1;;  Mips.md	     Machine Description for MIPS based processors
2;;  Copyright (C) 1989-2015 Free Software Foundation, Inc.
3;;  Contributed by   A. Lichnewsky, lich@inria.inria.fr
4;;  Changes by       Michael Meissner, meissner@osf.org
5;;  64-bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
6;;  Brendan Eich, brendan@microunity.com.
7
8;; This file is part of GCC.
9
10;; GCC is free software; you can redistribute it and/or modify
11;; it under the terms of the GNU General Public License as published by
12;; the Free Software Foundation; either version 3, or (at your option)
13;; any later version.
14
15;; GCC is distributed in the hope that it will be useful,
16;; but WITHOUT ANY WARRANTY; without even the implied warranty of
17;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18;; GNU General Public License for more details.
19
20;; You should have received a copy of the GNU General Public License
21;; along with GCC; see the file COPYING3.  If not see
22;; <http://www.gnu.org/licenses/>.
23
24(define_enum "processor" [
25  r3000
26  4kc
27  4kp
28  5kc
29  5kf
30  20kc
31  24kc
32  24kf2_1
33  24kf1_1
34  74kc
35  74kf2_1
36  74kf1_1
37  74kf3_2
38  loongson_2e
39  loongson_2f
40  loongson_3a
41  m4k
42  octeon
43  octeon2
44  octeon3
45  r3900
46  r6000
47  r4000
48  r4100
49  r4111
50  r4120
51  r4130
52  r4300
53  r4600
54  r4650
55  r4700
56  r5000
57  r5400
58  r5500
59  r5900
60  r7000
61  r8000
62  r9000
63  r10000
64  sb1
65  sb1a
66  sr71000
67  xlr
68  xlp
69  p5600
70  w32
71  w64
72])
73
74(define_c_enum "unspec" [
75  ;; Unaligned accesses.
76  UNSPEC_LOAD_LEFT
77  UNSPEC_LOAD_RIGHT
78  UNSPEC_STORE_LEFT
79  UNSPEC_STORE_RIGHT
80
81  ;; Integer operations that are too cumbersome to describe directly.
82  UNSPEC_WSBH
83  UNSPEC_DSBH
84  UNSPEC_DSHD
85
86  ;; Floating-point moves.
87  UNSPEC_LOAD_LOW
88  UNSPEC_LOAD_HIGH
89  UNSPEC_STORE_WORD
90  UNSPEC_MFHC1
91  UNSPEC_MTHC1
92
93  ;; Floating-point environment.
94  UNSPEC_GET_FCSR
95  UNSPEC_SET_FCSR
96
97  ;; HI/LO moves.
98  UNSPEC_MFHI
99  UNSPEC_MTHI
100  UNSPEC_SET_HILO
101
102  ;; GP manipulation.
103  UNSPEC_LOADGP
104  UNSPEC_COPYGP
105  UNSPEC_MOVE_GP
106  UNSPEC_POTENTIAL_CPRESTORE
107  UNSPEC_CPRESTORE
108  UNSPEC_RESTORE_GP
109  UNSPEC_EH_RETURN
110  UNSPEC_GP
111  UNSPEC_SET_GOT_VERSION
112  UNSPEC_UPDATE_GOT_VERSION
113
114  ;; Symbolic accesses.
115  UNSPEC_LOAD_CALL
116  UNSPEC_LOAD_GOT
117  UNSPEC_TLS_LDM
118  UNSPEC_TLS_GET_TP
119  UNSPEC_UNSHIFTED_HIGH
120
121  ;; MIPS16 constant pools.
122  UNSPEC_ALIGN
123  UNSPEC_CONSTTABLE_INT
124  UNSPEC_CONSTTABLE_FLOAT
125
126  ;; Blockage and synchronisation.
127  UNSPEC_BLOCKAGE
128  UNSPEC_CLEAR_HAZARD
129  UNSPEC_RDHWR
130  UNSPEC_SYNCI
131  UNSPEC_SYNC
132
133  ;; Cache manipulation.
134  UNSPEC_MIPS_CACHE
135  UNSPEC_R10K_CACHE_BARRIER
136
137  ;; Interrupt handling.
138  UNSPEC_ERET
139  UNSPEC_DERET
140  UNSPEC_DI
141  UNSPEC_EHB
142  UNSPEC_RDPGPR
143  UNSPEC_COP0
144
145  ;; Used in a call expression in place of args_size.  It's present for PIC
146  ;; indirect calls where it contains args_size and the function symbol.
147  UNSPEC_CALL_ATTR
148
149  ;; MIPS16 casesi jump table dispatch.
150  UNSPEC_CASESI_DISPATCH
151
152  ;; Stack checking.
153  UNSPEC_PROBE_STACK_RANGE
154])
155
156(define_constants
157  [(TLS_GET_TP_REGNUM		3)
158   (GET_FCSR_REGNUM		2)
159   (SET_FCSR_REGNUM		4)
160   (MIPS16_T_REGNUM		24)
161   (PIC_FUNCTION_ADDR_REGNUM	25)
162   (RETURN_ADDR_REGNUM		31)
163   (CPRESTORE_SLOT_REGNUM	76)
164   (GOT_VERSION_REGNUM		79)
165
166   ;; PIC long branch sequences are never longer than 100 bytes.
167   (MAX_PIC_BRANCH_LENGTH	100)
168  ]
169)
170
171(include "predicates.md")
172(include "constraints.md")
173
174;; ....................
175;;
176;;	Attributes
177;;
178;; ....................
179
180(define_attr "got" "unset,xgot_high,load"
181  (const_string "unset"))
182
183;; For jal instructions, this attribute is DIRECT when the target address
184;; is symbolic and INDIRECT when it is a register.
185(define_attr "jal" "unset,direct,indirect"
186  (const_string "unset"))
187
188;; This attribute is YES if the instruction is a jal macro (not a
189;; real jal instruction).
190;;
191;; jal is always a macro for TARGET_CALL_CLOBBERED_GP because it includes
192;; an instruction to restore $gp.  Direct jals are also macros for
193;; !TARGET_ABSOLUTE_JUMPS because they first load the target address
194;; into a register.
195(define_attr "jal_macro" "no,yes"
196  (cond [(eq_attr "jal" "direct")
197	 (symbol_ref "(TARGET_CALL_CLOBBERED_GP || !TARGET_ABSOLUTE_JUMPS
198		       ? JAL_MACRO_YES : JAL_MACRO_NO)")
199	 (eq_attr "jal" "indirect")
200	 (symbol_ref "(TARGET_CALL_CLOBBERED_GP
201		       ? JAL_MACRO_YES : JAL_MACRO_NO)")]
202	(const_string "no")))
203
204;; Classification of moves, extensions and truncations.  Most values
205;; are as for "type" (see below) but there are also the following
206;; move-specific values:
207;;
208;; constN	move an N-constraint integer into a MIPS16 register
209;; sll0		"sll DEST,SRC,0", which on 64-bit targets is guaranteed
210;;		to produce a sign-extended DEST, even if SRC is not
211;;		properly sign-extended
212;; ext_ins	EXT, DEXT, INS or DINS instruction
213;; andi		a single ANDI instruction
214;; loadpool	move a constant into a MIPS16 register by loading it
215;;		from the pool
216;; shift_shift	a shift left followed by a shift right
217;;
218;; This attribute is used to determine the instruction's length and
219;; scheduling type.  For doubleword moves, the attribute always describes
220;; the split instructions; in some cases, it is more appropriate for the
221;; scheduling type to be "multi" instead.
222(define_attr "move_type"
223  "unknown,load,fpload,store,fpstore,mtc,mfc,mtlo,mflo,imul,move,fmove,
224   const,constN,signext,ext_ins,logical,arith,sll0,andi,loadpool,
225   shift_shift"
226  (const_string "unknown"))
227
228(define_attr "alu_type" "unknown,add,sub,not,nor,and,or,xor"
229  (const_string "unknown"))
230
231;; Main data type used by the insn
232(define_attr "mode" "unknown,none,QI,HI,SI,DI,TI,SF,DF,TF,FPSW"
233  (const_string "unknown"))
234
235;; True if the main data type is twice the size of a word.
236(define_attr "dword_mode" "no,yes"
237  (cond [(and (eq_attr "mode" "DI,DF")
238	      (not (match_test "TARGET_64BIT")))
239	 (const_string "yes")
240
241	 (and (eq_attr "mode" "TI,TF")
242	      (match_test "TARGET_64BIT"))
243	 (const_string "yes")]
244	(const_string "no")))
245
246;; Attributes describing a sync loop.  These loops have the form:
247;;
248;;       if (RELEASE_BARRIER == YES) sync
249;;    1: OLDVAL = *MEM
250;;       if ((OLDVAL & INCLUSIVE_MASK) != REQUIRED_OLDVAL) goto 2
251;;         CMP  = 0 [delay slot]
252;;       $TMP1 = OLDVAL & EXCLUSIVE_MASK
253;;       $TMP2 = INSN1 (OLDVAL, INSN1_OP2)
254;;       $TMP3 = INSN2 ($TMP2, INCLUSIVE_MASK)
255;;       $AT |= $TMP1 | $TMP3
256;;       if (!commit (*MEM = $AT)) goto 1.
257;;         if (INSN1 != MOVE && INSN1 != LI) NEWVAL = $TMP3 [delay slot]
258;;       CMP  = 1
259;;       if (ACQUIRE_BARRIER == YES) sync
260;;    2:
261;;
262;; where "$" values are temporaries and where the other values are
263;; specified by the attributes below.  Values are specified as operand
264;; numbers and insns are specified as enums.  If no operand number is
265;; specified, the following values are used instead:
266;;
267;;    - OLDVAL: $AT
268;;    - CMP: NONE
269;;    - NEWVAL: $AT
270;;    - INCLUSIVE_MASK: -1
271;;    - REQUIRED_OLDVAL: OLDVAL & INCLUSIVE_MASK
272;;    - EXCLUSIVE_MASK: 0
273;;
274;; MEM and INSN1_OP2 are required.
275;;
276;; Ideally, the operand attributes would be integers, with -1 meaning "none",
277;; but the gen* programs don't yet support that.
278(define_attr "sync_mem" "none,0,1,2,3,4,5" (const_string "none"))
279(define_attr "sync_oldval" "none,0,1,2,3,4,5" (const_string "none"))
280(define_attr "sync_cmp" "none,0,1,2,3,4,5" (const_string "none"))
281(define_attr "sync_newval" "none,0,1,2,3,4,5" (const_string "none"))
282(define_attr "sync_inclusive_mask" "none,0,1,2,3,4,5" (const_string "none"))
283(define_attr "sync_exclusive_mask" "none,0,1,2,3,4,5" (const_string "none"))
284(define_attr "sync_required_oldval" "none,0,1,2,3,4,5" (const_string "none"))
285(define_attr "sync_insn1_op2" "none,0,1,2,3,4,5" (const_string "none"))
286(define_attr "sync_insn1" "move,li,addu,addiu,subu,and,andi,or,ori,xor,xori"
287  (const_string "move"))
288(define_attr "sync_insn2" "nop,and,xor,not"
289  (const_string "nop"))
290;; Memory model specifier.
291;; "0"-"9" values specify the operand that stores the memory model value.
292;; "10" specifies MEMMODEL_ACQ_REL,
293;; "11" specifies MEMMODEL_ACQUIRE.
294(define_attr "sync_memmodel" "" (const_int 10))
295
296;; Accumulator operand for madd patterns.
297(define_attr "accum_in" "none,0,1,2,3,4,5" (const_string "none"))
298
299;; Classification of each insn.
300;; branch	conditional branch
301;; jump		unconditional jump
302;; call		unconditional call
303;; load		load instruction(s)
304;; fpload	floating point load
305;; fpidxload    floating point indexed load
306;; store	store instruction(s)
307;; fpstore	floating point store
308;; fpidxstore	floating point indexed store
309;; prefetch	memory prefetch (register + offset)
310;; prefetchx	memory indexed prefetch (register + register)
311;; condmove	conditional moves
312;; mtc		transfer to coprocessor
313;; mfc		transfer from coprocessor
314;; mthi		transfer to a hi register
315;; mtlo		transfer to a lo register
316;; mfhi		transfer from a hi register
317;; mflo		transfer from a lo register
318;; const	load constant
319;; arith	integer arithmetic instructions
320;; logical      integer logical instructions
321;; shift	integer shift instructions
322;; slt		set less than instructions
323;; signext      sign extend instructions
324;; clz		the clz and clo instructions
325;; pop		the pop instruction
326;; trap		trap if instructions
327;; imul		integer multiply 2 operands
328;; imul3	integer multiply 3 operands
329;; imul3nc	integer multiply 3 operands without clobbering HI/LO
330;; imadd	integer multiply-add
331;; idiv		integer divide 2 operands
332;; idiv3	integer divide 3 operands
333;; move		integer register move ({,D}ADD{,U} with rt = 0)
334;; fmove	floating point register move
335;; fadd		floating point add/subtract
336;; fmul		floating point multiply
337;; fmadd	floating point multiply-add
338;; fdiv		floating point divide
339;; frdiv	floating point reciprocal divide
340;; frdiv1	floating point reciprocal divide step 1
341;; frdiv2	floating point reciprocal divide step 2
342;; fabs		floating point absolute value
343;; fneg		floating point negation
344;; fcmp		floating point compare
345;; fcvt		floating point convert
346;; fsqrt	floating point square root
347;; frsqrt       floating point reciprocal square root
348;; frsqrt1      floating point reciprocal square root step1
349;; frsqrt2      floating point reciprocal square root step2
350;; dspmac       DSP MAC instructions not saturating the accumulator
351;; dspmacsat    DSP MAC instructions that saturate the accumulator
352;; accext       DSP accumulator extract instructions
353;; accmod       DSP accumulator modify instructions
354;; dspalu       DSP ALU instructions not saturating the result
355;; dspalusat    DSP ALU instructions that saturate the result
356;; multi	multiword sequence (or user asm statements)
357;; atomic	atomic memory update instruction
358;; syncloop	memory atomic operation implemented as a sync loop
359;; nop		no operation
360;; ghost	an instruction that produces no real code
361;; multimem	microMIPS multiword load and store
362(define_attr "type"
363  "unknown,branch,jump,call,load,fpload,fpidxload,store,fpstore,fpidxstore,
364   prefetch,prefetchx,condmove,mtc,mfc,mthi,mtlo,mfhi,mflo,const,arith,logical,
365   shift,slt,signext,clz,pop,trap,imul,imul3,imul3nc,imadd,idiv,idiv3,move,
366   fmove,fadd,fmul,fmadd,fdiv,frdiv,frdiv1,frdiv2,fabs,fneg,fcmp,fcvt,fsqrt,
367   frsqrt,frsqrt1,frsqrt2,dspmac,dspmacsat,accext,accmod,dspalu,dspalusat,
368   multi,atomic,syncloop,nop,ghost,multimem"
369  (cond [(eq_attr "jal" "!unset") (const_string "call")
370	 (eq_attr "got" "load") (const_string "load")
371
372	 (eq_attr "alu_type" "add,sub") (const_string "arith")
373
374	 (eq_attr "alu_type" "not,nor,and,or,xor") (const_string "logical")
375
376	 ;; If a doubleword move uses these expensive instructions,
377	 ;; it is usually better to schedule them in the same way
378	 ;; as the singleword form, rather than as "multi".
379	 (eq_attr "move_type" "load") (const_string "load")
380	 (eq_attr "move_type" "fpload") (const_string "fpload")
381	 (eq_attr "move_type" "store") (const_string "store")
382	 (eq_attr "move_type" "fpstore") (const_string "fpstore")
383	 (eq_attr "move_type" "mtc") (const_string "mtc")
384	 (eq_attr "move_type" "mfc") (const_string "mfc")
385	 (eq_attr "move_type" "mtlo") (const_string "mtlo")
386	 (eq_attr "move_type" "mflo") (const_string "mflo")
387
388	 ;; These types of move are always single insns.
389	 (eq_attr "move_type" "imul") (const_string "imul")
390	 (eq_attr "move_type" "fmove") (const_string "fmove")
391	 (eq_attr "move_type" "loadpool") (const_string "load")
392	 (eq_attr "move_type" "signext") (const_string "signext")
393	 (eq_attr "move_type" "ext_ins") (const_string "arith")
394	 (eq_attr "move_type" "arith") (const_string "arith")
395	 (eq_attr "move_type" "logical") (const_string "logical")
396	 (eq_attr "move_type" "sll0") (const_string "shift")
397	 (eq_attr "move_type" "andi") (const_string "logical")
398
399	 ;; These types of move are always split.
400	 (eq_attr "move_type" "constN,shift_shift")
401	   (const_string "multi")
402
403	 ;; These types of move are split for doubleword modes only.
404	 (and (eq_attr "move_type" "move,const")
405	      (eq_attr "dword_mode" "yes"))
406	   (const_string "multi")
407	 (eq_attr "move_type" "move") (const_string "move")
408	 (eq_attr "move_type" "const") (const_string "const")
409	 (eq_attr "sync_mem" "!none") (const_string "syncloop")]
410	(const_string "unknown")))
411
412;; Mode for conversion types (fcvt)
413;; I2S          integer to float single (SI/DI to SF)
414;; I2D          integer to float double (SI/DI to DF)
415;; S2I          float to integer (SF to SI/DI)
416;; D2I          float to integer (DF to SI/DI)
417;; D2S          double to float single
418;; S2D          float single to double
419
420(define_attr "cnv_mode" "unknown,I2S,I2D,S2I,D2I,D2S,S2D" 
421  (const_string "unknown"))
422
423;; Is this an extended instruction in mips16 mode?
424(define_attr "extended_mips16" "no,yes"
425  (if_then_else (ior ;; In general, constant-pool loads are extended
426  		     ;; instructions.  We don't yet optimize for 16-bit
427		     ;; PC-relative references.
428  		     (eq_attr "move_type" "sll0,loadpool")
429		     (eq_attr "jal" "direct")
430		     (eq_attr "got" "load"))
431		(const_string "yes")
432		(const_string "no")))
433
434(define_attr "compression" "none,all,micromips32,micromips"
435  (const_string "none"))
436
437(define_attr "enabled" "no,yes"
438  (cond [;; The o32 FPXX and FP64A ABI extensions prohibit direct moves between
439	 ;; GR_REG and FR_REG for 64-bit values.
440	 (and (eq_attr "move_type" "mtc,mfc")
441	      (match_test "(TARGET_FLOATXX && !ISA_HAS_MXHC1)
442			   || TARGET_O32_FP64A_ABI")
443	      (eq_attr "dword_mode" "yes"))
444	 (const_string "no")
445	 (and (eq_attr "compression" "micromips32,micromips")
446	      (match_test "!TARGET_MICROMIPS"))
447	 (const_string "no")]
448	(const_string "yes")))
449
450;; The number of individual instructions that a non-branch pattern generates,
451;; using units of BASE_INSN_LENGTH.
452(define_attr "insn_count" ""
453  (cond [;; "Ghost" instructions occupy no space.
454	 (eq_attr "type" "ghost")
455	 (const_int 0)
456
457	 ;; Extended instructions count as 2.
458   	 (and (eq_attr "extended_mips16" "yes")
459	      (match_test "TARGET_MIPS16"))
460	 (const_int 2)
461
462	 ;; A GOT load followed by an add of $gp.  This is not used for MIPS16.
463	 (eq_attr "got" "xgot_high")
464	 (const_int 2)
465
466	 ;; SHIFT_SHIFTs are decomposed into two separate instructions.
467	 ;; They are extended instructions on MIPS16 targets.
468	 (eq_attr "move_type" "shift_shift")
469	 (if_then_else (match_test "TARGET_MIPS16")
470	 	       (const_int 4)
471	 	       (const_int 2))
472
473	 ;; Check for doubleword moves that are decomposed into two
474	 ;; instructions.  The individual instructions are unextended
475	 ;; MIPS16 ones.
476	 (and (eq_attr "move_type" "mtc,mfc,mtlo,mflo,move")
477	      (eq_attr "dword_mode" "yes"))
478	 (const_int 2)
479
480	 ;; Constants, loads and stores are handled by external routines.
481	 (and (eq_attr "move_type" "const,constN")
482	      (eq_attr "dword_mode" "yes"))
483	 (symbol_ref "mips_split_const_insns (operands[1])")
484	 (eq_attr "move_type" "const,constN")
485	 (symbol_ref "mips_const_insns (operands[1])")
486	 (eq_attr "move_type" "load,fpload")
487	 (symbol_ref "mips_load_store_insns (operands[1], insn)")
488	 (eq_attr "move_type" "store,fpstore")
489	 (symbol_ref "mips_load_store_insns (operands[0], insn)
490		      + (TARGET_FIX_24K ? 1 : 0)")
491
492	 ;; In the worst case, a call macro will take 8 instructions:
493	 ;;
494	 ;;	lui $25,%call_hi(FOO)
495	 ;;	addu $25,$25,$28
496	 ;;	lw $25,%call_lo(FOO)($25)
497	 ;;	nop
498	 ;;	jalr $25
499	 ;;	nop
500	 ;;	lw $gp,X($sp)
501	 ;;	nop
502	 (eq_attr "jal_macro" "yes")
503	 (const_int 8)
504
505	 ;; Various VR4120 errata require a nop to be inserted after a macc
506	 ;; instruction.  The assembler does this for us, so account for
507	 ;; the worst-case length here.
508	 (and (eq_attr "type" "imadd")
509	      (match_test "TARGET_FIX_VR4120"))
510	 (const_int 2)
511
512	 ;; VR4120 errata MD(4): if there are consecutive dmult instructions,
513	 ;; the result of the second one is missed.  The assembler should work
514	 ;; around this by inserting a nop after the first dmult.
515	 (and (eq_attr "type" "imul,imul3")
516	      (eq_attr "mode" "DI")
517	      (match_test "TARGET_FIX_VR4120"))
518	 (const_int 2)
519
520	 (eq_attr "type" "idiv,idiv3")
521	 (symbol_ref "mips_idiv_insns ()")
522
523	 (not (eq_attr "sync_mem" "none"))
524	 (symbol_ref "mips_sync_loop_insns (insn, operands)")]
525	(const_int 1)))
526
527;; Length of instruction in bytes.  The default is derived from "insn_count",
528;; but there are special cases for branches (which must be handled here)
529;; and for compressed single instructions.
530(define_attr "length" ""
531   (cond [(and (ior (eq_attr "compression" "micromips,all")
532		    (and (eq_attr "compression" "micromips32")
533			 (eq_attr "mode" "SI,SF")))
534	       (eq_attr "dword_mode" "no")
535	       (match_test "TARGET_MICROMIPS"))
536	  (const_int 2)
537
538	  ;; Direct microMIPS branch instructions have a range of
539	  ;; [-0x10000,0xfffe], otherwise the range is [-0x20000,0x1fffc].
540	  ;; If a branch is outside this range, we have a choice of two
541	  ;; sequences.
542	  ;;
543	  ;; For PIC, an out-of-range branch like:
544	  ;;
545	  ;;	bne	r1,r2,target
546	  ;;	dslot
547	  ;;
548	  ;; becomes the equivalent of:
549	  ;;
550	  ;;	beq	r1,r2,1f
551	  ;;	dslot
552	  ;;	la	$at,target
553	  ;;	jr	$at
554	  ;;	nop
555	  ;; 1:
556	  ;;
557	  ;; The non-PIC case is similar except that we use a direct
558	  ;; jump instead of an la/jr pair.  Since the target of this
559	  ;; jump is an absolute 28-bit bit address (the other bits
560	  ;; coming from the address of the delay slot) this form cannot
561	  ;; cross a 256MB boundary.  We could provide the option of
562	  ;; using la/jr in this case too, but we do not do so at
563	  ;; present.
564	  ;;
565	  ;; The value we specify here does not account for the delay slot
566	  ;; instruction, whose length is added separately.  If the RTL
567	  ;; pattern has no explicit delay slot, mips_adjust_insn_length
568	  ;; will add the length of the implicit nop.  The range of
569	  ;; [-0x20000, 0x1fffc] from the address of the delay slot
570	  ;; therefore translates to a range of:
571	  ;;
572	  ;;    [-(0x20000 - sizeof (branch)), 0x1fffc - sizeof (slot)]
573	  ;; == [-0x1fffc, 0x1fff8]
574	  ;;
575	  ;; from the shorten_branches reference address.
576	  (and (eq_attr "type" "branch")
577	       (not (match_test "TARGET_MIPS16")))
578	  (cond [;; Any variant can handle the 17-bit range.
579		 (and (le (minus (match_dup 0) (pc)) (const_int 65532))
580		      (le (minus (pc) (match_dup 0)) (const_int 65534)))
581		   (const_int 4)
582
583		 ;; The 18-bit range is OK other than for microMIPS.
584		 (and (not (match_test "TARGET_MICROMIPS"))
585		      (and (le (minus (match_dup 0) (pc)) (const_int 131064))
586		      	   (le (minus (pc) (match_dup 0)) (const_int 131068))))
587		   (const_int 4)
588
589		 ;; The non-PIC case: branch, first delay slot, and J.
590		 (match_test "TARGET_ABSOLUTE_JUMPS")
591		   (const_int 12)]
592
593		 ;; Use MAX_PIC_BRANCH_LENGTH as a (gross) overestimate.
594		 ;; mips_adjust_insn_length substitutes the correct length.
595		 ;;
596		 ;; Note that we can't simply use (symbol_ref ...) here
597		 ;; because genattrtab needs to know the maximum length
598		 ;; of an insn.
599		 (const_int MAX_PIC_BRANCH_LENGTH))
600
601	  ;; An unextended MIPS16 branch has a range of [-0x100, 0xfe]
602	  ;; from the address of the following instruction, which leads
603	  ;; to a range of:
604	  ;;
605	  ;;    [-(0x100 - sizeof (branch)), 0xfe]
606	  ;; == [-0xfe, 0xfe]
607	  ;;
608	  ;; from the shorten_branches reference address.  Extended branches
609	  ;; likewise have a range of [-0x10000, 0xfffe] from the address
610	  ;; of the following instruction, which leads to a range of:
611	  ;;
612	  ;;    [-(0x10000 - sizeof (branch)), 0xfffe]
613	  ;; == [-0xfffc, 0xfffe]
614	  ;;
615	  ;; from the reference address.
616	  ;;
617	  ;; When a branch is out of range, mips_reorg splits it into a form
618	  ;; that uses in-range branches.  There are four basic sequences:
619	  ;;
620	  ;; (1) Absolute addressing with a readable text segment
621	  ;;     (32-bit addresses):
622	  ;;
623	  ;;	 b... foo		2 bytes
624	  ;;	 move $1,$2		2 bytes
625	  ;;     lw $2,label		2 bytes
626	  ;;	 jr $2			2 bytes
627	  ;;	 move $2,$1		2 bytes
628	  ;;	 .align 2		0 or 2 bytes
629	  ;; label:
630	  ;;	 .word target		4 bytes
631	  ;; foo:
632	  ;;				(16 bytes in the worst case)
633	  ;;
634	  ;; (2) Absolute addressing with a readable text segment
635	  ;;     (64-bit addresses):
636	  ;;
637	  ;;	 b... foo		2 bytes
638	  ;;	 move $1,$2		2 bytes
639	  ;;     ld $2,label		2 bytes
640	  ;;	 jr $2			2 bytes
641	  ;;	 move $2,$1		2 bytes
642	  ;;	 .align 3		0 to 6 bytes
643	  ;; label:
644	  ;;	 .dword target		8 bytes
645	  ;; foo:
646	  ;;				(24 bytes in the worst case)
647	  ;;
648	  ;; (3) Absolute addressing without a readable text segment
649	  ;;     (which requires 32-bit addresses at present):
650	  ;;
651	  ;;	 b... foo		2 bytes
652	  ;;	 move $1,$2		2 bytes
653	  ;;     lui $2,%hi(target)	4 bytes
654	  ;;	 sll $2,8		2 bytes
655	  ;;	 sll $2,8		2 bytes
656	  ;;     addiu $2,%lo(target)	4 bytes
657	  ;;	 jr $2			2 bytes
658	  ;;	 move $2,$1		2 bytes
659	  ;; foo:
660	  ;;				(20 bytes)
661	  ;;
662	  ;; (4) PIC addressing (which requires 32-bit addresses at present):
663	  ;;
664	  ;;	 b... foo		2 bytes
665	  ;;	 move $1,$2		2 bytes
666	  ;;     lw $2,cprestore	0, 2 or 4 bytes
667	  ;;	 lw $2,%got(target)($2)	4 bytes
668	  ;;     addiu $2,%lo(target)	4 bytes
669	  ;;	 jr $2			2 bytes
670	  ;;	 move $2,$1		2 bytes
671	  ;; foo:
672	  ;;				(20 bytes in the worst case)
673	  (and (eq_attr "type" "branch")
674	       (match_test "TARGET_MIPS16"))
675	  (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
676		      (le (minus (pc) (match_dup 0)) (const_int 254)))
677		 (const_int 2)
678		 (and (le (minus (match_dup 0) (pc)) (const_int 65534))
679		      (le (minus (pc) (match_dup 0)) (const_int 65532)))
680		 (const_int 4)
681		 (and (match_test "TARGET_ABICALLS")
682		      (not (match_test "TARGET_ABSOLUTE_ABICALLS")))
683		 (const_int 20)
684		 (match_test "Pmode == SImode")
685		 (const_int 16)
686		 ] (const_int 24))]
687	 (symbol_ref "get_attr_insn_count (insn) * BASE_INSN_LENGTH")))
688
689;; Attribute describing the processor.
690(define_enum_attr "cpu" "processor"
691  (const (symbol_ref "mips_tune")))
692
693;; The type of hardware hazard associated with this instruction.
694;; DELAY means that the next instruction cannot read the result
695;; of this one.  HILO means that the next two instructions cannot
696;; write to HI or LO.
697(define_attr "hazard" "none,delay,hilo"
698  (cond [(and (eq_attr "type" "load,fpload,fpidxload")
699	      (match_test "ISA_HAS_LOAD_DELAY"))
700	 (const_string "delay")
701
702	 (and (eq_attr "type" "mfc,mtc")
703	      (match_test "ISA_HAS_XFER_DELAY"))
704	 (const_string "delay")
705
706	 (and (eq_attr "type" "fcmp")
707	      (match_test "ISA_HAS_FCMP_DELAY"))
708	 (const_string "delay")
709
710	 ;; The r4000 multiplication patterns include an mflo instruction.
711	 (and (eq_attr "type" "imul")
712	      (match_test "TARGET_FIX_R4000"))
713	 (const_string "hilo")
714
715	 (and (eq_attr "type" "mfhi,mflo")
716	      (not (match_test "ISA_HAS_HILO_INTERLOCKS")))
717	 (const_string "hilo")]
718	(const_string "none")))
719
720;; Can the instruction be put into a delay slot?
721(define_attr "can_delay" "no,yes"
722  (if_then_else (and (eq_attr "type" "!branch,call,jump")
723		     (eq_attr "hazard" "none")
724		     (match_test "get_attr_insn_count (insn) == 1"))
725		(const_string "yes")
726		(const_string "no")))
727
728;; Attribute defining whether or not we can use the branch-likely
729;; instructions.
730(define_attr "branch_likely" "no,yes"
731  (if_then_else (match_test "GENERATE_BRANCHLIKELY")
732		(const_string "yes")
733		(const_string "no")))
734
735;; True if an instruction might assign to hi or lo when reloaded.
736;; This is used by the TUNE_MACC_CHAINS code.
737(define_attr "may_clobber_hilo" "no,yes"
738  (if_then_else (eq_attr "type" "imul,imul3,imadd,idiv,mthi,mtlo")
739		(const_string "yes")
740		(const_string "no")))
741
742;; Describe a user's asm statement.
743(define_asm_attributes
744  [(set_attr "type" "multi")
745   (set_attr "can_delay" "no")])
746
747;; This mode iterator allows 32-bit and 64-bit GPR patterns to be generated
748;; from the same template.
749(define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
750
751;; A copy of GPR that can be used when a pattern has two independent
752;; modes.
753(define_mode_iterator GPR2 [SI (DI "TARGET_64BIT")])
754
755(define_mode_iterator MOVEP1 [SI SF])
756(define_mode_iterator MOVEP2 [SI SF])
757
758;; This mode iterator allows :HILO to be used as the mode of the
759;; concatenated HI and LO registers.
760(define_mode_iterator HILO [(DI "!TARGET_64BIT") (TI "TARGET_64BIT")])
761
762;; This mode iterator allows :P to be used for patterns that operate on
763;; pointer-sized quantities.  Exactly one of the two alternatives will match.
764(define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
765
766;; This mode iterator allows :MOVECC to be used anywhere that a
767;; conditional-move-type condition is needed.
768(define_mode_iterator MOVECC [SI (DI "TARGET_64BIT")
769                              (CC "TARGET_HARD_FLOAT
770				   && !TARGET_LOONGSON_2EF
771				   && !TARGET_MIPS5900")])
772
773;; This mode iterator allows :FPCC to be used anywhere that an FP condition
774;; is needed.
775(define_mode_iterator FPCC [(CC "!ISA_HAS_CCF")
776			    (CCF "ISA_HAS_CCF")])
777
778;; 32-bit integer moves for which we provide move patterns.
779(define_mode_iterator IMOVE32
780  [SI
781   (V2HI "TARGET_DSP")
782   (V4QI "TARGET_DSP")
783   (V2HQ "TARGET_DSP")
784   (V2UHQ "TARGET_DSP")
785   (V2HA "TARGET_DSP")
786   (V2UHA "TARGET_DSP")
787   (V4QQ "TARGET_DSP")
788   (V4UQQ "TARGET_DSP")])
789
790;; 64-bit modes for which we provide move patterns.
791(define_mode_iterator MOVE64
792  [DI DF
793   (V2SF "TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT")
794   (V2SI "TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS")
795   (V4HI "TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS")
796   (V8QI "TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS")])
797
798;; 128-bit modes for which we provide move patterns on 64-bit targets.
799(define_mode_iterator MOVE128 [TI TF])
800
801;; This mode iterator allows the QI and HI extension patterns to be
802;; defined from the same template.
803(define_mode_iterator SHORT [QI HI])
804
805;; Likewise the 64-bit truncate-and-shift patterns.
806(define_mode_iterator SUBDI [QI HI SI])
807
808;; This mode iterator allows :ANYF to be used wherever a scalar or vector
809;; floating-point mode is allowed.
810(define_mode_iterator ANYF [(SF "TARGET_HARD_FLOAT")
811			    (DF "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT")
812			    (V2SF "TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT")])
813
814;; Like ANYF, but only applies to scalar modes.
815(define_mode_iterator SCALARF [(SF "TARGET_HARD_FLOAT")
816			       (DF "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT")])
817
818;; A floating-point mode for which moves involving FPRs may need to be split.
819(define_mode_iterator SPLITF
820  [(DF "!TARGET_64BIT && TARGET_DOUBLE_FLOAT")
821   (DI "!TARGET_64BIT && TARGET_DOUBLE_FLOAT")
822   (V2SF "!TARGET_64BIT && TARGET_PAIRED_SINGLE_FLOAT")
823   (V2SI "!TARGET_64BIT && TARGET_LOONGSON_VECTORS")
824   (V4HI "!TARGET_64BIT && TARGET_LOONGSON_VECTORS")
825   (V8QI "!TARGET_64BIT && TARGET_LOONGSON_VECTORS")
826   (TF "TARGET_64BIT && TARGET_FLOAT64")])
827
828;; In GPR templates, a string like "<d>subu" will expand to "subu" in the
829;; 32-bit version and "dsubu" in the 64-bit version.
830(define_mode_attr d [(SI "") (DI "d")
831		     (QQ "") (HQ "") (SQ "") (DQ "d")
832		     (UQQ "") (UHQ "") (USQ "") (UDQ "d")
833		     (HA "") (SA "") (DA "d")
834		     (UHA "") (USA "") (UDA "d")])
835
836;; Same as d but upper-case.
837(define_mode_attr D [(SI "") (DI "D")
838		     (QQ "") (HQ "") (SQ "") (DQ "D")
839		     (UQQ "") (UHQ "") (USQ "") (UDQ "D")
840		     (HA "") (SA "") (DA "D")
841		     (UHA "") (USA "") (UDA "D")])
842
843;; This attribute gives the length suffix for a load or store instruction.
844;; The same suffixes work for zero and sign extensions.
845(define_mode_attr size [(QI "b") (HI "h") (SI "w") (DI "d")])
846(define_mode_attr SIZE [(QI "B") (HI "H") (SI "W") (DI "D")])
847
848;; This attributes gives the mode mask of a SHORT.
849(define_mode_attr mask [(QI "0x00ff") (HI "0xffff")])
850
851;; Mode attributes for GPR loads.
852(define_mode_attr load [(SI "lw") (DI "ld")])
853;; Instruction names for stores.
854(define_mode_attr store [(QI "sb") (HI "sh") (SI "sw") (DI "sd")])
855
856;; Similarly for MIPS IV indexed FPR loads and stores.
857(define_mode_attr loadx [(SF "lwxc1") (DF "ldxc1") (V2SF "ldxc1")])
858(define_mode_attr storex [(SF "swxc1") (DF "sdxc1") (V2SF "sdxc1")])
859
860;; The unextended ranges of the MIPS16 addiu and daddiu instructions
861;; are different.  Some forms of unextended addiu have an 8-bit immediate
862;; field but the equivalent daddiu has only a 5-bit field.
863(define_mode_attr si8_di5 [(SI "8") (DI "5")])
864
865;; This attribute gives the best constraint to use for registers of
866;; a given mode.
867(define_mode_attr reg [(SI "d") (DI "d") (CC "z") (CCF "f")])
868
869;; This attribute gives the format suffix for floating-point operations.
870(define_mode_attr fmt [(SF "s") (DF "d") (V2SF "ps")])
871
872;; This attribute gives the upper-case mode name for one unit of a
873;; floating-point mode.
874(define_mode_attr UNITMODE [(SF "SF") (DF "DF") (V2SF "SF")])
875
876;; This attribute gives the integer mode that has the same size as a
877;; fixed-point mode.
878(define_mode_attr IMODE [(QQ "QI") (HQ "HI") (SQ "SI") (DQ "DI")
879			 (UQQ "QI") (UHQ "HI") (USQ "SI") (UDQ "DI")
880			 (HA "HI") (SA "SI") (DA "DI")
881			 (UHA "HI") (USA "SI") (UDA "DI")
882			 (V4UQQ "SI") (V2UHQ "SI") (V2UHA "SI")
883			 (V2HQ "SI") (V2HA "SI")])
884
885;; This attribute gives the integer mode that has half the size of
886;; the controlling mode.
887(define_mode_attr HALFMODE [(DF "SI") (DI "SI") (V2SF "SI")
888			    (V2SI "SI") (V4HI "SI") (V8QI "SI")
889			    (TF "DI")])
890
891;; This attribute works around the early SB-1 rev2 core "F2" erratum:
892;;
893;; In certain cases, div.s and div.ps may have a rounding error
894;; and/or wrong inexact flag.
895;;
896;; Therefore, we only allow div.s if not working around SB-1 rev2
897;; errata or if a slight loss of precision is OK.
898(define_mode_attr divide_condition
899  [DF (SF "!TARGET_FIX_SB1 || flag_unsafe_math_optimizations")
900   (V2SF "TARGET_SB1 && (!TARGET_FIX_SB1 || flag_unsafe_math_optimizations)")])
901
902;; This attribute gives the conditions under which SQRT.fmt instructions
903;; can be used.
904(define_mode_attr sqrt_condition
905  [(SF "!ISA_MIPS1") (DF "!ISA_MIPS1") (V2SF "TARGET_SB1")])
906
907;; This attribute provides the correct mnemonic for each FP condition mode.
908(define_mode_attr fpcmp [(CC "c") (CCF "cmp")])
909
910;; This code iterator allows signed and unsigned widening multiplications
911;; to use the same template.
912(define_code_iterator any_extend [sign_extend zero_extend])
913
914;; This code iterator allows the two right shift instructions to be
915;; generated from the same template.
916(define_code_iterator any_shiftrt [ashiftrt lshiftrt])
917
918;; This code iterator allows the three shift instructions to be generated
919;; from the same template.
920(define_code_iterator any_shift [ashift ashiftrt lshiftrt])
921
922;; This code iterator allows unsigned and signed division to be generated
923;; from the same template.
924(define_code_iterator any_div [div udiv])
925
926;; This code iterator allows unsigned and signed modulus to be generated
927;; from the same template.
928(define_code_iterator any_mod [mod umod])
929
930;; This code iterator allows all native floating-point comparisons to be
931;; generated from the same template.
932(define_code_iterator fcond [unordered uneq unlt unle eq lt le
933			     (ordered "ISA_HAS_CCF")
934			     (ltgt "ISA_HAS_CCF")
935			     (ne "ISA_HAS_CCF")])
936
937;; This code iterator is used for comparisons that can be implemented
938;; by swapping the operands.
939(define_code_iterator swapped_fcond [ge gt unge ungt])
940
941;; Equality operators.
942(define_code_iterator equality_op [eq ne])
943
944;; These code iterators allow the signed and unsigned scc operations to use
945;; the same template.
946(define_code_iterator any_gt [gt gtu])
947(define_code_iterator any_ge [ge geu])
948(define_code_iterator any_lt [lt ltu])
949(define_code_iterator any_le [le leu])
950
951(define_code_iterator any_return [return simple_return])
952
953;; <u> expands to an empty string when doing a signed operation and
954;; "u" when doing an unsigned operation.
955(define_code_attr u [(sign_extend "") (zero_extend "u")
956		     (div "") (udiv "u")
957		     (mod "") (umod "u")
958		     (gt "") (gtu "u")
959		     (ge "") (geu "u")
960		     (lt "") (ltu "u")
961		     (le "") (leu "u")])
962
963;; <U> is like <u> except uppercase.
964(define_code_attr U [(sign_extend "") (zero_extend "U")])
965
966;; <su> is like <u>, but the signed form expands to "s" rather than "".
967(define_code_attr su [(sign_extend "s") (zero_extend "u")])
968
969;; <optab> expands to the name of the optab for a particular code.
