1/* Control flow graph analysis code for GNU compiler.
2   Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3.  If not see
18<http://www.gnu.org/licenses/>.  */
19
20/* This file contains various simple utilities to analyze the CFG.  */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "predict.h"
26#include "vec.h"
27#include "hashtab.h"
28#include "hash-set.h"
29#include "machmode.h"
30#include "tm.h"
31#include "hard-reg-set.h"
32#include "input.h"
33#include "function.h"
34#include "dominance.h"
35#include "cfg.h"
36#include "cfganal.h"
37#include "basic-block.h"
38#include "bitmap.h"
39#include "sbitmap.h"
40#include "timevar.h"
41
42/* Store the data structures necessary for depth-first search.  */
43struct depth_first_search_dsS {
44  /* stack for backtracking during the algorithm */
45  basic_block *stack;
46
47  /* number of edges in the stack.  That is, positions 0, ..., sp-1
48     have edges.  */
49  unsigned int sp;
50
51  /* record of basic blocks already seen by depth-first search */
52  sbitmap visited_blocks;
53};
54typedef struct depth_first_search_dsS *depth_first_search_ds;
55
56static void flow_dfs_compute_reverse_init (depth_first_search_ds);
57static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
58					     basic_block);
59static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds,
60						     basic_block);
61static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
62
63/* Mark the back edges in DFS traversal.
64   Return nonzero if a loop (natural or otherwise) is present.
65   Inspired by Depth_First_Search_PP described in:
66
67     Advanced Compiler Design and Implementation
68     Steven Muchnick
69     Morgan Kaufmann, 1997
70
71   and heavily borrowed from pre_and_rev_post_order_compute.  */
72
73bool
74mark_dfs_back_edges (void)
75{
76  edge_iterator *stack;
77  int *pre;
78  int *post;
79  int sp;
80  int prenum = 1;
81  int postnum = 1;
82  sbitmap visited;
83  bool found = false;
84
85  /* Allocate the preorder and postorder number arrays.  */
86  pre = XCNEWVEC (int, last_basic_block_for_fn (cfun));
87  post = XCNEWVEC (int, last_basic_block_for_fn (cfun));
88
89  /* Allocate stack for back-tracking up CFG.  */
90  stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
91  sp = 0;
92
93  /* Allocate bitmap to track nodes that have been visited.  */
94  visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
95
96  /* None of the nodes in the CFG have been visited yet.  */
97  bitmap_clear (visited);
98
99  /* Push the first edge on to the stack.  */
100  stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
101
102  while (sp)
103    {
104      edge_iterator ei;
105      basic_block src;
106      basic_block dest;
107
108      /* Look at the edge on the top of the stack.  */
109      ei = stack[sp - 1];
110      src = ei_edge (ei)->src;
111      dest = ei_edge (ei)->dest;
112      ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
113
114      /* Check if the edge destination has been visited yet.  */
115      if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && ! bitmap_bit_p (visited,
116								  dest->index))
117	{
118	  /* Mark that we have visited the destination.  */
119	  bitmap_set_bit (visited, dest->index);
120
121	  pre[dest->index] = prenum++;
122	  if (EDGE_COUNT (dest->succs) > 0)
123	    {
124	      /* Since the DEST node has been visited for the first
125		 time, check its successors.  */
126	      stack[sp++] = ei_start (dest->succs);
127	    }
128	  else
129	    post[dest->index] = postnum++;
130	}
131      else
132	{
133	  if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
134	      && src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
135	      && pre[src->index] >= pre[dest->index]
136	      && post[dest->index] == 0)
137	    ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
138
139	  if (ei_one_before_end_p (ei)
140	      && src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
141	    post[src->index] = postnum++;
142
143	  if (!ei_one_before_end_p (ei))
144	    ei_next (&stack[sp - 1]);
145	  else
146	    sp--;
147	}
148    }
149
150  free (pre);
151  free (post);
152  free (stack);
153  sbitmap_free (visited);
154
155  return found;
156}
157
158/* Find unreachable blocks.  An unreachable block will have 0 in
159   the reachable bit in block->flags.  A nonzero value indicates the
160   block is reachable.  */
161
162void
163find_unreachable_blocks (void)
164{
165  edge e;
166  edge_iterator ei;
167  basic_block *tos, *worklist, bb;
168
169  tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
170
171  /* Clear all the reachability flags.  */
172
173  FOR_EACH_BB_FN (bb, cfun)
174    bb->flags &= ~BB_REACHABLE;
175
176  /* Add our starting points to the worklist.  Almost always there will
177     be only one.  It isn't inconceivable that we might one day directly
178     support Fortran alternate entry points.  */
179
180  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
181    {
182      *tos++ = e->dest;
183
184      /* Mark the block reachable.  */
185      e->dest->flags |= BB_REACHABLE;
186    }
187
188  /* Iterate: find everything reachable from what we've already seen.  */
189
190  while (tos != worklist)
191    {
192      basic_block b = *--tos;
193
194      FOR_EACH_EDGE (e, ei, b->succs)
195	{
196	  basic_block dest = e->dest;
197
198	  if (!(dest->flags & BB_REACHABLE))
199	    {
200	      *tos++ = dest;
201	      dest->flags |= BB_REACHABLE;
202	    }
203	}
204    }
205
206  free (worklist);
207}
208
209/* Functions to access an edge list with a vector representation.
210   Enough data is kept such that given an index number, the
211   pred and succ that edge represents can be determined, or
212   given a pred and a succ, its index number can be returned.
