1303231Sdim/* Definitions of target machine for GCC for IA-32.
2303231Sdim   Copyright (C) 1988-2015 Free Software Foundation, Inc.
3353358Sdim
4353358SdimThis file is part of GCC.
5353358Sdim
6303231SdimGCC is free software; you can redistribute it and/or modify
7303231Sdimit under the terms of the GNU General Public License as published by
8303231Sdimthe Free Software Foundation; either version 3, or (at your option)
9303231Sdimany later version.
10303231Sdim
11303231SdimGCC is distributed in the hope that it will be useful,
12303231Sdimbut WITHOUT ANY WARRANTY; without even the implied warranty of
13303231SdimMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14303231SdimGNU General Public License for more details.
15341825Sdim
16303231SdimUnder Section 7 of GPL version 3, you are granted additional
17303231Sdimpermissions described in the GCC Runtime Library Exception, version
18303231Sdim3.1, as published by the Free Software Foundation.
19303231Sdim
20303231SdimYou should have received a copy of the GNU General Public License and
21303231Sdima copy of the GCC Runtime Library Exception along with this program;
22341825Sdimsee the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23303231Sdim<http://www.gnu.org/licenses/>.  */
24341825Sdim
25303231Sdim/* The purpose of this file is to define the characteristics of the i386,
26303231Sdim   independent of assembler syntax or operating system.
27341825Sdim
28303231Sdim   Three other files build on this one to describe a specific assembler syntax:
29303231Sdim   bsd386.h, att386.h, and sun386.h.
30303231Sdim
31303231Sdim   The actual tm.h file for a particular system should include
32303231Sdim   this file, and then the file for the appropriate assembler syntax.
33303231Sdim
34341825Sdim   Many macros that specify assembler syntax are omitted entirely from
35341825Sdim   this file because they really belong in the files for particular
36341825Sdim   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37341825Sdim   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38341825Sdim   that start with ASM_ or end in ASM_OP.  */
39341825Sdim
40341825Sdim/* Redefines for option macros.  */
41341825Sdim
42341825Sdim#define TARGET_64BIT	TARGET_ISA_64BIT
43341825Sdim#define TARGET_64BIT_P(x)	TARGET_ISA_64BIT_P(x)
44341825Sdim#define TARGET_MMX	TARGET_ISA_MMX
45341825Sdim#define TARGET_MMX_P(x)	TARGET_ISA_MMX_P(x)
46341825Sdim#define TARGET_3DNOW	TARGET_ISA_3DNOW
47360784Sdim#define TARGET_3DNOW_P(x)	TARGET_ISA_3DNOW_P(x)
48341825Sdim#define TARGET_3DNOW_A	TARGET_ISA_3DNOW_A
49341825Sdim#define TARGET_3DNOW_A_P(x)	TARGET_ISA_3DNOW_A_P(x)
50341825Sdim#define TARGET_SSE	TARGET_ISA_SSE
51341825Sdim#define TARGET_SSE_P(x)	TARGET_ISA_SSE_P(x)
52341825Sdim#define TARGET_SSE2	TARGET_ISA_SSE2
53341825Sdim#define TARGET_SSE2_P(x)	TARGET_ISA_SSE2_P(x)
54341825Sdim#define TARGET_SSE3	TARGET_ISA_SSE3
55341825Sdim#define TARGET_SSE3_P(x)	TARGET_ISA_SSE3_P(x)
56341825Sdim#define TARGET_SSSE3	TARGET_ISA_SSSE3
57341825Sdim#define TARGET_SSSE3_P(x)	TARGET_ISA_SSSE3_P(x)
58341825Sdim#define TARGET_SSE4_1	TARGET_ISA_SSE4_1
59341825Sdim#define TARGET_SSE4_1_P(x)	TARGET_ISA_SSE4_1_P(x)
60341825Sdim#define TARGET_SSE4_2	TARGET_ISA_SSE4_2
61341825Sdim#define TARGET_SSE4_2_P(x)	TARGET_ISA_SSE4_2_P(x)
62341825Sdim#define TARGET_AVX	TARGET_ISA_AVX
63341825Sdim#define TARGET_AVX_P(x)	TARGET_ISA_AVX_P(x)
64341825Sdim#define TARGET_AVX2	TARGET_ISA_AVX2
65341825Sdim#define TARGET_AVX2_P(x)	TARGET_ISA_AVX2_P(x)
66360784Sdim#define TARGET_AVX512F	TARGET_ISA_AVX512F
67341825Sdim#define TARGET_AVX512F_P(x)	TARGET_ISA_AVX512F_P(x)
68341825Sdim#define TARGET_AVX512PF	TARGET_ISA_AVX512PF
69341825Sdim#define TARGET_AVX512PF_P(x)	TARGET_ISA_AVX512PF_P(x)
70341825Sdim#define TARGET_AVX512ER	TARGET_ISA_AVX512ER
71341825Sdim#define TARGET_AVX512ER_P(x)	TARGET_ISA_AVX512ER_P(x)
72341825Sdim#define TARGET_AVX512CD	TARGET_ISA_AVX512CD
73341825Sdim#define TARGET_AVX512CD_P(x)	TARGET_ISA_AVX512CD_P(x)
74341825Sdim#define TARGET_AVX512DQ	TARGET_ISA_AVX512DQ
75341825Sdim#define TARGET_AVX512DQ_P(x)	TARGET_ISA_AVX512DQ_P(x)
76341825Sdim#define TARGET_AVX512BW	TARGET_ISA_AVX512BW
77341825Sdim#define TARGET_AVX512BW_P(x)	TARGET_ISA_AVX512BW_P(x)
78341825Sdim#define TARGET_AVX512VL	TARGET_ISA_AVX512VL
79341825Sdim#define TARGET_AVX512VL_P(x)	TARGET_ISA_AVX512VL_P(x)
80341825Sdim#define TARGET_AVX512VBMI	TARGET_ISA_AVX512VBMI
81341825Sdim#define TARGET_AVX512VBMI_P(x)	TARGET_ISA_AVX512VBMI_P(x)
82341825Sdim#define TARGET_AVX512IFMA	TARGET_ISA_AVX512IFMA
83341825Sdim#define TARGET_AVX512IFMA_P(x)	TARGET_ISA_AVX512IFMA_P(x)
84341825Sdim#define TARGET_FMA	TARGET_ISA_FMA
85341825Sdim#define TARGET_FMA_P(x)	TARGET_ISA_FMA_P(x)
86341825Sdim#define TARGET_SSE4A	TARGET_ISA_SSE4A
87341825Sdim#define TARGET_SSE4A_P(x)	TARGET_ISA_SSE4A_P(x)
88303231Sdim#define TARGET_FMA4	TARGET_ISA_FMA4
89303231Sdim#define TARGET_FMA4_P(x)	TARGET_ISA_FMA4_P(x)
90341825Sdim#define TARGET_XOP	TARGET_ISA_XOP
91341825Sdim#define TARGET_XOP_P(x)	TARGET_ISA_XOP_P(x)
92341825Sdim#define TARGET_LWP	TARGET_ISA_LWP
93341825Sdim#define TARGET_LWP_P(x)	TARGET_ISA_LWP_P(x)
94303231Sdim#define TARGET_ROUND	TARGET_ISA_ROUND
95303231Sdim#define TARGET_ABM	TARGET_ISA_ABM
96303231Sdim#define TARGET_ABM_P(x)	TARGET_ISA_ABM_P(x)
97303231Sdim#define TARGET_BMI	TARGET_ISA_BMI
98303231Sdim#define TARGET_BMI_P(x)	TARGET_ISA_BMI_P(x)
99303231Sdim#define TARGET_BMI2	TARGET_ISA_BMI2
100303231Sdim#define TARGET_BMI2_P(x)	TARGET_ISA_BMI2_P(x)
101303231Sdim#define TARGET_LZCNT	TARGET_ISA_LZCNT
102303231Sdim#define TARGET_LZCNT_P(x)	TARGET_ISA_LZCNT_P(x)
103341825Sdim#define TARGET_TBM	TARGET_ISA_TBM
104341825Sdim#define TARGET_TBM_P(x)	TARGET_ISA_TBM_P(x)
105341825Sdim#define TARGET_POPCNT	TARGET_ISA_POPCNT
106341825Sdim#define TARGET_POPCNT_P(x)	TARGET_ISA_POPCNT_P(x)
107341825Sdim#define TARGET_SAHF	TARGET_ISA_SAHF
108303231Sdim#define TARGET_SAHF_P(x)	TARGET_ISA_SAHF_P(x)
109341825Sdim#define TARGET_MOVBE	TARGET_ISA_MOVBE
110303231Sdim#define TARGET_MOVBE_P(x)	TARGET_ISA_MOVBE_P(x)
111303231Sdim#define TARGET_CRC32	TARGET_ISA_CRC32
112303231Sdim#define TARGET_CRC32_P(x)	TARGET_ISA_CRC32_P(x)
113303231Sdim#define TARGET_AES	TARGET_ISA_AES
114303231Sdim#define TARGET_AES_P(x)	TARGET_ISA_AES_P(x)
115303231Sdim#define TARGET_SHA	TARGET_ISA_SHA
116341825Sdim#define TARGET_SHA_P(x)	TARGET_ISA_SHA_P(x)
117303231Sdim#define TARGET_CLFLUSHOPT	TARGET_ISA_CLFLUSHOPT
118341825Sdim#define TARGET_CLFLUSHOPT_P(x)	TARGET_ISA_CLFLUSHOPT_P(x)
119341825Sdim#define TARGET_XSAVEC	TARGET_ISA_XSAVEC
120341825Sdim#define TARGET_XSAVEC_P(x)	TARGET_ISA_XSAVEC_P(x)
121341825Sdim#define TARGET_XSAVES	TARGET_ISA_XSAVES
122341825Sdim#define TARGET_XSAVES_P(x)	TARGET_ISA_XSAVES_P(x)
123341825Sdim#define TARGET_PCLMUL	TARGET_ISA_PCLMUL
124341825Sdim#define TARGET_PCLMUL_P(x)	TARGET_ISA_PCLMUL_P(x)
125341825Sdim#define TARGET_CMPXCHG16B	TARGET_ISA_CX16
126303231Sdim#define TARGET_CMPXCHG16B_P(x)	TARGET_ISA_CX16_P(x)
127303231Sdim#define TARGET_FSGSBASE	TARGET_ISA_FSGSBASE
128341825Sdim#define TARGET_FSGSBASE_P(x)	TARGET_ISA_FSGSBASE_P(x)
129341825Sdim#define TARGET_RDRND	TARGET_ISA_RDRND
130341825Sdim#define TARGET_RDRND_P(x)	TARGET_ISA_RDRND_P(x)
131341825Sdim#define TARGET_F16C	TARGET_ISA_F16C
132303231Sdim#define TARGET_F16C_P(x)	TARGET_ISA_F16C_P(x)
133303231Sdim#define TARGET_RTM	TARGET_ISA_RTM
134341825Sdim#define TARGET_RTM_P(x)	TARGET_ISA_RTM_P(x)
135341825Sdim#define TARGET_HLE	TARGET_ISA_HLE
136341825Sdim#define TARGET_HLE_P(x)	TARGET_ISA_HLE_P(x)
137360784Sdim#define TARGET_RDSEED	TARGET_ISA_RDSEED
138341825Sdim#define TARGET_RDSEED_P(x)	TARGET_ISA_RDSEED_P(x)
139341825Sdim#define TARGET_PRFCHW	TARGET_ISA_PRFCHW
140341825Sdim#define TARGET_PRFCHW_P(x)	TARGET_ISA_PRFCHW_P(x)
141341825Sdim#define TARGET_ADX	TARGET_ISA_ADX
142341825Sdim#define TARGET_ADX_P(x)	TARGET_ISA_ADX_P(x)
143341825Sdim#define TARGET_FXSR	TARGET_ISA_FXSR
144353358Sdim#define TARGET_FXSR_P(x)	TARGET_ISA_FXSR_P(x)
145341825Sdim#define TARGET_XSAVE	TARGET_ISA_XSAVE
146341825Sdim#define TARGET_XSAVE_P(x)	TARGET_ISA_XSAVE_P(x)
147341825Sdim#define TARGET_XSAVEOPT	TARGET_ISA_XSAVEOPT
148341825Sdim#define TARGET_XSAVEOPT_P(x)	TARGET_ISA_XSAVEOPT_P(x)
149341825Sdim#define TARGET_PREFETCHWT1	TARGET_ISA_PREFETCHWT1
150341825Sdim#define TARGET_PREFETCHWT1_P(x)	TARGET_ISA_PREFETCHWT1_P(x)
151341825Sdim#define TARGET_MPX	TARGET_ISA_MPX
152341825Sdim#define TARGET_MPX_P(x)	TARGET_ISA_MPX_P(x)
153341825Sdim#define TARGET_PCOMMIT	TARGET_ISA_PCOMMIT
154341825Sdim#define TARGET_PCOMMIT_P(x)	TARGET_ISA_PCOMMIT_P(x)
155303231Sdim#define TARGET_CLWB	TARGET_ISA_CLWB
156303231Sdim#define TARGET_CLWB_P(x)	TARGET_ISA_CLWB_P(x)
157344779Sdim#define TARGET_MWAITX	TARGET_ISA_MWAITX
158344779Sdim#define TARGET_MWAITX_P(x)	TARGET_ISA_MWAITX_P(x)
159344779Sdim
160344779Sdim#define TARGET_LP64	TARGET_ABI_64
161344779Sdim#define TARGET_LP64_P(x)	TARGET_ABI_64_P(x)
162344779Sdim#define TARGET_X32	TARGET_ABI_X32
163344779Sdim#define TARGET_X32_P(x)	TARGET_ABI_X32_P(x)
164344779Sdim#define TARGET_16BIT	TARGET_CODE16
165344779Sdim#define TARGET_16BIT_P(x)	TARGET_CODE16_P(x)
166341825Sdim
167341825Sdim/* SSE4.1 defines round instructions */
168341825Sdim#define	OPTION_MASK_ISA_ROUND	OPTION_MASK_ISA_SSE4_1
169341825Sdim#define	TARGET_ISA_ROUND	((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
170303231Sdim
171303231Sdim#include "config/vxworks-dummy.h"
172341825Sdim
173341825Sdim#include "config/i386/i386-opts.h"
174341825Sdim
175341825Sdim#define MAX_STRINGOP_ALGS 4
176341825Sdim
177341825Sdim/* Specify what algorithm to use for stringops on known size.