970(define_code_attr optab [(ashift "ashl")
971			 (ashiftrt "ashr")
972			 (lshiftrt "lshr")
973			 (ior "ior")
974			 (xor "xor")
975			 (and "and")
976			 (plus "add")
977			 (minus "sub")
978			 (return "return")
979			 (simple_return "simple_return")])
980
981;; <insn> expands to the name of the insn that implements a particular code.
982(define_code_attr insn [(ashift "sll")
983			(ashiftrt "sra")
984			(lshiftrt "srl")
985			(ior "or")
986			(xor "xor")
987			(and "and")
988			(plus "addu")
989			(minus "subu")])
990
991;; <immediate_insn> expands to the name of the insn that implements
992;; a particular code to operate on immediate values.
993(define_code_attr immediate_insn [(ior "ori")
994				  (xor "xori")
995				  (and "andi")])
996
997(define_code_attr shift_compression [(ashift "micromips32")
998				     (lshiftrt "micromips32")
999				     (ashiftrt "none")])
1000
1001;; <fcond> is the c.cond.fmt condition associated with a particular code.
1002(define_code_attr fcond [(unordered "un")
1003			 (uneq "ueq")
1004			 (unlt "ult")
1005			 (unle "ule")
1006			 (eq "eq")
1007			 (lt "lt")
1008			 (le "le")
1009			 (ordered "or")
1010			 (ltgt "ne")
1011			 (ne "une")])
1012
1013;; Similar, but for swapped conditions.
1014(define_code_attr swapped_fcond [(ge "le")
1015				 (gt "lt")
1016				 (unge "ule")
1017				 (ungt "ult")])
1018
1019;; The value of the bit when the branch is taken for branch_bit patterns.
1020;; Comparison is always against zero so this depends on the operator.
1021(define_code_attr bbv [(eq "0") (ne "1")])
1022
1023;; This is the inverse value of bbv.
1024(define_code_attr bbinv [(eq "1") (ne "0")])
1025
1026;; The sel mnemonic to use depending on the condition test.
1027(define_code_attr sel [(eq "seleqz") (ne "selnez")])
1028(define_code_attr selinv [(eq "selnez") (ne "seleqz")])
1029
1030;; .........................
1031;;
1032;;	Branch, call and jump delay slots
1033;;
1034;; .........................
1035
1036(define_delay (and (eq_attr "type" "branch")
1037		   (not (match_test "TARGET_MIPS16"))
1038		   (eq_attr "branch_likely" "yes"))
1039  [(eq_attr "can_delay" "yes")
1040   (nil)
1041   (eq_attr "can_delay" "yes")])
1042
1043;; Branches that don't have likely variants do not annul on false.
1044(define_delay (and (eq_attr "type" "branch")
1045		   (not (match_test "TARGET_MIPS16"))
1046		   (eq_attr "branch_likely" "no"))
1047  [(eq_attr "can_delay" "yes")
1048   (nil)
1049   (nil)])
1050
1051(define_delay (eq_attr "type" "jump")
1052  [(eq_attr "can_delay" "yes")
1053   (nil)
1054   (nil)])
1055
1056(define_delay (and (eq_attr "type" "call")
1057		   (eq_attr "jal_macro" "no"))
1058  [(eq_attr "can_delay" "yes")
1059   (nil)
1060   (nil)])
1061
1062;; Pipeline descriptions.
1063;;
1064;; generic.md provides a fallback for processors without a specific
1065;; pipeline description.  It is derived from the old define_function_unit
1066;; version and uses the "alu" and "imuldiv" units declared below.
1067;;
1068;; Some of the processor-specific files are also derived from old
1069;; define_function_unit descriptions and simply override the parts of
1070;; generic.md that don't apply.  The other processor-specific files
1071;; are self-contained.
1072(define_automaton "alu,imuldiv")
1073
1074(define_cpu_unit "alu" "alu")
1075(define_cpu_unit "imuldiv" "imuldiv")
1076
1077;; Ghost instructions produce no real code and introduce no hazards.
1078;; They exist purely to express an effect on dataflow.
1079(define_insn_reservation "ghost" 0
1080  (eq_attr "type" "ghost")
1081  "nothing")
1082
1083(include "p5600.md")
1084(include "4k.md")
1085(include "5k.md")
1086(include "20kc.md")
1087(include "24k.md")
1088(include "74k.md")
1089(include "3000.md")
1090(include "4000.md")
1091(include "4100.md")
1092(include "4130.md")
1093(include "4300.md")
1094(include "4600.md")
1095(include "5000.md")
1096(include "5400.md")
1097(include "5500.md")
1098(include "6000.md")
1099(include "7000.md")
1100(include "9000.md")
1101(include "10000.md")
1102(include "loongson2ef.md")
1103(include "loongson3a.md")
1104(include "octeon.md")
1105(include "sb1.md")
1106(include "sr71k.md")
1107(include "xlr.md")
1108(include "xlp.md")
1109(include "generic.md")
1110
1111;;
1112;;  ....................
1113;;
1114;;	CONDITIONAL TRAPS
1115;;
1116;;  ....................
1117;;
1118
1119(define_insn "trap"
1120  [(trap_if (const_int 1) (const_int 0))]
1121  ""
1122{
1123  if (ISA_HAS_COND_TRAP)
1124    return "teq\t$0,$0";
1125  else if (TARGET_MIPS16)
1126    return "break 0";
1127  else
1128    return "break";
1129}
1130  [(set_attr "type" "trap")])
1131
1132(define_expand "ctrap<mode>4"
1133  [(trap_if (match_operator 0 "comparison_operator"
1134			    [(match_operand:GPR 1 "reg_or_0_operand")
1135			     (match_operand:GPR 2 "arith_operand")])
1136	    (match_operand 3 "const_0_operand"))]
1137  "ISA_HAS_COND_TRAPI || ISA_HAS_COND_TRAP"
1138{
1139  mips_expand_conditional_trap (operands[0]);
1140  DONE;
1141})
1142
1143(define_insn "*conditional_trap_reg<mode>"
1144  [(trap_if (match_operator:GPR 0 "trap_comparison_operator"
1145				[(match_operand:GPR 1 "reg_or_0_operand" "dJ")
1146				 (match_operand:GPR 2 "reg_or_0_operand" "dJ")])
1147	    (const_int 0))]
1148  "ISA_HAS_COND_TRAP && !ISA_HAS_COND_TRAPI"
1149  "t%C0\t%z1,%2"
1150  [(set_attr "type" "trap")])
1151
1152(define_insn "*conditional_trap<mode>"
1153  [(trap_if (match_operator:GPR 0 "trap_comparison_operator"
1154				[(match_operand:GPR 1 "reg_or_0_operand" "dJ")
1155				 (match_operand:GPR 2 "arith_operand" "dI")])
1156	    (const_int 0))]
1157  "ISA_HAS_COND_TRAPI"
1158  "t%C0\t%z1,%2"
1159  [(set_attr "type" "trap")])
1160
1161;;
1162;;  ....................
1163;;
1164;;	ADDITION
1165;;
1166;;  ....................
1167;;
1168
1169(define_insn "add<mode>3"
1170  [(set (match_operand:ANYF 0 "register_operand" "=f")
1171	(plus:ANYF (match_operand:ANYF 1 "register_operand" "f")
1172		   (match_operand:ANYF 2 "register_operand" "f")))]
1173  ""
1174  "add.<fmt>\t%0,%1,%2"
1175  [(set_attr "type" "fadd")
1176   (set_attr "mode" "<UNITMODE>")])
1177
1178(define_expand "add<mode>3"
1179  [(set (match_operand:GPR 0 "register_operand")
1180	(plus:GPR (match_operand:GPR 1 "register_operand")
1181		  (match_operand:GPR 2 "arith_operand")))]
1182  "")
1183
1184(define_insn "*add<mode>3"
1185  [(set (match_operand:GPR 0 "register_operand" "=!u,d,!u,!u,!ks,!d,d")
1186	(plus:GPR (match_operand:GPR 1 "register_operand" "!u,d,!u,!ks,!ks,0,d")
1187		  (match_operand:GPR 2 "arith_operand" "!u,d,Uead,Uuw6,Uesp,Usb4,Q")))]
1188  "!TARGET_MIPS16"
1189{
1190  if (which_alternative == 0 
1191      || which_alternative == 1)
1192    return "<d>addu\t%0,%1,%2";
1193  else
1194    return "<d>addiu\t%0,%1,%2";
1195}
1196  [(set_attr "alu_type" "add")
1197   (set_attr "compression" "micromips32,*,micromips32,micromips32,micromips32,micromips32,*")
1198   (set_attr "mode" "<MODE>")])
1199
1200(define_insn "*add<mode>3_mips16"
1201  [(set (match_operand:GPR 0 "register_operand" "=ks,ks,d,d,d,d,d,d,d")
1202	(plus:GPR (match_operand:GPR 1 "register_operand" "ks,ks,ks,ks,0,0,d,d,d")
1203		  (match_operand:GPR 2 "arith_operand" "Usd8,Q,Uuw<si8_di5>,Q,Usb<si8_di5>,Q,Usb4,O,d")))]
1204  "TARGET_MIPS16"
1205  "@
1206    <d>addiu\t%0,%2
1207    <d>addiu\t%0,%2
1208    <d>addiu\t%0,%1,%2
1209    <d>addiu\t%0,%1,%2
1210    <d>addiu\t%0,%2
1211    <d>addiu\t%0,%2
1212    <d>addiu\t%0,%1,%2
1213    <d>addiu\t%0,%1,%2
1214    <d>addu\t%0,%1,%2"
1215  [(set_attr "alu_type" "add")
1216   (set_attr "mode" "<MODE>")
1217   (set_attr "extended_mips16" "no,yes,no,yes,no,yes,no,yes,no")])
1218
1219;; On the mips16, we can sometimes split an add of a constant which is
1220;; a 4 byte instruction into two adds which are both 2 byte
1221;; instructions.  There are two cases: one where we are adding a
1222;; constant plus a register to another register, and one where we are
1223;; simply adding a constant to a register.
1224
1225(define_split
1226  [(set (match_operand:SI 0 "d_operand")
1227	(plus:SI (match_dup 0)
1228		 (match_operand:SI 1 "const_int_operand")))]
1229  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
1230   && ((INTVAL (operands[1]) > 0x7f
1231	&& INTVAL (operands[1]) <= 0x7f + 0x7f)
1232       || (INTVAL (operands[1]) < - 0x80
1233	   && INTVAL (operands[1]) >= - 0x80 - 0x80))"
1234  [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
1235   (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 2)))]
1236{
1237  HOST_WIDE_INT val = INTVAL (operands[1]);
1238
1239  if (val >= 0)
1240    {
1241      operands[1] = GEN_INT (0x7f);
1242      operands[2] = GEN_INT (val - 0x7f);
1243    }
1244  else
1245    {
1246      operands[1] = GEN_INT (- 0x80);
1247      operands[2] = GEN_INT (val + 0x80);
1248    }
1249})
1250
1251(define_split
1252  [(set (match_operand:SI 0 "d_operand")
1253	(plus:SI (match_operand:SI 1 "d_operand")
1254		 (match_operand:SI 2 "const_int_operand")))]
1255  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
1256   && REGNO (operands[0]) != REGNO (operands[1])
1257   && ((INTVAL (operands[2]) > 0x7
1258	&& INTVAL (operands[2]) <= 0x7 + 0x7f)
1259       || (INTVAL (operands[2]) < - 0x8
1260	   && INTVAL (operands[2]) >= - 0x8 - 0x80))"
1261  [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 2)))
1262   (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 3)))]
1263{
1264  HOST_WIDE_INT val = INTVAL (operands[2]);
1265
1266  if (val >= 0)
1267    {
1268      operands[2] = GEN_INT (0x7);
1269      operands[3] = GEN_INT (val - 0x7);
1270    }
1271  else
1272    {
1273      operands[2] = GEN_INT (- 0x8);
1274      operands[3] = GEN_INT (val + 0x8);
1275    }
1276})
1277
1278(define_split
1279  [(set (match_operand:DI 0 "d_operand")
1280	(plus:DI (match_dup 0)
1281		 (match_operand:DI 1 "const_int_operand")))]
1282  "TARGET_MIPS16 && TARGET_64BIT && reload_completed && !TARGET_DEBUG_D_MODE
1283   && ((INTVAL (operands[1]) > 0xf
1284	&& INTVAL (operands[1]) <= 0xf + 0xf)
1285       || (INTVAL (operands[1]) < - 0x10
1286	   && INTVAL (operands[1]) >= - 0x10 - 0x10))"
1287  [(set (match_dup 0) (plus:DI (match_dup 0) (match_dup 1)))
1288   (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 2)))]
1289{
1290  HOST_WIDE_INT val = INTVAL (operands[1]);
1291
1292  if (val >= 0)
1293    {
1294      operands[1] = GEN_INT (0xf);
1295      operands[2] = GEN_INT (val - 0xf);
1296    }
1297  else
1298    {
1299      operands[1] = GEN_INT (- 0x10);
1300      operands[2] = GEN_INT (val + 0x10);
1301    }
1302})
1303
1304(define_split
1305  [(set (match_operand:DI 0 "d_operand")
1306	(plus:DI (match_operand:DI 1 "d_operand")
1307		 (match_operand:DI 2 "const_int_operand")))]
1308  "TARGET_MIPS16 && TARGET_64BIT && reload_completed && !TARGET_DEBUG_D_MODE
1309   && REGNO (operands[0]) != REGNO (operands[1])
1310   && ((INTVAL (operands[2]) > 0x7
1311	&& INTVAL (operands[2]) <= 0x7 + 0xf)
1312       || (INTVAL (operands[2]) < - 0x8
1313	   && INTVAL (operands[2]) >= - 0x8 - 0x10))"
1314  [(set (match_dup 0) (plus:DI (match_dup 1) (match_dup 2)))
1315   (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 3)))]
1316{
1317  HOST_WIDE_INT val = INTVAL (operands[2]);
1318
1319  if (val >= 0)
1320    {
1321      operands[2] = GEN_INT (0x7);
1322      operands[3] = GEN_INT (val - 0x7);
1323    }
1324  else
1325    {
1326      operands[2] = GEN_INT (- 0x8);
1327      operands[3] = GEN_INT (val + 0x8);
1328    }
1329})
1330
1331(define_insn "*addsi3_extended"
1332  [(set (match_operand:DI 0 "register_operand" "=d,d")
1333	(sign_extend:DI
1334	     (plus:SI (match_operand:SI 1 "register_operand" "d,d")
1335		      (match_operand:SI 2 "arith_operand" "d,Q"))))]
1336  "TARGET_64BIT && !TARGET_MIPS16"
1337  "@
1338    addu\t%0,%1,%2
1339    addiu\t%0,%1,%2"
1340  [(set_attr "alu_type" "add")
1341   (set_attr "mode" "SI")])
1342
1343;; Split this insn so that the addiu splitters can have a crack at it.
1344;; Use a conservative length estimate until the split.
1345(define_insn_and_split "*addsi3_extended_mips16"
1346  [(set (match_operand:DI 0 "register_operand" "=d,d,d")
1347	(sign_extend:DI
1348	     (plus:SI (match_operand:SI 1 "register_operand" "0,d,d")
1349		      (match_operand:SI 2 "arith_operand" "Q,O,d"))))]
1350  "TARGET_64BIT && TARGET_MIPS16"
1351  "#"
1352  "&& reload_completed"
1353  [(set (match_dup 3) (plus:SI (match_dup 1) (match_dup 2)))]
1354  { operands[3] = gen_lowpart (SImode, operands[0]); }
1355  [(set_attr "alu_type" "add")
1356   (set_attr "mode" "SI")
1357   (set_attr "extended_mips16" "yes")])
1358
1359;; Combiner patterns for unsigned byte-add.
1360
1361(define_insn "*baddu_si_eb"
1362  [(set (match_operand:SI 0 "register_operand" "=d")
1363        (zero_extend:SI
1364	 (subreg:QI
1365	  (plus:SI (match_operand:SI 1 "register_operand" "d")
1366		   (match_operand:SI 2 "register_operand" "d")) 3)))]
1367  "ISA_HAS_BADDU && BYTES_BIG_ENDIAN"
1368  "baddu\\t%0,%1,%2"
1369  [(set_attr "alu_type" "add")])
1370
1371(define_insn "*baddu_si_el"
1372  [(set (match_operand:SI 0 "register_operand" "=d")
1373        (zero_extend:SI
1374	 (subreg:QI
1375	  (plus:SI (match_operand:SI 1 "register_operand" "d")
1376		   (match_operand:SI 2 "register_operand" "d")) 0)))]
1377  "ISA_HAS_BADDU && !BYTES_BIG_ENDIAN"
1378  "baddu\\t%0,%1,%2"
1379  [(set_attr "alu_type" "add")])
1380
1381(define_insn "*baddu_di<mode>"
1382  [(set (match_operand:GPR 0 "register_operand" "=d")
1383        (zero_extend:GPR
1384	 (truncate:QI
1385	  (plus:DI (match_operand:DI 1 "register_operand" "d")
1386		   (match_operand:DI 2 "register_operand" "d")))))]
1387  "ISA_HAS_BADDU && TARGET_64BIT"
1388  "baddu\\t%0,%1,%2"
1389  [(set_attr "alu_type" "add")])
1390
1391;;
1392;;  ....................
1393;;
1394;;	SUBTRACTION
1395;;
1396;;  ....................
1397;;
1398
1399(define_insn "sub<mode>3"
1400  [(set (match_operand:ANYF 0 "register_operand" "=f")
1401	(minus:ANYF (match_operand:ANYF 1 "register_operand" "f")
1402		    (match_operand:ANYF 2 "register_operand" "f")))]
1403  ""
1404  "sub.<fmt>\t%0,%1,%2"
1405  [(set_attr "type" "fadd")
1406   (set_attr "mode" "<UNITMODE>")])
1407
1408(define_insn "sub<mode>3"
1409  [(set (match_operand:GPR 0 "register_operand" "=!u,d")
1410	(minus:GPR (match_operand:GPR 1 "register_operand" "!u,d")
1411		   (match_operand:GPR 2 "register_operand" "!u,d")))]
1412  ""
1413  "<d>subu\t%0,%1,%2"
1414  [(set_attr "alu_type" "sub")
1415   (set_attr "compression" "micromips32,*")
1416   (set_attr "mode" "<MODE>")])
1417
1418(define_insn "*subsi3_extended"
1419  [(set (match_operand:DI 0 "register_operand" "=d")
1420	(sign_extend:DI
1421	    (minus:SI (match_operand:SI 1 "register_operand" "d")
1422		      (match_operand:SI 2 "register_operand" "d"))))]
1423  "TARGET_64BIT"
1424  "subu\t%0,%1,%2"
1425  [(set_attr "alu_type" "sub")
1426   (set_attr "mode" "DI")])
1427
1428;;
1429;;  ....................
1430;;
1431;;	MULTIPLICATION
1432;;
1433;;  ....................
1434;;
1435
1436(define_expand "mul<mode>3"
1437  [(set (match_operand:SCALARF 0 "register_operand")
1438	(mult:SCALARF (match_operand:SCALARF 1 "register_operand")
1439		      (match_operand:SCALARF 2 "register_operand")))]
1440  ""
1441  "")
1442
1443(define_insn "*mul<mode>3"
1444  [(set (match_operand:SCALARF 0 "register_operand" "=f")
1445	(mult:SCALARF (match_operand:SCALARF 1 "register_operand" "f")
1446		      (match_operand:SCALARF 2 "register_operand" "f")))]
1447  "!TARGET_4300_MUL_FIX"
1448  "mul.<fmt>\t%0,%1,%2"
1449  [(set_attr "type" "fmul")
1450   (set_attr "mode" "<MODE>")])
1451
1452;; Early VR4300 silicon has a CPU bug where multiplies with certain
1453;; operands may corrupt immediately following multiplies. This is a
1454;; simple fix to insert NOPs.
1455
1456(define_insn "*mul<mode>3_r4300"
1457  [(set (match_operand:SCALARF 0 "register_operand" "=f")
1458	(mult:SCALARF (match_operand:SCALARF 1 "register_operand" "f")
1459		      (match_operand:SCALARF 2 "register_operand" "f")))]
1460  "TARGET_4300_MUL_FIX"
1461  "mul.<fmt>\t%0,%1,%2\;nop"
1462  [(set_attr "type" "fmul")
1463   (set_attr "mode" "<MODE>")
1464   (set_attr "insn_count" "2")])
1465
1466(define_insn "mulv2sf3"
1467  [(set (match_operand:V2SF 0 "register_operand" "=f")
1468	(mult:V2SF (match_operand:V2SF 1 "register_operand" "f")
1469		   (match_operand:V2SF 2 "register_operand" "f")))]
1470  "TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT"
1471  "mul.ps\t%0,%1,%2"
1472  [(set_attr "type" "fmul")
1473   (set_attr "mode" "SF")])
1474
1475;; The original R4000 has a cpu bug.  If a double-word or a variable
1476;; shift executes while an integer multiplication is in progress, the
1477;; shift may give an incorrect result.  Avoid this by keeping the mflo
1478;; with the mult on the R4000.
1479;;
1480;; From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
1481;; (also valid for MIPS R4000MC processors):
1482;;
1483;; "16. R4000PC, R4000SC: Please refer to errata 28 for an update to
1484;;	this errata description.
1485;;	The following code sequence causes the R4000 to incorrectly
1486;;	execute the Double Shift Right Arithmetic 32 (dsra32)
1487;;	instruction.  If the dsra32 instruction is executed during an
1488;;	integer multiply, the dsra32 will only shift by the amount in
1489;;	specified in the instruction rather than the amount plus 32
1490;;	bits.
1491;;	instruction 1:		mult	rs,rt		integer multiply
1492;;	instruction 2-12:	dsra32	rd,rt,rs	doubleword shift
1493;;							right arithmetic + 32
1494;;	Workaround: A dsra32 instruction placed after an integer
1495;;	multiply should not be one of the 11 instructions after the
1496;;	multiply instruction."
1497;;
1498;; and:
1499;;
1500;; "28. R4000PC, R4000SC: The text from errata 16 should be replaced by
1501;;	the following description.
1502;;	All extended shifts (shift by n+32) and variable shifts (32 and
1503;;	64-bit versions) may produce incorrect results under the
1504;;	following conditions:
1505;;	1) An integer multiply is currently executing
1506;;	2) These types of shift instructions are executed immediately
1507;;	   following an integer divide instruction.
1508;;	Workaround:
1509;;	1) Make sure no integer multiply is running wihen these
1510;;	   instruction are executed.  If this cannot be predicted at
1511;;	   compile time, then insert a "mfhi" to R0 instruction
1512;;	   immediately after the integer multiply instruction.  This
1513;;	   will cause the integer multiply to complete before the shift
1514;;	   is executed.
1515;;	2) Separate integer divide and these two classes of shift
1516;;	   instructions by another instruction or a noop."
1517;;
1518;; These processors have PRId values of 0x00004220 and 0x00004300,
1519;; respectively.
1520
1521(define_expand "mul<mode>3"
1522  [(set (match_operand:GPR 0 "register_operand")
1523	(mult:GPR (match_operand:GPR 1 "register_operand")
1524		  (match_operand:GPR 2 "register_operand")))]
1525  "ISA_HAS_<D>MULT || ISA_HAS_R6<D>MUL"
1526{
1527  rtx lo;
1528
1529  if (TARGET_LOONGSON_2EF || TARGET_LOONGSON_3A || ISA_HAS_R6<D>MUL)
1530    emit_insn (gen_mul<mode>3_mul3_nohilo (operands[0], operands[1],
1531					   operands[2]));
1532  else if (ISA_HAS_<D>MUL3)
1533    emit_insn (gen_mul<mode>3_mul3 (operands[0], operands[1], operands[2]));
1534  else if (TARGET_MIPS16)
1535    {
1536      lo = gen_rtx_REG (<MODE>mode, LO_REGNUM);
1537      emit_insn (gen_mul<mode>3_internal (lo, operands[1], operands[2]));
1538      emit_move_insn (operands[0], lo);
1539    }
1540  else if (TARGET_FIX_R4000)
1541    emit_insn (gen_mul<mode>3_r4000 (operands[0], operands[1], operands[2]));
1542  else
1543    emit_insn
1544      (gen_mul<mode>3_internal (operands[0], operands[1], operands[2]));
1545  DONE;
1546})
1547
1548(define_insn "mul<mode>3_mul3_nohilo"
1549  [(set (match_operand:GPR 0 "register_operand" "=d")
1550        (mult:GPR (match_operand:GPR 1 "register_operand" "d")
1551                  (match_operand:GPR 2 "register_operand" "d")))]
1552  "TARGET_LOONGSON_2EF || TARGET_LOONGSON_3A || ISA_HAS_R6<D>MUL"
1553{
1554  if (TARGET_LOONGSON_2EF)
1555    return "<d>multu.g\t%0,%1,%2";
1556  else if (TARGET_LOONGSON_3A)
1557    return "gs<d>multu\t%0,%1,%2";
1558  else
1559    return "<d>mul\t%0,%1,%2";
1560}
1561  [(set_attr "type" "imul3nc")
1562   (set_attr "mode" "<MODE>")])
1563
1564(define_insn "mul<mode>3_mul3"
1565  [(set (match_operand:GPR 0 "register_operand" "=d,l")
1566	(mult:GPR (match_operand:GPR 1 "register_operand" "d,d")
1567		  (match_operand:GPR 2 "register_operand" "d,d")))
1568   (clobber (match_scratch:GPR 3 "=l,X"))]
1569  "ISA_HAS_<D>MUL3"
1570{
1571  if (which_alternative == 1)
1572    return "<d>mult\t%1,%2";
1573  if (<MODE>mode == SImode && (TARGET_MIPS3900 || TARGET_MIPS5900))
1574    return "mult\t%0,%1,%2";
1575  return "<d>mul\t%0,%1,%2";
1576}
1577  [(set_attr "type" "imul3,imul")
1578   (set_attr "mode" "<MODE>")])
1579
1580;; If a register gets allocated to LO, and we spill to memory, the reload
1581;; will include a move from LO to a GPR.  Merge it into the multiplication
1582;; if it can set the GPR directly.
1583;;
1584;; Operand 0: LO
1585;; Operand 1: GPR (1st multiplication operand)
1586;; Operand 2: GPR (2nd multiplication operand)
1587;; Operand 3: GPR (destination)
1588(define_peephole2
1589  [(parallel
1590       [(set (match_operand:SI 0 "lo_operand")
1591	     (mult:SI (match_operand:SI 1 "d_operand")
1592		      (match_operand:SI 2 "d_operand")))
1593        (clobber (scratch:SI))])
1594   (set (match_operand:SI 3 "d_operand")
1595	(match_dup 0))]
1596  "ISA_HAS_MUL3 && peep2_reg_dead_p (2, operands[0])"
1597  [(parallel
1598       [(set (match_dup 3)
1599	     (mult:SI (match_dup 1)
1600		      (match_dup 2)))
1601        (clobber (match_dup 0))])])
1602
1603(define_insn "mul<mode>3_internal"
1604  [(set (match_operand:GPR 0 "muldiv_target_operand" "=l")
1605	(mult:GPR (match_operand:GPR 1 "register_operand" "d")
1606		  (match_operand:GPR 2 "register_operand" "d")))]
1607  "ISA_HAS_<D>MULT && !TARGET_FIX_R4000"
1608  "<d>mult\t%1,%2"
1609  [(set_attr "type" "imul")
1610   (set_attr "mode" "<MODE>")])
1611
1612(define_insn "mul<mode>3_r4000"
1613  [(set (match_operand:GPR 0 "register_operand" "=d")
1614	(mult:GPR (match_operand:GPR 1 "register_operand" "d")
1615		  (match_operand:GPR 2 "register_operand" "d")))
1616   (clobber (match_scratch:GPR 3 "=l"))]
1617  "ISA_HAS_<D>MULT && TARGET_FIX_R4000"
1618  "<d>mult\t%1,%2\;mflo\t%0"
1619  [(set_attr "type" "imul")
1620   (set_attr "mode" "<MODE>")
1621   (set_attr "insn_count" "2")])
1622
1623;; On the VR4120 and VR4130, it is better to use "mtlo $0; macc" instead
1624;; of "mult; mflo".  They have the same latency, but the first form gives
1625;; us an extra cycle to compute the operands.
1626
1627;; Operand 0: LO
1628;; Operand 1: GPR (1st multiplication operand)
1629;; Operand 2: GPR (2nd multiplication operand)
1630;; Operand 3: GPR (destination)
1631(define_peephole2
1632  [(set (match_operand:SI 0 "lo_operand")
1633	(mult:SI (match_operand:SI 1 "d_operand")
1634		 (match_operand:SI 2 "d_operand")))
1635   (set (match_operand:SI 3 "d_operand")
1636	(match_dup 0))]
1637  "ISA_HAS_MACC && !ISA_HAS_MUL3"
1638  [(set (match_dup 0)
1639	(const_int 0))
1640   (parallel
1641       [(set (match_dup 0)
1642	     (plus:SI (mult:SI (match_dup 1)
1643			       (match_dup 2))
1644		      (match_dup 0)))
1645	(set (match_dup 3)
1646	     (plus:SI (mult:SI (match_dup 1)
1647			       (match_dup 2))
1648		      (match_dup 0)))])])
1649
1650;; Multiply-accumulate patterns
1651
1652;; This pattern is first matched by combine, which tries to use the
1653;; pattern wherever it can.  We don't know until later whether it
1654;; is actually profitable to use MADD over a "MUL; ADDIU" sequence,
1655;; so we need to keep both options open.
1656;;
1657;; The second alternative has a "?" marker because it is generally
1658;; one instruction more costly than the first alternative.  This "?"
1659;; marker is enough to convey the relative costs to the register
1660;; allocator.
1661;;
1662;; However, reload counts reloads of operands 4 and 5 in the same way as
1663;; reloads of the other operands, even though operands 4 and 5 need no
1664;; copy instructions.  Reload therefore thinks that the second alternative
1665;; is two reloads more costly than the first.  We add "*?*?" to the first
1666;; alternative as a counterweight.
1667;;
1668;; LRA simulates reload but the cost of reloading scratches is lower
1669;; than of the classic reload. For the time being, removing the counterweight
1670;; for LRA is more profitable.
1671(define_insn "*mul_acc_si"
1672  [(set (match_operand:SI 0 "register_operand" "=l*?*?,l,d?")
1673	(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d,d")
1674			  (match_operand:SI 2 "register_operand" "d,d,d"))
1675		 (match_operand:SI 3 "register_operand" "0,0,d")))
1676   (clobber (match_scratch:SI 4 "=X,X,l"))
1677   (clobber (match_scratch:SI 5 "=X,X,&d"))]
1678  "GENERATE_MADD_MSUB && !TARGET_MIPS16"
1679  "@
1680    madd\t%1,%2
1681    madd\t%1,%2
1682    #"
1683  [(set_attr "type"	"imadd")
1684   (set_attr "accum_in"	"3")
1685   (set_attr "mode"	"SI")
1686   (set_attr "insn_count" "1,1,2")
1687   (set (attr "enabled")
1688        (cond [(and (eq_attr "alternative" "0")
1689                    (match_test "!mips_lra_flag"))
1690                  (const_string "yes")
1691               (and (eq_attr "alternative" "1")
1692                    (match_test "mips_lra_flag"))
1693                  (const_string "yes")
1694               (eq_attr "alternative" "2")
1695                  (const_string "yes")]
1696              (const_string "no")))])
1697
1698;; The same idea applies here.  The middle alternative needs one less
1699;; clobber than the final alternative, so we add "*?" as a counterweight.
1700(define_insn "*mul_acc_si_r3900"
1701  [(set (match_operand:SI 0 "register_operand" "=l*?*?,l,d*?,d?")
1702	(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d,d,d")
1703			  (match_operand:SI 2 "register_operand" "d,d,d,d"))
1704		 (match_operand:SI 3 "register_operand" "0,0,l,d")))
1705   (clobber (match_scratch:SI 4 "=X,X,3,l"))
1706   (clobber (match_scratch:SI 5 "=X,X,X,&d"))]
1707  "TARGET_MIPS3900 && !TARGET_MIPS16"
1708  "@
1709    madd\t%1,%2
1710    madd\t%1,%2
1711    madd\t%0,%1,%2
1712    #"
1713  [(set_attr "type"	"imadd")
1714   (set_attr "accum_in"	"3")
1715   (set_attr "mode"	"SI")
1716   (set_attr "insn_count" "1,1,1,2")
1717   (set (attr "enabled")
1718        (cond [(and (eq_attr "alternative" "0")
1719                    (match_test "!mips_lra_flag"))
1720                  (const_string "yes")
1721               (and (eq_attr "alternative" "1")
1722                    (match_test "mips_lra_flag"))
1723                  (const_string "yes")
1724               (eq_attr "alternative" "2,3")
1725                  (const_string "yes")]
1726              (const_string "no")))])
1727
1728;; Split *mul_acc_si if both the source and destination accumulator
1729;; values are GPRs.
1730(define_split
1731  [(set (match_operand:SI 0 "d_operand")
1732	(plus:SI (mult:SI (match_operand:SI 1 "d_operand")
1733			  (match_operand:SI 2 "d_operand"))
1734		 (match_operand:SI 3 "d_operand")))
1735   (clobber (match_operand:SI 4 "lo_operand"))
1736   (clobber (match_operand:SI 5 "d_operand"))]
1737  "reload_completed"
1738  [(parallel [(set (match_dup 5)
1739		   (mult:SI (match_dup 1) (match_dup 2)))
1740	      (clobber (match_dup 4))])
1741   (set (match_dup 0) (plus:SI (match_dup 5) (match_dup 3)))]
1742  "")
1743
1744(define_insn "*macc"
1745  [(set (match_operand:SI 0 "register_operand" "=l,d")
1746	(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d")
1747			  (match_operand:SI 2 "register_operand" "d,d"))
1748		 (match_operand:SI 3 "register_operand" "0,l")))
1749   (clobber (match_scratch:SI 4 "=X,3"))]
1750  "ISA_HAS_MACC"
1751{
1752  if (which_alternative == 1)
1753    return "macc\t%0,%1,%2";
1754  else if (TARGET_MIPS5500)
1755    return "madd\t%1,%2";
1756  else
1757    /* The VR4130 assumes that there is a two-cycle latency between a macc
1758       that "writes" to $0 and an instruction that reads from it.  We avoid
1759       this by assigning to $1 instead.  */
1760    return "%[macc\t%@,%1,%2%]";
1761}
1762  [(set_attr "type" "imadd")
1763   (set_attr "accum_in"	"3")
1764   (set_attr "mode" "SI")])
1765
1766(define_insn "*msac"
1767  [(set (match_operand:SI 0 "register_operand" "=l,d")
1768        (minus:SI (match_operand:SI 1 "register_operand" "0,l")
1769                  (mult:SI (match_operand:SI 2 "register_operand" "d,d")
1770                           (match_operand:SI 3 "register_operand" "d,d"))))
1771   (clobber (match_scratch:SI 4 "=X,1"))]
1772  "ISA_HAS_MSAC"
1773{
1774  if (which_alternative == 1)
1775    return "msac\t%0,%2,%3";
1776  else if (TARGET_MIPS5500)
1777    return "msub\t%2,%3";
1778  else
1779    return "msac\t$0,%2,%3";
1780}
1781  [(set_attr "type"     "imadd")
1782   (set_attr "accum_in"	"1")
1783   (set_attr "mode"     "SI")])
1784
1785;; An msac-like instruction implemented using negation and a macc.
1786(define_insn_and_split "*msac_using_macc"
1787  [(set (match_operand:SI 0 "register_operand" "=l,d")
1788        (minus:SI (match_operand:SI 1 "register_operand" "0,l")
1789                  (mult:SI (match_operand:SI 2 "register_operand" "d,d")
1790                           (match_operand:SI 3 "register_operand" "d,d"))))
1791   (clobber (match_scratch:SI 4 "=X,1"))
1792   (clobber (match_scratch:SI 5 "=d,d"))]
1793  "ISA_HAS_MACC && !ISA_HAS_MSAC"
1794  "#"
1795  "&& reload_completed"
1796  [(set (match_dup 5)
1797	(neg:SI (match_dup 3)))
1798   (parallel
1799       [(set (match_dup 0)
1800	     (plus:SI (mult:SI (match_dup 2)
1801			       (match_dup 5))
1802		      (match_dup 1)))
1803	(clobber (match_dup 4))])]
1804  ""
1805  [(set_attr "type"     "imadd")
1806   (set_attr "accum_in"	"1")
1807   (set_attr "insn_count" "2")])
1808
1809;; Patterns generated by the define_peephole2 below.
1810
1811(define_insn "*macc2"
1812  [(set (match_operand:SI 0 "muldiv_target_operand" "=l")
1813	(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d")
1814			  (match_operand:SI 2 "register_operand" "d"))
1815		 (match_dup 0)))
1816   (set (match_operand:SI 3 "register_operand" "=d")
1817	(plus:SI (mult:SI (match_dup 1)
1818			  (match_dup 2))
1819		 (match_dup 0)))]
1820  "ISA_HAS_MACC && reload_completed"
1821  "macc\t%3,%1,%2"
1822  [(set_attr "type"	"imadd")
1823   (set_attr "accum_in"	"0")
1824   (set_attr "mode"	"SI")])
1825
1826(define_insn "*msac2"
1827  [(set (match_operand:SI 0 "muldiv_target_operand" "=l")
1828	(minus:SI (match_dup 0)
1829		  (mult:SI (match_operand:SI 1 "register_operand" "d")
1830			   (match_operand:SI 2 "register_operand" "d"))))
1831   (set (match_operand:SI 3 "register_operand" "=d")
1832	(minus:SI (match_dup 0)
1833		  (mult:SI (match_dup 1)
1834			   (match_dup 2))))]
1835  "ISA_HAS_MSAC && reload_completed"
1836  "msac\t%3,%1,%2"
1837  [(set_attr "type"	"imadd")
1838   (set_attr "accum_in"	"0")
1839   (set_attr "mode"	"SI")])
1840
1841;; Convert macc $0,<r1>,<r2> & mflo <r3> into macc <r3>,<r1>,<r2>
1842;; Similarly msac.
1843;;
1844;; Operand 0: LO
1845;; Operand 1: macc/msac
1846;; Operand 2: GPR (destination)
1847(define_peephole2
1848  [(parallel
1849       [(set (match_operand:SI 0 "lo_operand")
1850	     (match_operand:SI 1 "macc_msac_operand"))
1851	(clobber (scratch:SI))])
1852   (set (match_operand:SI 2 "d_operand")
1853	(match_dup 0))]
1854  ""
1855  [(parallel [(set (match_dup 0)
1856		   (match_dup 1))
1857	      (set (match_dup 2)
1858		   (match_dup 1))])])
1859
1860;; When we have a three-address multiplication instruction, it should
1861;; be faster to do a separate multiply and add, rather than moving
1862;; something into LO in order to use a macc instruction.
1863;;
1864;; This peephole needs a scratch register to cater for the case when one
1865;; of the multiplication operands is the same as the destination.
1866;;
1867;; Operand 0: GPR (scratch)
1868;; Operand 1: LO
1869;; Operand 2: GPR (addend)
1870;; Operand 3: GPR (destination)
1871;; Operand 4: macc/msac
1872;; Operand 5: new multiplication
1873;; Operand 6: new addition/subtraction
1874(define_peephole2
1875  [(match_scratch:SI 0 "d")
1876   (set (match_operand:SI 1 "lo_operand")
1877	(match_operand:SI 2 "d_operand"))
1878   (match_dup 0)
1879   (parallel
1880       [(set (match_operand:SI 3 "d_operand")
1881	     (match_operand:SI 4 "macc_msac_operand"))
1882	(clobber (match_dup 1))])]
1883  "ISA_HAS_MUL3 && peep2_reg_dead_p (2, operands[1])"
1884  [(parallel [(set (match_dup 0)
1885		   (match_dup 5))
1886	      (clobber (match_dup 1))])
1887   (set (match_dup 3)
1888	(match_dup 6))]
1889{
1890  operands[5] = XEXP (operands[4], GET_CODE (operands[4]) == PLUS ? 0 : 1);
1891  operands[6] = gen_rtx_fmt_ee (GET_CODE (operands[4]), SImode,
1892				operands[2], operands[0]);
1893})
1894
1895;; Same as above, except LO is the initial target of the macc.
1896;;
1897;; Operand 0: GPR (scratch)
1898;; Operand 1: LO
1899;; Operand 2: GPR (addend)
1900;; Operand 3: macc/msac
1901;; Operand 4: GPR (destination)
1902;; Operand 5: new multiplication
1903;; Operand 6: new addition/subtraction
1904(define_peephole2
1905  [(match_scratch:SI 0 "d")
1906   (set (match_operand:SI 1 "lo_operand")
1907	(match_operand:SI 2 "d_operand"))
1908   (match_dup 0)
1909   (parallel
1910       [(set (match_dup 1)
1911	     (match_operand:SI 3 "macc_msac_operand"))
1912	(clobber (scratch:SI))])
1913   (match_dup 0)
1914   (set (match_operand:SI 4 "d_operand")
1915	(match_dup 1))]
1916  "ISA_HAS_MUL3 && peep2_reg_dead_p (3, operands[1])"
1917  [(parallel [(set (match_dup 0)
1918		   (match_dup 5))
1919	      (clobber (match_dup 1))])
1920   (set (match_dup 4)
1921	(match_dup 6))]
1922{
1923  operands[5] = XEXP (operands[3], GET_CODE (operands[3]) == PLUS ? 0 : 1);
1924  operands[6] = gen_rtx_fmt_ee (GET_CODE (operands[3]), SImode,
1925				operands[2], operands[0]);
1926})
1927
1928;; See the comment above *mul_add_si for details.
1929(define_insn "*mul_sub_si"
1930  [(set (match_operand:SI 0 "register_operand" "=l*?*?,l,d?")