213   This allows algorithms which consume a lot of memory to
214   represent the normally full matrix of edge (pred,succ) with a
215   single indexed vector,  edge (EDGE_INDEX (pred, succ)), with no
216   wasted space in the client code due to sparse flow graphs.  */
217
218/* This functions initializes the edge list. Basically the entire
219   flowgraph is processed, and all edges are assigned a number,
220   and the data structure is filled in.  */
221
222struct edge_list *
223create_edge_list (void)
224{
225  struct edge_list *elist;
226  edge e;
227  int num_edges;
228  basic_block bb;
229  edge_iterator ei;
230
231  /* Determine the number of edges in the flow graph by counting successor
232     edges on each basic block.  */
233  num_edges = 0;
234  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
235		  EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
236    {
237      num_edges += EDGE_COUNT (bb->succs);
238    }
239
240  elist = XNEW (struct edge_list);
241  elist->num_edges = num_edges;
242  elist->index_to_edge = XNEWVEC (edge, num_edges);
243
244  num_edges = 0;
245
246  /* Follow successors of blocks, and register these edges.  */
247  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
248		  EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
249    FOR_EACH_EDGE (e, ei, bb->succs)
250      elist->index_to_edge[num_edges++] = e;
251
252  return elist;
253}
254
255/* This function free's memory associated with an edge list.  */
256
257void
258free_edge_list (struct edge_list *elist)
259{
260  if (elist)
261    {
262      free (elist->index_to_edge);
263      free (elist);
264    }
265}
266
267/* This function provides debug output showing an edge list.  */
268
269DEBUG_FUNCTION void
270print_edge_list (FILE *f, struct edge_list *elist)
271{
272  int x;
273
274  fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
275	   n_basic_blocks_for_fn (cfun), elist->num_edges);
276
277  for (x = 0; x < elist->num_edges; x++)
278    {
279      fprintf (f, " %-4d - edge(", x);
280      if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
281	fprintf (f, "entry,");
282      else
283	fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
284
285      if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR_FOR_FN (cfun))
286	fprintf (f, "exit)\n");
287      else
288	fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
289    }
290}
291
292/* This function provides an internal consistency check of an edge list,
293   verifying that all edges are present, and that there are no
294   extra edges.  */
295
296DEBUG_FUNCTION void
297verify_edge_list (FILE *f, struct edge_list *elist)
298{
299  int pred, succ, index;
300  edge e;
301  basic_block bb, p, s;
302  edge_iterator ei;
303
304  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
305		  EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
306    {
307      FOR_EACH_EDGE (e, ei, bb->succs)
308	{
309	  pred = e->src->index;
310	  succ = e->dest->index;
311	  index = EDGE_INDEX (elist, e->src, e->dest);
312	  if (index == EDGE_INDEX_NO_EDGE)
313	    {
314	      fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
315	      continue;
316	    }
317
318	  if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
319	    fprintf (f, "*p* Pred for index %d should be %d not %d\n",
320		     index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
321	  if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
322	    fprintf (f, "*p* Succ for index %d should be %d not %d\n",
323		     index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
324	}
325    }
326
327  /* We've verified that all the edges are in the list, now lets make sure
328     there are no spurious edges in the list.  This is an expensive check!  */
329
330  FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR_FOR_FN (cfun),
331		  EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
332    FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, NULL, next_bb)
333      {
334	int found_edge = 0;
335
336	FOR_EACH_EDGE (e, ei, p->succs)
337	  if (e->dest == s)
338	    {
339	      found_edge = 1;
340	      break;
341	    }
342
343	FOR_EACH_EDGE (e, ei, s->preds)
344	  if (e->src == p)
345	    {
346	      found_edge = 1;
347	      break;
348	    }
349
350	if (EDGE_INDEX (elist, p, s)
351	    == EDGE_INDEX_NO_EDGE && found_edge != 0)
352	  fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
353		   p->index, s->index);
354	if (EDGE_INDEX (elist, p, s)
355	    != EDGE_INDEX_NO_EDGE && found_edge == 0)
356	  fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
357		   p->index, s->index, EDGE_INDEX (elist, p, s));
358      }
359}
360
361
362/* Functions to compute control dependences.  */
363
364/* Indicate block BB is control dependent on an edge with index EDGE_INDEX.  */
365void
366control_dependences::set_control_dependence_map_bit (basic_block bb,
367						     int edge_index)
368{
369  if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
370    return;
371  gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
372  bitmap_set_bit (control_dependence_map[bb->index], edge_index);
373}
374
375/* Clear all control dependences for block BB.  */
376void
377control_dependences::clear_control_dependence_bitmap (basic_block bb)
378{
379  bitmap_clear (control_dependence_map[bb->index]);
380}
381
382/* Find the immediate postdominator PDOM of the specified basic block BLOCK.
383   This function is necessary because some blocks have negative numbers.  */
384
385static inline basic_block
386find_pdom (basic_block block)
387{
388  gcc_assert (block != ENTRY_BLOCK_PTR_FOR_FN (cfun));
389
390  if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
391    return EXIT_BLOCK_PTR_FOR_FN (cfun);
392  else
393    {
394      basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
395      if (! bb)
396	return EXIT_BLOCK_PTR_FOR_FN (cfun);
397      return bb;
398    }
399}
400
401/* Determine all blocks' control dependences on the given edge with edge_list
402   EL index EDGE_INDEX, ala Morgan, Section 3.6.  */
403
404void
405control_dependences::find_control_dependence (int edge_index)
406{
407  basic_block current_block;
408  basic_block ending_block;
409
410  gcc_assert (INDEX_EDGE_PRED_BB (m_el, edge_index)
411	      != EXIT_BLOCK_PTR_FOR_FN (cfun));
412
413  if (INDEX_EDGE_PRED_BB (m_el, edge_index) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
414    ending_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
415  else
416    ending_block = find_pdom (INDEX_EDGE_PRED_BB (m_el, edge_index));
417
418  for (current_block = INDEX_EDGE_SUCC_BB (m_el, edge_index);
419       current_block != ending_block
420       && current_block != EXIT_BLOCK_PTR_FOR_FN (cfun);
421       current_block = find_pdom (current_block))
422    {
423      edge e = INDEX_EDGE (m_el, edge_index);
424
425      /* For abnormal edges, we don't make current_block control
426	 dependent because instructions that throw are always necessary
427	 anyway.  */
428      if (e->flags & EDGE_ABNORMAL)
429	continue;
430
431      set_control_dependence_map_bit (current_block, edge_index);
432    }
433}
434
435/* Record all blocks' control dependences on all edges in the edge
436   list EL, ala Morgan, Section 3.6.  */
437
438control_dependences::control_dependences (struct edge_list *edges)
439  : m_el (edges)
440{
441  timevar_push (TV_CONTROL_DEPENDENCES);
442  control_dependence_map.create (last_basic_block_for_fn (cfun));
443  for (int i = 0; i < last_basic_block_for_fn (cfun); ++i)
444    control_dependence_map.quick_push (BITMAP_ALLOC (NULL));
445  for (int i = 0; i < NUM_EDGES (m_el); ++i)
446    find_control_dependence (i);
447  timevar_pop (TV_CONTROL_DEPENDENCES);
448}
449
450/* Free control dependences and the associated edge list.  */
451
452control_dependences::~control_dependences ()
453{
454  for (unsigned i = 0; i < control_dependence_map.length (); ++i)
455    BITMAP_FREE (control_dependence_map[i]);
456  control_dependence_map.release ();
457  free_edge_list (m_el);
458}
459
460/* Returns the bitmap of edges the basic-block I is dependent on.  */
461
462bitmap
463control_dependences::get_edges_dependent_on (int i)
464{
465  return control_dependence_map[i];
466}
467
468/* Returns the edge with index I from the edge list.  */
469
470edge
471control_dependences::get_edge (int i)
472{
473  return INDEX_EDGE (m_el, i);
474}
475
476
477/* Given PRED and SUCC blocks, return the edge which connects the blocks.
