1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              S E M _ R E S                               --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2015, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Checks;   use Checks;
28with Debug;    use Debug;
29with Debug_A;  use Debug_A;
30with Einfo;    use Einfo;
31with Errout;   use Errout;
32with Expander; use Expander;
33with Exp_Disp; use Exp_Disp;
34with Exp_Ch6;  use Exp_Ch6;
35with Exp_Ch7;  use Exp_Ch7;
36with Exp_Tss;  use Exp_Tss;
37with Exp_Util; use Exp_Util;
38with Fname;    use Fname;
39with Freeze;   use Freeze;
40with Ghost;    use Ghost;
41with Inline;   use Inline;
42with Itypes;   use Itypes;
43with Lib;      use Lib;
44with Lib.Xref; use Lib.Xref;
45with Namet;    use Namet;
46with Nmake;    use Nmake;
47with Nlists;   use Nlists;
48with Opt;      use Opt;
49with Output;   use Output;
50with Par_SCO;  use Par_SCO;
51with Restrict; use Restrict;
52with Rident;   use Rident;
53with Rtsfind;  use Rtsfind;
54with Sem;      use Sem;
55with Sem_Aux;  use Sem_Aux;
56with Sem_Aggr; use Sem_Aggr;
57with Sem_Attr; use Sem_Attr;
58with Sem_Cat;  use Sem_Cat;
59with Sem_Ch4;  use Sem_Ch4;
60with Sem_Ch6;  use Sem_Ch6;
61with Sem_Ch8;  use Sem_Ch8;
62with Sem_Ch13; use Sem_Ch13;
63with Sem_Dim;  use Sem_Dim;
64with Sem_Disp; use Sem_Disp;
65with Sem_Dist; use Sem_Dist;
66with Sem_Elim; use Sem_Elim;
67with Sem_Elab; use Sem_Elab;
68with Sem_Eval; use Sem_Eval;
69with Sem_Intr; use Sem_Intr;
70with Sem_Util; use Sem_Util;
71with Targparm; use Targparm;
72with Sem_Type; use Sem_Type;
73with Sem_Warn; use Sem_Warn;
74with Sinfo;    use Sinfo;
75with Sinfo.CN; use Sinfo.CN;
76with Snames;   use Snames;
77with Stand;    use Stand;
78with Stringt;  use Stringt;
79with Style;    use Style;
80with Tbuild;   use Tbuild;
81with Uintp;    use Uintp;
82with Urealp;   use Urealp;
83
84package body Sem_Res is
85
86   -----------------------
87   -- Local Subprograms --
88   -----------------------
89
90   --  Second pass (top-down) type checking and overload resolution procedures
91   --  Typ is the type required by context. These procedures propagate the
92   --  type information recursively to the descendants of N. If the node is not
93   --  overloaded, its Etype is established in the first pass. If overloaded,
94   --  the Resolve routines set the correct type. For arithmetic operators, the
95   --  Etype is the base type of the context.
96
97   --  Note that Resolve_Attribute is separated off in Sem_Attr
98
99   procedure Check_Discriminant_Use (N : Node_Id);
100   --  Enforce the restrictions on the use of discriminants when constraining
101   --  a component of a discriminated type (record or concurrent type).
102
103   procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
104   --  Given a node for an operator associated with type T, check that the
105   --  operator is visible. Operators all of whose operands are universal must
106   --  be checked for visibility during resolution because their type is not
107   --  determinable based on their operands.
108
109   procedure Check_Fully_Declared_Prefix
110     (Typ  : Entity_Id;
111      Pref : Node_Id);
112   --  Check that the type of the prefix of a dereference is not incomplete
113
114   function Check_Infinite_Recursion (N : Node_Id) return Boolean;
115   --  Given a call node, N, which is known to occur immediately within the
116   --  subprogram being called, determines whether it is a detectable case of
117   --  an infinite recursion, and if so, outputs appropriate messages. Returns
118   --  True if an infinite recursion is detected, and False otherwise.
119
120   procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
121   --  If the type of the object being initialized uses the secondary stack
122   --  directly or indirectly, create a transient scope for the call to the
123   --  init proc. This is because we do not create transient scopes for the
124   --  initialization of individual components within the init proc itself.
125   --  Could be optimized away perhaps?
126
127   procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
128   --  N is the node for a logical operator. If the operator is predefined, and
129   --  the root type of the operands is Standard.Boolean, then a check is made
130   --  for restriction No_Direct_Boolean_Operators. This procedure also handles
131   --  the style check for Style_Check_Boolean_And_Or.
132
133   function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
134   --  N is either an indexed component or a selected component. This function
135   --  returns true if the prefix refers to an object that has an address
136   --  clause (the case in which we may want to issue a warning).
137
138   function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
139   --  Determine whether E is an access type declared by an access declaration,
140   --  and not an (anonymous) allocator type.
141
142   function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
143   --  Utility to check whether the entity for an operator is a predefined
144   --  operator, in which case the expression is left as an operator in the
145   --  tree (else it is rewritten into a call). An instance of an intrinsic
146   --  conversion operation may be given an operator name, but is not treated
147   --  like an operator. Note that an operator that is an imported back-end
148   --  builtin has convention Intrinsic, but is expected to be rewritten into
149   --  a call, so such an operator is not treated as predefined by this
150   --  predicate.
151
152   procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
153   --  If a default expression in entry call N depends on the discriminants
154   --  of the task, it must be replaced with a reference to the discriminant
155   --  of the task being called.
156
157   procedure Resolve_Op_Concat_Arg
158     (N       : Node_Id;
159      Arg     : Node_Id;
160      Typ     : Entity_Id;
161      Is_Comp : Boolean);
162   --  Internal procedure for Resolve_Op_Concat to resolve one operand of
163   --  concatenation operator.  The operand is either of the array type or of
164   --  the component type. If the operand is an aggregate, and the component
165   --  type is composite, this is ambiguous if component type has aggregates.
166
167   procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
168   --  Does the first part of the work of Resolve_Op_Concat
169
170   procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
171   --  Does the "rest" of the work of Resolve_Op_Concat, after the left operand
172   --  has been resolved. See Resolve_Op_Concat for details.
173
174   procedure Resolve_Allocator                 (N : Node_Id; Typ : Entity_Id);
175   procedure Resolve_Arithmetic_Op             (N : Node_Id; Typ : Entity_Id);
176   procedure Resolve_Call                      (N : Node_Id; Typ : Entity_Id);
177   procedure Resolve_Case_Expression           (N : Node_Id; Typ : Entity_Id);
178   procedure Resolve_Character_Literal         (N : Node_Id; Typ : Entity_Id);
179   procedure Resolve_Comparison_Op             (N : Node_Id; Typ : Entity_Id);
180   procedure Resolve_Entity_Name               (N : Node_Id; Typ : Entity_Id);
181   procedure Resolve_Equality_Op               (N : Node_Id; Typ : Entity_Id);
182   procedure Resolve_Explicit_Dereference      (N : Node_Id; Typ : Entity_Id);
183   procedure Resolve_Expression_With_Actions   (N : Node_Id; Typ : Entity_Id);
184   procedure Resolve_If_Expression             (N : Node_Id; Typ : Entity_Id);
185   procedure Resolve_Generalized_Indexing      (N : Node_Id; Typ : Entity_Id);
186   procedure Resolve_Indexed_Component         (N : Node_Id; Typ : Entity_Id);
187   procedure Resolve_Integer_Literal           (N : Node_Id; Typ : Entity_Id);
188   procedure Resolve_Logical_Op                (N : Node_Id; Typ : Entity_Id);
189   procedure Resolve_Membership_Op             (N : Node_Id; Typ : Entity_Id);
190   procedure Resolve_Null                      (N : Node_Id; Typ : Entity_Id);
191   procedure Resolve_Operator_Symbol           (N : Node_Id; Typ : Entity_Id);
192   procedure Resolve_Op_Concat                 (N : Node_Id; Typ : Entity_Id);
193   procedure Resolve_Op_Expon                  (N : Node_Id; Typ : Entity_Id);
194   procedure Resolve_Op_Not                    (N : Node_Id; Typ : Entity_Id);
195   procedure Resolve_Qualified_Expression      (N : Node_Id; Typ : Entity_Id);
196   procedure Resolve_Raise_Expression          (N : Node_Id; Typ : Entity_Id);
197   procedure Resolve_Range                     (N : Node_Id; Typ : Entity_Id);
198   procedure Resolve_Real_Literal              (N : Node_Id; Typ : Entity_Id);
199   procedure Resolve_Reference                 (N : Node_Id; Typ : Entity_Id);
200   procedure Resolve_Selected_Component        (N : Node_Id; Typ : Entity_Id);
201   procedure Resolve_Shift                     (N : Node_Id; Typ : Entity_Id);
202   procedure Resolve_Short_Circuit             (N : Node_Id; Typ : Entity_Id);
203   procedure Resolve_Slice                     (N : Node_Id; Typ : Entity_Id);
204   procedure Resolve_String_Literal            (N : Node_Id; Typ : Entity_Id);
205   procedure Resolve_Type_Conversion           (N : Node_Id; Typ : Entity_Id);
206   procedure Resolve_Unary_Op                  (N : Node_Id; Typ : Entity_Id);
207   procedure Resolve_Unchecked_Expression      (N : Node_Id; Typ : Entity_Id);
208   procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
209
210   function Operator_Kind
211     (Op_Name   : Name_Id;
212      Is_Binary : Boolean) return Node_Kind;
213   --  Utility to map the name of an operator into the corresponding Node. Used
214   --  by other node rewriting procedures.
215
216   procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
217   --  Resolve actuals of call, and add default expressions for missing ones.
218   --  N is the Node_Id for the subprogram call, and Nam is the entity of the
219   --  called subprogram.
220
221   procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
222   --  Called from Resolve_Call, when the prefix denotes an entry or element
223   --  of entry family. Actuals are resolved as for subprograms, and the node
224   --  is rebuilt as an entry call. Also called for protected operations. Typ
225   --  is the context type, which is used when the operation is a protected
226   --  function with no arguments, and the return value is indexed.
227
228   procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
229   --  A call to a user-defined intrinsic operator is rewritten as a call to
230   --  the corresponding predefined operator, with suitable conversions. Note
231   --  that this applies only for intrinsic operators that denote predefined
232   --  operators, not ones that are intrinsic imports of back-end builtins.
233
234   procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
235   --  Ditto, for arithmetic unary operators
236
237   procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
238   --  If an operator node resolves to a call to a user-defined operator,
239   --  rewrite the node as a function call.
240
241   procedure Make_Call_Into_Operator
242     (N     : Node_Id;
243      Typ   : Entity_Id;
244      Op_Id : Entity_Id);
245   --  Inverse transformation: if an operator is given in functional notation,
246   --  then after resolving the node, transform into an operator node, so that
247   --  operands are resolved properly. Recall that predefined operators do not
248   --  have a full signature and special resolution rules apply.
249
250   procedure Rewrite_Renamed_Operator
251     (N   : Node_Id;
252      Op  : Entity_Id;
253      Typ : Entity_Id);
254   --  An operator can rename another, e.g. in  an instantiation. In that
255   --  case, the proper operator node must be constructed and resolved.
256
257   procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
258   --  The String_Literal_Subtype is built for all strings that are not
259   --  operands of a static concatenation operation. If the argument is not
260   --  a N_String_Literal node, then the call has no effect.
261
262   procedure Set_Slice_Subtype (N : Node_Id);
263   --  Build subtype of array type, with the range specified by the slice
264
265   procedure Simplify_Type_Conversion (N : Node_Id);
266   --  Called after N has been resolved and evaluated, but before range checks
267   --  have been applied. Currently simplifies a combination of floating-point
268   --  to integer conversion and Rounding or Truncation attribute.
269
270   function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
271   --  A universal_fixed expression in an universal context is unambiguous if
272   --  there is only one applicable fixed point type. Determining whether there
273   --  is only one requires a search over all visible entities, and happens
274   --  only in very pathological cases (see 6115-006).
275
276   -------------------------
277   -- Ambiguous_Character --
278   -------------------------
279
280   procedure Ambiguous_Character (C : Node_Id) is
281      E : Entity_Id;
282
283   begin
284      if Nkind (C) = N_Character_Literal then
285         Error_Msg_N ("ambiguous character literal", C);
286
287         --  First the ones in Standard
288
289         Error_Msg_N ("\\possible interpretation: Character!", C);
290         Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
291
292         --  Include Wide_Wide_Character in Ada 2005 mode
293
294         if Ada_Version >= Ada_2005 then
295            Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
296         end if;
297
298         --  Now any other types that match
299
300         E := Current_Entity (C);
301         while Present (E) loop
302            Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
303            E := Homonym (E);
304         end loop;
305      end if;
306   end Ambiguous_Character;
307
308   -------------------------
309   -- Analyze_And_Resolve --
310   -------------------------
311
312   procedure Analyze_And_Resolve (N : Node_Id) is
313   begin
314      Analyze (N);
315      Resolve (N);
316   end Analyze_And_Resolve;
317
318   procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
319   begin
320      Analyze (N);
321      Resolve (N, Typ);
322   end Analyze_And_Resolve;
323
324   --  Versions with check(s) suppressed
325
326   procedure Analyze_And_Resolve
327     (N        : Node_Id;
328      Typ      : Entity_Id;
329      Suppress : Check_Id)
330   is
331      Scop : constant Entity_Id := Current_Scope;
332
333   begin
334      if Suppress = All_Checks then
335         declare
336            Sva : constant Suppress_Array := Scope_Suppress.Suppress;
337         begin
338            Scope_Suppress.Suppress := (others => True);
339            Analyze_And_Resolve (N, Typ);
340            Scope_Suppress.Suppress := Sva;
341         end;
342
343      else
344         declare
345            Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
346         begin
347            Scope_Suppress.Suppress (Suppress) := True;
348            Analyze_And_Resolve (N, Typ);
349            Scope_Suppress.Suppress (Suppress) := Svg;
350         end;
351      end if;
352
353      if Current_Scope /= Scop
354        and then Scope_Is_Transient
355      then
356         --  This can only happen if a transient scope was created for an inner
357         --  expression, which will be removed upon completion of the analysis
358         --  of an enclosing construct. The transient scope must have the
359         --  suppress status of the enclosing environment, not of this Analyze
360         --  call.
361
362         Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
363           Scope_Suppress;
364      end if;
365   end Analyze_And_Resolve;
366
367   procedure Analyze_And_Resolve
368     (N        : Node_Id;
369      Suppress : Check_Id)
370   is
371      Scop : constant Entity_Id := Current_Scope;
372
373   begin
374      if Suppress = All_Checks then
375         declare
376            Sva : constant Suppress_Array := Scope_Suppress.Suppress;
377         begin
378            Scope_Suppress.Suppress := (others => True);
379            Analyze_And_Resolve (N);
380            Scope_Suppress.Suppress := Sva;
381         end;
382
383      else
384         declare
385            Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
386         begin
387            Scope_Suppress.Suppress (Suppress) := True;
388            Analyze_And_Resolve (N);
389            Scope_Suppress.Suppress (Suppress) := Svg;
390         end;
391      end if;
392
393      if Current_Scope /= Scop and then Scope_Is_Transient then
394         Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
395           Scope_Suppress;
396      end if;
397   end Analyze_And_Resolve;
398
399   ----------------------------
400   -- Check_Discriminant_Use --
401   ----------------------------
402
403   procedure Check_Discriminant_Use (N : Node_Id) is
404      PN   : constant Node_Id   := Parent (N);
405      Disc : constant Entity_Id := Entity (N);
406      P    : Node_Id;
407      D    : Node_Id;
408
409   begin
410      --  Any use in a spec-expression is legal
411
412      if In_Spec_Expression then
413         null;
414
415      elsif Nkind (PN) = N_Range then
416
417         --  Discriminant cannot be used to constrain a scalar type
418
419         P := Parent (PN);
420
421         if Nkind (P) = N_Range_Constraint
422           and then Nkind (Parent (P)) = N_Subtype_Indication
423           and then Nkind (Parent (Parent (P))) = N_Component_Definition
424         then
425            Error_Msg_N ("discriminant cannot constrain scalar type", N);
426
427         elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
428
429            --  The following check catches the unusual case where a
430            --  discriminant appears within an index constraint that is part
431            --  of a larger expression within a constraint on a component,
432            --  e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
433            --  check case of record components, and note that a similar check
434            --  should also apply in the case of discriminant constraints
435            --  below. ???
436
437            --  Note that the check for N_Subtype_Declaration below is to
438            --  detect the valid use of discriminants in the constraints of a
439            --  subtype declaration when this subtype declaration appears
440            --  inside the scope of a record type (which is syntactically
441            --  illegal, but which may be created as part of derived type
442            --  processing for records). See Sem_Ch3.Build_Derived_Record_Type
443            --  for more info.
444
445            if Ekind (Current_Scope) = E_Record_Type
446              and then Scope (Disc) = Current_Scope
447              and then not
448                (Nkind (Parent (P)) = N_Subtype_Indication
449                  and then
450                    Nkind_In (Parent (Parent (P)), N_Component_Definition,
451                                                   N_Subtype_Declaration)
452                  and then Paren_Count (N) = 0)
453            then
454               Error_Msg_N
455                 ("discriminant must appear alone in component constraint", N);
456               return;
457            end if;
458
459            --   Detect a common error:
460
461            --   type R (D : Positive := 100) is record
462            --     Name : String (1 .. D);
463            --   end record;
464
465            --  The default value causes an object of type R to be allocated
466            --  with room for Positive'Last characters. The RM does not mandate
467            --  the allocation of the maximum size, but that is what GNAT does
468            --  so we should warn the programmer that there is a problem.
469
470            Check_Large : declare
471               SI : Node_Id;
472               T  : Entity_Id;
473               TB : Node_Id;
474               CB : Entity_Id;
475
476               function Large_Storage_Type (T : Entity_Id) return Boolean;
477               --  Return True if type T has a large enough range that any
478               --  array whose index type covered the whole range of the type
479               --  would likely raise Storage_Error.
480
481               ------------------------
482               -- Large_Storage_Type --
483               ------------------------
484
485               function Large_Storage_Type (T : Entity_Id) return Boolean is
486               begin
487                  --  The type is considered large if its bounds are known at
488                  --  compile time and if it requires at least as many bits as
489                  --  a Positive to store the possible values.
490
491                  return Compile_Time_Known_Value (Type_Low_Bound (T))
492                    and then Compile_Time_Known_Value (Type_High_Bound (T))
493                    and then
494                      Minimum_Size (T, Biased => True) >=
495                        RM_Size (Standard_Positive);
496               end Large_Storage_Type;
497
498            --  Start of processing for Check_Large
499
500            begin
501               --  Check that the Disc has a large range
502
503               if not Large_Storage_Type (Etype (Disc)) then
504                  goto No_Danger;
505               end if;
506
507               --  If the enclosing type is limited, we allocate only the
508               --  default value, not the maximum, and there is no need for
509               --  a warning.
510
511               if Is_Limited_Type (Scope (Disc)) then
512                  goto No_Danger;
513               end if;
514
515               --  Check that it is the high bound
516
517               if N /= High_Bound (PN)
518                 or else No (Discriminant_Default_Value (Disc))
519               then
520                  goto No_Danger;
521               end if;
522
523               --  Check the array allows a large range at this bound. First
524               --  find the array
525
526               SI := Parent (P);
527
528               if Nkind (SI) /= N_Subtype_Indication then
529                  goto No_Danger;
530               end if;
531
532               T := Entity (Subtype_Mark (SI));
533
534               if not Is_Array_Type (T) then
535                  goto No_Danger;
536               end if;
537
538               --  Next, find the dimension
539
540               TB := First_Index (T);
541               CB := First (Constraints (P));
542               while True
543                 and then Present (TB)
544                 and then Present (CB)
545                 and then CB /= PN
546               loop
547                  Next_Index (TB);
548                  Next (CB);
549               end loop;
550
551               if CB /= PN then
552                  goto No_Danger;
553               end if;
554
555               --  Now, check the dimension has a large range
556
557               if not Large_Storage_Type (Etype (TB)) then
558                  goto No_Danger;
559               end if;
560
561               --  Warn about the danger
562
563               Error_Msg_N
564                 ("??creation of & object may raise Storage_Error!",
565                  Scope (Disc));
566
567               <<No_Danger>>
568                  null;
569
570            end Check_Large;
571         end if;
572
573      --  Legal case is in index or discriminant constraint
574
575      elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
576                          N_Discriminant_Association)
577      then
578         if Paren_Count (N) > 0 then
579            Error_Msg_N
580              ("discriminant in constraint must appear alone",  N);
581
582         elsif Nkind (N) = N_Expanded_Name
583           and then Comes_From_Source (N)
584         then
585            Error_Msg_N
586              ("discriminant must appear alone as a direct name", N);
587         end if;
588
589         return;
590
591      --  Otherwise, context is an expression. It should not be within (i.e. a
592      --  subexpression of) a constraint for a component.
593
594      else
595         D := PN;
596         P := Parent (PN);
597         while not Nkind_In (P, N_Component_Declaration,
598                                N_Subtype_Indication,
599                                N_Entry_Declaration)
600         loop
601            D := P;
602            P := Parent (P);
603            exit when No (P);
604         end loop;
605
606         --  If the discriminant is used in an expression that is a bound of a
607         --  scalar type, an Itype is created and the bounds are attached to
608         --  its range, not to the original subtype indication. Such use is of
609         --  course a double fault.
610
611         if (Nkind (P) = N_Subtype_Indication
612              and then Nkind_In (Parent (P), N_Component_Definition,
613                                             N_Derived_Type_Definition)
614              and then D = Constraint (P))
615
616           --  The constraint itself may be given by a subtype indication,
617           --  rather than by a more common discrete range.
618
619           or else (Nkind (P) = N_Subtype_Indication
620                      and then
621                    Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
622           or else Nkind (P) = N_Entry_Declaration
623           or else Nkind (D) = N_Defining_Identifier
624         then
625            Error_Msg_N
626              ("discriminant in constraint must appear alone",  N);
627         end if;
628      end if;
629   end Check_Discriminant_Use;
630
631   --------------------------------
632   -- Check_For_Visible_Operator --
633   --------------------------------
634
635   procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
636   begin
637      if Is_Invisible_Operator (N, T) then
638         Error_Msg_NE -- CODEFIX
639           ("operator for} is not directly visible!", N, First_Subtype (T));
640         Error_Msg_N -- CODEFIX
641           ("use clause would make operation legal!", N);
642      end if;
643   end Check_For_Visible_Operator;
644
645   ----------------------------------
646   --  Check_Fully_Declared_Prefix --
647   ----------------------------------
648
649   procedure Check_Fully_Declared_Prefix
650     (Typ  : Entity_Id;
651      Pref : Node_Id)
652   is
653   begin
654      --  Check that the designated type of the prefix of a dereference is
655      --  not an incomplete type. This cannot be done unconditionally, because
656      --  dereferences of private types are legal in default expressions. This
657      --  case is taken care of in Check_Fully_Declared, called below. There
658      --  are also 2005 cases where it is legal for the prefix to be unfrozen.
659
660      --  This consideration also applies to similar checks for allocators,
661      --  qualified expressions, and type conversions.
662
663      --  An additional exception concerns other per-object expressions that
664      --  are not directly related to component declarations, in particular
665      --  representation pragmas for tasks. These will be per-object
666      --  expressions if they depend on discriminants or some global entity.
667      --  If the task has access discriminants, the designated type may be
668      --  incomplete at the point the expression is resolved. This resolution
669      --  takes place within the body of the initialization procedure, where
670      --  the discriminant is replaced by its discriminal.
671
672      if Is_Entity_Name (Pref)
673        and then Ekind (Entity (Pref)) = E_In_Parameter
674      then
675         null;
676
677      --  Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
678      --  are handled by Analyze_Access_Attribute, Analyze_Assignment,
679      --  Analyze_Object_Renaming, and Freeze_Entity.
680
681      elsif Ada_Version >= Ada_2005
682        and then Is_Entity_Name (Pref)
683        and then Is_Access_Type (Etype (Pref))
684        and then Ekind (Directly_Designated_Type (Etype (Pref))) =
685                                                       E_Incomplete_Type
686        and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
687      then
688         null;
689      else
690         Check_Fully_Declared (Typ, Parent (Pref));
691      end if;
692   end Check_Fully_Declared_Prefix;
693
694   ------------------------------
695   -- Check_Infinite_Recursion --
696   ------------------------------
697
698   function Check_Infinite_Recursion (N : Node_Id) return Boolean is
699      P : Node_Id;
700      C : Node_Id;
701
702      function Same_Argument_List return Boolean;
703      --  Check whether list of actuals is identical to list of formals of
704      --  called function (which is also the enclosing scope).
705
706      ------------------------
707      -- Same_Argument_List --
708      ------------------------
709
710      function Same_Argument_List return Boolean is
711         A    : Node_Id;
712         F    : Entity_Id;
713         Subp : Entity_Id;
714
715      begin
716         if not Is_Entity_Name (Name (N)) then
717            return False;
718         else
719            Subp := Entity (Name (N));
720         end if;
721
722         F := First_Formal (Subp);
723         A := First_Actual (N);
724         while Present (F) and then Present (A) loop
725            if not Is_Entity_Name (A) or else Entity (A) /= F then
726               return False;
727            end if;
728
729            Next_Actual (A);
730            Next_Formal (F);
731         end loop;
732
733         return True;
734      end Same_Argument_List;
735
736   --  Start of processing for Check_Infinite_Recursion
737
738   begin
739      --  Special case, if this is a procedure call and is a call to the
740      --  current procedure with the same argument list, then this is for
741      --  sure an infinite recursion and we insert a call to raise SE.
742
743      if Is_List_Member (N)
744        and then List_Length (List_Containing (N)) = 1
745        and then Same_Argument_List
746      then
747         declare
748            P : constant Node_Id := Parent (N);
749         begin
750            if Nkind (P) = N_Handled_Sequence_Of_Statements
751              and then Nkind (Parent (P)) = N_Subprogram_Body
752              and then Is_Empty_List (Declarations (Parent (P)))
753            then
754               Error_Msg_Warn := SPARK_Mode /= On;
755               Error_Msg_N ("!infinite recursion<<", N);
756               Error_Msg_N ("\!Storage_Error [<<", N);
757               Insert_Action (N,
758                 Make_Raise_Storage_Error (Sloc (N),
759                   Reason => SE_Infinite_Recursion));
760               return True;
761            end if;
762         end;
763      end if;
764
765      --  If not that special case, search up tree, quitting if we reach a
766      --  construct (e.g. a conditional) that tells us that this is not a
767      --  case for an infinite recursion warning.