1931        (minus:SI (match_operand:SI 1 "register_operand" "0,0,d")
1932                  (mult:SI (match_operand:SI 2 "register_operand" "d,d,d")
1933                           (match_operand:SI 3 "register_operand" "d,d,d"))))
1934   (clobber (match_scratch:SI 4 "=X,X,l"))
1935   (clobber (match_scratch:SI 5 "=X,X,&d"))]
1936  "GENERATE_MADD_MSUB"
1937  "@
1938   msub\t%2,%3
1939   msub\t%2,%3
1940   #"
1941  [(set_attr "type"     "imadd")
1942   (set_attr "accum_in"	"1")
1943   (set_attr "mode"     "SI")
1944   (set_attr "insn_count" "1,1,2")
1945   (set (attr "enabled")
1946        (cond [(and (eq_attr "alternative" "0")
1947                    (match_test "!mips_lra_flag"))
1948                  (const_string "yes")
1949               (and (eq_attr "alternative" "1")
1950                    (match_test "mips_lra_flag"))
1951                  (const_string "yes")
1952               (eq_attr "alternative" "2")
1953                  (const_string "yes")]
1954              (const_string "no")))])
1955
1956;; Split *mul_sub_si if both the source and destination accumulator
1957;; values are GPRs.
1958(define_split
1959  [(set (match_operand:SI 0 "d_operand")
1960        (minus:SI (match_operand:SI 1 "d_operand")
1961                  (mult:SI (match_operand:SI 2 "d_operand")
1962                           (match_operand:SI 3 "d_operand"))))
1963   (clobber (match_operand:SI 4 "lo_operand"))
1964   (clobber (match_operand:SI 5 "d_operand"))]
1965  "reload_completed"
1966  [(parallel [(set (match_dup 5)
1967                   (mult:SI (match_dup 2) (match_dup 3)))
1968              (clobber (match_dup 4))])
1969   (set (match_dup 0) (minus:SI (match_dup 1) (match_dup 5)))]
1970  "")
1971
1972(define_insn "*muls"
1973  [(set (match_operand:SI 0 "register_operand" "=l,d")
1974        (neg:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d")
1975                         (match_operand:SI 2 "register_operand" "d,d"))))
1976   (clobber (match_scratch:SI 3 "=X,l"))]
1977  "ISA_HAS_MULS"
1978  "@
1979   muls\t$0,%1,%2
1980   muls\t%0,%1,%2"
1981  [(set_attr "type"     "imul,imul3")
1982   (set_attr "mode"     "SI")])
1983
1984(define_expand "<u>mulsidi3"
1985  [(set (match_operand:DI 0 "register_operand")
1986	(mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
1987		 (any_extend:DI (match_operand:SI 2 "register_operand"))))]
1988  "mips_mulsidi3_gen_fn (<CODE>) != NULL"
1989{
1990  mulsidi3_gen_fn fn = mips_mulsidi3_gen_fn (<CODE>);
1991  emit_insn (fn (operands[0], operands[1], operands[2]));
1992  DONE;
1993})
1994
1995(define_expand "<u>mulsidi3_32bit_r6"
1996  [(set (match_operand:DI 0 "register_operand")
1997	(mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
1998		 (any_extend:DI (match_operand:SI 2 "register_operand"))))]
1999  "!TARGET_64BIT && ISA_HAS_R6MUL"
2000{
2001  rtx dest = gen_reg_rtx (DImode);
2002  rtx low = mips_subword (dest, 0);
2003  rtx high = mips_subword (dest, 1);
2004
2005  emit_insn (gen_mulsi3_mul3_nohilo (low, operands[1], operands[2]));
2006  emit_insn (gen_<su>mulsi3_highpart_r6 (high, operands[1], operands[2]));
2007
2008  emit_move_insn (mips_subword (operands[0], 0), low);
2009  emit_move_insn (mips_subword (operands[0], 1), high);
2010  DONE;
2011})
2012
2013(define_expand "<u>mulsidi3_32bit_mips16"
2014  [(set (match_operand:DI 0 "register_operand")
2015	(mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
2016		 (any_extend:DI (match_operand:SI 2 "register_operand"))))]
2017  "!TARGET_64BIT && TARGET_MIPS16"
2018{
2019  rtx hilo;
2020
2021  hilo = gen_rtx_REG (DImode, MD_REG_FIRST);
2022  emit_insn (gen_<u>mulsidi3_32bit (hilo, operands[1], operands[2]));
2023  emit_move_insn (operands[0], hilo);
2024  DONE;
2025})
2026
2027;; As well as being named patterns, these instructions are used by the
2028;; __builtin_mips_mult<u>() functions.  We must always make those functions
2029;; available if !TARGET_64BIT && ISA_HAS_DSP.
2030(define_insn "<u>mulsidi3_32bit"
2031  [(set (match_operand:DI 0 "muldiv_target_operand" "=ka")
2032	(mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2033		 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))]
2034  "!TARGET_64BIT && (!TARGET_FIX_R4000 || ISA_HAS_DSP) && ISA_HAS_MULT"
2035{
2036  if (ISA_HAS_DSP_MULT)
2037    return "mult<u>\t%q0,%1,%2";
2038  else
2039    return "mult<u>\t%1,%2";
2040}
2041  [(set_attr "type" "imul")
2042   (set_attr "mode" "SI")])
2043
2044(define_insn "<u>mulsidi3_32bit_r4000"
2045  [(set (match_operand:DI 0 "register_operand" "=d")
2046	(mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2047		 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))
2048   (clobber (match_scratch:DI 3 "=x"))]
2049  "!TARGET_64BIT && TARGET_FIX_R4000 && !ISA_HAS_DSP && ISA_HAS_MULT"
2050  "mult<u>\t%1,%2\;mflo\t%L0\;mfhi\t%M0"
2051  [(set_attr "type" "imul")
2052   (set_attr "mode" "SI")
2053   (set_attr "insn_count" "3")])
2054
2055(define_insn_and_split "<u>mulsidi3_64bit"
2056  [(set (match_operand:DI 0 "register_operand" "=d")
2057	(mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2058		 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))
2059   (clobber (match_scratch:TI 3 "=x"))
2060   (clobber (match_scratch:DI 4 "=d"))]
2061  "TARGET_64BIT && !TARGET_FIX_R4000 && !ISA_HAS_DMUL3
2062   && !TARGET_MIPS16 && ISA_HAS_MULT"
2063  "#"
2064  "&& reload_completed"
2065  [(const_int 0)]
2066{
2067  emit_insn (gen_<u>mulsidi3_64bit_split (operands[0], operands[1],
2068					  operands[2], operands[4]));
2069  DONE;
2070}
2071  [(set_attr "type" "imul")
2072   (set_attr "mode" "SI")
2073   (set (attr "insn_count")
2074	(if_then_else (match_test "ISA_HAS_EXT_INS")
2075		      (const_int 4)
2076		      (const_int 7)))])
2077
2078(define_expand "<u>mulsidi3_64bit_mips16"
2079  [(set (match_operand:DI 0 "register_operand")
2080	(mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
2081		 (any_extend:DI (match_operand:SI 2 "register_operand"))))]
2082  "TARGET_64BIT && TARGET_MIPS16"
2083{
2084  emit_insn (gen_<u>mulsidi3_64bit_split (operands[0], operands[1],
2085					  operands[2], gen_reg_rtx (DImode)));
2086  DONE;
2087})
2088
2089(define_expand "<u>mulsidi3_64bit_split"
2090  [(set (match_operand:DI 0 "register_operand")
2091	(mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
2092		 (any_extend:DI (match_operand:SI 2 "register_operand"))))
2093   (clobber (match_operand:DI 3 "register_operand"))]
2094  ""
2095{
2096  rtx hilo;
2097
2098  hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
2099  emit_insn (gen_<u>mulsidi3_64bit_hilo (hilo, operands[1], operands[2]));
2100
2101  emit_move_insn (operands[0], gen_rtx_REG (DImode, LO_REGNUM));
2102  emit_insn (gen_mfhidi_ti (operands[3], hilo));
2103
2104  if (ISA_HAS_EXT_INS)
2105    emit_insn (gen_insvdi (operands[0], GEN_INT (32), GEN_INT (32),
2106			   operands[3]));
2107  else
2108    {
2109      /* Zero-extend the low part.  */
2110      mips_emit_binary (ASHIFT, operands[0], operands[0], GEN_INT (32));
2111      mips_emit_binary (LSHIFTRT, operands[0], operands[0], GEN_INT (32));
2112
2113      /* Shift the high part into place.  */
2114      mips_emit_binary (ASHIFT, operands[3], operands[3], GEN_INT (32));
2115
2116      /* OR the two halves together.  */
2117      mips_emit_binary (IOR, operands[0], operands[0], operands[3]);
2118    }
2119  DONE;
2120})
2121
2122(define_insn "<u>mulsidi3_64bit_hilo"
2123  [(set (match_operand:TI 0 "muldiv_target_operand" "=x")
2124	(unspec:TI
2125	  [(mult:DI
2126	     (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2127	     (any_extend:DI (match_operand:SI 2 "register_operand" "d")))]
2128	  UNSPEC_SET_HILO))]
2129  "TARGET_64BIT && !TARGET_FIX_R4000"
2130  "mult<u>\t%1,%2"
2131  [(set_attr "type" "imul")
2132   (set_attr "mode" "SI")])
2133
2134;; See comment before the ISA_HAS_DMUL3 case in mips_mulsidi3_gen_fn.
2135(define_insn "mulsidi3_64bit_dmul"
2136  [(set (match_operand:DI 0 "register_operand" "=d")
2137	(mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "d"))
2138		 (sign_extend:DI (match_operand:SI 2 "register_operand" "d"))))
2139   (clobber (match_scratch:DI 3 "=l"))]
2140  "ISA_HAS_DMUL3"
2141  "dmul\t%0,%1,%2"
2142  [(set_attr "type" "imul3")
2143   (set_attr "mode" "DI")])
2144
2145(define_insn "mulsidi3_64bit_r6dmul"
2146  [(set (match_operand:DI 0 "register_operand" "=d")
2147	(mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "d"))
2148		 (sign_extend:DI (match_operand:SI 2 "register_operand" "d"))))]
2149  "ISA_HAS_R6DMUL"
2150  "dmul\t%0,%1,%2"
2151  [(set_attr "type" "imul3nc")
2152   (set_attr "mode" "DI")])
2153
2154;; Widening multiply with negation.
2155(define_insn "*muls<u>_di"
2156  [(set (match_operand:DI 0 "muldiv_target_operand" "=x")
2157        (neg:DI
2158	 (mult:DI
2159	  (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2160	  (any_extend:DI (match_operand:SI 2 "register_operand" "d")))))]
2161  "!TARGET_64BIT && ISA_HAS_MULS"
2162  "muls<u>\t$0,%1,%2"
2163  [(set_attr "type" "imul")
2164   (set_attr "mode" "SI")])
2165
2166;; As well as being named patterns, these instructions are used by the
2167;; __builtin_mips_msub<u>() functions.  We must always make those functions
2168;; available if !TARGET_64BIT && ISA_HAS_DSP.
2169;;
2170;; This leads to a slight inconsistency.  We honor any tuning overrides
2171;; in GENERATE_MADD_MSUB for -mno-dsp, but always ignore them for -mdsp,
2172;; even if !ISA_HAS_DSP_MULT.
2173(define_insn "<u>msubsidi4"
2174  [(set (match_operand:DI 0 "muldiv_target_operand" "=ka")
2175        (minus:DI
2176	   (match_operand:DI 3 "muldiv_target_operand" "0")
2177	   (mult:DI
2178	      (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2179	      (any_extend:DI (match_operand:SI 2 "register_operand" "d")))))]
2180  "!TARGET_64BIT && (ISA_HAS_MSAC || GENERATE_MADD_MSUB || ISA_HAS_DSP)"
2181{
2182  if (ISA_HAS_DSP_MULT)
2183    return "msub<u>\t%q0,%1,%2";
2184  else if (TARGET_MIPS5500 || GENERATE_MADD_MSUB)
2185    return "msub<u>\t%1,%2";
2186  else
2187    return "msac<u>\t$0,%1,%2";
2188}
2189  [(set_attr "type" "imadd")
2190   (set_attr "accum_in"	"3")
2191   (set_attr "mode" "SI")])
2192
2193;; _highpart patterns
2194
2195(define_expand "<su>mulsi3_highpart"
2196  [(set (match_operand:SI 0 "register_operand")
2197	(truncate:SI
2198	 (lshiftrt:DI
2199	  (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
2200		   (any_extend:DI (match_operand:SI 2 "register_operand")))
2201	  (const_int 32))))]
2202  ""
2203{
2204  if (ISA_HAS_MULHI)
2205    emit_insn (gen_<su>mulsi3_highpart_mulhi_internal (operands[0],
2206						       operands[1],
2207						       operands[2]));
2208  else if (TARGET_MIPS16)
2209    emit_insn (gen_<su>mulsi3_highpart_split (operands[0], operands[1],
2210					      operands[2]));
2211  else if (ISA_HAS_R6MUL)
2212    emit_insn (gen_<su>mulsi3_highpart_r6 (operands[0], operands[1],
2213					   operands[2]));
2214  else
2215    emit_insn (gen_<su>mulsi3_highpart_internal (operands[0], operands[1],
2216					         operands[2]));
2217  DONE;
2218})
2219
2220(define_insn "<su>mulsi3_highpart_r6"
2221  [(set (match_operand:SI 0 "register_operand" "=d")
2222	(truncate:SI
2223	 (lshiftrt:DI
2224	  (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2225		   (any_extend:DI (match_operand:SI 2 "register_operand" "d")))
2226	  (const_int 32))))]
2227  "ISA_HAS_R6MUL"
2228  "muh<u>\t%0,%1,%2"
2229  [(set_attr "type" "imul3nc")
2230   (set_attr "mode" "SI")])
2231
2232(define_insn_and_split "<su>mulsi3_highpart_internal"
2233  [(set (match_operand:SI 0 "register_operand" "=d")
2234	(truncate:SI
2235	 (lshiftrt:DI
2236	  (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2237		   (any_extend:DI (match_operand:SI 2 "register_operand" "d")))
2238	  (const_int 32))))
2239   (clobber (match_scratch:SI 3 "=l"))]
2240  "ISA_HAS_MULT && !ISA_HAS_MULHI && !TARGET_MIPS16"
2241  { return TARGET_FIX_R4000 ? "mult<u>\t%1,%2\n\tmfhi\t%0" : "#"; }
2242  "&& reload_completed && !TARGET_FIX_R4000"
2243  [(const_int 0)]
2244{
2245  emit_insn (gen_<su>mulsi3_highpart_split (operands[0], operands[1],
2246					    operands[2]));
2247  DONE;
2248}
2249  [(set_attr "type" "imul")
2250   (set_attr "mode" "SI")
2251   (set_attr "insn_count" "2")])
2252
2253(define_expand "<su>mulsi3_highpart_split"
2254  [(set (match_operand:SI 0 "register_operand")
2255	(truncate:SI
2256	 (lshiftrt:DI
2257	  (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
2258		   (any_extend:DI (match_operand:SI 2 "register_operand")))
2259	  (const_int 32))))]
2260  ""
2261{
2262  rtx hilo;
2263
2264  if (TARGET_64BIT)
2265    {
2266      hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
2267      emit_insn (gen_<u>mulsidi3_64bit_hilo (hilo, operands[1], operands[2]));
2268      emit_insn (gen_mfhisi_ti (operands[0], hilo));
2269    }
2270  else
2271    {
2272      hilo = gen_rtx_REG (DImode, MD_REG_FIRST);
2273      emit_insn (gen_<u>mulsidi3_32bit (hilo, operands[1], operands[2]));
2274      emit_insn (gen_mfhisi_di (operands[0], hilo));
2275    }
2276  DONE;
2277})
2278
2279(define_insn "<su>mulsi3_highpart_mulhi_internal"
2280  [(set (match_operand:SI 0 "register_operand" "=d")
2281        (truncate:SI
2282	 (lshiftrt:DI
2283	  (mult:DI
2284	   (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2285	   (any_extend:DI (match_operand:SI 2 "register_operand" "d")))
2286	  (const_int 32))))
2287   (clobber (match_scratch:SI 3 "=l"))]
2288  "ISA_HAS_MULHI"
2289  "mulhi<u>\t%0,%1,%2"
2290  [(set_attr "type" "imul3")
2291   (set_attr "mode" "SI")])
2292
2293(define_insn "*<su>mulsi3_highpart_neg_mulhi_internal"
2294  [(set (match_operand:SI 0 "register_operand" "=d")
2295        (truncate:SI
2296	 (lshiftrt:DI
2297	  (neg:DI
2298	   (mult:DI
2299	    (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2300	    (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))
2301	  (const_int 32))))
2302   (clobber (match_scratch:SI 3 "=l"))]
2303  "ISA_HAS_MULHI"
2304  "mulshi<u>\t%0,%1,%2"
2305  [(set_attr "type" "imul3")
2306   (set_attr "mode" "SI")])
2307
2308;; Disable unsigned multiplication for -mfix-vr4120.  This is for VR4120
2309;; errata MD(0), which says that dmultu does not always produce the
2310;; correct result.
2311(define_expand "<su>muldi3_highpart"
2312  [(set (match_operand:DI 0 "register_operand")
2313	(truncate:DI
2314	 (lshiftrt:TI
2315	  (mult:TI (any_extend:TI (match_operand:DI 1 "register_operand"))
2316		   (any_extend:TI (match_operand:DI 2 "register_operand")))
2317	  (const_int 64))))]
2318  "ISA_HAS_R6DMUL
2319   || (ISA_HAS_DMULT
2320       && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120))"
2321{
2322  if (TARGET_MIPS16)
2323    emit_insn (gen_<su>muldi3_highpart_split (operands[0], operands[1],
2324					      operands[2]));
2325  else if (ISA_HAS_R6DMUL)
2326    emit_insn (gen_<su>muldi3_highpart_r6 (operands[0], operands[1],
2327					   operands[2]));
2328  else
2329    emit_insn (gen_<su>muldi3_highpart_internal (operands[0], operands[1],
2330						 operands[2]));
2331  DONE;
2332})
2333
2334(define_insn "<su>muldi3_highpart_r6"
2335  [(set (match_operand:DI 0 "register_operand" "=d")
2336	(truncate:DI
2337	 (lshiftrt:TI
2338	  (mult:TI (any_extend:TI (match_operand:DI 1 "register_operand" "d"))
2339		   (any_extend:TI (match_operand:DI 2 "register_operand" "d")))
2340	  (const_int 64))))]
2341  "ISA_HAS_R6DMUL"
2342  "dmuh<u>\t%0,%1,%2"
2343  [(set_attr "type" "imul3nc")
2344   (set_attr "mode" "DI")])
2345
2346(define_insn_and_split "<su>muldi3_highpart_internal"
2347  [(set (match_operand:DI 0 "register_operand" "=d")
2348	(truncate:DI
2349	 (lshiftrt:TI
2350	  (mult:TI (any_extend:TI (match_operand:DI 1 "register_operand" "d"))
2351		   (any_extend:TI (match_operand:DI 2 "register_operand" "d")))
2352	  (const_int 64))))
2353   (clobber (match_scratch:DI 3 "=l"))]
2354  "ISA_HAS_DMULT
2355   && !TARGET_MIPS16
2356   && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120)"
2357  { return TARGET_FIX_R4000 ? "dmult<u>\t%1,%2\n\tmfhi\t%0" : "#"; }
2358  "&& reload_completed && !TARGET_FIX_R4000"
2359  [(const_int 0)]
2360{
2361  emit_insn (gen_<su>muldi3_highpart_split (operands[0], operands[1],
2362					    operands[2]));
2363  DONE;
2364}
2365  [(set_attr "type" "imul")
2366   (set_attr "mode" "DI")
2367   (set_attr "insn_count" "2")])
2368
2369(define_expand "<su>muldi3_highpart_split"
2370  [(set (match_operand:DI 0 "register_operand")
2371	(truncate:DI
2372	 (lshiftrt:TI
2373	  (mult:TI (any_extend:TI (match_operand:DI 1 "register_operand"))
2374		   (any_extend:TI (match_operand:DI 2 "register_operand")))
2375	  (const_int 64))))]
2376  ""
2377{
2378  rtx hilo;
2379
2380  hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
2381  emit_insn (gen_<u>mulditi3_internal (hilo, operands[1], operands[2]));
2382  emit_insn (gen_mfhidi_ti (operands[0], hilo));
2383  DONE;
2384})
2385
2386(define_expand "<u>mulditi3"
2387  [(set (match_operand:TI 0 "register_operand")
2388	(mult:TI (any_extend:TI (match_operand:DI 1 "register_operand"))
2389		 (any_extend:TI (match_operand:DI 2 "register_operand"))))]
2390  "ISA_HAS_DMULT && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120)"
2391{
2392  rtx hilo;
2393
2394  if (TARGET_MIPS16)
2395    {
2396      hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
2397      emit_insn (gen_<u>mulditi3_internal (hilo, operands[1], operands[2]));
2398      emit_move_insn (operands[0], hilo);
2399    }
2400  else if (TARGET_FIX_R4000)
2401    emit_insn (gen_<u>mulditi3_r4000 (operands[0], operands[1], operands[2]));
2402  else
2403    emit_insn (gen_<u>mulditi3_internal (operands[0], operands[1],
2404					 operands[2]));
2405  DONE;
2406})
2407
2408(define_insn "<u>mulditi3_internal"
2409  [(set (match_operand:TI 0 "muldiv_target_operand" "=x")
2410	(mult:TI (any_extend:TI (match_operand:DI 1 "register_operand" "d"))
2411		 (any_extend:TI (match_operand:DI 2 "register_operand" "d"))))]
2412  "ISA_HAS_DMULT
2413   && !TARGET_FIX_R4000
2414   && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120)"
2415  "dmult<u>\t%1,%2"
2416  [(set_attr "type" "imul")
2417   (set_attr "mode" "DI")])
2418
2419(define_insn "<u>mulditi3_r4000"
2420  [(set (match_operand:TI 0 "register_operand" "=d")
2421	(mult:TI (any_extend:TI (match_operand:DI 1 "register_operand" "d"))
2422		 (any_extend:TI (match_operand:DI 2 "register_operand" "d"))))
2423   (clobber (match_scratch:TI 3 "=x"))]
2424  "ISA_HAS_DMULT
2425   && TARGET_FIX_R4000
2426   && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120)"
2427  "dmult<u>\t%1,%2\;mflo\t%L0\;mfhi\t%M0"
2428  [(set_attr "type" "imul")
2429   (set_attr "mode" "DI")
2430   (set_attr "insn_count" "3")])
2431
2432;; The R4650 supports a 32-bit multiply/ 64-bit accumulate
2433;; instruction.  The HI/LO registers are used as a 64-bit accumulator.
2434
2435(define_insn "madsi"
2436  [(set (match_operand:SI 0 "register_operand" "+l")
2437	(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d")
2438			  (match_operand:SI 2 "register_operand" "d"))
2439		 (match_dup 0)))]
2440  "TARGET_MAD"
2441  "mad\t%1,%2"
2442  [(set_attr "type"	"imadd")
2443   (set_attr "accum_in"	"0")
2444   (set_attr "mode"	"SI")])
2445
2446;; See the comment above <u>msubsidi4 for the relationship between
2447;; ISA_HAS_DSP and ISA_HAS_DSP_MULT.
2448(define_insn "<u>maddsidi4"
2449  [(set (match_operand:DI 0 "muldiv_target_operand" "=ka")
2450	(plus:DI
2451	 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2452		  (any_extend:DI (match_operand:SI 2 "register_operand" "d")))
2453	 (match_operand:DI 3 "muldiv_target_operand" "0")))]
2454  "(TARGET_MAD || ISA_HAS_MACC || GENERATE_MADD_MSUB || ISA_HAS_DSP)
2455   && !TARGET_64BIT"
2456{
2457  if (TARGET_MAD)
2458    return "mad<u>\t%1,%2";
2459  else if (ISA_HAS_DSP_MULT)
2460    return "madd<u>\t%q0,%1,%2";
2461  else if (GENERATE_MADD_MSUB || TARGET_MIPS5500)
2462    return "madd<u>\t%1,%2";
2463  else
2464    /* See comment in *macc.  */
2465    return "%[macc<u>\t%@,%1,%2%]";
2466}
2467  [(set_attr "type" "imadd")
2468   (set_attr "accum_in"	"3")
2469   (set_attr "mode" "SI")])
2470
2471;; Floating point multiply accumulate instructions.
2472
2473(define_insn "*madd4<mode>"
2474  [(set (match_operand:ANYF 0 "register_operand" "=f")
2475	(plus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2476			      (match_operand:ANYF 2 "register_operand" "f"))
2477		   (match_operand:ANYF 3 "register_operand" "f")))]
2478  "ISA_HAS_FP_MADD4_MSUB4 && TARGET_FUSED_MADD"
2479  "madd.<fmt>\t%0,%3,%1,%2"
2480  [(set_attr "type" "fmadd")
2481   (set_attr "accum_in"	"3")
2482   (set_attr "mode" "<UNITMODE>")])
2483
2484(define_insn "fma<mode>4"
2485  [(set (match_operand:ANYF 0 "register_operand" "=f")
2486	(fma:ANYF (match_operand:ANYF 1 "register_operand" "f")
2487		  (match_operand:ANYF 2 "register_operand" "f")
2488		  (match_operand:ANYF 3 "register_operand" "0")))]
2489  "ISA_HAS_FP_MADDF_MSUBF"
2490  "maddf.<fmt>\t%0,%1,%2"
2491  [(set_attr "type" "fmadd")
2492   (set_attr "mode" "<UNITMODE>")])
2493
2494(define_insn "*madd3<mode>"
2495  [(set (match_operand:ANYF 0 "register_operand" "=f")
2496	(plus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2497			      (match_operand:ANYF 2 "register_operand" "f"))
2498		   (match_operand:ANYF 3 "register_operand" "0")))]
2499  "ISA_HAS_FP_MADD3_MSUB3 && TARGET_FUSED_MADD"
2500  "madd.<fmt>\t%0,%1,%2"
2501  [(set_attr "type" "fmadd")
2502   (set_attr "accum_in"	"3")
2503   (set_attr "mode" "<UNITMODE>")])
2504
2505(define_insn "*msub4<mode>"
2506  [(set (match_operand:ANYF 0 "register_operand" "=f")
2507	(minus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2508			       (match_operand:ANYF 2 "register_operand" "f"))
2509		    (match_operand:ANYF 3 "register_operand" "f")))]
2510  "ISA_HAS_FP_MADD4_MSUB4 && TARGET_FUSED_MADD"
2511  "msub.<fmt>\t%0,%3,%1,%2"
2512  [(set_attr "type" "fmadd")
2513   (set_attr "accum_in"	"3")
2514   (set_attr "mode" "<UNITMODE>")])
2515
2516(define_insn "*msub3<mode>"
2517  [(set (match_operand:ANYF 0 "register_operand" "=f")
2518	(minus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2519			       (match_operand:ANYF 2 "register_operand" "f"))
2520		    (match_operand:ANYF 3 "register_operand" "0")))]
2521  "ISA_HAS_FP_MADD3_MSUB3 && TARGET_FUSED_MADD"
2522  "msub.<fmt>\t%0,%1,%2"
2523  [(set_attr "type" "fmadd")
2524   (set_attr "accum_in"	"3")
2525   (set_attr "mode" "<UNITMODE>")])
2526
2527(define_insn "*nmadd4<mode>"
2528  [(set (match_operand:ANYF 0 "register_operand" "=f")
2529	(neg:ANYF (plus:ANYF
2530		   (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2531			      (match_operand:ANYF 2 "register_operand" "f"))
2532		   (match_operand:ANYF 3 "register_operand" "f"))))]
2533  "ISA_HAS_NMADD4_NMSUB4
2534   && TARGET_FUSED_MADD
2535   && HONOR_SIGNED_ZEROS (<MODE>mode)
2536   && !HONOR_NANS (<MODE>mode)"
2537  "nmadd.<fmt>\t%0,%3,%1,%2"
2538  [(set_attr "type" "fmadd")
2539   (set_attr "accum_in"	"3")
2540   (set_attr "mode" "<UNITMODE>")])
2541
2542(define_insn "*nmadd3<mode>"
2543  [(set (match_operand:ANYF 0 "register_operand" "=f")
2544	(neg:ANYF (plus:ANYF
2545		   (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2546			      (match_operand:ANYF 2 "register_operand" "f"))
2547		   (match_operand:ANYF 3 "register_operand" "0"))))]
2548  "ISA_HAS_NMADD3_NMSUB3
2549   && TARGET_FUSED_MADD
2550   && HONOR_SIGNED_ZEROS (<MODE>mode)
2551   && !HONOR_NANS (<MODE>mode)"
2552  "nmadd.<fmt>\t%0,%1,%2"
2553  [(set_attr "type" "fmadd")
2554   (set_attr "accum_in"	"3")
2555   (set_attr "mode" "<UNITMODE>")])
2556
2557(define_insn "*nmadd4<mode>_fastmath"
2558  [(set (match_operand:ANYF 0 "register_operand" "=f")
2559	(minus:ANYF
2560	 (mult:ANYF (neg:ANYF (match_operand:ANYF 1 "register_operand" "f"))
2561		    (match_operand:ANYF 2 "register_operand" "f"))
2562	 (match_operand:ANYF 3 "register_operand" "f")))]
2563  "ISA_HAS_NMADD4_NMSUB4
2564   && TARGET_FUSED_MADD
2565   && !HONOR_SIGNED_ZEROS (<MODE>mode)
2566   && !HONOR_NANS (<MODE>mode)"
2567  "nmadd.<fmt>\t%0,%3,%1,%2"
2568  [(set_attr "type" "fmadd")
2569   (set_attr "accum_in"	"3")
2570   (set_attr "mode" "<UNITMODE>")])
2571
2572(define_insn "*nmadd3<mode>_fastmath"
2573  [(set (match_operand:ANYF 0 "register_operand" "=f")
2574	(minus:ANYF
2575	 (mult:ANYF (neg:ANYF (match_operand:ANYF 1 "register_operand" "f"))
2576		    (match_operand:ANYF 2 "register_operand" "f"))
2577	 (match_operand:ANYF 3 "register_operand" "0")))]
2578  "ISA_HAS_NMADD3_NMSUB3
2579   && TARGET_FUSED_MADD
2580   && !HONOR_SIGNED_ZEROS (<MODE>mode)
2581   && !HONOR_NANS (<MODE>mode)"
2582  "nmadd.<fmt>\t%0,%1,%2"
2583  [(set_attr "type" "fmadd")
2584   (set_attr "accum_in"	"3")
2585   (set_attr "mode" "<UNITMODE>")])
2586
2587(define_insn "*nmsub4<mode>"
2588  [(set (match_operand:ANYF 0 "register_operand" "=f")
2589	(neg:ANYF (minus:ANYF
2590		   (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
2591			      (match_operand:ANYF 3 "register_operand" "f"))
2592		   (match_operand:ANYF 1 "register_operand" "f"))))]
2593  "ISA_HAS_NMADD4_NMSUB4
2594   && TARGET_FUSED_MADD
2595   && HONOR_SIGNED_ZEROS (<MODE>mode)
2596   && !HONOR_NANS (<MODE>mode)"
2597  "nmsub.<fmt>\t%0,%1,%2,%3"
2598  [(set_attr "type" "fmadd")
2599   (set_attr "accum_in"	"1")
2600   (set_attr "mode" "<UNITMODE>")])
2601
2602(define_insn "*nmsub3<mode>"
2603  [(set (match_operand:ANYF 0 "register_operand" "=f")
2604	(neg:ANYF (minus:ANYF
2605		   (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
2606			      (match_operand:ANYF 3 "register_operand" "f"))
2607		   (match_operand:ANYF 1 "register_operand" "0"))))]
2608  "ISA_HAS_NMADD3_NMSUB3
2609   && TARGET_FUSED_MADD
2610   && HONOR_SIGNED_ZEROS (<MODE>mode)
2611   && !HONOR_NANS (<MODE>mode)"
2612  "nmsub.<fmt>\t%0,%1,%2"
2613  [(set_attr "type" "fmadd")
2614   (set_attr "accum_in"	"1")
2615   (set_attr "mode" "<UNITMODE>")])
2616
2617(define_insn "*nmsub4<mode>_fastmath"
2618  [(set (match_operand:ANYF 0 "register_operand" "=f")
2619	(minus:ANYF
2620	 (match_operand:ANYF 1 "register_operand" "f")
2621	 (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
2622		    (match_operand:ANYF 3 "register_operand" "f"))))]
2623  "ISA_HAS_NMADD4_NMSUB4
2624   && TARGET_FUSED_MADD
2625   && !HONOR_SIGNED_ZEROS (<MODE>mode)
2626   && !HONOR_NANS (<MODE>mode)"
2627  "nmsub.<fmt>\t%0,%1,%2,%3"
2628  [(set_attr "type" "fmadd")
2629   (set_attr "accum_in"	"1")
2630   (set_attr "mode" "<UNITMODE>")])
2631
2632(define_insn "*nmsub3<mode>_fastmath"
2633  [(set (match_operand:ANYF 0 "register_operand" "=f")
2634	(minus:ANYF
2635	 (match_operand:ANYF 1 "register_operand" "f")
2636	 (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
2637		    (match_operand:ANYF 3 "register_operand" "0"))))]
2638  "ISA_HAS_NMADD3_NMSUB3
2639   && TARGET_FUSED_MADD
2640   && !HONOR_SIGNED_ZEROS (<MODE>mode)
2641   && !HONOR_NANS (<MODE>mode)"
2642  "nmsub.<fmt>\t%0,%1,%2"
2643  [(set_attr "type" "fmadd")
2644   (set_attr "accum_in"	"1")
2645   (set_attr "mode" "<UNITMODE>")])
2646
2647;;
2648;;  ....................
2649;;
2650;;	DIVISION and REMAINDER
2651;;
2652;;  ....................
2653;;
2654
2655(define_expand "div<mode>3"
2656  [(set (match_operand:ANYF 0 "register_operand")
2657	(div:ANYF (match_operand:ANYF 1 "reg_or_1_operand")
2658		  (match_operand:ANYF 2 "register_operand")))]
2659  "<divide_condition>"
2660{
2661  if (const_1_operand (operands[1], <MODE>mode))
2662    if (!(ISA_HAS_FP_RECIP_RSQRT (<MODE>mode)
2663	  && flag_unsafe_math_optimizations))
2664      operands[1] = force_reg (<MODE>mode, operands[1]);
2665})
2666
2667;; These patterns work around the early SB-1 rev2 core "F1" erratum:
2668;;
2669;; If an mfc1 or dmfc1 happens to access the floating point register
2670;; file at the same time a long latency operation (div, sqrt, recip,
2671;; sqrt) iterates an intermediate result back through the floating
2672;; point register file bypass, then instead returning the correct
2673;; register value the mfc1 or dmfc1 operation returns the intermediate
2674;; result of the long latency operation.
2675;;
2676;; The workaround is to insert an unconditional 'mov' from/to the
2677;; long latency op destination register.
2678
2679(define_insn "*div<mode>3"
2680  [(set (match_operand:ANYF 0 "register_operand" "=f")
2681	(div:ANYF (match_operand:ANYF 1 "register_operand" "f")
2682		  (match_operand:ANYF 2 "register_operand" "f")))]
2683  "<divide_condition>"
2684{
2685  if (TARGET_FIX_SB1)
2686    return "div.<fmt>\t%0,%1,%2\;mov.<fmt>\t%0,%0";
2687  else
2688    return "div.<fmt>\t%0,%1,%2";
2689}
2690  [(set_attr "type" "fdiv")
2691   (set_attr "mode" "<UNITMODE>")
2692   (set (attr "insn_count")
2693        (if_then_else (match_test "TARGET_FIX_SB1")
2694                      (const_int 2)
2695                      (const_int 1)))])
2696
2697(define_insn "*recip<mode>3"
2698  [(set (match_operand:ANYF 0 "register_operand" "=f")
2699	(div:ANYF (match_operand:ANYF 1 "const_1_operand" "")
2700		  (match_operand:ANYF 2 "register_operand" "f")))]
2701  "ISA_HAS_FP_RECIP_RSQRT (<MODE>mode) && flag_unsafe_math_optimizations"
2702{
2703  if (TARGET_FIX_SB1)
2704    return "recip.<fmt>\t%0,%2\;mov.<fmt>\t%0,%0";
2705  else
2706    return "recip.<fmt>\t%0,%2";
2707}
2708  [(set_attr "type" "frdiv")
2709   (set_attr "mode" "<UNITMODE>")
2710   (set (attr "insn_count")
2711        (if_then_else (match_test "TARGET_FIX_SB1")
2712                      (const_int 2)
2713                      (const_int 1)))])
2714
2715;; VR4120 errata MD(A1): signed division instructions do not work correctly
2716;; with negative operands.  We use special libgcc functions instead.
2717(define_expand "divmod<mode>4"
2718  [(parallel
2719     [(set (match_operand:GPR 0 "register_operand")
2720	   (div:GPR (match_operand:GPR 1 "register_operand")
2721		    (match_operand:GPR 2 "register_operand")))
2722      (set (match_operand:GPR 3 "register_operand")
2723	   (mod:GPR (match_dup 1)
2724		    (match_dup 2)))])]
2725  "ISA_HAS_<D>DIV && !TARGET_FIX_VR4120"
2726{
2727  if (TARGET_MIPS16)
2728    {
2729      rtx lo = gen_rtx_REG (<MODE>mode, LO_REGNUM);
2730      emit_insn (gen_divmod<mode>4_mips16 (operands[0], operands[1],
2731					   operands[2], operands[3], lo));
2732      DONE;
2733    }
2734})
2735
2736(define_insn_and_split "*divmod<mode>4"
2737  [(set (match_operand:GPR 0 "register_operand" "=l")
2738	(div:GPR (match_operand:GPR 1 "register_operand" "d")
2739		 (match_operand:GPR 2 "register_operand" "d")))
2740   (set (match_operand:GPR 3 "register_operand" "=d")
2741	(mod:GPR (match_dup 1)
2742		 (match_dup 2)))]
2743  "ISA_HAS_<D>DIV && !TARGET_FIX_VR4120 && !TARGET_MIPS16"
2744  "#"
2745  "&& reload_completed"
2746  [(const_int 0)]
2747{
2748  emit_insn (gen_divmod<mode>4_split (operands[3], operands[1], operands[2]));
2749  DONE;
2750}
2751 [(set_attr "type" "idiv")
2752  (set_attr "mode" "<MODE>")
2753  (set_attr "insn_count" "2")])
2754
2755;; Expand generates divmod instructions for individual division and modulus
2756;; operations.  We then rely on CSE to reuse earlier divmods where possible.
2757;; This means that, when generating MIPS16 code, it is better not to expose
2758;; the fixed LO register until after CSE has finished.  However, it's still
2759;; better to split before register allocation, so that we don't allocate
2760;; one of the scarce MIPS16 registers to an unused result.
2761(define_insn_and_split "divmod<mode>4_mips16"
2762  [(set (match_operand:GPR 0 "register_operand" "=d")
2763	(div:GPR (match_operand:GPR 1 "register_operand" "d")
2764		 (match_operand:GPR 2 "register_operand" "d")))
2765   (set (match_operand:GPR 3 "register_operand" "=d")
2766	(mod:GPR (match_dup 1)
2767		 (match_dup 2)))
2768   (clobber (match_operand:GPR 4 "lo_operand" "=l"))]
2769  "ISA_HAS_<D>DIV && !TARGET_FIX_VR4120 && TARGET_MIPS16"
2770  "#"
2771  "&& cse_not_expected"
2772  [(const_int 0)]
2773{
2774  emit_insn (gen_divmod<mode>4_split (operands[3], operands[1], operands[2]));
2775  emit_move_insn (operands[0], operands[4]);
2776  DONE;
2777}
2778 [(set_attr "type" "idiv")
2779  (set_attr "mode" "<MODE>")
2780  (set_attr "insn_count" "3")])
2781
2782(define_expand "udivmod<mode>4"
2783  [(parallel
2784     [(set (match_operand:GPR 0 "register_operand")
2785	   (udiv:GPR (match_operand:GPR 1 "register_operand")
2786		     (match_operand:GPR 2 "register_operand")))
2787      (set (match_operand:GPR 3 "register_operand")
2788	   (umod:GPR (match_dup 1)
2789		     (match_dup 2)))])]
2790  "ISA_HAS_<D>DIV && !TARGET_FIX_VR4120"
2791{
2792  if (TARGET_MIPS16)
2793    {
2794      rtx lo = gen_rtx_REG (<MODE>mode, LO_REGNUM);
2795      emit_insn (gen_udivmod<mode>4_mips16 (operands[0], operands[1],
2796					    operands[2], operands[3], lo));
2797      DONE;
2798    }
2799})
2800
2801(define_insn_and_split "*udivmod<mode>4"
2802  [(set (match_operand:GPR 0 "register_operand" "=l")
2803	(udiv:GPR (match_operand:GPR 1 "register_operand" "d")
2804		  (match_operand:GPR 2 "register_operand" "d")))
2805   (set (match_operand:GPR 3 "register_operand" "=d")
2806	(umod:GPR (match_dup 1)
2807		  (match_dup 2)))]
2808  "ISA_HAS_<D>DIV && !TARGET_MIPS16"
2809  "#"
2810  "reload_completed"
2811  [(const_int 0)]
2812{
2813  emit_insn (gen_udivmod<mode>4_split (operands[3], operands[1], operands[2]));
2814  DONE;
2815}
2816  [(set_attr "type" "idiv")
2817   (set_attr "mode" "<MODE>")
2818   (set_attr "insn_count" "2")])
2819
2820;; See the comment above "divmod<mode>4_mips16" for the split timing.