478   If no such edge exists, return NULL.  */
479
480edge
481find_edge (basic_block pred, basic_block succ)
482{
483  edge e;
484  edge_iterator ei;
485
486  if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
487    {
488      FOR_EACH_EDGE (e, ei, pred->succs)
489	if (e->dest == succ)
490	  return e;
491    }
492  else
493    {
494      FOR_EACH_EDGE (e, ei, succ->preds)
495	if (e->src == pred)
496	  return e;
497    }
498
499  return NULL;
500}
501
502/* This routine will determine what, if any, edge there is between
503   a specified predecessor and successor.  */
504
505int
506find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
507{
508  int x;
509
510  for (x = 0; x < NUM_EDGES (edge_list); x++)
511    if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
512	&& INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
513      return x;
514
515  return (EDGE_INDEX_NO_EDGE);
516}
517
518/* This routine will remove any fake predecessor edges for a basic block.
519   When the edge is removed, it is also removed from whatever successor
520   list it is in.  */
521
522static void
523remove_fake_predecessors (basic_block bb)
524{
525  edge e;
526  edge_iterator ei;
527
528  for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
529    {
530      if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
531	remove_edge (e);
532      else
533	ei_next (&ei);
534    }
535}
536
537/* This routine will remove all fake edges from the flow graph.  If
538   we remove all fake successors, it will automatically remove all
539   fake predecessors.  */
540
541void
542remove_fake_edges (void)
543{
544  basic_block bb;
545
546  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, NULL, next_bb)
547    remove_fake_predecessors (bb);
548}
549
550/* This routine will remove all fake edges to the EXIT_BLOCK.  */
551
552void
553remove_fake_exit_edges (void)
554{
555  remove_fake_predecessors (EXIT_BLOCK_PTR_FOR_FN (cfun));
556}
557
558
559/* This function will add a fake edge between any block which has no
560   successors, and the exit block. Some data flow equations require these
561   edges to exist.  */
562
563void
564add_noreturn_fake_exit_edges (void)
565{
566  basic_block bb;
567
568  FOR_EACH_BB_FN (bb, cfun)
569    if (EDGE_COUNT (bb->succs) == 0)
570      make_single_succ_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
571}
572
573/* This function adds a fake edge between any infinite loops to the
574   exit block.  Some optimizations require a path from each node to
575   the exit node.
576
577   See also Morgan, Figure 3.10, pp. 82-83.
578
579   The current implementation is ugly, not attempting to minimize the
580   number of inserted fake edges.  To reduce the number of fake edges
581   to insert, add fake edges from _innermost_ loops containing only
582   nodes not reachable from the exit block.  */
583
584void
585connect_infinite_loops_to_exit (void)
586{
587  basic_block unvisited_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
588  basic_block deadend_block;
589  struct depth_first_search_dsS dfs_ds;
590
591  /* Perform depth-first search in the reverse graph to find nodes
592     reachable from the exit block.  */
593  flow_dfs_compute_reverse_init (&dfs_ds);
594  flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR_FOR_FN (cfun));
595
596  /* Repeatedly add fake edges, updating the unreachable nodes.  */
597  while (1)
598    {
599      unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
600							  unvisited_block);
601      if (!unvisited_block)
602	break;
603
604      deadend_block = dfs_find_deadend (unvisited_block);
605      make_edge (deadend_block, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
606      flow_dfs_compute_reverse_add_bb (&dfs_ds, deadend_block);
607    }
608
609  flow_dfs_compute_reverse_finish (&dfs_ds);
610  return;
611}
612
613/* Compute reverse top sort order.  This is computing a post order
614   numbering of the graph.  If INCLUDE_ENTRY_EXIT is true, then
615   ENTRY_BLOCK and EXIT_BLOCK are included.  If DELETE_UNREACHABLE is
616   true, unreachable blocks are deleted.  */
617
618int
619post_order_compute (int *post_order, bool include_entry_exit,
620		    bool delete_unreachable)
621{
622  edge_iterator *stack;
623  int sp;
624  int post_order_num = 0;
625  sbitmap visited;
626  int count;
627
628  if (include_entry_exit)
629    post_order[post_order_num++] = EXIT_BLOCK;
630
631  /* Allocate stack for back-tracking up CFG.  */
632  stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
633  sp = 0;
634
635  /* Allocate bitmap to track nodes that have been visited.  */
636  visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
637
638  /* None of the nodes in the CFG have been visited yet.  */
639  bitmap_clear (visited);
640
641  /* Push the first edge on to the stack.  */
642  stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
643
644  while (sp)
645    {
646      edge_iterator ei;
647      basic_block src;
648      basic_block dest;
649
650      /* Look at the edge on the top of the stack.  */
651      ei = stack[sp - 1];
652      src = ei_edge (ei)->src;
653      dest = ei_edge (ei)->dest;
654
655      /* Check if the edge destination has been visited yet.  */
656      if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
657	  && ! bitmap_bit_p (visited, dest->index))
658	{
659	  /* Mark that we have visited the destination.  */
660	  bitmap_set_bit (visited, dest->index);
661
662	  if (EDGE_COUNT (dest->succs) > 0)
663	    /* Since the DEST node has been visited for the first
664	       time, check its successors.  */
665	    stack[sp++] = ei_start (dest->succs);
666	  else
667	    post_order[post_order_num++] = dest->index;
668	}
669      else
670	{
671	  if (ei_one_before_end_p (ei)
672	      && src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