768
769      C := N;
770      loop
771         P := Parent (C);
772
773         --  If no parent, then we were not inside a subprogram, this can for
774         --  example happen when processing certain pragmas in a spec. Just
775         --  return False in this case.
776
777         if No (P) then
778            return False;
779         end if;
780
781         --  Done if we get to subprogram body, this is definitely an infinite
782         --  recursion case if we did not find anything to stop us.
783
784         exit when Nkind (P) = N_Subprogram_Body;
785
786         --  If appearing in conditional, result is false
787
788         if Nkind_In (P, N_Or_Else,
789                         N_And_Then,
790                         N_Case_Expression,
791                         N_Case_Statement,
792                         N_If_Expression,
793                         N_If_Statement)
794         then
795            return False;
796
797         elsif Nkind (P) = N_Handled_Sequence_Of_Statements
798           and then C /= First (Statements (P))
799         then
800            --  If the call is the expression of a return statement and the
801            --  actuals are identical to the formals, it's worth a warning.
802            --  However, we skip this if there is an immediately preceding
803            --  raise statement, since the call is never executed.
804
805            --  Furthermore, this corresponds to a common idiom:
806
807            --    function F (L : Thing) return Boolean is
808            --    begin
809            --       raise Program_Error;
810            --       return F (L);
811            --    end F;
812
813            --  for generating a stub function
814
815            if Nkind (Parent (N)) = N_Simple_Return_Statement
816              and then Same_Argument_List
817            then
818               exit when not Is_List_Member (Parent (N));
819
820               --  OK, return statement is in a statement list, look for raise
821
822               declare
823                  Nod : Node_Id;
824
825               begin
826                  --  Skip past N_Freeze_Entity nodes generated by expansion
827
828                  Nod := Prev (Parent (N));
829                  while Present (Nod)
830                    and then Nkind (Nod) = N_Freeze_Entity
831                  loop
832                     Prev (Nod);
833                  end loop;
834
835                  --  If no raise statement, give warning. We look at the
836                  --  original node, because in the case of "raise ... with
837                  --  ...", the node has been transformed into a call.
838
839                  exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
840                    and then
841                      (Nkind (Nod) not in N_Raise_xxx_Error
842                        or else Present (Condition (Nod)));
843               end;
844            end if;
845
846            return False;
847
848         else
849            C := P;
850         end if;
851      end loop;
852
853      Error_Msg_Warn := SPARK_Mode /= On;
854      Error_Msg_N ("!possible infinite recursion<<", N);
855      Error_Msg_N ("\!??Storage_Error ]<<", N);
856
857      return True;
858   end Check_Infinite_Recursion;
859
860   -------------------------------
861   -- Check_Initialization_Call --
862   -------------------------------
863
864   procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
865      Typ : constant Entity_Id := Etype (First_Formal (Nam));
866
867      function Uses_SS (T : Entity_Id) return Boolean;
868      --  Check whether the creation of an object of the type will involve
869      --  use of the secondary stack. If T is a record type, this is true
870      --  if the expression for some component uses the secondary stack, e.g.
871      --  through a call to a function that returns an unconstrained value.
872      --  False if T is controlled, because cleanups occur elsewhere.
873
874      -------------
875      -- Uses_SS --
876      -------------
877
878      function Uses_SS (T : Entity_Id) return Boolean is
879         Comp      : Entity_Id;
880         Expr      : Node_Id;
881         Full_Type : Entity_Id := Underlying_Type (T);
882
883      begin
884         --  Normally we want to use the underlying type, but if it's not set
885         --  then continue with T.
886
887         if not Present (Full_Type) then
888            Full_Type := T;
889         end if;
890
891         if Is_Controlled (Full_Type) then
892            return False;
893
894         elsif Is_Array_Type (Full_Type) then
895            return Uses_SS (Component_Type (Full_Type));
896
897         elsif Is_Record_Type (Full_Type) then
898            Comp := First_Component (Full_Type);
899            while Present (Comp) loop
900               if Ekind (Comp) = E_Component
901                 and then Nkind (Parent (Comp)) = N_Component_Declaration
902               then
903                  --  The expression for a dynamic component may be rewritten
904                  --  as a dereference, so retrieve original node.
905
906                  Expr := Original_Node (Expression (Parent (Comp)));
907
908                  --  Return True if the expression is a call to a function
909                  --  (including an attribute function such as Image, or a
910                  --  user-defined operator) with a result that requires a
911                  --  transient scope.
912
913                  if (Nkind (Expr) = N_Function_Call
914                       or else Nkind (Expr) in N_Op
915                       or else (Nkind (Expr) = N_Attribute_Reference
916                                 and then Present (Expressions (Expr))))
917                    and then Requires_Transient_Scope (Etype (Expr))
918                  then
919                     return True;
920
921                  elsif Uses_SS (Etype (Comp)) then
922                     return True;
923                  end if;
924               end if;
925
926               Next_Component (Comp);
927            end loop;
928
929            return False;
930
931         else
932            return False;
933         end if;
934      end Uses_SS;
935
936   --  Start of processing for Check_Initialization_Call
937
938   begin
939      --  Establish a transient scope if the type needs it
940
941      if Uses_SS (Typ) then
942         Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
943      end if;
944   end Check_Initialization_Call;
945
946   ---------------------------------------
947   -- Check_No_Direct_Boolean_Operators --
948   ---------------------------------------
949
950   procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
951   begin
952      if Scope (Entity (N)) = Standard_Standard
953        and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
954      then
955         --  Restriction only applies to original source code
956
957         if Comes_From_Source (N) then
958            Check_Restriction (No_Direct_Boolean_Operators, N);
959         end if;
960      end if;
961
962      --  Do style check (but skip if in instance, error is on template)
963
964      if Style_Check then
965         if not In_Instance then
966            Check_Boolean_Operator (N);
967         end if;
968      end if;
969   end Check_No_Direct_Boolean_Operators;
970
971   ------------------------------
972   -- Check_Parameterless_Call --
973   ------------------------------
974
975   procedure Check_Parameterless_Call (N : Node_Id) is
976      Nam : Node_Id;
977
978      function Prefix_Is_Access_Subp return Boolean;
979      --  If the prefix is of an access_to_subprogram type, the node must be
980      --  rewritten as a call. Ditto if the prefix is overloaded and all its
981      --  interpretations are access to subprograms.
982
983      ---------------------------
984      -- Prefix_Is_Access_Subp --
985      ---------------------------
986
987      function Prefix_Is_Access_Subp return Boolean is
988         I   : Interp_Index;
989         It  : Interp;
990
991      begin
992         --  If the context is an attribute reference that can apply to
993         --  functions, this is never a parameterless call (RM 4.1.4(6)).
994
995         if Nkind (Parent (N)) = N_Attribute_Reference
996            and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
997                                                          Name_Code_Address,
998                                                          Name_Access)
999         then
1000            return False;
1001         end if;
1002
1003         if not Is_Overloaded (N) then
1004            return
1005              Ekind (Etype (N)) = E_Subprogram_Type
1006                and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1007         else
1008            Get_First_Interp (N, I, It);
1009            while Present (It.Typ) loop
1010               if Ekind (It.Typ) /= E_Subprogram_Type
1011                 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1012               then
1013                  return False;
1014               end if;
1015
1016               Get_Next_Interp (I, It);
1017            end loop;
1018
1019            return True;
1020         end if;
1021      end Prefix_Is_Access_Subp;
1022
1023   --  Start of processing for Check_Parameterless_Call
1024
1025   begin
1026      --  Defend against junk stuff if errors already detected
1027
1028      if Total_Errors_Detected /= 0 then
1029         if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1030            return;
1031         elsif Nkind (N) in N_Has_Chars
1032           and then Chars (N) in Error_Name_Or_No_Name
1033         then
1034            return;
1035         end if;
1036
1037         Require_Entity (N);
1038      end if;
1039
1040      --  If the context expects a value, and the name is a procedure, this is
1041      --  most likely a missing 'Access. Don't try to resolve the parameterless
1042      --  call, error will be caught when the outer call is analyzed.
1043
1044      if Is_Entity_Name (N)
1045        and then Ekind (Entity (N)) = E_Procedure
1046        and then not Is_Overloaded (N)
1047        and then
1048         Nkind_In (Parent (N), N_Parameter_Association,
1049                               N_Function_Call,
1050                               N_Procedure_Call_Statement)
1051      then
1052         return;
1053      end if;
1054
1055      --  Rewrite as call if overloadable entity that is (or could be, in the
1056      --  overloaded case) a function call. If we know for sure that the entity
1057      --  is an enumeration literal, we do not rewrite it.
1058
1059      --  If the entity is the name of an operator, it cannot be a call because
1060      --  operators cannot have default parameters. In this case, this must be
1061      --  a string whose contents coincide with an operator name. Set the kind
1062      --  of the node appropriately.
1063
1064      if (Is_Entity_Name (N)
1065            and then Nkind (N) /= N_Operator_Symbol
1066            and then Is_Overloadable (Entity (N))
1067            and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1068                       or else Is_Overloaded (N)))
1069
1070      --  Rewrite as call if it is an explicit dereference of an expression of
1071      --  a subprogram access type, and the subprogram type is not that of a
1072      --  procedure or entry.
1073
1074      or else
1075        (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1076
1077      --  Rewrite as call if it is a selected component which is a function,
1078      --  this is the case of a call to a protected function (which may be
1079      --  overloaded with other protected operations).
1080
1081      or else
1082        (Nkind (N) = N_Selected_Component
1083          and then (Ekind (Entity (Selector_Name (N))) = E_Function
1084                     or else
1085                       (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1086                                                              E_Procedure)
1087                         and then Is_Overloaded (Selector_Name (N)))))
1088
1089      --  If one of the above three conditions is met, rewrite as call. Apply
1090      --  the rewriting only once.
1091
1092      then
1093         if Nkind (Parent (N)) /= N_Function_Call
1094           or else N /= Name (Parent (N))
1095         then
1096
1097            --  This may be a prefixed call that was not fully analyzed, e.g.
1098            --  an actual in an instance.
1099
1100            if Ada_Version >= Ada_2005
1101              and then Nkind (N) = N_Selected_Component
1102              and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1103            then
1104               Analyze_Selected_Component (N);
1105
1106               if Nkind (N) /= N_Selected_Component then
1107                  return;
1108               end if;
1109            end if;
1110
1111            --  The node is the name of the parameterless call. Preserve its
1112            --  descendants, which may be complex expressions.
1113
1114            Nam := Relocate_Node (N);
1115
1116            --  If overloaded, overload set belongs to new copy
1117
1118            Save_Interps (N, Nam);
1119
1120            --  Change node to parameterless function call (note that the
1121            --  Parameter_Associations associations field is left set to Empty,
1122            --  its normal default value since there are no parameters)
1123
1124            Change_Node (N, N_Function_Call);
1125            Set_Name (N, Nam);
1126            Set_Sloc (N, Sloc (Nam));
1127            Analyze_Call (N);
1128         end if;
1129
1130      elsif Nkind (N) = N_Parameter_Association then
1131         Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1132
1133      elsif Nkind (N) = N_Operator_Symbol then
1134         Change_Operator_Symbol_To_String_Literal (N);
1135         Set_Is_Overloaded (N, False);
1136         Set_Etype (N, Any_String);
1137      end if;
1138   end Check_Parameterless_Call;
1139
1140   --------------------------------
1141   -- Is_Atomic_Ref_With_Address --
1142   --------------------------------
1143
1144   function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1145      Pref : constant Node_Id := Prefix (N);
1146
1147   begin
1148      if not Is_Entity_Name (Pref) then
1149         return False;
1150
1151      else
1152         declare
1153            Pent : constant Entity_Id := Entity (Pref);
1154            Ptyp : constant Entity_Id := Etype (Pent);
1155         begin
1156            return not Is_Access_Type (Ptyp)
1157              and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1158              and then Present (Address_Clause (Pent));
1159         end;
1160      end if;
1161   end Is_Atomic_Ref_With_Address;
1162
1163   -----------------------------
1164   -- Is_Definite_Access_Type --
1165   -----------------------------
1166
1167   function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1168      Btyp : constant Entity_Id := Base_Type (E);
1169   begin
1170      return Ekind (Btyp) = E_Access_Type
1171        or else (Ekind (Btyp) = E_Access_Subprogram_Type
1172                  and then Comes_From_Source (Btyp));
1173   end Is_Definite_Access_Type;
1174
1175   ----------------------
1176   -- Is_Predefined_Op --
1177   ----------------------
1178
1179   function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1180   begin
1181      --  Predefined operators are intrinsic subprograms
1182
1183      if not Is_Intrinsic_Subprogram (Nam) then
1184         return False;
1185      end if;
1186
1187      --  A call to a back-end builtin is never a predefined operator
1188
1189      if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1190         return False;
1191      end if;
1192
1193      return not Is_Generic_Instance (Nam)
1194        and then Chars (Nam) in Any_Operator_Name
1195        and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1196   end Is_Predefined_Op;
1197
1198   -----------------------------
1199   -- Make_Call_Into_Operator --
1200   -----------------------------
1201
1202   procedure Make_Call_Into_Operator
1203     (N     : Node_Id;
1204      Typ   : Entity_Id;
1205      Op_Id : Entity_Id)
1206   is
1207      Op_Name   : constant Name_Id := Chars (Op_Id);
1208      Act1      : Node_Id := First_Actual (N);
1209      Act2      : Node_Id := Next_Actual (Act1);
1210      Error     : Boolean := False;
1211      Func      : constant Entity_Id := Entity (Name (N));
1212      Is_Binary : constant Boolean   := Present (Act2);
1213      Op_Node   : Node_Id;
1214      Opnd_Type : Entity_Id;
1215      Orig_Type : Entity_Id := Empty;
1216      Pack      : Entity_Id;
1217
1218      type Kind_Test is access function (E : Entity_Id) return Boolean;
1219
1220      function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1221      --  If the operand is not universal, and the operator is given by an
1222      --  expanded name, verify that the operand has an interpretation with a
1223      --  type defined in the given scope of the operator.
1224
1225      function Type_In_P (Test : Kind_Test) return Entity_Id;
1226      --  Find a type of the given class in package Pack that contains the
1227      --  operator.
1228
1229      ---------------------------
1230      -- Operand_Type_In_Scope --
1231      ---------------------------
1232
1233      function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1234         Nod : constant Node_Id := Right_Opnd (Op_Node);
1235         I   : Interp_Index;
1236         It  : Interp;
1237
1238      begin
1239         if not Is_Overloaded (Nod) then
1240            return Scope (Base_Type (Etype (Nod))) = S;
1241
1242         else
1243            Get_First_Interp (Nod, I, It);
1244            while Present (It.Typ) loop
1245               if Scope (Base_Type (It.Typ)) = S then
1246                  return True;
1247               end if;
1248
1249               Get_Next_Interp (I, It);
1250            end loop;
1251
1252            return False;
1253         end if;
1254      end Operand_Type_In_Scope;
1255
1256      ---------------
1257      -- Type_In_P --
1258      ---------------
1259
1260      function Type_In_P (Test : Kind_Test) return Entity_Id is
1261         E : Entity_Id;
1262
1263         function In_Decl return Boolean;
1264         --  Verify that node is not part of the type declaration for the
1265         --  candidate type, which would otherwise be invisible.
1266
1267         -------------
1268         -- In_Decl --
1269         -------------
1270
1271         function In_Decl return Boolean is
1272            Decl_Node : constant Node_Id := Parent (E);
1273            N2        : Node_Id;
1274
1275         begin
1276            N2 := N;
1277
1278            if Etype (E) = Any_Type then
1279               return True;
1280
1281            elsif No (Decl_Node) then
1282               return False;
1283
1284            else
1285               while Present (N2)
1286                 and then Nkind (N2) /= N_Compilation_Unit
1287               loop
1288                  if N2 = Decl_Node then
1289                     return True;
1290                  else
1291                     N2 := Parent (N2);
1292                  end if;
1293               end loop;
1294
1295               return False;
1296            end if;
1297         end In_Decl;
1298
1299      --  Start of processing for Type_In_P
1300
1301      begin
1302         --  If the context type is declared in the prefix package, this is the
1303         --  desired base type.
1304
1305         if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1306            return Base_Type (Typ);
1307
1308         else
1309            E := First_Entity (Pack);
1310            while Present (E) loop
1311               if Test (E) and then not In_Decl then
1312                  return E;
1313               end if;
1314
1315               Next_Entity (E);
1316            end loop;
1317
1318            return Empty;
1319         end if;
1320      end Type_In_P;
1321
1322   --  Start of processing for Make_Call_Into_Operator
1323
1324   begin
1325      Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1326
1327      --  Binary operator
1328
1329      if Is_Binary then
1330         Set_Left_Opnd  (Op_Node, Relocate_Node (Act1));
1331         Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1332         Save_Interps (Act1, Left_Opnd  (Op_Node));
1333         Save_Interps (Act2, Right_Opnd (Op_Node));
1334         Act1 := Left_Opnd (Op_Node);
1335         Act2 := Right_Opnd (Op_Node);
1336
1337      --  Unary operator
1338
1339      else
1340         Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1341         Save_Interps (Act1, Right_Opnd (Op_Node));
1342         Act1 := Right_Opnd (Op_Node);
1343      end if;
1344
1345      --  If the operator is denoted by an expanded name, and the prefix is
1346      --  not Standard, but the operator is a predefined one whose scope is
1347      --  Standard, then this is an implicit_operator, inserted as an
1348      --  interpretation by the procedure of the same name. This procedure
1349      --  overestimates the presence of implicit operators, because it does
1350      --  not examine the type of the operands. Verify now that the operand
1351      --  type appears in the given scope. If right operand is universal,
1352      --  check the other operand. In the case of concatenation, either
1353      --  argument can be the component type, so check the type of the result.
1354      --  If both arguments are literals, look for a type of the right kind
1355      --  defined in the given scope. This elaborate nonsense is brought to
1356      --  you courtesy of b33302a. The type itself must be frozen, so we must
1357      --  find the type of the proper class in the given scope.
1358
1359      --  A final wrinkle is the multiplication operator for fixed point types,
1360      --  which is defined in Standard only, and not in the scope of the
1361      --  fixed point type itself.
1362
1363      if Nkind (Name (N)) = N_Expanded_Name then
1364         Pack := Entity (Prefix (Name (N)));
1365
1366         --  If this is a package renaming, get renamed entity, which will be
1367         --  the scope of the operands if operaton is type-correct.
1368
1369         if Present (Renamed_Entity (Pack)) then
1370            Pack := Renamed_Entity (Pack);
1371         end if;
1372
1373         --  If the entity being called is defined in the given package, it is
1374         --  a renaming of a predefined operator, and known to be legal.
1375
1376         if Scope (Entity (Name (N))) = Pack
1377            and then Pack /= Standard_Standard
1378         then
1379            null;
1380
1381         --  Visibility does not need to be checked in an instance: if the
1382         --  operator was not visible in the generic it has been diagnosed
1383         --  already, else there is an implicit copy of it in the instance.
1384
1385         elsif In_Instance then
1386            null;
1387
1388         elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1389           and then Is_Fixed_Point_Type (Etype (Left_Opnd  (Op_Node)))
1390           and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1391         then
1392            if Pack /= Standard_Standard then
1393               Error := True;
1394            end if;
1395
1396         --  Ada 2005 AI-420: Predefined equality on Universal_Access is
1397         --  available.
1398
1399         elsif Ada_Version >= Ada_2005
1400           and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1401           and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1402         then
1403            null;
1404
1405         else
1406            Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1407
1408            if Op_Name = Name_Op_Concat then
1409               Opnd_Type := Base_Type (Typ);
1410
1411            elsif (Scope (Opnd_Type) = Standard_Standard
1412                     and then Is_Binary)
1413              or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1414                        and then Is_Binary
1415                        and then not Comes_From_Source (Opnd_Type))
1416            then
1417               Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1418            end if;
1419
1420            if Scope (Opnd_Type) = Standard_Standard then
1421
1422               --  Verify that the scope contains a type that corresponds to
1423               --  the given literal. Optimize the case where Pack is Standard.
1424
1425               if Pack /= Standard_Standard then
1426
1427                  if Opnd_Type = Universal_Integer then
1428                     Orig_Type := Type_In_P (Is_Integer_Type'Access);
1429
1430                  elsif Opnd_Type = Universal_Real then
1431                     Orig_Type := Type_In_P (Is_Real_Type'Access);
1432
1433                  elsif Opnd_Type = Any_String then
1434                     Orig_Type := Type_In_P (Is_String_Type'Access);
1435
1436                  elsif Opnd_Type = Any_Access then
1437                     Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1438
1439                  elsif Opnd_Type = Any_Composite then
1440                     Orig_Type := Type_In_P (Is_Composite_Type'Access);
1441
1442                     if Present (Orig_Type) then
1443                        if Has_Private_Component (Orig_Type) then
1444                           Orig_Type := Empty;
1445                        else
1446                           Set_Etype (Act1, Orig_Type);
1447
1448                           if Is_Binary then
1449                              Set_Etype (Act2, Orig_Type);
1450                           end if;
1451                        end if;
1452                     end if;
1453
1454                  else
1455                     Orig_Type := Empty;
1456                  end if;
1457
1458                  Error := No (Orig_Type);
1459               end if;
1460
1461            elsif Ekind (Opnd_Type) = E_Allocator_Type
1462               and then No (Type_In_P (Is_Definite_Access_Type'Access))
1463            then
1464               Error := True;
1465
1466            --  If the type is defined elsewhere, and the operator is not
1467            --  defined in the given scope (by a renaming declaration, e.g.)
1468            --  then this is an error as well. If an extension of System is
1469            --  present, and the type may be defined there, Pack must be
1470            --  System itself.
1471
1472            elsif Scope (Opnd_Type) /= Pack
1473              and then Scope (Op_Id) /= Pack
1474              and then (No (System_Aux_Id)
1475                         or else Scope (Opnd_Type) /= System_Aux_Id
1476                         or else Pack /= Scope (System_Aux_Id))
1477            then
1478               if not Is_Overloaded (Right_Opnd (Op_Node)) then
1479                  Error := True;
1480               else
1481                  Error := not Operand_Type_In_Scope (Pack);
1482               end if;
1483
1484            elsif Pack = Standard_Standard
1485              and then not Operand_Type_In_Scope (Standard_Standard)
1486            then
1487               Error := True;
1488            end if;
1489         end if;
1490
1491         if Error then
1492            Error_Msg_Node_2 := Pack;
1493            Error_Msg_NE
1494              ("& not declared in&", N, Selector_Name (Name (N)));
1495            Set_Etype (N, Any_Type);
1496            return;
1497
1498         --  Detect a mismatch between the context type and the result type
1499         --  in the named package, which is otherwise not detected if the
1500         --  operands are universal. Check is only needed if source entity is
1501         --  an operator, not a function that renames an operator.
1502
1503         elsif Nkind (Parent (N)) /= N_Type_Conversion
1504           and then Ekind (Entity (Name (N))) = E_Operator
1505           and then Is_Numeric_Type (Typ)
1506           and then not Is_Universal_Numeric_Type (Typ)
1507           and then Scope (Base_Type (Typ)) /= Pack
1508           and then not In_Instance
1509         then
1510            if Is_Fixed_Point_Type (Typ)
1511              and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1512            then
1513               --  Already checked above
1514
1515               null;
1516
1517            --  Operator may be defined in an extension of System
1518
1519            elsif Present (System_Aux_Id)
1520              and then Scope (Opnd_Type) = System_Aux_Id
1521            then
1522               null;
1523
1524            else
1525               --  Could we use Wrong_Type here??? (this would require setting
1526               --  Etype (N) to the actual type found where Typ was expected).
1527
1528               Error_Msg_NE ("expect }", N, Typ);
1529            end if;
1530         end if;
1531      end if;
1532
1533      Set_Chars  (Op_Node, Op_Name);
1534
1535      if not Is_Private_Type (Etype (N)) then
1536         Set_Etype (Op_Node, Base_Type (Etype (N)));
1537      else
1538         Set_Etype (Op_Node, Etype (N));
1539      end if;
1540
1541      --  If this is a call to a function that renames a predefined equality,
1542      --  the renaming declaration provides a type that must be used to
1543      --  resolve the operands. This must be done now because resolution of
1544      --  the equality node will not resolve any remaining ambiguity, and it
1545      --  assumes that the first operand is not overloaded.
1546
1547      if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1548        and then Ekind (Func) = E_Function
1549        and then Is_Overloaded (Act1)
1550      then
1551         Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1552         Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1553      end if;
1554
1555      Set_Entity (Op_Node, Op_Id);
1556      Generate_Reference (Op_Id, N, ' ');
1557
1558      --  Do rewrite setting Comes_From_Source on the result if the original
1559      --  call came from source. Although it is not strictly the case that the
1560      --  operator as such comes from the source, logically it corresponds
1561      --  exactly to the function call in the source, so it should be marked
1562      --  this way (e.g. to make sure that validity checks work fine).
1563
1564      declare
1565         CS : constant Boolean := Comes_From_Source (N);
1566      begin
1567         Rewrite (N, Op_Node);
1568         Set_Comes_From_Source (N, CS);
1569      end;
1570
1571      --  If this is an arithmetic operator and the result type is private,
1572      --  the operands and the result must be wrapped in conversion to
1573      --  expose the underlying numeric type and expand the proper checks,
1574      --  e.g. on division.
1575
1576      if Is_Private_Type (Typ) then
1577         case Nkind (N) is
1578            when N_Op_Add   | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1579                 N_Op_Expon | N_Op_Mod      | N_Op_Rem      =>
1580               Resolve_Intrinsic_Operator (N, Typ);
1581
1582            when N_Op_Plus  | N_Op_Minus    | N_Op_Abs      =>
1583               Resolve_Intrinsic_Unary_Operator (N, Typ);
1584
1585            when others =>
1586               Resolve (N, Typ);
1587         end case;
1588      else
1589         Resolve (N, Typ);
1590      end if;
1591
1592      --  If in ASIS_Mode, propagate operand types to original actuals of
1593      --  function call, which would otherwise not be fully resolved. If
1594      --  the call has already been constant-folded, nothing to do. We
1595      --  relocate the operand nodes rather than copy them, to preserve
1596      --  original_node pointers, given that the operands themselves may
1597      --  have been rewritten. If the call was itself a rewriting of an
1598      --  operator node, nothing to do.
