAND (x, 0), 0);
891  if (TREE_CODE (x) != VAR_DECL
892      && TREE_CODE (x) != PARM_DECL
893      && TREE_CODE (x) != RESULT_DECL)
894    return;
895  TREE_ADDRESSABLE (x) = 1;
896
897  /* Also mark the artificial SSA_NAME that points to the partition of X.  */
898  if (TREE_CODE (x) == VAR_DECL
899      && !DECL_EXTERNAL (x)
900      && !TREE_STATIC (x)
901      && cfun->gimple_df != NULL
902      && cfun->gimple_df->decls_to_pointers != NULL)
903    {
904      tree *namep = cfun->gimple_df->decls_to_pointers->get (x);
905      if (namep)
906	TREE_ADDRESSABLE (*namep) = 1;
907    }
908}
909
910/* Returns true iff T is a valid RHS for an assignment to a renamed
911   user -- or front-end generated artificial -- variable.  */
912
913bool
914is_gimple_reg_rhs (tree t)
915{
916  return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
917}
918
919#include "gt-gimple-expr.h"
920