673	    post_order[post_order_num++] = src->index;
674
675	  if (!ei_one_before_end_p (ei))
676	    ei_next (&stack[sp - 1]);
677	  else
678	    sp--;
679	}
680    }
681
682  if (include_entry_exit)
683    {
684      post_order[post_order_num++] = ENTRY_BLOCK;
685      count = post_order_num;
686    }
687  else
688    count = post_order_num + 2;
689
690  /* Delete the unreachable blocks if some were found and we are
691     supposed to do it.  */
692  if (delete_unreachable && (count != n_basic_blocks_for_fn (cfun)))
693    {
694      basic_block b;
695      basic_block next_bb;
696      for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
697	   != EXIT_BLOCK_PTR_FOR_FN (cfun); b = next_bb)
698	{
699	  next_bb = b->next_bb;
700
701	  if (!(bitmap_bit_p (visited, b->index)))
702	    delete_basic_block (b);
703	}
704
705      tidy_fallthru_edges ();
706    }
707
708  free (stack);
709  sbitmap_free (visited);
710  return post_order_num;
711}
712
713
714/* Helper routine for inverted_post_order_compute
715   flow_dfs_compute_reverse_execute, and the reverse-CFG
716   deapth first search in dominance.c.
717   BB has to belong to a region of CFG
718   unreachable by inverted traversal from the exit.
719   i.e. there's no control flow path from ENTRY to EXIT
720   that contains this BB.
721   This can happen in two cases - if there's an infinite loop
722   or if there's a block that has no successor
723   (call to a function with no return).
724   Some RTL passes deal with this condition by
725   calling connect_infinite_loops_to_exit () and/or
726   add_noreturn_fake_exit_edges ().
727   However, those methods involve modifying the CFG itself
728   which may not be desirable.
729   Hence, we deal with the infinite loop/no return cases
730   by identifying a unique basic block that can reach all blocks
731   in such a region by inverted traversal.
732   This function returns a basic block that guarantees
733   that all blocks in the region are reachable
734   by starting an inverted traversal from the returned block.  */
735
736basic_block
737dfs_find_deadend (basic_block bb)
738{
739  bitmap visited = BITMAP_ALLOC (NULL);
740
741  for (;;)
742    {
743      if (EDGE_COUNT (bb->succs) == 0
744	  || ! bitmap_set_bit (visited, bb->index))
745        {
746          BITMAP_FREE (visited);
747          return bb;
748        }
749
750      bb = EDGE_SUCC (bb, 0)->dest;
751    }
752
753  gcc_unreachable ();
754}
755
756
757/* Compute the reverse top sort order of the inverted CFG
758   i.e. starting from the exit block and following the edges backward
759   (from successors to predecessors).
760   This ordering can be used for forward dataflow problems among others.
761
762   This function assumes that all blocks in the CFG are reachable
763   from the ENTRY (but not necessarily from EXIT).
764
765   If there's an infinite loop,
766   a simple inverted traversal starting from the blocks
767   with no successors can't visit all blocks.
768   To solve this problem, we first do inverted traversal
769   starting from the blocks with no successor.
770   And if there's any block left that's not visited by the regular
771   inverted traversal from EXIT,
772   those blocks are in such problematic region.
773   Among those, we find one block that has
774   any visited predecessor (which is an entry into such a region),
775   and start looking for a "dead end" from that block
776   and do another inverted traversal from that block.  */
777
778int
779inverted_post_order_compute (int *post_order)
780{
781  basic_block bb;
782  edge_iterator *stack;
783  int sp;
784  int post_order_num = 0;
785  sbitmap visited;
786
787  /* Allocate stack for back-tracking up CFG.  */
788  stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
789  sp = 0;
790
791  /* Allocate bitmap to track nodes that have been visited.  */
792  visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
793
794  /* None of the nodes in the CFG have been visited yet.  */
795  bitmap_clear (visited);
796
797  /* Put all blocks that have no successor into the initial work list.  */
798  FOR_ALL_BB_FN (bb, cfun)
799    if (EDGE_COUNT (bb->succs) == 0)
800      {
801        /* Push the initial edge on to the stack.  */
802        if (EDGE_COUNT (bb->preds) > 0)
803          {
804            stack[sp++] = ei_start (bb->preds);
805            bitmap_set_bit (visited, bb->index);
806          }
807      }
808
809  do
810    {
811      bool has_unvisited_bb = false;
812
813      /* The inverted traversal loop. */
814      while (sp)
815        {
816          edge_iterator ei;
817          basic_block pred;
818
819          /* Look at the edge on the top of the stack.  */
820          ei = stack[sp - 1];
821          bb = ei_edge (ei)->dest;
822          pred = ei_edge (ei)->src;
823
824          /* Check if the predecessor has been visited yet.  */
825          if (! bitmap_bit_p (visited, pred->index))
826            {
827              /* Mark that we have visited the destination.  */
828              bitmap_set_bit (visited, pred->index);
829
830              if (EDGE_COUNT (pred->preds) > 0)
831                /* Since the predecessor node has been visited for the first
832                   time, check its predecessors.  */
833                stack[sp++] = ei_start (pred->preds);
834              else
835                post_order[post_order_num++] = pred->index;
836            }
837          else
838            {
839	      if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
840		  && ei_one_before_end_p (ei))
841                post_order[post_order_num++] = bb->index;
842
843              if (!ei_one_before_end_p (ei))
844                ei_next (&stack[sp - 1]);
845              else
846                sp--;
847            }
848        }
849
850      /* Detect any infinite loop and activate the kludge.