1599
1600      if ASIS_Mode
1601        and then Nkind (N) in N_Op
1602        and then Nkind (Original_Node (N)) = N_Function_Call
1603      then
1604         declare
1605            L : Node_Id;
1606            R : constant Node_Id := Right_Opnd (N);
1607
1608            Old_First : constant Node_Id :=
1609                          First (Parameter_Associations (Original_Node (N)));
1610            Old_Sec   : Node_Id;
1611
1612         begin
1613            if Is_Binary then
1614               L       := Left_Opnd (N);
1615               Old_Sec := Next (Old_First);
1616
1617               --  If the original call has named associations, replace the
1618               --  explicit actual parameter in the association with the proper
1619               --  resolved operand.
1620
1621               if Nkind (Old_First) = N_Parameter_Association then
1622                  if Chars (Selector_Name (Old_First)) =
1623                     Chars (First_Entity (Op_Id))
1624                  then
1625                     Rewrite (Explicit_Actual_Parameter (Old_First),
1626                       Relocate_Node (L));
1627                  else
1628                     Rewrite (Explicit_Actual_Parameter (Old_First),
1629                       Relocate_Node (R));
1630                  end if;
1631
1632               else
1633                  Rewrite (Old_First, Relocate_Node (L));
1634               end if;
1635
1636               if Nkind (Old_Sec) = N_Parameter_Association then
1637                  if Chars (Selector_Name (Old_Sec))  =
1638                     Chars (First_Entity (Op_Id))
1639                  then
1640                     Rewrite (Explicit_Actual_Parameter (Old_Sec),
1641                       Relocate_Node (L));
1642                  else
1643                     Rewrite (Explicit_Actual_Parameter (Old_Sec),
1644                       Relocate_Node (R));
1645                  end if;
1646
1647               else
1648                  Rewrite (Old_Sec, Relocate_Node (R));
1649               end if;
1650
1651            else
1652               if Nkind (Old_First) = N_Parameter_Association then
1653                  Rewrite (Explicit_Actual_Parameter (Old_First),
1654                    Relocate_Node (R));
1655               else
1656                  Rewrite (Old_First, Relocate_Node (R));
1657               end if;
1658            end if;
1659         end;
1660
1661         Set_Parent (Original_Node (N), Parent (N));
1662      end if;
1663   end Make_Call_Into_Operator;
1664
1665   -------------------
1666   -- Operator_Kind --
1667   -------------------
1668
1669   function Operator_Kind
1670     (Op_Name   : Name_Id;
1671      Is_Binary : Boolean) return Node_Kind
1672   is
1673      Kind : Node_Kind;
1674
1675   begin
1676      --  Use CASE statement or array???
1677
1678      if Is_Binary then
1679         if    Op_Name =  Name_Op_And      then
1680            Kind := N_Op_And;
1681         elsif Op_Name =  Name_Op_Or       then
1682            Kind := N_Op_Or;
1683         elsif Op_Name =  Name_Op_Xor      then
1684            Kind := N_Op_Xor;
1685         elsif Op_Name =  Name_Op_Eq       then
1686            Kind := N_Op_Eq;
1687         elsif Op_Name =  Name_Op_Ne       then
1688            Kind := N_Op_Ne;
1689         elsif Op_Name =  Name_Op_Lt       then
1690            Kind := N_Op_Lt;
1691         elsif Op_Name =  Name_Op_Le       then
1692            Kind := N_Op_Le;
1693         elsif Op_Name =  Name_Op_Gt       then
1694            Kind := N_Op_Gt;
1695         elsif Op_Name =  Name_Op_Ge       then
1696            Kind := N_Op_Ge;
1697         elsif Op_Name =  Name_Op_Add      then
1698            Kind := N_Op_Add;
1699         elsif Op_Name =  Name_Op_Subtract then
1700            Kind := N_Op_Subtract;
1701         elsif Op_Name =  Name_Op_Concat   then
1702            Kind := N_Op_Concat;
1703         elsif Op_Name =  Name_Op_Multiply then
1704            Kind := N_Op_Multiply;
1705         elsif Op_Name =  Name_Op_Divide   then
1706            Kind := N_Op_Divide;
1707         elsif Op_Name =  Name_Op_Mod      then
1708            Kind := N_Op_Mod;
1709         elsif Op_Name =  Name_Op_Rem      then
1710            Kind := N_Op_Rem;
1711         elsif Op_Name =  Name_Op_Expon    then
1712            Kind := N_Op_Expon;
1713         else
1714            raise Program_Error;
1715         end if;
1716
1717      --  Unary operators
1718
1719      else
1720         if    Op_Name =  Name_Op_Add      then
1721            Kind := N_Op_Plus;
1722         elsif Op_Name =  Name_Op_Subtract then
1723            Kind := N_Op_Minus;
1724         elsif Op_Name =  Name_Op_Abs      then
1725            Kind := N_Op_Abs;
1726         elsif Op_Name =  Name_Op_Not      then
1727            Kind := N_Op_Not;
1728         else
1729            raise Program_Error;
1730         end if;
1731      end if;
1732
1733      return Kind;
1734   end Operator_Kind;
1735
1736   ----------------------------
1737   -- Preanalyze_And_Resolve --
1738   ----------------------------
1739
1740   procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1741      Save_Full_Analysis : constant Boolean := Full_Analysis;
1742
1743   begin
1744      Full_Analysis := False;
1745      Expander_Mode_Save_And_Set (False);
1746
1747      --  Normally, we suppress all checks for this preanalysis. There is no
1748      --  point in processing them now, since they will be applied properly
1749      --  and in the proper location when the default expressions reanalyzed
1750      --  and reexpanded later on. We will also have more information at that
1751      --  point for possible suppression of individual checks.
1752
1753      --  However, in SPARK mode, most expansion is suppressed, and this
1754      --  later reanalysis and reexpansion may not occur. SPARK mode does
1755      --  require the setting of checking flags for proof purposes, so we
1756      --  do the SPARK preanalysis without suppressing checks.
1757
1758      --  This special handling for SPARK mode is required for example in the
1759      --  case of Ada 2012 constructs such as quantified expressions, which are
1760      --  expanded in two separate steps.
1761
1762      if GNATprove_Mode then
1763         Analyze_And_Resolve (N, T);
1764      else
1765         Analyze_And_Resolve (N, T, Suppress => All_Checks);
1766      end if;
1767
1768      Expander_Mode_Restore;
1769      Full_Analysis := Save_Full_Analysis;
1770   end Preanalyze_And_Resolve;
1771
1772   --  Version without context type
1773
1774   procedure Preanalyze_And_Resolve (N : Node_Id) is
1775      Save_Full_Analysis : constant Boolean := Full_Analysis;
1776
1777   begin
1778      Full_Analysis := False;
1779      Expander_Mode_Save_And_Set (False);
1780
1781      Analyze (N);
1782      Resolve (N, Etype (N), Suppress => All_Checks);
1783
1784      Expander_Mode_Restore;
1785      Full_Analysis := Save_Full_Analysis;
1786   end Preanalyze_And_Resolve;
1787
1788   ----------------------------------
1789   -- Replace_Actual_Discriminants --
1790   ----------------------------------
1791
1792   procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1793      Loc : constant Source_Ptr := Sloc (N);
1794      Tsk : Node_Id := Empty;
1795
1796      function Process_Discr (Nod : Node_Id) return Traverse_Result;
1797      --  Comment needed???
1798
1799      -------------------
1800      -- Process_Discr --
1801      -------------------
1802
1803      function Process_Discr (Nod : Node_Id) return Traverse_Result is
1804         Ent : Entity_Id;
1805
1806      begin
1807         if Nkind (Nod) = N_Identifier then
1808            Ent := Entity (Nod);
1809
1810            if Present (Ent)
1811              and then Ekind (Ent) = E_Discriminant
1812            then
1813               Rewrite (Nod,
1814                 Make_Selected_Component (Loc,
1815                   Prefix        => New_Copy_Tree (Tsk, New_Sloc => Loc),
1816                   Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1817
1818               Set_Etype (Nod, Etype (Ent));
1819            end if;
1820
1821         end if;
1822
1823         return OK;
1824      end Process_Discr;
1825
1826      procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1827
1828   --  Start of processing for Replace_Actual_Discriminants
1829
1830   begin
1831      if not Expander_Active then
1832         return;
1833      end if;
1834
1835      if Nkind (Name (N)) = N_Selected_Component then
1836         Tsk := Prefix (Name (N));
1837
1838      elsif Nkind (Name (N)) = N_Indexed_Component then
1839         Tsk := Prefix (Prefix (Name (N)));
1840      end if;
1841
1842      if No (Tsk) then
1843         return;
1844      else
1845         Replace_Discrs (Default);
1846      end if;
1847   end Replace_Actual_Discriminants;
1848
1849   -------------
1850   -- Resolve --
1851   -------------
1852
1853   procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1854      Ambiguous : Boolean   := False;
1855      Ctx_Type  : Entity_Id := Typ;
1856      Expr_Type : Entity_Id := Empty; -- prevent junk warning
1857      Err_Type  : Entity_Id := Empty;
1858      Found     : Boolean   := False;
1859      From_Lib  : Boolean;
1860      I         : Interp_Index;
1861      I1        : Interp_Index := 0;  -- prevent junk warning
1862      It        : Interp;
1863      It1       : Interp;
1864      Seen      : Entity_Id := Empty; -- prevent junk warning
1865
1866      function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1867      --  Determine whether a node comes from a predefined library unit or
1868      --  Standard.
1869
1870      procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1871      --  Try and fix up a literal so that it matches its expected type. New
1872      --  literals are manufactured if necessary to avoid cascaded errors.
1873
1874      procedure Report_Ambiguous_Argument;
1875      --  Additional diagnostics when an ambiguous call has an ambiguous
1876      --  argument (typically a controlling actual).
1877
1878      procedure Resolution_Failed;
1879      --  Called when attempt at resolving current expression fails
1880
1881      ------------------------------------
1882      -- Comes_From_Predefined_Lib_Unit --
1883      -------------------------------------
1884
1885      function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1886      begin
1887         return
1888           Sloc (Nod) = Standard_Location
1889             or else Is_Predefined_File_Name
1890                       (Unit_File_Name (Get_Source_Unit (Sloc (Nod))));
1891      end Comes_From_Predefined_Lib_Unit;
1892
1893      --------------------
1894      -- Patch_Up_Value --
1895      --------------------
1896
1897      procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1898      begin
1899         if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1900            Rewrite (N,
1901              Make_Real_Literal (Sloc (N),
1902                Realval => UR_From_Uint (Intval (N))));
1903            Set_Etype (N, Universal_Real);
1904            Set_Is_Static_Expression (N);
1905
1906         elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1907            Rewrite (N,
1908              Make_Integer_Literal (Sloc (N),
1909                Intval => UR_To_Uint (Realval (N))));
1910            Set_Etype (N, Universal_Integer);
1911            Set_Is_Static_Expression (N);
1912
1913         elsif Nkind (N) = N_String_Literal
1914                 and then Is_Character_Type (Typ)
1915         then
1916            Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1917            Rewrite (N,
1918              Make_Character_Literal (Sloc (N),
1919                Chars => Name_Find,
1920                Char_Literal_Value =>
1921                  UI_From_Int (Character'Pos ('A'))));
1922            Set_Etype (N, Any_Character);
1923            Set_Is_Static_Expression (N);
1924
1925         elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1926            Rewrite (N,
1927              Make_String_Literal (Sloc (N),
1928                Strval => End_String));
1929
1930         elsif Nkind (N) = N_Range then
1931            Patch_Up_Value (Low_Bound (N),  Typ);
1932            Patch_Up_Value (High_Bound (N), Typ);
1933         end if;
1934      end Patch_Up_Value;
1935
1936      -------------------------------
1937      -- Report_Ambiguous_Argument --
1938      -------------------------------
1939
1940      procedure Report_Ambiguous_Argument is
1941         Arg : constant Node_Id := First (Parameter_Associations (N));
1942         I   : Interp_Index;
1943         It  : Interp;
1944
1945      begin
1946         if Nkind (Arg) = N_Function_Call
1947           and then Is_Entity_Name (Name (Arg))
1948           and then Is_Overloaded (Name (Arg))
1949         then
1950            Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1951
1952            --  Could use comments on what is going on here???
1953
1954            Get_First_Interp (Name (Arg), I, It);
1955            while Present (It.Nam) loop
1956               Error_Msg_Sloc := Sloc (It.Nam);
1957
1958               if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1959                  Error_Msg_N ("interpretation (inherited) #!", Arg);
1960               else
1961                  Error_Msg_N ("interpretation #!", Arg);
1962               end if;
1963
1964               Get_Next_Interp (I, It);
1965            end loop;
1966         end if;
1967      end Report_Ambiguous_Argument;
1968
1969      -----------------------
1970      -- Resolution_Failed --
1971      -----------------------
1972
1973      procedure Resolution_Failed is
1974      begin
1975         Patch_Up_Value (N, Typ);
1976         Set_Etype (N, Typ);
1977         Debug_A_Exit ("resolving  ", N, " (done, resolution failed)");
1978         Set_Is_Overloaded (N, False);
1979
1980         --  The caller will return without calling the expander, so we need
1981         --  to set the analyzed flag. Note that it is fine to set Analyzed
1982         --  to True even if we are in the middle of a shallow analysis,
1983         --  (see the spec of sem for more details) since this is an error
1984         --  situation anyway, and there is no point in repeating the
1985         --  analysis later (indeed it won't work to repeat it later, since
1986         --  we haven't got a clear resolution of which entity is being
1987         --  referenced.)
1988
1989         Set_Analyzed (N, True);
1990         return;
1991      end Resolution_Failed;
1992
1993   --  Start of processing for Resolve
1994
1995   begin
1996      if N = Error then
1997         return;
1998      end if;
1999
2000      --  Access attribute on remote subprogram cannot be used for a non-remote
2001      --  access-to-subprogram type.
2002
2003      if Nkind (N) = N_Attribute_Reference
2004        and then Nam_In (Attribute_Name (N), Name_Access,
2005                                             Name_Unrestricted_Access,
2006                                             Name_Unchecked_Access)
2007        and then Comes_From_Source (N)
2008        and then Is_Entity_Name (Prefix (N))
2009        and then Is_Subprogram (Entity (Prefix (N)))
2010        and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2011        and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2012      then
2013         Error_Msg_N
2014           ("prefix must statically denote a non-remote subprogram", N);
2015      end if;
2016
2017      From_Lib := Comes_From_Predefined_Lib_Unit (N);
2018
2019      --  If the context is a Remote_Access_To_Subprogram, access attributes
2020      --  must be resolved with the corresponding fat pointer. There is no need
2021      --  to check for the attribute name since the return type of an
2022      --  attribute is never a remote type.
2023
2024      if Nkind (N) = N_Attribute_Reference
2025        and then Comes_From_Source (N)
2026        and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2027      then
2028         declare
2029            Attr      : constant Attribute_Id :=
2030                          Get_Attribute_Id (Attribute_Name (N));
2031            Pref      : constant Node_Id      := Prefix (N);
2032            Decl      : Node_Id;
2033            Spec      : Node_Id;
2034            Is_Remote : Boolean := True;
2035
2036         begin
2037            --  Check that Typ is a remote access-to-subprogram type
2038
2039            if Is_Remote_Access_To_Subprogram_Type (Typ) then
2040
2041               --  Prefix (N) must statically denote a remote subprogram
2042               --  declared in a package specification.
2043
2044               if Attr = Attribute_Access           or else
2045                  Attr = Attribute_Unchecked_Access or else
2046                  Attr = Attribute_Unrestricted_Access
2047               then
2048                  Decl := Unit_Declaration_Node (Entity (Pref));
2049
2050                  if Nkind (Decl) = N_Subprogram_Body then
2051                     Spec := Corresponding_Spec (Decl);
2052
2053                     if Present (Spec) then
2054                        Decl := Unit_Declaration_Node (Spec);
2055                     end if;
2056                  end if;
2057
2058                  Spec := Parent (Decl);
2059
2060                  if not Is_Entity_Name (Prefix (N))
2061                    or else Nkind (Spec) /= N_Package_Specification
2062                    or else
2063                      not Is_Remote_Call_Interface (Defining_Entity (Spec))
2064                  then
2065                     Is_Remote := False;
2066                     Error_Msg_N
2067                       ("prefix must statically denote a remote subprogram ",
2068                        N);
2069                  end if;
2070
2071                  --  If we are generating code in distributed mode, perform
2072                  --  semantic checks against corresponding remote entities.
2073
2074                  if Expander_Active
2075                    and then Get_PCS_Name /= Name_No_DSA
2076                  then
2077                     Check_Subtype_Conformant
2078                       (New_Id  => Entity (Prefix (N)),
2079                        Old_Id  => Designated_Type
2080                                     (Corresponding_Remote_Type (Typ)),
2081                        Err_Loc => N);
2082
2083                     if Is_Remote then
2084                        Process_Remote_AST_Attribute (N, Typ);
2085                     end if;
2086                  end if;
2087               end if;
2088            end if;
2089         end;
2090      end if;
2091
2092      Debug_A_Entry ("resolving  ", N);
2093
2094      if Debug_Flag_V then
2095         Write_Overloads (N);
2096      end if;
2097
2098      if Comes_From_Source (N) then
2099         if Is_Fixed_Point_Type (Typ) then
2100            Check_Restriction (No_Fixed_Point, N);
2101
2102         elsif Is_Floating_Point_Type (Typ)
2103           and then Typ /= Universal_Real
2104           and then Typ /= Any_Real
2105         then
2106            Check_Restriction (No_Floating_Point, N);
2107         end if;
2108      end if;
2109
2110      --  Return if already analyzed
2111
2112      if Analyzed (N) then
2113         Debug_A_Exit ("resolving  ", N, "  (done, already analyzed)");
2114         Analyze_Dimension (N);
2115         return;
2116
2117      --  Any case of Any_Type as the Etype value means that we had a
2118      --  previous error.
2119
2120      elsif Etype (N) = Any_Type then
2121         Debug_A_Exit ("resolving  ", N, "  (done, Etype = Any_Type)");
2122         return;
2123      end if;
2124
2125      Check_Parameterless_Call (N);
2126
2127      --  The resolution of an Expression_With_Actions is determined by
2128      --  its Expression.
2129
2130      if Nkind (N) = N_Expression_With_Actions then
2131         Resolve (Expression (N), Typ);
2132
2133         Found := True;
2134         Expr_Type := Etype (Expression (N));
2135
2136      --  If not overloaded, then we know the type, and all that needs doing
2137      --  is to check that this type is compatible with the context.
2138
2139      elsif not Is_Overloaded (N) then
2140         Found := Covers (Typ, Etype (N));
2141         Expr_Type := Etype (N);
2142
2143      --  In the overloaded case, we must select the interpretation that
2144      --  is compatible with the context (i.e. the type passed to Resolve)
2145
2146      else
2147         --  Loop through possible interpretations
2148
2149         Get_First_Interp (N, I, It);
2150         Interp_Loop : while Present (It.Typ) loop
2151            if Debug_Flag_V then
2152               Write_Str ("Interp: ");
2153               Write_Interp (It);
2154            end if;
2155
2156            --  We are only interested in interpretations that are compatible
2157            --  with the expected type, any other interpretations are ignored.
2158
2159            if not Covers (Typ, It.Typ) then
2160               if Debug_Flag_V then
2161                  Write_Str ("    interpretation incompatible with context");
2162                  Write_Eol;
2163               end if;
2164
2165            else
2166               --  Skip the current interpretation if it is disabled by an
2167               --  abstract operator. This action is performed only when the
2168               --  type against which we are resolving is the same as the
2169               --  type of the interpretation.
2170
2171               if Ada_Version >= Ada_2005
2172                 and then It.Typ = Typ
2173                 and then Typ /= Universal_Integer
2174                 and then Typ /= Universal_Real
2175                 and then Present (It.Abstract_Op)
2176               then
2177                  if Debug_Flag_V then
2178                     Write_Line ("Skip.");
2179                  end if;
2180
2181                  goto Continue;
2182               end if;
2183
2184               --  First matching interpretation
2185
2186               if not Found then
2187                  Found := True;
2188                  I1    := I;
2189                  Seen  := It.Nam;
2190                  Expr_Type := It.Typ;
2191
2192               --  Matching interpretation that is not the first, maybe an
2193               --  error, but there are some cases where preference rules are
2194               --  used to choose between the two possibilities. These and
2195               --  some more obscure cases are handled in Disambiguate.
2196
2197               else
2198                  --  If the current statement is part of a predefined library
2199                  --  unit, then all interpretations which come from user level
2200                  --  packages should not be considered. Check previous and
2201                  --  current one.
2202
2203                  if From_Lib then
2204                     if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2205                        goto Continue;
2206
2207                     elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2208
2209                        --  Previous interpretation must be discarded
2210
2211                        I1 := I;
2212                        Seen := It.Nam;
2213                        Expr_Type := It.Typ;
2214                        Set_Entity (N, Seen);
2215                        goto Continue;
2216                     end if;
2217                  end if;
2218
2219                  --  Otherwise apply further disambiguation steps
2220
2221                  Error_Msg_Sloc := Sloc (Seen);
2222                  It1 := Disambiguate (N, I1, I, Typ);
2223
2224                  --  Disambiguation has succeeded. Skip the remaining
2225                  --  interpretations.
2226
2227                  if It1 /= No_Interp then
2228                     Seen := It1.Nam;
2229                     Expr_Type := It1.Typ;
2230
2231                     while Present (It.Typ) loop
2232                        Get_Next_Interp (I, It);
2233                     end loop;
2234
2235                  else
2236                     --  Before we issue an ambiguity complaint, check for
2237                     --  the case of a subprogram call where at least one
2238                     --  of the arguments is Any_Type, and if so, suppress
2239                     --  the message, since it is a cascaded error.
2240
2241                     if Nkind (N) in N_Subprogram_Call then
2242                        declare
2243                           A : Node_Id;
2244                           E : Node_Id;
2245
2246                        begin
2247                           A := First_Actual (N);
2248                           while Present (A) loop
2249                              E := A;
2250
2251                              if Nkind (E) = N_Parameter_Association then
2252                                 E := Explicit_Actual_Parameter (E);
2253                              end if;
2254
2255                              if Etype (E) = Any_Type then
2256                                 if Debug_Flag_V then
2257                                    Write_Str ("Any_Type in call");
2258                                    Write_Eol;
2259                                 end if;
2260
2261                                 exit Interp_Loop;
2262                              end if;
2263
2264                              Next_Actual (A);
2265                           end loop;
2266                        end;
2267
2268                     elsif Nkind (N) in N_Binary_Op
2269                       and then (Etype (Left_Opnd (N)) = Any_Type
2270                                  or else Etype (Right_Opnd (N)) = Any_Type)
2271                     then
2272                        exit Interp_Loop;
2273
2274                     elsif Nkind (N) in  N_Unary_Op
2275                       and then Etype (Right_Opnd (N)) = Any_Type
2276                     then
2277                        exit Interp_Loop;
2278                     end if;
2279
2280                     --  Not that special case, so issue message using the
2281                     --  flag Ambiguous to control printing of the header
2282                     --  message only at the start of an ambiguous set.
2283
2284                     if not Ambiguous then
2285                        if Nkind (N) = N_Function_Call
2286                          and then Nkind (Name (N)) = N_Explicit_Dereference
2287                        then
2288                           Error_Msg_N
2289                             ("ambiguous expression "
2290                               & "(cannot resolve indirect call)!", N);
2291                        else
2292                           Error_Msg_NE -- CODEFIX
2293                             ("ambiguous expression (cannot resolve&)!",
2294                              N, It.Nam);
2295                        end if;
2296
2297                        Ambiguous := True;
2298
2299                        if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2300                           Error_Msg_N
2301                             ("\\possible interpretation (inherited)#!", N);
2302                        else
2303                           Error_Msg_N -- CODEFIX
2304                             ("\\possible interpretation#!", N);
2305                        end if;
2306
2307                        if Nkind (N) in N_Subprogram_Call
2308                          and then Present (Parameter_Associations (N))
2309                        then
2310                           Report_Ambiguous_Argument;
2311                        end if;
2312                     end if;
2313
2314                     Error_Msg_Sloc := Sloc (It.Nam);
2315
2316                     --  By default, the error message refers to the candidate
2317                     --  interpretation. But if it is a predefined operator, it
2318                     --  is implicitly declared at the declaration of the type
2319                     --  of the operand. Recover the sloc of that declaration
2320                     --  for the error message.
2321
2322                     if Nkind (N) in N_Op
2323                       and then Scope (It.Nam) = Standard_Standard
2324                       and then not Is_Overloaded (Right_Opnd (N))
2325                       and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2326                                                             Standard_Standard
2327                     then
2328                        Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2329
2330                        if Comes_From_Source (Err_Type)
2331                          and then Present (Parent (Err_Type))
2332                        then
2333                           Error_Msg_Sloc := Sloc (Parent (Err_Type));
2334                        end if;
2335
2336                     elsif Nkind (N) in N_Binary_Op
2337                       and then Scope (It.Nam) = Standard_Standard
2338                       and then not Is_Overloaded (Left_Opnd (N))
2339                       and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2340                                                             Standard_Standard
2341                     then
2342                        Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2343
2344                        if Comes_From_Source (Err_Type)
2345                          and then Present (Parent (Err_Type))
2346                        then
2347                           Error_Msg_Sloc := Sloc (Parent (Err_Type));
2348                        end if;
2349
2350                     --  If this is an indirect call, use the subprogram_type
2351                     --  in the message, to have a meaningful location. Also
2352                     --  indicate if this is an inherited operation, created
2353                     --  by a type declaration.