2821(define_insn_and_split "udivmod<mode>4_mips16"
2822  [(set (match_operand:GPR 0 "register_operand" "=d")
2823	(udiv:GPR (match_operand:GPR 1 "register_operand" "d")
2824		  (match_operand:GPR 2 "register_operand" "d")))
2825   (set (match_operand:GPR 3 "register_operand" "=d")
2826	(umod:GPR (match_dup 1)
2827		  (match_dup 2)))
2828   (clobber (match_operand:GPR 4 "lo_operand" "=l"))]
2829  "ISA_HAS_<D>DIV && TARGET_MIPS16"
2830  "#"
2831  "cse_not_expected"
2832  [(const_int 0)]
2833{
2834  emit_insn (gen_udivmod<mode>4_split (operands[3], operands[1], operands[2]));
2835  emit_move_insn (operands[0], operands[4]);
2836  DONE;
2837}
2838  [(set_attr "type" "idiv")
2839   (set_attr "mode" "<MODE>")
2840   (set_attr "insn_count" "3")])
2841
2842(define_expand "<u>divmod<mode>4_split"
2843  [(set (match_operand:GPR 0 "register_operand")
2844	(any_mod:GPR (match_operand:GPR 1 "register_operand")
2845		     (match_operand:GPR 2 "register_operand")))]
2846  ""
2847{
2848  rtx hilo;
2849
2850  if (TARGET_64BIT)
2851    {
2852      hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
2853      emit_insn (gen_<u>divmod<mode>4_hilo_ti (hilo, operands[1],
2854					       operands[2]));
2855      emit_insn (gen_mfhi<mode>_ti (operands[0], hilo));
2856    }
2857  else
2858    {
2859      hilo = gen_rtx_REG (DImode, MD_REG_FIRST);
2860      emit_insn (gen_<u>divmod<mode>4_hilo_di (hilo, operands[1],
2861					       operands[2]));
2862      emit_insn (gen_mfhi<mode>_di (operands[0], hilo));
2863    }
2864  DONE;
2865})
2866
2867(define_insn "<u>divmod<GPR:mode>4_hilo_<HILO:mode>"
2868  [(set (match_operand:HILO 0 "muldiv_target_operand" "=x")
2869	(unspec:HILO
2870	  [(any_div:GPR (match_operand:GPR 1 "register_operand" "d")
2871			(match_operand:GPR 2 "register_operand" "d"))]
2872	  UNSPEC_SET_HILO))]
2873  "ISA_HAS_<GPR:D>DIV"
2874  { return mips_output_division ("<GPR:d>div<u>\t%.,%1,%2", operands); }
2875  [(set_attr "type" "idiv")
2876   (set_attr "mode" "<GPR:MODE>")])
2877
2878;; Integer division and modulus.
2879
2880(define_insn "<u>div<mode>3"
2881  [(set (match_operand:GPR 0 "register_operand" "=&d")
2882	(any_div:GPR (match_operand:GPR 1 "register_operand" "d")
2883		     (match_operand:GPR 2 "register_operand" "d")))]
2884  "TARGET_LOONGSON_2EF || TARGET_LOONGSON_3A || ISA_HAS_R6<D>DIV"
2885  {
2886    if (TARGET_LOONGSON_2EF)
2887      return mips_output_division ("<d>div<u>.g\t%0,%1,%2", operands);
2888    else if (TARGET_LOONGSON_3A)
2889      return mips_output_division ("gs<d>div<u>\t%0,%1,%2", operands);
2890    else
2891      return mips_output_division ("<d>div<u>\t%0,%1,%2", operands);
2892  }
2893  [(set_attr "type" "idiv3")
2894   (set_attr "mode" "<MODE>")])
2895
2896(define_insn "<u>mod<mode>3"
2897  [(set (match_operand:GPR 0 "register_operand" "=&d")
2898	(any_mod:GPR (match_operand:GPR 1 "register_operand" "d")
2899		     (match_operand:GPR 2 "register_operand" "d")))]
2900  "TARGET_LOONGSON_2EF || TARGET_LOONGSON_3A || ISA_HAS_R6<D>DIV"
2901  {
2902    if (TARGET_LOONGSON_2EF)
2903      return mips_output_division ("<d>mod<u>.g\t%0,%1,%2", operands);
2904    else if (TARGET_LOONGSON_3A)
2905      return mips_output_division ("gs<d>mod<u>\t%0,%1,%2", operands);
2906    else
2907      return mips_output_division ("<d>mod<u>\t%0,%1,%2", operands);
2908  }
2909  [(set_attr "type" "idiv3")
2910   (set_attr "mode" "<MODE>")])
2911
2912;;
2913;;  ....................
2914;;
2915;;	SQUARE ROOT
2916;;
2917;;  ....................
2918
2919;; These patterns work around the early SB-1 rev2 core "F1" erratum (see
2920;; "*div[sd]f3" comment for details).
2921
2922(define_insn "sqrt<mode>2"
2923  [(set (match_operand:ANYF 0 "register_operand" "=f")
2924	(sqrt:ANYF (match_operand:ANYF 1 "register_operand" "f")))]
2925  "<sqrt_condition>"
2926{
2927  if (TARGET_FIX_SB1)
2928    return "sqrt.<fmt>\t%0,%1\;mov.<fmt>\t%0,%0";
2929  else
2930    return "sqrt.<fmt>\t%0,%1";
2931}
2932  [(set_attr "type" "fsqrt")
2933   (set_attr "mode" "<UNITMODE>")
2934   (set (attr "insn_count")
2935        (if_then_else (match_test "TARGET_FIX_SB1")
2936                      (const_int 2)
2937                      (const_int 1)))])
2938
2939(define_insn "*rsqrt<mode>a"
2940  [(set (match_operand:ANYF 0 "register_operand" "=f")
2941	(div:ANYF (match_operand:ANYF 1 "const_1_operand" "")
2942		  (sqrt:ANYF (match_operand:ANYF 2 "register_operand" "f"))))]
2943  "ISA_HAS_FP_RECIP_RSQRT (<MODE>mode) && flag_unsafe_math_optimizations"
2944{
2945  if (TARGET_FIX_SB1)
2946    return "rsqrt.<fmt>\t%0,%2\;mov.<fmt>\t%0,%0";
2947  else
2948    return "rsqrt.<fmt>\t%0,%2";
2949}
2950  [(set_attr "type" "frsqrt")
2951   (set_attr "mode" "<UNITMODE>")
2952   (set (attr "insn_count")
2953        (if_then_else (match_test "TARGET_FIX_SB1")
2954                      (const_int 2)
2955                      (const_int 1)))])
2956
2957(define_insn "*rsqrt<mode>b"
2958  [(set (match_operand:ANYF 0 "register_operand" "=f")
2959	(sqrt:ANYF (div:ANYF (match_operand:ANYF 1 "const_1_operand" "")
2960			     (match_operand:ANYF 2 "register_operand" "f"))))]
2961  "ISA_HAS_FP_RECIP_RSQRT (<MODE>mode) && flag_unsafe_math_optimizations"
2962{
2963  if (TARGET_FIX_SB1)
2964    return "rsqrt.<fmt>\t%0,%2\;mov.<fmt>\t%0,%0";
2965  else
2966    return "rsqrt.<fmt>\t%0,%2";
2967}
2968  [(set_attr "type" "frsqrt")
2969   (set_attr "mode" "<UNITMODE>")
2970   (set (attr "insn_count")
2971        (if_then_else (match_test "TARGET_FIX_SB1")
2972                      (const_int 2)
2973                      (const_int 1)))])
2974
2975;;
2976;;  ....................
2977;;
2978;;	ABSOLUTE VALUE
2979;;
2980;;  ....................
2981
2982;; Do not use the integer abs macro instruction, since that signals an
2983;; exception on -2147483648 (sigh).
2984
2985;; The "legacy" (as opposed to "2008") form of ABS.fmt is an arithmetic
2986;; instruction that treats all NaN inputs as invalid; it does not clear
2987;; their sign bit.  We therefore can't use that form if the signs of
2988;; NaNs matter.
2989
2990(define_insn "abs<mode>2"
2991  [(set (match_operand:ANYF 0 "register_operand" "=f")
2992	(abs:ANYF (match_operand:ANYF 1 "register_operand" "f")))]
2993  "mips_abs == MIPS_IEEE_754_2008 || !HONOR_NANS (<MODE>mode)"
2994  "abs.<fmt>\t%0,%1"
2995  [(set_attr "type" "fabs")
2996   (set_attr "mode" "<UNITMODE>")])
2997
2998;;
2999;;  ...................
3000;;
3001;;  Count leading zeroes.
3002;;
3003;;  ...................
3004;;
3005
3006(define_insn "clz<mode>2"
3007  [(set (match_operand:GPR 0 "register_operand" "=d")
3008	(clz:GPR (match_operand:GPR 1 "register_operand" "d")))]
3009  "ISA_HAS_CLZ_CLO"
3010  "<d>clz\t%0,%1"
3011  [(set_attr "type" "clz")
3012   (set_attr "mode" "<MODE>")])
3013
3014;;
3015;;  ...................
3016;;
3017;;  Count number of set bits.
3018;;
3019;;  ...................
3020;;
3021
3022(define_insn "popcount<mode>2"
3023  [(set (match_operand:GPR 0 "register_operand" "=d")
3024	(popcount:GPR (match_operand:GPR 1 "register_operand" "d")))]
3025  "ISA_HAS_POP"
3026  "<d>pop\t%0,%1"
3027  [(set_attr "type" "pop")
3028   (set_attr "mode" "<MODE>")])
3029
3030;; The POP instruction is special as it does not take into account the upper
3031;; 32bits and is documented that way.
3032(define_insn "*popcountdi2_trunc"
3033  [(set (match_operand:SI 0 "register_operand" "=d")
3034       (popcount:SI (truncate:SI (match_operand:DI 1 "register_operand" "d"))))]
3035  "ISA_HAS_POP && TARGET_64BIT"
3036  "pop\t%0,%1"
3037  [(set_attr "type" "pop")
3038   (set_attr "mode" "SI")])
3039
3040;;
3041;;  ....................
3042;;
3043;;	NEGATION and ONE'S COMPLEMENT
3044;;
3045;;  ....................
3046
3047(define_insn "negsi2"
3048  [(set (match_operand:SI 0 "register_operand" "=d")
3049	(neg:SI (match_operand:SI 1 "register_operand" "d")))]
3050  ""
3051{
3052  if (TARGET_MIPS16)
3053    return "neg\t%0,%1";
3054  else
3055    return "subu\t%0,%.,%1";
3056}
3057  [(set_attr "alu_type"	"sub")
3058   (set_attr "mode"	"SI")])
3059
3060(define_insn "negdi2"
3061  [(set (match_operand:DI 0 "register_operand" "=d")
3062	(neg:DI (match_operand:DI 1 "register_operand" "d")))]
3063  "TARGET_64BIT && !TARGET_MIPS16"
3064  "dsubu\t%0,%.,%1"
3065  [(set_attr "alu_type"	"sub")
3066   (set_attr "mode"	"DI")])
3067
3068;; The "legacy" (as opposed to "2008") form of NEG.fmt is an arithmetic
3069;; instruction that treats all NaN inputs as invalid; it does not flip
3070;; their sign bit.  We therefore can't use that form if the signs of
3071;; NaNs matter.
3072
3073(define_insn "neg<mode>2"
3074  [(set (match_operand:ANYF 0 "register_operand" "=f")
3075	(neg:ANYF (match_operand:ANYF 1 "register_operand" "f")))]
3076  "mips_abs == MIPS_IEEE_754_2008 || !HONOR_NANS (<MODE>mode)"
3077  "neg.<fmt>\t%0,%1"
3078  [(set_attr "type" "fneg")
3079   (set_attr "mode" "<UNITMODE>")])
3080
3081(define_insn "one_cmpl<mode>2"
3082  [(set (match_operand:GPR 0 "register_operand" "=!u,d")
3083	(not:GPR (match_operand:GPR 1 "register_operand" "!u,d")))]
3084  ""
3085{
3086  if (TARGET_MIPS16)
3087    return "not\t%0,%1";
3088  else
3089    return "nor\t%0,%.,%1";
3090}
3091  [(set_attr "alu_type" "not")
3092   (set_attr "compression" "micromips,*")
3093   (set_attr "mode" "<MODE>")])
3094
3095;;
3096;;  ....................
3097;;
3098;;	LOGICAL
3099;;
3100;;  ....................
3101;;
3102
3103;; Many of these instructions use trivial define_expands, because we
3104;; want to use a different set of constraints when TARGET_MIPS16.
3105
3106(define_expand "and<mode>3"
3107  [(set (match_operand:GPR 0 "register_operand")
3108	(and:GPR (match_operand:GPR 1 "register_operand")
3109		 (match_operand:GPR 2 "and_reg_operand")))])
3110
3111;; The middle-end is not allowed to convert ANDing with 0xffff_ffff into a
3112;; zero_extendsidi2 because of TRULY_NOOP_TRUNCATION, so handle these here.
3113;; Note that this variant does not trigger for SI mode because we require
3114;; a 64-bit HOST_WIDE_INT and 0xffff_ffff wouldn't be a canonical
3115;; sign-extended SImode value.
3116;;
3117;; These are possible combinations for operand 1 and 2.  The table
3118;; includes both MIPS and MIPS16 cases.  (r=register, mem=memory,
3119;; 16=MIPS16, x=match, S=split):
3120;;
3121;;     \ op1    r/EXT   r/!EXT  mem   r/16   mem/16
3122;;  op2
3123;;
3124;;  andi           x     x
3125;;  0xff           x     x       x             x
3126;;  0xffff         x     x       x             x
3127;;  0xffff_ffff    x     S       x     S       x
3128;;  low-bitmask    x
3129;;  register       x     x
3130;;  register =op1                      x
3131
3132(define_insn "*and<mode>3"
3133  [(set (match_operand:GPR 0 "register_operand" "=d,d,d,!u,d,d,d,!u,d")
3134	(and:GPR (match_operand:GPR 1 "nonimmediate_operand" "o,o,W,!u,d,d,d,0,d")
3135		 (match_operand:GPR 2 "and_operand" "Yb,Yh,Yw,Uean,K,Yx,Yw,!u,d")))]
3136  "!TARGET_MIPS16 && and_operands_ok (<MODE>mode, operands[1], operands[2])"
3137{
3138  int len;
3139
3140  switch (which_alternative)
3141    {
3142    case 0:
3143      operands[1] = gen_lowpart (QImode, operands[1]);
3144      return "lbu\t%0,%1";
3145    case 1:
3146      operands[1] = gen_lowpart (HImode, operands[1]);
3147      return "lhu\t%0,%1";
3148    case 2:
3149      operands[1] = gen_lowpart (SImode, operands[1]);
3150      return "lwu\t%0,%1";
3151    case 3:
3152    case 4:
3153      return "andi\t%0,%1,%x2";
3154    case 5:
3155      len = low_bitmask_len (<MODE>mode, INTVAL (operands[2]));
3156      operands[2] = GEN_INT (len);
3157      return "<d>ext\t%0,%1,0,%2";
3158    case 6:
3159      return "#";
3160    case 7:
3161    case 8:
3162      return "and\t%0,%1,%2";
3163    default:
3164      gcc_unreachable ();
3165    }
3166}
3167  [(set_attr "move_type" "load,load,load,andi,andi,ext_ins,shift_shift,logical,logical")
3168   (set_attr "compression" "*,*,*,micromips,*,*,*,micromips,*")
3169   (set_attr "mode" "<MODE>")])
3170
3171(define_insn "*and<mode>3_mips16"
3172  [(set (match_operand:GPR 0 "register_operand" "=d,d,d,d,d")
3173	(and:GPR (match_operand:GPR 1 "nonimmediate_operand" "%W,W,W,d,0")
3174		 (match_operand:GPR 2 "and_operand" "Yb,Yh,Yw,Yw,d")))]
3175  "TARGET_MIPS16 && and_operands_ok (<MODE>mode, operands[1], operands[2])"
3176{
3177  switch (which_alternative)
3178    {
3179    case 0:
3180      operands[1] = gen_lowpart (QImode, operands[1]);
3181      return "lbu\t%0,%1";
3182    case 1:
3183      operands[1] = gen_lowpart (HImode, operands[1]);
3184      return "lhu\t%0,%1";
3185    case 2:
3186      operands[1] = gen_lowpart (SImode, operands[1]);
3187      return "lwu\t%0,%1";
3188    case 3:
3189      return "#";
3190    case 4:
3191      return "and\t%0,%2";
3192    default:
3193      gcc_unreachable ();
3194    }
3195}
3196  [(set_attr "move_type" "load,load,load,shift_shift,logical")
3197   (set_attr "mode" "<MODE>")])
3198
3199(define_expand "ior<mode>3"
3200  [(set (match_operand:GPR 0 "register_operand")
3201	(ior:GPR (match_operand:GPR 1 "register_operand")
3202		 (match_operand:GPR 2 "uns_arith_operand")))]
3203  ""
3204{
3205  if (TARGET_MIPS16)
3206    operands[2] = force_reg (<MODE>mode, operands[2]);
3207})
3208
3209(define_insn "*ior<mode>3"
3210  [(set (match_operand:GPR 0 "register_operand" "=!u,d,d")
3211	(ior:GPR (match_operand:GPR 1 "register_operand" "%0,d,d")
3212		 (match_operand:GPR 2 "uns_arith_operand" "!u,d,K")))]
3213  "!TARGET_MIPS16"
3214  "@
3215   or\t%0,%1,%2
3216   or\t%0,%1,%2
3217   ori\t%0,%1,%x2"
3218  [(set_attr "alu_type" "or")
3219   (set_attr "compression" "micromips,*,*")
3220   (set_attr "mode" "<MODE>")])
3221
3222(define_insn "*ior<mode>3_mips16"
3223  [(set (match_operand:GPR 0 "register_operand" "=d")
3224	(ior:GPR (match_operand:GPR 1 "register_operand" "%0")
3225		 (match_operand:GPR 2 "register_operand" "d")))]
3226  "TARGET_MIPS16"
3227  "or\t%0,%2"
3228  [(set_attr "alu_type" "or")
3229   (set_attr "mode" "<MODE>")])
3230
3231(define_expand "xor<mode>3"
3232  [(set (match_operand:GPR 0 "register_operand")
3233	(xor:GPR (match_operand:GPR 1 "register_operand")
3234		 (match_operand:GPR 2 "uns_arith_operand")))]
3235  ""
3236  "")
3237
3238(define_insn "*xor<mode>3"
3239  [(set (match_operand:GPR 0 "register_operand" "=!u,d,d")
3240	(xor:GPR (match_operand:GPR 1 "register_operand" "%0,d,d")
3241		 (match_operand:GPR 2 "uns_arith_operand" "!u,d,K")))]
3242  "!TARGET_MIPS16"
3243  "@
3244   xor\t%0,%1,%2
3245   xor\t%0,%1,%2
3246   xori\t%0,%1,%x2"
3247  [(set_attr "alu_type" "xor")
3248   (set_attr "compression" "micromips,*,*")
3249   (set_attr "mode" "<MODE>")])
3250
3251(define_insn "*xor<mode>3_mips16"
3252  [(set (match_operand:GPR 0 "register_operand" "=d,t,t,t")
3253	(xor:GPR (match_operand:GPR 1 "register_operand" "%0,d,d,d")
3254		 (match_operand:GPR 2 "uns_arith_operand" "d,Uub8,K,d")))]
3255  "TARGET_MIPS16"
3256  "@
3257   xor\t%0,%2
3258   cmpi\t%1,%2
3259   cmpi\t%1,%2
3260   cmp\t%1,%2"
3261  [(set_attr "alu_type" "xor")
3262   (set_attr "mode" "<MODE>")
3263   (set_attr "extended_mips16" "no,no,yes,no")])
3264
3265(define_insn "*nor<mode>3"
3266  [(set (match_operand:GPR 0 "register_operand" "=d")
3267	(and:GPR (not:GPR (match_operand:GPR 1 "register_operand" "d"))
3268		 (not:GPR (match_operand:GPR 2 "register_operand" "d"))))]
3269  "!TARGET_MIPS16"
3270  "nor\t%0,%1,%2"
3271  [(set_attr "alu_type" "nor")
3272   (set_attr "mode" "<MODE>")])
3273
3274;;
3275;;  ....................
3276;;
3277;;	TRUNCATION
3278;;
3279;;  ....................
3280
3281
3282
3283(define_insn "truncdfsf2"
3284  [(set (match_operand:SF 0 "register_operand" "=f")
3285	(float_truncate:SF (match_operand:DF 1 "register_operand" "f")))]
3286  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
3287  "cvt.s.d\t%0,%1"
3288  [(set_attr "type"	"fcvt")
3289   (set_attr "cnv_mode"	"D2S")   
3290   (set_attr "mode"	"SF")])
3291
3292;; Integer truncation patterns.  Truncating SImode values to smaller
3293;; modes is a no-op, as it is for most other GCC ports.  Truncating
3294;; DImode values to SImode is not a no-op for TARGET_64BIT since we
3295;; need to make sure that the lower 32 bits are properly sign-extended
3296;; (see TRULY_NOOP_TRUNCATION).  Truncating DImode values into modes
3297;; smaller than SImode is equivalent to two separate truncations:
3298;;
3299;;                        A       B
3300;;    DI ---> HI  ==  DI ---> SI ---> HI
3301;;    DI ---> QI  ==  DI ---> SI ---> QI
3302;;
3303;; Step A needs a real instruction but step B does not.
3304
3305(define_insn "truncdi<mode>2"
3306  [(set (match_operand:SUBDI 0 "nonimmediate_operand" "=d,m")
3307        (truncate:SUBDI (match_operand:DI 1 "register_operand" "d,d")))]
3308  "TARGET_64BIT"
3309  "@
3310    sll\t%0,%1,0
3311    <store>\t%1,%0"
3312  [(set_attr "move_type" "sll0,store")
3313   (set_attr "mode" "SI")])
3314
3315;; Combiner patterns to optimize shift/truncate combinations.
3316
3317(define_insn "*ashr_trunc<mode>"
3318  [(set (match_operand:SUBDI 0 "register_operand" "=d")
3319        (truncate:SUBDI
3320	  (ashiftrt:DI (match_operand:DI 1 "register_operand" "d")
3321		       (match_operand:DI 2 "const_arith_operand" ""))))]
3322  "TARGET_64BIT && !TARGET_MIPS16 && IN_RANGE (INTVAL (operands[2]), 32, 63)"
3323  "dsra\t%0,%1,%2"
3324  [(set_attr "type" "shift")
3325   (set_attr "mode" "<MODE>")])
3326
3327(define_insn "*lshr32_trunc<mode>"
3328  [(set (match_operand:SUBDI 0 "register_operand" "=d")
3329        (truncate:SUBDI
3330	  (lshiftrt:DI (match_operand:DI 1 "register_operand" "d")
3331		       (const_int 32))))]
3332  "TARGET_64BIT && !TARGET_MIPS16"
3333  "dsra\t%0,%1,32"
3334  [(set_attr "type" "shift")
3335   (set_attr "mode" "<MODE>")])
3336
3337;; Logical shift by more than 32 results in proper SI values so truncation is
3338;; removed by the middle end.  Note that a logical shift by 32 is handled by
3339;; the previous pattern.
3340(define_insn "*<optab>_trunc<mode>_exts"
3341  [(set (match_operand:SUBDI 0 "register_operand" "=d")
3342        (truncate:SUBDI
3343	 (any_shiftrt:DI (match_operand:DI 1 "register_operand" "d")
3344			 (match_operand:DI 2 "const_arith_operand" ""))))]
3345  "ISA_HAS_EXTS && TARGET_64BIT && UINTVAL (operands[2]) < 32"
3346  "exts\t%0,%1,%2,31"
3347  [(set_attr "type" "arith")
3348   (set_attr "mode" "<MODE>")])
3349
3350;;
3351;;  ....................
3352;;
3353;;	ZERO EXTENSION
3354;;
3355;;  ....................
3356
3357;; Extension insns.
3358
3359(define_expand "zero_extendsidi2"
3360  [(set (match_operand:DI 0 "register_operand")
3361        (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand")))]
3362  "TARGET_64BIT")
3363
3364(define_insn_and_split "*zero_extendsidi2"
3365  [(set (match_operand:DI 0 "register_operand" "=d,d")
3366        (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "d,W")))]
3367  "TARGET_64BIT && !ISA_HAS_EXT_INS"
3368  "@
3369   #
3370   lwu\t%0,%1"
3371  "&& reload_completed && REG_P (operands[1])"
3372  [(set (match_dup 0)
3373        (ashift:DI (match_dup 1) (const_int 32)))
3374   (set (match_dup 0)
3375        (lshiftrt:DI (match_dup 0) (const_int 32)))]
3376  { operands[1] = gen_lowpart (DImode, operands[1]); }
3377  [(set_attr "move_type" "shift_shift,load")
3378   (set_attr "mode" "DI")])
3379
3380(define_insn "*zero_extendsidi2_dext"
3381  [(set (match_operand:DI 0 "register_operand" "=d,d")
3382        (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "d,W")))]
3383  "TARGET_64BIT && ISA_HAS_EXT_INS"
3384  "@
3385   dext\t%0,%1,0,32
3386   lwu\t%0,%1"
3387  [(set_attr "move_type" "arith,load")
3388   (set_attr "mode" "DI")])
3389
3390;; See the comment before the *and<mode>3 pattern why this is generated by
3391;; combine.
3392
3393(define_split
3394  [(set (match_operand:DI 0 "register_operand")
3395        (and:DI (match_operand:DI 1 "register_operand")
3396		(const_int 4294967295)))]
3397  "TARGET_64BIT && !ISA_HAS_EXT_INS && reload_completed"
3398  [(set (match_dup 0)
3399        (ashift:DI (match_dup 1) (const_int 32)))
3400   (set (match_dup 0)
3401        (lshiftrt:DI (match_dup 0) (const_int 32)))])
3402
3403(define_expand "zero_extend<SHORT:mode><GPR:mode>2"
3404  [(set (match_operand:GPR 0 "register_operand")
3405        (zero_extend:GPR (match_operand:SHORT 1 "nonimmediate_operand")))]
3406  ""
3407{
3408  if (TARGET_MIPS16 && !GENERATE_MIPS16E
3409      && !memory_operand (operands[1], <SHORT:MODE>mode))
3410    {
3411      emit_insn (gen_and<GPR:mode>3 (operands[0],
3412				     gen_lowpart (<GPR:MODE>mode, operands[1]),
3413				     force_reg (<GPR:MODE>mode,
3414						GEN_INT (<SHORT:mask>))));
3415      DONE;
3416    }
3417})
3418
3419(define_insn "*zero_extend<SHORT:mode><GPR:mode>2"
3420  [(set (match_operand:GPR 0 "register_operand" "=!u,d,d")
3421        (zero_extend:GPR
3422	     (match_operand:SHORT 1 "nonimmediate_operand" "!u,d,m")))]
3423  "!TARGET_MIPS16"
3424  "@
3425   andi\t%0,%1,<SHORT:mask>
3426   andi\t%0,%1,<SHORT:mask>
3427   l<SHORT:size>u\t%0,%1"
3428  [(set_attr "move_type" "andi,andi,load")
3429   (set_attr "compression" "micromips,*,*")
3430   (set_attr "mode" "<GPR:MODE>")])
3431
3432(define_insn "*zero_extend<SHORT:mode><GPR:mode>2_mips16e"
3433  [(set (match_operand:GPR 0 "register_operand" "=d")
3434        (zero_extend:GPR (match_operand:SHORT 1 "register_operand" "0")))]
3435  "GENERATE_MIPS16E"
3436  "ze<SHORT:size>\t%0"
3437  ;; This instruction is effectively a special encoding of ANDI.
3438  [(set_attr "move_type" "andi")
3439   (set_attr "mode" "<GPR:MODE>")])
3440
3441(define_insn "*zero_extend<SHORT:mode><GPR:mode>2_mips16"
3442  [(set (match_operand:GPR 0 "register_operand" "=d")
3443        (zero_extend:GPR (match_operand:SHORT 1 "memory_operand" "m")))]
3444  "TARGET_MIPS16"
3445  "l<SHORT:size>u\t%0,%1"
3446  [(set_attr "move_type" "load")
3447   (set_attr "mode" "<GPR:MODE>")])
3448
3449(define_expand "zero_extendqihi2"
3450  [(set (match_operand:HI 0 "register_operand")
3451	(zero_extend:HI (match_operand:QI 1 "nonimmediate_operand")))]
3452  ""
3453{
3454  if (TARGET_MIPS16 && !memory_operand (operands[1], QImode))
3455    {
3456      emit_insn (gen_zero_extendqisi2 (gen_lowpart (SImode, operands[0]),
3457				       operands[1]));
3458      DONE;
3459    }
3460})
3461
3462(define_insn "*zero_extendqihi2"
3463  [(set (match_operand:HI 0 "register_operand" "=d,d")
3464        (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "d,m")))]
3465  "!TARGET_MIPS16"
3466  "@
3467   andi\t%0,%1,0x00ff
3468   lbu\t%0,%1"
3469  [(set_attr "move_type" "andi,load")
3470   (set_attr "mode" "HI")])
3471
3472(define_insn "*zero_extendqihi2_mips16"
3473  [(set (match_operand:HI 0 "register_operand" "=d")
3474        (zero_extend:HI (match_operand:QI 1 "memory_operand" "m")))]
3475  "TARGET_MIPS16"
3476  "lbu\t%0,%1"
3477  [(set_attr "move_type" "load")
3478   (set_attr "mode" "HI")])
3479
3480;; Combiner patterns to optimize truncate/zero_extend combinations.
3481
3482(define_insn "*zero_extend<GPR:mode>_trunc<SHORT:mode>"
3483  [(set (match_operand:GPR 0 "register_operand" "=d")
3484        (zero_extend:GPR
3485	    (truncate:SHORT (match_operand:DI 1 "register_operand" "d"))))]
3486  "TARGET_64BIT && !TARGET_MIPS16"
3487{
3488  operands[2] = GEN_INT (GET_MODE_MASK (<SHORT:MODE>mode));
3489  return "andi\t%0,%1,%x2";
3490}
3491  [(set_attr "alu_type" "and")
3492   (set_attr "mode" "<GPR:MODE>")])
3493
3494(define_insn "*zero_extendhi_truncqi"
3495  [(set (match_operand:HI 0 "register_operand" "=d")
3496        (zero_extend:HI
3497	    (truncate:QI (match_operand:DI 1 "register_operand" "d"))))]
3498  "TARGET_64BIT && !TARGET_MIPS16"
3499  "andi\t%0,%1,0xff"
3500  [(set_attr "alu_type" "and")
3501   (set_attr "mode" "HI")])
3502
3503;;
3504;;  ....................
3505;;
3506;;	SIGN EXTENSION
3507;;
3508;;  ....................
3509
3510;; Extension insns.
3511;; Those for integer source operand are ordered widest source type first.
3512
3513;; When TARGET_64BIT, all SImode integer and accumulator registers
3514;; should already be in sign-extended form (see TRULY_NOOP_TRUNCATION
3515;; and truncdisi2).  We can therefore get rid of register->register
3516;; instructions if we constrain the source to be in the same register as
3517;; the destination.
3518;;
3519;; Only the pre-reload scheduler sees the type of the register alternatives;
3520;; we split them into nothing before the post-reload scheduler runs.
3521;; These alternatives therefore have type "move" in order to reflect
3522;; what happens if the two pre-reload operands cannot be tied, and are
3523;; instead allocated two separate GPRs.  We don't distinguish between
3524;; the GPR and LO cases because we don't usually know during pre-reload
3525;; scheduling whether an operand will be LO or not.
3526(define_insn_and_split "extendsidi2"
3527  [(set (match_operand:DI 0 "register_operand" "=d,l,d")
3528        (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "0,0,m")))]
3529  "TARGET_64BIT"
3530  "@
3531   #
3532   #
3533   lw\t%0,%1"
3534  "&& reload_completed && register_operand (operands[1], VOIDmode)"
3535  [(const_int 0)]
3536{
3537  emit_note (NOTE_INSN_DELETED);
3538  DONE;
3539}
3540  [(set_attr "move_type" "move,move,load")
3541   (set_attr "mode" "DI")])
3542
3543(define_expand "extend<SHORT:mode><GPR:mode>2"
3544  [(set (match_operand:GPR 0 "register_operand")
3545        (sign_extend:GPR (match_operand:SHORT 1 "nonimmediate_operand")))]
3546  "")
3547
3548(define_insn "*extend<SHORT:mode><GPR:mode>2_mips16e"
3549  [(set (match_operand:GPR 0 "register_operand" "=d,d")
3550        (sign_extend:GPR (match_operand:SHORT 1 "nonimmediate_operand" "0,m")))]
3551  "GENERATE_MIPS16E"
3552  "@
3553   se<SHORT:size>\t%0
3554   l<SHORT:size>\t%0,%1"
3555  [(set_attr "move_type" "signext,load")
3556   (set_attr "mode" "<GPR:MODE>")])
3557
3558(define_insn_and_split "*extend<SHORT:mode><GPR:mode>2"
3559  [(set (match_operand:GPR 0 "register_operand" "=d,d")
3560        (sign_extend:GPR
3561	     (match_operand:SHORT 1 "nonimmediate_operand" "d,m")))]
3562  "!ISA_HAS_SEB_SEH && !GENERATE_MIPS16E"
3563  "@
3564   #
3565   l<SHORT:size>\t%0,%1"
3566  "&& reload_completed && REG_P (operands[1])"
3567  [(set (match_dup 0) (ashift:GPR (match_dup 1) (match_dup 2)))
3568   (set (match_dup 0) (ashiftrt:GPR (match_dup 0) (match_dup 2)))]
3569{
3570  operands[1] = gen_lowpart (<GPR:MODE>mode, operands[1]);
3571  operands[2] = GEN_INT (GET_MODE_BITSIZE (<GPR:MODE>mode)
3572			 - GET_MODE_BITSIZE (<SHORT:MODE>mode));
3573}
3574  [(set_attr "move_type" "shift_shift,load")
3575   (set_attr "mode" "<GPR:MODE>")])
3576
3577(define_insn "*extend<SHORT:mode><GPR:mode>2_se<SHORT:size>"
3578  [(set (match_operand:GPR 0 "register_operand" "=d,d")
3579        (sign_extend:GPR
3580	     (match_operand:SHORT 1 "nonimmediate_operand" "d,m")))]
3581  "ISA_HAS_SEB_SEH"
3582  "@
3583   se<SHORT:size>\t%0,%1
3584   l<SHORT:size>\t%0,%1"
3585  [(set_attr "move_type" "signext,load")
3586   (set_attr "mode" "<GPR:MODE>")])
3587
3588(define_expand "extendqihi2"
3589  [(set (match_operand:HI 0 "register_operand")
3590        (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand")))]
3591  "")
3592
3593(define_insn "*extendqihi2_mips16e"
3594  [(set (match_operand:HI 0 "register_operand" "=d,d")
3595        (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "0,m")))]
3596  "GENERATE_MIPS16E"
3597  "@
3598   seb\t%0
3599   lb\t%0,%1"
3600  [(set_attr "move_type" "signext,load")
3601   (set_attr "mode" "SI")])
3602
3603(define_insn_and_split "*extendqihi2"
3604  [(set (match_operand:HI 0 "register_operand" "=d,d")
3605        (sign_extend:HI
3606	     (match_operand:QI 1 "nonimmediate_operand" "d,m")))]
3607  "!ISA_HAS_SEB_SEH && !GENERATE_MIPS16E"
3608  "@
3609   #
3610   lb\t%0,%1"
3611  "&& reload_completed && REG_P (operands[1])"
3612  [(set (match_dup 0) (ashift:SI (match_dup 1) (match_dup 2)))
3613   (set (match_dup 0) (ashiftrt:SI (match_dup 0) (match_dup 2)))]
3614{
3615  operands[0] = gen_lowpart (SImode, operands[0]);
3616  operands[1] = gen_lowpart (SImode, operands[1]);
3617  operands[2] = GEN_INT (GET_MODE_BITSIZE (SImode)
3618			 - GET_MODE_BITSIZE (QImode));
3619}
3620  [(set_attr "move_type" "shift_shift,load")
3621   (set_attr "mode" "SI")])
3622
3623(define_insn "*extendqihi2_seb"
3624  [(set (match_operand:HI 0 "register_operand" "=d,d")
3625        (sign_extend:HI
3626	     (match_operand:QI 1 "nonimmediate_operand" "d,m")))]
3627  "ISA_HAS_SEB_SEH"
3628  "@
3629   seb\t%0,%1
3630   lb\t%0,%1"
3631  [(set_attr "move_type" "signext,load")
3632   (set_attr "mode" "SI")])
3633
3634;; Combiner patterns for truncate/sign_extend combinations.  The SI versions
3635;; use the shift/truncate patterns.
3636
3637(define_insn_and_split "*extenddi_truncate<mode>"
3638  [(set (match_operand:DI 0 "register_operand" "=d")
3639	(sign_extend:DI
3640	    (truncate:SHORT (match_operand:DI 1 "register_operand" "d"))))]
3641  "TARGET_64BIT && !TARGET_MIPS16 && !ISA_HAS_EXTS"
3642  "#"
3643  "&& reload_completed"
3644  [(set (match_dup 2)
3645	(ashift:DI (match_dup 1)
3646		   (match_dup 3)))
3647   (set (match_dup 0)
3648	(ashiftrt:DI (match_dup 2)
3649		     (match_dup 3)))]
3650{
3651  operands[2] = gen_lowpart (DImode, operands[0]);
3652  operands[3] = GEN_INT (BITS_PER_WORD - GET_MODE_BITSIZE (<MODE>mode));
3653}
3654  [(set_attr "move_type" "shift_shift")
3655   (set_attr "mode" "DI")])
3656
3657(define_insn_and_split "*extendsi_truncate<mode>"
3658  [(set (match_operand:SI 0 "register_operand" "=d")
3659	(sign_extend:SI
3660	    (truncate:SHORT (match_operand:DI 1 "register_operand" "d"))))]
3661  "TARGET_64BIT && !TARGET_MIPS16 && !ISA_HAS_EXTS"
3662  "#"
3663  "&& reload_completed"
3664  [(set (match_dup 2)
3665	(ashift:DI (match_dup 1)
3666		   (match_dup 3)))
3667   (set (match_dup 0)
3668	(truncate:SI (ashiftrt:DI (match_dup 2)
3669				  (match_dup 3))))]
3670{
3671  operands[2] = gen_lowpart (DImode, operands[0]);
3672  operands[3] = GEN_INT (BITS_PER_WORD - GET_MODE_BITSIZE (<MODE>mode));
3673}
3674  [(set_attr "move_type" "shift_shift")
3675   (set_attr "mode" "SI")])
3676
3677(define_insn_and_split "*extendhi_truncateqi"
3678  [(set (match_operand:HI 0 "register_operand" "=d")
3679	(sign_extend:HI
3680	    (truncate:QI (match_operand:DI 1 "register_operand" "d"))))]
3681  "TARGET_64BIT && !TARGET_MIPS16 && !ISA_HAS_EXTS"
3682  "#"
3683  "&& reload_completed"
3684  [(set (match_dup 2)
3685	(ashift:DI (match_dup 1)
3686		   (const_int 56)))
3687   (set (match_dup 0)
3688	(truncate:HI (ashiftrt:DI (match_dup 2)
3689				  (const_int 56))))]
3690{
3691  operands[2] = gen_lowpart (DImode, operands[0]);
3692}
3693  [(set_attr "move_type" "shift_shift")
3694   (set_attr "mode" "SI")])
3695
3696(define_insn "*extend<GPR:mode>_truncate<SHORT:mode>_exts"
3697  [(set (match_operand:GPR 0 "register_operand" "=d")
3698	(sign_extend:GPR
3699	    (truncate:SHORT (match_operand:DI 1 "register_operand" "d"))))]
3700  "TARGET_64BIT && !TARGET_MIPS16 && ISA_HAS_EXTS"
3701{
3702  operands[2] = GEN_INT (GET_MODE_BITSIZE (<SHORT:MODE>mode));
3703  return "exts\t%0,%1,0,%m2";
3704}
3705  [(set_attr "type" "arith")
3706   (set_attr "mode" "<GPR:MODE>")])
3707
3708(define_insn "*extendhi_truncateqi_exts"
3709  [(set (match_operand:HI 0 "register_operand" "=d")
3710	(sign_extend:HI
3711	    (truncate:QI (match_operand:DI 1 "register_operand" "d"))))]
3712  "TARGET_64BIT && !TARGET_MIPS16 && ISA_HAS_EXTS"
3713  "exts\t%0,%1,0,7"
3714  [(set_attr "type" "arith")
3715   (set_attr "mode" "SI")])
3716
3717(define_insn "extendsfdf2"
3718  [(set (match_operand:DF 0 "register_operand" "=f")
3719	(float_extend:DF (match_operand:SF 1 "register_operand" "f")))]
3720  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
3721  "cvt.d.s\t%0,%1"
3722  [(set_attr "type"	"fcvt")
3723   (set_attr "cnv_mode"	"S2D")   
3724   (set_attr "mode"	"DF")])
3725
3726;;
3727;;  ....................
3728;;
3729;;	CONVERSIONS
3730;;
3731;;  ....................