851         Note that this doesn't check EXIT_BLOCK itself
852         since EXIT_BLOCK is always added after the outer do-while loop.  */
853      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
854		      EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
855        if (!bitmap_bit_p (visited, bb->index))
856          {
857            has_unvisited_bb = true;
858
859            if (EDGE_COUNT (bb->preds) > 0)
860              {
861                edge_iterator ei;
862                edge e;
863                basic_block visited_pred = NULL;
864
865                /* Find an already visited predecessor.  */
866                FOR_EACH_EDGE (e, ei, bb->preds)
867                  {
868                    if (bitmap_bit_p (visited, e->src->index))
869                      visited_pred = e->src;
870                  }
871
872                if (visited_pred)
873                  {
874                    basic_block be = dfs_find_deadend (bb);
875                    gcc_assert (be != NULL);
876                    bitmap_set_bit (visited, be->index);
877                    stack[sp++] = ei_start (be->preds);
878                    break;
879                  }
880              }
881          }
882
883      if (has_unvisited_bb && sp == 0)
884        {
885          /* No blocks are reachable from EXIT at all.
886             Find a dead-end from the ENTRY, and restart the iteration. */
887	  basic_block be = dfs_find_deadend (ENTRY_BLOCK_PTR_FOR_FN (cfun));
888          gcc_assert (be != NULL);
889          bitmap_set_bit (visited, be->index);
890          stack[sp++] = ei_start (be->preds);
891        }
892
893      /* The only case the below while fires is
894         when there's an infinite loop.  */
895    }
896  while (sp);
897
898  /* EXIT_BLOCK is always included.  */
899  post_order[post_order_num++] = EXIT_BLOCK;
900
901  free (stack);
902  sbitmap_free (visited);
903  return post_order_num;
904}
905
906/* Compute the depth first search order of FN and store in the array
907   PRE_ORDER if nonzero.  If REV_POST_ORDER is nonzero, return the
908   reverse completion number for each node.  Returns the number of nodes
909   visited.  A depth first search tries to get as far away from the starting
910   point as quickly as possible.
911
912   In case the function has unreachable blocks the number of nodes
913   visited does not include them.
914
915   pre_order is a really a preorder numbering of the graph.
916   rev_post_order is really a reverse postorder numbering of the graph.  */
917
918int
919pre_and_rev_post_order_compute_fn (struct function *fn,
920				   int *pre_order, int *rev_post_order,
921				   bool include_entry_exit)
922{
923  edge_iterator *stack;
924  int sp;
925  int pre_order_num = 0;
926  int rev_post_order_num = n_basic_blocks_for_fn (cfun) - 1;
927  sbitmap visited;
928
929  /* Allocate stack for back-tracking up CFG.  */
930  stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
931  sp = 0;
932
933  if (include_entry_exit)
934    {
935      if (pre_order)
936	pre_order[pre_order_num] = ENTRY_BLOCK;
937      pre_order_num++;
938      if (rev_post_order)
939	rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
940    }
941  else
942    rev_post_order_num -= NUM_FIXED_BLOCKS;
943
944  /* Allocate bitmap to track nodes that have been visited.  */
945  visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
946
947  /* None of the nodes in the CFG have been visited yet.  */
948  bitmap_clear (visited);
949
950  /* Push the first edge on to the stack.  */
951  stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (fn)->succs);
952
953  while (sp)
954    {
955      edge_iterator ei;
956      basic_block src;
957      basic_block dest;
958
959      /* Look at the edge on the top of the stack.  */
960      ei = stack[sp - 1];
961      src = ei_edge (ei)->src;
962      dest = ei_edge (ei)->dest;
963
964      /* Check if the edge destination has been visited yet.  */
965      if (dest != EXIT_BLOCK_PTR_FOR_FN (fn)
966	  && ! bitmap_bit_p (visited, dest->index))
967	{
968	  /* Mark that we have visited the destination.  */
969	  bitmap_set_bit (visited, dest->index);
970
971	  if (pre_order)
972	    pre_order[pre_order_num] = dest->index;
973
974	  pre_order_num++;
975
976	  if (EDGE_COUNT (dest->succs) > 0)
977	    /* Since the DEST node has been visited for the first
978	       time, check its successors.  */
979	    stack[sp++] = ei_start (dest->succs);
980	  else if (rev_post_order)
981	    /* There are no successors for the DEST node so assign
982	       its reverse completion number.  */
983	    rev_post_order[rev_post_order_num--] = dest->index;
984	}
985      else
986	{
987	  if (ei_one_before_end_p (ei)
988	      && src != ENTRY_BLOCK_PTR_FOR_FN (fn)
989	      && rev_post_order)
990	    /* There are no more successors for the SRC node
991	       so assign its reverse completion number.  */
992	    rev_post_order[rev_post_order_num--] = src->index;
993
994	  if (!ei_one_before_end_p (ei))
995	    ei_next (&stack[sp - 1]);
996	  else
997	    sp--;
998	}
999    }
1000
1001  free (stack);
1002  sbitmap_free (visited);
1003
1004  if (include_entry_exit)
1005    {
1006      if (pre_order)
1007	pre_order[pre_order_num] = EXIT_BLOCK;
1008      pre_order_num++;
1009      if (rev_post_order)
1010	rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
1011    }
1012
1013  return pre_order_num;
1014}
1015
1016/* Like pre_and_rev_post_order_compute_fn but operating on the
1017   current function and asserting that all nodes were visited.  */
1018
1019int
1020pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order,
1021				bool include_entry_exit)
1022{
1023  int pre_order_num
1024    = pre_and_rev_post_order_compute_fn (cfun, pre_order, rev_post_order,
1025					 include_entry_exit);
1026  if (include_entry_exit)
1027    /* The number of nodes visited should be the number of blocks.  */
1028    gcc_assert (pre_order_num == n_basic_blocks_for_fn (cfun));
1029  else
1030    /* The number of nodes visited should be the number of blocks minus
1031       the entry and exit blocks which are not visited here.  */
1032    gcc_assert (pre_order_num
1033		== (n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS));
1034
1035  return pre_order_num;
1036}
1037
1038/* Compute the depth first search order on the _reverse_ graph and
1039   store in the array DFS_ORDER, marking the nodes visited in VISITED.