2354
2355                     elsif Nkind (N) = N_Function_Call
2356                       and then Nkind (Name (N)) = N_Explicit_Dereference
2357                       and then Is_Type (It.Nam)
2358                     then
2359                        Err_Type := It.Nam;
2360                        Error_Msg_Sloc :=
2361                          Sloc (Associated_Node_For_Itype (Err_Type));
2362                     else
2363                        Err_Type := Empty;
2364                     end if;
2365
2366                     if Nkind (N) in N_Op
2367                       and then Scope (It.Nam) = Standard_Standard
2368                       and then Present (Err_Type)
2369                     then
2370                        --  Special-case the message for universal_fixed
2371                        --  operators, which are not declared with the type
2372                        --  of the operand, but appear forever in Standard.
2373
2374                        if  It.Typ = Universal_Fixed
2375                          and then Scope (It.Nam) = Standard_Standard
2376                        then
2377                           Error_Msg_N
2378                             ("\\possible interpretation as universal_fixed "
2379                              & "operation (RM 4.5.5 (19))", N);
2380                        else
2381                           Error_Msg_N
2382                             ("\\possible interpretation (predefined)#!", N);
2383                        end if;
2384
2385                     elsif
2386                       Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2387                     then
2388                        Error_Msg_N
2389                          ("\\possible interpretation (inherited)#!", N);
2390                     else
2391                        Error_Msg_N -- CODEFIX
2392                          ("\\possible interpretation#!", N);
2393                     end if;
2394
2395                  end if;
2396               end if;
2397
2398               --  We have a matching interpretation, Expr_Type is the type
2399               --  from this interpretation, and Seen is the entity.
2400
2401               --  For an operator, just set the entity name. The type will be
2402               --  set by the specific operator resolution routine.
2403
2404               if Nkind (N) in N_Op then
2405                  Set_Entity (N, Seen);
2406                  Generate_Reference (Seen, N);
2407
2408               elsif Nkind (N) = N_Case_Expression then
2409                  Set_Etype (N, Expr_Type);
2410
2411               elsif Nkind (N) = N_Character_Literal then
2412                  Set_Etype (N, Expr_Type);
2413
2414               elsif Nkind (N) = N_If_Expression then
2415                  Set_Etype (N, Expr_Type);
2416
2417               --  AI05-0139-2: Expression is overloaded because type has
2418               --  implicit dereference. If type matches context, no implicit
2419               --  dereference is involved.
2420
2421               elsif Has_Implicit_Dereference (Expr_Type) then
2422                  Set_Etype (N, Expr_Type);
2423                  Set_Is_Overloaded (N, False);
2424                  exit Interp_Loop;
2425
2426               elsif Is_Overloaded (N)
2427                 and then Present (It.Nam)
2428                 and then Ekind (It.Nam) = E_Discriminant
2429                 and then Has_Implicit_Dereference (It.Nam)
2430               then
2431                  --  If the node is a general indexing, the dereference is
2432                  --  is inserted when resolving the rewritten form, else
2433                  --  insert it now.
2434
2435                  if Nkind (N) /= N_Indexed_Component
2436                    or else No (Generalized_Indexing (N))
2437                  then
2438                     Build_Explicit_Dereference (N, It.Nam);
2439                  end if;
2440
2441               --  For an explicit dereference, attribute reference, range,
2442               --  short-circuit form (which is not an operator node), or call
2443               --  with a name that is an explicit dereference, there is
2444               --  nothing to be done at this point.
2445
2446               elsif Nkind_In (N, N_Explicit_Dereference,
2447                                  N_Attribute_Reference,
2448                                  N_And_Then,
2449                                  N_Indexed_Component,
2450                                  N_Or_Else,
2451                                  N_Range,
2452                                  N_Selected_Component,
2453                                  N_Slice)
2454                 or else Nkind (Name (N)) = N_Explicit_Dereference
2455               then
2456                  null;
2457
2458               --  For procedure or function calls, set the type of the name,
2459               --  and also the entity pointer for the prefix.
2460
2461               elsif Nkind (N) in N_Subprogram_Call
2462                 and then Is_Entity_Name (Name (N))
2463               then
2464                  Set_Etype  (Name (N), Expr_Type);
2465                  Set_Entity (Name (N), Seen);
2466                  Generate_Reference (Seen, Name (N));
2467
2468               elsif Nkind (N) = N_Function_Call
2469                 and then Nkind (Name (N)) = N_Selected_Component
2470               then
2471                  Set_Etype (Name (N), Expr_Type);
2472                  Set_Entity (Selector_Name (Name (N)), Seen);
2473                  Generate_Reference (Seen, Selector_Name (Name (N)));
2474
2475               --  For all other cases, just set the type of the Name
2476
2477               else
2478                  Set_Etype (Name (N), Expr_Type);
2479               end if;
2480
2481            end if;
2482
2483            <<Continue>>
2484
2485            --  Move to next interpretation
2486
2487            exit Interp_Loop when No (It.Typ);
2488
2489            Get_Next_Interp (I, It);
2490         end loop Interp_Loop;
2491      end if;
2492
2493      --  At this stage Found indicates whether or not an acceptable
2494      --  interpretation exists. If not, then we have an error, except that if
2495      --  the context is Any_Type as a result of some other error, then we
2496      --  suppress the error report.
2497
2498      if not Found then
2499         if Typ /= Any_Type then
2500
2501            --  If type we are looking for is Void, then this is the procedure
2502            --  call case, and the error is simply that what we gave is not a
2503            --  procedure name (we think of procedure calls as expressions with
2504            --  types internally, but the user doesn't think of them this way).
2505
2506            if Typ = Standard_Void_Type then
2507
2508               --  Special case message if function used as a procedure
2509
2510               if Nkind (N) = N_Procedure_Call_Statement
2511                 and then Is_Entity_Name (Name (N))
2512                 and then Ekind (Entity (Name (N))) = E_Function
2513               then
2514                  Error_Msg_NE
2515                    ("cannot use function & in a procedure call",
2516                     Name (N), Entity (Name (N)));
2517
2518               --  Otherwise give general message (not clear what cases this
2519               --  covers, but no harm in providing for them).
2520
2521               else
2522                  Error_Msg_N ("expect procedure name in procedure call", N);
2523               end if;
2524
2525               Found := True;
2526
2527            --  Otherwise we do have a subexpression with the wrong type
2528
2529            --  Check for the case of an allocator which uses an access type
2530            --  instead of the designated type. This is a common error and we
2531            --  specialize the message, posting an error on the operand of the
2532            --  allocator, complaining that we expected the designated type of
2533            --  the allocator.
2534
2535            elsif Nkind (N) = N_Allocator
2536              and then Is_Access_Type (Typ)
2537              and then Is_Access_Type (Etype (N))
2538              and then Designated_Type (Etype (N)) = Typ
2539            then
2540               Wrong_Type (Expression (N), Designated_Type (Typ));
2541               Found := True;
2542
2543            --  Check for view mismatch on Null in instances, for which the
2544            --  view-swapping mechanism has no identifier.
2545
2546            elsif (In_Instance or else In_Inlined_Body)
2547              and then (Nkind (N) = N_Null)
2548              and then Is_Private_Type (Typ)
2549              and then Is_Access_Type (Full_View (Typ))
2550            then
2551               Resolve (N, Full_View (Typ));
2552               Set_Etype (N, Typ);
2553               return;
2554
2555            --  Check for an aggregate. Sometimes we can get bogus aggregates
2556            --  from misuse of parentheses, and we are about to complain about
2557            --  the aggregate without even looking inside it.
2558
2559            --  Instead, if we have an aggregate of type Any_Composite, then
2560            --  analyze and resolve the component fields, and then only issue
2561            --  another message if we get no errors doing this (otherwise
2562            --  assume that the errors in the aggregate caused the problem).
2563
2564            elsif Nkind (N) = N_Aggregate
2565              and then Etype (N) = Any_Composite
2566            then
2567               --  Disable expansion in any case. If there is a type mismatch
2568               --  it may be fatal to try to expand the aggregate. The flag
2569               --  would otherwise be set to false when the error is posted.
2570
2571               Expander_Active := False;
2572
2573               declare
2574                  procedure Check_Aggr (Aggr : Node_Id);
2575                  --  Check one aggregate, and set Found to True if we have a
2576                  --  definite error in any of its elements
2577
2578                  procedure Check_Elmt (Aelmt : Node_Id);
2579                  --  Check one element of aggregate and set Found to True if
2580                  --  we definitely have an error in the element.
2581
2582                  ----------------
2583                  -- Check_Aggr --
2584                  ----------------
2585
2586                  procedure Check_Aggr (Aggr : Node_Id) is
2587                     Elmt : Node_Id;
2588
2589                  begin
2590                     if Present (Expressions (Aggr)) then
2591                        Elmt := First (Expressions (Aggr));
2592                        while Present (Elmt) loop
2593                           Check_Elmt (Elmt);
2594                           Next (Elmt);
2595                        end loop;
2596                     end if;
2597
2598                     if Present (Component_Associations (Aggr)) then
2599                        Elmt := First (Component_Associations (Aggr));
2600                        while Present (Elmt) loop
2601
2602                           --  If this is a default-initialized component, then
2603                           --  there is nothing to check. The box will be
2604                           --  replaced by the appropriate call during late
2605                           --  expansion.
2606
2607                           if not Box_Present (Elmt) then
2608                              Check_Elmt (Expression (Elmt));
2609                           end if;
2610
2611                           Next (Elmt);
2612                        end loop;
2613                     end if;
2614                  end Check_Aggr;
2615
2616                  ----------------
2617                  -- Check_Elmt --
2618                  ----------------
2619
2620                  procedure Check_Elmt (Aelmt : Node_Id) is
2621                  begin
2622                     --  If we have a nested aggregate, go inside it (to
2623                     --  attempt a naked analyze-resolve of the aggregate can
2624                     --  cause undesirable cascaded errors). Do not resolve
2625                     --  expression if it needs a type from context, as for
2626                     --  integer * fixed expression.
2627
2628                     if Nkind (Aelmt) = N_Aggregate then
2629                        Check_Aggr (Aelmt);
2630
2631                     else
2632                        Analyze (Aelmt);
2633
2634                        if not Is_Overloaded (Aelmt)
2635                          and then Etype (Aelmt) /= Any_Fixed
2636                        then
2637                           Resolve (Aelmt);
2638                        end if;
2639
2640                        if Etype (Aelmt) = Any_Type then
2641                           Found := True;
2642                        end if;
2643                     end if;
2644                  end Check_Elmt;
2645
2646               begin
2647                  Check_Aggr (N);
2648               end;
2649            end if;
2650
2651            --  Looks like we have a type error, but check for special case
2652            --  of Address wanted, integer found, with the configuration pragma
2653            --  Allow_Integer_Address active. If we have this case, introduce
2654            --  an unchecked conversion to allow the integer expression to be
2655            --  treated as an Address. The reverse case of integer wanted,
2656            --  Address found, is treated in an analogous manner.
2657
2658            if Address_Integer_Convert_OK (Typ, Etype (N)) then
2659               Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2660               Analyze_And_Resolve (N, Typ);
2661               return;
2662            end if;
2663
2664            --  That special Allow_Integer_Address check did not appply, so we
2665            --  have a real type error. If an error message was issued already,
2666            --  Found got reset to True, so if it's still False, issue standard
2667            --  Wrong_Type message.
2668
2669            if not Found then
2670               if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2671                  declare
2672                     Subp_Name : Node_Id;
2673
2674                  begin
2675                     if Is_Entity_Name (Name (N)) then
2676                        Subp_Name := Name (N);
2677
2678                     elsif Nkind (Name (N)) = N_Selected_Component then
2679
2680                        --  Protected operation: retrieve operation name
2681
2682                        Subp_Name := Selector_Name (Name (N));
2683
2684                     else
2685                        raise Program_Error;
2686                     end if;
2687
2688                     Error_Msg_Node_2 := Typ;
2689                     Error_Msg_NE
2690                       ("no visible interpretation of& "
2691                        & "matches expected type&", N, Subp_Name);
2692                  end;
2693
2694                  if All_Errors_Mode then
2695                     declare
2696                        Index : Interp_Index;
2697                        It    : Interp;
2698
2699                     begin
2700                        Error_Msg_N ("\\possible interpretations:", N);
2701
2702                        Get_First_Interp (Name (N), Index, It);
2703                        while Present (It.Nam) loop
2704                           Error_Msg_Sloc := Sloc (It.Nam);
2705                           Error_Msg_Node_2 := It.Nam;
2706                           Error_Msg_NE
2707                             ("\\  type& for & declared#", N, It.Typ);
2708                           Get_Next_Interp (Index, It);
2709                        end loop;
2710                     end;
2711
2712                  else
2713                     Error_Msg_N ("\use -gnatf for details", N);
2714                  end if;
2715
2716               else
2717                  Wrong_Type (N, Typ);
2718               end if;
2719            end if;
2720         end if;
2721
2722         Resolution_Failed;
2723         return;
2724
2725      --  Test if we have more than one interpretation for the context
2726
2727      elsif Ambiguous then
2728         Resolution_Failed;
2729         return;
2730
2731      --  Only one intepretation
2732
2733      else
2734         --  In Ada 2005, if we have something like "X : T := 2 + 2;", where
2735         --  the "+" on T is abstract, and the operands are of universal type,
2736         --  the above code will have (incorrectly) resolved the "+" to the
2737         --  universal one in Standard. Therefore check for this case and give
2738         --  an error. We can't do this earlier, because it would cause legal
2739         --  cases to get errors (when some other type has an abstract "+").
2740
2741         if Ada_Version >= Ada_2005
2742           and then Nkind (N) in N_Op
2743           and then Is_Overloaded (N)
2744           and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2745         then
2746            Get_First_Interp (N, I, It);
2747            while Present (It.Typ) loop
2748               if Present (It.Abstract_Op) and then
2749                 Etype (It.Abstract_Op) = Typ
2750               then
2751                  Error_Msg_NE
2752                    ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2753                  return;
2754               end if;
2755
2756               Get_Next_Interp (I, It);
2757            end loop;
2758         end if;
2759
2760         --  Here we have an acceptable interpretation for the context
2761
2762         --  Propagate type information and normalize tree for various
2763         --  predefined operations. If the context only imposes a class of
2764         --  types, rather than a specific type, propagate the actual type
2765         --  downward.
2766
2767         if Typ = Any_Integer or else
2768            Typ = Any_Boolean or else
2769            Typ = Any_Modular or else
2770            Typ = Any_Real    or else
2771            Typ = Any_Discrete
2772         then
2773            Ctx_Type := Expr_Type;
2774
2775            --  Any_Fixed is legal in a real context only if a specific fixed-
2776            --  point type is imposed. If Norman Cohen can be confused by this,
2777            --  it deserves a separate message.
2778
2779            if Typ = Any_Real
2780              and then Expr_Type = Any_Fixed
2781            then
2782               Error_Msg_N ("illegal context for mixed mode operation", N);
2783               Set_Etype (N, Universal_Real);
2784               Ctx_Type := Universal_Real;
2785            end if;
2786         end if;
2787
2788         --  A user-defined operator is transformed into a function call at
2789         --  this point, so that further processing knows that operators are
2790         --  really operators (i.e. are predefined operators). User-defined
2791         --  operators that are intrinsic are just renamings of the predefined
2792         --  ones, and need not be turned into calls either, but if they rename
2793         --  a different operator, we must transform the node accordingly.
2794         --  Instantiations of Unchecked_Conversion are intrinsic but are
2795         --  treated as functions, even if given an operator designator.
2796
2797         if Nkind (N) in N_Op
2798           and then Present (Entity (N))
2799           and then Ekind (Entity (N)) /= E_Operator
2800         then
2801
2802            if not Is_Predefined_Op (Entity (N)) then
2803               Rewrite_Operator_As_Call (N, Entity (N));
2804
2805            elsif Present (Alias (Entity (N)))
2806              and then
2807                Nkind (Parent (Parent (Entity (N)))) =
2808                                    N_Subprogram_Renaming_Declaration
2809            then
2810               Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2811
2812               --  If the node is rewritten, it will be fully resolved in
2813               --  Rewrite_Renamed_Operator.
2814
2815               if Analyzed (N) then
2816                  return;
2817               end if;
2818            end if;
2819         end if;
2820
2821         case N_Subexpr'(Nkind (N)) is
2822
2823            when N_Aggregate => Resolve_Aggregate                (N, Ctx_Type);
2824
2825            when N_Allocator => Resolve_Allocator                (N, Ctx_Type);
2826
2827            when N_Short_Circuit
2828                             => Resolve_Short_Circuit            (N, Ctx_Type);
2829
2830            when N_Attribute_Reference
2831                             => Resolve_Attribute                (N, Ctx_Type);
2832
2833            when N_Case_Expression
2834                             => Resolve_Case_Expression          (N, Ctx_Type);
2835
2836            when N_Character_Literal
2837                             => Resolve_Character_Literal        (N, Ctx_Type);
2838
2839            when N_Expanded_Name
2840                             => Resolve_Entity_Name              (N, Ctx_Type);
2841
2842            when N_Explicit_Dereference
2843                             => Resolve_Explicit_Dereference     (N, Ctx_Type);
2844
2845            when N_Expression_With_Actions
2846                             => Resolve_Expression_With_Actions  (N, Ctx_Type);
2847
2848            when N_Extension_Aggregate
2849                             => Resolve_Extension_Aggregate      (N, Ctx_Type);
2850
2851            when N_Function_Call
2852                             => Resolve_Call                     (N, Ctx_Type);
2853
2854            when N_Identifier
2855                             => Resolve_Entity_Name              (N, Ctx_Type);
2856
2857            when N_If_Expression
2858                             => Resolve_If_Expression            (N, Ctx_Type);
2859
2860            when N_Indexed_Component
2861                             => Resolve_Indexed_Component        (N, Ctx_Type);
2862
2863            when N_Integer_Literal
2864                             => Resolve_Integer_Literal          (N, Ctx_Type);
2865
2866            when N_Membership_Test
2867                             => Resolve_Membership_Op            (N, Ctx_Type);
2868
2869            when N_Null      => Resolve_Null                     (N, Ctx_Type);
2870
2871            when N_Op_And | N_Op_Or | N_Op_Xor
2872                             => Resolve_Logical_Op               (N, Ctx_Type);
2873
2874            when N_Op_Eq | N_Op_Ne
2875                             => Resolve_Equality_Op              (N, Ctx_Type);
2876
2877            when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2878                             => Resolve_Comparison_Op            (N, Ctx_Type);
2879
2880            when N_Op_Not    => Resolve_Op_Not                   (N, Ctx_Type);
2881
2882            when N_Op_Add    | N_Op_Subtract | N_Op_Multiply |
2883                 N_Op_Divide | N_Op_Mod      | N_Op_Rem
2884
2885                             => Resolve_Arithmetic_Op            (N, Ctx_Type);
2886
2887            when N_Op_Concat => Resolve_Op_Concat                (N, Ctx_Type);
2888
2889            when N_Op_Expon  => Resolve_Op_Expon                 (N, Ctx_Type);
2890
2891            when N_Op_Plus | N_Op_Minus  | N_Op_Abs
2892                             => Resolve_Unary_Op                 (N, Ctx_Type);
2893
2894            when N_Op_Shift  => Resolve_Shift                    (N, Ctx_Type);
2895
2896            when N_Procedure_Call_Statement
2897                             => Resolve_Call                     (N, Ctx_Type);
2898
2899            when N_Operator_Symbol
2900                             => Resolve_Operator_Symbol          (N, Ctx_Type);
2901
2902            when N_Qualified_Expression
2903                             => Resolve_Qualified_Expression     (N, Ctx_Type);
2904
2905            --  Why is the following null, needs a comment ???
2906
2907            when N_Quantified_Expression
2908                             => null;
2909
2910            when N_Raise_Expression
2911                             => Resolve_Raise_Expression         (N, Ctx_Type);
2912
2913            when N_Raise_xxx_Error
2914                             => Set_Etype (N, Ctx_Type);
2915
2916            when N_Range     => Resolve_Range                    (N, Ctx_Type);
2917
2918            when N_Real_Literal
2919                             => Resolve_Real_Literal             (N, Ctx_Type);
2920
2921            when N_Reference => Resolve_Reference                (N, Ctx_Type);
2922
2923            when N_Selected_Component
2924                             => Resolve_Selected_Component       (N, Ctx_Type);
2925
2926            when N_Slice     => Resolve_Slice                    (N, Ctx_Type);
2927
2928            when N_String_Literal
2929                             => Resolve_String_Literal           (N, Ctx_Type);
2930
2931            when N_Type_Conversion
2932                             => Resolve_Type_Conversion          (N, Ctx_Type);
2933
2934            when N_Unchecked_Expression =>
2935               Resolve_Unchecked_Expression                      (N, Ctx_Type);
2936
2937            when N_Unchecked_Type_Conversion =>
2938               Resolve_Unchecked_Type_Conversion                 (N, Ctx_Type);
2939         end case;
2940
2941         --  Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2942         --  expression of an anonymous access type that occurs in the context
2943         --  of a named general access type, except when the expression is that
2944         --  of a membership test. This ensures proper legality checking in
2945         --  terms of allowed conversions (expressions that would be illegal to
2946         --  convert implicitly are allowed in membership tests).
2947
2948         if Ada_Version >= Ada_2012
2949           and then Ekind (Ctx_Type) = E_General_Access_Type
2950           and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2951           and then Nkind (Parent (N)) not in N_Membership_Test
2952         then
2953            Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2954            Analyze_And_Resolve (N, Ctx_Type);
2955         end if;
2956
2957         --  If the subexpression was replaced by a non-subexpression, then
2958         --  all we do is to expand it. The only legitimate case we know of
2959         --  is converting procedure call statement to entry call statements,
2960         --  but there may be others, so we are making this test general.
2961
2962         if Nkind (N) not in N_Subexpr then
2963            Debug_A_Exit ("resolving  ", N, "  (done)");
2964            Expand (N);
2965            return;
2966         end if;
2967
2968         --  The expression is definitely NOT overloaded at this point, so
2969         --  we reset the Is_Overloaded flag to avoid any confusion when
2970         --  reanalyzing the node.
2971
2972         Set_Is_Overloaded (N, False);
2973
2974         --  Freeze expression type, entity if it is a name, and designated
2975         --  type if it is an allocator (RM 13.14(10,11,13)).
2976
2977         --  Now that the resolution of the type of the node is complete, and
2978         --  we did not detect an error, we can expand this node. We skip the
2979         --  expand call if we are in a default expression, see section
2980         --  "Handling of Default Expressions" in Sem spec.
2981
2982         Debug_A_Exit ("resolving  ", N, "  (done)");
2983
2984         --  We unconditionally freeze the expression, even if we are in
2985         --  default expression mode (the Freeze_Expression routine tests this
2986         --  flag and only freezes static types if it is set).
2987
2988         --  Ada 2012 (AI05-177): The declaration of an expression function
2989         --  does not cause freezing, but we never reach here in that case.
2990         --  Here we are resolving the corresponding expanded body, so we do
2991         --  need to perform normal freezing.
2992
2993         Freeze_Expression (N);
2994
2995         --  Now we can do the expansion
2996
2997         Expand (N);
2998      end if;
2999   end Resolve;
3000
3001   -------------
3002   -- Resolve --
3003   -------------
3004
3005   --  Version with check(s) suppressed
3006
3007   procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3008   begin
3009      if Suppress = All_Checks then
3010         declare
3011            Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3012         begin
3013            Scope_Suppress.Suppress := (others => True);
3014            Resolve (N, Typ);
3015            Scope_Suppress.Suppress := Sva;
3016         end;
3017
3018      else
3019         declare
3020            Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3021         begin
3022            Scope_Suppress.Suppress (Suppress) := True;
3023            Resolve (N, Typ);
3024            Scope_Suppress.Suppress (Suppress) := Svg;
3025         end;
3026      end if;
3027   end Resolve;
3028
3029   -------------
3030   -- Resolve --
3031   -------------
3032
3033   --  Version with implicit type
3034
3035   procedure Resolve (N : Node_Id) is
3036   begin
3037      Resolve (N, Etype (N));
3038   end Resolve;
3039
3040   ---------------------
3041   -- Resolve_Actuals --
3042   ---------------------
3043
3044   procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3045      Loc    : constant Source_Ptr := Sloc (N);
3046      A      : Node_Id;
3047      A_Id   : Entity_Id;
3048      A_Typ  : Entity_Id;
3049      F      : Entity_Id;
3050      F_Typ  : Entity_Id;
3051      Prev   : Node_Id := Empty;
3052      Orig_A : Node_Id;
3053
3054      procedure Check_Aliased_Parameter;
3055      --  Check rules on aliased parameters and related accessibility rules
3056      --  in (RM 3.10.2 (10.2-10.4)).
3057
3058      procedure Check_Argument_Order;
3059      --  Performs a check for the case where the actuals are all simple
3060      --  identifiers that correspond to the formal names, but in the wrong
3061      --  order, which is considered suspicious and cause for a warning.
3062
3063      procedure Check_Prefixed_Call;
3064      --  If the original node is an overloaded call in prefix notation,
3065      --  insert an 'Access or a dereference as needed over the first actual.
3066      --  Try_Object_Operation has already verified that there is a valid
3067      --  interpretation, but the form of the actual can only be determined
3068      --  once the primitive operation is identified.
3069
3070      procedure Insert_Default;
3071      --  If the actual is missing in a call, insert in the actuals list
3072      --  an instance of the default expression. The insertion is always
3073      --  a named association.
3074
3075      procedure Property_Error
3076        (Var      : Node_Id;
3077         Var_Id   : Entity_Id;
3078         Prop_Nam : Name_Id);
3079      --  Emit an error concerning variable Var with entity Var_Id that has
3080      --  enabled property Prop_Nam when it acts as an actual parameter in a
3081      --  call and the corresponding formal parameter is of mode IN.
3082
3083      function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3084      --  Check whether T1 and T2, or their full views, are derived from a
3085      --  common type. Used to enforce the restrictions on array conversions
3086      --  of AI95-00246.
3087
3088      function Static_Concatenation (N : Node_Id) return Boolean;
3089      --  Predicate to determine whether an actual that is a concatenation
3090      --  will be evaluated statically and does not need a transient scope.
3091      --  This must be determined before the actual is resolved and expanded
3092      --  because if needed the transient scope must be introduced earlier.