178341825Sdim   When size is unknown, the UNKNOWN_SIZE alg is used.  When size is
179341825Sdim   known at compile time or estimated via feedback, the SIZE array
180341825Sdim   is walked in order until MAX is greater then the estimate (or -1
181341825Sdim   means infinity).  Corresponding ALG is used then.
182341825Sdim   When NOALIGN is true the code guaranting the alignment of the memory
183341825Sdim   block is skipped.
184341825Sdim
185341825Sdim   For example initializer:
186341825Sdim    {{256, loop}, {-1, rep_prefix_4_byte}}
187341825Sdim   will use loop for blocks smaller or equal to 256 bytes, rep prefix will
188341825Sdim   be used otherwise.  */
189303231Sdimstruct stringop_algs
190303231Sdim{
191303231Sdim  const enum stringop_alg unknown_size;
192303231Sdim  const struct stringop_strategy {
193341825Sdim    const int max;
194341825Sdim    const enum stringop_alg alg;
195341825Sdim    int noalign;
196341825Sdim  } size [MAX_STRINGOP_ALGS];
197303231Sdim};
198341825Sdim
199341825Sdim/* Define the specific costs for a given cpu */
200341825Sdim
201303231Sdimstruct processor_costs {
202341825Sdim  const int add;		/* cost of an add instruction */
203341825Sdim  const int lea;		/* cost of a lea instruction */
204303231Sdim  const int shift_var;		/* variable shift costs */
205303231Sdim  const int shift_const;	/* constant shift costs */
206341825Sdim  const int mult_init[5];	/* cost of starting a multiply
207341825Sdim				   in QImode, HImode, SImode, DImode, TImode*/
208341825Sdim  const int mult_bit;		/* cost of multiply per each bit set */
209341825Sdim  const int divide[5];		/* cost of a divide/mod
210341825Sdim				   in QImode, HImode, SImode, DImode, TImode*/
211341825Sdim  int movsx;			/* The cost of movsx operation.  */
212341825Sdim  int movzx;			/* The cost of movzx operation.  */
213303231Sdim  const int large_insn;		/* insns larger than this cost more */
214341825Sdim  const int move_ratio;		/* The threshold of number of scalar
215341825Sdim				   memory-to-memory move insns.  */
216341825Sdim  const int movzbl_load;	/* cost of loading using movzbl */
217341825Sdim  const int int_load[3];	/* cost of loading integer registers
218341825Sdim				   in QImode, HImode and SImode relative
219341825Sdim				   to reg-reg move (2).  */
220341825Sdim  const int int_store[3];	/* cost of storing integer register
221341825Sdim				   in QImode, HImode and SImode */
222341825Sdim  const int fp_move;		/* cost of reg,reg fld/fst */
223341825Sdim  const int fp_load[3];		/* cost of loading FP register
224341825Sdim				   in SFmode, DFmode and XFmode */
225341825Sdim  const int fp_store[3];	/* cost of storing FP register
226341825Sdim				   in SFmode, DFmode and XFmode */
227341825Sdim  const int mmx_move;		/* cost of moving MMX register.  */
228341825Sdim  const int mmx_load[2];	/* cost of loading MMX register
229341825Sdim				   in SImode and DImode */
230341825Sdim  const int mmx_store[2];	/* cost of storing MMX register
231341825Sdim				   in SImode and DImode */
232341825Sdim  const int sse_move;		/* cost of moving SSE register.  */
233341825Sdim  const int sse_load[3];	/* cost of loading SSE register
234341825Sdim				   in SImode, DImode and TImode*/
235341825Sdim  const int sse_store[3];	/* cost of storing SSE register
236341825Sdim				   in SImode, DImode and TImode*/
237341825Sdim  const int mmxsse_to_integer;	/* cost of moving mmxsse register to
238341825Sdim				   integer and vice versa.  */
239341825Sdim  const int l1_cache_size;	/* size of l1 cache, in kilobytes.  */
240341825Sdim  const int l2_cache_size;	/* size of l2 cache, in kilobytes.  */
241341825Sdim  const int prefetch_block;	/* bytes moved to cache for prefetch.  */
242341825Sdim  const int simultaneous_prefetches; /* number of parallel prefetch
243341825Sdim				   operations.  */
244341825Sdim  const int branch_cost;	/* Default value for BRANCH_COST.  */
245341825Sdim  const int fadd;		/* cost of FADD and FSUB instructions.  */
246341825Sdim  const int fmul;		/* cost of FMUL instruction.  */
247341825Sdim  const int fdiv;		/* cost of FDIV instruction.  */
248341825Sdim  const int fabs;		/* cost of FABS instruction.  */
249341825Sdim  const int fchs;		/* cost of FCHS instruction.  */
250341825Sdim  const int fsqrt;		/* cost of FSQRT instruction.  */
251341825Sdim				/* Specify what algorithm
252341825Sdim				   to use for stringops on unknown size.  */
253341825Sdim  struct stringop_algs *memcpy, *memset;
254341825Sdim  const int scalar_stmt_cost;   /* Cost of any scalar operation, excluding
255341825Sdim				   load and store.  */
256341825Sdim  const int scalar_load_cost;   /* Cost of scalar load.  */
257341825Sdim  const int scalar_store_cost;  /* Cost of scalar store.  */
258341825Sdim  const int vec_stmt_cost;      /* Cost of any vector operation, excluding
259341825Sdim                                   load, store, vector-to-scalar and
260341825Sdim                                   scalar-to-vector operation.  */
261341825Sdim  const int vec_to_scalar_cost;    /* Cost of vect-to-scalar operation.  */
262341825Sdim  const int scalar_to_vec_cost;    /* Cost of scalar-to-vector operation.  */
263341825Sdim  const int vec_align_load_cost;   /* Cost of aligned vector load.  */
264341825Sdim  const int vec_unalign_load_cost; /* Cost of unaligned vector load.  */
265341825Sdim  const int vec_store_cost;        /* Cost of vector store.  */
266341825Sdim  const int cond_taken_branch_cost;    /* Cost of taken branch for vectorizer
267341825Sdim					  cost model.  */
268341825Sdim  const int cond_not_taken_branch_cost;/* Cost of not taken branch for
269341825Sdim					  vectorizer cost model.  */
270303231Sdim};
271303231Sdim
272341825Sdimextern const struct processor_costs *ix86_cost;
273303231Sdimextern const struct processor_costs ix86_size_cost;
274303231Sdim
275341825Sdim#define ix86_cur_cost() \
276341825Sdim  (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
277341825Sdim
278341825Sdim/* Macros used in the machine description to test the flags.  */
279303231Sdim
280341825Sdim/* configure can arrange to change it.  */
281341825Sdim
282341825Sdim#ifndef TARGET_CPU_DEFAULT
283341825Sdim#define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
284341825Sdim#endif
285341825Sdim
286341825Sdim#ifndef TARGET_FPMATH_DEFAULT
287341825Sdim#define TARGET_FPMATH_DEFAULT \
288341825Sdim  (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
289341825Sdim#endif
290341825Sdim
291341825Sdim#ifndef TARGET_FPMATH_DEFAULT_P
292341825Sdim#define TARGET_FPMATH_DEFAULT_P(x) \
293341825Sdim  (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
294341825Sdim#endif
295341825Sdim
296341825Sdim#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
297341825Sdim#define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x)
298341825Sdim
299341825Sdim/* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
300341825Sdim   compile-time constant.  */
301341825Sdim#ifdef IN_LIBGCC2
302341825Sdim#undef TARGET_64BIT
303341825Sdim#ifdef __x86_64__
304341825Sdim#define TARGET_64BIT 1
305341825Sdim#else
306341825Sdim#define TARGET_64BIT 0
307341825Sdim#endif
308341825Sdim#else
309341825Sdim#ifndef TARGET_BI_ARCH
310303231Sdim#undef TARGET_64BIT
311341825Sdim#undef TARGET_64BIT_P
312341825Sdim#if TARGET_64BIT_DEFAULT
313341825Sdim#define TARGET_64BIT 1
314341825Sdim#define TARGET_64BIT_P(x) 1
315341825Sdim#else
316341825Sdim#define TARGET_64BIT 0
317341825Sdim#define TARGET_64BIT_P(x) 0
318341825Sdim#endif
319341825Sdim#endif
320341825Sdim#endif
321341825Sdim
322341825Sdim#define HAS_LONG_COND_BRANCH 1
323341825Sdim#define HAS_LONG_UNCOND_BRANCH 1
324341825Sdim
325341825Sdim#define TARGET_386 (ix86_tune == PROCESSOR_I386)
326341825Sdim#define TARGET_486 (ix86_tune == PROCESSOR_I486)
327341825Sdim#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
328341825Sdim#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
329341825Sdim#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
330303231Sdim#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
331341825Sdim#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
332341825Sdim#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
333341825Sdim#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
334341825Sdim#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
335341825Sdim#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
336341825Sdim#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
337341825Sdim#define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
338341825Sdim#define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
339341825Sdim#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
340341825Sdim#define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
341341825Sdim#define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
342341825Sdim#define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
343341825Sdim#define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
344341825Sdim#define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
345341825Sdim#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
346341825Sdim#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
347341825Sdim#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
348341825Sdim#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
349341825Sdim#define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
350341825Sdim#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
351341825Sdim#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
352341825Sdim
353341825Sdim/* Feature tests against the various tunings.  */
354341825Sdimenum ix86_tune_indices {
355341825Sdim#undef DEF_TUNE
356341825Sdim#define DEF_TUNE(tune, name, selector) tune,
357303231Sdim#include "x86-tune.def"
358303231Sdim#undef DEF_TUNE
359341825SdimX86_TUNE_LAST
360341825Sdim};
361341825Sdim
362341825Sdimextern unsigned char ix86_tune_features[X86_TUNE_LAST];
363341825Sdim
364341825Sdim#define TARGET_USE_LEAVE	ix86_tune_features[X86_TUNE_USE_LEAVE]
365341825Sdim#define TARGET_PUSH_MEMORY	ix86_tune_features[X86_TUNE_PUSH_MEMORY]
366341825Sdim#define TARGET_ZERO_EXTEND_WITH_AND \
367341825Sdim	ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
368341825Sdim#define TARGET_UNROLL_STRLEN	ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
369341825Sdim#define TARGET_BRANCH_PREDICTION_HINTS \
370303231Sdim	ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
371303231Sdim#define TARGET_DOUBLE_WITH_ADD	ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
372341825Sdim#define TARGET_USE_SAHF		ix86_tune_features[X86_TUNE_USE_SAHF]
373341825Sdim#define TARGET_MOVX		ix86_tune_features[X86_TUNE_MOVX]
374341825Sdim#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
375341825Sdim#define TARGET_PARTIAL_FLAG_REG_STALL \
376341825Sdim	ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
377341825Sdim#define TARGET_LCP_STALL \
378341825Sdim	ix86_tune_features[X86_TUNE_LCP_STALL]
379341825Sdim#define TARGET_USE_HIMODE_FIOP	ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
380341825Sdim#define TARGET_USE_SIMODE_FIOP	ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
381341825Sdim#define TARGET_USE_MOV0		ix86_tune_features[X86_TUNE_USE_MOV0]
382341825Sdim#define TARGET_USE_CLTD		ix86_tune_features[X86_TUNE_USE_CLTD]
383341825Sdim#define TARGET_USE_XCHGB	ix86_tune_features[X86_TUNE_USE_XCHGB]
384303231Sdim#define TARGET_SPLIT_LONG_MOVES	ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
385341825Sdim#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
386341825Sdim#define TARGET_READ_MODIFY	ix86_tune_features[X86_TUNE_READ_MODIFY]
387341825Sdim#define TARGET_PROMOTE_QImode	ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
388341825Sdim#define TARGET_FAST_PREFIX	ix86_tune_features[X86_TUNE_FAST_PREFIX]
389341825Sdim#define TARGET_SINGLE_STRINGOP	ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
390341825Sdim#define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
391341825Sdim	ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
392341825Sdim#define TARGET_QIMODE_MATH	ix86_tune_features[X86_TUNE_QIMODE_MATH]
393341825Sdim#define TARGET_HIMODE_MATH	ix86_tune_features[X86_TUNE_HIMODE_MATH]
394341825Sdim#define TARGET_PROMOTE_QI_REGS	ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
395303231Sdim#define TARGET_PROMOTE_HI_REGS	ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
396341825Sdim#define TARGET_SINGLE_POP	ix86_tune_features[X86_TUNE_SINGLE_POP]
397341825Sdim#define TARGET_DOUBLE_POP	ix86_tune_features[X86_TUNE_DOUBLE_POP]
398341825Sdim#define TARGET_SINGLE_PUSH	ix86_tune_features[X86_TUNE_SINGLE_PUSH]
399341825Sdim#define TARGET_DOUBLE_PUSH	ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
400303231Sdim#define TARGET_INTEGER_DFMODE_MOVES \
401341825Sdim	ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
402341825Sdim#define TARGET_PARTIAL_REG_DEPENDENCY \
403341825Sdim	ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
404341825Sdim#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
405341825Sdim	ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
406341825Sdim#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
407341825Sdim	ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
408303231Sdim#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
409341825Sdim	ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