1040   Returns the number of nodes visited.
1041
1042   The computation is split into three pieces:
1043
1044   flow_dfs_compute_reverse_init () creates the necessary data
1045   structures.
1046
1047   flow_dfs_compute_reverse_add_bb () adds a basic block to the data
1048   structures.  The block will start the search.
1049
1050   flow_dfs_compute_reverse_execute () continues (or starts) the
1051   search using the block on the top of the stack, stopping when the
1052   stack is empty.
1053
1054   flow_dfs_compute_reverse_finish () destroys the necessary data
1055   structures.
1056
1057   Thus, the user will probably call ..._init(), call ..._add_bb() to
1058   add a beginning basic block to the stack, call ..._execute(),
1059   possibly add another bb to the stack and again call ..._execute(),
1060   ..., and finally call _finish().  */
1061
1062/* Initialize the data structures used for depth-first search on the
1063   reverse graph.  If INITIALIZE_STACK is nonzero, the exit block is
1064   added to the basic block stack.  DATA is the current depth-first
1065   search context.  If INITIALIZE_STACK is nonzero, there is an
1066   element on the stack.  */
1067
1068static void
1069flow_dfs_compute_reverse_init (depth_first_search_ds data)
1070{
1071  /* Allocate stack for back-tracking up CFG.  */
1072  data->stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1073  data->sp = 0;
1074
1075  /* Allocate bitmap to track nodes that have been visited.  */
1076  data->visited_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
1077
1078  /* None of the nodes in the CFG have been visited yet.  */
1079  bitmap_clear (data->visited_blocks);
1080
1081  return;
1082}
1083
1084/* Add the specified basic block to the top of the dfs data
1085   structures.  When the search continues, it will start at the
1086   block.  */
1087
1088static void
1089flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
1090{
1091  data->stack[data->sp++] = bb;
1092  bitmap_set_bit (data->visited_blocks, bb->index);
1093}
1094
1095/* Continue the depth-first search through the reverse graph starting with the
1096   block at the stack's top and ending when the stack is empty.  Visited nodes
1097   are marked.  Returns an unvisited basic block, or NULL if there is none
1098   available.  */
1099
1100static basic_block
1101flow_dfs_compute_reverse_execute (depth_first_search_ds data,
1102				  basic_block last_unvisited)
1103{
1104  basic_block bb;
1105  edge e;
1106  edge_iterator ei;
1107
1108  while (data->sp > 0)
1109    {
1110      bb = data->stack[--data->sp];
1111
1112      /* Perform depth-first search on adjacent vertices.  */
1113      FOR_EACH_EDGE (e, ei, bb->preds)
1114	if (!bitmap_bit_p (data->visited_blocks, e->src->index))
1115	  flow_dfs_compute_reverse_add_bb (data, e->src);
1116    }
1117
1118  /* Determine if there are unvisited basic blocks.  */
1119  FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
1120    if (!bitmap_bit_p (data->visited_blocks, bb->index))
1121      return bb;
1122
1123  return NULL;
1124}
1125
1126/* Destroy the data structures needed for depth-first search on the
1127   reverse graph.  */
1128
1129static void
1130flow_dfs_compute_reverse_finish (depth_first_search_ds data)
1131{
1132  free (data->stack);
1133  sbitmap_free (data->visited_blocks);
1134}
1135
1136/* Performs dfs search from BB over vertices satisfying PREDICATE;
1137   if REVERSE, go against direction of edges.  Returns number of blocks
1138   found and their list in RSLT.  RSLT can contain at most RSLT_MAX items.  */
1139int
1140dfs_enumerate_from (basic_block bb, int reverse,
1141		    bool (*predicate) (const_basic_block, const void *),
1142		    basic_block *rslt, int rslt_max, const void *data)
1143{
1144  basic_block *st, lbb;
1145  int sp = 0, tv = 0;
1146  unsigned size;
1147
1148  /* A bitmap to keep track of visited blocks.  Allocating it each time
1149     this function is called is not possible, since dfs_enumerate_from
1150     is often used on small (almost) disjoint parts of cfg (bodies of
1151     loops), and allocating a large sbitmap would lead to quadratic
1152     behavior.  */
1153  static sbitmap visited;
1154  static unsigned v_size;
1155
1156#define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index))
1157#define UNMARK_VISITED(BB) (bitmap_clear_bit (visited, (BB)->index))
1158#define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index))
1159
1160  /* Resize the VISITED sbitmap if necessary.  */
1161  size = last_basic_block_for_fn (cfun);
1162  if (size < 10)
1163    size = 10;
1164
1165  if (!visited)
1166    {
1167
1168      visited = sbitmap_alloc (size);
1169      bitmap_clear (visited);
1170      v_size = size;
1171    }
1172  else if (v_size < size)
1173    {
1174      /* Ensure that we increase the size of the sbitmap exponentially.  */
1175      if (2 * v_size > size)
1176	size = 2 * v_size;
1177
1178      visited = sbitmap_resize (visited, size, 0);
1179      v_size = size;
1180    }
1181
1182  st = XNEWVEC (basic_block, rslt_max);
1183  rslt[tv++] = st[sp++] = bb;
1184  MARK_VISITED (bb);
1185  while (sp)
1186    {
1187      edge e;
1188      edge_iterator ei;
1189      lbb = st[--sp];
1190      if (reverse)
1191	{
1192	  FOR_EACH_EDGE (e, ei, lbb->preds)
1193	    if (!VISITED_P (e->src) && predicate (e->src, data))
1194	      {
1195		gcc_assert (tv != rslt_max);
1196		rslt[tv++] = st[sp++] = e->src;
1197		MARK_VISITED (e->src);
1198	      }
1199	}
1200      else
1201	{
1202	  FOR_EACH_EDGE (e, ei, lbb->succs)
1203	    if (!VISITED_P (e->dest) && predicate (e->dest, data))
1204	      {
1205		gcc_assert (tv != rslt_max);
1206		rslt[tv++] = st[sp++] = e->dest;
1207		MARK_VISITED (e->dest);
1208	      }
1209	}
1210    }
1211  free (st);
1212  for (sp = 0; sp < tv; sp++)
1213    UNMARK_VISITED (rslt[sp]);
1214  return tv;
1215#undef MARK_VISITED
1216#undef UNMARK_VISITED
1217#undef VISITED_P
1218}
1219
1220
1221/* Compute dominance frontiers, ala Harvey, Ferrante, et al.