3093
3094      -----------------------------
3095      -- Check_Aliased_Parameter --
3096      -----------------------------
3097
3098      procedure Check_Aliased_Parameter is
3099         Nominal_Subt : Entity_Id;
3100
3101      begin
3102         if Is_Aliased (F) then
3103            if Is_Tagged_Type (A_Typ) then
3104               null;
3105
3106            elsif Is_Aliased_View (A) then
3107               if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3108                  Nominal_Subt := Base_Type (A_Typ);
3109               else
3110                  Nominal_Subt := A_Typ;
3111               end if;
3112
3113               if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3114                  null;
3115
3116               --  In a generic body assume the worst for generic formals:
3117               --  they can have a constrained partial view (AI05-041).
3118
3119               elsif Has_Discriminants (F_Typ)
3120                 and then not Is_Constrained (F_Typ)
3121                 and then not Has_Constrained_Partial_View (F_Typ)
3122                 and then not Is_Generic_Type (F_Typ)
3123               then
3124                  null;
3125
3126               else
3127                  Error_Msg_NE ("untagged actual does not match "
3128                                & "aliased formal&", A, F);
3129               end if;
3130
3131            else
3132               Error_Msg_NE ("actual for aliased formal& must be "
3133                             & "aliased object", A, F);
3134            end if;
3135
3136            if Ekind (Nam) = E_Procedure then
3137               null;
3138
3139            elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3140               if Nkind (Parent (N)) = N_Type_Conversion
3141                 and then Type_Access_Level (Etype (Parent (N))) <
3142                                                        Object_Access_Level (A)
3143               then
3144                  Error_Msg_N ("aliased actual has wrong accessibility", A);
3145               end if;
3146
3147            elsif Nkind (Parent (N)) = N_Qualified_Expression
3148              and then Nkind (Parent (Parent (N))) = N_Allocator
3149              and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3150                                                        Object_Access_Level (A)
3151            then
3152               Error_Msg_N
3153                 ("aliased actual in allocator has wrong accessibility", A);
3154            end if;
3155         end if;
3156      end Check_Aliased_Parameter;
3157
3158      --------------------------
3159      -- Check_Argument_Order --
3160      --------------------------
3161
3162      procedure Check_Argument_Order is
3163      begin
3164         --  Nothing to do if no parameters, or original node is neither a
3165         --  function call nor a procedure call statement (happens in the
3166         --  operator-transformed-to-function call case), or the call does
3167         --  not come from source, or this warning is off.
3168
3169         if not Warn_On_Parameter_Order
3170           or else No (Parameter_Associations (N))
3171           or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3172           or else not Comes_From_Source (N)
3173         then
3174            return;
3175         end if;
3176
3177         declare
3178            Nargs : constant Nat := List_Length (Parameter_Associations (N));
3179
3180         begin
3181            --  Nothing to do if only one parameter
3182
3183            if Nargs < 2 then
3184               return;
3185            end if;
3186
3187            --  Here if at least two arguments
3188
3189            declare
3190               Actuals : array (1 .. Nargs) of Node_Id;
3191               Actual  : Node_Id;
3192               Formal  : Node_Id;
3193
3194               Wrong_Order : Boolean := False;
3195               --  Set True if an out of order case is found
3196
3197            begin
3198               --  Collect identifier names of actuals, fail if any actual is
3199               --  not a simple identifier, and record max length of name.
3200
3201               Actual := First (Parameter_Associations (N));
3202               for J in Actuals'Range loop
3203                  if Nkind (Actual) /= N_Identifier then
3204                     return;
3205                  else
3206                     Actuals (J) := Actual;
3207                     Next (Actual);
3208                  end if;
3209               end loop;
3210
3211               --  If we got this far, all actuals are identifiers and the list
3212               --  of their names is stored in the Actuals array.
3213
3214               Formal := First_Formal (Nam);
3215               for J in Actuals'Range loop
3216
3217                  --  If we ran out of formals, that's odd, probably an error
3218                  --  which will be detected elsewhere, but abandon the search.
3219
3220                  if No (Formal) then
3221                     return;
3222                  end if;
3223
3224                  --  If name matches and is in order OK
3225
3226                  if Chars (Formal) = Chars (Actuals (J)) then
3227                     null;
3228
3229                  else
3230                     --  If no match, see if it is elsewhere in list and if so
3231                     --  flag potential wrong order if type is compatible.
3232
3233                     for K in Actuals'Range loop
3234                        if Chars (Formal) = Chars (Actuals (K))
3235                          and then
3236                            Has_Compatible_Type (Actuals (K), Etype (Formal))
3237                        then
3238                           Wrong_Order := True;
3239                           goto Continue;
3240                        end if;
3241                     end loop;
3242
3243                     --  No match
3244
3245                     return;
3246                  end if;
3247
3248                  <<Continue>> Next_Formal (Formal);
3249               end loop;
3250
3251               --  If Formals left over, also probably an error, skip warning
3252
3253               if Present (Formal) then
3254                  return;
3255               end if;
3256
3257               --  Here we give the warning if something was out of order
3258
3259               if Wrong_Order then
3260                  Error_Msg_N
3261                    ("?P?actuals for this call may be in wrong order", N);
3262               end if;
3263            end;
3264         end;
3265      end Check_Argument_Order;
3266
3267      -------------------------
3268      -- Check_Prefixed_Call --
3269      -------------------------
3270
3271      procedure Check_Prefixed_Call is
3272         Act    : constant Node_Id   := First_Actual (N);
3273         A_Type : constant Entity_Id := Etype (Act);
3274         F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3275         Orig   : constant Node_Id := Original_Node (N);
3276         New_A  : Node_Id;
3277
3278      begin
3279         --  Check whether the call is a prefixed call, with or without
3280         --  additional actuals.
3281
3282         if Nkind (Orig) = N_Selected_Component
3283           or else
3284             (Nkind (Orig) = N_Indexed_Component
3285               and then Nkind (Prefix (Orig)) = N_Selected_Component
3286               and then Is_Entity_Name (Prefix (Prefix (Orig)))
3287               and then Is_Entity_Name (Act)
3288               and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3289         then
3290            if Is_Access_Type (A_Type)
3291              and then not Is_Access_Type (F_Type)
3292            then
3293               --  Introduce dereference on object in prefix
3294
3295               New_A :=
3296                 Make_Explicit_Dereference (Sloc (Act),
3297                   Prefix => Relocate_Node (Act));
3298               Rewrite (Act, New_A);
3299               Analyze (Act);
3300
3301            elsif Is_Access_Type (F_Type)
3302              and then not Is_Access_Type (A_Type)
3303            then
3304               --  Introduce an implicit 'Access in prefix
3305
3306               if not Is_Aliased_View (Act) then
3307                  Error_Msg_NE
3308                    ("object in prefixed call to& must be aliased "
3309                     & "(RM 4.1.3 (13 1/2))",
3310                    Prefix (Act), Nam);
3311               end if;
3312
3313               Rewrite (Act,
3314                 Make_Attribute_Reference (Loc,
3315                   Attribute_Name => Name_Access,
3316                   Prefix         => Relocate_Node (Act)));
3317            end if;
3318
3319            Analyze (Act);
3320         end if;
3321      end Check_Prefixed_Call;
3322
3323      --------------------
3324      -- Insert_Default --
3325      --------------------
3326
3327      procedure Insert_Default is
3328         Actval : Node_Id;
3329         Assoc  : Node_Id;
3330
3331      begin
3332         --  Missing argument in call, nothing to insert
3333
3334         if No (Default_Value (F)) then
3335            return;
3336
3337         else
3338            --  Note that we do a full New_Copy_Tree, so that any associated
3339            --  Itypes are properly copied. This may not be needed any more,
3340            --  but it does no harm as a safety measure. Defaults of a generic
3341            --  formal may be out of bounds of the corresponding actual (see
3342            --  cc1311b) and an additional check may be required.
3343
3344            Actval :=
3345              New_Copy_Tree
3346                (Default_Value (F),
3347                 New_Scope => Current_Scope,
3348                 New_Sloc  => Loc);
3349
3350            if Is_Concurrent_Type (Scope (Nam))
3351              and then Has_Discriminants (Scope (Nam))
3352            then
3353               Replace_Actual_Discriminants (N, Actval);
3354            end if;
3355
3356            if Is_Overloadable (Nam)
3357              and then Present (Alias (Nam))
3358            then
3359               if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3360                 and then not Is_Tagged_Type (Etype (F))
3361               then
3362                  --  If default is a real literal, do not introduce a
3363                  --  conversion whose effect may depend on the run-time
3364                  --  size of universal real.
3365
3366                  if Nkind (Actval) = N_Real_Literal then
3367                     Set_Etype (Actval, Base_Type (Etype (F)));
3368                  else
3369                     Actval := Unchecked_Convert_To (Etype (F), Actval);
3370                  end if;
3371               end if;
3372
3373               if Is_Scalar_Type (Etype (F)) then
3374                  Enable_Range_Check (Actval);
3375               end if;
3376
3377               Set_Parent (Actval, N);
3378
3379               --  Resolve aggregates with their base type, to avoid scope
3380               --  anomalies: the subtype was first built in the subprogram
3381               --  declaration, and the current call may be nested.
3382
3383               if Nkind (Actval) = N_Aggregate then
3384                  Analyze_And_Resolve (Actval, Etype (F));
3385               else
3386                  Analyze_And_Resolve (Actval, Etype (Actval));
3387               end if;
3388
3389            else
3390               Set_Parent (Actval, N);
3391
3392               --  See note above concerning aggregates
3393
3394               if Nkind (Actval) = N_Aggregate
3395                 and then Has_Discriminants (Etype (Actval))
3396               then
3397                  Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3398
3399               --  Resolve entities with their own type, which may differ from
3400               --  the type of a reference in a generic context (the view
3401               --  swapping mechanism did not anticipate the re-analysis of
3402               --  default values in calls).
3403
3404               elsif Is_Entity_Name (Actval) then
3405                  Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3406
3407               else
3408                  Analyze_And_Resolve (Actval, Etype (Actval));
3409               end if;
3410            end if;
3411
3412            --  If default is a tag indeterminate function call, propagate tag
3413            --  to obtain proper dispatching.
3414
3415            if Is_Controlling_Formal (F)
3416              and then Nkind (Default_Value (F)) = N_Function_Call
3417            then
3418               Set_Is_Controlling_Actual (Actval);
3419            end if;
3420
3421         end if;
3422
3423         --  If the default expression raises constraint error, then just
3424         --  silently replace it with an N_Raise_Constraint_Error node, since
3425         --  we already gave the warning on the subprogram spec. If node is
3426         --  already a Raise_Constraint_Error leave as is, to prevent loops in
3427         --  the warnings removal machinery.
3428
3429         if Raises_Constraint_Error (Actval)
3430           and then Nkind (Actval) /= N_Raise_Constraint_Error
3431         then
3432            Rewrite (Actval,
3433              Make_Raise_Constraint_Error (Loc,
3434                Reason => CE_Range_Check_Failed));
3435            Set_Raises_Constraint_Error (Actval);
3436            Set_Etype (Actval, Etype (F));
3437         end if;
3438
3439         Assoc :=
3440           Make_Parameter_Association (Loc,
3441             Explicit_Actual_Parameter => Actval,
3442             Selector_Name => Make_Identifier (Loc, Chars (F)));
3443
3444         --  Case of insertion is first named actual
3445
3446         if No (Prev) or else
3447            Nkind (Parent (Prev)) /= N_Parameter_Association
3448         then
3449            Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3450            Set_First_Named_Actual (N, Actval);
3451
3452            if No (Prev) then
3453               if No (Parameter_Associations (N)) then
3454                  Set_Parameter_Associations (N, New_List (Assoc));
3455               else
3456                  Append (Assoc, Parameter_Associations (N));
3457               end if;
3458
3459            else
3460               Insert_After (Prev, Assoc);
3461            end if;
3462
3463         --  Case of insertion is not first named actual
3464
3465         else
3466            Set_Next_Named_Actual
3467              (Assoc, Next_Named_Actual (Parent (Prev)));
3468            Set_Next_Named_Actual (Parent (Prev), Actval);
3469            Append (Assoc, Parameter_Associations (N));
3470         end if;
3471
3472         Mark_Rewrite_Insertion (Assoc);
3473         Mark_Rewrite_Insertion (Actval);
3474
3475         Prev := Actval;
3476      end Insert_Default;
3477
3478      --------------------
3479      -- Property_Error --
3480      --------------------
3481
3482      procedure Property_Error
3483        (Var      : Node_Id;
3484         Var_Id   : Entity_Id;
3485         Prop_Nam : Name_Id)
3486      is
3487      begin
3488         Error_Msg_Name_1 := Prop_Nam;
3489         Error_Msg_NE
3490           ("external variable & with enabled property % cannot appear as "
3491            & "actual in procedure call (SPARK RM 7.1.3(11))", Var, Var_Id);
3492         Error_Msg_N ("\\corresponding formal parameter has mode In", Var);
3493      end Property_Error;
3494
3495      -------------------
3496      -- Same_Ancestor --
3497      -------------------
3498
3499      function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3500         FT1 : Entity_Id := T1;
3501         FT2 : Entity_Id := T2;
3502
3503      begin
3504         if Is_Private_Type (T1)
3505           and then Present (Full_View (T1))
3506         then
3507            FT1 := Full_View (T1);
3508         end if;
3509
3510         if Is_Private_Type (T2)
3511           and then Present (Full_View (T2))
3512         then
3513            FT2 := Full_View (T2);
3514         end if;
3515
3516         return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3517      end Same_Ancestor;
3518
3519      --------------------------
3520      -- Static_Concatenation --
3521      --------------------------
3522
3523      function Static_Concatenation (N : Node_Id) return Boolean is
3524      begin
3525         case Nkind (N) is
3526            when N_String_Literal =>
3527               return True;
3528
3529            when N_Op_Concat =>
3530
3531               --  Concatenation is static when both operands are static and
3532               --  the concatenation operator is a predefined one.
3533
3534               return Scope (Entity (N)) = Standard_Standard
3535                        and then
3536                      Static_Concatenation (Left_Opnd (N))
3537                        and then
3538                      Static_Concatenation (Right_Opnd (N));
3539
3540            when others =>
3541               if Is_Entity_Name (N) then
3542                  declare
3543                     Ent : constant Entity_Id := Entity (N);
3544                  begin
3545                     return Ekind (Ent) = E_Constant
3546                              and then Present (Constant_Value (Ent))
3547                              and then
3548                                Is_OK_Static_Expression (Constant_Value (Ent));
3549                  end;
3550
3551               else
3552                  return False;
3553               end if;
3554         end case;
3555      end Static_Concatenation;
3556
3557   --  Start of processing for Resolve_Actuals
3558
3559   begin
3560      Check_Argument_Order;
3561      Check_Function_Writable_Actuals (N);
3562
3563      if Present (First_Actual (N)) then
3564         Check_Prefixed_Call;
3565      end if;
3566
3567      A := First_Actual (N);
3568      F := First_Formal (Nam);
3569      while Present (F) loop
3570         if No (A) and then Needs_No_Actuals (Nam) then
3571            null;
3572
3573         --  If we have an error in any actual or formal, indicated by a type
3574         --  of Any_Type, then abandon resolution attempt, and set result type
3575         --  to Any_Type. Skip this if the actual is a Raise_Expression, whose
3576         --  type is imposed from context.
3577
3578         elsif (Present (A) and then Etype (A) = Any_Type)
3579           or else Etype (F) = Any_Type
3580         then
3581            if Nkind (A) /= N_Raise_Expression then
3582               Set_Etype (N, Any_Type);
3583               return;
3584            end if;
3585         end if;
3586
3587         --  Case where actual is present
3588
3589         --  If the actual is an entity, generate a reference to it now. We
3590         --  do this before the actual is resolved, because a formal of some
3591         --  protected subprogram, or a task discriminant, will be rewritten
3592         --  during expansion, and the source entity reference may be lost.
3593
3594         if Present (A)
3595           and then Is_Entity_Name (A)
3596           and then Comes_From_Source (N)
3597         then
3598            Orig_A := Entity (A);
3599
3600            if Present (Orig_A) then
3601               if Is_Formal (Orig_A)
3602                 and then Ekind (F) /= E_In_Parameter
3603               then
3604                  Generate_Reference (Orig_A, A, 'm');
3605
3606               elsif not Is_Overloaded (A) then
3607                  if Ekind (F) /= E_Out_Parameter then
3608                     Generate_Reference (Orig_A, A);
3609
3610                  --  RM 6.4.1(12): For an out parameter that is passed by
3611                  --  copy, the formal parameter object is created, and:
3612
3613                  --  * For an access type, the formal parameter is initialized
3614                  --    from the value of the actual, without checking that the
3615                  --    value satisfies any constraint, any predicate, or any
3616                  --    exclusion of the null value.
3617
3618                  --  * For a scalar type that has the Default_Value aspect
3619                  --    specified, the formal parameter is initialized from the
3620                  --    value of the actual, without checking that the value
3621                  --    satisfies any constraint or any predicate.
3622                  --  I do not understand why this case is included??? this is
3623                  --  not a case where an OUT parameter is treated as IN OUT.
3624
3625                  --  * For a composite type with discriminants or that has
3626                  --    implicit initial values for any subcomponents, the
3627                  --    behavior is as for an in out parameter passed by copy.
3628
3629                  --  Hence for these cases we generate the read reference now
3630                  --  (the write reference will be generated later by
3631                  --   Note_Possible_Modification).
3632
3633                  elsif Is_By_Copy_Type (Etype (F))
3634                    and then
3635                      (Is_Access_Type (Etype (F))
3636                         or else
3637                           (Is_Scalar_Type (Etype (F))
3638                              and then
3639                                Present (Default_Aspect_Value (Etype (F))))
3640                         or else
3641                           (Is_Composite_Type (Etype (F))
3642                              and then (Has_Discriminants (Etype (F))
3643                                         or else Is_Partially_Initialized_Type
3644                                                   (Etype (F)))))
3645                  then
3646                     Generate_Reference (Orig_A, A);
3647                  end if;
3648               end if;
3649            end if;
3650         end if;
3651
3652         if Present (A)
3653           and then (Nkind (Parent (A)) /= N_Parameter_Association
3654                      or else Chars (Selector_Name (Parent (A))) = Chars (F))
3655         then
3656            --  If style checking mode on, check match of formal name
3657
3658            if Style_Check then
3659               if Nkind (Parent (A)) = N_Parameter_Association then
3660                  Check_Identifier (Selector_Name (Parent (A)), F);
3661               end if;
3662            end if;
3663
3664            --  If the formal is Out or In_Out, do not resolve and expand the
3665            --  conversion, because it is subsequently expanded into explicit
3666            --  temporaries and assignments. However, the object of the
3667            --  conversion can be resolved. An exception is the case of tagged
3668            --  type conversion with a class-wide actual. In that case we want
3669            --  the tag check to occur and no temporary will be needed (no
3670            --  representation change can occur) and the parameter is passed by
3671            --  reference, so we go ahead and resolve the type conversion.
3672            --  Another exception is the case of reference to component or
3673            --  subcomponent of a bit-packed array, in which case we want to
3674            --  defer expansion to the point the in and out assignments are
3675            --  performed.
3676
3677            if Ekind (F) /= E_In_Parameter
3678              and then Nkind (A) = N_Type_Conversion
3679              and then not Is_Class_Wide_Type (Etype (Expression (A)))
3680            then
3681               if Ekind (F) = E_In_Out_Parameter
3682                 and then Is_Array_Type (Etype (F))
3683               then
3684                  --  In a view conversion, the conversion must be legal in
3685                  --  both directions, and thus both component types must be
3686                  --  aliased, or neither (4.6 (8)).
3687
3688                  --  The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3689                  --  the privacy requirement should not apply to generic
3690                  --  types, and should be checked in an instance. ARG query
3691                  --  is in order ???
3692
3693                  if Has_Aliased_Components (Etype (Expression (A))) /=
3694                     Has_Aliased_Components (Etype (F))
3695                  then
3696                     Error_Msg_N
3697                       ("both component types in a view conversion must be"
3698                         & " aliased, or neither", A);
3699
3700                  --  Comment here??? what set of cases???
3701
3702                  elsif
3703                     not Same_Ancestor (Etype (F), Etype (Expression (A)))
3704                  then
3705                     --  Check view conv between unrelated by ref array types
3706
3707                     if Is_By_Reference_Type (Etype (F))
3708                        or else Is_By_Reference_Type (Etype (Expression (A)))
3709                     then
3710                        Error_Msg_N
3711                          ("view conversion between unrelated by reference "
3712                           & "array types not allowed (\'A'I-00246)", A);
3713
3714                     --  In Ada 2005 mode, check view conversion component
3715                     --  type cannot be private, tagged, or volatile. Note
3716                     --  that we only apply this to source conversions. The
3717                     --  generated code can contain conversions which are
3718                     --  not subject to this test, and we cannot extract the
3719                     --  component type in such cases since it is not present.
3720
3721                     elsif Comes_From_Source (A)
3722                       and then Ada_Version >= Ada_2005
3723                     then
3724                        declare
3725                           Comp_Type : constant Entity_Id :=
3726                                         Component_Type
3727                                           (Etype (Expression (A)));
3728                        begin
3729                           if (Is_Private_Type (Comp_Type)
3730                                 and then not Is_Generic_Type (Comp_Type))
3731                             or else Is_Tagged_Type (Comp_Type)
3732                             or else Is_Volatile (Comp_Type)
3733                           then
3734                              Error_Msg_N
3735                                ("component type of a view conversion cannot"
3736                                   & " be private, tagged, or volatile"
3737                                   & " (RM 4.6 (24))",
3738                                   Expression (A));
3739                           end if;
3740                        end;
3741                     end if;
3742                  end if;
3743               end if;
3744
3745               --  Resolve expression if conversion is all OK
3746
3747               if (Conversion_OK (A)
3748                    or else Valid_Conversion (A, Etype (A), Expression (A)))
3749                 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3750               then
3751                  Resolve (Expression (A));
3752               end if;
3753
3754            --  If the actual is a function call that returns a limited
3755            --  unconstrained object that needs finalization, create a
3756            --  transient scope for it, so that it can receive the proper
3757            --  finalization list.
3758
3759            elsif Nkind (A) = N_Function_Call
3760              and then Is_Limited_Record (Etype (F))
3761              and then not Is_Constrained (Etype (F))
3762              and then Expander_Active
3763              and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3764            then
3765               Establish_Transient_Scope (A, Sec_Stack => False);
3766               Resolve (A, Etype (F));
3767
3768            --  A small optimization: if one of the actuals is a concatenation
3769            --  create a block around a procedure call to recover stack space.
3770            --  This alleviates stack usage when several procedure calls in
3771            --  the same statement list use concatenation. We do not perform
3772            --  this wrapping for code statements, where the argument is a
3773            --  static string, and we want to preserve warnings involving
3774            --  sequences of such statements.
3775
3776            elsif Nkind (A) = N_Op_Concat
3777              and then Nkind (N) = N_Procedure_Call_Statement
3778              and then Expander_Active
3779              and then
3780                not (Is_Intrinsic_Subprogram (Nam)
3781                      and then Chars (Nam) = Name_Asm)
3782              and then not Static_Concatenation (A)
3783            then
3784               Establish_Transient_Scope (A, Sec_Stack => False);
3785               Resolve (A, Etype (F));
3786
3787            else
3788               if Nkind (A) = N_Type_Conversion
3789                 and then Is_Array_Type (Etype (F))
3790                 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3791                 and then
3792                  (Is_Limited_Type (Etype (F))
3793                    or else Is_Limited_Type (Etype (Expression (A))))
3794               then
3795                  Error_Msg_N
3796                    ("conversion between unrelated limited array types "
3797                     & "not allowed ('A'I-00246)", A);
3798
3799                  if Is_Limited_Type (Etype (F)) then
3800                     Explain_Limited_Type (Etype (F), A);
3801                  end if;
3802
3803                  if Is_Limited_Type (Etype (Expression (A))) then
3804                     Explain_Limited_Type (Etype (Expression (A)), A);
3805                  end if;
3806               end if;
3807
3808               --  (Ada 2005: AI-251): If the actual is an allocator whose
3809               --  directly designated type is a class-wide interface, we build
3810               --  an anonymous access type to use it as the type of the
3811               --  allocator. Later, when the subprogram call is expanded, if
3812               --  the interface has a secondary dispatch table the expander
3813               --  will add a type conversion to force the correct displacement
3814               --  of the pointer.
3815
3816               if Nkind (A) = N_Allocator then
3817                  declare
3818                     DDT : constant Entity_Id :=
3819                             Directly_Designated_Type (Base_Type (Etype (F)));
3820
3821                     New_Itype : Entity_Id;
3822
3823                  begin
3824                     if Is_Class_Wide_Type (DDT)
3825                       and then Is_Interface (DDT)
3826                     then
3827                        New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3828                        Set_Etype (New_Itype, Etype (A));
3829                        Set_Directly_Designated_Type
3830                          (New_Itype, Directly_Designated_Type (Etype (A)));
3831                        Set_Etype (A, New_Itype);
3832                     end if;
3833
3834                     --  Ada 2005, AI-162:If the actual is an allocator, the
3835                     --  innermost enclosing statement is the master of the
3836                     --  created object. This needs to be done with expansion
3837                     --  enabled only, otherwise the transient scope will not
3838                     --  be removed in the expansion of the wrapped construct.
3839
3840                     if (Is_Controlled (DDT) or else Has_Task (DDT))
3841                       and then Expander_Active
3842                     then
3843                        Establish_Transient_Scope (A, Sec_Stack => False);
3844                     end if;
3845                  end;
3846
3847                  if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3848                     Check_Restriction (No_Access_Parameter_Allocators, A);
3849                  end if;
3850               end if;
3851
3852               --  (Ada 2005): The call may be to a primitive operation of a
3853               --  tagged synchronized type, declared outside of the type. In
3854               --  this case the controlling actual must be converted to its
3855               --  corresponding record type, which is the formal type. The
3856               --  actual may be a subtype, either because of a constraint or
3857               --  because it is a generic actual, so use base type to locate
3858               --  concurrent type.
3859
3860               F_Typ := Base_Type (Etype (F));
3861
3862               if Is_Tagged_Type (F_Typ)
3863                 and then (Is_Concurrent_Type (F_Typ)
3864                            or else Is_Concurrent_Record_Type (F_Typ))
3865               then
3866                  --  If the actual is overloaded, look for an interpretation
3867                  --  that has a synchronized type.