410341825Sdim#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
411341825Sdim	ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
412341825Sdim#define TARGET_SSE_SPLIT_REGS	ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
413341825Sdim#define TARGET_SSE_TYPELESS_STORES \
414341825Sdim	ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
415341825Sdim#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
416341825Sdim#define TARGET_MEMORY_MISMATCH_STALL \
417341825Sdim	ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
418341825Sdim#define TARGET_PROLOGUE_USING_MOVE \
419303231Sdim	ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
420341825Sdim#define TARGET_EPILOGUE_USING_MOVE \
421341825Sdim	ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
422341825Sdim#define TARGET_SHIFT1		ix86_tune_features[X86_TUNE_SHIFT1]
423341825Sdim#define TARGET_USE_FFREEP	ix86_tune_features[X86_TUNE_USE_FFREEP]
424341825Sdim#define TARGET_INTER_UNIT_MOVES_TO_VEC \
425341825Sdim	ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
426341825Sdim#define TARGET_INTER_UNIT_MOVES_FROM_VEC \
427341825Sdim	ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
428341825Sdim#define TARGET_INTER_UNIT_CONVERSIONS \
429341825Sdim	ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
430344779Sdim#define TARGET_FOUR_JUMP_LIMIT	ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
431344779Sdim#define TARGET_SCHEDULE		ix86_tune_features[X86_TUNE_SCHEDULE]
432344779Sdim#define TARGET_USE_BT		ix86_tune_features[X86_TUNE_USE_BT]
433344779Sdim#define TARGET_USE_INCDEC	ix86_tune_features[X86_TUNE_USE_INCDEC]
434344779Sdim#define TARGET_PAD_RETURNS	ix86_tune_features[X86_TUNE_PAD_RETURNS]
435344779Sdim#define TARGET_PAD_SHORT_FUNCTION \
436344779Sdim	ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
437344779Sdim#define TARGET_EXT_80387_CONSTANTS \
438344779Sdim	ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
439341825Sdim#define TARGET_AVOID_VECTOR_DECODE \
440341825Sdim	ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
441341825Sdim#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
442341825Sdim	ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
443341825Sdim#define TARGET_SLOW_IMUL_IMM32_MEM \
444341825Sdim	ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
445303231Sdim#define TARGET_SLOW_IMUL_IMM8	ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
446303231Sdim#define	TARGET_MOVE_M1_VIA_OR	ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
447341825Sdim#define TARGET_NOT_UNPAIRABLE	ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
448341825Sdim#define TARGET_NOT_VECTORMODE	ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
449303231Sdim#define TARGET_USE_VECTOR_FP_CONVERTS \
450341825Sdim	ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
451341825Sdim#define TARGET_USE_VECTOR_CONVERTS \
452341825Sdim	ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
453341825Sdim#define TARGET_SLOW_PSHUFB \
454341825Sdim	ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
455341825Sdim#define TARGET_VECTOR_PARALLEL_EXECUTION \
456341825Sdim	ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
457341825Sdim#define TARGET_AVOID_4BYTE_PREFIXES \
458341825Sdim	ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
459341825Sdim#define TARGET_FUSE_CMP_AND_BRANCH_32 \
460341825Sdim	ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
461341825Sdim#define TARGET_FUSE_CMP_AND_BRANCH_64 \
462303231Sdim	ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
463303231Sdim#define TARGET_FUSE_CMP_AND_BRANCH \
464341825Sdim	(TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
465341825Sdim	 : TARGET_FUSE_CMP_AND_BRANCH_32)
466303231Sdim#define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
467341825Sdim	ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
468341825Sdim#define TARGET_FUSE_ALU_AND_BRANCH \
469341825Sdim	ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
470341825Sdim#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
471341825Sdim#define TARGET_AVOID_LEA_FOR_ADDR \
472341825Sdim	ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
473341825Sdim#define TARGET_VECTORIZE_DOUBLE \
474341825Sdim	ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
475341825Sdim#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
476341825Sdim	ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
477341825Sdim#define TARGET_AVX128_OPTIMAL \
478303231Sdim	ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
479303231Sdim#define TARGET_REASSOC_INT_TO_PARALLEL \
480341825Sdim	ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
481341825Sdim#define TARGET_REASSOC_FP_TO_PARALLEL \
482341825Sdim	ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
483303231Sdim#define TARGET_GENERAL_REGS_SSE_SPILL \
484341825Sdim	ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
485341825Sdim#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
486341825Sdim	ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
487341825Sdim#define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
488341825Sdim	ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
489341825Sdim#define TARGET_ADJUST_UNROLL \
490341825Sdim    ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
491341825Sdim#define TARGET_AVOID_FALSE_DEP_FOR_BMI \
492341825Sdim	ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
493303231Sdim
494341825Sdim/* Feature tests against the various architecture variations.  */
495303231Sdimenum ix86_arch_indices {
496341825Sdim  X86_ARCH_CMOV,
497303231Sdim  X86_ARCH_CMPXCHG,
498341825Sdim  X86_ARCH_CMPXCHG8B,
499360784Sdim  X86_ARCH_XADD,
500341825Sdim  X86_ARCH_BSWAP,
501341825Sdim
502341825Sdim  X86_ARCH_LAST
503303231Sdim};
504341825Sdim
505341825Sdimextern unsigned char ix86_arch_features[X86_ARCH_LAST];
506341825Sdim
507341825Sdim#define TARGET_CMOV		ix86_arch_features[X86_ARCH_CMOV]
508341825Sdim#define TARGET_CMPXCHG		ix86_arch_features[X86_ARCH_CMPXCHG]
509341825Sdim#define TARGET_CMPXCHG8B	ix86_arch_features[X86_ARCH_CMPXCHG8B]
510341825Sdim#define TARGET_XADD		ix86_arch_features[X86_ARCH_XADD]
511341825Sdim#define TARGET_BSWAP		ix86_arch_features[X86_ARCH_BSWAP]
512341825Sdim
513341825Sdim/* For sane SSE instruction set generation we need fcomi instruction.
514303231Sdim   It is safe to enable all CMOVE instructions.  Also, RDRAND intrinsic
515341825Sdim   expands to a sequence that includes conditional move. */
516303231Sdim#define TARGET_CMOVE		(TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
517341825Sdim
518341825Sdim#define TARGET_FISTTP		(TARGET_SSE3 && TARGET_80387)
519341825Sdim
520341825Sdimextern unsigned char x86_prefetch_sse;
521341825Sdim#define TARGET_PREFETCH_SSE	x86_prefetch_sse
522341825Sdim
523341825Sdim#define ASSEMBLER_DIALECT	(ix86_asm_dialect)
524341825Sdim
525341825Sdim#define TARGET_SSE_MATH		((ix86_fpmath & FPMATH_SSE) != 0)
526341825Sdim#define TARGET_MIX_SSE_I387 \
527341825Sdim ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
528341825Sdim
529341825Sdim#define TARGET_GNU_TLS		(ix86_tls_dialect == TLS_DIALECT_GNU)
530341825Sdim#define TARGET_GNU2_TLS		(ix86_tls_dialect == TLS_DIALECT_GNU2)
531341825Sdim#define TARGET_ANY_GNU_TLS	(TARGET_GNU_TLS || TARGET_GNU2_TLS)
532341825Sdim#define TARGET_SUN_TLS		0
533341825Sdim
534303231Sdim#ifndef TARGET_64BIT_DEFAULT
535303231Sdim#define TARGET_64BIT_DEFAULT 0
536303231Sdim#endif
537341825Sdim#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
538341825Sdim#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
539303231Sdim#endif
540341825Sdim
541341825Sdim#define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
542341825Sdim#define TARGET_SSP_TLS_GUARD    (ix86_stack_protector_guard == SSP_TLS)
543341825Sdim
544360784Sdim/* Fence to use after loop using storent.  */
545341825Sdim
546341825Sdimextern tree x86_mfence;
547341825Sdim#define FENCE_FOLLOWING_MOVNT x86_mfence
548341825Sdim
549341825Sdim/* Once GDB has been enhanced to deal with functions without frame
550341825Sdim   pointers, we can change this to allow for elimination of
551341825Sdim   the frame pointer in leaf functions.  */
552341825Sdim#define TARGET_DEFAULT 0
553341825Sdim
554341825Sdim/* Extra bits to force.  */
555303231Sdim#define TARGET_SUBTARGET_DEFAULT 0
556303231Sdim#define TARGET_SUBTARGET_ISA_DEFAULT 0
557341825Sdim
558341825Sdim/* Extra bits to force on w/ 32-bit mode.  */
559341825Sdim#define TARGET_SUBTARGET32_DEFAULT 0
560341825Sdim#define TARGET_SUBTARGET32_ISA_DEFAULT 0
561341825Sdim
562303231Sdim/* Extra bits to force on w/ 64-bit mode.  */
563341825Sdim#define TARGET_SUBTARGET64_DEFAULT 0
564341825Sdim#define TARGET_SUBTARGET64_ISA_DEFAULT 0
565303231Sdim
566341825Sdim/* Replace MACH-O, ifdefs by in-line tests, where possible.
567341825Sdim   (a) Macros defined in config/i386/darwin.h  */
568341825Sdim#define TARGET_MACHO 0
569341825Sdim#define TARGET_MACHO_BRANCH_ISLANDS 0
570341825Sdim#define MACHOPIC_ATT_STUB 0
571341825Sdim/* (b) Macros defined in config/darwin.h  */
572341825Sdim#define MACHO_DYNAMIC_NO_PIC_P 0
573341825Sdim#define MACHOPIC_INDIRECT 0
574341825Sdim#define MACHOPIC_PURE 0
575303231Sdim
576341825Sdim/* For the RDOS  */
577341825Sdim#define TARGET_RDOS 0
578341825Sdim
579303231Sdim/* For the Windows 64-bit ABI.  */
580360784Sdim#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
581341825Sdim
582303231Sdim/* For the Windows 32-bit ABI.  */
583303231Sdim#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
584341825Sdim
585341825Sdim/* This is re-defined by cygming.h.  */
586341825Sdim#define TARGET_SEH 0
587341825Sdim
588341825Sdim/* This is re-defined by cygming.h.  */
589341825Sdim#define TARGET_PECOFF 0
590341825Sdim
591341825Sdim/* The default abi used by target.  */
592341825Sdim#define DEFAULT_ABI SYSV_ABI
593341825Sdim
594303231Sdim/* The default TLS segment register used by target.  */
595303231Sdim#define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS)
596341825Sdim
597341825Sdim/* Subtargets may reset this to 1 in order to enable 96-bit long double
598341825Sdim   with the rounding mode forced to 53 bits.  */
599341825Sdim#define TARGET_96_ROUND_53_LONG_DOUBLE 0
600341825Sdim
601341825Sdim/* -march=native handling only makes sense with compiler running on
602353358Sdim   an x86 or x86_64 chip.  If changing this condition, also change
603353358Sdim   the condition in driver-i386.c.  */
604353358Sdim#if defined(__i386__) || defined(__x86_64__)
605353358Sdim/* In driver-i386.c.  */
606341825Sdimextern const char *host_detect_local_cpu (int argc, const char **argv);
607341825Sdim#define EXTRA_SPEC_FUNCTIONS \
608341825Sdim  { "local_cpu_detect", host_detect_local_cpu },
609341825Sdim#define HAVE_LOCAL_CPU_DETECT
610341825Sdim#endif
611341825Sdim
612341825Sdim#if TARGET_64BIT_DEFAULT
613341825Sdim#define OPT_ARCH64 "!m32"
614353358Sdim#define OPT_ARCH32 "m32"
615341825Sdim#else
616341825Sdim#define OPT_ARCH64 "m64|mx32"
617341825Sdim#define OPT_ARCH32 "m64|mx32:;"
618341825Sdim#endif
619341825Sdim
620341825Sdim/* Support for configure-time defaults of some command line options.
621341825Sdim   The order here is important so that -march doesn't squash the
622341825Sdim   tune or cpu values.  */
623341825Sdim#define OPTION_DEFAULT_SPECS					   \
624341825Sdim  {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
625341825Sdim  {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
626341825Sdim  {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
627341825Sdim  {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" },  \
628341825Sdim  {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
629341825Sdim  {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
630341825Sdim  {"arch", "%{!march=*:-march=%(VALUE)}"},			   \
631341825Sdim  {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"},	   \
632341825Sdim  {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
633341825Sdim
634341825Sdim/* Specs for the compiler proper */
635303231Sdim
636341825Sdim#ifndef CC1_CPU_SPEC
637341825Sdim#define CC1_CPU_SPEC_1 ""
638341825Sdim
639341825Sdim#ifndef HAVE_LOCAL_CPU_DETECT
640341825Sdim#define CC1_CPU_SPEC CC1_CPU_SPEC_1
641341825Sdim#else
642341825Sdim#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
643341825Sdim"%{march=native:%>march=native %:local_cpu_detect(arch) \
644341825Sdim  %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
645341825Sdim%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
646341825Sdim#endif
647341825Sdim#endif
648341825Sdim
649341825Sdim/* Target CPU builtins.  */
650360784Sdim#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
651341825Sdim
652341825Sdim/* Target Pragmas.  */
653341825Sdim#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
654341825Sdim
655341825Sdim#ifndef CC1_SPEC
656341825Sdim#define CC1_SPEC "%(cc1_cpu) "
657353358Sdim#endif
658353358Sdim
659341825Sdim/* This macro defines names of additional specifications to put in the
660341825Sdim   specs that can be used in various specifications like CC1_SPEC.  Its
661341825Sdim   definition is an initializer with a subgrouping for each command option.
662341825Sdim
663341825Sdim   Each subgrouping contains a string constant, that defines the
664341825Sdim   specification name, and a string constant that used by the GCC driver
665341825Sdim   program.