3732
3733(define_expand "fix_truncdfsi2"
3734  [(set (match_operand:SI 0 "register_operand")
3735	(fix:SI (match_operand:DF 1 "register_operand")))]
3736  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
3737{
3738  if (!ISA_HAS_TRUNC_W)
3739    {
3740      emit_insn (gen_fix_truncdfsi2_macro (operands[0], operands[1]));
3741      DONE;
3742    }
3743})
3744
3745(define_insn "fix_truncdfsi2_insn"
3746  [(set (match_operand:SI 0 "register_operand" "=f")
3747	(fix:SI (match_operand:DF 1 "register_operand" "f")))]
3748  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && ISA_HAS_TRUNC_W"
3749  "trunc.w.d %0,%1"
3750  [(set_attr "type"	"fcvt")
3751   (set_attr "mode"	"DF")
3752   (set_attr "cnv_mode"	"D2I")])
3753
3754(define_insn "fix_truncdfsi2_macro"
3755  [(set (match_operand:SI 0 "register_operand" "=f")
3756	(fix:SI (match_operand:DF 1 "register_operand" "f")))
3757   (clobber (match_scratch:DF 2 "=d"))]
3758  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && !ISA_HAS_TRUNC_W"
3759{
3760  if (mips_nomacro.nesting_level > 0)
3761    return ".set\tmacro\;trunc.w.d %0,%1,%2\;.set\tnomacro";
3762  else
3763    return "trunc.w.d %0,%1,%2";
3764}
3765  [(set_attr "type"	"fcvt")
3766   (set_attr "mode"	"DF")
3767   (set_attr "cnv_mode"	"D2I")
3768   (set_attr "insn_count" "9")])
3769
3770(define_expand "fix_truncsfsi2"
3771  [(set (match_operand:SI 0 "register_operand")
3772	(fix:SI (match_operand:SF 1 "register_operand")))]
3773  "TARGET_HARD_FLOAT"
3774{
3775  if (!ISA_HAS_TRUNC_W)
3776    {
3777      emit_insn (gen_fix_truncsfsi2_macro (operands[0], operands[1]));
3778      DONE;
3779    }
3780})
3781
3782(define_insn "fix_truncsfsi2_insn"
3783  [(set (match_operand:SI 0 "register_operand" "=f")
3784	(fix:SI (match_operand:SF 1 "register_operand" "f")))]
3785  "TARGET_HARD_FLOAT && ISA_HAS_TRUNC_W"
3786  "trunc.w.s %0,%1"
3787  [(set_attr "type"	"fcvt")
3788   (set_attr "mode"	"SF")
3789   (set_attr "cnv_mode"	"S2I")])
3790
3791(define_insn "fix_truncsfsi2_macro"
3792  [(set (match_operand:SI 0 "register_operand" "=f")
3793	(fix:SI (match_operand:SF 1 "register_operand" "f")))
3794   (clobber (match_scratch:SF 2 "=d"))]
3795  "TARGET_HARD_FLOAT && !ISA_HAS_TRUNC_W"
3796{
3797  if (mips_nomacro.nesting_level > 0)
3798    return ".set\tmacro\;trunc.w.s %0,%1,%2\;.set\tnomacro";
3799  else
3800    return "trunc.w.s %0,%1,%2";
3801}
3802  [(set_attr "type"	"fcvt")
3803   (set_attr "mode"	"SF")
3804   (set_attr "cnv_mode"	"S2I")
3805   (set_attr "insn_count" "9")])
3806
3807
3808(define_insn "fix_truncdfdi2"
3809  [(set (match_operand:DI 0 "register_operand" "=f")
3810	(fix:DI (match_operand:DF 1 "register_operand" "f")))]
3811  "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
3812  "trunc.l.d %0,%1"
3813  [(set_attr "type"	"fcvt")
3814   (set_attr "mode"	"DF")
3815   (set_attr "cnv_mode"	"D2I")])
3816
3817
3818(define_insn "fix_truncsfdi2"
3819  [(set (match_operand:DI 0 "register_operand" "=f")
3820	(fix:DI (match_operand:SF 1 "register_operand" "f")))]
3821  "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
3822  "trunc.l.s %0,%1"
3823  [(set_attr "type"	"fcvt")
3824   (set_attr "mode"	"SF")
3825   (set_attr "cnv_mode"	"S2I")])
3826
3827
3828(define_insn "floatsidf2"
3829  [(set (match_operand:DF 0 "register_operand" "=f")
3830	(float:DF (match_operand:SI 1 "register_operand" "f")))]
3831  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
3832  "cvt.d.w\t%0,%1"
3833  [(set_attr "type"	"fcvt")
3834   (set_attr "mode"	"DF")
3835   (set_attr "cnv_mode"	"I2D")])
3836
3837
3838(define_insn "floatdidf2"
3839  [(set (match_operand:DF 0 "register_operand" "=f")
3840	(float:DF (match_operand:DI 1 "register_operand" "f")))]
3841  "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
3842  "cvt.d.l\t%0,%1"
3843  [(set_attr "type"	"fcvt")
3844   (set_attr "mode"	"DF")
3845   (set_attr "cnv_mode"	"I2D")])
3846
3847
3848(define_insn "floatsisf2"
3849  [(set (match_operand:SF 0 "register_operand" "=f")
3850	(float:SF (match_operand:SI 1 "register_operand" "f")))]
3851  "TARGET_HARD_FLOAT"
3852  "cvt.s.w\t%0,%1"
3853  [(set_attr "type"	"fcvt")
3854   (set_attr "mode"	"SF")
3855   (set_attr "cnv_mode"	"I2S")])
3856
3857
3858(define_insn "floatdisf2"
3859  [(set (match_operand:SF 0 "register_operand" "=f")
3860	(float:SF (match_operand:DI 1 "register_operand" "f")))]
3861  "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
3862  "cvt.s.l\t%0,%1"
3863  [(set_attr "type"	"fcvt")
3864   (set_attr "mode"	"SF")
3865   (set_attr "cnv_mode"	"I2S")])
3866
3867
3868(define_expand "fixuns_truncdfsi2"
3869  [(set (match_operand:SI 0 "register_operand")
3870	(unsigned_fix:SI (match_operand:DF 1 "register_operand")))]
3871  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
3872{
3873  rtx reg1 = gen_reg_rtx (DFmode);
3874  rtx reg2 = gen_reg_rtx (DFmode);
3875  rtx reg3 = gen_reg_rtx (SImode);
3876  rtx_code_label *label1 = gen_label_rtx ();
3877  rtx_code_label *label2 = gen_label_rtx ();
3878  rtx test;
3879  REAL_VALUE_TYPE offset;
3880
3881  real_2expN (&offset, 31, DFmode);
3882
3883  if (reg1)			/* Turn off complaints about unreached code.  */
3884    {
3885      mips_emit_move (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, DFmode));
3886      do_pending_stack_adjust ();
3887
3888      test = gen_rtx_GE (VOIDmode, operands[1], reg1);
3889      emit_jump_insn (gen_cbranchdf4 (test, operands[1], reg1, label1));
3890
3891      emit_insn (gen_fix_truncdfsi2 (operands[0], operands[1]));
3892      emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
3893				   gen_rtx_LABEL_REF (VOIDmode, label2)));
3894      emit_barrier ();
3895
3896      emit_label (label1);
3897      mips_emit_move (reg2, gen_rtx_MINUS (DFmode, operands[1], reg1));
3898      mips_emit_move (reg3, GEN_INT (trunc_int_for_mode
3899				     (BITMASK_HIGH, SImode)));
3900
3901      emit_insn (gen_fix_truncdfsi2 (operands[0], reg2));
3902      emit_insn (gen_iorsi3 (operands[0], operands[0], reg3));
3903
3904      emit_label (label2);
3905
3906      /* Allow REG_NOTES to be set on last insn (labels don't have enough
3907	 fields, and can't be used for REG_NOTES anyway).  */
3908      emit_use (stack_pointer_rtx);
3909      DONE;
3910    }
3911})
3912
3913
3914(define_expand "fixuns_truncdfdi2"
3915  [(set (match_operand:DI 0 "register_operand")
3916	(unsigned_fix:DI (match_operand:DF 1 "register_operand")))]
3917  "TARGET_HARD_FLOAT && TARGET_64BIT && TARGET_DOUBLE_FLOAT"
3918{
3919  rtx reg1 = gen_reg_rtx (DFmode);
3920  rtx reg2 = gen_reg_rtx (DFmode);
3921  rtx reg3 = gen_reg_rtx (DImode);
3922  rtx_code_label *label1 = gen_label_rtx ();
3923  rtx_code_label *label2 = gen_label_rtx ();
3924  rtx test;
3925  REAL_VALUE_TYPE offset;
3926
3927  real_2expN (&offset, 63, DFmode);
3928
3929  mips_emit_move (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, DFmode));
3930  do_pending_stack_adjust ();
3931
3932  test = gen_rtx_GE (VOIDmode, operands[1], reg1);
3933  emit_jump_insn (gen_cbranchdf4 (test, operands[1], reg1, label1));
3934
3935  emit_insn (gen_fix_truncdfdi2 (operands[0], operands[1]));
3936  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
3937			       gen_rtx_LABEL_REF (VOIDmode, label2)));
3938  emit_barrier ();
3939
3940  emit_label (label1);
3941  mips_emit_move (reg2, gen_rtx_MINUS (DFmode, operands[1], reg1));
3942  mips_emit_move (reg3, GEN_INT (BITMASK_HIGH));
3943  emit_insn (gen_ashldi3 (reg3, reg3, GEN_INT (32)));
3944
3945  emit_insn (gen_fix_truncdfdi2 (operands[0], reg2));
3946  emit_insn (gen_iordi3 (operands[0], operands[0], reg3));
3947
3948  emit_label (label2);
3949
3950  /* Allow REG_NOTES to be set on last insn (labels don't have enough
3951     fields, and can't be used for REG_NOTES anyway).  */
3952  emit_use (stack_pointer_rtx);
3953  DONE;
3954})
3955
3956
3957(define_expand "fixuns_truncsfsi2"
3958  [(set (match_operand:SI 0 "register_operand")
3959	(unsigned_fix:SI (match_operand:SF 1 "register_operand")))]
3960  "TARGET_HARD_FLOAT"
3961{
3962  rtx reg1 = gen_reg_rtx (SFmode);
3963  rtx reg2 = gen_reg_rtx (SFmode);
3964  rtx reg3 = gen_reg_rtx (SImode);
3965  rtx_code_label *label1 = gen_label_rtx ();
3966  rtx_code_label *label2 = gen_label_rtx ();
3967  rtx test;
3968  REAL_VALUE_TYPE offset;
3969
3970  real_2expN (&offset, 31, SFmode);
3971
3972  mips_emit_move (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, SFmode));
3973  do_pending_stack_adjust ();
3974
3975  test = gen_rtx_GE (VOIDmode, operands[1], reg1);
3976  emit_jump_insn (gen_cbranchsf4 (test, operands[1], reg1, label1));
3977
3978  emit_insn (gen_fix_truncsfsi2 (operands[0], operands[1]));
3979  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
3980			       gen_rtx_LABEL_REF (VOIDmode, label2)));
3981  emit_barrier ();
3982
3983  emit_label (label1);
3984  mips_emit_move (reg2, gen_rtx_MINUS (SFmode, operands[1], reg1));
3985  mips_emit_move (reg3, GEN_INT (trunc_int_for_mode
3986				 (BITMASK_HIGH, SImode)));
3987
3988  emit_insn (gen_fix_truncsfsi2 (operands[0], reg2));
3989  emit_insn (gen_iorsi3 (operands[0], operands[0], reg3));
3990
3991  emit_label (label2);
3992
3993  /* Allow REG_NOTES to be set on last insn (labels don't have enough
3994     fields, and can't be used for REG_NOTES anyway).  */
3995  emit_use (stack_pointer_rtx);
3996  DONE;
3997})
3998
3999
4000(define_expand "fixuns_truncsfdi2"
4001  [(set (match_operand:DI 0 "register_operand")
4002	(unsigned_fix:DI (match_operand:SF 1 "register_operand")))]
4003  "TARGET_HARD_FLOAT && TARGET_64BIT && TARGET_DOUBLE_FLOAT"
4004{
4005  rtx reg1 = gen_reg_rtx (SFmode);
4006  rtx reg2 = gen_reg_rtx (SFmode);
4007  rtx reg3 = gen_reg_rtx (DImode);
4008  rtx_code_label *label1 = gen_label_rtx ();
4009  rtx_code_label *label2 = gen_label_rtx ();
4010  rtx test;
4011  REAL_VALUE_TYPE offset;
4012
4013  real_2expN (&offset, 63, SFmode);
4014
4015  mips_emit_move (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, SFmode));
4016  do_pending_stack_adjust ();
4017
4018  test = gen_rtx_GE (VOIDmode, operands[1], reg1);
4019  emit_jump_insn (gen_cbranchsf4 (test, operands[1], reg1, label1));
4020
4021  emit_insn (gen_fix_truncsfdi2 (operands[0], operands[1]));
4022  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
4023			       gen_rtx_LABEL_REF (VOIDmode, label2)));
4024  emit_barrier ();
4025
4026  emit_label (label1);
4027  mips_emit_move (reg2, gen_rtx_MINUS (SFmode, operands[1], reg1));
4028  mips_emit_move (reg3, GEN_INT (BITMASK_HIGH));
4029  emit_insn (gen_ashldi3 (reg3, reg3, GEN_INT (32)));
4030
4031  emit_insn (gen_fix_truncsfdi2 (operands[0], reg2));
4032  emit_insn (gen_iordi3 (operands[0], operands[0], reg3));
4033
4034  emit_label (label2);
4035
4036  /* Allow REG_NOTES to be set on last insn (labels don't have enough
4037     fields, and can't be used for REG_NOTES anyway).  */
4038  emit_use (stack_pointer_rtx);
4039  DONE;
4040})
4041
4042;;
4043;;  ....................
4044;;
4045;;	DATA MOVEMENT
4046;;
4047;;  ....................
4048
4049;; Bit field extract patterns which use lwl/lwr or ldl/ldr.
4050
4051(define_expand "extvmisalign<mode>"
4052  [(set (match_operand:GPR 0 "register_operand")
4053	(sign_extract:GPR (match_operand:BLK 1 "memory_operand")
4054			  (match_operand 2 "const_int_operand")
4055			  (match_operand 3 "const_int_operand")))]
4056  "ISA_HAS_LWL_LWR"
4057{
4058  if (mips_expand_ext_as_unaligned_load (operands[0], operands[1],
4059					 INTVAL (operands[2]),
4060					 INTVAL (operands[3]),
4061					 /*unsigned=*/ false))
4062    DONE;
4063  else
4064    FAIL;
4065})
4066
4067(define_expand "extv<mode>"
4068  [(set (match_operand:GPR 0 "register_operand")
4069	(sign_extract:GPR (match_operand:GPR 1 "register_operand")
4070			  (match_operand 2 "const_int_operand")
4071			  (match_operand 3 "const_int_operand")))]
4072  "ISA_HAS_EXTS"
4073{
4074  if (UINTVAL (operands[2]) > 32)
4075    FAIL;
4076})
4077
4078(define_insn "*extv<mode>"
4079  [(set (match_operand:GPR 0 "register_operand" "=d")
4080        (sign_extract:GPR (match_operand:GPR 1 "register_operand" "d")
4081			  (match_operand 2 "const_int_operand" "")
4082			  (match_operand 3 "const_int_operand" "")))]
4083  "ISA_HAS_EXTS && UINTVAL (operands[2]) <= 32"
4084  "exts\t%0,%1,%3,%m2"
4085  [(set_attr "type"     "arith")
4086   (set_attr "mode"     "<MODE>")])
4087
4088(define_expand "extzvmisalign<mode>"
4089  [(set (match_operand:GPR 0 "register_operand")
4090	(zero_extract:GPR (match_operand:BLK 1 "memory_operand")
4091			  (match_operand 2 "const_int_operand")
4092			  (match_operand 3 "const_int_operand")))]
4093  "ISA_HAS_LWL_LWR"
4094{
4095  if (mips_expand_ext_as_unaligned_load (operands[0], operands[1],
4096					 INTVAL (operands[2]),
4097					 INTVAL (operands[3]),
4098					 /*unsigned=*/ true))
4099    DONE;
4100  else
4101    FAIL;
4102})
4103
4104(define_expand "extzv<mode>"
4105  [(set (match_operand:GPR 0 "register_operand")
4106	(zero_extract:GPR (match_operand:GPR 1 "register_operand")
4107			  (match_operand 2 "const_int_operand")
4108			  (match_operand 3 "const_int_operand")))]
4109  ""
4110{
4111  if (!mips_use_ins_ext_p (operands[1], INTVAL (operands[2]),
4112			   INTVAL (operands[3])))
4113    FAIL;
4114})
4115
4116(define_insn "*extzv<mode>"
4117  [(set (match_operand:GPR 0 "register_operand" "=d")
4118	(zero_extract:GPR (match_operand:GPR 1 "register_operand" "d")
4119			  (match_operand 2 "const_int_operand" "")
4120			  (match_operand 3 "const_int_operand" "")))]
4121  "mips_use_ins_ext_p (operands[1], INTVAL (operands[2]),
4122		       INTVAL (operands[3]))"
4123  "<d>ext\t%0,%1,%3,%2"
4124  [(set_attr "type"	"arith")
4125   (set_attr "mode"	"<MODE>")])
4126
4127(define_insn "*extzv_truncsi_exts"
4128  [(set (match_operand:SI 0 "register_operand" "=d")
4129        (truncate:SI
4130	 (zero_extract:DI (match_operand:DI 1 "register_operand" "d")
4131			  (match_operand 2 "const_int_operand" "")
4132			  (match_operand 3 "const_int_operand" ""))))]
4133  "ISA_HAS_EXTS && TARGET_64BIT && IN_RANGE (INTVAL (operands[2]), 32, 63)"
4134  "exts\t%0,%1,%3,31"
4135  [(set_attr "type"     "arith")
4136   (set_attr "mode"     "SI")])
4137
4138
4139(define_expand "insvmisalign<mode>"
4140  [(set (zero_extract:GPR (match_operand:BLK 0 "memory_operand")
4141			  (match_operand 1 "const_int_operand")
4142			  (match_operand 2 "const_int_operand"))
4143	(match_operand:GPR 3 "reg_or_0_operand"))]
4144  "ISA_HAS_LWL_LWR"
4145{
4146  if (mips_expand_ins_as_unaligned_store (operands[0], operands[3],
4147					  INTVAL (operands[1]),
4148					  INTVAL (operands[2])))
4149    DONE;
4150  else
4151    FAIL;
4152})
4153
4154(define_expand "insv<mode>"
4155  [(set (zero_extract:GPR (match_operand:GPR 0 "register_operand")
4156			  (match_operand 1 "const_int_operand")
4157			  (match_operand 2 "const_int_operand"))
4158	(match_operand:GPR 3 "reg_or_0_operand"))]
4159  ""
4160{
4161  if (!mips_use_ins_ext_p (operands[0], INTVAL (operands[1]),
4162			   INTVAL (operands[2])))
4163    FAIL;
4164})
4165
4166(define_insn "*insv<mode>"
4167  [(set (zero_extract:GPR (match_operand:GPR 0 "register_operand" "+d")
4168			  (match_operand:SI 1 "const_int_operand" "")
4169			  (match_operand:SI 2 "const_int_operand" ""))
4170	(match_operand:GPR 3 "reg_or_0_operand" "dJ"))]
4171  "mips_use_ins_ext_p (operands[0], INTVAL (operands[1]),
4172		       INTVAL (operands[2]))"
4173  "<d>ins\t%0,%z3,%2,%1"
4174  [(set_attr "type"	"arith")
4175   (set_attr "mode"	"<MODE>")])
4176
4177;; Combiner pattern for cins (clear and insert bit field).  We can
4178;; implement mask-and-shift-left operation with this.  Note that if
4179;; the upper bit of the mask is set in an SImode operation, the mask
4180;; itself will be sign-extended.  mask_low_and_shift_len will
4181;; therefore be greater than our threshold of 32.
4182
4183(define_insn "*cins<mode>"
4184  [(set (match_operand:GPR 0 "register_operand" "=d")
4185	(and:GPR
4186	 (ashift:GPR (match_operand:GPR 1 "register_operand" "d")
4187		     (match_operand:GPR 2 "const_int_operand" ""))
4188	 (match_operand:GPR 3 "const_int_operand" "")))]
4189  "ISA_HAS_CINS
4190   && mask_low_and_shift_p (<MODE>mode, operands[3], operands[2], 32)"
4191{
4192  operands[3] =
4193    GEN_INT (mask_low_and_shift_len (<MODE>mode, operands[3], operands[2]));
4194  return "cins\t%0,%1,%2,%m3";
4195}
4196  [(set_attr "type"     "shift")
4197   (set_attr "mode"     "<MODE>")])
4198
4199;; Unaligned word moves generated by the bit field patterns.
4200;;
4201;; As far as the rtl is concerned, both the left-part and right-part
4202;; instructions can access the whole field.  However, the real operand
4203;; refers to just the first or the last byte (depending on endianness).
4204;; We therefore use two memory operands to each instruction, one to
4205;; describe the rtl effect and one to use in the assembly output.
4206;;
4207;; Operands 0 and 1 are the rtl-level target and source respectively.
4208;; This allows us to use the standard length calculations for the "load"
4209;; and "store" type attributes.
4210
4211(define_insn "mov_<load>l"
4212  [(set (match_operand:GPR 0 "register_operand" "=d")
4213	(unspec:GPR [(match_operand:BLK 1 "memory_operand" "m")
4214		     (match_operand:QI 2 "memory_operand" "ZC")]
4215		    UNSPEC_LOAD_LEFT))]
4216  "!TARGET_MIPS16 && mips_mem_fits_mode_p (<MODE>mode, operands[1])"
4217  "<load>l\t%0,%2"
4218  [(set_attr "move_type" "load")
4219   (set_attr "mode" "<MODE>")])
4220
4221(define_insn "mov_<load>r"
4222  [(set (match_operand:GPR 0 "register_operand" "=d")
4223	(unspec:GPR [(match_operand:BLK 1 "memory_operand" "m")
4224		     (match_operand:QI 2 "memory_operand" "ZC")
4225		     (match_operand:GPR 3 "register_operand" "0")]
4226		    UNSPEC_LOAD_RIGHT))]
4227  "!TARGET_MIPS16 && mips_mem_fits_mode_p (<MODE>mode, operands[1])"
4228  "<load>r\t%0,%2"
4229  [(set_attr "move_type" "load")
4230   (set_attr "mode" "<MODE>")])
4231
4232(define_insn "mov_<store>l"
4233  [(set (match_operand:BLK 0 "memory_operand" "=m")
4234	(unspec:BLK [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
4235		     (match_operand:QI 2 "memory_operand" "ZC")]
4236		    UNSPEC_STORE_LEFT))]
4237  "!TARGET_MIPS16 && mips_mem_fits_mode_p (<MODE>mode, operands[0])"
4238  "<store>l\t%z1,%2"
4239  [(set_attr "move_type" "store")
4240   (set_attr "mode" "<MODE>")])
4241
4242(define_insn "mov_<store>r"
4243  [(set (match_operand:BLK 0 "memory_operand" "+m")
4244	(unspec:BLK [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
4245		     (match_operand:QI 2 "memory_operand" "ZC")
4246		     (match_dup 0)]
4247		    UNSPEC_STORE_RIGHT))]
4248  "!TARGET_MIPS16 && mips_mem_fits_mode_p (<MODE>mode, operands[0])"
4249  "<store>r\t%z1,%2"
4250  [(set_attr "move_type" "store")
4251   (set_attr "mode" "<MODE>")])
4252
4253;; An instruction to calculate the high part of a 64-bit SYMBOL_ABSOLUTE.
4254;; The required value is:
4255;;
4256;;	(%highest(op1) << 48) + (%higher(op1) << 32) + (%hi(op1) << 16)
4257;;
4258;; which translates to:
4259;;
4260;;	lui	op0,%highest(op1)
4261;;	daddiu	op0,op0,%higher(op1)
4262;;	dsll	op0,op0,16
4263;;	daddiu	op0,op0,%hi(op1)
4264;;	dsll	op0,op0,16
4265;;
4266;; The split is deferred until after flow2 to allow the peephole2 below
4267;; to take effect.
4268(define_insn_and_split "*lea_high64"
4269  [(set (match_operand:DI 0 "register_operand" "=d")
4270	(high:DI (match_operand:DI 1 "absolute_symbolic_operand" "")))]
4271  "TARGET_EXPLICIT_RELOCS && ABI_HAS_64BIT_SYMBOLS"
4272  "#"
4273  "&& epilogue_completed"
4274  [(set (match_dup 0) (high:DI (match_dup 2)))
4275   (set (match_dup 0) (lo_sum:DI (match_dup 0) (match_dup 2)))
4276   (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 16)))
4277   (set (match_dup 0) (lo_sum:DI (match_dup 0) (match_dup 3)))
4278   (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 16)))]
4279{
4280  operands[2] = mips_unspec_address (operands[1], SYMBOL_64_HIGH);
4281  operands[3] = mips_unspec_address (operands[1], SYMBOL_64_MID);
4282}
4283  [(set_attr "insn_count" "5")])
4284
4285;; Use a scratch register to reduce the latency of the above pattern
4286;; on superscalar machines.  The optimized sequence is:
4287;;
4288;;	lui	op1,%highest(op2)
4289;;	lui	op0,%hi(op2)
4290;;	daddiu	op1,op1,%higher(op2)
4291;;	dsll32	op1,op1,0
4292;;	daddu	op1,op1,op0
4293(define_peephole2
4294  [(set (match_operand:DI 1 "d_operand")
4295	(high:DI (match_operand:DI 2 "absolute_symbolic_operand")))
4296   (match_scratch:DI 0 "d")]
4297  "TARGET_EXPLICIT_RELOCS && ABI_HAS_64BIT_SYMBOLS"
4298  [(set (match_dup 1) (high:DI (match_dup 3)))
4299   (set (match_dup 0) (high:DI (match_dup 4)))
4300   (set (match_dup 1) (lo_sum:DI (match_dup 1) (match_dup 3)))
4301   (set (match_dup 1) (ashift:DI (match_dup 1) (const_int 32)))
4302   (set (match_dup 1) (plus:DI (match_dup 1) (match_dup 0)))]
4303{
4304  operands[3] = mips_unspec_address (operands[2], SYMBOL_64_HIGH);
4305  operands[4] = mips_unspec_address (operands[2], SYMBOL_64_LOW);
4306})
4307
4308;; On most targets, the expansion of (lo_sum (high X) X) for a 64-bit
4309;; SYMBOL_ABSOLUTE X will take 6 cycles.  This next pattern allows combine
4310;; to merge the HIGH and LO_SUM parts of a move if the HIGH part is only
4311;; used once.  We can then use the sequence:
4312;;
4313;;	lui	op0,%highest(op1)
4314;;	lui	op2,%hi(op1)
4315;;	daddiu	op0,op0,%higher(op1)
4316;;	daddiu	op2,op2,%lo(op1)
4317;;	dsll32	op0,op0,0
4318;;	daddu	op0,op0,op2
4319;;
4320;; which takes 4 cycles on most superscalar targets.
4321(define_insn_and_split "*lea64"
4322  [(set (match_operand:DI 0 "register_operand" "=d")
4323	(match_operand:DI 1 "absolute_symbolic_operand" ""))
4324   (clobber (match_scratch:DI 2 "=&d"))]
4325  "!TARGET_MIPS16
4326   && TARGET_EXPLICIT_RELOCS
4327   && ABI_HAS_64BIT_SYMBOLS
4328   && cse_not_expected"
4329  "#"
4330  "&& reload_completed"
4331  [(set (match_dup 0) (high:DI (match_dup 3)))
4332   (set (match_dup 2) (high:DI (match_dup 4)))
4333   (set (match_dup 0) (lo_sum:DI (match_dup 0) (match_dup 3)))
4334   (set (match_dup 2) (lo_sum:DI (match_dup 2) (match_dup 4)))
4335   (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 32)))
4336   (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 2)))]
4337{
4338  operands[3] = mips_unspec_address (operands[1], SYMBOL_64_HIGH);
4339  operands[4] = mips_unspec_address (operands[1], SYMBOL_64_LOW);
4340}
4341  [(set_attr "insn_count" "6")])
4342
4343;; Split HIGHs into:
4344;;
4345;;	li op0,%hi(sym)
4346;;	sll op0,16
4347;;
4348;; on MIPS16 targets.
4349(define_split
4350  [(set (match_operand:P 0 "d_operand")
4351	(high:P (match_operand:P 1 "symbolic_operand_with_high")))]
4352  "TARGET_MIPS16 && reload_completed"
4353  [(set (match_dup 0) (unspec:P [(match_dup 1)] UNSPEC_UNSHIFTED_HIGH))
4354   (set (match_dup 0) (ashift:P (match_dup 0) (const_int 16)))])
4355
4356(define_insn "*unshifted_high"
4357  [(set (match_operand:P 0 "d_operand" "=d")
4358	(unspec:P [(match_operand:P 1 "symbolic_operand_with_high")]
4359		  UNSPEC_UNSHIFTED_HIGH))]
4360  ""
4361  "li\t%0,%h1"
4362  [(set_attr "extended_mips16" "yes")])
4363
4364;; Insns to fetch a symbol from a big GOT.
4365
4366(define_insn_and_split "*xgot_hi<mode>"
4367  [(set (match_operand:P 0 "register_operand" "=d")
4368	(high:P (match_operand:P 1 "got_disp_operand" "")))]
4369  "TARGET_EXPLICIT_RELOCS && TARGET_XGOT"
4370  "#"
4371  "&& reload_completed"
4372  [(set (match_dup 0) (high:P (match_dup 2)))
4373   (set (match_dup 0) (plus:P (match_dup 0) (match_dup 3)))]
4374{
4375  operands[2] = mips_unspec_address (operands[1], SYMBOL_GOTOFF_DISP);
4376  operands[3] = pic_offset_table_rtx;
4377}
4378  [(set_attr "got" "xgot_high")
4379   (set_attr "mode" "<MODE>")])
4380
4381(define_insn_and_split "*xgot_lo<mode>"
4382  [(set (match_operand:P 0 "register_operand" "=d")
4383	(lo_sum:P (match_operand:P 1 "register_operand" "d")
4384		  (match_operand:P 2 "got_disp_operand" "")))]
4385  "TARGET_EXPLICIT_RELOCS && TARGET_XGOT"
4386  "#"
4387  "&& reload_completed"
4388  [(set (match_dup 0)
4389	(unspec:P [(match_dup 1) (match_dup 3)] UNSPEC_LOAD_GOT))]
4390  { operands[3] = mips_unspec_address (operands[2], SYMBOL_GOTOFF_DISP); }
4391  [(set_attr "got" "load")
4392   (set_attr "mode" "<MODE>")])
4393
4394;; Insns to fetch a symbol from a normal GOT.
4395
4396(define_insn_and_split "*got_disp<mode>"
4397  [(set (match_operand:P 0 "register_operand" "=d")
4398	(match_operand:P 1 "got_disp_operand" ""))]
4399  "TARGET_EXPLICIT_RELOCS && !mips_split_p[SYMBOL_GOT_DISP]"
4400  "#"
4401  "&& reload_completed"
4402  [(set (match_dup 0) (match_dup 2))]
4403  { operands[2] = mips_got_load (NULL, operands[1], SYMBOL_GOTOFF_DISP); }
4404  [(set_attr "got" "load")
4405   (set_attr "mode" "<MODE>")])
4406
4407;; Insns for loading the "page" part of a page/ofst address from the GOT.
4408
4409(define_insn_and_split "*got_page<mode>"
4410  [(set (match_operand:P 0 "register_operand" "=d")
4411	(high:P (match_operand:P 1 "got_page_ofst_operand" "")))]
4412  "TARGET_EXPLICIT_RELOCS && !mips_split_hi_p[SYMBOL_GOT_PAGE_OFST]"
4413  "#"
4414  "&& reload_completed"
4415  [(set (match_dup 0) (match_dup 2))]
4416  { operands[2] = mips_got_load (NULL, operands[1], SYMBOL_GOTOFF_PAGE); }
4417  [(set_attr "got" "load")
4418   (set_attr "mode" "<MODE>")])
4419
4420;; Convenience expander that generates the rhs of a load_got<mode> insn.
4421(define_expand "unspec_got_<mode>"
4422  [(unspec:P [(match_operand:P 0)
4423	      (match_operand:P 1)] UNSPEC_LOAD_GOT)])
4424
4425;; Lower-level instructions for loading an address from the GOT.
4426;; We could use MEMs, but an unspec gives more optimization
4427;; opportunities.
4428
4429(define_insn "load_got<mode>"
4430  [(set (match_operand:P 0 "register_operand" "=d")
4431	(unspec:P [(match_operand:P 1 "register_operand" "d")
4432		   (match_operand:P 2 "immediate_operand" "")]
4433		  UNSPEC_LOAD_GOT))]
4434  ""
4435  "<load>\t%0,%R2(%1)"
4436  [(set_attr "got" "load")
4437   (set_attr "mode" "<MODE>")])
4438
4439;; Instructions for adding the low 16 bits of an address to a register.
4440;; Operand 2 is the address: mips_print_operand works out which relocation
4441;; should be applied.
4442
4443(define_insn "*low<mode>"
4444  [(set (match_operand:P 0 "register_operand" "=d")
4445	(lo_sum:P (match_operand:P 1 "register_operand" "d")
4446		  (match_operand:P 2 "immediate_operand" "")))]
4447  "!TARGET_MIPS16"
4448  "<d>addiu\t%0,%1,%R2"
4449  [(set_attr "alu_type" "add")
4450   (set_attr "mode" "<MODE>")])
4451
4452(define_insn "*low<mode>_mips16"
4453  [(set (match_operand:P 0 "register_operand" "=d")
4454	(lo_sum:P (match_operand:P 1 "register_operand" "0")
4455		  (match_operand:P 2 "immediate_operand" "")))]
4456  "TARGET_MIPS16"
4457  "<d>addiu\t%0,%R2"
4458  [(set_attr "alu_type" "add")
4459   (set_attr "mode" "<MODE>")
4460   (set_attr "extended_mips16" "yes")])
4461
4462;; Expose MIPS16 uses of the global pointer after reload if the function
4463;; is responsible for setting up the register itself.
4464(define_split
4465  [(set (match_operand:GPR 0 "d_operand")
4466	(const:GPR (unspec:GPR [(const_int 0)] UNSPEC_GP)))]
4467  "TARGET_MIPS16 && TARGET_USE_GOT && reload_completed"
4468  [(set (match_dup 0) (match_dup 1))]
4469  { operands[1] = pic_offset_table_rtx; })
4470
4471;; Allow combine to split complex const_int load sequences, using operand 2
4472;; to store the intermediate results.  See move_operand for details.
4473(define_split
4474  [(set (match_operand:GPR 0 "register_operand")
4475	(match_operand:GPR 1 "splittable_const_int_operand"))
4476   (clobber (match_operand:GPR 2 "register_operand"))]
4477  ""
4478  [(const_int 0)]
4479{
4480  mips_move_integer (operands[2], operands[0], INTVAL (operands[1]));
4481  DONE;
4482})
4483
4484;; Likewise, for symbolic operands.
4485(define_split
4486  [(set (match_operand:P 0 "register_operand")
4487	(match_operand:P 1))
4488   (clobber (match_operand:P 2 "register_operand"))]
4489  "mips_split_symbol (operands[2], operands[1], MAX_MACHINE_MODE, NULL)"
4490  [(set (match_dup 0) (match_dup 3))]
4491{
4492  mips_split_symbol (operands[2], operands[1],
4493		     MAX_MACHINE_MODE, &operands[3]);
4494})
4495
4496;; 64-bit integer moves
4497
4498;; Unlike most other insns, the move insns can't be split with
4499;; different predicates, because register spilling and other parts of
4500;; the compiler, have memoized the insn number already.
4501
4502(define_expand "movdi"
4503  [(set (match_operand:DI 0 "")
4504	(match_operand:DI 1 ""))]
4505  ""
4506{
4507  if (mips_legitimize_move (DImode, operands[0], operands[1]))
4508    DONE;
4509})
4510
4511;; For mips16, we need a special case to handle storing $31 into
4512;; memory, since we don't have a constraint to match $31.  This
4513;; instruction can be generated by save_restore_insns.
4514
4515(define_insn "*mov<mode>_ra"
4516  [(set (match_operand:GPR 0 "stack_operand" "=m")
4517	(reg:GPR RETURN_ADDR_REGNUM))]
4518  "TARGET_MIPS16"
4519  "<store>\t$31,%0"
4520  [(set_attr "move_type" "store")
4521   (set_attr "mode" "<MODE>")])
4522
4523(define_insn "*movdi_32bit"
4524  [(set (match_operand:DI 0 "nonimmediate_operand" "=d,d,d,m,*a,*a,*d,*f,*f,*d,*m,*B*C*D,*B*C*D,*d,*m")
4525	(match_operand:DI 1 "move_operand" "d,i,m,d,*J,*d,*a,*J*d,*m,*f,*f,*d,*m,*B*C*D,*B*C*D"))]
4526  "!TARGET_64BIT && !TARGET_MIPS16
4527   && (register_operand (operands[0], DImode)
4528       || reg_or_0_operand (operands[1], DImode))"
4529  { return mips_output_move (operands[0], operands[1]); }
4530  [(set_attr "move_type" "move,const,load,store,imul,mtlo,mflo,mtc,fpload,mfc,fpstore,mtc,fpload,mfc,fpstore")
4531   (set (attr "mode")
4532   	(if_then_else (eq_attr "move_type" "imul")
4533		      (const_string "SI")
4534		      (const_string "DI")))])
4535
4536(define_insn "*movdi_32bit_mips16"
4537  [(set (match_operand:DI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m,*d")
4538	(match_operand:DI 1 "move_operand" "d,d,y,K,N,m,d,*x"))]
4539  "!TARGET_64BIT && TARGET_MIPS16
4540   && (register_operand (operands[0], DImode)
4541       || register_operand (operands[1], DImode))"
4542  { return mips_output_move (operands[0], operands[1]); }
4543  [(set_attr "move_type" "move,move,move,const,constN,load,store,mflo")
4544   (set_attr "mode" "DI")])
4545
4546(define_insn "*movdi_64bit"
4547  [(set (match_operand:DI 0 "nonimmediate_operand" "=d,d,e,d,m,*f,*f,*d,*m,*a,*d,*B*C*D,*B*C*D,*d,*m")
4548	(match_operand:DI 1 "move_operand" "d,Yd,Yf,m,dJ,*d*J,*m,*f,*f,*J*d,*a,*d,*m,*B*C*D,*B*C*D"))]
4549  "TARGET_64BIT && !TARGET_MIPS16
4550   && (register_operand (operands[0], DImode)
4551       || reg_or_0_operand (operands[1], DImode))"
4552  { return mips_output_move (operands[0], operands[1]); }
4553  [(set_attr "move_type" "move,const,const,load,store,mtc,fpload,mfc,fpstore,mtlo,mflo,mtc,fpload,mfc,fpstore")
4554   (set_attr "mode" "DI")])
4555
4556(define_insn "*movdi_64bit_mips16"
4557  [(set (match_operand:DI 0 "nonimmediate_operand" "=d,y,d,d,d,d,d,d,m,*d")
4558	(match_operand:DI 1 "move_operand" "d,d,y,K,N,Yd,kf,m,d,*a"))]
4559  "TARGET_64BIT && TARGET_MIPS16
4560   && (register_operand (operands[0], DImode)
4561       || register_operand (operands[1], DImode))"
4562  { return mips_output_move (operands[0], operands[1]); }
4563  [(set_attr "move_type" "move,move,move,const,constN,const,loadpool,load,store,mflo")
4564   (set_attr "mode" "DI")])
4565
4566;; On the mips16, we can split ld $r,N($r) into an add and a load,
4567;; when the original load is a 4 byte instruction but the add and the
4568;; load are 2 2 byte instructions.
4569
4570(define_split
4571  [(set (match_operand:DI 0 "d_operand")
4572	(mem:DI (plus:DI (match_dup 0)
4573			 (match_operand:DI 1 "const_int_operand"))))]
4574  "TARGET_64BIT && TARGET_MIPS16 && reload_completed
4575   && !TARGET_DEBUG_D_MODE
4576   && ((INTVAL (operands[1]) < 0
4577	&& INTVAL (operands[1]) >= -0x10)
4578       || (INTVAL (operands[1]) >= 32 * 8
4579	   && INTVAL (operands[1]) <= 31 * 8 + 0x8)
4580       || (INTVAL (operands[1]) >= 0
4581	   && INTVAL (operands[1]) < 32 * 8
4582	   && (INTVAL (operands[1]) & 7) != 0))"
4583  [(set (match_dup 0) (plus:DI (match_dup 0) (match_dup 1)))
4584   (set (match_dup 0) (mem:DI (plus:DI (match_dup 0) (match_dup 2))))]
4585{
4586  HOST_WIDE_INT val = INTVAL (operands[1]);
4587
4588  if (val < 0)
4589    operands[2] = const0_rtx;
4590  else if (val >= 32 * 8)
4591    {
4592      int off = val & 7;
4593
4594      operands[1] = GEN_INT (0x8 + off);
4595      operands[2] = GEN_INT (val - off - 0x8);
4596    }
4597  else
4598    {
4599      int off = val & 7;
4600
4601      operands[1] = GEN_INT (off);
4602      operands[2] = GEN_INT (val - off);
4603    }
4604})
4605
4606;; 32-bit Integer moves
4607
4608;; Unlike most other insns, the move insns can't be split with
4609;; different predicates, because register spilling and other parts of
4610;; the compiler, have memoized the insn number already.
4611
4612(define_expand "mov<mode>"
4613  [(set (match_operand:IMOVE32 0 "")
4614	(match_operand:IMOVE32 1 ""))]
4615  ""
4616{
4617  if (mips_legitimize_move (<MODE>mode, operands[0], operands[1]))
4618    DONE;
4619})
4620
4621;; The difference between these two is whether or not ints are allowed
4622;; in FP registers (off by default, use -mdebugh to enable).
4623
4624(define_insn "*mov<mode>_internal"
4625  [(set (match_operand:IMOVE32 0 "nonimmediate_operand" "=d,!u,!u,d,e,!u,!ks,d,ZS,ZT,m,*f,*f,*d,*m,*d,*z,*a,*d,*B*C*D,*B*C*D,*d,*m")
4626	(match_operand:IMOVE32 1 "move_operand" "d,J,Udb7,Yd,Yf,ZT,ZS,m,!ks,!kbJ,dJ,*d*J,*m,*f,*f,*z,*d,*J*d,*a,*d,*m,*B*C*D,*B*C*D"))]
4627  "!TARGET_MIPS16
4628   && (register_operand (operands[0], <MODE>mode)
4629       || reg_or_0_operand (operands[1], <MODE>mode))"
4630  { return mips_output_move (operands[0], operands[1]); }
4631  [(set_attr "move_type" "move,move,const,const,const,load,load,load,store,store,store,mtc,fpload,mfc,fpstore,mfc,mtc,mtlo,mflo,mtc,fpload,mfc,fpstore")
4632   (set_attr "compression" "all,micromips,micromips,*,*,micromips,micromips,*,micromips,micromips,*,*,*,*,*,*,*,*,*,*,*,*,*")
4633   (set_attr "mode" "SI")])
4634
4635(define_insn "*mov<mode>_mips16"
4636  [(set (match_operand:IMOVE32 0 "nonimmediate_operand" "=d,y,d,d,d,d,d,d,m,*d")
4637	(match_operand:IMOVE32 1 "move_operand" "d,d,y,K,N,Yd,kf,m,d,*a"))]
4638  "TARGET_MIPS16
4639   && (register_operand (operands[0], <MODE>mode)
4640       || register_operand (operands[1], <MODE>mode))"
4641  { return mips_output_move (operands[0], operands[1]); }
4642  [(set_attr "move_type" "move,move,move,const,constN,const,loadpool,load,store,mflo")
4643   (set_attr "mode" "SI")])
4644
4645;; On the mips16, we can split lw $r,N($r) into an add and a load,
4646;; when the original load is a 4 byte instruction but the add and the
4647;; load are 2 2 byte instructions.