1222
1223   This algorithm can be found in Timothy Harvey's PhD thesis, at
1224   http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
1225   dominance algorithms.
1226
1227   First, we identify each join point, j (any node with more than one
1228   incoming edge is a join point).
1229
1230   We then examine each predecessor, p, of j and walk up the dominator tree
1231   starting at p.
1232
1233   We stop the walk when we reach j's immediate dominator - j is in the
1234   dominance frontier of each of  the nodes in the walk, except for j's
1235   immediate dominator. Intuitively, all of the rest of j's dominators are
1236   shared by j's predecessors as well.
1237   Since they dominate j, they will not have j in their dominance frontiers.
1238
1239   The number of nodes touched by this algorithm is equal to the size
1240   of the dominance frontiers, no more, no less.
1241*/
1242
1243
1244static void
1245compute_dominance_frontiers_1 (bitmap_head *frontiers)
1246{
1247  edge p;
1248  edge_iterator ei;
1249  basic_block b;
1250  FOR_EACH_BB_FN (b, cfun)
1251    {
1252      if (EDGE_COUNT (b->preds) >= 2)
1253	{
1254	  FOR_EACH_EDGE (p, ei, b->preds)
1255	    {
1256	      basic_block runner = p->src;
1257	      basic_block domsb;
1258	      if (runner == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1259		continue;
1260
1261	      domsb = get_immediate_dominator (CDI_DOMINATORS, b);
1262	      while (runner != domsb)
1263		{
1264		  if (!bitmap_set_bit (&frontiers[runner->index],
1265				       b->index))
1266		    break;
1267		  runner = get_immediate_dominator (CDI_DOMINATORS,
1268						    runner);
1269		}
1270	    }
1271	}
1272    }
1273}
1274
1275
1276void
1277compute_dominance_frontiers (bitmap_head *frontiers)
1278{
1279  timevar_push (TV_DOM_FRONTIERS);
1280
1281  compute_dominance_frontiers_1 (frontiers);
1282
1283  timevar_pop (TV_DOM_FRONTIERS);
1284}
1285
1286/* Given a set of blocks with variable definitions (DEF_BLOCKS),
1287   return a bitmap with all the blocks in the iterated dominance
1288   frontier of the blocks in DEF_BLOCKS.  DFS contains dominance
1289   frontier information as returned by compute_dominance_frontiers.
1290
1291   The resulting set of blocks are the potential sites where PHI nodes
1292   are needed.  The caller is responsible for freeing the memory
1293   allocated for the return value.  */
1294
1295bitmap
1296compute_idf (bitmap def_blocks, bitmap_head *dfs)
1297{
1298  bitmap_iterator bi;
1299  unsigned bb_index, i;
1300  bitmap phi_insertion_points;
1301
1302  /* Each block can appear at most twice on the work-stack.  */
1303  auto_vec<int> work_stack (2 * n_basic_blocks_for_fn (cfun));
1304  phi_insertion_points = BITMAP_ALLOC (NULL);
1305
1306  /* Seed the work list with all the blocks in DEF_BLOCKS.  We use
1307     vec::quick_push here for speed.  This is safe because we know that
1308     the number of definition blocks is no greater than the number of
1309     basic blocks, which is the initial capacity of WORK_STACK.  */
1310  EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi)
1311    work_stack.quick_push (bb_index);
1312
1313  /* Pop a block off the worklist, add every block that appears in
1314     the original block's DF that we have not already processed to
1315     the worklist.  Iterate until the worklist is empty.   Blocks
1316     which are added to the worklist are potential sites for
1317     PHI nodes.  */
1318  while (work_stack.length () > 0)
1319    {
1320      bb_index = work_stack.pop ();
1321
1322      /* Since the registration of NEW -> OLD name mappings is done
1323	 separately from the call to update_ssa, when updating the SSA
1324	 form, the basic blocks where new and/or old names are defined
1325	 may have disappeared by CFG cleanup calls.  In this case,
1326	 we may pull a non-existing block from the work stack.  */
1327      gcc_checking_assert (bb_index
1328			   < (unsigned) last_basic_block_for_fn (cfun));
1329
1330      EXECUTE_IF_AND_COMPL_IN_BITMAP (&dfs[bb_index], phi_insertion_points,
1331	                              0, i, bi)
1332	{
1333	  work_stack.quick_push (i);
1334	  bitmap_set_bit (phi_insertion_points, i);
1335	}
1336    }
1337
1338  return phi_insertion_points;
1339}
1340
1341/* Intersection and union of preds/succs for sbitmap based data flow
1342   solvers.  All four functions defined below take the same arguments:
1343   B is the basic block to perform the operation for.  DST is the
1344   target sbitmap, i.e. the result.  SRC is an sbitmap vector of size
1345   last_basic_block so that it can be indexed with basic block indices.