666341825Sdim
667360784Sdim   Do not define this macro if it does not need to do anything.  */
668341825Sdim
669341825Sdim#ifndef SUBTARGET_EXTRA_SPECS
670341825Sdim#define SUBTARGET_EXTRA_SPECS
671341825Sdim#endif
672341825Sdim
673341825Sdim#define EXTRA_SPECS							\
674341825Sdim  { "cc1_cpu",  CC1_CPU_SPEC },						\
675341825Sdim  SUBTARGET_EXTRA_SPECS
676341825Sdim
677341825Sdim
678353358Sdim/* Set the value of FLT_EVAL_METHOD in float.h.  When using only the
679353358Sdim   FPU, assume that the fpcw is set to extended precision; when using
680353358Sdim   only SSE, rounding is correct; when using both SSE and the FPU,
681353358Sdim   the rounding precision is indeterminate, since either may be chosen
682341825Sdim   apparently at random.  */
683341825Sdim#define TARGET_FLT_EVAL_METHOD \
684341825Sdim  (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
685341825Sdim
686341825Sdim/* Whether to allow x87 floating-point arithmetic on MODE (one of
687341825Sdim   SFmode, DFmode and XFmode) in the current excess precision
688341825Sdim   configuration.  */
689341825Sdim#define X87_ENABLE_ARITH(MODE) \
690341825Sdim  (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
691341825Sdim
692341825Sdim/* Likewise, whether to allow direct conversions from integer mode
693341825Sdim   IMODE (HImode, SImode or DImode) to MODE.  */
694341825Sdim#define X87_ENABLE_FLOAT(MODE, IMODE)			\
695341825Sdim  (flag_excess_precision == EXCESS_PRECISION_FAST	\
696341825Sdim   || (MODE) == XFmode					\
697341825Sdim   || ((MODE) == DFmode && (IMODE) == SImode)		\
698341825Sdim   || (IMODE) == HImode)
699341825Sdim
700341825Sdim/* target machine storage layout */
701341825Sdim
702341825Sdim#define SHORT_TYPE_SIZE 16
703341825Sdim#define INT_TYPE_SIZE 32
704341825Sdim#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
705341825Sdim#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
706341825Sdim#define LONG_LONG_TYPE_SIZE 64
707341825Sdim#define FLOAT_TYPE_SIZE 32
708341825Sdim#define DOUBLE_TYPE_SIZE 64
709353358Sdim#define LONG_DOUBLE_TYPE_SIZE \
710353358Sdim  (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
711353358Sdim
712353358Sdim#define WIDEST_HARDWARE_FP_SIZE 80
713341825Sdim
714341825Sdim#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
715341825Sdim#define MAX_BITS_PER_WORD 64
716341825Sdim#else
717341825Sdim#define MAX_BITS_PER_WORD 32
718341825Sdim#endif
719341825Sdim
720341825Sdim/* Define this if most significant byte of a word is the lowest numbered.  */
721303231Sdim/* That is true on the 80386.  */
722303231Sdim
723303231Sdim#define BITS_BIG_ENDIAN 0
724303231Sdim
725303231Sdim/* Define this if most significant byte of a word is the lowest numbered.  */
726303231Sdim/* That is not true on the 80386.  */
727341825Sdim#define BYTES_BIG_ENDIAN 0
728341825Sdim
729341825Sdim/* Define this if most significant word of a multiword number is the lowest
730341825Sdim   numbered.  */
731341825Sdim/* Not true for 80386 */
732341825Sdim#define WORDS_BIG_ENDIAN 0
733341825Sdim
734341825Sdim/* Width of a word, in units (bytes).  */
735341825Sdim#define UNITS_PER_WORD		(TARGET_64BIT ? 8 : 4)
736360784Sdim
737341825Sdim#ifndef IN_LIBGCC2
738341825Sdim#define MIN_UNITS_PER_WORD	4
739341825Sdim#endif
740341825Sdim
741341825Sdim/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
742341825Sdim#define PARM_BOUNDARY BITS_PER_WORD
743341825Sdim
744341825Sdim/* Boundary (in *bits*) on which stack pointer should be aligned.  */
745341825Sdim#define STACK_BOUNDARY \
746360784Sdim (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
747341825Sdim
748341825Sdim/* Stack boundary of the main function guaranteed by OS.  */
749341825Sdim#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
750341825Sdim
751341825Sdim/* Minimum stack boundary.  */
752341825Sdim#define MIN_STACK_BOUNDARY BITS_PER_WORD
753341825Sdim
754341825Sdim/* Boundary (in *bits*) on which the stack pointer prefers to be
755341825Sdim   aligned; the compiler cannot rely on having this alignment.  */
756341825Sdim#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
757341825Sdim
758341825Sdim/* It should be MIN_STACK_BOUNDARY.  But we set it to 128 bits for
759341825Sdim   both 32bit and 64bit, to support codes that need 128 bit stack
760341825Sdim   alignment for SSE instructions, but can't realign the stack.  */
761341825Sdim#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
762341825Sdim
763341825Sdim/* 1 if -mstackrealign should be turned on by default.  It will
764341825Sdim   generate an alternate prologue and epilogue that realigns the
765341825Sdim   runtime stack if nessary.  This supports mixing codes that keep a
766341825Sdim   4-byte aligned stack, as specified by i386 psABI, with codes that
767341825Sdim   need a 16-byte aligned stack, as required by SSE instructions.  */
768341825Sdim#define STACK_REALIGN_DEFAULT 0
769341825Sdim
770341825Sdim/* Boundary (in *bits*) on which the incoming stack is aligned.  */
771341825Sdim#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
772341825Sdim
773341825Sdim/* According to Windows x64 software convention, the maximum stack allocatable
774303231Sdim   in the prologue is 4G - 8 bytes.  Furthermore, there is a limited set of
775341825Sdim   instructions allowed to adjust the stack pointer in the epilog, forcing the
776341825Sdim   use of frame pointer for frames larger than 2 GB.  This theorical limit
777341825Sdim   is reduced by 256, an over-estimated upper bound for the stack use by the
778341825Sdim   prologue.
779341825Sdim   We define only one threshold for both the prolog and the epilog.  When the
780341825Sdim   frame size is larger than this threshold, we allocate the area to save SSE
781341825Sdim   regs, then save them, and then allocate the remaining.  There is no SEH
782341825Sdim   unwind info for this later allocation.  */
783341825Sdim#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
784341825Sdim
785341825Sdim/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack.  This is
786341825Sdim   mandatory for the 64-bit ABI, and may or may not be true for other
787303231Sdim   operating systems.  */
788303231Sdim#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
789303231Sdim
790303231Sdim/* Minimum allocation boundary for the code of a function.  */
791303231Sdim#define FUNCTION_BOUNDARY 8
792303231Sdim
793303231Sdim/* C++ stores the virtual bit in the lowest bit of function pointers.  */
794303231Sdim#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
795303231Sdim
796/* Minimum size in bits of the largest boundary to which any
797   and all fundamental data types supported by the hardware
798   might need to be aligned. No data type wants to be aligned
799   rounder than this.
800
801   Pentium+ prefers DFmode values to be aligned to 64 bit boundary
802   and Pentium Pro XFmode values at 128 bit boundaries.
803
804   When increasing the maximum, also update
805   TARGET_ABSOLUTE_BIGGEST_ALIGNMENT.  */
806
807#define BIGGEST_ALIGNMENT \
808  (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128))
809
810/* Maximum stack alignment.  */
811#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
812
813/* Alignment value for attribute ((aligned)).  It is a constant since
814   it is the part of the ABI.  We shouldn't change it with -mavx.  */
815#define ATTRIBUTE_ALIGNED_VALUE 128
816
817/* Decide whether a variable of mode MODE should be 128 bit aligned.  */
818#define ALIGN_MODE_128(MODE) \
819 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
820
821/* The published ABIs say that doubles should be aligned on word
822   boundaries, so lower the alignment for structure fields unless
823   -malign-double is set.  */
824
825/* ??? Blah -- this macro is used directly by libobjc.  Since it
826   supports no vector modes, cut out the complexity and fall back
827   on BIGGEST_FIELD_ALIGNMENT.  */
828#ifdef IN_TARGET_LIBS
829#ifdef __x86_64__
830#define BIGGEST_FIELD_ALIGNMENT 128
831#else
832#define BIGGEST_FIELD_ALIGNMENT 32
833#endif
834#else
835#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
836   x86_field_alignment (FIELD, COMPUTED)
837#endif
838
839/* If defined, a C expression to compute the alignment given to a
840   constant that is being placed in memory.  EXP is the constant
841   and ALIGN is the alignment that the object would ordinarily have.
842   The value of this macro is used instead of that alignment to align
843   the object.
844
845   If this macro is not defined, then ALIGN is used.
846
847   The typical use of this macro is to increase alignment for string
848   constants to be word aligned so that `strcpy' calls that copy
849   constants can be done inline.  */
850
851#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
852
853/* If defined, a C expression to compute the alignment for a static
854   variable.  TYPE is the data type, and ALIGN is the alignment that
855   the object would ordinarily have.  The value of this macro is used
856   instead of that alignment to align the object.
857
858   If this macro is not defined, then ALIGN is used.
859
860   One use of this macro is to increase alignment of medium-size
861   data to make it all fit in fewer cache lines.  Another is to
862   cause character arrays to be word-aligned so that `strcpy' calls
863   that copy constants to character arrays can be done inline.  */
864
865#define DATA_ALIGNMENT(TYPE, ALIGN) \
866  ix86_data_alignment ((TYPE), (ALIGN), true)
867
868/* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
869   some alignment increase, instead of optimization only purposes.  E.g.
870   AMD x86-64 psABI says that variables with array type larger than 15 bytes
871   must be aligned to 16 byte boundaries.
872
873   If this macro is not defined, then ALIGN is used.  */
874
875#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
876  ix86_data_alignment ((TYPE), (ALIGN), false)
877
878/* If defined, a C expression to compute the alignment for a local
879   variable.  TYPE is the data type, and ALIGN is the alignment that
880   the object would ordinarily have.  The value of this macro is used
881   instead of that alignment to align the object.
882
883   If this macro is not defined, then ALIGN is used.
884
885   One use of this macro is to increase alignment of medium-size
886   data to make it all fit in fewer cache lines.  */
887
888#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
889  ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
890
891/* If defined, a C expression to compute the alignment for stack slot.
892   TYPE is the data type, MODE is the widest mode available, and ALIGN
893   is the alignment that the slot would ordinarily have.  The value of
894   this macro is used instead of that alignment to align the slot.
895
896   If this macro is not defined, then ALIGN is used when TYPE is NULL,
897   Otherwise, LOCAL_ALIGNMENT will be used.
898
899   One use of this macro is to set alignment of stack slot to the
900   maximum alignment of all possible modes which the slot may have.  */
901
902#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
903  ix86_local_alignment ((TYPE), (MODE), (ALIGN))
904
905/* If defined, a C expression to compute the alignment for a local
906   variable DECL.
907
908   If this macro is not defined, then
909   LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
910
911   One use of this macro is to increase alignment of medium-size
912   data to make it all fit in fewer cache lines.  */
913
914#define LOCAL_DECL_ALIGNMENT(DECL) \
915  ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
916
917/* If defined, a C expression to compute the minimum required alignment
918   for dynamic stack realignment purposes for EXP (a TYPE or DECL),
919   MODE, assuming normal alignment ALIGN.
920
921   If this macro is not defined, then (ALIGN) will be used.  */
922
923#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
924  ix86_minimum_alignment (EXP, MODE, ALIGN)
925
926
927/* Set this nonzero if move instructions will actually fail to work
928   when given unaligned data.  */
929#define STRICT_ALIGNMENT 0
930
931/* If bit field type is int, don't let it cross an int,
932   and give entire struct the alignment of an int.  */
933/* Required on the 386 since it doesn't have bit-field insns.  */
934#define PCC_BITFIELD_TYPE_MATTERS 1
935
936/* Standard register usage.  */
937
938/* This processor has special stack-like registers.  See reg-stack.c
939   for details.  */
940
941#define STACK_REGS
942
943#define IS_STACK_MODE(MODE)					\
944  (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH))	\
945   || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH))	\
946   || (MODE) == XFmode)
947
948/* Number of actual hardware registers.
949   The hardware registers are assigned numbers for the compiler
950   from 0 to just below FIRST_PSEUDO_REGISTER.
951   All registers that the compiler knows about must be given numbers,
952   even those that are not normally considered general registers.
953
954   In the 80386 we give the 8 general purpose registers the numbers 0-7.
955   We number the floating point registers 8-15.
956   Note that registers 0-7 can be accessed as a  short or int,
957   while only 0-3 may be used with byte `mov' instructions.
958
959   Reg 16 does not correspond to any hardware register, but instead
960   appears in the RTL as an argument pointer prior to reload, and is
961   eliminated during reloading in favor of either the stack or frame
962   pointer.  */
963
964#define FIRST_PSEUDO_REGISTER 81
965
966/* Number of hardware registers that go into the DWARF-2 unwind info.
967   If not defined, equals FIRST_PSEUDO_REGISTER.  */
968
969#define DWARF_FRAME_REGISTERS 17
970
971/* 1 for registers that have pervasive standard uses
972   and are not available for the register allocator.
973   On the 80386, the stack pointer is such, as is the arg pointer.
974
975   REX registers are disabled for 32bit targets in
976   TARGET_CONDITIONAL_REGISTER_USAGE.  */
977
978#define FIXED_REGISTERS						\
979/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
980{  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,	\
981/*arg,flags,fpsr,fpcr,frame*/					\
982    1,    1,   1,   1,    1,					\
983/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
984     0,   0,   0,   0,   0,   0,   0,   0,			\
985/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/			\
986     0,   0,   0,   0,   0,   0,   0,   0,			\
987/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
988     0,   0,   0,   0,   0,   0,   0,   0,			\
989/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
990     0,   0,    0,    0,    0,    0,    0,    0,		\
991/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/		\
992     0,   0,    0,    0,    0,    0,    0,    0,		\
993/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/		\
994     0,   0,    0,    0,    0,    0,    0,    0,		\
995/*  k0,  k1, k2, k3, k4, k5, k6, k7*/				\
996     0,  0,   0,  0,  0,  0,  0,  0,				\
997/*   b0, b1, b2, b3*/						\
998     0,  0,  0,  0 }
999
1000/* 1 for registers not available across function calls.
1001   These must include the FIXED_REGISTERS and also any
1002   registers that can be used without being saved.
1003   The latter must include the registers where values are returned
1004   and the register where structure-value addresses are passed.
1005   Aside from that, you can include as many other registers as you like.
1006
1007   Value is set to 1 if the register is call used unconditionally.
1008   Bit one is set if the register is call used on TARGET_32BIT ABI.
1009   Bit two is set if the register is call used on TARGET_64BIT ABI.
1010   Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1011
1012   Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.  */
1013
1014#define CALL_USED_REGISTERS					\
1015/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
1016{  1, 1, 1, 0, 4, 4, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,	\
1017/*arg,flags,fpsr,fpcr,frame*/					\
1018    1,   1,    1,   1,    1,					\
1019/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
1020     1,   1,   1,   1,   1,   1,   6,   6,			\
1021/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/			\
1022     1,   1,   1,   1,   1,   1,   1,   1,			\
1023/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
1024     1,   1,   1,   1,   2,   2,   2,   2,			\
1025/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
1026     6,   6,    6,    6,    6,    6,    6,    6,		\
1027/*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/		\
1028     6,    6,     6,    6,    6,    6,    6,    6,		\
1029/*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/		\
1030     6,    6,     6,    6,    6,    6,    6,    6,		\
1031 /* k0,  k1,  k2,  k3,  k4,  k5,  k6,  k7*/			\
1032     1,   1,   1,   1,   1,   1,   1,   1,			\
1033/*   b0, b1, b2, b3*/						\
1034     1,  1,  1,  1 }
1035
1036/* Order in which to allocate registers.  Each register must be
1037   listed once, even those in FIXED_REGISTERS.  List frame pointer
1038   late and fixed registers last.  Note that, in general, we prefer
1039   registers listed in CALL_USED_REGISTERS, keeping the others
1040   available for storage of persistent values.