4648
4649(define_split
4650  [(set (match_operand:SI 0 "d_operand")
4651	(mem:SI (plus:SI (match_dup 0)
4652			 (match_operand:SI 1 "const_int_operand"))))]
4653  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
4654   && ((INTVAL (operands[1]) < 0
4655	&& INTVAL (operands[1]) >= -0x80)
4656       || (INTVAL (operands[1]) >= 32 * 4
4657	   && INTVAL (operands[1]) <= 31 * 4 + 0x7c)
4658       || (INTVAL (operands[1]) >= 0
4659	   && INTVAL (operands[1]) < 32 * 4
4660	   && (INTVAL (operands[1]) & 3) != 0))"
4661  [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
4662   (set (match_dup 0) (mem:SI (plus:SI (match_dup 0) (match_dup 2))))]
4663{
4664  HOST_WIDE_INT val = INTVAL (operands[1]);
4665
4666  if (val < 0)
4667    operands[2] = const0_rtx;
4668  else if (val >= 32 * 4)
4669    {
4670      int off = val & 3;
4671
4672      operands[1] = GEN_INT (0x7c + off);
4673      operands[2] = GEN_INT (val - off - 0x7c);
4674    }
4675  else
4676    {
4677      int off = val & 3;
4678
4679      operands[1] = GEN_INT (off);
4680      operands[2] = GEN_INT (val - off);
4681    }
4682})
4683
4684;; On the mips16, we can split a load of certain constants into a load
4685;; and an add.  This turns a 4 byte instruction into 2 2 byte
4686;; instructions.
4687
4688(define_split
4689  [(set (match_operand:SI 0 "d_operand")
4690	(match_operand:SI 1 "const_int_operand"))]
4691  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
4692   && INTVAL (operands[1]) >= 0x100
4693   && INTVAL (operands[1]) <= 0xff + 0x7f"
4694  [(set (match_dup 0) (match_dup 1))
4695   (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 2)))]
4696{
4697  int val = INTVAL (operands[1]);
4698
4699  operands[1] = GEN_INT (0xff);
4700  operands[2] = GEN_INT (val - 0xff);
4701})
4702
4703;; MIPS4 supports loading and storing a floating point register from
4704;; the sum of two general registers.  We use two versions for each of
4705;; these four instructions: one where the two general registers are
4706;; SImode, and one where they are DImode.  This is because general
4707;; registers will be in SImode when they hold 32-bit values, but,
4708;; since the 32-bit values are always sign extended, the [ls][wd]xc1
4709;; instructions will still work correctly.
4710
4711;; ??? Perhaps it would be better to support these instructions by
4712;; modifying TARGET_LEGITIMATE_ADDRESS_P and friends.  However, since
4713;; these instructions can only be used to load and store floating
4714;; point registers, that would probably cause trouble in reload.
4715
4716(define_insn "*<ANYF:loadx>_<P:mode>"
4717  [(set (match_operand:ANYF 0 "register_operand" "=f")
4718	(mem:ANYF (plus:P (match_operand:P 1 "register_operand" "d")
4719			  (match_operand:P 2 "register_operand" "d"))))]
4720  "ISA_HAS_LXC1_SXC1"
4721  "<ANYF:loadx>\t%0,%1(%2)"
4722  [(set_attr "type" "fpidxload")
4723   (set_attr "mode" "<ANYF:UNITMODE>")])
4724
4725(define_insn "*<ANYF:storex>_<P:mode>"
4726  [(set (mem:ANYF (plus:P (match_operand:P 1 "register_operand" "d")
4727			  (match_operand:P 2 "register_operand" "d")))
4728	(match_operand:ANYF 0 "register_operand" "f"))]
4729  "ISA_HAS_LXC1_SXC1"
4730  "<ANYF:storex>\t%0,%1(%2)"
4731  [(set_attr "type" "fpidxstore")
4732   (set_attr "mode" "<ANYF:UNITMODE>")])
4733
4734;; Scaled indexed address load.
4735;; Per md.texi, we only need to look for a pattern with multiply in the
4736;; address expression, not shift.
4737
4738(define_insn "*lwxs"
4739  [(set (match_operand:IMOVE32 0 "register_operand" "=d")
4740	(mem:IMOVE32
4741	  (plus:P (mult:P (match_operand:P 1 "register_operand" "d")
4742			  (const_int 4))
4743		  (match_operand:P 2 "register_operand" "d"))))]
4744  "ISA_HAS_LWXS"
4745  "lwxs\t%0,%1(%2)"
4746  [(set_attr "type"	"load")
4747   (set_attr "mode"	"SI")])
4748
4749;; 16-bit Integer moves
4750
4751;; Unlike most other insns, the move insns can't be split with
4752;; different predicates, because register spilling and other parts of
4753;; the compiler, have memoized the insn number already.
4754;; Unsigned loads are used because LOAD_EXTEND_OP returns ZERO_EXTEND.
4755
4756(define_expand "movhi"
4757  [(set (match_operand:HI 0 "")
4758	(match_operand:HI 1 ""))]
4759  ""
4760{
4761  if (mips_legitimize_move (HImode, operands[0], operands[1]))
4762    DONE;
4763})
4764
4765(define_insn "*movhi_internal"
4766  [(set (match_operand:HI 0 "nonimmediate_operand" "=d,!u,d,!u,d,ZU,m,*a,*d")
4767	(match_operand:HI 1 "move_operand"         "d,J,I,ZU,m,!kbJ,dJ,*d*J,*a"))]
4768  "!TARGET_MIPS16
4769   && (register_operand (operands[0], HImode)
4770       || reg_or_0_operand (operands[1], HImode))"
4771  { return mips_output_move (operands[0], operands[1]); }
4772  [(set_attr "move_type" "move,const,const,load,load,store,store,mtlo,mflo")
4773   (set_attr "compression" "all,micromips,*,micromips,*,micromips,*,*,*")
4774   (set_attr "mode" "HI")])
4775
4776(define_insn "*movhi_mips16"
4777  [(set (match_operand:HI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m,*d")
4778	(match_operand:HI 1 "move_operand"         "d,d,y,K,N,m,d,*a"))]
4779  "TARGET_MIPS16
4780   && (register_operand (operands[0], HImode)
4781       || register_operand (operands[1], HImode))"
4782  { return mips_output_move (operands[0], operands[1]); }
4783  [(set_attr "move_type" "move,move,move,const,constN,load,store,mflo")
4784   (set_attr "mode" "HI")])
4785
4786;; On the mips16, we can split lh $r,N($r) into an add and a load,
4787;; when the original load is a 4 byte instruction but the add and the
4788;; load are 2 2 byte instructions.
4789
4790(define_split
4791  [(set (match_operand:HI 0 "d_operand")
4792	(mem:HI (plus:SI (match_dup 0)
4793			 (match_operand:SI 1 "const_int_operand"))))]
4794  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
4795   && ((INTVAL (operands[1]) < 0
4796	&& INTVAL (operands[1]) >= -0x80)
4797       || (INTVAL (operands[1]) >= 32 * 2
4798	   && INTVAL (operands[1]) <= 31 * 2 + 0x7e)
4799       || (INTVAL (operands[1]) >= 0
4800	   && INTVAL (operands[1]) < 32 * 2
4801	   && (INTVAL (operands[1]) & 1) != 0))"
4802  [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
4803   (set (match_dup 0) (mem:HI (plus:SI (match_dup 0) (match_dup 2))))]
4804{
4805  HOST_WIDE_INT val = INTVAL (operands[1]);
4806
4807  if (val < 0)
4808    operands[2] = const0_rtx;
4809  else if (val >= 32 * 2)
4810    {
4811      int off = val & 1;
4812
4813      operands[1] = GEN_INT (0x7e + off);
4814      operands[2] = GEN_INT (val - off - 0x7e);
4815    }
4816  else
4817    {
4818      int off = val & 1;
4819
4820      operands[1] = GEN_INT (off);
4821      operands[2] = GEN_INT (val - off);
4822    }
4823})
4824
4825;; 8-bit Integer moves
4826
4827;; Unlike most other insns, the move insns can't be split with
4828;; different predicates, because register spilling and other parts of
4829;; the compiler, have memoized the insn number already.
4830;; Unsigned loads are used because LOAD_EXTEND_OP returns ZERO_EXTEND.
4831
4832(define_expand "movqi"
4833  [(set (match_operand:QI 0 "")
4834	(match_operand:QI 1 ""))]
4835  ""
4836{
4837  if (mips_legitimize_move (QImode, operands[0], operands[1]))
4838    DONE;
4839})
4840
4841(define_insn "*movqi_internal"
4842  [(set (match_operand:QI 0 "nonimmediate_operand" "=d,!u,d,!u,d,ZV,m,*a,*d")
4843	(match_operand:QI 1 "move_operand"         "d,J,I,ZW,m,!kbJ,dJ,*d*J,*a"))]
4844  "!TARGET_MIPS16
4845   && (register_operand (operands[0], QImode)
4846       || reg_or_0_operand (operands[1], QImode))"
4847  { return mips_output_move (operands[0], operands[1]); }
4848  [(set_attr "move_type" "move,const,const,load,load,store,store,mtlo,mflo")
4849   (set_attr "compression" "all,micromips,*,micromips,*,micromips,*,*,*")
4850   (set_attr "mode" "QI")])
4851
4852(define_insn "*movqi_mips16"
4853  [(set (match_operand:QI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m,*d")
4854	(match_operand:QI 1 "move_operand"         "d,d,y,K,N,m,d,*a"))]
4855  "TARGET_MIPS16
4856   && (register_operand (operands[0], QImode)
4857       || register_operand (operands[1], QImode))"
4858  { return mips_output_move (operands[0], operands[1]); }
4859  [(set_attr "move_type" "move,move,move,const,constN,load,store,mflo")
4860   (set_attr "mode" "QI")])
4861
4862;; On the mips16, we can split lb $r,N($r) into an add and a load,
4863;; when the original load is a 4 byte instruction but the add and the
4864;; load are 2 2 byte instructions.
4865
4866(define_split
4867  [(set (match_operand:QI 0 "d_operand")
4868	(mem:QI (plus:SI (match_dup 0)
4869			 (match_operand:SI 1 "const_int_operand"))))]
4870  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
4871   && ((INTVAL (operands[1]) < 0
4872	&& INTVAL (operands[1]) >= -0x80)
4873       || (INTVAL (operands[1]) >= 32
4874	   && INTVAL (operands[1]) <= 31 + 0x7f))"
4875  [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
4876   (set (match_dup 0) (mem:QI (plus:SI (match_dup 0) (match_dup 2))))]
4877{
4878  HOST_WIDE_INT val = INTVAL (operands[1]);
4879
4880  if (val < 0)
4881    operands[2] = const0_rtx;
4882  else
4883    {
4884      operands[1] = GEN_INT (0x7f);
4885      operands[2] = GEN_INT (val - 0x7f);
4886    }
4887})
4888
4889;; 32-bit floating point moves
4890
4891(define_expand "movsf"
4892  [(set (match_operand:SF 0 "")
4893	(match_operand:SF 1 ""))]
4894  ""
4895{
4896  if (mips_legitimize_move (SFmode, operands[0], operands[1]))
4897    DONE;
4898})
4899
4900(define_insn "movccf"
4901  [(set (match_operand:CCF 0 "nonimmediate_operand" "=f,f,m")
4902	(match_operand:CCF 1 "nonimmediate_operand" "f,m,f"))]
4903  "ISA_HAS_CCF"
4904  { return mips_output_move (operands[0], operands[1]); }
4905  [(set_attr "move_type" "fmove,fpload,fpstore")])
4906
4907(define_insn "*movsf_hardfloat"
4908  [(set (match_operand:SF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
4909	(match_operand:SF 1 "move_operand" "f,G,m,f,G,*d,*f,*G*d,*m,*d"))]
4910  "TARGET_HARD_FLOAT
4911   && (register_operand (operands[0], SFmode)
4912       || reg_or_0_operand (operands[1], SFmode))"
4913  { return mips_output_move (operands[0], operands[1]); }
4914  [(set_attr "move_type" "fmove,mtc,fpload,fpstore,store,mtc,mfc,move,load,store")
4915   (set_attr "mode" "SF")])
4916
4917(define_insn "*movsf_softfloat"
4918  [(set (match_operand:SF 0 "nonimmediate_operand" "=d,d,m")
4919	(match_operand:SF 1 "move_operand" "Gd,m,d"))]
4920  "TARGET_SOFT_FLOAT && !TARGET_MIPS16
4921   && (register_operand (operands[0], SFmode)
4922       || reg_or_0_operand (operands[1], SFmode))"
4923  { return mips_output_move (operands[0], operands[1]); }
4924  [(set_attr "move_type" "move,load,store")
4925   (set_attr "mode" "SF")])
4926
4927(define_insn "*movsf_mips16"
4928  [(set (match_operand:SF 0 "nonimmediate_operand" "=d,y,d,d,m")
4929	(match_operand:SF 1 "move_operand" "d,d,y,m,d"))]
4930  "TARGET_MIPS16
4931   && (register_operand (operands[0], SFmode)
4932       || register_operand (operands[1], SFmode))"
4933  { return mips_output_move (operands[0], operands[1]); }
4934  [(set_attr "move_type" "move,move,move,load,store")
4935   (set_attr "mode" "SF")])
4936
4937;; 64-bit floating point moves
4938
4939(define_expand "movdf"
4940  [(set (match_operand:DF 0 "")
4941	(match_operand:DF 1 ""))]
4942  ""
4943{
4944  if (mips_legitimize_move (DFmode, operands[0], operands[1]))
4945    DONE;
4946})
4947
4948(define_insn "*movdf_hardfloat"
4949  [(set (match_operand:DF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
4950	(match_operand:DF 1 "move_operand" "f,G,m,f,G,*d,*f,*d*G,*m,*d"))]
4951  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT
4952   && (register_operand (operands[0], DFmode)
4953       || reg_or_0_operand (operands[1], DFmode))"
4954  { return mips_output_move (operands[0], operands[1]); }
4955  [(set_attr "move_type" "fmove,mtc,fpload,fpstore,store,mtc,mfc,move,load,store")
4956   (set_attr "mode" "DF")])
4957
4958(define_insn "*movdf_softfloat"
4959  [(set (match_operand:DF 0 "nonimmediate_operand" "=d,d,m")
4960	(match_operand:DF 1 "move_operand" "dG,m,dG"))]
4961  "(TARGET_SOFT_FLOAT || TARGET_SINGLE_FLOAT) && !TARGET_MIPS16
4962   && (register_operand (operands[0], DFmode)
4963       || reg_or_0_operand (operands[1], DFmode))"
4964  { return mips_output_move (operands[0], operands[1]); }
4965  [(set_attr "move_type" "move,load,store")
4966   (set_attr "mode" "DF")])
4967
4968(define_insn "*movdf_mips16"
4969  [(set (match_operand:DF 0 "nonimmediate_operand" "=d,y,d,d,m")
4970	(match_operand:DF 1 "move_operand" "d,d,y,m,d"))]
4971  "TARGET_MIPS16
4972   && (register_operand (operands[0], DFmode)
4973       || register_operand (operands[1], DFmode))"
4974  { return mips_output_move (operands[0], operands[1]); }
4975  [(set_attr "move_type" "move,move,move,load,store")
4976   (set_attr "mode" "DF")])
4977
4978;; 128-bit integer moves
4979
4980(define_expand "movti"
4981  [(set (match_operand:TI 0)
4982	(match_operand:TI 1))]
4983  "TARGET_64BIT"
4984{
4985  if (mips_legitimize_move (TImode, operands[0], operands[1]))
4986    DONE;
4987})
4988
4989(define_insn "*movti"
4990  [(set (match_operand:TI 0 "nonimmediate_operand" "=d,d,d,m,*a,*a,*d")
4991	(match_operand:TI 1 "move_operand" "d,i,m,dJ,*J,*d,*a"))]
4992  "TARGET_64BIT
4993   && !TARGET_MIPS16
4994   && (register_operand (operands[0], TImode)
4995       || reg_or_0_operand (operands[1], TImode))"
4996  { return mips_output_move (operands[0], operands[1]); }
4997  [(set_attr "move_type" "move,const,load,store,imul,mtlo,mflo")
4998   (set (attr "mode")
4999   	(if_then_else (eq_attr "move_type" "imul")
5000		      (const_string "SI")
5001		      (const_string "TI")))])
5002
5003(define_insn "*movti_mips16"
5004  [(set (match_operand:TI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m,*d")
5005	(match_operand:TI 1 "move_operand" "d,d,y,K,N,m,d,*a"))]
5006  "TARGET_64BIT
5007   && TARGET_MIPS16
5008   && (register_operand (operands[0], TImode)
5009       || register_operand (operands[1], TImode))"
5010  "#"
5011  [(set_attr "move_type" "move,move,move,const,constN,load,store,mflo")
5012   (set_attr "mode" "TI")])
5013
5014;; 128-bit floating point moves
5015
5016(define_expand "movtf"
5017  [(set (match_operand:TF 0)
5018	(match_operand:TF 1))]
5019  "TARGET_64BIT"
5020{
5021  if (mips_legitimize_move (TFmode, operands[0], operands[1]))
5022    DONE;
5023})
5024
5025;; This pattern handles both hard- and soft-float cases.
5026(define_insn "*movtf"
5027  [(set (match_operand:TF 0 "nonimmediate_operand" "=d,d,m,f,d,f,m")
5028	(match_operand:TF 1 "move_operand" "dG,m,dG,dG,f,m,f"))]
5029  "TARGET_64BIT
5030   && !TARGET_MIPS16
5031   && (register_operand (operands[0], TFmode)
5032       || reg_or_0_operand (operands[1], TFmode))"
5033  "#"
5034  [(set_attr "move_type" "move,load,store,mtc,mfc,fpload,fpstore")
5035   (set_attr "mode" "TF")])
5036
5037(define_insn "*movtf_mips16"
5038  [(set (match_operand:TF 0 "nonimmediate_operand" "=d,y,d,d,m")
5039	(match_operand:TF 1 "move_operand" "d,d,y,m,d"))]
5040  "TARGET_64BIT
5041   && TARGET_MIPS16
5042   && (register_operand (operands[0], TFmode)
5043       || register_operand (operands[1], TFmode))"
5044  "#"
5045  [(set_attr "move_type" "move,move,move,load,store")
5046   (set_attr "mode" "TF")])
5047
5048(define_split
5049  [(set (match_operand:MOVE64 0 "nonimmediate_operand")
5050	(match_operand:MOVE64 1 "move_operand"))]
5051  "reload_completed && mips_split_move_insn_p (operands[0], operands[1], insn)"
5052  [(const_int 0)]
5053{
5054  mips_split_move_insn (operands[0], operands[1], curr_insn);
5055  DONE;
5056})
5057
5058(define_split
5059  [(set (match_operand:MOVE128 0 "nonimmediate_operand")
5060	(match_operand:MOVE128 1 "move_operand"))]
5061  "reload_completed && mips_split_move_insn_p (operands[0], operands[1], insn)"
5062  [(const_int 0)]
5063{
5064  mips_split_move_insn (operands[0], operands[1], curr_insn);
5065  DONE;
5066})
5067
5068;; When generating mips16 code, split moves of negative constants into
5069;; a positive "li" followed by a negation.
5070(define_split
5071  [(set (match_operand 0 "d_operand")
5072	(match_operand 1 "const_int_operand"))]
5073  "TARGET_MIPS16 && reload_completed && INTVAL (operands[1]) < 0"
5074  [(set (match_dup 2)
5075	(match_dup 3))
5076   (set (match_dup 2)
5077	(neg:SI (match_dup 2)))]
5078{
5079  operands[2] = gen_lowpart (SImode, operands[0]);
5080  operands[3] = GEN_INT (-INTVAL (operands[1]));
5081})
5082
5083;; 64-bit paired-single floating point moves
5084
5085(define_expand "movv2sf"
5086  [(set (match_operand:V2SF 0)
5087	(match_operand:V2SF 1))]
5088  "TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT"
5089{
5090  if (mips_legitimize_move (V2SFmode, operands[0], operands[1]))
5091    DONE;
5092})
5093
5094(define_insn "*movv2sf"
5095  [(set (match_operand:V2SF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
5096	(match_operand:V2SF 1 "move_operand" "f,YG,m,f,YG,*d,*f,*d*YG,*m,*d"))]
5097  "TARGET_HARD_FLOAT
5098   && TARGET_PAIRED_SINGLE_FLOAT
5099   && (register_operand (operands[0], V2SFmode)
5100       || reg_or_0_operand (operands[1], V2SFmode))"
5101  { return mips_output_move (operands[0], operands[1]); }
5102  [(set_attr "move_type" "fmove,mtc,fpload,fpstore,store,mtc,mfc,move,load,store")
5103   (set_attr "mode" "DF")])
5104
5105;; Extract the high part of a HI/LO value.  See mips_hard_regno_mode_ok_p
5106;; for the reason why we can't just use (reg:GPR HI_REGNUM).
5107;;
5108;; When generating VR4120 or VR4130 code, we use MACCHI and DMACCHI
5109;; instead of MFHI.  This avoids both the normal MIPS III hi/lo hazards
5110;; and the errata related to -mfix-vr4130.
5111(define_insn "mfhi<GPR:mode>_<HILO:mode>"
5112  [(set (match_operand:GPR 0 "register_operand" "=d")
5113	(unspec:GPR [(match_operand:HILO 1 "hilo_operand" "x")]
5114		    UNSPEC_MFHI))]
5115  ""
5116  { return ISA_HAS_MACCHI ? "<GPR:d>macchi\t%0,%.,%." : "mfhi\t%0"; }
5117  [(set_attr "type" "mfhi")
5118   (set_attr "mode" "<GPR:MODE>")])
5119
5120;; Set the high part of a HI/LO value, given that the low part has
5121;; already been set.  See mips_hard_regno_mode_ok_p for the reason
5122;; why we can't just use (reg:GPR HI_REGNUM).
5123(define_insn "mthi<GPR:mode>_<HILO:mode>"
5124  [(set (match_operand:HILO 0 "register_operand" "=x")
5125	(unspec:HILO [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
5126		      (match_operand:GPR 2 "register_operand" "l")]
5127		     UNSPEC_MTHI))]
5128  ""
5129  "mthi\t%z1"
5130  [(set_attr "type" "mthi")
5131   (set_attr "mode" "SI")])
5132
5133;; Emit a doubleword move in which exactly one of the operands is
5134;; a floating-point register.  We can't just emit two normal moves
5135;; because of the constraints imposed by the FPU register model;
5136;; see mips_cannot_change_mode_class for details.  Instead, we keep
5137;; the FPR whole and use special patterns to refer to each word of
5138;; the other operand.
5139
5140(define_expand "move_doubleword_fpr<mode>"
5141  [(set (match_operand:SPLITF 0)
5142	(match_operand:SPLITF 1))]
5143  ""
5144{
5145  if (FP_REG_RTX_P (operands[0]))
5146    {
5147      rtx low = mips_subword (operands[1], 0);
5148      rtx high = mips_subword (operands[1], 1);
5149      emit_insn (gen_load_low<mode> (operands[0], low));
5150      if (ISA_HAS_MXHC1 && !TARGET_64BIT)
5151      	emit_insn (gen_mthc1<mode> (operands[0], high, operands[0]));
5152      else
5153	emit_insn (gen_load_high<mode> (operands[0], high, operands[0]));
5154    }
5155  else
5156    {
5157      rtx low = mips_subword (operands[0], 0);
5158      rtx high = mips_subword (operands[0], 1);
5159      emit_insn (gen_store_word<mode> (low, operands[1], const0_rtx));
5160      if (ISA_HAS_MXHC1 && !TARGET_64BIT)
5161	emit_insn (gen_mfhc1<mode> (high, operands[1]));
5162      else
5163	emit_insn (gen_store_word<mode> (high, operands[1], const1_rtx));
5164    }
5165  DONE;
5166})
5167
5168;; Load the low word of operand 0 with operand 1.
5169(define_insn "load_low<mode>"
5170  [(set (match_operand:SPLITF 0 "register_operand" "=f,f")
5171	(unspec:SPLITF [(match_operand:<HALFMODE> 1 "general_operand" "dJ,m")]
5172		       UNSPEC_LOAD_LOW))]
5173  "TARGET_HARD_FLOAT"
5174{
5175  operands[0] = mips_subword (operands[0], 0);
5176  return mips_output_move (operands[0], operands[1]);
5177}
5178  [(set_attr "move_type" "mtc,fpload")
5179   (set_attr "mode" "<HALFMODE>")])
5180
5181;; Load the high word of operand 0 from operand 1, preserving the value
5182;; in the low word.
5183(define_insn "load_high<mode>"
5184  [(set (match_operand:SPLITF 0 "register_operand" "=f,f")
5185	(unspec:SPLITF [(match_operand:<HALFMODE> 1 "general_operand" "dJ,m")
5186			(match_operand:SPLITF 2 "register_operand" "0,0")]
5187		       UNSPEC_LOAD_HIGH))]
5188  "TARGET_HARD_FLOAT"
5189{
5190  operands[0] = mips_subword (operands[0], 1);
5191  return mips_output_move (operands[0], operands[1]);
5192}
5193  [(set_attr "move_type" "mtc,fpload")
5194   (set_attr "mode" "<HALFMODE>")])
5195
5196;; Store one word of operand 1 in operand 0.  Operand 2 is 1 to store the
5197;; high word and 0 to store the low word.
5198(define_insn "store_word<mode>"
5199  [(set (match_operand:<HALFMODE> 0 "nonimmediate_operand" "=d,m")
5200	(unspec:<HALFMODE> [(match_operand:SPLITF 1 "register_operand" "f,f")
5201			    (match_operand 2 "const_int_operand")]
5202			   UNSPEC_STORE_WORD))]
5203  "TARGET_HARD_FLOAT"
5204{
5205  operands[1] = mips_subword (operands[1], INTVAL (operands[2]));
5206  return mips_output_move (operands[0], operands[1]);
5207}
5208  [(set_attr "move_type" "mfc,fpstore")
5209   (set_attr "mode" "<HALFMODE>")])
5210
5211;; Move operand 1 to the high word of operand 0 using mthc1, preserving the
5212;; value in the low word.
5213(define_insn "mthc1<mode>"
5214  [(set (match_operand:SPLITF 0 "register_operand" "=f")
5215	(unspec:SPLITF [(match_operand:<HALFMODE> 1 "reg_or_0_operand" "dJ")
5216		        (match_operand:SPLITF 2 "register_operand" "0")]
5217		       UNSPEC_MTHC1))]
5218  "TARGET_HARD_FLOAT && ISA_HAS_MXHC1"
5219  "mthc1\t%z1,%0"
5220  [(set_attr "move_type" "mtc")
5221   (set_attr "mode" "<HALFMODE>")])
5222
5223;; Move high word of operand 1 to operand 0 using mfhc1.
5224(define_insn "mfhc1<mode>"
5225  [(set (match_operand:<HALFMODE> 0 "register_operand" "=d")
5226	(unspec:<HALFMODE> [(match_operand:SPLITF 1 "register_operand" "f")]
5227			    UNSPEC_MFHC1))]
5228  "TARGET_HARD_FLOAT && ISA_HAS_MXHC1"
5229  "mfhc1\t%0,%1"
5230  [(set_attr "move_type" "mfc")
5231   (set_attr "mode" "<HALFMODE>")])
5232
5233;; Move a constant that satisfies CONST_GP_P into operand 0.
5234(define_expand "load_const_gp_<mode>"
5235  [(set (match_operand:P 0 "register_operand" "=d")
5236	(const:P (unspec:P [(const_int 0)] UNSPEC_GP)))])
5237
5238;; Insn to initialize $gp for n32/n64 abicalls.  Operand 0 is the offset
5239;; of _gp from the start of this function.  Operand 1 is the incoming
5240;; function address.
5241(define_insn_and_split "loadgp_newabi_<mode>"
5242  [(set (match_operand:P 0 "register_operand" "=&d")
5243	(unspec:P [(match_operand:P 1)
5244		   (match_operand:P 2 "register_operand" "d")]
5245		  UNSPEC_LOADGP))]
5246  "mips_current_loadgp_style () == LOADGP_NEWABI"
5247  { return mips_must_initialize_gp_p () ? "#" : ""; }
5248  "&& mips_must_initialize_gp_p ()"
5249  [(set (match_dup 0) (match_dup 3))
5250   (set (match_dup 0) (match_dup 4))
5251   (set (match_dup 0) (match_dup 5))]
5252{
5253  operands[3] = gen_rtx_HIGH (Pmode, operands[1]);
5254  operands[4] = gen_rtx_PLUS (Pmode, operands[0], operands[2]);
5255  operands[5] = gen_rtx_LO_SUM (Pmode, operands[0], operands[1]);
5256}
5257  [(set_attr "type" "ghost")])
5258
5259;; Likewise, for -mno-shared code.  Operand 0 is the __gnu_local_gp symbol.
5260(define_insn_and_split "loadgp_absolute_<mode>"
5261  [(set (match_operand:P 0 "register_operand" "=d")
5262	(unspec:P [(match_operand:P 1)] UNSPEC_LOADGP))]
5263  "mips_current_loadgp_style () == LOADGP_ABSOLUTE"
5264  { return mips_must_initialize_gp_p () ? "#" : ""; }
5265  "&& mips_must_initialize_gp_p ()"
5266  [(const_int 0)]
5267{
5268  mips_emit_move (operands[0], operands[1]);
5269  DONE;
5270}
5271  [(set_attr "type" "ghost")])
5272
5273;; This blockage instruction prevents the gp load from being
5274;; scheduled after an implicit use of gp.  It also prevents
5275;; the load from being deleted as dead.
5276(define_insn "loadgp_blockage"
5277  [(unspec_volatile [(reg:SI 28)] UNSPEC_BLOCKAGE)]
5278  ""
5279  ""
5280  [(set_attr "type" "ghost")])
5281
5282;; Initialize $gp for RTP PIC.  Operand 0 is the __GOTT_BASE__ symbol
5283;; and operand 1 is the __GOTT_INDEX__ symbol.
5284(define_insn_and_split "loadgp_rtp_<mode>"
5285  [(set (match_operand:P 0 "register_operand" "=d")
5286	(unspec:P [(match_operand:P 1 "symbol_ref_operand")
5287		   (match_operand:P 2 "symbol_ref_operand")]
5288		  UNSPEC_LOADGP))]
5289  "mips_current_loadgp_style () == LOADGP_RTP"
5290  { return mips_must_initialize_gp_p () ? "#" : ""; }
5291  "&& mips_must_initialize_gp_p ()"
5292  [(set (match_dup 0) (high:P (match_dup 3)))
5293   (set (match_dup 0) (unspec:P [(match_dup 0)
5294				 (match_dup 3)] UNSPEC_LOAD_GOT))
5295   (set (match_dup 0) (unspec:P [(match_dup 0)
5296				 (match_dup 4)] UNSPEC_LOAD_GOT))]
5297{
5298  operands[3] = mips_unspec_address (operands[1], SYMBOL_ABSOLUTE);
5299  operands[4] = mips_unspec_address (operands[2], SYMBOL_HALF);
5300}
5301  [(set_attr "type" "ghost")])
5302
5303;; Initialize the global pointer for MIPS16 code.  Operand 0 is the
5304;; global pointer and operand 1 is the MIPS16 register that holds
5305;; the required value.
5306(define_insn_and_split "copygp_mips16_<mode>"
5307  [(set (match_operand:P 0 "register_operand" "=y")
5308	(unspec:P [(match_operand:P 1 "register_operand" "d")]
5309		  UNSPEC_COPYGP))]
5310  "TARGET_MIPS16"
5311  { return mips_must_initialize_gp_p () ? "#" : ""; }
5312  "&& mips_must_initialize_gp_p ()"
5313  [(set (match_dup 0) (match_dup 1))]
5314  ""
5315  [(set_attr "type" "ghost")])
5316
5317;; A placeholder for where the cprestore instruction should go,
5318;; if we decide we need one.  Operand 0 and operand 1 are as for
5319;; "cprestore".  Operand 2 is a register that holds the gp value.
5320;;
5321;; The "cprestore" pattern requires operand 2 to be pic_offset_table_rtx,
5322;; otherwise any register that holds the correct value will do.
5323(define_insn_and_split "potential_cprestore_<mode>"
5324  [(set (match_operand:P 0 "cprestore_save_slot_operand" "=X,X")
5325	(unspec:P [(match_operand:P 1 "const_int_operand" "I,i")
5326		   (match_operand:P 2 "register_operand" "d,d")]
5327		  UNSPEC_POTENTIAL_CPRESTORE))
5328   (clobber (match_operand:P 3 "scratch_operand" "=X,&d"))]
5329  "!TARGET_CPRESTORE_DIRECTIVE || operands[2] == pic_offset_table_rtx"
5330  { return mips_must_initialize_gp_p () ? "#" : ""; }
5331  "mips_must_initialize_gp_p ()"
5332  [(const_int 0)]
5333{
5334  mips_save_gp_to_cprestore_slot (operands[0], operands[1],
5335				  operands[2], operands[3]);
5336  DONE;
5337}
5338  [(set_attr "type" "ghost")])
5339
5340;; Emit a .cprestore directive, which normally expands to a single store
5341;; instruction.  Operand 0 is a (possibly illegitimate) sp-based MEM
5342;; for the cprestore slot.  Operand 1 is the offset of the slot from
5343;; the stack pointer.  (This is redundant with operand 0, but it makes
5344;; things a little simpler.)
5345(define_insn "cprestore_<mode>"
5346  [(set (match_operand:P 0 "cprestore_save_slot_operand" "=X,X")
5347	(unspec:P [(match_operand:P 1 "const_int_operand" "I,i")
5348		   (reg:P 28)]
5349		  UNSPEC_CPRESTORE))]
5350  "TARGET_CPRESTORE_DIRECTIVE"
5351{
5352  if (mips_nomacro.nesting_level > 0 && which_alternative == 1)
5353    return ".set\tmacro\;.cprestore\t%1\;.set\tnomacro";
5354  else
5355    return ".cprestore\t%1";
5356}
5357  [(set_attr "type" "store")
5358   (set_attr "insn_count" "1,3")])
5359
5360(define_insn "use_cprestore_<mode>"
5361  [(set (reg:P CPRESTORE_SLOT_REGNUM)
5362	(match_operand:P 0 "cprestore_load_slot_operand"))]
5363  ""
5364  ""
5365  [(set_attr "type" "ghost")])
5366
5367;; Expand in-line code to clear the instruction cache between operand[0] and
5368;; operand[1].
5369(define_expand "clear_cache"
5370  [(match_operand 0 "pmode_register_operand")
5371   (match_operand 1 "pmode_register_operand")]
5372  ""
5373  "
5374{
5375  if (TARGET_SYNCI)
5376    {
5377      mips_expand_synci_loop (operands[0], operands[1]);
5378      emit_insn (gen_sync ());
5379      emit_insn (PMODE_INSN (gen_clear_hazard, ()));
5380    }
5381  else if (mips_cache_flush_func && mips_cache_flush_func[0])
5382    {
5383      rtx len = gen_reg_rtx (Pmode);
5384      emit_insn (gen_sub3_insn (len, operands[1], operands[0]));
5385      MIPS_ICACHE_SYNC (operands[0], len);
5386    }
5387  DONE;
5388}")
5389
5390(define_insn "sync"
5391  [(unspec_volatile [(const_int 0)] UNSPEC_SYNC)]
5392  "GENERATE_SYNC"
5393  { return mips_output_sync (); })
5394
5395(define_insn "synci"
5396  [(unspec_volatile [(match_operand 0 "pmode_register_operand" "d")]
5397		    UNSPEC_SYNCI)]
5398  "TARGET_SYNCI"
5399  "synci\t0(%0)")
5400
5401(define_insn "rdhwr_synci_step_<mode>"
5402  [(set (match_operand:P 0 "register_operand" "=d")
5403        (unspec_volatile [(const_int 1)]
5404        UNSPEC_RDHWR))]
5405  "ISA_HAS_SYNCI"
5406  "rdhwr\t%0,$1")
5407
5408(define_insn "clear_hazard_<mode>"
5409  [(unspec_volatile [(const_int 0)] UNSPEC_CLEAR_HAZARD)
5410   (clobber (reg:P RETURN_ADDR_REGNUM))]
5411  "ISA_HAS_SYNCI"
5412{
5413  return "%(%<bal\t1f\n"
5414         "\tnop\n"
5415         "1:\t<d>addiu\t$31,$31,12\n"
5416         "\tjr.hb\t$31\n"
5417         "\tnop%>%)";
5418}
5419  [(set_attr "insn_count" "5")])
5420
5421;; Cache operations for R4000-style caches.
5422(define_insn "mips_cache"
5423  [(set (mem:BLK (scratch))
5424	(unspec:BLK [(match_operand:SI 0 "const_int_operand")
5425		     (match_operand:QI 1 "address_operand" "ZD")]
5426		    UNSPEC_MIPS_CACHE))]
5427  "ISA_HAS_CACHE"
5428  "cache\t%X0,%a1")
5429
5430;; Similar, but with the operands hard-coded to an R10K cache barrier
5431;; operation.  We keep the pattern distinct so that we can identify
5432;; cache operations inserted by -mr10k-cache-barrier=, and so that
5433;; the operation is never inserted into a delay slot.
5434(define_insn "r10k_cache_barrier"
5435  [(set (mem:BLK (scratch))
5436	(unspec:BLK [(const_int 0)] UNSPEC_R10K_CACHE_BARRIER))]
5437  "ISA_HAS_CACHE"
5438  "cache\t0x14,0(%$)"
5439  [(set_attr "can_delay" "no")])
5440
5441;; Block moves, see mips.c for more details.
5442;; Argument 0 is the destination
5443;; Argument 1 is the source
5444;; Argument 2 is the length
5445;; Argument 3 is the alignment
5446
5447(define_expand "movmemsi"
5448  [(parallel [(set (match_operand:BLK 0 "general_operand")
5449		   (match_operand:BLK 1 "general_operand"))
5450	      (use (match_operand:SI 2 ""))
5451	      (use (match_operand:SI 3 "const_int_operand"))])]
5452  "!TARGET_MIPS16 && !TARGET_MEMCPY"
5453{
5454  if (mips_expand_block_move (operands[0], operands[1], operands[2]))
5455    DONE;
5456  else
5457    FAIL;
5458})
5459
5460;;
5461;;  ....................
5462;;
5463;;	SHIFTS
5464;;
5465;;  ....................
5466
5467(define_expand "<optab><mode>3"
5468  [(set (match_operand:GPR 0 "register_operand")
5469	(any_shift:GPR (match_operand:GPR 1 "register_operand")
5470		       (match_operand:SI 2 "arith_operand")))]
5471  ""
5472{
5473  /* On the mips16, a shift of more than 8 is a four byte instruction,
5474     so, for a shift between 8 and 16, it is just as fast to do two
5475     shifts of 8 or less.  If there is a lot of shifting going on, we
5476     may win in CSE.  Otherwise combine will put the shifts back
5477     together again.  This can be called by mips_function_arg, so we must
5478     be careful not to allocate a new register if we've reached the
5479     reload pass.  */
5480  if (TARGET_MIPS16
5481      && optimize
5482      && CONST_INT_P (operands[2])
5483      && INTVAL (operands[2]) > 8
5484      && INTVAL (operands[2]) <= 16
5485      && !reload_in_progress
5486      && !reload_completed)
5487    {
5488      rtx temp = gen_reg_rtx (<MODE>mode);
5489
5490      emit_insn (gen_<optab><mode>3 (temp, operands[1], GEN_INT (8)));
5491      emit_insn (gen_<optab><mode>3 (operands[0], temp,
5492				     GEN_INT (INTVAL (operands[2]) - 8)));
5493      DONE;
5494    }
5495})
5496
5497(define_insn "*<optab><mode>3"
5498  [(set (match_operand:GPR 0 "register_operand" "=!u,d")
5499	(any_shift:GPR (match_operand:GPR 1 "register_operand" "!u,d")
5500		       (match_operand:SI 2 "arith_operand" "Uib3,dI")))]
5501  "!TARGET_MIPS16"
5502{
5503  if (CONST_INT_P (operands[2]))
5504    operands[2] = GEN_INT (INTVAL (operands[2])
5505			   & (GET_MODE_BITSIZE (<MODE>mode) - 1));
5506
5507  return "<d><insn>\t%0,%1,%2";
5508}
5509  [(set_attr "type" "shift")
5510   (set_attr "compression" "<shift_compression>,none")
5511   (set_attr "mode" "<MODE>")])
5512
5513(define_insn "*<optab>si3_extend"
5514  [(set (match_operand:DI 0 "register_operand" "=d")
5515	(sign_extend:DI
5516	   (any_shift:SI (match_operand:SI 1 "register_operand" "d")
5517			 (match_operand:SI 2 "arith_operand" "dI"))))]
5518  "TARGET_64BIT && !TARGET_MIPS16"
5519{
5520  if (CONST_INT_P (operands[2]))
5521    operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);
5522
5523  return "<insn>\t%0,%1,%2";
5524}
5525  [(set_attr "type" "shift")
5526   (set_attr "mode" "SI")])
5527
5528(define_insn "*<optab>si3_mips16"
5529  [(set (match_operand:SI 0 "register_operand" "=d,d,d")
5530	(any_shift:SI (match_operand:SI 1 "register_operand" "0,d,d")
5531		      (match_operand:SI 2 "arith_operand" "d,Uib3,I")))]
5532  "TARGET_MIPS16"
5533{
5534  if (which_alternative == 0)
5535    return "<insn>\t%0,%2";
5536
5537  operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);
5538  return "<insn>\t%0,%1,%2";
5539}
5540  [(set_attr "type" "shift")
5541   (set_attr "mode" "SI")
5542   (set_attr "extended_mips16" "no,no,yes")])
5543
5544(define_insn "<GPR:d>lsa"
5545 [(set (match_operand:GPR 0 "register_operand" "=d")
5546       (plus:GPR (mult:GPR (match_operand:GPR 1 "register_operand" "d")
5547			   (match_operand 2 "const_immlsa_operand" ""))
5548		(match_operand:GPR 3 "register_operand" "d")))]
5549 "ISA_HAS_<GPR:D>LSA"
5550 "<GPR:d>lsa\t%0,%1,%3,%y2"
5551 [(set_attr "type" "arith")
5552  (set_attr "mode" "<GPR:MODE>")])
5553
5554;; We need separate DImode MIPS16 patterns because of the irregularity
5555;; of right shifts.