3868
3869                  if not Is_Overloaded (A) then
3870                     A_Typ := Base_Type (Etype (A));
3871
3872                  else
3873                     declare
3874                        Index : Interp_Index;
3875                        It    : Interp;
3876
3877                     begin
3878                        Get_First_Interp (A, Index, It);
3879                        while Present (It.Typ) loop
3880                           if Is_Concurrent_Type (It.Typ)
3881                             or else Is_Concurrent_Record_Type (It.Typ)
3882                           then
3883                              A_Typ := Base_Type (It.Typ);
3884                              exit;
3885                           end if;
3886
3887                           Get_Next_Interp (Index, It);
3888                        end loop;
3889                     end;
3890                  end if;
3891
3892                  declare
3893                     Full_A_Typ : Entity_Id;
3894
3895                  begin
3896                     if Present (Full_View (A_Typ)) then
3897                        Full_A_Typ := Base_Type (Full_View (A_Typ));
3898                     else
3899                        Full_A_Typ := A_Typ;
3900                     end if;
3901
3902                     --  Tagged synchronized type (case 1): the actual is a
3903                     --  concurrent type.
3904
3905                     if Is_Concurrent_Type (A_Typ)
3906                       and then Corresponding_Record_Type (A_Typ) = F_Typ
3907                     then
3908                        Rewrite (A,
3909                          Unchecked_Convert_To
3910                            (Corresponding_Record_Type (A_Typ), A));
3911                        Resolve (A, Etype (F));
3912
3913                     --  Tagged synchronized type (case 2): the formal is a
3914                     --  concurrent type.
3915
3916                     elsif Ekind (Full_A_Typ) = E_Record_Type
3917                       and then Present
3918                               (Corresponding_Concurrent_Type (Full_A_Typ))
3919                       and then Is_Concurrent_Type (F_Typ)
3920                       and then Present (Corresponding_Record_Type (F_Typ))
3921                       and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
3922                     then
3923                        Resolve (A, Corresponding_Record_Type (F_Typ));
3924
3925                     --  Common case
3926
3927                     else
3928                        Resolve (A, Etype (F));
3929                     end if;
3930                  end;
3931
3932               --  Not a synchronized operation
3933
3934               else
3935                  Resolve (A, Etype (F));
3936               end if;
3937            end if;
3938
3939            A_Typ := Etype (A);
3940            F_Typ := Etype (F);
3941
3942            --  An actual cannot be an untagged formal incomplete type
3943
3944            if Ekind (A_Typ) = E_Incomplete_Type
3945              and then not Is_Tagged_Type (A_Typ)
3946              and then Is_Generic_Type (A_Typ)
3947            then
3948               Error_Msg_N
3949                 ("invalid use of untagged formal incomplete type", A);
3950            end if;
3951
3952            if Comes_From_Source (Original_Node (N))
3953              and then Nkind_In (Original_Node (N), N_Function_Call,
3954                                                    N_Procedure_Call_Statement)
3955            then
3956               --  In formal mode, check that actual parameters matching
3957               --  formals of tagged types are objects (or ancestor type
3958               --  conversions of objects), not general expressions.
3959
3960               if Is_Actual_Tagged_Parameter (A) then
3961                  if Is_SPARK_05_Object_Reference (A) then
3962                     null;
3963
3964                  elsif Nkind (A) = N_Type_Conversion then
3965                     declare
3966                        Operand     : constant Node_Id   := Expression (A);
3967                        Operand_Typ : constant Entity_Id := Etype (Operand);
3968                        Target_Typ  : constant Entity_Id := A_Typ;
3969
3970                     begin
3971                        if not Is_SPARK_05_Object_Reference (Operand) then
3972                           Check_SPARK_05_Restriction
3973                             ("object required", Operand);
3974
3975                        --  In formal mode, the only view conversions are those
3976                        --  involving ancestor conversion of an extended type.
3977
3978                        elsif not
3979                          (Is_Tagged_Type (Target_Typ)
3980                           and then not Is_Class_Wide_Type (Target_Typ)
3981                           and then Is_Tagged_Type (Operand_Typ)
3982                           and then not Is_Class_Wide_Type (Operand_Typ)
3983                           and then Is_Ancestor (Target_Typ, Operand_Typ))
3984                        then
3985                           if Ekind_In
3986                             (F, E_Out_Parameter, E_In_Out_Parameter)
3987                           then
3988                              Check_SPARK_05_Restriction
3989                                ("ancestor conversion is the only permitted "
3990                                 & "view conversion", A);
3991                           else
3992                              Check_SPARK_05_Restriction
3993                                ("ancestor conversion required", A);
3994                           end if;
3995
3996                        else
3997                           null;
3998                        end if;
3999                     end;
4000
4001                  else
4002                     Check_SPARK_05_Restriction ("object required", A);
4003                  end if;
4004
4005               --  In formal mode, the only view conversions are those
4006               --  involving ancestor conversion of an extended type.
4007
4008               elsif Nkind (A) = N_Type_Conversion
4009                 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4010               then
4011                  Check_SPARK_05_Restriction
4012                    ("ancestor conversion is the only permitted view "
4013                     & "conversion", A);
4014               end if;
4015            end if;
4016
4017            --  has warnings suppressed, then we reset Never_Set_In_Source for
4018            --  the calling entity. The reason for this is to catch cases like
4019            --  GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4020            --  uses trickery to modify an IN parameter.
4021
4022            if Ekind (F) = E_In_Parameter
4023              and then Is_Entity_Name (A)
4024              and then Present (Entity (A))
4025              and then Ekind (Entity (A)) = E_Variable
4026              and then Has_Warnings_Off (F_Typ)
4027            then
4028               Set_Never_Set_In_Source (Entity (A), False);
4029            end if;
4030
4031            --  Perform error checks for IN and IN OUT parameters
4032
4033            if Ekind (F) /= E_Out_Parameter then
4034
4035               --  Check unset reference. For scalar parameters, it is clearly
4036               --  wrong to pass an uninitialized value as either an IN or
4037               --  IN-OUT parameter. For composites, it is also clearly an
4038               --  error to pass a completely uninitialized value as an IN
4039               --  parameter, but the case of IN OUT is trickier. We prefer
4040               --  not to give a warning here. For example, suppose there is
4041               --  a routine that sets some component of a record to False.
4042               --  It is perfectly reasonable to make this IN-OUT and allow
4043               --  either initialized or uninitialized records to be passed
4044               --  in this case.
4045
4046               --  For partially initialized composite values, we also avoid
4047               --  warnings, since it is quite likely that we are passing a
4048               --  partially initialized value and only the initialized fields
4049               --  will in fact be read in the subprogram.
4050
4051               if Is_Scalar_Type (A_Typ)
4052                 or else (Ekind (F) = E_In_Parameter
4053                           and then not Is_Partially_Initialized_Type (A_Typ))
4054               then
4055                  Check_Unset_Reference (A);
4056               end if;
4057
4058               --  In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4059               --  actual to a nested call, since this constitutes a reading of
4060               --  the parameter, which is not allowed.
4061
4062               if Is_Entity_Name (A)
4063                 and then Ekind (Entity (A)) = E_Out_Parameter
4064               then
4065                  if Ada_Version = Ada_83 then
4066                     Error_Msg_N
4067                       ("(Ada 83) illegal reading of out parameter", A);
4068
4069                  --  An effectively volatile OUT parameter cannot act as IN or
4070                  --  IN OUT actual in a call (SPARK RM 7.1.3(11)).
4071
4072                  elsif SPARK_Mode = On
4073                    and then Is_Effectively_Volatile (Entity (A))
4074                  then
4075                     Error_Msg_N
4076                       ("illegal reading of volatile OUT parameter", A);
4077                  end if;
4078               end if;
4079            end if;
4080
4081            --  Case of OUT or IN OUT parameter
4082
4083            if Ekind (F) /= E_In_Parameter then
4084
4085               --  For an Out parameter, check for useless assignment. Note
4086               --  that we can't set Last_Assignment this early, because we may
4087               --  kill current values in Resolve_Call, and that call would
4088               --  clobber the Last_Assignment field.
4089
4090               --  Note: call Warn_On_Useless_Assignment before doing the check
4091               --  below for Is_OK_Variable_For_Out_Formal so that the setting
4092               --  of Referenced_As_LHS/Referenced_As_Out_Formal properly
4093               --  reflects the last assignment, not this one.
4094
4095               if Ekind (F) = E_Out_Parameter then
4096                  if Warn_On_Modified_As_Out_Parameter (F)
4097                    and then Is_Entity_Name (A)
4098                    and then Present (Entity (A))
4099                    and then Comes_From_Source (N)
4100                  then
4101                     Warn_On_Useless_Assignment (Entity (A), A);
4102                  end if;
4103               end if;
4104
4105               --  Validate the form of the actual. Note that the call to
4106               --  Is_OK_Variable_For_Out_Formal generates the required
4107               --  reference in this case.
4108
4109               --  A call to an initialization procedure for an aggregate
4110               --  component may initialize a nested component of a constant
4111               --  designated object. In this context the object is variable.
4112
4113               if not Is_OK_Variable_For_Out_Formal (A)
4114                 and then not Is_Init_Proc (Nam)
4115               then
4116                  Error_Msg_NE ("actual for& must be a variable", A, F);
4117
4118                  if Is_Subprogram (Current_Scope)
4119                    and then
4120                      (Is_Invariant_Procedure (Current_Scope)
4121                        or else Is_Predicate_Function (Current_Scope))
4122                  then
4123                     Error_Msg_N
4124                       ("function used in predicate cannot "
4125                        & "modify its argument", F);
4126                  end if;
4127               end if;
4128
4129               --  What's the following about???
4130
4131               if Is_Entity_Name (A) then
4132                  Kill_Checks (Entity (A));
4133               else
4134                  Kill_All_Checks;
4135               end if;
4136            end if;
4137
4138            if Etype (A) = Any_Type then
4139               Set_Etype (N, Any_Type);
4140               return;
4141            end if;
4142
4143            --  Apply appropriate constraint/predicate checks for IN [OUT] case
4144
4145            if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4146
4147               --  Apply predicate tests except in certain special cases. Note
4148               --  that it might be more consistent to apply these only when
4149               --  expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4150               --  for the outbound predicate tests ???
4151
4152               if Predicate_Tests_On_Arguments (Nam) then
4153                  Apply_Predicate_Check (A, F_Typ);
4154               end if;
4155
4156               --  Apply required constraint checks
4157
4158               --  Gigi looks at the check flag and uses the appropriate types.
4159               --  For now since one flag is used there is an optimization
4160               --  which might not be done in the IN OUT case since Gigi does
4161               --  not do any analysis. More thought required about this ???
4162
4163               --  In fact is this comment obsolete??? doesn't the expander now
4164               --  generate all these tests anyway???
4165
4166               if Is_Scalar_Type (Etype (A)) then
4167                  Apply_Scalar_Range_Check (A, F_Typ);
4168
4169               elsif Is_Array_Type (Etype (A)) then
4170                  Apply_Length_Check (A, F_Typ);
4171
4172               elsif Is_Record_Type (F_Typ)
4173                 and then Has_Discriminants (F_Typ)
4174                 and then Is_Constrained (F_Typ)
4175                 and then (not Is_Derived_Type (F_Typ)
4176                            or else Comes_From_Source (Nam))
4177               then
4178                  Apply_Discriminant_Check (A, F_Typ);
4179
4180                  --  For view conversions of a discriminated object, apply
4181                  --  check to object itself, the conversion alreay has the
4182                  --  proper type.
4183
4184                  if Nkind (A) = N_Type_Conversion
4185                    and then Is_Constrained (Etype (Expression (A)))
4186                  then
4187                     Apply_Discriminant_Check (Expression (A), F_Typ);
4188                  end if;
4189
4190               elsif Is_Access_Type (F_Typ)
4191                 and then Is_Array_Type (Designated_Type (F_Typ))
4192                 and then Is_Constrained (Designated_Type (F_Typ))
4193               then
4194                  Apply_Length_Check (A, F_Typ);
4195
4196               elsif Is_Access_Type (F_Typ)
4197                 and then Has_Discriminants (Designated_Type (F_Typ))
4198                 and then Is_Constrained (Designated_Type (F_Typ))
4199               then
4200                  Apply_Discriminant_Check (A, F_Typ);
4201
4202               else
4203                  Apply_Range_Check (A, F_Typ);
4204               end if;
4205
4206               --  Ada 2005 (AI-231): Note that the controlling parameter case
4207               --  already existed in Ada 95, which is partially checked
4208               --  elsewhere (see Checks), and we don't want the warning
4209               --  message to differ.
4210
4211               if Is_Access_Type (F_Typ)
4212                 and then Can_Never_Be_Null (F_Typ)
4213                 and then Known_Null (A)
4214               then
4215                  if Is_Controlling_Formal (F) then
4216                     Apply_Compile_Time_Constraint_Error
4217                       (N      => A,
4218                        Msg    => "null value not allowed here??",
4219                        Reason => CE_Access_Check_Failed);
4220
4221                  elsif Ada_Version >= Ada_2005 then
4222                     Apply_Compile_Time_Constraint_Error
4223                       (N      => A,
4224                        Msg    => "(Ada 2005) null not allowed in "
4225                                  & "null-excluding formal??",
4226                        Reason => CE_Null_Not_Allowed);
4227                  end if;
4228               end if;
4229            end if;
4230
4231            --  Checks for OUT parameters and IN OUT parameters
4232
4233            if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4234
4235               --  If there is a type conversion, to make sure the return value
4236               --  meets the constraints of the variable before the conversion.
4237
4238               if Nkind (A) = N_Type_Conversion then
4239                  if Is_Scalar_Type (A_Typ) then
4240                     Apply_Scalar_Range_Check
4241                       (Expression (A), Etype (Expression (A)), A_Typ);
4242                  else
4243                     Apply_Range_Check
4244                       (Expression (A), Etype (Expression (A)), A_Typ);
4245                  end if;
4246
4247               --  If no conversion apply scalar range checks and length checks
4248               --  base on the subtype of the actual (NOT that of the formal).
4249
4250               else
4251                  if Is_Scalar_Type (F_Typ) then
4252                     Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4253                  elsif Is_Array_Type (F_Typ)
4254                    and then Ekind (F) = E_Out_Parameter
4255                  then
4256                     Apply_Length_Check (A, F_Typ);
4257                  else
4258                     Apply_Range_Check (A, A_Typ, F_Typ);
4259                  end if;
4260               end if;
4261
4262               --  Note: we do not apply the predicate checks for the case of
4263               --  OUT and IN OUT parameters. They are instead applied in the
4264               --  Expand_Actuals routine in Exp_Ch6.
4265            end if;
4266
4267            --  An actual associated with an access parameter is implicitly
4268            --  converted to the anonymous access type of the formal and must
4269            --  satisfy the legality checks for access conversions.
4270
4271            if Ekind (F_Typ) = E_Anonymous_Access_Type then
4272               if not Valid_Conversion (A, F_Typ, A) then
4273                  Error_Msg_N
4274                    ("invalid implicit conversion for access parameter", A);
4275               end if;
4276
4277               --  If the actual is an access selected component of a variable,
4278               --  the call may modify its designated object. It is reasonable
4279               --  to treat this as a potential modification of the enclosing
4280               --  record, to prevent spurious warnings that it should be
4281               --  declared as a constant, because intuitively programmers
4282               --  regard the designated subcomponent as part of the record.
4283
4284               if Nkind (A) = N_Selected_Component
4285                 and then Is_Entity_Name (Prefix (A))
4286                 and then not Is_Constant_Object (Entity (Prefix (A)))
4287               then
4288                  Note_Possible_Modification (A, Sure => False);
4289               end if;
4290            end if;
4291
4292            --  Check bad case of atomic/volatile argument (RM C.6(12))
4293
4294            if Is_By_Reference_Type (Etype (F))
4295              and then Comes_From_Source (N)
4296            then
4297               if Is_Atomic_Object (A)
4298                 and then not Is_Atomic (Etype (F))
4299               then
4300                  Error_Msg_NE
4301                    ("cannot pass atomic argument to non-atomic formal&",
4302                     A, F);
4303
4304               elsif Is_Volatile_Object (A)
4305                 and then not Is_Volatile (Etype (F))
4306               then
4307                  Error_Msg_NE
4308                    ("cannot pass volatile argument to non-volatile formal&",
4309                     A, F);
4310               end if;
4311            end if;
4312
4313            --  Check that subprograms don't have improper controlling
4314            --  arguments (RM 3.9.2 (9)).
4315
4316            --  A primitive operation may have an access parameter of an
4317            --  incomplete tagged type, but a dispatching call is illegal
4318            --  if the type is still incomplete.
4319
4320            if Is_Controlling_Formal (F) then
4321               Set_Is_Controlling_Actual (A);
4322
4323               if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4324                  declare
4325                     Desig : constant Entity_Id := Designated_Type (Etype (F));
4326                  begin
4327                     if Ekind (Desig) = E_Incomplete_Type
4328                       and then No (Full_View (Desig))
4329                       and then No (Non_Limited_View (Desig))
4330                     then
4331                        Error_Msg_NE
4332                          ("premature use of incomplete type& "
4333                           & "in dispatching call", A, Desig);
4334                     end if;
4335                  end;
4336               end if;
4337
4338            elsif Nkind (A) = N_Explicit_Dereference then
4339               Validate_Remote_Access_To_Class_Wide_Type (A);
4340            end if;
4341
4342            --  Apply legality rule 3.9.2  (9/1)
4343
4344            if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4345              and then not Is_Class_Wide_Type (F_Typ)
4346              and then not Is_Controlling_Formal (F)
4347              and then not In_Instance
4348            then
4349               Error_Msg_N ("class-wide argument not allowed here!", A);
4350
4351               if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4352                  Error_Msg_Node_2 := F_Typ;
4353                  Error_Msg_NE
4354                    ("& is not a dispatching operation of &!", A, Nam);
4355               end if;
4356
4357            --  Apply the checks described in 3.10.2(27): if the context is a
4358            --  specific access-to-object, the actual cannot be class-wide.
4359            --  Use base type to exclude access_to_subprogram cases.
4360
4361            elsif Is_Access_Type (A_Typ)
4362              and then Is_Access_Type (F_Typ)
4363              and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4364              and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4365                         or else (Nkind (A) = N_Attribute_Reference
4366                                   and then
4367                                     Is_Class_Wide_Type (Etype (Prefix (A)))))
4368              and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4369              and then not Is_Controlling_Formal (F)
4370
4371              --  Disable these checks for call to imported C++ subprograms
4372
4373              and then not
4374                (Is_Entity_Name (Name (N))
4375                  and then Is_Imported (Entity (Name (N)))
4376                  and then Convention (Entity (Name (N))) = Convention_CPP)
4377            then
4378               Error_Msg_N
4379                 ("access to class-wide argument not allowed here!", A);
4380
4381               if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4382                  Error_Msg_Node_2 := Designated_Type (F_Typ);
4383                  Error_Msg_NE
4384                    ("& is not a dispatching operation of &!", A, Nam);
4385               end if;
4386            end if;
4387
4388            Check_Aliased_Parameter;
4389
4390            Eval_Actual (A);
4391
4392            --  If it is a named association, treat the selector_name as a
4393            --  proper identifier, and mark the corresponding entity.
4394
4395            if Nkind (Parent (A)) = N_Parameter_Association
4396
4397              --  Ignore reference in SPARK mode, as it refers to an entity not
4398              --  in scope at the point of reference, so the reference should
4399              --  be ignored for computing effects of subprograms.
4400
4401              and then not GNATprove_Mode
4402            then
4403               Set_Entity (Selector_Name (Parent (A)), F);
4404               Generate_Reference (F, Selector_Name (Parent (A)));
4405               Set_Etype (Selector_Name (Parent (A)), F_Typ);
4406               Generate_Reference (F_Typ, N, ' ');
4407            end if;
4408
4409            Prev := A;
4410
4411            if Ekind (F) /= E_Out_Parameter then
4412               Check_Unset_Reference (A);
4413            end if;
4414
4415            --  The following checks are only relevant when SPARK_Mode is on as
4416            --  they are not standard Ada legality rule. Internally generated
4417            --  temporaries are ignored.
4418
4419            if SPARK_Mode = On
4420              and then Is_Effectively_Volatile_Object (A)
4421              and then Comes_From_Source (A)
4422            then
4423               --  An effectively volatile object may act as an actual
4424               --  parameter when the corresponding formal is of a non-scalar
4425               --  volatile type.
4426
4427               if Is_Volatile (Etype (F))
4428                 and then not Is_Scalar_Type (Etype (F))
4429               then
4430                  null;
4431
4432               --  An effectively volatile object may act as an actual
4433               --  parameter in a call to an instance of Unchecked_Conversion.
4434
4435               elsif Is_Unchecked_Conversion_Instance (Nam) then
4436                  null;
4437
4438               else
4439                  Error_Msg_N
4440                    ("volatile object cannot act as actual in a call (SPARK "
4441                     & "RM 7.1.3(12))", A);
4442               end if;
4443
4444               --  Detect an external variable with an enabled property that
4445               --  does not match the mode of the corresponding formal in a
4446               --  procedure call. Functions are not considered because they
4447               --  cannot have effectively volatile formal parameters in the
4448               --  first place.
4449
4450               if Ekind (Nam) = E_Procedure
4451                 and then Ekind (F) = E_In_Parameter
4452                 and then Is_Entity_Name (A)
4453                 and then Present (Entity (A))
4454                 and then Ekind (Entity (A)) = E_Variable
4455               then
4456                  A_Id := Entity (A);
4457
4458                  if Async_Readers_Enabled (A_Id) then
4459                     Property_Error (A, A_Id, Name_Async_Readers);
4460                  elsif Effective_Reads_Enabled (A_Id) then
4461                     Property_Error (A, A_Id, Name_Effective_Reads);
4462                  elsif Effective_Writes_Enabled (A_Id) then
4463                     Property_Error (A, A_Id, Name_Effective_Writes);
4464                  end if;
4465               end if;
4466            end if;
4467
4468            --  A formal parameter of a specific tagged type whose related
4469            --  subprogram is subject to pragma Extensions_Visible with value
4470            --  "False" cannot act as an actual in a subprogram with value
4471            --  "True" (SPARK RM 6.1.7(3)).
4472
4473            if Is_EVF_Expression (A)
4474              and then Extensions_Visible_Status (Nam) =
4475                       Extensions_Visible_True
4476            then
4477               Error_Msg_N
4478                 ("formal parameter with Extensions_Visible False cannot act "
4479                  & "as actual parameter", A);
4480               Error_Msg_NE
4481                 ("\subprogram & has Extensions_Visible True", A, Nam);
4482            end if;
4483
4484            --  The actual parameter of a Ghost subprogram whose formal is of
4485            --  mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(13)).
4486
4487            if Is_Ghost_Entity (Nam)
4488              and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4489              and then Is_Entity_Name (A)
4490              and then Present (Entity (A))
4491              and then not Is_Ghost_Entity (Entity (A))
4492            then
4493               Error_Msg_NE
4494                 ("non-ghost variable & cannot appear as actual in call to "
4495                  & "ghost procedure", A, Entity (A));
4496
4497               if Ekind (F) = E_In_Out_Parameter then
4498                  Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4499               else
4500                  Error_Msg_N ("\corresponding formal has mode OUT", A);
4501               end if;
4502            end if;
4503
4504            Next_Actual (A);
4505
4506         --  Case where actual is not present
4507
4508         else
4509            Insert_Default;
4510         end if;
4511
4512         Next_Formal (F);
4513      end loop;
4514   end Resolve_Actuals;
4515
4516   -----------------------
4517   -- Resolve_Allocator --
4518   -----------------------
4519
4520   procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4521      Desig_T  : constant Entity_Id := Designated_Type (Typ);
4522      E        : constant Node_Id   := Expression (N);
4523      Subtyp   : Entity_Id;
4524      Discrim  : Entity_Id;
4525      Constr   : Node_Id;
4526      Aggr     : Node_Id;
4527      Assoc    : Node_Id := Empty;
4528      Disc_Exp : Node_Id;
4529
4530      procedure Check_Allocator_Discrim_Accessibility
4531        (Disc_Exp  : Node_Id;
4532         Alloc_Typ : Entity_Id);
4533      --  Check that accessibility level associated with an access discriminant
4534      --  initialized in an allocator by the expression Disc_Exp is not deeper
4535      --  than the level of the allocator type Alloc_Typ. An error message is
4536      --  issued if this condition is violated. Specialized checks are done for
4537      --  the cases of a constraint expression which is an access attribute or
4538      --  an access discriminant.
4539
4540      function In_Dispatching_Context return Boolean;
4541      --  If the allocator is an actual in a call, it is allowed to be class-
4542      --  wide when the context is not because it is a controlling actual.
4543
4544      -------------------------------------------
4545      -- Check_Allocator_Discrim_Accessibility --
4546      -------------------------------------------
4547
4548      procedure Check_Allocator_Discrim_Accessibility
4549        (Disc_Exp  : Node_Id;
4550         Alloc_Typ : Entity_Id)
4551      is
4552      begin
4553         if Type_Access_Level (Etype (Disc_Exp)) >
4554            Deepest_Type_Access_Level (Alloc_Typ)
4555         then
4556            Error_Msg_N
4557              ("operand type has deeper level than allocator type", Disc_Exp);
4558
4559         --  When the expression is an Access attribute the level of the prefix
4560         --  object must not be deeper than that of the allocator's type.
4561
4562         elsif Nkind (Disc_Exp) = N_Attribute_Reference
4563           and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4564                      Attribute_Access
4565           and then Object_Access_Level (Prefix (Disc_Exp)) >
4566                      Deepest_Type_Access_Level (Alloc_Typ)
4567         then
4568            Error_Msg_N
4569              ("prefix of attribute has deeper level than allocator type",
4570               Disc_Exp);
4571
4572         --  When the expression is an access discriminant the check is against
4573         --  the level of the prefix object.