1041
1042   The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
1043   so this is just empty initializer for array.  */
1044
1045#define REG_ALLOC_ORDER 					\
1046{  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1047   18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
1048   33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
1049   48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,	\
1050   63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,  \
1051   78, 79, 80 }
1052
1053/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
1054   to be rearranged based on a particular function.  When using sse math,
1055   we want to allocate SSE before x87 registers and vice versa.  */
1056
1057#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
1058
1059
1060#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1061
1062/* Return number of consecutive hard regs needed starting at reg REGNO
1063   to hold something of mode MODE.
1064   This is ordinarily the length in words of a value of mode MODE
1065   but can be less for certain modes in special long registers.
1066
1067   Actually there are no two word move instructions for consecutive
1068   registers.  And only registers 0-3 may have mov byte instructions
1069   applied to them.  */
1070
1071#define HARD_REGNO_NREGS(REGNO, MODE)					\
1072  (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
1073   || MASK_REGNO_P (REGNO) || BND_REGNO_P (REGNO)			\
1074   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1075   : ((MODE) == XFmode							\
1076      ? (TARGET_64BIT ? 2 : 3)						\
1077      : (MODE) == XCmode						\
1078      ? (TARGET_64BIT ? 4 : 6)						\
1079      : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1080
1081#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE)			\
1082  ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT)				\
1083   ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1084      ? 0								\
1085      : ((MODE) == XFmode || (MODE) == XCmode))				\
1086   : 0)
1087
1088#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1089
1090#define VALID_AVX256_REG_MODE(MODE)					\
1091  ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode	\
1092   || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode	\
1093   || (MODE) == V4DFmode)
1094
1095#define VALID_AVX256_REG_OR_OI_MODE(MODE)		\
1096  (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1097
1098#define VALID_AVX512F_SCALAR_MODE(MODE)					\
1099  ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode		\
1100   || (MODE) == SFmode)
1101
1102#define VALID_AVX512F_REG_MODE(MODE)					\
1103  ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode	\
1104   || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1105   || (MODE) == V4TImode)
1106
1107#define VALID_AVX512VL_128_REG_MODE(MODE)					\
1108  ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode	\
1109   || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode)
1110
1111#define VALID_SSE2_REG_MODE(MODE)					\
1112  ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode	\
1113   || (MODE) == V2DImode || (MODE) == DFmode)
1114
1115#define VALID_SSE_REG_MODE(MODE)					\
1116  ((MODE) == V1TImode || (MODE) == TImode				\
1117   || (MODE) == V4SFmode || (MODE) == V4SImode				\
1118   || (MODE) == SFmode || (MODE) == TFmode)
1119
1120#define VALID_MMX_REG_MODE_3DNOW(MODE) \
1121  ((MODE) == V2SFmode || (MODE) == SFmode)
1122
1123#define VALID_MMX_REG_MODE(MODE)					\
1124  ((MODE == V1DImode) || (MODE) == DImode				\
1125   || (MODE) == V2SImode || (MODE) == SImode				\
1126   || (MODE) == V4HImode || (MODE) == V8QImode)
1127
1128#define VALID_BND_REG_MODE(MODE) \
1129  (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1130
1131#define VALID_DFP_MODE_P(MODE) \
1132  ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1133
1134#define VALID_FP_MODE_P(MODE)						\
1135  ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode		\
1136   || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)		\
1137
1138#define VALID_INT_MODE_P(MODE)						\
1139  ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
1140   || (MODE) == DImode							\
1141   || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
1142   || (MODE) == CDImode							\
1143   || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode		\
1144			|| (MODE) == TFmode || (MODE) == TCmode)))
1145
1146/* Return true for modes passed in SSE registers.  */
1147#define SSE_REG_MODE_P(MODE)						\
1148  ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode	\
1149   || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode	\
1150   || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
1151   || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode	\
1152   || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode	\
1153   || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode	\
1154   || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode	\
1155   || (MODE) == V16SFmode)
1156
1157#define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1158
1159#define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1160
1161/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
1162
1163#define HARD_REGNO_MODE_OK(REGNO, MODE)	\
1164   ix86_hard_regno_mode_ok ((REGNO), (MODE))
1165
1166/* Value is 1 if it is a good idea to tie two pseudo registers
1167   when one has mode MODE1 and one has mode MODE2.
1168   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1169   for any hard reg, then this must be 0 for correct output.  */
1170
1171#define MODES_TIEABLE_P(MODE1, MODE2)  ix86_modes_tieable_p (MODE1, MODE2)
1172
1173/* It is possible to write patterns to move flags; but until someone
1174   does it,  */
1175#define AVOID_CCMODE_COPIES
1176
1177/* Specify the modes required to caller save a given hard regno.
1178   We do this on i386 to prevent flags from being saved at all.
1179
1180   Kill any attempts to combine saving of modes.  */
1181
1182#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1183  (CC_REGNO_P (REGNO) ? VOIDmode					\
1184   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
1185   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1186   : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL			\
1187			   || MASK_REGNO_P (REGNO)) ? SImode		\
1188   : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO)		\
1189			   || MASK_REGNO_P (REGNO)) ? SImode		\
1190   : (MODE))
1191
1192/* The only ABI that saves SSE registers across calls is Win64 (thus no
1193   need to check the current ABI here), and with AVX enabled Win64 only
1194   guarantees that the low 16 bytes are saved.  */
1195#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE)             \
1196  (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1197
1198/* Specify the registers used for certain standard purposes.
1199   The values of these macros are register numbers.  */
1200
1201/* on the 386 the pc register is %eip, and is not usable as a general
1202   register.  The ordinary mov instructions won't work */
1203/* #define PC_REGNUM  */
1204
1205/* Register to use for pushing function arguments.  */
1206#define STACK_POINTER_REGNUM 7
1207
1208/* Base register for access to local variables of the function.  */
1209#define HARD_FRAME_POINTER_REGNUM 6
1210
1211/* Base register for access to local variables of the function.  */
1212#define FRAME_POINTER_REGNUM 20
1213
1214/* First floating point reg */
1215#define FIRST_FLOAT_REG 8
1216
1217/* First & last stack-like regs */
1218#define FIRST_STACK_REG FIRST_FLOAT_REG
1219#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1220
1221#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1222#define LAST_SSE_REG  (FIRST_SSE_REG + 7)
1223
1224#define FIRST_MMX_REG  (LAST_SSE_REG + 1)   /*29*/
1225#define LAST_MMX_REG   (FIRST_MMX_REG + 7)
1226
1227#define FIRST_REX_INT_REG  (LAST_MMX_REG + 1) /*37*/
1228#define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
1229
1230#define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1) /*45*/
1231#define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
1232
1233#define FIRST_EXT_REX_SSE_REG  (LAST_REX_SSE_REG + 1) /*53*/
1234#define LAST_EXT_REX_SSE_REG   (FIRST_EXT_REX_SSE_REG + 15) /*68*/
1235
1236#define FIRST_MASK_REG  (LAST_EXT_REX_SSE_REG + 1) /*69*/
1237#define LAST_MASK_REG   (FIRST_MASK_REG + 7) /*76*/
1238
1239#define FIRST_BND_REG  (LAST_MASK_REG + 1) /*77*/
1240#define LAST_BND_REG   (FIRST_BND_REG + 3) /*80*/
1241
1242/* Override this in other tm.h files to cope with various OS lossage
1243   requiring a frame pointer.  */
1244#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1245#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1246#endif
1247
1248/* Make sure we can access arbitrary call frames.  */
1249#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1250
1251/* Base register for access to arguments of the function.  */
1252#define ARG_POINTER_REGNUM 16
1253
1254/* Register to hold the addressing base for position independent
1255   code access to data items.  We don't use PIC pointer for 64bit
1256   mode.  Define the regnum to dummy value to prevent gcc from
1257   pessimizing code dealing with EBX.
1258
1259   To avoid clobbering a call-saved register unnecessarily, we renumber
1260   the pic register when possible.  The change is visible after the
1261   prologue has been emitted.  */
1262
1263#define REAL_PIC_OFFSET_TABLE_REGNUM  (TARGET_64BIT ? R15_REG : BX_REG)
1264
1265#define PIC_OFFSET_TABLE_REGNUM						\
1266  (ix86_use_pseudo_pic_reg ()						\
1267   ? (pic_offset_table_rtx						\
1268      ? INVALID_REGNUM							\
1269      : REAL_PIC_OFFSET_TABLE_REGNUM)					\
1270   : INVALID_REGNUM)
1271
1272#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1273
1274/* This is overridden by <cygwin.h>.  */
1275#define MS_AGGREGATE_RETURN 0
1276
1277#define KEEP_AGGREGATE_RETURN_POINTER 0
1278
1279/* Define the classes of registers for register constraints in the
1280   machine description.  Also define ranges of constants.
1281
1282   One of the classes must always be named ALL_REGS and include all hard regs.
1283   If there is more than one class, another class must be named NO_REGS
1284   and contain no registers.
1285
1286   The name GENERAL_REGS must be the name of a class (or an alias for
1287   another name such as ALL_REGS).  This is the class of registers
1288   that is allowed by "g" or "r" in a register constraint.
1289   Also, registers outside this class are allocated only when
1290   instructions express preferences for them.
1291
1292   The classes must be numbered in nondecreasing order; that is,
1293   a larger-numbered class must never be contained completely
1294   in a smaller-numbered class.
1295
1296   For any two classes, it is very desirable that there be another
1297   class that represents their union.
1298
1299   It might seem that class BREG is unnecessary, since no useful 386
1300   opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1301   and the "b" register constraint is useful in asms for syscalls.
1302
1303   The flags, fpsr and fpcr registers are in no class.  */
1304
1305enum reg_class
1306{
1307  NO_REGS,
1308  AREG, DREG, CREG, BREG, SIREG, DIREG,
1309  AD_REGS,			/* %eax/%edx for DImode */
1310  Q_REGS,			/* %eax %ebx %ecx %edx */
1311  NON_Q_REGS,			/* %esi %edi %ebp %esp */
1312  INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1313  LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1314  CLOBBERED_REGS,		/* call-clobbered integer registers */
1315  GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1316				   %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1317  FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1318  FLOAT_REGS,
1319  SSE_FIRST_REG,
1320  NO_REX_SSE_REGS,
1321  SSE_REGS,
1322  EVEX_SSE_REGS,
1323  BND_REGS,
1324  ALL_SSE_REGS,
1325  MMX_REGS,
1326  FP_TOP_SSE_REGS,
1327  FP_SECOND_SSE_REGS,
1328  FLOAT_SSE_REGS,
1329  FLOAT_INT_REGS,
1330  INT_SSE_REGS,
1331  FLOAT_INT_SSE_REGS,
1332  MASK_EVEX_REGS,
1333  MASK_REGS,
1334  ALL_REGS, LIM_REG_CLASSES
1335};
1336
1337#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1338
1339#define INTEGER_CLASS_P(CLASS) \
1340  reg_class_subset_p ((CLASS), GENERAL_REGS)
1341#define FLOAT_CLASS_P(CLASS) \
1342  reg_class_subset_p ((CLASS), FLOAT_REGS)
1343#define SSE_CLASS_P(CLASS) \
1344  reg_class_subset_p ((CLASS), ALL_SSE_REGS)
1345#define MMX_CLASS_P(CLASS) \
1346  ((CLASS) == MMX_REGS)
1347#define MAYBE_INTEGER_CLASS_P(CLASS) \
1348  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1349#define MAYBE_FLOAT_CLASS_P(CLASS) \
1350  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1351#define MAYBE_SSE_CLASS_P(CLASS) \
1352  reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
1353#define MAYBE_MMX_CLASS_P(CLASS) \
1354  reg_classes_intersect_p ((CLASS), MMX_REGS)
1355#define MAYBE_MASK_CLASS_P(CLASS) \
1356  reg_classes_intersect_p ((CLASS), MASK_REGS)
1357
1358#define Q_CLASS_P(CLASS) \
1359  reg_class_subset_p ((CLASS), Q_REGS)
1360
1361#define MAYBE_NON_Q_CLASS_P(CLASS) \
1362  reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1363
1364/* Give names of register classes as strings for dump file.  */
1365
1366#define REG_CLASS_NAMES \
1367{  "NO_REGS",				\
1368   "AREG", "DREG", "CREG", "BREG",	\
1369   "SIREG", "DIREG",			\
1370   "AD_REGS",				\
1371   "Q_REGS", "NON_Q_REGS",		\
1372   "INDEX_REGS",			\
1373   "LEGACY_REGS",			\
1374   "CLOBBERED_REGS",			\
1375   "GENERAL_REGS",			\
1376   "FP_TOP_REG", "FP_SECOND_REG",	\
1377   "FLOAT_REGS",			\
1378   "SSE_FIRST_REG",			\
1379   "NO_REX_SSE_REGS",			\
1380   "SSE_REGS",				\
1381   "EVEX_SSE_REGS",			\
1382   "BND_REGS",				\
1383   "ALL_SSE_REGS",			\
1384   "MMX_REGS",				\
1385   "FP_TOP_SSE_REGS",			\
1386   "FP_SECOND_SSE_REGS",		\
1387   "FLOAT_SSE_REGS",			\
1388   "FLOAT_INT_REGS",			\
1389   "INT_SSE_REGS",			\
1390   "FLOAT_INT_SSE_REGS",		\
1391   "MASK_EVEX_REGS",			\
1392   "MASK_REGS",				\
1393   "ALL_REGS" }
1394
1395/* Define which registers fit in which classes.  This is an initializer
1396   for a vector of HARD_REG_SET of length N_REG_CLASSES.