5556(define_insn "*ashldi3_mips16"
5557  [(set (match_operand:DI 0 "register_operand" "=d,d,d")
5558	(ashift:DI (match_operand:DI 1 "register_operand" "0,d,d")
5559		   (match_operand:SI 2 "arith_operand" "d,Uib3,I")))]
5560  "TARGET_64BIT && TARGET_MIPS16"
5561{
5562  if (which_alternative == 0)
5563    return "dsll\t%0,%2";
5564
5565  operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
5566  return "dsll\t%0,%1,%2";
5567}
5568  [(set_attr "type" "shift")
5569   (set_attr "mode" "DI")
5570   (set_attr "extended_mips16" "no,no,yes")])
5571
5572(define_insn "*ashrdi3_mips16"
5573  [(set (match_operand:DI 0 "register_operand" "=d,d,d")
5574	(ashiftrt:DI (match_operand:DI 1 "register_operand" "0,0,0")
5575		     (match_operand:SI 2 "arith_operand" "d,Uib3,I")))]
5576  "TARGET_64BIT && TARGET_MIPS16"
5577{
5578  if (CONST_INT_P (operands[2]))
5579    operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
5580
5581  return "dsra\t%0,%2";
5582}
5583  [(set_attr "type" "shift")
5584   (set_attr "mode" "DI")
5585   (set_attr "extended_mips16" "no,no,yes")])
5586
5587(define_insn "*lshrdi3_mips16"
5588  [(set (match_operand:DI 0 "register_operand" "=d,d,d")
5589	(lshiftrt:DI (match_operand:DI 1 "register_operand" "0,0,0")
5590		     (match_operand:SI 2 "arith_operand" "d,Uib3,I")))]
5591  "TARGET_64BIT && TARGET_MIPS16"
5592{
5593  if (CONST_INT_P (operands[2]))
5594    operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
5595
5596  return "dsrl\t%0,%2";
5597}
5598  [(set_attr "type" "shift")
5599   (set_attr "mode" "DI")
5600   (set_attr "extended_mips16" "no,no,yes")])
5601
5602;; On the mips16, we can split a 4 byte shift into 2 2 byte shifts.
5603
5604(define_split
5605  [(set (match_operand:GPR 0 "d_operand")
5606	(any_shift:GPR (match_operand:GPR 1 "d_operand")
5607		       (match_operand:GPR 2 "const_int_operand")))]
5608  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
5609   && INTVAL (operands[2]) > 8
5610   && INTVAL (operands[2]) <= 16"
5611  [(set (match_dup 0) (any_shift:GPR (match_dup 1) (const_int 8)))
5612   (set (match_dup 0) (any_shift:GPR (match_dup 0) (match_dup 2)))]
5613  { operands[2] = GEN_INT (INTVAL (operands[2]) - 8); })
5614
5615;; If we load a byte on the mips16 as a bitfield, the resulting
5616;; sequence of instructions is too complicated for combine, because it
5617;; involves four instructions: a load, a shift, a constant load into a
5618;; register, and an and (the key problem here is that the mips16 does
5619;; not have and immediate).  We recognize a shift of a load in order
5620;; to make it simple enough for combine to understand.
5621;;
5622;; The instruction count here is the worst case.
5623(define_insn_and_split ""
5624  [(set (match_operand:SI 0 "register_operand" "=d")
5625	(lshiftrt:SI (match_operand:SI 1 "memory_operand" "m")
5626		     (match_operand:SI 2 "immediate_operand" "I")))]
5627  "TARGET_MIPS16"
5628  "#"
5629  ""
5630  [(set (match_dup 0) (match_dup 1))
5631   (set (match_dup 0) (lshiftrt:SI (match_dup 0) (match_dup 2)))]
5632  ""
5633  [(set_attr "type"	"load")
5634   (set_attr "mode"	"SI")
5635   (set (attr "insn_count")
5636	(symbol_ref "mips_load_store_insns (operands[1], insn) + 2"))])
5637
5638(define_insn "rotr<mode>3"
5639  [(set (match_operand:GPR 0 "register_operand" "=d")
5640	(rotatert:GPR (match_operand:GPR 1 "register_operand" "d")
5641		      (match_operand:SI 2 "arith_operand" "dI")))]
5642  "ISA_HAS_ROR"
5643{
5644  if (CONST_INT_P (operands[2]))
5645    gcc_assert (INTVAL (operands[2]) >= 0
5646		&& INTVAL (operands[2]) < GET_MODE_BITSIZE (<MODE>mode));
5647
5648  return "<d>ror\t%0,%1,%2";
5649}
5650  [(set_attr "type" "shift")
5651   (set_attr "mode" "<MODE>")])
5652
5653(define_insn "bswaphi2"
5654  [(set (match_operand:HI 0 "register_operand" "=d")
5655	(bswap:HI (match_operand:HI 1 "register_operand" "d")))]
5656  "ISA_HAS_WSBH"
5657  "wsbh\t%0,%1"
5658  [(set_attr "type" "shift")])
5659
5660(define_insn_and_split "bswapsi2"
5661  [(set (match_operand:SI 0 "register_operand" "=d")
5662	(bswap:SI (match_operand:SI 1 "register_operand" "d")))]
5663  "ISA_HAS_WSBH && ISA_HAS_ROR"
5664  "#"
5665  ""
5666  [(set (match_dup 0) (unspec:SI [(match_dup 1)] UNSPEC_WSBH))
5667   (set (match_dup 0) (rotatert:SI (match_dup 0) (const_int 16)))]
5668  ""
5669  [(set_attr "insn_count" "2")])
5670
5671(define_insn_and_split "bswapdi2"
5672  [(set (match_operand:DI 0 "register_operand" "=d")
5673	(bswap:DI (match_operand:DI 1 "register_operand" "d")))]
5674  "TARGET_64BIT && ISA_HAS_WSBH"
5675  "#"
5676  ""
5677  [(set (match_dup 0) (unspec:DI [(match_dup 1)] UNSPEC_DSBH))
5678   (set (match_dup 0) (unspec:DI [(match_dup 0)] UNSPEC_DSHD))]
5679  ""
5680  [(set_attr "insn_count" "2")])
5681
5682(define_insn "wsbh"
5683  [(set (match_operand:SI 0 "register_operand" "=d")
5684	(unspec:SI [(match_operand:SI 1 "register_operand" "d")] UNSPEC_WSBH))]
5685  "ISA_HAS_WSBH"
5686  "wsbh\t%0,%1"
5687  [(set_attr "type" "shift")])
5688
5689(define_insn "dsbh"
5690  [(set (match_operand:DI 0 "register_operand" "=d")
5691	(unspec:DI [(match_operand:DI 1 "register_operand" "d")] UNSPEC_DSBH))]
5692  "TARGET_64BIT && ISA_HAS_WSBH"
5693  "dsbh\t%0,%1"
5694  [(set_attr "type" "shift")])
5695
5696(define_insn "dshd"
5697  [(set (match_operand:DI 0 "register_operand" "=d")
5698	(unspec:DI [(match_operand:DI 1 "register_operand" "d")] UNSPEC_DSHD))]
5699  "TARGET_64BIT && ISA_HAS_WSBH"
5700  "dshd\t%0,%1"
5701  [(set_attr "type" "shift")])
5702
5703;;
5704;;  ....................
5705;;
5706;;	CONDITIONAL BRANCHES
5707;;
5708;;  ....................
5709
5710;; Conditional branches on floating-point equality tests.
5711
5712(define_insn "*branch_fp_<mode>"
5713  [(set (pc)
5714        (if_then_else
5715         (match_operator 1 "equality_operator"
5716                         [(match_operand:FPCC 2 "register_operand" "<reg>")
5717			  (const_int 0)])
5718         (label_ref (match_operand 0 "" ""))
5719         (pc)))]
5720  "TARGET_HARD_FLOAT"
5721{
5722  return mips_output_conditional_branch (insn, operands,
5723					 MIPS_BRANCH ("b%F1", "%Z2%0"),
5724					 MIPS_BRANCH ("b%W1", "%Z2%0"));
5725}
5726  [(set_attr "type" "branch")])
5727
5728(define_insn "*branch_fp_inverted_<mode>"
5729  [(set (pc)
5730        (if_then_else
5731         (match_operator 1 "equality_operator"
5732                         [(match_operand:FPCC 2 "register_operand" "<reg>")
5733			  (const_int 0)])
5734         (pc)
5735         (label_ref (match_operand 0 "" ""))))]
5736  "TARGET_HARD_FLOAT"
5737{
5738  return mips_output_conditional_branch (insn, operands,
5739					 MIPS_BRANCH ("b%W1", "%Z2%0"),
5740					 MIPS_BRANCH ("b%F1", "%Z2%0"));
5741}
5742  [(set_attr "type" "branch")])
5743
5744;; Conditional branches on ordered comparisons with zero.
5745
5746(define_insn "*branch_order<mode>"
5747  [(set (pc)
5748	(if_then_else
5749	 (match_operator 1 "order_operator"
5750			 [(match_operand:GPR 2 "register_operand" "d")
5751			  (const_int 0)])
5752	 (label_ref (match_operand 0 "" ""))
5753	 (pc)))]
5754  "!TARGET_MIPS16"
5755  { return mips_output_order_conditional_branch (insn, operands, false); }
5756  [(set_attr "type" "branch")])
5757
5758(define_insn "*branch_order<mode>_inverted"
5759  [(set (pc)
5760	(if_then_else
5761	 (match_operator 1 "order_operator"
5762			 [(match_operand:GPR 2 "register_operand" "d")
5763			  (const_int 0)])
5764	 (pc)
5765	 (label_ref (match_operand 0 "" ""))))]
5766  "!TARGET_MIPS16"
5767  { return mips_output_order_conditional_branch (insn, operands, true); }
5768  [(set_attr "type" "branch")])
5769
5770;; Conditional branch on equality comparison.
5771
5772(define_insn "*branch_equality<mode>"
5773  [(set (pc)
5774	(if_then_else
5775	 (match_operator 1 "equality_operator"
5776			 [(match_operand:GPR 2 "register_operand" "d")
5777			  (match_operand:GPR 3 "reg_or_0_operand" "dJ")])
5778	 (label_ref (match_operand 0 "" ""))
5779	 (pc)))]
5780  "!TARGET_MIPS16"
5781{
5782  /* For a simple BNEZ or BEQZ microMIPS branch.  */
5783  if (TARGET_MICROMIPS
5784      && operands[3] == const0_rtx
5785      && get_attr_length (insn) <= 8)
5786    return mips_output_conditional_branch (insn, operands,
5787					   "%*b%C1z%:\t%2,%0",
5788					   "%*b%N1z%:\t%2,%0");
5789
5790  return mips_output_conditional_branch (insn, operands,
5791					 MIPS_BRANCH ("b%C1", "%2,%z3,%0"),
5792					 MIPS_BRANCH ("b%N1", "%2,%z3,%0"));
5793}
5794  [(set_attr "type" "branch")])
5795
5796(define_insn "*branch_equality<mode>_inverted"
5797  [(set (pc)
5798	(if_then_else
5799	 (match_operator 1 "equality_operator"
5800			 [(match_operand:GPR 2 "register_operand" "d")
5801			  (match_operand:GPR 3 "reg_or_0_operand" "dJ")])
5802	 (pc)
5803	 (label_ref (match_operand 0 "" ""))))]
5804  "!TARGET_MIPS16"
5805{
5806  /* For a simple BNEZ or BEQZ microMIPS branch.  */
5807  if (TARGET_MICROMIPS
5808      && operands[3] == const0_rtx
5809      && get_attr_length (insn) <= 8)
5810    return mips_output_conditional_branch (insn, operands,
5811					   "%*b%N0z%:\t%2,%1",
5812					   "%*b%C0z%:\t%2,%1");
5813
5814  return mips_output_conditional_branch (insn, operands,
5815					 MIPS_BRANCH ("b%N1", "%2,%z3,%0"),
5816					 MIPS_BRANCH ("b%C1", "%2,%z3,%0"));
5817}
5818  [(set_attr "type" "branch")])
5819
5820;; MIPS16 branches
5821
5822(define_insn "*branch_equality<mode>_mips16"
5823  [(set (pc)
5824	(if_then_else
5825	 (match_operator 1 "equality_operator"
5826			 [(match_operand:GPR 2 "register_operand" "d,t")
5827			  (const_int 0)])
5828	 (label_ref (match_operand 0 "" ""))
5829	 (pc)))]
5830  "TARGET_MIPS16"
5831  "@
5832   b%C1z\t%2,%0
5833   bt%C1z\t%0"
5834  [(set_attr "type" "branch")])
5835
5836(define_insn "*branch_equality<mode>_mips16_inverted"
5837  [(set (pc)
5838	(if_then_else
5839	 (match_operator 1 "equality_operator"
5840			 [(match_operand:GPR 2 "register_operand" "d,t")
5841			  (const_int 0)])
5842	 (pc)
5843	 (label_ref (match_operand 0 "" ""))))]
5844  "TARGET_MIPS16"
5845  "@
5846   b%N1z\t%2,%0
5847   bt%N1z\t%0"
5848  [(set_attr "type" "branch")])
5849
5850(define_expand "cbranch<mode>4"
5851  [(set (pc)
5852	(if_then_else (match_operator 0 "comparison_operator"
5853		       [(match_operand:GPR 1 "register_operand")
5854		        (match_operand:GPR 2 "nonmemory_operand")])
5855		      (label_ref (match_operand 3 ""))
5856		      (pc)))]
5857  ""
5858{
5859  mips_expand_conditional_branch (operands);
5860  DONE;
5861})
5862
5863(define_expand "cbranch<mode>4"
5864  [(set (pc)
5865	(if_then_else (match_operator 0 "comparison_operator"
5866		       [(match_operand:SCALARF 1 "register_operand")
5867		        (match_operand:SCALARF 2 "register_operand")])
5868		      (label_ref (match_operand 3 ""))
5869		      (pc)))]
5870  ""
5871{
5872  mips_expand_conditional_branch (operands);
5873  DONE;
5874})
5875
5876;; Used to implement built-in functions.
5877(define_expand "condjump"
5878  [(set (pc)
5879	(if_then_else (match_operand 0)
5880		      (label_ref (match_operand 1))
5881		      (pc)))])
5882
5883;; Branch if bit is set/clear.
5884
5885(define_insn "*branch_bit<bbv><mode>"
5886  [(set (pc)
5887	(if_then_else
5888	 (equality_op (zero_extract:GPR
5889		       (match_operand:GPR 1 "register_operand" "d")
5890		       (const_int 1)
5891		       (match_operand 2 "const_int_operand" ""))
5892		      (const_int 0))
5893	 (label_ref (match_operand 0 ""))
5894	 (pc)))]
5895  "ISA_HAS_BBIT && UINTVAL (operands[2]) < GET_MODE_BITSIZE (<MODE>mode)"
5896{
5897  return
5898    mips_output_conditional_branch (insn, operands,
5899				    MIPS_BRANCH ("bbit<bbv>", "%1,%2,%0"),
5900				    MIPS_BRANCH ("bbit<bbinv>", "%1,%2,%0"));
5901}
5902  [(set_attr "type"	     "branch")
5903   (set_attr "branch_likely" "no")])
5904
5905(define_insn "*branch_bit<bbv><mode>_inverted"
5906  [(set (pc)
5907	(if_then_else
5908	 (equality_op (zero_extract:GPR
5909		       (match_operand:GPR 1 "register_operand" "d")
5910		       (const_int 1)
5911		       (match_operand 2 "const_int_operand" ""))
5912		      (const_int 0))
5913	 (pc)
5914	 (label_ref (match_operand 0 ""))))]
5915  "ISA_HAS_BBIT && UINTVAL (operands[2]) < GET_MODE_BITSIZE (<MODE>mode)"
5916{
5917  return
5918    mips_output_conditional_branch (insn, operands,
5919				    MIPS_BRANCH ("bbit<bbinv>", "%1,%2,%0"),
5920				    MIPS_BRANCH ("bbit<bbv>", "%1,%2,%0"));
5921}
5922  [(set_attr "type"	     "branch")
5923   (set_attr "branch_likely" "no")])
5924
5925;;
5926;;  ....................
5927;;
5928;;	SETTING A REGISTER FROM A COMPARISON
5929;;
5930;;  ....................
5931
5932;; Destination is always set in SI mode.
5933
5934(define_expand "cstore<mode>4"
5935  [(set (match_operand:SI 0 "register_operand")
5936	(match_operator:SI 1 "mips_cstore_operator"
5937	 [(match_operand:GPR 2 "register_operand")
5938	  (match_operand:GPR 3 "nonmemory_operand")]))]
5939  ""
5940{
5941  mips_expand_scc (operands);
5942  DONE;
5943})
5944
5945(define_insn "*seq_zero_<GPR:mode><GPR2:mode>"
5946  [(set (match_operand:GPR2 0 "register_operand" "=d")
5947	(eq:GPR2 (match_operand:GPR 1 "register_operand" "d")
5948		 (const_int 0)))]
5949  "!TARGET_MIPS16 && !ISA_HAS_SEQ_SNE"
5950  "sltu\t%0,%1,1"
5951  [(set_attr "type" "slt")
5952   (set_attr "mode" "<GPR:MODE>")])
5953
5954(define_insn "*seq_zero_<GPR:mode><GPR2:mode>_mips16"
5955  [(set (match_operand:GPR2 0 "register_operand" "=t")
5956	(eq:GPR2 (match_operand:GPR 1 "register_operand" "d")
5957		 (const_int 0)))]
5958  "TARGET_MIPS16 && !ISA_HAS_SEQ_SNE"
5959  "sltu\t%1,1"
5960  [(set_attr "type" "slt")
5961   (set_attr "mode" "<GPR:MODE>")])
5962
5963;; Generate sltiu unless using seq results in better code.
5964(define_insn "*seq_<GPR:mode><GPR2:mode>_seq"
5965  [(set (match_operand:GPR2 0 "register_operand" "=d,d,d")
5966	(eq:GPR2 (match_operand:GPR 1 "register_operand" "%d,d,d")
5967		 (match_operand:GPR 2 "reg_imm10_operand" "d,J,YB")))]
5968  "ISA_HAS_SEQ_SNE"
5969  "@
5970   seq\t%0,%1,%2
5971   sltiu\t%0,%1,1
5972   seqi\t%0,%1,%2"
5973  [(set_attr "type" "slt")
5974   (set_attr "mode" "<GPR:MODE>")])
5975
5976(define_insn "*sne_zero_<GPR:mode><GPR2:mode>"
5977  [(set (match_operand:GPR2 0 "register_operand" "=d")
5978	(ne:GPR2 (match_operand:GPR 1 "register_operand" "d")
5979		 (const_int 0)))]
5980  "!TARGET_MIPS16 && !ISA_HAS_SEQ_SNE"
5981  "sltu\t%0,%.,%1"
5982  [(set_attr "type" "slt")
5983   (set_attr "mode" "<GPR:MODE>")])
5984
5985;; Generate sltu unless using sne results in better code.
5986(define_insn "*sne_<GPR:mode><GPR2:mode>_sne"
5987  [(set (match_operand:GPR2 0 "register_operand" "=d,d,d")
5988	(ne:GPR2 (match_operand:GPR 1 "register_operand" "%d,d,d")
5989		 (match_operand:GPR 2 "reg_imm10_operand" "d,J,YB")))]
5990  "ISA_HAS_SEQ_SNE"
5991  "@
5992   sne\t%0,%1,%2
5993   sltu\t%0,%.,%1
5994   snei\t%0,%1,%2"
5995  [(set_attr "type" "slt")
5996   (set_attr "mode" "<GPR:MODE>")])
5997
5998(define_insn "*sgt<u>_<GPR:mode><GPR2:mode>"
5999  [(set (match_operand:GPR2 0 "register_operand" "=d")
6000	(any_gt:GPR2 (match_operand:GPR 1 "register_operand" "d")
6001		     (match_operand:GPR 2 "reg_or_0_operand" "dJ")))]
6002  "!TARGET_MIPS16"
6003  "slt<u>\t%0,%z2,%1"
6004  [(set_attr "type" "slt")
6005   (set_attr "mode" "<GPR:MODE>")])
6006
6007(define_insn "*sgt<u>_<GPR:mode><GPR2:mode>_mips16"
6008  [(set (match_operand:GPR2 0 "register_operand" "=t")
6009	(any_gt:GPR2 (match_operand:GPR 1 "register_operand" "d")
6010		     (match_operand:GPR 2 "register_operand" "d")))]
6011  "TARGET_MIPS16"
6012  "slt<u>\t%2,%1"
6013  [(set_attr "type" "slt")
6014   (set_attr "mode" "<GPR:MODE>")])
6015
6016(define_insn "*sge<u>_<GPR:mode><GPR2:mode>"
6017  [(set (match_operand:GPR2 0 "register_operand" "=d")
6018	(any_ge:GPR2 (match_operand:GPR 1 "register_operand" "d")
6019		     (const_int 1)))]
6020  "!TARGET_MIPS16"
6021  "slt<u>\t%0,%.,%1"
6022  [(set_attr "type" "slt")
6023   (set_attr "mode" "<GPR:MODE>")])
6024
6025(define_insn "*slt<u>_<GPR:mode><GPR2:mode>"
6026  [(set (match_operand:GPR2 0 "register_operand" "=d")
6027	(any_lt:GPR2 (match_operand:GPR 1 "register_operand" "d")
6028		     (match_operand:GPR 2 "arith_operand" "dI")))]
6029  "!TARGET_MIPS16"
6030  "slt<u>\t%0,%1,%2"
6031  [(set_attr "type" "slt")
6032   (set_attr "mode" "<GPR:MODE>")])
6033
6034(define_insn "*slt<u>_<GPR:mode><GPR2:mode>_mips16"
6035  [(set (match_operand:GPR2 0 "register_operand" "=t,t,t")
6036	(any_lt:GPR2 (match_operand:GPR 1 "register_operand" "d,d,d")
6037		     (match_operand:GPR 2 "arith_operand" "d,Uub8,I")))]
6038  "TARGET_MIPS16"
6039  "slt<u>\t%1,%2"
6040  [(set_attr "type" "slt")
6041   (set_attr "mode" "<GPR:MODE>")
6042   (set_attr "extended_mips16" "no,no,yes")])
6043
6044(define_insn "*sle<u>_<GPR:mode><GPR2:mode>"
6045  [(set (match_operand:GPR2 0 "register_operand" "=d")
6046	(any_le:GPR2 (match_operand:GPR 1 "register_operand" "d")
6047		     (match_operand:GPR 2 "sle_operand" "")))]
6048  "!TARGET_MIPS16"
6049{
6050  operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
6051  return "slt<u>\t%0,%1,%2";
6052}
6053  [(set_attr "type" "slt")
6054   (set_attr "mode" "<GPR:MODE>")])
6055
6056(define_insn "*sle<u>_<GPR:mode><GPR2:mode>_mips16"
6057  [(set (match_operand:GPR2 0 "register_operand" "=t,t")
6058	(any_le:GPR2 (match_operand:GPR 1 "register_operand" "d,d")
6059		     (match_operand:GPR 2 "sle_operand" "Udb8,i")))]
6060  "TARGET_MIPS16"
6061{
6062  operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
6063  return "slt<u>\t%1,%2";
6064}
6065  [(set_attr "type" "slt")
6066   (set_attr "mode" "<GPR:MODE>")
6067   (set_attr "extended_mips16" "no,yes")])
6068
6069;;
6070;;  ....................
6071;;
6072;;	FLOATING POINT COMPARISONS
6073;;
6074;;  ....................
6075
6076(define_insn "s<code>_<SCALARF:mode>_using_<FPCC:mode>"
6077  [(set (match_operand:FPCC 0 "register_operand" "=<reg>")
6078	(fcond:FPCC (match_operand:SCALARF 1 "register_operand" "f")
6079		    (match_operand:SCALARF 2 "register_operand" "f")))]
6080  ""
6081  "<fpcmp>.<fcond>.<fmt>\t%Z0%1,%2"
6082  [(set_attr "type" "fcmp")
6083   (set_attr "mode" "FPSW")])
6084
6085(define_insn "s<code>_<SCALARF:mode>_using_<FPCC:mode>"
6086  [(set (match_operand:FPCC 0 "register_operand" "=<reg>")
6087	(swapped_fcond:FPCC (match_operand:SCALARF 1 "register_operand" "f")
6088			    (match_operand:SCALARF 2 "register_operand" "f")))]
6089  ""
6090  "<fpcmp>.<swapped_fcond>.<fmt>\t%Z0%2,%1"
6091  [(set_attr "type" "fcmp")
6092   (set_attr "mode" "FPSW")])
6093
6094;;
6095;;  ....................
6096;;
6097;;	UNCONDITIONAL BRANCHES
6098;;
6099;;  ....................
6100
6101;; Unconditional branches.
6102
6103(define_expand "jump"
6104  [(set (pc)
6105	(label_ref (match_operand 0)))])
6106
6107(define_insn "*jump_absolute"
6108  [(set (pc)
6109	(label_ref (match_operand 0)))]
6110  "!TARGET_MIPS16 && TARGET_ABSOLUTE_JUMPS"
6111{
6112  if (get_attr_length (insn) <= 8)
6113    return "%*b\t%l0%/";
6114  else
6115    return MIPS_ABSOLUTE_JUMP ("%*j\t%l0%/");
6116}
6117  [(set_attr "type" "branch")])
6118
6119(define_insn "*jump_pic"
6120  [(set (pc)
6121	(label_ref (match_operand 0)))]
6122  "!TARGET_MIPS16 && !TARGET_ABSOLUTE_JUMPS"
6123{
6124  if (get_attr_length (insn) <= 8)
6125    return "%*b\t%l0%/";
6126  else
6127    {
6128      mips_output_load_label (operands[0]);
6129      return "%*jr\t%@%/%]";
6130    }
6131}
6132  [(set_attr "type" "branch")])
6133
6134;; We need a different insn for the mips16, because a mips16 branch
6135;; does not have a delay slot.
6136
6137(define_insn "*jump_mips16"
6138  [(set (pc)
6139	(label_ref (match_operand 0 "" "")))]
6140  "TARGET_MIPS16"
6141  "b\t%l0"
6142  [(set_attr "type" "branch")
6143   (set (attr "length")
6144	;; This calculation is like the normal branch one, but the
6145	;; range of the unextended instruction is [-0x800, 0x7fe] rather
6146	;; than [-0x100, 0xfe].  This translates to a range of:
6147	;;
6148	;;    [-(0x800 - sizeof (branch)), 0x7fe]
6149	;; == [-0x7fe, 0x7fe]
6150	;;
6151	;; from the shorten_branches reference address.  Long-branch
6152	;; sequences will replace this one, so the minimum length
6153	;; is one instruction shorter than for conditional branches.
6154	(cond [(and (le (minus (match_dup 0) (pc)) (const_int 2046))
6155		    (le (minus (pc) (match_dup 0)) (const_int 2046)))
6156	       (const_int 2)
6157	       (and (le (minus (match_dup 0) (pc)) (const_int 65534))
6158		    (le (minus (pc) (match_dup 0)) (const_int 65532)))
6159	       (const_int 4)
6160	       (and (match_test "TARGET_ABICALLS")
6161		    (not (match_test "TARGET_ABSOLUTE_ABICALLS")))
6162	       (const_int 18)
6163	       (match_test "Pmode == SImode")
6164	       (const_int 14)
6165	       ] (const_int 22)))])
6166
6167(define_expand "indirect_jump"
6168  [(set (pc) (match_operand 0 "register_operand"))]
6169  ""
6170{
6171  operands[0] = force_reg (Pmode, operands[0]);
6172  emit_jump_insn (PMODE_INSN (gen_indirect_jump, (operands[0])));
6173  DONE;
6174})
6175
6176(define_insn "indirect_jump_<mode>"
6177  [(set (pc) (match_operand:P 0 "register_operand" "d"))]
6178  ""
6179{
6180  if (TARGET_MICROMIPS)
6181    return "%*jr%:\t%0";
6182  else
6183    return "%*j\t%0%/";
6184}
6185  [(set_attr "type" "jump")
6186   (set_attr "mode" "none")])
6187
6188;; A combined jump-and-move instruction, used for MIPS16 long-branch
6189;; sequences.  Having a dedicated pattern is more convenient than
6190;; creating a SEQUENCE for this special case.
6191(define_insn "indirect_jump_and_restore_<mode>"
6192  [(set (pc) (match_operand:P 1 "register_operand" "d"))
6193   (set (match_operand:P 0 "register_operand" "=d")
6194   	(match_operand:P 2 "register_operand" "y"))]
6195  ""
6196  "%(%<jr\t%1\;move\t%0,%2%>%)"
6197  [(set_attr "type" "multi")
6198   (set_attr "extended_mips16" "yes")])
6199
6200(define_expand "tablejump"
6201  [(set (pc)
6202	(match_operand 0 "register_operand"))
6203   (use (label_ref (match_operand 1 "")))]
6204  "!TARGET_MIPS16_SHORT_JUMP_TABLES"
6205{
6206  if (TARGET_GPWORD)
6207    operands[0] = expand_binop (Pmode, add_optab, operands[0],
6208				pic_offset_table_rtx, 0, 0, OPTAB_WIDEN);
6209  else if (TARGET_RTP_PIC)
6210    {
6211      /* When generating RTP PIC, we use case table entries that are relative
6212	 to the start of the function.  Add the function's address to the
6213	 value we loaded.  */
6214      rtx start = get_hard_reg_initial_val (Pmode, PIC_FUNCTION_ADDR_REGNUM);
6215      operands[0] = expand_binop (ptr_mode, add_optab, operands[0],
6216				  start, 0, 0, OPTAB_WIDEN);
6217    }
6218
6219  emit_jump_insn (PMODE_INSN (gen_tablejump, (operands[0], operands[1])));
6220  DONE;
6221})
6222
6223(define_insn "tablejump_<mode>"
6224  [(set (pc)
6225	(match_operand:P 0 "register_operand" "d"))
6226   (use (label_ref (match_operand 1 "" "")))]
6227  ""
6228{
6229  if (TARGET_MICROMIPS)
6230    return "%*jr%:\t%0";
6231  else
6232    return "%*j\t%0%/";
6233}
6234  [(set_attr "type" "jump")
6235   (set_attr "mode" "none")])
6236
6237;; For MIPS16, we don't know whether a given jump table will use short or
6238;; word-sized offsets until late in compilation, when we are able to determine
6239;; the sizes of the insns which comprise the containing function.  This
6240;; necessitates the use of the casesi rather than the tablejump pattern, since
6241;; the latter tries to calculate the index of the offset to jump through early
6242;; in compilation, i.e. at expand time, when nothing is known about the
6243;; eventual function layout.
6244
6245(define_expand "casesi"
6246  [(match_operand:SI 0 "register_operand" "")	; index to jump on
6247   (match_operand:SI 1 "const_int_operand" "")	; lower bound
6248   (match_operand:SI 2 "const_int_operand" "")	; total range
6249   (match_operand 3 "" "")			; table label
6250   (match_operand 4 "" "")]			; out of range label
6251  "TARGET_MIPS16_SHORT_JUMP_TABLES"
6252{
6253  if (operands[1] != const0_rtx)
6254    {
6255      rtx reg = gen_reg_rtx (SImode);
6256      rtx offset = gen_int_mode (-INTVAL (operands[1]), SImode);
6257      
6258      if (!arith_operand (offset, SImode))
6259        offset = force_reg (SImode, offset);
6260      
6261      emit_insn (gen_addsi3 (reg, operands[0], offset));
6262      operands[0] = reg;
6263    }
6264
6265  if (!arith_operand (operands[0], SImode))
6266    operands[0] = force_reg (SImode, operands[0]);
6267
6268  operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
6269
6270  emit_jump_insn (PMODE_INSN (gen_casesi_internal_mips16,
6271			      (operands[0], operands[2],
6272			       operands[3], operands[4])));
6273
6274  DONE;
6275})
6276
6277(define_insn "casesi_internal_mips16_<mode>"
6278  [(set (pc)
6279     (if_then_else
6280       (leu (match_operand:SI 0 "register_operand" "d")
6281	    (match_operand:SI 1 "arith_operand" "dI"))
6282       (unspec:P
6283        [(match_dup 0)
6284	 (label_ref (match_operand 2 "" ""))]
6285	UNSPEC_CASESI_DISPATCH)
6286       (label_ref (match_operand 3 "" ""))))
6287   (clobber (match_scratch:P 4 "=d"))
6288   (clobber (match_scratch:P 5 "=d"))
6289   (clobber (reg:SI MIPS16_T_REGNUM))]
6290  "TARGET_MIPS16_SHORT_JUMP_TABLES"
6291{
6292  rtx diff_vec = PATTERN (NEXT_INSN (as_a <rtx_insn *> (operands[2])));
6293
6294  gcc_assert (GET_CODE (diff_vec) == ADDR_DIFF_VEC);
6295  
6296  output_asm_insn ("sltu\t%0, %1", operands);
6297  output_asm_insn ("bteqz\t%3", operands);
6298  
6299  switch (GET_MODE (diff_vec))
6300    {
6301    case HImode:
6302      output_asm_insn ("sll\t%5, %0, 1", operands);
6303      output_asm_insn ("la\t%4, %2", operands);
6304      output_asm_insn ("<d>addu\t%5, %4, %5", operands);
6305      output_asm_insn ("lh\t%5, 0(%5)", operands);
6306      break;
6307    
6308    case SImode:
6309      output_asm_insn ("sll\t%5, %0, 2", operands);
6310      output_asm_insn ("la\t%4, %2", operands);
6311      output_asm_insn ("<d>addu\t%5, %4, %5", operands);
6312      output_asm_insn ("lw\t%5, 0(%5)", operands);
6313      break;
6314
6315    default:
6316      gcc_unreachable ();
6317    }
6318  
6319  output_asm_insn ("addu\t%4, %4, %5", operands);
6320  
6321  return "j\t%4";
6322}
6323  [(set_attr "insn_count" "16")])
6324
6325;; For TARGET_USE_GOT, we save the gp in the jmp_buf as well.
6326;; While it is possible to either pull it off the stack (in the
6327;; o32 case) or recalculate it given t9 and our target label,
6328;; it takes 3 or 4 insns to do so.
6329
6330(define_expand "builtin_setjmp_setup"
6331  [(use (match_operand 0 "register_operand"))]
6332  "TARGET_USE_GOT"
6333{
6334  rtx addr;
6335
6336  addr = plus_constant (Pmode, operands[0], GET_MODE_SIZE (Pmode) * 3);
6337  mips_emit_move (gen_rtx_MEM (Pmode, addr), pic_offset_table_rtx);
6338  DONE;
6339})
6340
6341;; Restore the gp that we saved above.  Despite the earlier comment, it seems
6342;; that older code did recalculate the gp from $25.  Continue to jump through
6343;; $25 for compatibility (we lose nothing by doing so).
6344
6345(define_expand "builtin_longjmp"
6346  [(use (match_operand 0 "register_operand"))]
6347  "TARGET_USE_GOT"
6348{
6349  /* The elements of the buffer are, in order:  */
6350  int W = GET_MODE_SIZE (Pmode);
6351  rtx fp = gen_rtx_MEM (Pmode, operands[0]);
6352  rtx lab = gen_rtx_MEM (Pmode, plus_constant (Pmode, operands[0], 1*W));
6353  rtx stack = gen_rtx_MEM (Pmode, plus_constant (Pmode, operands[0], 2*W));
6354  rtx gpv = gen_rtx_MEM (Pmode, plus_constant (Pmode, operands[0], 3*W));
6355  rtx pv = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
6356  /* Use gen_raw_REG to avoid being given pic_offset_table_rtx.
6357     The target is bound to be using $28 as the global pointer
6358     but the current function might not be.  */
6359  rtx gp = gen_raw_REG (Pmode, GLOBAL_POINTER_REGNUM);
6360
6361  /* This bit is similar to expand_builtin_longjmp except that it
6362     restores $gp as well.  */
6363  mips_emit_move (hard_frame_pointer_rtx, fp);
6364  mips_emit_move (pv, lab);
6365  emit_stack_restore (SAVE_NONLOCAL, stack);
6366  mips_emit_move (gp, gpv);
6367  emit_use (hard_frame_pointer_rtx);
6368  emit_use (stack_pointer_rtx);
6369  emit_use (gp);
6370  emit_indirect_jump (pv);
6371  DONE;
6372})
6373
6374;;
6375;;  ....................
6376;;
6377;;	Function prologue/epilogue
6378;;
6379;;  ....................
6380;;
6381
6382(define_expand "prologue"
6383  [(const_int 1)]
6384  ""
6385{
6386  mips_expand_prologue ();
6387  DONE;
6388})
6389
6390;; Block any insns from being moved before this point, since the
6391;; profiling call to mcount can use various registers that aren't
6392;; saved or used to pass arguments.
6393
6394(define_insn "blockage"
6395  [(unspec_volatile [(const_int 0)] UNSPEC_BLOCKAGE)]
6396  ""
6397  ""
6398  [(set_attr "type" "ghost")
6399   (set_attr "mode" "none")])
6400
6401(define_insn "probe_stack_range_<P:mode>"
6402  [(set (match_operand:P 0 "register_operand" "=d")
6403	(unspec_volatile:P [(match_operand:P 1 "register_operand" "0")
6404			    (match_operand:P 2 "register_operand" "d")]
6405			    UNSPEC_PROBE_STACK_RANGE))]
6406  ""
6407 { return mips_output_probe_stack_range (operands[0], operands[2]); }
6408  [(set_attr "type" "unknown")
6409   (set_attr "can_delay" "no")
6410   (set_attr "mode" "<MODE>")])
6411
6412(define_expand "epilogue"
6413  [(const_int 2)]
6414  ""
6415{
6416  mips_expand_epilogue (false);
6417  DONE;
6418})
6419
6420(define_expand "sibcall_epilogue"
6421  [(const_int 2)]
6422  ""
6423{
6424  mips_expand_epilogue (true);
6425  DONE;
6426})
6427
6428;; Trivial return.  Make it look like a normal return insn as that
6429;; allows jump optimizations to work better.
6430
6431(define_expand "return"
6432  [(simple_return)]
6433  "mips_can_use_return_insn ()"
6434  { mips_expand_before_return (); })
6435
6436(define_expand "simple_return"
6437  [(simple_return)]
6438  ""
6439  { mips_expand_before_return (); })
6440
6441(define_insn "*<optab>"
6442  [(any_return)]
6443  ""
6444  {
6445    if (TARGET_MICROMIPS)
6446      return "%*jr%:\t$31";
6447    else
6448      return "%*j\t$31%/";
6449  }
6450  [(set_attr "type"	"jump")
6451   (set_attr "mode"	"none")])
6452
6453;; Normal return.
6454
6455(define_insn "<optab>_internal"
6456  [(any_return)
6457   (use (match_operand 0 "pmode_register_operand" ""))]
6458  ""
6459{
6460  if (TARGET_MICROMIPS)
6461    return "%*jr%:\t%0";
6462  else
6463    return "%*j\t%0%/";
6464}
6465  [(set_attr "type"	"jump")
6466   (set_attr "mode"	"none")])
6467
6468;; Exception return.
6469(define_insn "mips_eret"
6470  [(return)
6471   (unspec_volatile [(const_int 0)] UNSPEC_ERET)]
6472  ""
6473  "eret"
6474  [(set_attr "type"	"trap")
6475   (set_attr "mode"	"none")])
6476
6477;; Debug exception return.
6478(define_insn "mips_deret"
6479  [(return)
6480   (unspec_volatile [(const_int 0)] UNSPEC_DERET)]
6481  ""
6482  "deret"
6483  [(set_attr "type"	"trap")
6484   (set_attr "mode"	"none")])
6485
6486;; Disable interrupts.
6487(define_insn "mips_di"
6488  [(unspec_volatile [(const_int 0)] UNSPEC_DI)]
6489  ""
6490  "di"
6491  [(set_attr "type"	"trap")
6492   (set_attr "mode"	"none")])
6493
6494;; Execution hazard barrier.
6495(define_insn "mips_ehb"
6496  [(unspec_volatile [(const_int 0)] UNSPEC_EHB)]
6497  ""
6498  "ehb"
6499  [(set_attr "type"	"trap")
6500   (set_attr "mode"	"none")])
6501
6502;; Read GPR from previous shadow register set.
6503(define_insn "mips_rdpgpr"
6504  [(set (match_operand:SI 0 "register_operand" "=d")
6505	(unspec_volatile:SI [(match_operand:SI 1 "register_operand" "d")]
6506			    UNSPEC_RDPGPR))]
6507  ""
6508  "rdpgpr\t%0,%1"
6509  [(set_attr "type"	"move")
6510   (set_attr "mode"	"SI")])
6511
6512;; Move involving COP0 registers.