4574
4575         elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4576           and then Nkind (Disc_Exp) = N_Selected_Component
4577           and then Object_Access_Level (Prefix (Disc_Exp)) >
4578                      Deepest_Type_Access_Level (Alloc_Typ)
4579         then
4580            Error_Msg_N
4581              ("access discriminant has deeper level than allocator type",
4582               Disc_Exp);
4583
4584         --  All other cases are legal
4585
4586         else
4587            null;
4588         end if;
4589      end Check_Allocator_Discrim_Accessibility;
4590
4591      ----------------------------
4592      -- In_Dispatching_Context --
4593      ----------------------------
4594
4595      function In_Dispatching_Context return Boolean is
4596         Par : constant Node_Id := Parent (N);
4597
4598      begin
4599         return Nkind (Par) in N_Subprogram_Call
4600           and then Is_Entity_Name (Name (Par))
4601           and then Is_Dispatching_Operation (Entity (Name (Par)));
4602      end In_Dispatching_Context;
4603
4604   --  Start of processing for Resolve_Allocator
4605
4606   begin
4607      --  Replace general access with specific type
4608
4609      if Ekind (Etype (N)) = E_Allocator_Type then
4610         Set_Etype (N, Base_Type (Typ));
4611      end if;
4612
4613      if Is_Abstract_Type (Typ) then
4614         Error_Msg_N ("type of allocator cannot be abstract",  N);
4615      end if;
4616
4617      --  For qualified expression, resolve the expression using the given
4618      --  subtype (nothing to do for type mark, subtype indication)
4619
4620      if Nkind (E) = N_Qualified_Expression then
4621         if Is_Class_Wide_Type (Etype (E))
4622           and then not Is_Class_Wide_Type (Desig_T)
4623           and then not In_Dispatching_Context
4624         then
4625            Error_Msg_N
4626              ("class-wide allocator not allowed for this access type", N);
4627         end if;
4628
4629         Resolve (Expression (E), Etype (E));
4630         Check_Non_Static_Context (Expression (E));
4631         Check_Unset_Reference (Expression (E));
4632
4633         --  A qualified expression requires an exact match of the type.
4634         --  Class-wide matching is not allowed.
4635
4636         if (Is_Class_Wide_Type (Etype (Expression (E)))
4637              or else Is_Class_Wide_Type (Etype (E)))
4638           and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4639         then
4640            Wrong_Type (Expression (E), Etype (E));
4641         end if;
4642
4643         --  Calls to build-in-place functions are not currently supported in
4644         --  allocators for access types associated with a simple storage pool.
4645         --  Supporting such allocators may require passing additional implicit
4646         --  parameters to build-in-place functions (or a significant revision
4647         --  of the current b-i-p implementation to unify the handling for
4648         --  multiple kinds of storage pools). ???
4649
4650         if Is_Limited_View (Desig_T)
4651           and then Nkind (Expression (E)) = N_Function_Call
4652         then
4653            declare
4654               Pool : constant Entity_Id :=
4655                        Associated_Storage_Pool (Root_Type (Typ));
4656            begin
4657               if Present (Pool)
4658                 and then
4659                   Present (Get_Rep_Pragma
4660                              (Etype (Pool), Name_Simple_Storage_Pool_Type))
4661               then
4662                  Error_Msg_N
4663                    ("limited function calls not yet supported in simple "
4664                     & "storage pool allocators", Expression (E));
4665               end if;
4666            end;
4667         end if;
4668
4669         --  A special accessibility check is needed for allocators that
4670         --  constrain access discriminants. The level of the type of the
4671         --  expression used to constrain an access discriminant cannot be
4672         --  deeper than the type of the allocator (in contrast to access
4673         --  parameters, where the level of the actual can be arbitrary).
4674
4675         --  We can't use Valid_Conversion to perform this check because in
4676         --  general the type of the allocator is unrelated to the type of
4677         --  the access discriminant.
4678
4679         if Ekind (Typ) /= E_Anonymous_Access_Type
4680           or else Is_Local_Anonymous_Access (Typ)
4681         then
4682            Subtyp := Entity (Subtype_Mark (E));
4683
4684            Aggr := Original_Node (Expression (E));
4685
4686            if Has_Discriminants (Subtyp)
4687              and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4688            then
4689               Discrim := First_Discriminant (Base_Type (Subtyp));
4690
4691               --  Get the first component expression of the aggregate
4692
4693               if Present (Expressions (Aggr)) then
4694                  Disc_Exp := First (Expressions (Aggr));
4695
4696               elsif Present (Component_Associations (Aggr)) then
4697                  Assoc := First (Component_Associations (Aggr));
4698
4699                  if Present (Assoc) then
4700                     Disc_Exp := Expression (Assoc);
4701                  else
4702                     Disc_Exp := Empty;
4703                  end if;
4704
4705               else
4706                  Disc_Exp := Empty;
4707               end if;
4708
4709               while Present (Discrim) and then Present (Disc_Exp) loop
4710                  if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4711                     Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4712                  end if;
4713
4714                  Next_Discriminant (Discrim);
4715
4716                  if Present (Discrim) then
4717                     if Present (Assoc) then
4718                        Next (Assoc);
4719                        Disc_Exp := Expression (Assoc);
4720
4721                     elsif Present (Next (Disc_Exp)) then
4722                        Next (Disc_Exp);
4723
4724                     else
4725                        Assoc := First (Component_Associations (Aggr));
4726
4727                        if Present (Assoc) then
4728                           Disc_Exp := Expression (Assoc);
4729                        else
4730                           Disc_Exp := Empty;
4731                        end if;
4732                     end if;
4733                  end if;
4734               end loop;
4735            end if;
4736         end if;
4737
4738      --  For a subtype mark or subtype indication, freeze the subtype
4739
4740      else
4741         Freeze_Expression (E);
4742
4743         if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4744            Error_Msg_N
4745              ("initialization required for access-to-constant allocator", N);
4746         end if;
4747
4748         --  A special accessibility check is needed for allocators that
4749         --  constrain access discriminants. The level of the type of the
4750         --  expression used to constrain an access discriminant cannot be
4751         --  deeper than the type of the allocator (in contrast to access
4752         --  parameters, where the level of the actual can be arbitrary).
4753         --  We can't use Valid_Conversion to perform this check because
4754         --  in general the type of the allocator is unrelated to the type
4755         --  of the access discriminant.
4756
4757         if Nkind (Original_Node (E)) = N_Subtype_Indication
4758           and then (Ekind (Typ) /= E_Anonymous_Access_Type
4759                      or else Is_Local_Anonymous_Access (Typ))
4760         then
4761            Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4762
4763            if Has_Discriminants (Subtyp) then
4764               Discrim := First_Discriminant (Base_Type (Subtyp));
4765               Constr := First (Constraints (Constraint (Original_Node (E))));
4766               while Present (Discrim) and then Present (Constr) loop
4767                  if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4768                     if Nkind (Constr) = N_Discriminant_Association then
4769                        Disc_Exp := Original_Node (Expression (Constr));
4770                     else
4771                        Disc_Exp := Original_Node (Constr);
4772                     end if;
4773
4774                     Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4775                  end if;
4776
4777                  Next_Discriminant (Discrim);
4778                  Next (Constr);
4779               end loop;
4780            end if;
4781         end if;
4782      end if;
4783
4784      --  Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4785      --  check that the level of the type of the created object is not deeper
4786      --  than the level of the allocator's access type, since extensions can
4787      --  now occur at deeper levels than their ancestor types. This is a
4788      --  static accessibility level check; a run-time check is also needed in
4789      --  the case of an initialized allocator with a class-wide argument (see
4790      --  Expand_Allocator_Expression).
4791
4792      if Ada_Version >= Ada_2005
4793        and then Is_Class_Wide_Type (Desig_T)
4794      then
4795         declare
4796            Exp_Typ : Entity_Id;
4797
4798         begin
4799            if Nkind (E) = N_Qualified_Expression then
4800               Exp_Typ := Etype (E);
4801            elsif Nkind (E) = N_Subtype_Indication then
4802               Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4803            else
4804               Exp_Typ := Entity (E);
4805            end if;
4806
4807            if Type_Access_Level (Exp_Typ) >
4808                 Deepest_Type_Access_Level (Typ)
4809            then
4810               if In_Instance_Body then
4811                  Error_Msg_Warn := SPARK_Mode /= On;
4812                  Error_Msg_N
4813                    ("type in allocator has deeper level than "
4814                     & "designated class-wide type<<", E);
4815                  Error_Msg_N ("\Program_Error [<<", E);
4816                  Rewrite (N,
4817                    Make_Raise_Program_Error (Sloc (N),
4818                      Reason => PE_Accessibility_Check_Failed));
4819                  Set_Etype (N, Typ);
4820
4821               --  Do not apply Ada 2005 accessibility checks on a class-wide
4822               --  allocator if the type given in the allocator is a formal
4823               --  type. A run-time check will be performed in the instance.
4824
4825               elsif not Is_Generic_Type (Exp_Typ) then
4826                  Error_Msg_N ("type in allocator has deeper level than "
4827                               & "designated class-wide type", E);
4828               end if;
4829            end if;
4830         end;
4831      end if;
4832
4833      --  Check for allocation from an empty storage pool
4834
4835      if No_Pool_Assigned (Typ) then
4836         Error_Msg_N ("allocation from empty storage pool!", N);
4837
4838      --  If the context is an unchecked conversion, as may happen within an
4839      --  inlined subprogram, the allocator is being resolved with its own
4840      --  anonymous type. In that case, if the target type has a specific
4841      --  storage pool, it must be inherited explicitly by the allocator type.
4842
4843      elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
4844        and then No (Associated_Storage_Pool (Typ))
4845      then
4846         Set_Associated_Storage_Pool
4847           (Typ, Associated_Storage_Pool (Etype (Parent (N))));
4848      end if;
4849
4850      if Ekind (Etype (N)) = E_Anonymous_Access_Type then
4851         Check_Restriction (No_Anonymous_Allocators, N);
4852      end if;
4853
4854      --  Check that an allocator with task parts isn't for a nested access
4855      --  type when restriction No_Task_Hierarchy applies.
4856
4857      if not Is_Library_Level_Entity (Base_Type (Typ))
4858        and then Has_Task (Base_Type (Desig_T))
4859      then
4860         Check_Restriction (No_Task_Hierarchy, N);
4861      end if;
4862
4863      --  An illegal allocator may be rewritten as a raise Program_Error
4864      --  statement.
4865
4866      if Nkind (N) = N_Allocator then
4867
4868         --  An anonymous access discriminant is the definition of a
4869         --  coextension.
4870
4871         if Ekind (Typ) = E_Anonymous_Access_Type
4872           and then Nkind (Associated_Node_For_Itype (Typ)) =
4873                      N_Discriminant_Specification
4874         then
4875            declare
4876               Discr : constant Entity_Id :=
4877                         Defining_Identifier (Associated_Node_For_Itype (Typ));
4878
4879            begin
4880               Check_Restriction (No_Coextensions, N);
4881
4882               --  Ada 2012 AI05-0052: If the designated type of the allocator
4883               --  is limited, then the allocator shall not be used to define
4884               --  the value of an access discriminant unless the discriminated
4885               --  type is immutably limited.
4886
4887               if Ada_Version >= Ada_2012
4888                 and then Is_Limited_Type (Desig_T)
4889                 and then not Is_Limited_View (Scope (Discr))
4890               then
4891                  Error_Msg_N
4892                    ("only immutably limited types can have anonymous "
4893                     & "access discriminants designating a limited type", N);
4894               end if;
4895            end;
4896
4897            --  Avoid marking an allocator as a dynamic coextension if it is
4898            --  within a static construct.
4899
4900            if not Is_Static_Coextension (N) then
4901               Set_Is_Dynamic_Coextension (N);
4902            end if;
4903
4904         --  Cleanup for potential static coextensions
4905
4906         else
4907            Set_Is_Dynamic_Coextension (N, False);
4908            Set_Is_Static_Coextension  (N, False);
4909         end if;
4910      end if;
4911
4912      --  Report a simple error: if the designated object is a local task,
4913      --  its body has not been seen yet, and its activation will fail an
4914      --  elaboration check.
4915
4916      if Is_Task_Type (Desig_T)
4917        and then Scope (Base_Type (Desig_T)) = Current_Scope
4918        and then Is_Compilation_Unit (Current_Scope)
4919        and then Ekind (Current_Scope) = E_Package
4920        and then not In_Package_Body (Current_Scope)
4921      then
4922         Error_Msg_Warn := SPARK_Mode /= On;
4923         Error_Msg_N ("cannot activate task before body seen<<", N);
4924         Error_Msg_N ("\Program_Error [<<", N);
4925      end if;
4926
4927      --  Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
4928      --  type with a task component on a subpool. This action must raise
4929      --  Program_Error at runtime.
4930
4931      if Ada_Version >= Ada_2012
4932        and then Nkind (N) = N_Allocator
4933        and then Present (Subpool_Handle_Name (N))
4934        and then Has_Task (Desig_T)
4935      then
4936         Error_Msg_Warn := SPARK_Mode /= On;
4937         Error_Msg_N ("cannot allocate task on subpool<<", N);
4938         Error_Msg_N ("\Program_Error [<<", N);
4939
4940         Rewrite (N,
4941           Make_Raise_Program_Error (Sloc (N),
4942             Reason => PE_Explicit_Raise));
4943         Set_Etype (N, Typ);
4944      end if;
4945   end Resolve_Allocator;
4946
4947   ---------------------------
4948   -- Resolve_Arithmetic_Op --
4949   ---------------------------
4950
4951   --  Used for resolving all arithmetic operators except exponentiation
4952
4953   procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
4954      L   : constant Node_Id := Left_Opnd (N);
4955      R   : constant Node_Id := Right_Opnd (N);
4956      TL  : constant Entity_Id := Base_Type (Etype (L));
4957      TR  : constant Entity_Id := Base_Type (Etype (R));
4958      T   : Entity_Id;
4959      Rop : Node_Id;
4960
4961      B_Typ : constant Entity_Id := Base_Type (Typ);
4962      --  We do the resolution using the base type, because intermediate values
4963      --  in expressions always are of the base type, not a subtype of it.
4964
4965      function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
4966      --  Returns True if N is in a context that expects "any real type"
4967
4968      function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
4969      --  Return True iff given type is Integer or universal real/integer
4970
4971      procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
4972      --  Choose type of integer literal in fixed-point operation to conform
4973      --  to available fixed-point type. T is the type of the other operand,
4974      --  which is needed to determine the expected type of N.
4975
4976      procedure Set_Operand_Type (N : Node_Id);
4977      --  Set operand type to T if universal
4978
4979      -------------------------------
4980      -- Expected_Type_Is_Any_Real --
4981      -------------------------------
4982
4983      function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
4984      begin
4985         --  N is the expression after "delta" in a fixed_point_definition;
4986         --  see RM-3.5.9(6):
4987
4988         return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
4989                                      N_Decimal_Fixed_Point_Definition,
4990
4991         --  N is one of the bounds in a real_range_specification;
4992         --  see RM-3.5.7(5):
4993
4994                                      N_Real_Range_Specification,
4995
4996         --  N is the expression of a delta_constraint;
4997         --  see RM-J.3(3):
4998
4999                                      N_Delta_Constraint);
5000      end Expected_Type_Is_Any_Real;
5001
5002      -----------------------------
5003      -- Is_Integer_Or_Universal --
5004      -----------------------------
5005
5006      function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5007         T     : Entity_Id;
5008         Index : Interp_Index;
5009         It    : Interp;
5010
5011      begin
5012         if not Is_Overloaded (N) then
5013            T := Etype (N);
5014            return Base_Type (T) = Base_Type (Standard_Integer)
5015              or else T = Universal_Integer
5016              or else T = Universal_Real;
5017         else
5018            Get_First_Interp (N, Index, It);
5019            while Present (It.Typ) loop
5020               if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5021                 or else It.Typ = Universal_Integer
5022                 or else It.Typ = Universal_Real
5023               then
5024                  return True;
5025               end if;
5026
5027               Get_Next_Interp (Index, It);
5028            end loop;
5029         end if;
5030
5031         return False;
5032      end Is_Integer_Or_Universal;
5033
5034      ----------------------------
5035      -- Set_Mixed_Mode_Operand --
5036      ----------------------------
5037
5038      procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5039         Index : Interp_Index;
5040         It    : Interp;
5041
5042      begin
5043         if Universal_Interpretation (N) = Universal_Integer then
5044
5045            --  A universal integer literal is resolved as standard integer
5046            --  except in the case of a fixed-point result, where we leave it
5047            --  as universal (to be handled by Exp_Fixd later on)
5048
5049            if Is_Fixed_Point_Type (T) then
5050               Resolve (N, Universal_Integer);
5051            else
5052               Resolve (N, Standard_Integer);
5053            end if;
5054
5055         elsif Universal_Interpretation (N) = Universal_Real
5056           and then (T = Base_Type (Standard_Integer)
5057                      or else T = Universal_Integer
5058                      or else T = Universal_Real)
5059         then
5060            --  A universal real can appear in a fixed-type context. We resolve
5061            --  the literal with that context, even though this might raise an
5062            --  exception prematurely (the other operand may be zero).
5063
5064            Resolve (N, B_Typ);
5065
5066         elsif Etype (N) = Base_Type (Standard_Integer)
5067           and then T = Universal_Real
5068           and then Is_Overloaded (N)
5069         then
5070            --  Integer arg in mixed-mode operation. Resolve with universal
5071            --  type, in case preference rule must be applied.
5072
5073            Resolve (N, Universal_Integer);
5074
5075         elsif Etype (N) = T
5076           and then B_Typ /= Universal_Fixed
5077         then
5078            --  Not a mixed-mode operation, resolve with context
5079
5080            Resolve (N, B_Typ);
5081
5082         elsif Etype (N) = Any_Fixed then
5083
5084            --  N may itself be a mixed-mode operation, so use context type
5085
5086            Resolve (N, B_Typ);
5087
5088         elsif Is_Fixed_Point_Type (T)
5089           and then B_Typ = Universal_Fixed
5090           and then Is_Overloaded (N)
5091         then
5092            --  Must be (fixed * fixed) operation, operand must have one
5093            --  compatible interpretation.
5094
5095            Resolve (N, Any_Fixed);
5096
5097         elsif Is_Fixed_Point_Type (B_Typ)
5098           and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5099           and then Is_Overloaded (N)
5100         then
5101            --  C * F(X) in a fixed context, where C is a real literal or a
5102            --  fixed-point expression. F must have either a fixed type
5103            --  interpretation or an integer interpretation, but not both.
5104
5105            Get_First_Interp (N, Index, It);
5106            while Present (It.Typ) loop
5107               if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5108                  if Analyzed (N) then
5109                     Error_Msg_N ("ambiguous operand in fixed operation", N);
5110                  else
5111                     Resolve (N, Standard_Integer);
5112                  end if;
5113
5114               elsif Is_Fixed_Point_Type (It.Typ) then
5115                  if Analyzed (N) then
5116                     Error_Msg_N ("ambiguous operand in fixed operation", N);
5117                  else
5118                     Resolve (N, It.Typ);
5119                  end if;
5120               end if;
5121
5122               Get_Next_Interp (Index, It);
5123            end loop;
5124
5125            --  Reanalyze the literal with the fixed type of the context. If
5126            --  context is Universal_Fixed, we are within a conversion, leave
5127            --  the literal as a universal real because there is no usable
5128            --  fixed type, and the target of the conversion plays no role in
5129            --  the resolution.
5130
5131            declare
5132               Op2 : Node_Id;
5133               T2  : Entity_Id;
5134
5135            begin
5136               if N = L then
5137                  Op2 := R;
5138               else
5139                  Op2 := L;
5140               end if;
5141
5142               if B_Typ = Universal_Fixed
5143                  and then Nkind (Op2) = N_Real_Literal
5144               then
5145                  T2 := Universal_Real;
5146               else
5147                  T2 := B_Typ;
5148               end if;
5149
5150               Set_Analyzed (Op2, False);
5151               Resolve (Op2, T2);
5152            end;
5153
5154         else
5155            Resolve (N);
5156         end if;
5157      end Set_Mixed_Mode_Operand;
5158
5159      ----------------------
5160      -- Set_Operand_Type --
5161      ----------------------
5162
5163      procedure Set_Operand_Type (N : Node_Id) is
5164      begin
5165         if Etype (N) = Universal_Integer
5166           or else Etype (N) = Universal_Real
5167         then
5168            Set_Etype (N, T);
5169         end if;
5170      end Set_Operand_Type;
5171
5172   --  Start of processing for Resolve_Arithmetic_Op
5173
5174   begin
5175      if Comes_From_Source (N)
5176        and then Ekind (Entity (N)) = E_Function
5177        and then Is_Imported (Entity (N))
5178        and then Is_Intrinsic_Subprogram (Entity (N))
5179      then
5180         Resolve_Intrinsic_Operator (N, Typ);
5181         return;
5182
5183      --  Special-case for mixed-mode universal expressions or fixed point type
5184      --  operation: each argument is resolved separately. The same treatment
5185      --  is required if one of the operands of a fixed point operation is
5186      --  universal real, since in this case we don't do a conversion to a
5187      --  specific fixed-point type (instead the expander handles the case).
5188
5189      --  Set the type of the node to its universal interpretation because
5190      --  legality checks on an exponentiation operand need the context.
5191
5192      elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5193        and then Present (Universal_Interpretation (L))
5194        and then Present (Universal_Interpretation (R))
5195      then
5196         Set_Etype (N, B_Typ);
5197         Resolve (L, Universal_Interpretation (L));
5198         Resolve (R, Universal_Interpretation (R));
5199
5200      elsif (B_Typ = Universal_Real
5201              or else Etype (N) = Universal_Fixed
5202              or else (Etype (N) = Any_Fixed
5203                        and then Is_Fixed_Point_Type (B_Typ))
5204              or else (Is_Fixed_Point_Type (B_Typ)
5205                        and then (Is_Integer_Or_Universal (L)
5206                                    or else
5207                                  Is_Integer_Or_Universal (R))))
5208        and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5209      then
5210         if TL = Universal_Integer or else TR = Universal_Integer then
5211            Check_For_Visible_Operator (N, B_Typ);
5212         end if;
5213
5214         --  If context is a fixed type and one operand is integer, the other
5215         --  is resolved with the type of the context.
5216
5217         if Is_Fixed_Point_Type (B_Typ)
5218           and then (Base_Type (TL) = Base_Type (Standard_Integer)
5219                      or else TL = Universal_Integer)
5220         then
5221            Resolve (R, B_Typ);
5222            Resolve (L, TL);
5223
5224         elsif Is_Fixed_Point_Type (B_Typ)
5225           and then (Base_Type (TR) = Base_Type (Standard_Integer)
5226                      or else TR = Universal_Integer)
5227         then
5228            Resolve (L, B_Typ);
5229            Resolve (R, TR);
5230
5231         else
5232            Set_Mixed_Mode_Operand (L, TR);
5233            Set_Mixed_Mode_Operand (R, TL);
5234         end if;
5235
5236         --  Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5237         --  multiplying operators from being used when the expected type is
5238         --  also universal_fixed. Note that B_Typ will be Universal_Fixed in
5239         --  some cases where the expected type is actually Any_Real;
5240         --  Expected_Type_Is_Any_Real takes care of that case.
5241
5242         if Etype (N) = Universal_Fixed
5243           or else Etype (N) = Any_Fixed
5244         then
5245            if B_Typ = Universal_Fixed
5246              and then not Expected_Type_Is_Any_Real (N)
5247              and then not Nkind_In (Parent (N), N_Type_Conversion,
5248                                                 N_Unchecked_Type_Conversion)
5249            then
5250               Error_Msg_N ("type cannot be determined from context!", N);
5251               Error_Msg_N ("\explicit conversion to result type required", N);
5252
5253               Set_Etype (L, Any_Type);
5254               Set_Etype (R, Any_Type);
5255
5256            else
5257               if Ada_Version = Ada_83
5258                 and then Etype (N) = Universal_Fixed
5259                 and then not
5260                   Nkind_In (Parent (N), N_Type_Conversion,
5261                                         N_Unchecked_Type_Conversion)
5262               then
5263                  Error_Msg_N
5264                    ("(Ada 83) fixed-point operation needs explicit "
5265                     & "conversion", N);
5266               end if;
5267
5268               --  The expected type is "any real type" in contexts like
5269
5270               --    type T is delta <universal_fixed-expression> ...
5271
5272               --  in which case we need to set the type to Universal_Real
5273               --  so that static expression evaluation will work properly.
5274
5275               if Expected_Type_Is_Any_Real (N) then
5276                  Set_Etype (N, Universal_Real);
5277               else
5278                  Set_Etype (N, B_Typ);
5279               end if;
5280            end if;
5281
5282         elsif Is_Fixed_Point_Type (B_Typ)
5283           and then (Is_Integer_Or_Universal (L)
5284                       or else Nkind (L) = N_Real_Literal
5285                       or else Nkind (R) = N_Real_Literal
5286                       or else Is_Integer_Or_Universal (R))
5287         then
5288            Set_Etype (N, B_Typ);
5289
5290         elsif Etype (N) = Any_Fixed then
5291
5292            --  If no previous errors, this is only possible if one operand is
5293            --  overloaded and the context is universal. Resolve as such.
5294
5295            Set_Etype (N, B_Typ);
5296         end if;
5297
5298      else
5299         if (TL = Universal_Integer or else TL = Universal_Real)
5300               and then
5301            (TR = Universal_Integer or else TR = Universal_Real)
5302         then
5303            Check_For_Visible_Operator (N, B_Typ);
5304         end if;
5305
5306         --  If the context is Universal_Fixed and the operands are also
5307         --  universal fixed, this is an error, unless there is only one
5308         --  applicable fixed_point type (usually Duration).
5309
5310         if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5311            T := Unique_Fixed_Point_Type (N);
5312
5313            if T  = Any_Type then
5314               Set_Etype (N, T);
5315               return;
5316            else
5317               Resolve (L, T);
5318               Resolve (R, T);
5319            end if;
5320
5321         else
5322            Resolve (L, B_Typ);
5323            Resolve (R, B_Typ);
5324         end if;
5325
5326         --  If one of the arguments was resolved to a non-universal type.
5327         --  label the result of the operation itself with the same type.
5328         --  Do the same for the universal argument, if any.
5329
5330         T := Intersect_Types (L, R);
5331         Set_Etype (N, Base_Type (T));
5332         Set_Operand_Type (L);
5333         Set_Operand_Type (R);
5334      end if;
5335
5336      Generate_Operator_Reference (N, Typ);
5337      Analyze_Dimension (N);
5338      Eval_Arithmetic_Op (N);
5339
5340      --  In SPARK, a multiplication or division with operands of fixed point
5341      --  types must be qualified or explicitly converted to identify the
5342      --  result type.