1397
1398   Note that CLOBBERED_REGS are calculated by
1399   TARGET_CONDITIONAL_REGISTER_USAGE.  */
1400
1401#define REG_CLASS_CONTENTS                                              \
1402{     { 0x00,       0x0,    0x0 },                                       \
1403      { 0x01,       0x0,    0x0 },       /* AREG */                      \
1404      { 0x02,       0x0,    0x0 },       /* DREG */                      \
1405      { 0x04,       0x0,    0x0 },       /* CREG */                      \
1406      { 0x08,       0x0,    0x0 },       /* BREG */                      \
1407      { 0x10,       0x0,    0x0 },       /* SIREG */                     \
1408      { 0x20,       0x0,    0x0 },       /* DIREG */                     \
1409      { 0x03,       0x0,    0x0 },       /* AD_REGS */                   \
1410      { 0x0f,       0x0,    0x0 },       /* Q_REGS */                    \
1411  { 0x1100f0,    0x1fe0,    0x0 },       /* NON_Q_REGS */                \
1412      { 0x7f,    0x1fe0,    0x0 },       /* INDEX_REGS */                \
1413  { 0x1100ff,       0x0,    0x0 },       /* LEGACY_REGS */               \
1414      { 0x07,       0x0,    0x0 },       /* CLOBBERED_REGS */            \
1415  { 0x1100ff,    0x1fe0,    0x0 },       /* GENERAL_REGS */              \
1416     { 0x100,       0x0,    0x0 },       /* FP_TOP_REG */                \
1417    { 0x0200,       0x0,    0x0 },       /* FP_SECOND_REG */             \
1418    { 0xff00,       0x0,    0x0 },       /* FLOAT_REGS */                \
1419  { 0x200000,       0x0,    0x0 },       /* SSE_FIRST_REG */             \
1420{ 0x1fe00000,  0x000000,    0x0 },       /* NO_REX_SSE_REGS */           \
1421{ 0x1fe00000,  0x1fe000,    0x0 },       /* SSE_REGS */                  \
1422       { 0x0,0xffe00000,   0x1f },       /* EVEX_SSE_REGS */             \
1423       { 0x0,       0x0,0x1e000 },       /* BND_REGS */			 \
1424{ 0x1fe00000,0xffffe000,   0x1f },       /* ALL_SSE_REGS */              \
1425{ 0xe0000000,      0x1f,    0x0 },       /* MMX_REGS */                  \
1426{ 0x1fe00100,0xffffe000,   0x1f },       /* FP_TOP_SSE_REG */            \
1427{ 0x1fe00200,0xffffe000,   0x1f },       /* FP_SECOND_SSE_REG */         \
1428{ 0x1fe0ff00,0xffffe000,   0x1f },       /* FLOAT_SSE_REGS */            \
1429{   0x11ffff,    0x1fe0,    0x0 },       /* FLOAT_INT_REGS */            \
1430{ 0x1ff100ff,0xffffffe0,   0x1f },       /* INT_SSE_REGS */              \
1431{ 0x1ff1ffff,0xffffffe0,   0x1f },       /* FLOAT_INT_SSE_REGS */        \
1432       { 0x0,       0x0, 0x1fc0 },       /* MASK_EVEX_REGS */           \
1433       { 0x0,       0x0, 0x1fe0 },       /* MASK_REGS */                 \
1434{ 0xffffffff,0xffffffff,0x1ffff }                                        \
1435}
1436
1437/* The same information, inverted:
1438   Return the class number of the smallest class containing
1439   reg number REGNO.  This could be a conditional expression
1440   or could index an array.  */
1441
1442#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1443
1444/* When this hook returns true for MODE, the compiler allows
1445   registers explicitly used in the rtl to be used as spill registers
1446   but prevents the compiler from extending the lifetime of these
1447   registers.  */
1448#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1449
1450#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1451#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
1452
1453#define GENERAL_REG_P(X) \
1454  (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1455#define GENERAL_REGNO_P(N) \
1456  (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
1457
1458#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1459#define ANY_QI_REGNO_P(N) \
1460  (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1461
1462#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1463#define REX_INT_REGNO_P(N) \
1464  IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1465
1466#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1467#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1468
1469#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1470#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1471
1472#define X87_FLOAT_MODE_P(MODE)	\
1473  (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1474
1475#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1476#define SSE_REGNO_P(N)						\
1477  (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG)			\
1478   || REX_SSE_REGNO_P (N)					\
1479   || EXT_REX_SSE_REGNO_P (N))
1480
1481#define REX_SSE_REGNO_P(N) \
1482  IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1483
1484#define EXT_REX_SSE_REGNO_P(N) \
1485  IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1486
1487#define SSE_REGNO(N) \
1488  ((N) < 8 ? FIRST_SSE_REG + (N) \
1489         : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1490                                   : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1491
1492#define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1493#define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1494#define ANY_MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1495
1496#define SSE_FLOAT_MODE_P(MODE) \
1497  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1498
1499#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1500  (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1501		  || (MODE) == V8SFmode || (MODE) == V4DFmode))
1502
1503#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1504#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1505
1506#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
1507
1508#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1509#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1510
1511#define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
1512#define ANY_BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
1513
1514/* The class value for index registers, and the one for base regs.  */
1515
1516#define INDEX_REG_CLASS INDEX_REGS
1517#define BASE_REG_CLASS GENERAL_REGS
1518
1519/* Place additional restrictions on the register class to use when it
1520   is necessary to be able to hold a value of mode MODE in a reload
1521   register for which class CLASS would ordinarily be used.
1522
1523   We avoid classes containing registers from multiple units due to
1524   the limitation in ix86_secondary_memory_needed.  We limit these
1525   classes to their "natural mode" single unit register class, depending
1526   on the unit availability.
1527
1528   Please note that reg_class_subset_p is not commutative, so these
1529   conditions mean "... if (CLASS) includes ALL registers from the
1530   register set."  */
1531
1532#define LIMIT_RELOAD_CLASS(MODE, CLASS)					\
1533  (((MODE) == QImode && !TARGET_64BIT					\
1534    && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS			\
1535   : (((MODE) == SImode || (MODE) == DImode)				\
1536      && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS	\
1537   : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH			\
1538      && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS		\
1539   : (X87_FLOAT_MODE_P (MODE)						\
1540      && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS		\
1541   : (CLASS))
1542
1543/* If we are copying between general and FP registers, we need a memory
1544   location. The same is true for SSE and MMX registers.  */
1545#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1546  ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1547
1548/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1549   There is no need to emit full 64 bit move on 64 bit targets
1550   for integral modes that can be moved using 32 bit move.  */
1551#define SECONDARY_MEMORY_NEEDED_MODE(MODE)			\
1552  (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE)	\
1553   ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)		\
1554   : MODE)
1555
1556/* Return a class of registers that cannot change FROM mode to TO mode.  */
1557
1558#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1559  ix86_cannot_change_mode_class (FROM, TO, CLASS)
1560
1561/* Stack layout; function entry, exit and calling.  */
1562
1563/* Define this if pushing a word on the stack
1564   makes the stack pointer a smaller address.  */
1565#define STACK_GROWS_DOWNWARD
1566
1567/* Define this to nonzero if the nominal address of the stack frame
1568   is at the high-address end of the local variables;
1569   that is, each additional local variable allocated
1570   goes at a more negative offset in the frame.  */
1571#define FRAME_GROWS_DOWNWARD 1
1572
1573/* Offset within stack frame to start allocating local variables at.
1574   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1575   first local allocated.  Otherwise, it is the offset to the BEGINNING
1576   of the first local allocated.  */
1577#define STARTING_FRAME_OFFSET 0
1578
1579/* If we generate an insn to push BYTES bytes, this says how many the stack
1580   pointer really advances by.  On 386, we have pushw instruction that
1581   decrements by exactly 2 no matter what the position was, there is no pushb.
1582
1583   But as CIE data alignment factor on this arch is -4 for 32bit targets
1584   and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1585   are in multiple of 4 for 32bit targets and 8 for 64bit targets.  */
1586
1587#define PUSH_ROUNDING(BYTES) \
1588  (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1589
1590/* If defined, the maximum amount of space required for outgoing arguments
1591   will be computed and placed into the variable `crtl->outgoing_args_size'.
1592   No space will be pushed onto the stack for each call; instead, the
1593   function prologue should increase the stack frame size by this amount.
1594
1595   In 32bit mode enabling argument accumulation results in about 5% code size
1596   growth becuase move instructions are less compact than push.  In 64bit
1597   mode the difference is less drastic but visible.
1598
1599   FIXME: Unlike earlier implementations, the size of unwind info seems to
1600   actually grow with accumulation.  Is that because accumulated args
1601   unwind info became unnecesarily bloated?
1602
1603   With the 64-bit MS ABI, we can generate correct code with or without
1604   accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1605   generated without accumulated args is terrible.
1606
1607   If stack probes are required, the space used for large function
1608   arguments on the stack must also be probed, so enable
1609   -maccumulate-outgoing-args so this happens in the prologue.  */
1610
1611#define ACCUMULATE_OUTGOING_ARGS \
1612  ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \
1613   || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI)
1614
1615/* If defined, a C expression whose value is nonzero when we want to use PUSH
1616   instructions to pass outgoing arguments.  */
1617
1618#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1619
1620/* We want the stack and args grow in opposite directions, even if
1621   PUSH_ARGS is 0.  */
1622#define PUSH_ARGS_REVERSED 1
1623
1624/* Offset of first parameter from the argument pointer register value.  */
1625#define FIRST_PARM_OFFSET(FNDECL) 0
1626
1627/* Define this macro if functions should assume that stack space has been
1628   allocated for arguments even when their values are passed in registers.
1629
1630   The value of this macro is the size, in bytes, of the area reserved for
1631   arguments passed in registers for the function represented by FNDECL.
1632
1633   This space can be allocated by the caller, or be a part of the
1634   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1635   which.  */
1636#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1637
1638#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1639  (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1640
1641/* Define how to find the value returned by a library function
1642   assuming the value has mode MODE.  */
1643
1644#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1645
1646/* Define the size of the result block used for communication between
1647   untyped_call and untyped_return.  The block contains a DImode value
1648   followed by the block used by fnsave and frstor.  */
1649
1650#define APPLY_RESULT_SIZE (8+108)
1651
1652/* 1 if N is a possible register number for function argument passing.  */
1653#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1654
1655/* Define a data type for recording info about an argument list
1656   during the scan of that argument list.  This data type should
1657   hold all necessary information about the function itself
1658   and about the args processed so far, enough to enable macros
1659   such as FUNCTION_ARG to determine where the next arg should go.  */
1660
1661typedef struct ix86_args {
1662  int words;			/* # words passed so far */
1663  int nregs;			/* # registers available for passing */
1664  int regno;			/* next available register number */
1665  int fastcall;			/* fastcall or thiscall calling convention
1666				   is used */
1667  int sse_words;		/* # sse words passed so far */
1668  int sse_nregs;		/* # sse registers available for passing */
1669  int warn_avx512f;		/* True when we want to warn
1670				   about AVX512F ABI.  */
1671  int warn_avx;			/* True when we want to warn about AVX ABI.  */
1672  int warn_sse;			/* True when we want to warn about SSE ABI.  */
1673  int warn_mmx;			/* True when we want to warn about MMX ABI.  */
1674  int sse_regno;		/* next available sse register number */
1675  int mmx_words;		/* # mmx words passed so far */
1676  int mmx_nregs;		/* # mmx registers available for passing */
1677  int mmx_regno;		/* next available mmx register number */
1678  int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1679  int caller;			/* true if it is caller.  */
1680  int float_in_sse;		/* Set to 1 or 2 for 32bit targets if
1681				   SFmode/DFmode arguments should be passed
1682				   in SSE registers.  Otherwise 0.  */
1683  int bnd_regno;                /* next available bnd register number */
1684  int bnds_in_bt;               /* number of bounds expected in BT.  */
1685  int force_bnd_pass;           /* number of bounds expected for stdarg arg.  */
1686  int stdarg;                   /* Set to 1 if function is stdarg.  */
1687  enum calling_abi call_abi;	/* Set to SYSV_ABI for sysv abi. Otherwise
1688 				   MS_ABI for ms abi.  */
1689  tree decl;			/* Callee decl.  */
1690} CUMULATIVE_ARGS;
1691
1692/* Initialize a variable CUM of type CUMULATIVE_ARGS
1693   for a call to a function whose data type is FNTYPE.
1694   For a library call, FNTYPE is 0.  */
1695
1696#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1697  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1698			(N_NAMED_ARGS) != -1)
1699
1700/* Output assembler code to FILE to increment profiler label # LABELNO
1701   for profiling a function entry.  */
1702
1703#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1704
1705#define MCOUNT_NAME "_mcount"
1706
1707#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1708
1709#define PROFILE_COUNT_REGISTER "edx"
1710
1711/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1712   the stack pointer does not matter.  The value is tested only in
1713   functions that have frame pointers.
1714   No definition is equivalent to always zero.  */
1715/* Note on the 386 it might be more efficient not to define this since
1716   we have to restore it ourselves from the frame pointer, in order to
1717   use pop */
1718
1719#define EXIT_IGNORE_STACK 1
1720
1721/* Output assembler code for a block containing the constant parts
1722   of a trampoline, leaving space for the variable parts.  */
1723
1724/* On the 386, the trampoline contains two instructions:
1725     mov #STATIC,ecx
1726     jmp FUNCTION
1727   The trampoline is generated entirely at runtime.  The operand of JMP
1728   is the address of FUNCTION relative to the instruction following the
1729   JMP (which is 5 bytes long).  */
1730
1731/* Length in units of the trampoline for entering a nested function.  */
1732
1733#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1734
1735/* Definitions for register eliminations.
1736
1737   This is an array of structures.  Each structure initializes one pair
1738   of eliminable registers.  The "from" register number is given first,
1739   followed by "to".  Eliminations of the same "from" register are listed
1740   in order of preference.
1741
1742   There are two registers that can always be eliminated on the i386.
1743   The frame pointer and the arg pointer can be replaced by either the
1744   hard frame pointer or to the stack pointer, depending upon the
1745   circumstances.  The hard frame pointer is not used before reload and
1746   so it is not eligible for elimination.  */
1747
1748#define ELIMINABLE_REGS					\
1749{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1750 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1751 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1752 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1753
1754/* Define the offset between two registers, one to be eliminated, and the other
1755   its replacement, at the start of a routine.  */
1756
1757#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1758  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1759
1760/* Addressing modes, and classification of registers for them.  */
1761
1762/* Macros to check register numbers against specific register classes.  */
1763
1764/* These assume that REGNO is a hard or pseudo reg number.
1765   They give nonzero only if REGNO is a hard reg of the suitable class
1766   or a pseudo reg currently allocated to a suitable hard reg.
1767   Since they use reg_renumber, they are safe only once reg_renumber
1768   has been allocated, which happens in reginfo.c during register
1769   allocation.  */
1770
1771#define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1772  ((REGNO) < STACK_POINTER_REGNUM 					\
1773   || REX_INT_REGNO_P (REGNO)						\
1774   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM		\
1775   || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1776
1777#define REGNO_OK_FOR_BASE_P(REGNO) 					\
1778  (GENERAL_REGNO_P (REGNO)						\
1779   || (REGNO) == ARG_POINTER_REGNUM 					\
1780   || (REGNO) == FRAME_POINTER_REGNUM 					\
1781   || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1782
1783/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1784   and check its validity for a certain class.