6513(define_insn "cop0_move"
6514  [(set (match_operand:SI 0 "register_operand" "=B,d")
6515	(unspec_volatile:SI [(match_operand:SI 1 "register_operand" "d,B")]
6516			    UNSPEC_COP0))]
6517  ""
6518{ return mips_output_move (operands[0], operands[1]); }
6519  [(set_attr "type"	"mtc,mfc")
6520   (set_attr "mode"	"SI")])
6521
6522;; This is used in compiling the unwind routines.
6523(define_expand "eh_return"
6524  [(use (match_operand 0 "general_operand"))]
6525  ""
6526{
6527  if (GET_MODE (operands[0]) != word_mode)
6528    operands[0] = convert_to_mode (word_mode, operands[0], 0);
6529  if (TARGET_64BIT)
6530    emit_insn (gen_eh_set_lr_di (operands[0]));
6531  else
6532    emit_insn (gen_eh_set_lr_si (operands[0]));
6533  DONE;
6534})
6535
6536;; Clobber the return address on the stack.  We can't expand this
6537;; until we know where it will be put in the stack frame.
6538
6539(define_insn "eh_set_lr_si"
6540  [(unspec [(match_operand:SI 0 "register_operand" "d")] UNSPEC_EH_RETURN)
6541   (clobber (match_scratch:SI 1 "=&d"))]
6542  "! TARGET_64BIT"
6543  "#")
6544
6545(define_insn "eh_set_lr_di"
6546  [(unspec [(match_operand:DI 0 "register_operand" "d")] UNSPEC_EH_RETURN)
6547   (clobber (match_scratch:DI 1 "=&d"))]
6548  "TARGET_64BIT"
6549  "#")
6550
6551(define_split
6552  [(unspec [(match_operand 0 "register_operand")] UNSPEC_EH_RETURN)
6553   (clobber (match_scratch 1))]
6554  "reload_completed"
6555  [(const_int 0)]
6556{
6557  mips_set_return_address (operands[0], operands[1]);
6558  DONE;
6559})
6560
6561(define_expand "exception_receiver"
6562  [(const_int 0)]
6563  "TARGET_USE_GOT"
6564{
6565  /* See the comment above load_call<mode> for details.  */
6566  emit_insn (gen_set_got_version ());
6567
6568  /* If we have a call-clobbered $gp, restore it from its save slot.  */
6569  if (HAVE_restore_gp_si)
6570    emit_insn (gen_restore_gp_si ());
6571  else if (HAVE_restore_gp_di)
6572    emit_insn (gen_restore_gp_di ());
6573  DONE;
6574})
6575
6576(define_expand "nonlocal_goto_receiver"
6577  [(const_int 0)]
6578  "TARGET_USE_GOT"
6579{
6580  /* See the comment above load_call<mode> for details.  */
6581  emit_insn (gen_set_got_version ());
6582  DONE;
6583})
6584
6585;; Restore $gp from its .cprestore stack slot.  The instruction remains
6586;; volatile until all uses of $28 are exposed.
6587(define_insn_and_split "restore_gp_<mode>"
6588  [(set (reg:P 28)
6589	(unspec_volatile:P [(const_int 0)] UNSPEC_RESTORE_GP))
6590   (clobber (match_scratch:P 0 "=&d"))]
6591  "TARGET_CALL_CLOBBERED_GP"
6592  "#"
6593  "&& epilogue_completed"
6594  [(const_int 0)]
6595{
6596  mips_restore_gp_from_cprestore_slot (operands[0]);
6597  DONE;
6598}
6599  [(set_attr "type" "ghost")])
6600
6601;; Move between $gp and its register save slot.
6602(define_insn_and_split "move_gp<mode>"
6603  [(set (match_operand:GPR 0 "nonimmediate_operand" "=d,m")
6604  	(unspec:GPR [(match_operand:GPR 1 "move_operand" "m,d")]
6605		    UNSPEC_MOVE_GP))]
6606  ""
6607  { return mips_must_initialize_gp_p () ? "#" : ""; }
6608  "mips_must_initialize_gp_p ()"
6609  [(const_int 0)]
6610{
6611  mips_emit_move (operands[0], operands[1]);
6612  DONE;
6613}
6614  [(set_attr "type" "ghost")])
6615
6616;;
6617;;  ....................
6618;;
6619;;	FUNCTION CALLS
6620;;
6621;;  ....................
6622
6623;; Instructions to load a call address from the GOT.  The address might
6624;; point to a function or to a lazy binding stub.  In the latter case,
6625;; the stub will use the dynamic linker to resolve the function, which
6626;; in turn will change the GOT entry to point to the function's real
6627;; address.
6628;;
6629;; This means that every call, even pure and constant ones, can
6630;; potentially modify the GOT entry.  And once a stub has been called,
6631;; we must not call it again.
6632;;
6633;; We represent this restriction using an imaginary, fixed, call-saved
6634;; register called GOT_VERSION_REGNUM.  The idea is to make the register
6635;; live throughout the function and to change its value after every
6636;; potential call site.  This stops any rtx value that uses the register
6637;; from being computed before an earlier call.  To do this, we:
6638;;
6639;;    - Ensure that the register is live on entry to the function,
6640;;	so that it is never thought to be used uninitalized.
6641;;
6642;;    - Ensure that the register is live on exit from the function,
6643;;	so that it is live throughout.
6644;;
6645;;    - Make each call (lazily-bound or not) use the current value
6646;;	of GOT_VERSION_REGNUM, so that updates of the register are
6647;;	not moved across call boundaries.
6648;;
6649;;    - Add "ghost" definitions of the register to the beginning of
6650;;	blocks reached by EH and ABNORMAL_CALL edges, because those
6651;;	edges may involve calls that normal paths don't.  (E.g. the
6652;;	unwinding code that handles a non-call exception may change
6653;;	lazily-bound GOT entries.)  We do this by making the
6654;;	exception_receiver and nonlocal_goto_receiver expanders emit
6655;;	a set_got_version instruction.
6656;;
6657;;    - After each call (lazily-bound or not), use a "ghost"
6658;;	update_got_version instruction to change the register's value.
6659;;	This instruction mimics the _possible_ effect of the dynamic
6660;;	resolver during the call and it remains live even if the call
6661;;	itself becomes dead.
6662;;
6663;;    - Leave GOT_VERSION_REGNUM out of all register classes.
6664;;	The register is therefore not a valid register_operand
6665;;	and cannot be moved to or from other registers.
6666
6667(define_insn "load_call<mode>"
6668  [(set (match_operand:P 0 "register_operand" "=d")
6669	(unspec:P [(match_operand:P 1 "register_operand" "d")
6670		   (match_operand:P 2 "immediate_operand" "")
6671		   (reg:SI GOT_VERSION_REGNUM)] UNSPEC_LOAD_CALL))]
6672  "TARGET_USE_GOT"
6673  "<load>\t%0,%R2(%1)"
6674  [(set_attr "got" "load")
6675   (set_attr "mode" "<MODE>")])
6676
6677(define_insn "set_got_version"
6678  [(set (reg:SI GOT_VERSION_REGNUM)
6679	(unspec_volatile:SI [(const_int 0)] UNSPEC_SET_GOT_VERSION))]
6680  "TARGET_USE_GOT"
6681  ""
6682  [(set_attr "type" "ghost")])
6683
6684(define_insn "update_got_version"
6685  [(set (reg:SI GOT_VERSION_REGNUM)
6686	(unspec:SI [(reg:SI GOT_VERSION_REGNUM)] UNSPEC_UPDATE_GOT_VERSION))]
6687  "TARGET_USE_GOT"
6688  ""
6689  [(set_attr "type" "ghost")])
6690
6691;; Sibling calls.  All these patterns use jump instructions.
6692
6693;; If TARGET_SIBCALLS, call_insn_operand will only accept constant
6694;; addresses if a direct jump is acceptable.  Since the 'S' constraint
6695;; is defined in terms of call_insn_operand, the same is true of the
6696;; constraints.
6697
6698;; When we use an indirect jump, we need a register that will be
6699;; preserved by the epilogue.  Since TARGET_USE_PIC_FN_ADDR_REG forces
6700;; us to use $25 for this purpose -- and $25 is never clobbered by the
6701;; epilogue -- we might as well use it for !TARGET_USE_PIC_FN_ADDR_REG
6702;; as well.
6703
6704(define_expand "sibcall"
6705  [(parallel [(call (match_operand 0 "")
6706		    (match_operand 1 ""))
6707	      (use (match_operand 2 ""))	;; next_arg_reg
6708	      (use (match_operand 3 ""))])]	;; struct_value_size_rtx
6709  "TARGET_SIBCALLS"
6710{
6711  mips_expand_call (MIPS_CALL_SIBCALL, NULL_RTX, XEXP (operands[0], 0),
6712		    operands[1], operands[2], false);
6713  DONE;
6714})
6715
6716(define_insn "sibcall_internal"
6717  [(call (mem:SI (match_operand 0 "call_insn_operand" "j,S"))
6718	 (match_operand 1 "" ""))]
6719  "TARGET_SIBCALLS && SIBLING_CALL_P (insn)"
6720{
6721  if (TARGET_MICROMIPS)
6722    return MICROMIPS_J ("j", operands, 0);
6723  else
6724    return MIPS_CALL ("j", operands, 0, 1);
6725}
6726  [(set_attr "jal" "indirect,direct")
6727   (set_attr "jal_macro" "no")])
6728
6729(define_expand "sibcall_value"
6730  [(parallel [(set (match_operand 0 "")
6731		   (call (match_operand 1 "")
6732			 (match_operand 2 "")))
6733	      (use (match_operand 3 ""))])]		;; next_arg_reg
6734  "TARGET_SIBCALLS"
6735{
6736  mips_expand_call (MIPS_CALL_SIBCALL, operands[0], XEXP (operands[1], 0),
6737		    operands[2], operands[3], false);
6738  DONE;
6739})
6740
6741(define_insn "sibcall_value_internal"
6742  [(set (match_operand 0 "register_operand" "")
6743        (call (mem:SI (match_operand 1 "call_insn_operand" "j,S"))
6744              (match_operand 2 "" "")))]
6745  "TARGET_SIBCALLS && SIBLING_CALL_P (insn)"
6746{
6747  if (TARGET_MICROMIPS)
6748    return MICROMIPS_J ("j", operands, 1);
6749  else
6750    return MIPS_CALL ("j", operands, 1, 2);
6751}
6752  [(set_attr "jal" "indirect,direct")
6753   (set_attr "jal_macro" "no")])
6754
6755(define_insn "sibcall_value_multiple_internal"
6756  [(set (match_operand 0 "register_operand" "")
6757        (call (mem:SI (match_operand 1 "call_insn_operand" "j,S"))
6758              (match_operand 2 "" "")))
6759   (set (match_operand 3 "register_operand" "")
6760	(call (mem:SI (match_dup 1))
6761	      (match_dup 2)))]
6762  "TARGET_SIBCALLS && SIBLING_CALL_P (insn)"
6763{
6764  if (TARGET_MICROMIPS)
6765    return MICROMIPS_J ("j", operands, 1);
6766  else
6767    return MIPS_CALL ("j", operands, 1, 2);
6768}
6769  [(set_attr "jal" "indirect,direct")
6770   (set_attr "jal_macro" "no")])
6771
6772(define_expand "call"
6773  [(parallel [(call (match_operand 0 "")
6774		    (match_operand 1 ""))
6775	      (use (match_operand 2 ""))	;; next_arg_reg
6776	      (use (match_operand 3 ""))])]	;; struct_value_size_rtx
6777  ""
6778{
6779  mips_expand_call (MIPS_CALL_NORMAL, NULL_RTX, XEXP (operands[0], 0),
6780		    operands[1], operands[2], false);
6781  DONE;
6782})
6783
6784;; This instruction directly corresponds to an assembly-language "jal".
6785;; There are four cases:
6786;;
6787;;    - -mno-abicalls:
6788;;	  Both symbolic and register destinations are OK.  The pattern
6789;;	  always expands to a single mips instruction.
6790;;
6791;;    - -mabicalls/-mno-explicit-relocs:
6792;;	  Again, both symbolic and register destinations are OK.
6793;;	  The call is treated as a multi-instruction black box.
6794;;
6795;;    - -mabicalls/-mexplicit-relocs with n32 or n64:
6796;;	  Only "jal $25" is allowed.  This expands to a single "jalr $25"
6797;;	  instruction.
6798;;
6799;;    - -mabicalls/-mexplicit-relocs with o32 or o64:
6800;;	  Only "jal $25" is allowed.  The call is actually two instructions:
6801;;	  "jalr $25" followed by an insn to reload $gp.
6802;;
6803;; In the last case, we can generate the individual instructions with
6804;; a define_split.  There are several things to be wary of:
6805;;
6806;;   - We can't expose the load of $gp before reload.  If we did,
6807;;     it might get removed as dead, but reload can introduce new
6808;;     uses of $gp by rematerializing constants.
6809;;
6810;;   - We shouldn't restore $gp after calls that never return.
6811;;     It isn't valid to insert instructions between a noreturn
6812;;     call and the following barrier.
6813;;
6814;;   - The splitter deliberately changes the liveness of $gp.  The unsplit
6815;;     instruction preserves $gp and so have no effect on its liveness.
6816;;     But once we generate the separate insns, it becomes obvious that
6817;;     $gp is not live on entry to the call.
6818;;
6819(define_insn_and_split "call_internal"
6820  [(call (mem:SI (match_operand 0 "call_insn_operand" "c,S"))
6821	 (match_operand 1 "" ""))
6822   (clobber (reg:SI RETURN_ADDR_REGNUM))]
6823  ""
6824  { return TARGET_SPLIT_CALLS ? "#" : MIPS_CALL ("jal", operands, 0, 1); }
6825  "reload_completed && TARGET_SPLIT_CALLS"
6826  [(const_int 0)]
6827{
6828  mips_split_call (curr_insn, gen_call_split (operands[0], operands[1]));
6829  DONE;
6830}
6831  [(set_attr "jal" "indirect,direct")])
6832
6833(define_insn "call_split"
6834  [(call (mem:SI (match_operand 0 "call_insn_operand" "c,S"))
6835	 (match_operand 1 "" ""))
6836   (clobber (reg:SI RETURN_ADDR_REGNUM))
6837   (clobber (reg:SI 28))]
6838  "TARGET_SPLIT_CALLS"
6839  { return MIPS_CALL ("jal", operands, 0, 1); }
6840  [(set_attr "jal" "indirect,direct")
6841   (set_attr "jal_macro" "no")])
6842
6843;; A pattern for calls that must be made directly.  It is used for
6844;; MIPS16 calls that the linker may need to redirect to a hard-float
6845;; stub; the linker relies on the call relocation type to detect when
6846;; such redirection is needed.
6847(define_insn_and_split "call_internal_direct"
6848  [(call (mem:SI (match_operand 0 "const_call_insn_operand"))
6849	 (match_operand 1))
6850   (const_int 1)
6851   (clobber (reg:SI RETURN_ADDR_REGNUM))]
6852  ""
6853  { return TARGET_SPLIT_CALLS ? "#" : MIPS_CALL ("jal", operands, 0, -1); }
6854  "reload_completed && TARGET_SPLIT_CALLS"
6855  [(const_int 0)]
6856{
6857  mips_split_call (curr_insn,
6858		   gen_call_direct_split (operands[0], operands[1]));
6859  DONE;
6860}
6861  [(set_attr "jal" "direct")])
6862
6863(define_insn "call_direct_split"
6864  [(call (mem:SI (match_operand 0 "const_call_insn_operand"))
6865	 (match_operand 1))
6866   (const_int 1)
6867   (clobber (reg:SI RETURN_ADDR_REGNUM))
6868   (clobber (reg:SI 28))]
6869  "TARGET_SPLIT_CALLS"
6870  { return MIPS_CALL ("jal", operands, 0, -1); }
6871  [(set_attr "jal" "direct")
6872   (set_attr "jal_macro" "no")])
6873
6874(define_expand "call_value"
6875  [(parallel [(set (match_operand 0 "")
6876		   (call (match_operand 1 "")
6877			 (match_operand 2 "")))
6878	      (use (match_operand 3 ""))])]		;; next_arg_reg
6879  ""
6880{
6881  mips_expand_call (MIPS_CALL_NORMAL, operands[0], XEXP (operands[1], 0),
6882		    operands[2], operands[3], false);
6883  DONE;
6884})
6885
6886;; See comment for call_internal.
6887(define_insn_and_split "call_value_internal"
6888  [(set (match_operand 0 "register_operand" "")
6889        (call (mem:SI (match_operand 1 "call_insn_operand" "c,S"))
6890              (match_operand 2 "" "")))
6891   (clobber (reg:SI RETURN_ADDR_REGNUM))]
6892  ""
6893  { return TARGET_SPLIT_CALLS ? "#" : MIPS_CALL ("jal", operands, 1, 2); }
6894  "reload_completed && TARGET_SPLIT_CALLS"
6895  [(const_int 0)]
6896{
6897  mips_split_call (curr_insn,
6898		   gen_call_value_split (operands[0], operands[1],
6899					 operands[2]));
6900  DONE;
6901}
6902  [(set_attr "jal" "indirect,direct")])
6903
6904(define_insn "call_value_split"
6905  [(set (match_operand 0 "register_operand" "")
6906        (call (mem:SI (match_operand 1 "call_insn_operand" "c,S"))
6907              (match_operand 2 "" "")))
6908   (clobber (reg:SI RETURN_ADDR_REGNUM))
6909   (clobber (reg:SI 28))]
6910  "TARGET_SPLIT_CALLS"
6911  { return MIPS_CALL ("jal", operands, 1, 2); }
6912  [(set_attr "jal" "indirect,direct")
6913   (set_attr "jal_macro" "no")])
6914
6915;; See call_internal_direct.
6916(define_insn_and_split "call_value_internal_direct"
6917  [(set (match_operand 0 "register_operand")
6918        (call (mem:SI (match_operand 1 "const_call_insn_operand"))
6919              (match_operand 2)))
6920   (const_int 1)
6921   (clobber (reg:SI RETURN_ADDR_REGNUM))]
6922  ""
6923  { return TARGET_SPLIT_CALLS ? "#" : MIPS_CALL ("jal", operands, 1, -1); }
6924  "reload_completed && TARGET_SPLIT_CALLS"
6925  [(const_int 0)]
6926{
6927  mips_split_call (curr_insn,
6928		   gen_call_value_direct_split (operands[0], operands[1],
6929						operands[2]));
6930  DONE;
6931}
6932  [(set_attr "jal" "direct")])
6933
6934(define_insn "call_value_direct_split"
6935  [(set (match_operand 0 "register_operand")
6936        (call (mem:SI (match_operand 1 "const_call_insn_operand"))
6937              (match_operand 2)))
6938   (const_int 1)
6939   (clobber (reg:SI RETURN_ADDR_REGNUM))
6940   (clobber (reg:SI 28))]
6941  "TARGET_SPLIT_CALLS"
6942  { return MIPS_CALL ("jal", operands, 1, -1); }
6943  [(set_attr "jal" "direct")
6944   (set_attr "jal_macro" "no")])
6945
6946;; See comment for call_internal.
6947(define_insn_and_split "call_value_multiple_internal"
6948  [(set (match_operand 0 "register_operand" "")
6949        (call (mem:SI (match_operand 1 "call_insn_operand" "c,S"))
6950              (match_operand 2 "" "")))
6951   (set (match_operand 3 "register_operand" "")
6952	(call (mem:SI (match_dup 1))
6953	      (match_dup 2)))
6954   (clobber (reg:SI RETURN_ADDR_REGNUM))]
6955  ""
6956  { return TARGET_SPLIT_CALLS ? "#" : MIPS_CALL ("jal", operands, 1, 2); }
6957  "reload_completed && TARGET_SPLIT_CALLS"
6958  [(const_int 0)]
6959{
6960  mips_split_call (curr_insn,
6961		   gen_call_value_multiple_split (operands[0], operands[1],
6962						  operands[2], operands[3]));
6963  DONE;
6964}
6965  [(set_attr "jal" "indirect,direct")])
6966
6967(define_insn "call_value_multiple_split"
6968  [(set (match_operand 0 "register_operand" "")
6969        (call (mem:SI (match_operand 1 "call_insn_operand" "c,S"))
6970              (match_operand 2 "" "")))
6971   (set (match_operand 3 "register_operand" "")
6972	(call (mem:SI (match_dup 1))
6973	      (match_dup 2)))
6974   (clobber (reg:SI RETURN_ADDR_REGNUM))
6975   (clobber (reg:SI 28))]
6976  "TARGET_SPLIT_CALLS"
6977  { return MIPS_CALL ("jal", operands, 1, 2); }
6978  [(set_attr "jal" "indirect,direct")
6979   (set_attr "jal_macro" "no")])
6980
6981;; Call subroutine returning any type.
6982
6983(define_expand "untyped_call"
6984  [(parallel [(call (match_operand 0 "")
6985		    (const_int 0))
6986	      (match_operand 1 "")
6987	      (match_operand 2 "")])]
6988  ""
6989{
6990  int i;
6991
6992  emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, const0_rtx));
6993
6994  for (i = 0; i < XVECLEN (operands[2], 0); i++)
6995    {
6996      rtx set = XVECEXP (operands[2], 0, i);
6997      mips_emit_move (SET_DEST (set), SET_SRC (set));
6998    }
6999
7000  emit_insn (gen_blockage ());
7001  DONE;
7002})
7003
7004;;
7005;;  ....................
7006;;
7007;;	MISC.
7008;;
7009;;  ....................
7010;;
7011
7012
7013(define_insn "prefetch"
7014  [(prefetch (match_operand:QI 0 "address_operand" "ZD")
7015	     (match_operand 1 "const_int_operand" "n")
7016	     (match_operand 2 "const_int_operand" "n"))]
7017  "ISA_HAS_PREFETCH && TARGET_EXPLICIT_RELOCS"
7018{
7019  if (TARGET_LOONGSON_2EF || TARGET_LOONGSON_3A)
7020    {
7021      /* Loongson 2[ef] and Loongson 3a use load to $0 for prefetching.  */
7022      if (TARGET_64BIT)
7023        return "ld\t$0,%a0";
7024      else
7025        return "lw\t$0,%a0";
7026    }
7027  operands[1] = mips_prefetch_cookie (operands[1], operands[2]);
7028  return "pref\t%1,%a0";
7029}
7030  [(set_attr "type" "prefetch")])
7031
7032(define_insn "*prefetch_indexed_<mode>"
7033  [(prefetch (plus:P (match_operand:P 0 "register_operand" "d")
7034		     (match_operand:P 1 "register_operand" "d"))
7035	     (match_operand 2 "const_int_operand" "n")
7036	     (match_operand 3 "const_int_operand" "n"))]
7037  "ISA_HAS_PREFETCHX && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
7038{
7039  operands[2] = mips_prefetch_cookie (operands[2], operands[3]);
7040  return "prefx\t%2,%1(%0)";
7041}
7042  [(set_attr "type" "prefetchx")])
7043
7044(define_insn "nop"
7045  [(const_int 0)]
7046  ""
7047  "%(nop%)"
7048  [(set_attr "type"	"nop")
7049   (set_attr "mode"	"none")])
7050
7051;; Like nop, but commented out when outside a .set noreorder block.
7052(define_insn "hazard_nop"
7053  [(const_int 1)]
7054  ""
7055  {
7056    if (mips_noreorder.nesting_level > 0)
7057      return "nop";
7058    else
7059      return "#nop";
7060  }
7061  [(set_attr "type"	"nop")])
7062
7063;; MIPS4 Conditional move instructions.
7064
7065(define_insn "*mov<GPR:mode>_on_<MOVECC:mode>"
7066  [(set (match_operand:GPR 0 "register_operand" "=d,d")
7067	(if_then_else:GPR
7068	 (match_operator 4 "equality_operator"
7069		[(match_operand:MOVECC 1 "register_operand" "<MOVECC:reg>,<MOVECC:reg>")
7070		 (const_int 0)])
7071	 (match_operand:GPR 2 "reg_or_0_operand" "dJ,0")
7072	 (match_operand:GPR 3 "reg_or_0_operand" "0,dJ")))]
7073  "ISA_HAS_CONDMOVE"
7074  "@
7075    mov%T4\t%0,%z2,%1
7076    mov%t4\t%0,%z3,%1"
7077  [(set_attr "type" "condmove")
7078   (set_attr "mode" "<GPR:MODE>")])
7079
7080(define_insn "*mov<GPR:mode>_on_<GPR2:mode>_ne"
7081  [(set (match_operand:GPR 0 "register_operand" "=d,d")
7082       (if_then_else:GPR
7083        (match_operand:GPR2 1 "register_operand" "<GPR2:reg>,<GPR2:reg>")
7084        (match_operand:GPR 2 "reg_or_0_operand" "dJ,0")
7085        (match_operand:GPR 3 "reg_or_0_operand" "0,dJ")))]
7086  "ISA_HAS_CONDMOVE"
7087  "@
7088    movn\t%0,%z2,%1
7089    movz\t%0,%z3,%1"
7090  [(set_attr "type" "condmove")
7091   (set_attr "mode" "<GPR:MODE>")])
7092
7093(define_insn "*mov<SCALARF:mode>_on_<MOVECC:mode>"
7094  [(set (match_operand:SCALARF 0 "register_operand" "=f,f")
7095	(if_then_else:SCALARF
7096	 (match_operator 4 "equality_operator"
7097		[(match_operand:MOVECC 1 "register_operand" "<MOVECC:reg>,<MOVECC:reg>")
7098		 (const_int 0)])
7099	 (match_operand:SCALARF 2 "register_operand" "f,0")
7100	 (match_operand:SCALARF 3 "register_operand" "0,f")))]
7101  "ISA_HAS_FP_CONDMOVE"
7102  "@
7103    mov%T4.<fmt>\t%0,%2,%1
7104    mov%t4.<fmt>\t%0,%3,%1"
7105  [(set_attr "type" "condmove")
7106   (set_attr "mode" "<SCALARF:MODE>")])
7107
7108(define_insn "*sel<code><GPR:mode>_using_<GPR2:mode>"
7109  [(set (match_operand:GPR 0 "register_operand" "=d,d")
7110	(if_then_else:GPR
7111	 (equality_op:GPR2 (match_operand:GPR2 1 "register_operand" "d,d")
7112			   (const_int 0))
7113	 (match_operand:GPR 2 "reg_or_0_operand" "d,J")
7114	 (match_operand:GPR 3 "reg_or_0_operand" "J,d")))]
7115  "ISA_HAS_SEL
7116   && (register_operand (operands[2], <GPR:MODE>mode)
7117       != register_operand (operands[3], <GPR:MODE>mode))"
7118  "@
7119   <sel>\t%0,%2,%1
7120   <selinv>\t%0,%3,%1"
7121  [(set_attr "type" "condmove")
7122   (set_attr "mode" "<GPR:MODE>")])
7123
7124;; sel.fmt copies the 3rd argument when the 1st is non-zero and the 2nd
7125;; argument if the 1st is zero.  This means operand 2 and 3 are
7126;; inverted in the instruction.
7127
7128(define_insn "*sel<mode>"
7129  [(set (match_operand:SCALARF 0 "register_operand" "=f,f,f")
7130	(if_then_else:SCALARF
7131	 (ne:CCF (match_operand:CCF 1 "register_operand" "0,f,f")
7132		 (const_int 0))
7133	 (match_operand:SCALARF 2 "reg_or_0_operand" "f,G,f")
7134	 (match_operand:SCALARF 3 "reg_or_0_operand" "f,f,G")))]
7135  "ISA_HAS_SEL && ISA_HAS_CCF"
7136  "@
7137   sel.<fmt>\t%0,%3,%2
7138   seleqz.<fmt>\t%0,%3,%1
7139   selnez.<fmt>\t%0,%2,%1"
7140  [(set_attr "type" "condmove")
7141   (set_attr "mode" "<SCALARF:MODE>")])
7142
7143;; These are the main define_expand's used to make conditional moves.
7144
7145(define_expand "mov<mode>cc"
7146  [(set (match_dup 4) (match_operand 1 "comparison_operator"))
7147   (set (match_operand:GPR 0 "register_operand")
7148	(if_then_else:GPR (match_dup 5)
7149			  (match_operand:GPR 2 "reg_or_0_operand")
7150			  (match_operand:GPR 3 "reg_or_0_operand")))]
7151  "ISA_HAS_CONDMOVE || ISA_HAS_SEL"
7152{
7153  if (!ISA_HAS_FP_CONDMOVE
7154      && !INTEGRAL_MODE_P (GET_MODE (XEXP (operands[1], 0))))
7155    FAIL;
7156
7157  mips_expand_conditional_move (operands);
7158  DONE;
7159})
7160
7161(define_expand "mov<mode>cc"
7162  [(set (match_dup 4) (match_operand 1 "comparison_operator"))
7163   (set (match_operand:SCALARF 0 "register_operand")
7164	(if_then_else:SCALARF (match_dup 5)
7165			      (match_operand:SCALARF 2 "reg_or_0_operand")
7166			      (match_operand:SCALARF 3 "reg_or_0_operand")))]
7167  "ISA_HAS_FP_CONDMOVE
7168   || (ISA_HAS_SEL && ISA_HAS_CCF)"
7169{
7170  if (ISA_HAS_SEL && !FLOAT_MODE_P (GET_MODE (XEXP (operands[1], 0))))
7171    FAIL;
7172
7173  /* Workaround an LRA bug which means that tied operands in the sel.fmt
7174     pattern lead to the double precision destination of sel.d getting
7175     reloaded with the full register file usable and the restrictions on
7176     whether the CCFmode input can be used in odd-numbered single-precision
7177     registers are ignored.  For consistency reasons the CCF mode values
7178     must be guaranteed to only exist in the even-registers because of
7179     the unusual duality between single and double precision values.  */
7180  if (ISA_HAS_SEL && <MODE>mode == DFmode
7181      && (!TARGET_ODD_SPREG || TARGET_FLOATXX))
7182    FAIL;
7183
7184  mips_expand_conditional_move (operands);
7185  DONE;
7186})
7187
7188;;
7189;;  ....................
7190;;
7191;;	mips16 inline constant tables
7192;;
7193;;  ....................
7194;;
7195
7196(define_insn "consttable_tls_reloc"
7197  [(unspec_volatile [(match_operand 0 "tls_reloc_operand" "")
7198		     (match_operand 1 "const_int_operand" "")]
7199		    UNSPEC_CONSTTABLE_INT)]
7200  "TARGET_MIPS16_PCREL_LOADS"
7201  { return mips_output_tls_reloc_directive (&operands[0]); }
7202  [(set (attr "length") (symbol_ref "INTVAL (operands[1])"))])
7203
7204(define_insn "consttable_int"
7205  [(unspec_volatile [(match_operand 0 "consttable_operand" "")
7206		     (match_operand 1 "const_int_operand" "")]
7207		    UNSPEC_CONSTTABLE_INT)]
7208  "TARGET_MIPS16"
7209{
7210  assemble_integer (mips_strip_unspec_address (operands[0]),
7211		    INTVAL (operands[1]),
7212		    BITS_PER_UNIT * INTVAL (operands[1]), 1);
7213  return "";
7214}
7215  [(set (attr "length") (symbol_ref "INTVAL (operands[1])"))])
7216
7217(define_insn "consttable_float"
7218  [(unspec_volatile [(match_operand 0 "consttable_operand" "")]
7219		    UNSPEC_CONSTTABLE_FLOAT)]
7220  "TARGET_MIPS16"
7221{
7222  REAL_VALUE_TYPE d;
7223
7224  gcc_assert (GET_CODE (operands[0]) == CONST_DOUBLE);
7225  REAL_VALUE_FROM_CONST_DOUBLE (d, operands[0]);
7226  assemble_real (d, GET_MODE (operands[0]),
7227		 GET_MODE_BITSIZE (GET_MODE (operands[0])));
7228  return "";
7229}
7230  [(set (attr "length")
7231	(symbol_ref "GET_MODE_SIZE (GET_MODE (operands[0]))"))])
7232
7233(define_insn "align"
7234  [(unspec_volatile [(match_operand 0 "const_int_operand" "")] UNSPEC_ALIGN)]
7235  ""
7236  ".align\t%0"
7237  [(set (attr "length") (symbol_ref "(1 << INTVAL (operands[0])) - 1"))])
7238
7239(define_split
7240  [(match_operand 0 "small_data_pattern")]
7241  "reload_completed"
7242  [(match_dup 0)]
7243  { operands[0] = mips_rewrite_small_data (operands[0]); })
7244
7245;;
7246;;  ....................
7247;;
7248;;	MIPS16e Save/Restore
7249;;
7250;;  ....................
7251;;
7252
7253(define_insn "*mips16e_save_restore"
7254  [(match_parallel 0 ""
7255       [(set (match_operand:SI 1 "register_operand")
7256	     (plus:SI (match_dup 1)
7257		      (match_operand:SI 2 "const_int_operand")))])]
7258  "operands[1] == stack_pointer_rtx
7259   && mips16e_save_restore_pattern_p (operands[0], INTVAL (operands[2]), NULL)"
7260  { return mips16e_output_save_restore (operands[0], INTVAL (operands[2])); }
7261  [(set_attr "type" "arith")
7262   (set_attr "extended_mips16" "yes")])
7263
7264;; Thread-Local Storage
7265
7266;; The TLS base pointer is accessed via "rdhwr $3, $29".  No current
7267;; MIPS architecture defines this register, and no current
7268;; implementation provides it; instead, any OS which supports TLS is
7269;; expected to trap and emulate this instruction.  rdhwr is part of the
7270;; MIPS 32r2 specification, but we use it on any architecture because
7271;; we expect it to be emulated.  Use .set to force the assembler to
7272;; accept it.
7273;;
7274;; We do not use a constraint to force the destination to be $3
7275;; because $3 can appear explicitly as a function return value.
7276;; If we leave the use of $3 implicit in the constraints until
7277;; reload, we may end up making a $3 return value live across
7278;; the instruction, leading to a spill failure when reloading it.
7279(define_insn_and_split "tls_get_tp_<mode>"
7280  [(set (match_operand:P 0 "register_operand" "=d")
7281	(unspec:P [(const_int 0)] UNSPEC_TLS_GET_TP))
7282   (clobber (reg:P TLS_GET_TP_REGNUM))]
7283  "HAVE_AS_TLS && !TARGET_MIPS16"
7284  "#"
7285  "&& reload_completed"
7286  [(set (reg:P TLS_GET_TP_REGNUM)
7287	(unspec:P [(const_int 0)] UNSPEC_TLS_GET_TP))
7288   (set (match_dup 0) (reg:P TLS_GET_TP_REGNUM))]
7289  ""
7290  [(set_attr "type" "unknown")
7291   (set_attr "mode" "<MODE>")
7292   (set_attr "insn_count" "2")])
7293
7294(define_insn "*tls_get_tp_<mode>_split"
7295  [(set (reg:P TLS_GET_TP_REGNUM)
7296	(unspec:P [(const_int 0)] UNSPEC_TLS_GET_TP))]
7297  "HAVE_AS_TLS && !TARGET_MIPS16"
7298  {
7299    if (mips_isa_rev >= 2)
7300      return "rdhwr\t$3,$29";
7301
7302    return ".set\tpush\;.set\tmips32r2\t\;rdhwr\t$3,$29\;.set\tpop";
7303  }
7304  [(set_attr "type" "unknown")
7305   ; Since rdhwr always generates a trap for now, putting it in a delay
7306   ; slot would make the kernel's emulation of it much slower.
7307   (set_attr "can_delay" "no")
7308   (set_attr "mode" "<MODE>")])
7309
7310;; In MIPS16 mode, the TLS base pointer is accessed by a
7311;; libgcc helper function __mips16_rdhwr(), as 'rdhwr' is not
7312;; accessible in MIPS16.
7313;;
7314;; This is not represented as a call insn, to avoid the
7315;; unnecesarry clobbering of caller-save registers by a
7316;; function consisting only of: "rdhwr $3,$29; j $31; nop;"
7317;;
7318;; A $25 clobber is added to cater for a $25 load stub added by the
7319;; linker to __mips16_rdhwr when the call is made from non-PIC code.
7320
7321(define_insn_and_split "tls_get_tp_mips16_<mode>"
7322  [(set (match_operand:P 0 "register_operand" "=d")
7323	(unspec:P [(match_operand:P 1 "call_insn_operand" "dS")]
7324		  UNSPEC_TLS_GET_TP))
7325   (clobber (reg:P TLS_GET_TP_REGNUM))
7326   (clobber (reg:P PIC_FUNCTION_ADDR_REGNUM))
7327   (clobber (reg:P RETURN_ADDR_REGNUM))]
7328  "HAVE_AS_TLS && TARGET_MIPS16"
7329  "#"
7330  "&& reload_completed"
7331  [(parallel [(set (reg:P TLS_GET_TP_REGNUM)
7332	  	   (unspec:P [(match_dup 1)] UNSPEC_TLS_GET_TP))
7333	      (clobber (reg:P PIC_FUNCTION_ADDR_REGNUM))
7334	      (clobber (reg:P RETURN_ADDR_REGNUM))])
7335   (set (match_dup 0) (reg:P TLS_GET_TP_REGNUM))]
7336  ""
7337  [(set_attr "type" "multi")
7338   (set_attr "insn_count" "4")
7339   (set_attr "mode" "<MODE>")])
7340
7341(define_insn "*tls_get_tp_mips16_call_<mode>"
7342  [(set (reg:P TLS_GET_TP_REGNUM)
7343	(unspec:P [(match_operand:P 0 "call_insn_operand" "dS")]
7344		  UNSPEC_TLS_GET_TP))
7345   (clobber (reg:P PIC_FUNCTION_ADDR_REGNUM))
7346   (clobber (reg:P RETURN_ADDR_REGNUM))]
7347  "HAVE_AS_TLS && TARGET_MIPS16"
7348  { return MIPS_CALL ("jal", operands, 0, -1); }
7349  [(set_attr "type" "call")
7350   (set_attr "insn_count" "3")
7351   (set_attr "mode" "<MODE>")])
7352
7353;; Named pattern for expanding thread pointer reference.
7354(define_expand "get_thread_pointer<mode>"
7355  [(match_operand:P 0 "register_operand" "=d")]
7356  "HAVE_AS_TLS"
7357{
7358  mips_expand_thread_pointer (operands[0]);
7359  DONE;
7360})
7361
7362;; __builtin_mips_get_fcsr: move the FCSR into operand 0.
7363(define_expand "mips_get_fcsr"
7364  [(set (match_operand:SI 0 "register_operand")
7365  	(unspec_volatile [(const_int 0)] UNSPEC_GET_FCSR))]
7366  "TARGET_HARD_FLOAT_ABI"
7367{
7368  if (TARGET_MIPS16)
7369    {
7370      mips16_expand_get_fcsr (operands[0]);
7371      DONE;
7372    }
7373})
7374
7375(define_insn "*mips_get_fcsr"
7376  [(set (match_operand:SI 0 "register_operand" "=d")
7377  	(unspec_volatile [(const_int 0)] UNSPEC_GET_FCSR))]
7378  "TARGET_HARD_FLOAT"
7379  "cfc1\t%0,$31")
7380
7381;; See tls_get_tp_mips16_<mode> for why this form is used.
7382(define_insn "mips_get_fcsr_mips16_<mode>"
7383  [(set (reg:SI GET_FCSR_REGNUM)
7384	(unspec:SI [(match_operand:P 0 "call_insn_operand" "dS")]
7385		   UNSPEC_GET_FCSR))
7386   (clobber (reg:P PIC_FUNCTION_ADDR_REGNUM))
7387   (clobber (reg:P RETURN_ADDR_REGNUM))]
7388  "TARGET_HARD_FLOAT_ABI && TARGET_MIPS16"
7389  { return MIPS_CALL ("jal", operands, 0, -1); }
7390  [(set_attr "type" "call")
7391   (set_attr "insn_count" "3")])
7392
7393;; __builtin_mips_set_fcsr: move operand 0 into the FCSR.
7394(define_expand "mips_set_fcsr"
7395  [(unspec_volatile [(match_operand:SI 0 "register_operand")]
7396  		    UNSPEC_SET_FCSR)]
7397  "TARGET_HARD_FLOAT_ABI"
7398{
7399  if (TARGET_MIPS16)
7400    {
7401      mips16_expand_set_fcsr (operands[0]);
7402      DONE;
7403    }
7404})
7405
7406(define_insn "*mips_set_fcsr"
7407  [(unspec_volatile [(match_operand:SI 0 "register_operand" "d")]
7408  		    UNSPEC_SET_FCSR)]
7409  "TARGET_HARD_FLOAT"
7410  "ctc1\t%0,$31")
7411
7412;; See tls_get_tp_mips16_<mode> for why this form is used.
7413(define_insn "mips_set_fcsr_mips16_<mode>"
7414  [(unspec_volatile:SI [(match_operand:P 0 "call_insn_operand" "dS")
7415  	                (reg:SI SET_FCSR_REGNUM)] UNSPEC_SET_FCSR)
7416   (clobber (reg:P PIC_FUNCTION_ADDR_REGNUM))
7417   (clobber (reg:P RETURN_ADDR_REGNUM))]
7418  "TARGET_HARD_FLOAT_ABI && TARGET_MIPS16"
7419  { return MIPS_CALL ("jal", operands, 0, -1); }
7420  [(set_attr "type" "call")
7421   (set_attr "insn_count" "3")])
7422
7423;; Synchronization instructions.
7424
7425(include "sync.md")
7426
7427; The MIPS Paired-Single Floating Point and MIPS-3D Instructions.
7428
7429(include "mips-ps-3d.md")
7430
7431; The MIPS DSP Instructions.
7432
7433(include "mips-dsp.md")
7434
7435; The MIPS DSP REV 2 Instructions.
7436
7437(include "mips-dspr2.md")
7438
7439; MIPS fixed-point instructions.
7440(include "mips-fixed.md")
7441
7442; microMIPS patterns.
7443(include "micromips.md")
7444
7445; ST-Microelectronics Loongson-2E/2F-specific patterns.
7446(include "loongson.md")
7447
7448(define_c_enum "unspec" [
7449  UNSPEC_ADDRESS_FIRST
7450])
7451