1346   DST may be (but does not have to be) SRC[B->index].  */
1347
1348/* Set the bitmap DST to the intersection of SRC of successors of
1349   basic block B.  */
1350
1351void
1352bitmap_intersection_of_succs (sbitmap dst, sbitmap *src, basic_block b)
1353{
1354  unsigned int set_size = dst->size;
1355  edge e;
1356  unsigned ix;
1357
1358  gcc_assert (!dst->popcount);
1359
1360  for (e = NULL, ix = 0; ix < EDGE_COUNT (b->succs); ix++)
1361    {
1362      e = EDGE_SUCC (b, ix);
1363      if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1364	continue;
1365
1366      bitmap_copy (dst, src[e->dest->index]);
1367      break;
1368    }
1369
1370  if (e == 0)
1371    bitmap_ones (dst);
1372  else
1373    for (++ix; ix < EDGE_COUNT (b->succs); ix++)
1374      {
1375	unsigned int i;
1376	SBITMAP_ELT_TYPE *p, *r;
1377
1378	e = EDGE_SUCC (b, ix);
1379	if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1380	  continue;
1381
1382	p = src[e->dest->index]->elms;
1383	r = dst->elms;
1384	for (i = 0; i < set_size; i++)
1385	  *r++ &= *p++;
1386      }
1387}
1388
1389/* Set the bitmap DST to the intersection of SRC of predecessors of
1390   basic block B.  */
1391
1392void
1393bitmap_intersection_of_preds (sbitmap dst, sbitmap *src, basic_block b)
1394{
1395  unsigned int set_size = dst->size;
1396  edge e;
1397  unsigned ix;
1398
1399  gcc_assert (!dst->popcount);
1400
1401  for (e = NULL, ix = 0; ix < EDGE_COUNT (b->preds); ix++)
1402    {
1403      e = EDGE_PRED (b, ix);
1404      if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1405	continue;
1406
1407      bitmap_copy (dst, src[e->src->index]);
1408      break;
1409    }
1410
1411  if (e == 0)
1412    bitmap_ones (dst);
1413  else
1414    for (++ix; ix < EDGE_COUNT (b->preds); ix++)
1415      {
1416	unsigned int i;
1417	SBITMAP_ELT_TYPE *p, *r;
1418
1419	e = EDGE_PRED (b, ix);
1420	if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1421	  continue;
1422
1423	p = src[e->src->index]->elms;
1424	r = dst->elms;
1425	for (i = 0; i < set_size; i++)
1426	  *r++ &= *p++;
1427      }
1428}
1429
1430/* Set the bitmap DST to the union of SRC of successors of
1431   basic block B.  */
1432
1433void
1434bitmap_union_of_succs (sbitmap dst, sbitmap *src, basic_block b)
1435{
1436  unsigned int set_size = dst->size;
1437  edge e;
1438  unsigned ix;
1439
1440  gcc_assert (!dst->popcount);
1441
1442  for (ix = 0; ix < EDGE_COUNT (b->succs); ix++)
1443    {
1444      e = EDGE_SUCC (b, ix);
1445      if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1446	continue;
1447
1448      bitmap_copy (dst, src[e->dest->index]);
1449      break;
1450    }
1451
1452  if (ix == EDGE_COUNT (b->succs))
1453    bitmap_clear (dst);
1454  else
1455    for (ix++; ix < EDGE_COUNT (b->succs); ix++)
1456      {
1457	unsigned int i;
1458	SBITMAP_ELT_TYPE *p, *r;
1459
1460	e = EDGE_SUCC (b, ix);
1461	if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1462	  continue;
1463
1464	p = src[e->dest->index]->elms;
1465	r = dst->elms;
1466	for (i = 0; i < set_size; i++)
1467	  *r++ |= *p++;
1468      }
1469}
1470
1471/* Set the bitmap DST to the union of SRC of predecessors of
1472   basic block B.  */
1473
1474void
1475bitmap_union_of_preds (sbitmap dst, sbitmap *src, basic_block b)
1476{
1477  unsigned int set_size = dst->size;
1478  edge e;
1479  unsigned ix;
1480
1481  gcc_assert (!dst->popcount);
1482
1483  for (ix = 0; ix < EDGE_COUNT (b->preds); ix++)
1484    {
1485      e = EDGE_PRED (b, ix);
1486      if (e->src== ENTRY_BLOCK_PTR_FOR_FN (cfun))
1487	continue;
1488
1489      bitmap_copy (dst, src[e->src->index]);
1490      break;
1491    }
1492
1493  if (ix == EDGE_COUNT (b->preds))
1494    bitmap_clear (dst);
1495  else
1496    for (ix++; ix < EDGE_COUNT (b->preds); ix++)
1497      {
1498	unsigned int i;
1499	SBITMAP_ELT_TYPE *p, *r;
1500
1501	e = EDGE_PRED (b, ix);
1502	if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1503	  continue;
1504
1505	p = src[e->src->index]->elms;
1506	r = dst->elms;
1507	for (i = 0; i < set_size; i++)
1508	  *r++ |= *p++;
1509      }
1510}
1511
1512/* Returns the list of basic blocks in the function in an order that guarantees
1513   that if a block X has just a single predecessor Y, then Y is after X in the
1514   ordering.  */
1515
1516basic_block *
1517single_pred_before_succ_order (void)
1518{
1519  basic_block x, y;
1520  basic_block *order = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1521  unsigned n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
1522  unsigned np, i;
1523  sbitmap visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
1524
1525#define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index))
1526#define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index))
1527
1528  bitmap_clear (visited);
1529
1530  MARK_VISITED (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1531  FOR_EACH_BB_FN (x, cfun)
1532    {
1533      if (VISITED_P (x))
1534	continue;
1535
1536      /* Walk the predecessors of x as long as they have precisely one
1537	 predecessor and add them to the list, so that they get stored
1538	 after x.  */
1539      for (y = x, np = 1;
1540	   single_pred_p (y) && !VISITED_P (single_pred (y));
1541	   y = single_pred (y))
1542	np++;
1543      for (y = x, i = n - np;
1544	   single_pred_p (y) && !VISITED_P (single_pred (y));
1545	   y = single_pred (y), i++)
1546	{
1547	  order[i] = y;
1548	  MARK_VISITED (y);
1549	}
1550      order[i] = y;
1551      MARK_VISITED (y);
1552
1553      gcc_assert (i == n - 1);
1554      n -= np;
1555    }
1556
1557  sbitmap_free (visited);
1558  gcc_assert (n == 0);
1559  return order;
1560
1561#undef MARK_VISITED
1562#undef VISITED_P
1563}
1564