1785   We have two alternate definitions for each of them.
1786   The usual definition accepts all pseudo regs; the other rejects
1787   them unless they have been allocated suitable hard regs.
1788   The symbol REG_OK_STRICT causes the latter definition to be used.
1789
1790   Most source files want to accept pseudo regs in the hope that
1791   they will get allocated to the class that the insn wants them to be in.
1792   Source files for reload pass need to be strict.
1793   After reload, it makes no difference, since pseudo regs have
1794   been eliminated by then.  */
1795
1796
1797/* Non strict versions, pseudos are ok.  */
1798#define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1799  (REGNO (X) < STACK_POINTER_REGNUM					\
1800   || REX_INT_REGNO_P (REGNO (X))					\
1801   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1802
1803#define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1804  (GENERAL_REGNO_P (REGNO (X))						\
1805   || REGNO (X) == ARG_POINTER_REGNUM					\
1806   || REGNO (X) == FRAME_POINTER_REGNUM 				\
1807   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1808
1809/* Strict versions, hard registers only */
1810#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1811#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1812
1813#ifndef REG_OK_STRICT
1814#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1815#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1816
1817#else
1818#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1819#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1820#endif
1821
1822/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1823   that is a valid memory address for an instruction.
1824   The MODE argument is the machine mode for the MEM expression
1825   that wants to use this address.
1826
1827   The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1828   except for CONSTANT_ADDRESS_P which is usually machine-independent.
1829
1830   See legitimize_pic_address in i386.c for details as to what
1831   constitutes a legitimate address when -fpic is used.  */
1832
1833#define MAX_REGS_PER_ADDRESS 2
1834
1835#define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
1836
1837/* Try a machine-dependent way of reloading an illegitimate address
1838   operand.  If we find one, push the reload and jump to WIN.  This
1839   macro is used in only one place: `find_reloads_address' in reload.c.  */
1840
1841#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN)	\
1842do {									\
1843  if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM),		\
1844				      (int)(TYPE), (INDL)))		\
1845    goto WIN;								\
1846} while (0)
1847
1848/* If defined, a C expression to determine the base term of address X.
1849   This macro is used in only one place: `find_base_term' in alias.c.
1850
1851   It is always safe for this macro to not be defined.  It exists so
1852   that alias analysis can understand machine-dependent addresses.
1853
1854   The typical use of this macro is to handle addresses containing
1855   a label_ref or symbol_ref within an UNSPEC.  */
1856
1857#define FIND_BASE_TERM(X) ix86_find_base_term (X)
1858
1859/* Nonzero if the constant value X is a legitimate general operand
1860   when generating PIC code.  It is given that flag_pic is on and
1861   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1862
1863#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1864
1865#define SYMBOLIC_CONST(X)	\
1866  (GET_CODE (X) == SYMBOL_REF						\
1867   || GET_CODE (X) == LABEL_REF						\
1868   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1869
1870/* Max number of args passed in registers.  If this is more than 3, we will
1871   have problems with ebx (register #4), since it is a caller save register and
1872   is also used as the pic register in ELF.  So for now, don't allow more than
1873   3 registers to be passed in registers.  */
1874
1875/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1876#define X86_64_REGPARM_MAX 6
1877#define X86_64_MS_REGPARM_MAX 4
1878
1879#define X86_32_REGPARM_MAX 3
1880
1881#define REGPARM_MAX							\
1882  (TARGET_64BIT								\
1883   ? (TARGET_64BIT_MS_ABI						\
1884      ? X86_64_MS_REGPARM_MAX						\
1885      : X86_64_REGPARM_MAX)						\
1886   : X86_32_REGPARM_MAX)
1887
1888#define X86_64_SSE_REGPARM_MAX 8
1889#define X86_64_MS_SSE_REGPARM_MAX 4
1890
1891#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1892
1893#define SSE_REGPARM_MAX							\
1894  (TARGET_64BIT								\
1895   ? (TARGET_64BIT_MS_ABI						\
1896      ? X86_64_MS_SSE_REGPARM_MAX					\
1897      : X86_64_SSE_REGPARM_MAX)						\
1898   : X86_32_SSE_REGPARM_MAX)
1899
1900#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1901
1902/* Specify the machine mode that this machine uses
1903   for the index in the tablejump instruction.  */
1904#define CASE_VECTOR_MODE \
1905 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1906
1907/* Define this as 1 if `char' should by default be signed; else as 0.  */
1908#define DEFAULT_SIGNED_CHAR 1
1909
1910/* Max number of bytes we can move from memory to memory
1911   in one reasonably fast instruction.  */
1912#define MOVE_MAX 16
1913
1914/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1915   move efficiently, as opposed to  MOVE_MAX which is the maximum
1916   number of bytes we can move with a single instruction.  */
1917#define MOVE_MAX_PIECES UNITS_PER_WORD
1918
1919/* If a memory-to-memory move would take MOVE_RATIO or more simple
1920   move-instruction pairs, we will do a movmem or libcall instead.
1921   Increasing the value will always make code faster, but eventually
1922   incurs high cost in increased code size.
1923
1924   If you don't define this, a reasonable default is used.  */
1925
1926#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1927
1928/* If a clear memory operation would take CLEAR_RATIO or more simple
1929   move-instruction sequences, we will do a clrmem or libcall instead.  */
1930
1931#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1932
1933/* Define if shifts truncate the shift count which implies one can
1934   omit a sign-extension or zero-extension of a shift count.
1935
1936   On i386, shifts do truncate the count.  But bit test instructions
1937   take the modulo of the bit offset operand.  */
1938
1939/* #define SHIFT_COUNT_TRUNCATED */
1940
1941/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1942   is done just by pretending it is already truncated.  */
1943#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1944
1945/* A macro to update M and UNSIGNEDP when an object whose type is
1946   TYPE and which has the specified mode and signedness is to be
1947   stored in a register.  This macro is only called when TYPE is a
1948   scalar type.
1949
1950   On i386 it is sometimes useful to promote HImode and QImode
1951   quantities to SImode.  The choice depends on target type.  */
1952
1953#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
1954do {							\
1955  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
1956      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
1957    (MODE) = SImode;					\
1958} while (0)
1959
1960/* Specify the machine mode that pointers have.
1961   After generation of rtl, the compiler makes no further distinction
1962   between pointers and any other objects of this machine mode.  */
1963#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1964
1965/* Specify the machine mode that bounds have.  */
1966#define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
1967
1968/* A C expression whose value is zero if pointers that need to be extended
1969   from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1970   greater then zero if they are zero-extended and less then zero if the
1971   ptr_extend instruction should be used.  */
1972
1973#define POINTERS_EXTEND_UNSIGNED 1
1974
1975/* A function address in a call instruction
1976   is a byte address (for indexing purposes)
1977   so give the MEM rtx a byte's mode.  */
1978#define FUNCTION_MODE QImode
1979
1980
1981/* A C expression for the cost of a branch instruction.  A value of 1
1982   is the default; other values are interpreted relative to that.  */
1983
1984#define BRANCH_COST(speed_p, predictable_p) \
1985  (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1986
1987/* An integer expression for the size in bits of the largest integer machine
1988   mode that should actually be used.  We allow pairs of registers.  */
1989#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1990
1991/* Define this macro as a C expression which is nonzero if accessing
1992   less than a word of memory (i.e. a `char' or a `short') is no
1993   faster than accessing a word of memory, i.e., if such access
1994   require more than one instruction or if there is no difference in
1995   cost between byte and (aligned) word loads.
1996
1997   When this macro is not defined, the compiler will access a field by
1998   finding the smallest containing object; when it is defined, a
1999   fullword load will be used if alignment permits.  Unless bytes
2000   accesses are faster than word accesses, using word accesses is
2001   preferable since it may eliminate subsequent memory access if
2002   subsequent accesses occur to other fields in the same word of the
2003   structure, but to different bytes.  */
2004
2005#define SLOW_BYTE_ACCESS 0
2006
2007/* Nonzero if access to memory by shorts is slow and undesirable.  */
2008#define SLOW_SHORT_ACCESS 0
2009
2010/* Define this macro to be the value 1 if unaligned accesses have a
2011   cost many times greater than aligned accesses, for example if they
2012   are emulated in a trap handler.
2013
2014   When this macro is nonzero, the compiler will act as if
2015   `STRICT_ALIGNMENT' were nonzero when generating code for block
2016   moves.  This can cause significantly more instructions to be
2017   produced.  Therefore, do not set this macro nonzero if unaligned
2018   accesses only add a cycle or two to the time for a memory access.
2019
2020   If the value of this macro is always zero, it need not be defined.  */
2021
2022/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2023
2024/* Define this macro if it is as good or better to call a constant
2025   function address than to call an address kept in a register.
2026
2027   Desirable on the 386 because a CALL with a constant address is
2028   faster than one with a register address.  */
2029
2030#define NO_FUNCTION_CSE
2031
2032/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2033   return the mode to be used for the comparison.
2034
2035   For floating-point equality comparisons, CCFPEQmode should be used.
2036   VOIDmode should be used in all other cases.
2037
2038   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2039   possible, to allow for more combinations.  */
2040
2041#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2042
2043/* Return nonzero if MODE implies a floating point inequality can be
2044   reversed.  */
2045
2046#define REVERSIBLE_CC_MODE(MODE) 1
2047
2048/* A C expression whose value is reversed condition code of the CODE for
2049   comparison done in CC_MODE mode.  */
2050#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
2051
2052
2053/* Control the assembler format that we output, to the extent
2054   this does not vary between assemblers.  */
2055
2056/* How to refer to registers in assembler output.
2057   This sequence is indexed by compiler's hard-register-number (see above).  */
2058
2059/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
2060   For non floating point regs, the following are the HImode names.
2061
2062   For float regs, the stack top is sometimes referred to as "%st(0)"
2063   instead of just "%st".  TARGET_PRINT_OPERAND handles this with the
2064   "y" code.  */
2065
2066#define HI_REGISTER_NAMES						\
2067{"ax","dx","cx","bx","si","di","bp","sp",				\
2068 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",		\
2069 "argp", "flags", "fpsr", "fpcr", "frame",				\
2070 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
2071 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7",		\
2072 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
2073 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",	\
2074 "xmm16", "xmm17", "xmm18", "xmm19",					\
2075 "xmm20", "xmm21", "xmm22", "xmm23",					\
2076 "xmm24", "xmm25", "xmm26", "xmm27",					\
2077 "xmm28", "xmm29", "xmm30", "xmm31",					\
2078 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7",			\
2079 "bnd0", "bnd1", "bnd2", "bnd3" }
2080
2081#define REGISTER_NAMES HI_REGISTER_NAMES
2082
2083/* Table of additional register names to use in user input.  */
2084
2085#define ADDITIONAL_REGISTER_NAMES \
2086{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },		\
2087  { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },		\
2088  { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },		\
2089  { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },		\
2090  { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },			\
2091  { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 },			\
2092  { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24},		\
2093  { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28},		\
2094  { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48},		\
2095  { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52},	\
2096  { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56},	\
2097  { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60},	\
2098  { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64},	\
2099  { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68},	\
2100  { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24},		\
2101  { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28},		\
2102  { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48},		\
2103  { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52},	\
2104  { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56},	\
2105  { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60},	\
2106  { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64},	\
2107  { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
2108
2109/* Note we are omitting these since currently I don't know how
2110to get gcc to use these, since they want the same but different
2111number as al, and ax.
2112*/
2113
2114#define QI_REGISTER_NAMES \
2115{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2116
2117/* These parallel the array above, and can be used to access bits 8:15
2118   of regs 0 through 3.  */
2119
2120#define QI_HIGH_REGISTER_NAMES \
2121{"ah", "dh", "ch", "bh", }
2122
2123/* How to renumber registers for dbx and gdb.  */
2124
2125#define DBX_REGISTER_NUMBER(N) \
2126  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2127
2128extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2129extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2130extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2131
2132extern int const x86_64_ms_sysv_extra_clobbered_registers[12];
2133
2134/* Before the prologue, RA is at 0(%esp).  */
2135#define INCOMING_RETURN_ADDR_RTX \
2136  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2137
2138/* After the prologue, RA is at -4(AP) in the current frame.  */
2139#define RETURN_ADDR_RTX(COUNT, FRAME)					   \
2140  ((COUNT) == 0								   \
2141   ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx,	   \
2142					-UNITS_PER_WORD))		   \
2143   : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
2144
2145/* PC is dbx register 8; let's use that column for RA.  */
2146#define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
2147
2148/* Before the prologue, the top of the frame is at 4(%esp).  */
2149#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2150
2151/* Describe how we implement __builtin_eh_return.  */
2152#define EH_RETURN_DATA_REGNO(N)	((N) <= DX_REG ? (N) : INVALID_REGNUM)
2153#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, CX_REG)
2154
2155
2156/* Select a format to encode pointers in exception handling data.  CODE
2157   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2158   true if the symbol may be affected by dynamic relocations.
2159
2160   ??? All x86 object file formats are capable of representing this.
2161   After all, the relocation needed is the same as for the call insn.
2162   Whether or not a particular assembler allows us to enter such, I
2163   guess we'll have to see.  */
2164#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
2165  asm_preferred_eh_data_format ((CODE), (GLOBAL))
2166
2167/* This is how to output an insn to push a register on the stack.
2168   It need not be very fast code.  */
2169
2170#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
2171do {									\
2172  if (TARGET_64BIT)							\
2173    asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",				\
2174		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2175  else									\
2176    asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2177} while (0)
2178
2179/* This is how to output an insn to pop a register from the stack.
2180   It need not be very fast code.  */
2181
2182#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2183do {									\
2184  if (TARGET_64BIT)							\
2185    asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",				\
2186		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2187  else									\
2188    asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2189} while (0)
2190
2191/* This is how to output an element of a case-vector that is absolute.  */
2192
2193#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2194  ix86_output_addr_vec_elt ((FILE), (VALUE))
2195
2196/* This is how to output an element of a case-vector that is relative.  */
2197
2198#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2199  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2200
2201/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true.  */
2202
2203#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR)	\
2204{						\
2205  if ((PTR)[0] == '%' && (PTR)[1] == 'v')	\
2206    (PTR) += TARGET_AVX ? 1 : 2;		\
2207}
2208
2209/* A C statement or statements which output an assembler instruction
2210   opcode to the stdio stream STREAM.  The macro-operand PTR is a
2211   variable of type `char *' which points to the opcode name in
2212   its "internal" form--the form that is written in the machine
2213   description.  */
2214
2215#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2216  ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2217
2218/* A C statement to output to the stdio stream FILE an assembler
2219   command to pad the location counter to a multiple of 1<<LOG
2220   bytes if it is within MAX_SKIP bytes.  */
2221
2222#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2223#undef  ASM_OUTPUT_MAX_SKIP_PAD
2224#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP)			\
2225  if ((LOG) != 0)							\
2226    {									\
2227      if ((MAX_SKIP) == 0)						\
2228        fprintf ((FILE), "\t.p2align %d\n", (LOG));			\
2229      else								\
2230        fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP));	\
2231    }
2232#endif
2233
2234/* Write the extra assembler code needed to declare a function
2235   properly.  */
2236
2237#undef ASM_OUTPUT_FUNCTION_LABEL
2238#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2239  ix86_asm_output_function_label (FILE, NAME, DECL)
2240
2241/* Under some conditions we need jump tables in the text section,
2242   because the assembler cannot handle label differences between
2243   sections.  This is the case for x86_64 on Mach-O for example.  */
2244
2245#define JUMP_TABLES_IN_TEXT_SECTION \
2246  (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2247   || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2248
2249/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2250   and switch back.  For x86 we do this only to save a few bytes that
2251   would otherwise be unused in the text section.  */
2252#define CRT_MKSTR2(VAL) #VAL
2253#define CRT_MKSTR(x) CRT_MKSTR2(x)
2254
2255#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)		\
2256   asm (SECTION_OP "\n\t"					\
2257	"call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n"	\
2258	TEXT_SECTION_ASM_OP);
2259
2260/* Default threshold for putting data in large sections
2261   with x86-64 medium memory model */
2262#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
2263
2264/* Which processor to tune code generation for.  These must be in sync
2265   with processor_target_table in i386.c.  */
2266
2267enum processor_type
2268{
2269  PROCESSOR_GENERIC = 0,
2270  PROCESSOR_I386,			/* 80386 */
2271  PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
2272  PROCESSOR_PENTIUM,
2273  PROCESSOR_PENTIUMPRO,
2274  PROCESSOR_PENTIUM4,
2275  PROCESSOR_NOCONA,
2276  PROCESSOR_CORE2,
2277  PROCESSOR_NEHALEM,
2278  PROCESSOR_SANDYBRIDGE,
2279  PROCESSOR_HASWELL,
2280  PROCESSOR_BONNELL,
2281  PROCESSOR_SILVERMONT,
2282  PROCESSOR_KNL,
2283  PROCESSOR_INTEL,
2284  PROCESSOR_GEODE,
2285  PROCESSOR_K6,
2286  PROCESSOR_ATHLON,
2287  PROCESSOR_K8,
2288  PROCESSOR_AMDFAM10,
2289  PROCESSOR_BDVER1,
2290  PROCESSOR_BDVER2,
2291  PROCESSOR_BDVER3,
2292  PROCESSOR_BDVER4,
2293  PROCESSOR_BTVER1,
2294  PROCESSOR_BTVER2,
2295  PROCESSOR_max
2296};
2297
2298extern enum processor_type ix86_tune;
2299extern enum processor_type ix86_arch;
2300
2301/* Size of the RED_ZONE area.  */
2302#define RED_ZONE_SIZE 128
2303/* Reserved area of the red zone for temporaries.  */
2304#define RED_ZONE_RESERVE 8
2305
2306extern unsigned int ix86_preferred_stack_boundary;
2307extern unsigned int ix86_incoming_stack_boundary;
2308
2309/* Smallest class containing REGNO.  */
2310extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2311
2312enum ix86_fpcmp_strategy {
2313  IX86_FPCMP_SAHF,
2314  IX86_FPCMP_COMI,
2315  IX86_FPCMP_ARITH
2316};
2317
2318/* To properly truncate FP values into integers, we need to set i387 control
2319   word.  We can't emit proper mode switching code before reload, as spills
2320   generated by reload may truncate values incorrectly, but we still can avoid
2321   redundant computation of new control word by the mode switching pass.
2322   The fldcw instructions are still emitted redundantly, but this is probably
2323   not going to be noticeable problem, as most CPUs do have fast path for
2324   the sequence.
2325
2326   The machinery is to emit simple truncation instructions and split them
2327   before reload to instructions having USEs of two memory locations that
2328   are filled by this code to old and new control word.
2329
2330   Post-reload pass may be later used to eliminate the redundant fildcw if
2331   needed.  */
2332
2333enum ix86_entity
2334{
2335  AVX_U128 = 0,
2336  I387_TRUNC,
2337  I387_FLOOR,
2338  I387_CEIL,
2339  I387_MASK_PM,
2340  MAX_386_ENTITIES
2341};
2342
2343enum ix86_stack_slot
2344{
2345  SLOT_TEMP = 0,
2346  SLOT_CW_STORED,
2347  SLOT_CW_TRUNC,
2348  SLOT_CW_FLOOR,
2349  SLOT_CW_CEIL,
2350  SLOT_CW_MASK_PM,
2351  MAX_386_STACK_LOCALS
2352};
2353
2354enum avx_u128_state
2355{
2356  AVX_U128_CLEAN,
2357  AVX_U128_DIRTY,
2358  AVX_U128_ANY
2359};
2360
2361/* Define this macro if the port needs extra instructions inserted
2362   for mode switching in an optimizing compilation.  */
2363
2364#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2365   ix86_optimize_mode_switching[(ENTITY)]
2366
2367/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2368   initializer for an array of integers.  Each initializer element N
2369   refers to an entity that needs mode switching, and specifies the
2370   number of different modes that might need to be set for this
2371   entity.  The position of the initializer in the initializer -
2372   starting counting at zero - determines the integer that is used to
2373   refer to the mode-switched entity in question.  */
2374
2375#define NUM_MODES_FOR_MODE_SWITCHING \
2376  { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2377
2378
2379/* Avoid renaming of stack registers, as doing so in combination with
2380   scheduling just increases amount of live registers at time and in
2381   the turn amount of fxch instructions needed.
2382
2383   ??? Maybe Pentium chips benefits from renaming, someone can try....
2384
2385   Don't rename evex to non-evex sse registers.  */
2386
2387#define HARD_REGNO_RENAME_OK(SRC, TARGET) (!STACK_REGNO_P (SRC) &&	 \
2388					   (EXT_REX_SSE_REGNO_P (SRC) == \
2389					    EXT_REX_SSE_REGNO_P (TARGET)))
2390
2391
2392#define FASTCALL_PREFIX '@'
2393
2394/* Machine specific frame tracking during prologue/epilogue generation.  */
2395
2396#ifndef USED_FOR_TARGET
2397struct GTY(()) machine_frame_state
2398{
2399  /* This pair tracks the currently active CFA as reg+offset.  When reg
2400     is drap_reg, we don't bother trying to record here the real CFA when
2401     it might really be a DW_CFA_def_cfa_expression.  */
2402  rtx cfa_reg;
2403  HOST_WIDE_INT cfa_offset;
2404
2405  /* The current offset (canonically from the CFA) of ESP and EBP.
2406     When stack frame re-alignment is active, these may not be relative
2407     to the CFA.  However, in all cases they are relative to the offsets
2408     of the saved registers stored in ix86_frame.  */
2409  HOST_WIDE_INT sp_offset;
2410  HOST_WIDE_INT fp_offset;
2411
2412  /* The size of the red-zone that may be assumed for the purposes of
2413     eliding register restore notes in the epilogue.  This may be zero
2414     if no red-zone is in effect, or may be reduced from the real
2415     red-zone value by a maximum runtime stack re-alignment value.  */
2416  int red_zone_offset;
2417
2418  /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2419     value within the frame.  If false then the offset above should be
2420     ignored.  Note that DRAP, if valid, *always* points to the CFA and
2421     thus has an offset of zero.  */
2422  BOOL_BITFIELD sp_valid : 1;
2423  BOOL_BITFIELD fp_valid : 1;
2424  BOOL_BITFIELD drap_valid : 1;
2425
2426  /* Indicate whether the local stack frame has been re-aligned.  When
2427     set, the SP/FP offsets above are relative to the aligned frame
2428     and not the CFA.  */
2429  BOOL_BITFIELD realigned : 1;
2430};
2431
2432/* Private to winnt.c.  */
2433struct seh_frame_state;
2434
2435struct GTY(()) machine_function {
2436  struct stack_local_entry *stack_locals;
2437  const char *some_ld_name;
2438  int varargs_gpr_size;
2439  int varargs_fpr_size;
2440  int optimize_mode_switching[MAX_386_ENTITIES];
2441
2442  /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2443     has been computed for.  */
2444  int use_fast_prologue_epilogue_nregs;
2445
2446  /* For -fsplit-stack support: A stack local which holds a pointer to
2447     the stack arguments for a function with a variable number of
2448     arguments.  This is set at the start of the function and is used
2449     to initialize the overflow_arg_area field of the va_list
2450     structure.  */
2451  rtx split_stack_varargs_pointer;
2452
2453  /* This value is used for amd64 targets and specifies the current abi
2454     to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi.  */
2455  ENUM_BITFIELD(calling_abi) call_abi : 8;
2456
2457  /* Nonzero if the function accesses a previous frame.  */
2458  BOOL_BITFIELD accesses_prev_frame : 1;
2459
2460  /* Nonzero if the function requires a CLD in the prologue.  */
2461  BOOL_BITFIELD needs_cld : 1;
2462
2463  /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2464     expander to determine the style used.  */
2465  BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2466
2467  /* If true, the current function needs the default PIC register, not
2468     an alternate register (on x86) and must not use the red zone (on
2469     x86_64), even if it's a leaf function.  We don't want the
2470     function to be regarded as non-leaf because TLS calls need not
2471     affect register allocation.  This flag is set when a TLS call
2472     instruction is expanded within a function, and never reset, even
2473     if all such instructions are optimized away.  Use the
2474     ix86_current_function_calls_tls_descriptor macro for a better
2475     approximation.  */
2476  BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2477
2478  /* If true, the current function has a STATIC_CHAIN is placed on the
2479     stack below the return address.  */
2480  BOOL_BITFIELD static_chain_on_stack : 1;
2481
2482  /* If true, it is safe to not save/restore DRAP register.  */
2483  BOOL_BITFIELD no_drap_save_restore : 1;
2484
2485  /* During prologue/epilogue generation, the current frame state.
2486     Otherwise, the frame state at the end of the prologue.  */
2487  struct machine_frame_state fs;
2488
2489  /* During SEH output, this is non-null.  */
2490  struct seh_frame_state * GTY((skip(""))) seh;
2491};
2492#endif
2493
2494#define ix86_stack_locals (cfun->machine->stack_locals)
2495#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2496#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2497#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2498#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2499#define ix86_tls_descriptor_calls_expanded_in_cfun \
2500  (cfun->machine->tls_descriptor_call_expanded_p)
2501/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2502   calls are optimized away, we try to detect cases in which it was
2503   optimized away.  Since such instructions (use (reg REG_SP)), we can
2504   verify whether there's any such instruction live by testing that
2505   REG_SP is live.  */
2506#define ix86_current_function_calls_tls_descriptor \
2507  (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2508#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2509
2510/* Control behavior of x86_file_start.  */
2511#define X86_FILE_START_VERSION_DIRECTIVE false
2512#define X86_FILE_START_FLTUSED false
2513
2514/* Flag to mark data that is in the large address area.  */
2515#define SYMBOL_FLAG_FAR_ADDR		(SYMBOL_FLAG_MACH_DEP << 0)
2516#define SYMBOL_REF_FAR_ADDR_P(X)	\
2517	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2518
2519/* Flags to mark dllimport/dllexport.  Used by PE ports, but handy to
2520   have defined always, to avoid ifdefing.  */
2521#define SYMBOL_FLAG_DLLIMPORT		(SYMBOL_FLAG_MACH_DEP << 1)
2522#define SYMBOL_REF_DLLIMPORT_P(X) \
2523	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2524
2525#define SYMBOL_FLAG_DLLEXPORT		(SYMBOL_FLAG_MACH_DEP << 2)
2526#define SYMBOL_REF_DLLEXPORT_P(X) \
2527	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2528
2529#define SYMBOL_FLAG_STUBVAR	(SYMBOL_FLAG_MACH_DEP << 4)
2530#define SYMBOL_REF_STUBVAR_P(X) \
2531	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2532
2533extern void debug_ready_dispatch (void);
2534extern void debug_dispatch_window (int);
2535
2536/* The value at zero is only defined for the BMI instructions
2537   LZCNT and TZCNT, not the BSR/BSF insns in the original isa.  */
2538#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2539	((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
2540#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2541	((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
2542
2543
2544/* Flags returned by ix86_get_callcvt ().  */
2545#define IX86_CALLCVT_CDECL	0x1
2546#define IX86_CALLCVT_STDCALL	0x2
2547#define IX86_CALLCVT_FASTCALL	0x4
2548#define IX86_CALLCVT_THISCALL	0x8
2549#define IX86_CALLCVT_REGPARM	0x10
2550#define IX86_CALLCVT_SSEREGPARM	0x20
2551
2552#define IX86_BASE_CALLCVT(FLAGS) \
2553	((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2554		    | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2555
2556#define RECIP_MASK_NONE		0x00
2557#define RECIP_MASK_DIV		0x01
2558#define RECIP_MASK_SQRT		0x02
2559#define RECIP_MASK_VEC_DIV	0x04
2560#define RECIP_MASK_VEC_SQRT	0x08
2561#define RECIP_MASK_ALL	(RECIP_MASK_DIV | RECIP_MASK_SQRT \
2562			 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2563#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2564
2565#define TARGET_RECIP_DIV	((recip_mask & RECIP_MASK_DIV) != 0)
2566#define TARGET_RECIP_SQRT	((recip_mask & RECIP_MASK_SQRT) != 0)
2567#define TARGET_RECIP_VEC_DIV	((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2568#define TARGET_RECIP_VEC_SQRT	((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2569
2570#define IX86_HLE_ACQUIRE (1 << 16)
2571#define IX86_HLE_RELEASE (1 << 17)
2572
2573/* For switching between functions with different target attributes.  */
2574#define SWITCHABLE_TARGET 1
2575
2576/*
2577Local variables:
2578version-control: t
2579End:
2580*/
2581