5343
5344      if (Is_Fixed_Point_Type (Etype (L))
5345           or else Is_Fixed_Point_Type (Etype (R)))
5346        and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5347        and then
5348          not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5349      then
5350         Check_SPARK_05_Restriction
5351           ("operation should be qualified or explicitly converted", N);
5352      end if;
5353
5354      --  Set overflow and division checking bit
5355
5356      if Nkind (N) in N_Op then
5357         if not Overflow_Checks_Suppressed (Etype (N)) then
5358            Enable_Overflow_Check (N);
5359         end if;
5360
5361         --  Give warning if explicit division by zero
5362
5363         if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5364           and then not Division_Checks_Suppressed (Etype (N))
5365         then
5366            Rop := Right_Opnd (N);
5367
5368            if Compile_Time_Known_Value (Rop)
5369              and then ((Is_Integer_Type (Etype (Rop))
5370                          and then Expr_Value (Rop) = Uint_0)
5371                         or else
5372                           (Is_Real_Type (Etype (Rop))
5373                             and then Expr_Value_R (Rop) = Ureal_0))
5374            then
5375               --  Specialize the warning message according to the operation.
5376               --  The following warnings are for the case
5377
5378               case Nkind (N) is
5379                  when N_Op_Divide =>
5380
5381                     --  For division, we have two cases, for float division
5382                     --  of an unconstrained float type, on a machine where
5383                     --  Machine_Overflows is false, we don't get an exception
5384                     --  at run-time, but rather an infinity or Nan. The Nan
5385                     --  case is pretty obscure, so just warn about infinities.
5386
5387                     if Is_Floating_Point_Type (Typ)
5388                       and then not Is_Constrained (Typ)
5389                       and then not Machine_Overflows_On_Target
5390                     then
5391                        Error_Msg_N
5392                          ("float division by zero, may generate "
5393                           & "'+'/'- infinity??", Right_Opnd (N));
5394
5395                        --  For all other cases, we get a Constraint_Error
5396
5397                     else
5398                        Apply_Compile_Time_Constraint_Error
5399                          (N, "division by zero??", CE_Divide_By_Zero,
5400                           Loc => Sloc (Right_Opnd (N)));
5401                     end if;
5402
5403                  when N_Op_Rem =>
5404                     Apply_Compile_Time_Constraint_Error
5405                       (N, "rem with zero divisor??", CE_Divide_By_Zero,
5406                        Loc => Sloc (Right_Opnd (N)));
5407
5408                  when N_Op_Mod =>
5409                     Apply_Compile_Time_Constraint_Error
5410                       (N, "mod with zero divisor??", CE_Divide_By_Zero,
5411                        Loc => Sloc (Right_Opnd (N)));
5412
5413                  --  Division by zero can only happen with division, rem,
5414                  --  and mod operations.
5415
5416                  when others =>
5417                     raise Program_Error;
5418               end case;
5419
5420            --  Otherwise just set the flag to check at run time
5421
5422            else
5423               Activate_Division_Check (N);
5424            end if;
5425         end if;
5426
5427         --  If Restriction No_Implicit_Conditionals is active, then it is
5428         --  violated if either operand can be negative for mod, or for rem
5429         --  if both operands can be negative.
5430
5431         if Restriction_Check_Required (No_Implicit_Conditionals)
5432           and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5433         then
5434            declare
5435               Lo : Uint;
5436               Hi : Uint;
5437               OK : Boolean;
5438
5439               LNeg : Boolean;
5440               RNeg : Boolean;
5441               --  Set if corresponding operand might be negative
5442
5443            begin
5444               Determine_Range
5445                 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5446               LNeg := (not OK) or else Lo < 0;
5447
5448               Determine_Range
5449                 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5450               RNeg := (not OK) or else Lo < 0;
5451
5452               --  Check if we will be generating conditionals. There are two
5453               --  cases where that can happen, first for REM, the only case
5454               --  is largest negative integer mod -1, where the division can
5455               --  overflow, but we still have to give the right result. The
5456               --  front end generates a test for this annoying case. Here we
5457               --  just test if both operands can be negative (that's what the
5458               --  expander does, so we match its logic here).
5459
5460               --  The second case is mod where either operand can be negative.
5461               --  In this case, the back end has to generate additional tests.
5462
5463               if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5464                     or else
5465                  (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5466               then
5467                  Check_Restriction (No_Implicit_Conditionals, N);
5468               end if;
5469            end;
5470         end if;
5471      end if;
5472
5473      Check_Unset_Reference (L);
5474      Check_Unset_Reference (R);
5475      Check_Function_Writable_Actuals (N);
5476   end Resolve_Arithmetic_Op;
5477
5478   ------------------
5479   -- Resolve_Call --
5480   ------------------
5481
5482   procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5483      function Same_Or_Aliased_Subprograms
5484        (S : Entity_Id;
5485         E : Entity_Id) return Boolean;
5486      --  Returns True if the subprogram entity S is the same as E or else
5487      --  S is an alias of E.
5488
5489      ---------------------------------
5490      -- Same_Or_Aliased_Subprograms --
5491      ---------------------------------
5492
5493      function Same_Or_Aliased_Subprograms
5494        (S : Entity_Id;
5495         E : Entity_Id) return Boolean
5496      is
5497         Subp_Alias : constant Entity_Id := Alias (S);
5498      begin
5499         return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5500      end Same_Or_Aliased_Subprograms;
5501
5502      --  Local variables
5503
5504      Loc      : constant Source_Ptr := Sloc (N);
5505      Subp     : constant Node_Id    := Name (N);
5506      Body_Id  : Entity_Id;
5507      I        : Interp_Index;
5508      It       : Interp;
5509      Nam      : Entity_Id;
5510      Nam_Decl : Node_Id;
5511      Nam_UA   : Entity_Id;
5512      Norm_OK  : Boolean;
5513      Rtype    : Entity_Id;
5514      Scop     : Entity_Id;
5515
5516   --  Start of processing for Resolve_Call
5517
5518   begin
5519      --  The context imposes a unique interpretation with type Typ on a
5520      --  procedure or function call. Find the entity of the subprogram that
5521      --  yields the expected type, and propagate the corresponding formal
5522      --  constraints on the actuals. The caller has established that an
5523      --  interpretation exists, and emitted an error if not unique.
5524
5525      --  First deal with the case of a call to an access-to-subprogram,
5526      --  dereference made explicit in Analyze_Call.
5527
5528      if Ekind (Etype (Subp)) = E_Subprogram_Type then
5529         if not Is_Overloaded (Subp) then
5530            Nam := Etype (Subp);
5531
5532         else
5533            --  Find the interpretation whose type (a subprogram type) has a
5534            --  return type that is compatible with the context. Analysis of
5535            --  the node has established that one exists.
5536
5537            Nam := Empty;
5538
5539            Get_First_Interp (Subp,  I, It);
5540            while Present (It.Typ) loop
5541               if Covers (Typ, Etype (It.Typ)) then
5542                  Nam := It.Typ;
5543                  exit;
5544               end if;
5545
5546               Get_Next_Interp (I, It);
5547            end loop;
5548
5549            if No (Nam) then
5550               raise Program_Error;
5551            end if;
5552         end if;
5553
5554         --  If the prefix is not an entity, then resolve it
5555
5556         if not Is_Entity_Name (Subp) then
5557            Resolve (Subp, Nam);
5558         end if;
5559
5560         --  For an indirect call, we always invalidate checks, since we do not
5561         --  know whether the subprogram is local or global. Yes we could do
5562         --  better here, e.g. by knowing that there are no local subprograms,
5563         --  but it does not seem worth the effort. Similarly, we kill all
5564         --  knowledge of current constant values.
5565
5566         Kill_Current_Values;
5567
5568      --  If this is a procedure call which is really an entry call, do
5569      --  the conversion of the procedure call to an entry call. Protected
5570      --  operations use the same circuitry because the name in the call
5571      --  can be an arbitrary expression with special resolution rules.
5572
5573      elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5574        or else (Is_Entity_Name (Subp)
5575                  and then Ekind (Entity (Subp)) = E_Entry)
5576      then
5577         Resolve_Entry_Call (N, Typ);
5578         Check_Elab_Call (N);
5579
5580         --  Kill checks and constant values, as above for indirect case
5581         --  Who knows what happens when another task is activated?
5582
5583         Kill_Current_Values;
5584         return;
5585
5586      --  Normal subprogram call with name established in Resolve
5587
5588      elsif not (Is_Type (Entity (Subp))) then
5589         Nam := Entity (Subp);
5590         Set_Entity_With_Checks (Subp, Nam);
5591
5592      --  Otherwise we must have the case of an overloaded call
5593
5594      else
5595         pragma Assert (Is_Overloaded (Subp));
5596
5597         --  Initialize Nam to prevent warning (we know it will be assigned
5598         --  in the loop below, but the compiler does not know that).
5599
5600         Nam := Empty;
5601
5602         Get_First_Interp (Subp,  I, It);
5603         while Present (It.Typ) loop
5604            if Covers (Typ, It.Typ) then
5605               Nam := It.Nam;
5606               Set_Entity_With_Checks (Subp, Nam);
5607               exit;
5608            end if;
5609
5610            Get_Next_Interp (I, It);
5611         end loop;
5612      end if;
5613
5614      if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5615        and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5616        and then Nkind (Subp) /= N_Explicit_Dereference
5617        and then Present (Parameter_Associations (N))
5618      then
5619         --  The prefix is a parameterless function call that returns an access
5620         --  to subprogram. If parameters are present in the current call, add
5621         --  add an explicit dereference. We use the base type here because
5622         --  within an instance these may be subtypes.
5623
5624         --  The dereference is added either in Analyze_Call or here. Should
5625         --  be consolidated ???
5626
5627         Set_Is_Overloaded (Subp, False);
5628         Set_Etype (Subp, Etype (Nam));
5629         Insert_Explicit_Dereference (Subp);
5630         Nam := Designated_Type (Etype (Nam));
5631         Resolve (Subp, Nam);
5632      end if;
5633
5634      --  Check that a call to Current_Task does not occur in an entry body
5635
5636      if Is_RTE (Nam, RE_Current_Task) then
5637         declare
5638            P : Node_Id;
5639
5640         begin
5641            P := N;
5642            loop
5643               P := Parent (P);
5644
5645               --  Exclude calls that occur within the default of a formal
5646               --  parameter of the entry, since those are evaluated outside
5647               --  of the body.
5648
5649               exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5650
5651               if Nkind (P) = N_Entry_Body
5652                 or else (Nkind (P) = N_Subprogram_Body
5653                           and then Is_Entry_Barrier_Function (P))
5654               then
5655                  Rtype := Etype (N);
5656                  Error_Msg_Warn := SPARK_Mode /= On;
5657                  Error_Msg_NE
5658                    ("& should not be used in entry body (RM C.7(17))<<",
5659                     N, Nam);
5660                  Error_Msg_NE ("\Program_Error [<<", N, Nam);
5661                  Rewrite (N,
5662                    Make_Raise_Program_Error (Loc,
5663                      Reason => PE_Current_Task_In_Entry_Body));
5664                  Set_Etype (N, Rtype);
5665                  return;
5666               end if;
5667            end loop;
5668         end;
5669      end if;
5670
5671      --  Check that a procedure call does not occur in the context of the
5672      --  entry call statement of a conditional or timed entry call. Note that
5673      --  the case of a call to a subprogram renaming of an entry will also be
5674      --  rejected. The test for N not being an N_Entry_Call_Statement is
5675      --  defensive, covering the possibility that the processing of entry
5676      --  calls might reach this point due to later modifications of the code
5677      --  above.
5678
5679      if Nkind (Parent (N)) = N_Entry_Call_Alternative
5680        and then Nkind (N) /= N_Entry_Call_Statement
5681        and then Entry_Call_Statement (Parent (N)) = N
5682      then
5683         if Ada_Version < Ada_2005 then
5684            Error_Msg_N ("entry call required in select statement", N);
5685
5686         --  Ada 2005 (AI-345): If a procedure_call_statement is used
5687         --  for a procedure_or_entry_call, the procedure_name or
5688         --  procedure_prefix of the procedure_call_statement shall denote
5689         --  an entry renamed by a procedure, or (a view of) a primitive
5690         --  subprogram of a limited interface whose first parameter is
5691         --  a controlling parameter.
5692
5693         elsif Nkind (N) = N_Procedure_Call_Statement
5694           and then not Is_Renamed_Entry (Nam)
5695           and then not Is_Controlling_Limited_Procedure (Nam)
5696         then
5697            Error_Msg_N
5698             ("entry call or dispatching primitive of interface required", N);
5699         end if;
5700      end if;
5701
5702      --  If the SPARK_05 restriction is active, we are not allowed
5703      --  to have a call to a subprogram before we see its completion.
5704
5705      if not Has_Completion (Nam)
5706        and then Restriction_Check_Required (SPARK_05)
5707
5708        --  Don't flag strange internal calls
5709
5710        and then Comes_From_Source (N)
5711        and then Comes_From_Source (Nam)
5712
5713        --  Only flag calls in extended main source
5714
5715        and then In_Extended_Main_Source_Unit (Nam)
5716        and then In_Extended_Main_Source_Unit (N)
5717
5718        --  Exclude enumeration literals from this processing
5719
5720        and then Ekind (Nam) /= E_Enumeration_Literal
5721      then
5722         Check_SPARK_05_Restriction
5723           ("call to subprogram cannot appear before its body", N);
5724      end if;
5725
5726      --  Check that this is not a call to a protected procedure or entry from
5727      --  within a protected function.
5728
5729      Check_Internal_Protected_Use (N, Nam);
5730
5731      --  Freeze the subprogram name if not in a spec-expression. Note that
5732      --  we freeze procedure calls as well as function calls. Procedure calls
5733      --  are not frozen according to the rules (RM 13.14(14)) because it is
5734      --  impossible to have a procedure call to a non-frozen procedure in
5735      --  pure Ada, but in the code that we generate in the expander, this
5736      --  rule needs extending because we can generate procedure calls that
5737      --  need freezing.
5738
5739      --  In Ada 2012, expression functions may be called within pre/post
5740      --  conditions of subsequent functions or expression functions. Such
5741      --  calls do not freeze when they appear within generated bodies,
5742      --  (including the body of another expression function) which would
5743      --  place the freeze node in the wrong scope. An expression function
5744      --  is frozen in the usual fashion, by the appearance of a real body,
5745      --  or at the end of a declarative part.
5746
5747      if Is_Entity_Name (Subp) and then not In_Spec_Expression
5748        and then not Is_Expression_Function (Current_Scope)
5749        and then
5750          (not Is_Expression_Function (Entity (Subp))
5751            or else Scope (Entity (Subp)) = Current_Scope)
5752      then
5753         Freeze_Expression (Subp);
5754      end if;
5755
5756      --  For a predefined operator, the type of the result is the type imposed
5757      --  by context, except for a predefined operation on universal fixed.
5758      --  Otherwise The type of the call is the type returned by the subprogram
5759      --  being called.
5760
5761      if Is_Predefined_Op (Nam) then
5762         if Etype (N) /= Universal_Fixed then
5763            Set_Etype (N, Typ);
5764         end if;
5765
5766      --  If the subprogram returns an array type, and the context requires the
5767      --  component type of that array type, the node is really an indexing of
5768      --  the parameterless call. Resolve as such. A pathological case occurs
5769      --  when the type of the component is an access to the array type. In
5770      --  this case the call is truly ambiguous.
5771
5772      elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
5773        and then
5774          ((Is_Array_Type (Etype (Nam))
5775             and then Covers (Typ, Component_Type (Etype (Nam))))
5776           or else
5777             (Is_Access_Type (Etype (Nam))
5778               and then Is_Array_Type (Designated_Type (Etype (Nam)))
5779               and then
5780                 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))))
5781      then
5782         declare
5783            Index_Node : Node_Id;
5784            New_Subp   : Node_Id;
5785            Ret_Type   : constant Entity_Id := Etype (Nam);
5786
5787         begin
5788            if Is_Access_Type (Ret_Type)
5789              and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
5790            then
5791               Error_Msg_N
5792                 ("cannot disambiguate function call and indexing", N);
5793            else
5794               New_Subp := Relocate_Node (Subp);
5795
5796               --  The called entity may be an explicit dereference, in which
5797               --  case there is no entity to set.
5798
5799               if Nkind (New_Subp) /= N_Explicit_Dereference then
5800                  Set_Entity (Subp, Nam);
5801               end if;
5802
5803               if (Is_Array_Type (Ret_Type)
5804                    and then Component_Type (Ret_Type) /= Any_Type)
5805                 or else
5806                  (Is_Access_Type (Ret_Type)
5807                    and then
5808                      Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
5809               then
5810                  if Needs_No_Actuals (Nam) then
5811
5812                     --  Indexed call to a parameterless function
5813
5814                     Index_Node :=
5815                       Make_Indexed_Component (Loc,
5816                         Prefix      =>
5817                           Make_Function_Call (Loc, Name => New_Subp),
5818                         Expressions => Parameter_Associations (N));
5819                  else
5820                     --  An Ada 2005 prefixed call to a primitive operation
5821                     --  whose first parameter is the prefix. This prefix was
5822                     --  prepended to the parameter list, which is actually a
5823                     --  list of indexes. Remove the prefix in order to build
5824                     --  the proper indexed component.
5825
5826                     Index_Node :=
5827                        Make_Indexed_Component (Loc,
5828                          Prefix       =>
5829                            Make_Function_Call (Loc,
5830                               Name                   => New_Subp,
5831                               Parameter_Associations =>
5832                                 New_List
5833                                   (Remove_Head (Parameter_Associations (N)))),
5834                           Expressions => Parameter_Associations (N));
5835                  end if;
5836
5837                  --  Preserve the parenthesis count of the node
5838
5839                  Set_Paren_Count (Index_Node, Paren_Count (N));
5840
5841                  --  Since we are correcting a node classification error made
5842                  --  by the parser, we call Replace rather than Rewrite.
5843
5844                  Replace (N, Index_Node);
5845
5846                  Set_Etype (Prefix (N), Ret_Type);
5847                  Set_Etype (N, Typ);
5848                  Resolve_Indexed_Component (N, Typ);
5849                  Check_Elab_Call (Prefix (N));
5850               end if;
5851            end if;
5852
5853            return;
5854         end;
5855
5856      else
5857         Set_Etype (N, Etype (Nam));
5858      end if;
5859
5860      --  In the case where the call is to an overloaded subprogram, Analyze
5861      --  calls Normalize_Actuals once per overloaded subprogram. Therefore in
5862      --  such a case Normalize_Actuals needs to be called once more to order
5863      --  the actuals correctly. Otherwise the call will have the ordering
5864      --  given by the last overloaded subprogram whether this is the correct
5865      --  one being called or not.
5866
5867      if Is_Overloaded (Subp) then
5868         Normalize_Actuals (N, Nam, False, Norm_OK);
5869         pragma Assert (Norm_OK);
5870      end if;
5871
5872      --  In any case, call is fully resolved now. Reset Overload flag, to
5873      --  prevent subsequent overload resolution if node is analyzed again
5874
5875      Set_Is_Overloaded (Subp, False);
5876      Set_Is_Overloaded (N, False);
5877
5878      --  A Ghost entity must appear in a specific context
5879
5880      if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
5881         Check_Ghost_Context (Nam, N);
5882      end if;
5883
5884      --  If we are calling the current subprogram from immediately within its
5885      --  body, then that is the case where we can sometimes detect cases of
5886      --  infinite recursion statically. Do not try this in case restriction
5887      --  No_Recursion is in effect anyway, and do it only for source calls.
5888
5889      if Comes_From_Source (N) then
5890         Scop := Current_Scope;
5891
5892         --  Check violation of SPARK_05 restriction which does not permit
5893         --  a subprogram body to contain a call to the subprogram directly.
5894
5895         if Restriction_Check_Required (SPARK_05)
5896           and then Same_Or_Aliased_Subprograms (Nam, Scop)
5897         then
5898            Check_SPARK_05_Restriction
5899              ("subprogram may not contain direct call to itself", N);
5900         end if;
5901
5902         --  Issue warning for possible infinite recursion in the absence
5903         --  of the No_Recursion restriction.
5904
5905         if Same_Or_Aliased_Subprograms (Nam, Scop)
5906           and then not Restriction_Active (No_Recursion)
5907           and then Check_Infinite_Recursion (N)
5908         then
5909            --  Here we detected and flagged an infinite recursion, so we do
5910            --  not need to test the case below for further warnings. Also we
5911            --  are all done if we now have a raise SE node.
5912
5913            if Nkind (N) = N_Raise_Storage_Error then
5914               return;
5915            end if;
5916
5917         --  If call is to immediately containing subprogram, then check for
5918         --  the case of a possible run-time detectable infinite recursion.
5919
5920         else
5921            Scope_Loop : while Scop /= Standard_Standard loop
5922               if Same_Or_Aliased_Subprograms (Nam, Scop) then
5923
5924                  --  Although in general case, recursion is not statically
5925                  --  checkable, the case of calling an immediately containing
5926                  --  subprogram is easy to catch.
5927
5928                  Check_Restriction (No_Recursion, N);
5929
5930                  --  If the recursive call is to a parameterless subprogram,
5931                  --  then even if we can't statically detect infinite
5932                  --  recursion, this is pretty suspicious, and we output a
5933                  --  warning. Furthermore, we will try later to detect some
5934                  --  cases here at run time by expanding checking code (see
5935                  --  Detect_Infinite_Recursion in package Exp_Ch6).
5936
5937                  --  If the recursive call is within a handler, do not emit a
5938                  --  warning, because this is a common idiom: loop until input
5939                  --  is correct, catch illegal input in handler and restart.
5940
5941                  if No (First_Formal (Nam))
5942                    and then Etype (Nam) = Standard_Void_Type
5943                    and then not Error_Posted (N)
5944                    and then Nkind (Parent (N)) /= N_Exception_Handler
5945                  then
5946                     --  For the case of a procedure call. We give the message
5947                     --  only if the call is the first statement in a sequence
5948                     --  of statements, or if all previous statements are
5949                     --  simple assignments. This is simply a heuristic to
5950                     --  decrease false positives, without losing too many good
5951                     --  warnings. The idea is that these previous statements
5952                     --  may affect global variables the procedure depends on.
5953                     --  We also exclude raise statements, that may arise from
5954                     --  constraint checks and are probably unrelated to the
5955                     --  intended control flow.
5956
5957                     if Nkind (N) = N_Procedure_Call_Statement
5958                       and then Is_List_Member (N)
5959                     then
5960                        declare
5961                           P : Node_Id;
5962                        begin
5963                           P := Prev (N);
5964                           while Present (P) loop
5965                              if not Nkind_In (P, N_Assignment_Statement,
5966                                                  N_Raise_Constraint_Error)
5967                              then
5968                                 exit Scope_Loop;
5969                              end if;
5970
5971                              Prev (P);
5972                           end loop;
5973                        end;
5974                     end if;
5975
5976                     --  Do not give warning if we are in a conditional context
5977
5978                     declare
5979                        K : constant Node_Kind := Nkind (Parent (N));
5980                     begin
5981                        if (K = N_Loop_Statement
5982                             and then Present (Iteration_Scheme (Parent (N))))
5983                          or else K = N_If_Statement
5984                          or else K = N_Elsif_Part
5985                          or else K = N_Case_Statement_Alternative
5986                        then
5987                           exit Scope_Loop;
5988                        end if;
5989                     end;
5990
5991                     --  Here warning is to be issued
5992
5993                     Set_Has_Recursive_Call (Nam);
5994                     Error_Msg_Warn := SPARK_Mode /= On;
5995                     Error_Msg_N ("possible infinite recursion<<!", N);
5996                     Error_Msg_N ("\Storage_Error ]<<!", N);
5997                  end if;
5998
5999                  exit Scope_Loop;
6000               end if;
6001
6002               Scop := Scope (Scop);
6003            end loop Scope_Loop;
6004         end if;
6005      end if;
6006
6007      --  Check obsolescent reference to Ada.Characters.Handling subprogram
6008
6009      Check_Obsolescent_2005_Entity (Nam, Subp);
6010
6011      --  If subprogram name is a predefined operator, it was given in
6012      --  functional notation. Replace call node with operator node, so
6013      --  that actuals can be resolved appropriately.
6014
6015      if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6016         Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6017         return;
6018
6019      elsif Present (Alias (Nam))
6020        and then Is_Predefined_Op (Alias (Nam))
6021      then
6022         Resolve_Actuals (N, Nam);
6023         Make_Call_Into_Operator (N, Typ, Alias (Nam));
6024         return;
6025      end if;
6026
6027      --  Create a transient scope if the resulting type requires it
6028
6029      --  There are several notable exceptions:
6030
6031      --  a) In init procs, the transient scope overhead is not needed, and is
6032      --  even incorrect when the call is a nested initialization call for a
6033      --  component whose expansion may generate adjust calls. However, if the
6034      --  call is some other procedure call within an initialization procedure
6035      --  (for example a call to Create_Task in the init_proc of the task
6036      --  run-time record) a transient scope must be created around this call.
6037
6038      --  b) Enumeration literal pseudo-calls need no transient scope
6039
6040      --  c) Intrinsic subprograms (Unchecked_Conversion and source info
6041      --  functions) do not use the secondary stack even though the return
6042      --  type may be unconstrained.
6043
6044      --  d) Calls to a build-in-place function, since such functions may
6045      --  allocate their result directly in a target object, and cases where
6046      --  the result does get allocated in the secondary stack are checked for
6047      --  within the specialized Exp_Ch6 procedures for expanding those
6048      --  build-in-place calls.
6049
6050      --  e) If the subprogram is marked Inline_Always, then even if it returns
6051      --  an unconstrained type the call does not require use of the secondary
6052      --  stack. However, inlining will only take place if the body to inline
6053      --  is already present. It may not be available if e.g. the subprogram is
6054      --  declared in a child instance.
6055
6056      --  If this is an initialization call for a type whose construction
6057      --  uses the secondary stack, and it is not a nested call to initialize
6058      --  a component, we do need to create a transient scope for it. We
6059      --  check for this by traversing the type in Check_Initialization_Call.
6060
6061      if Is_Inlined (Nam)
6062        and then Has_Pragma_Inline (Nam)
6063        and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6064        and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6065      then
6066         null;
6067
6068      elsif Ekind (Nam) = E_Enumeration_Literal
6069        or else Is_Build_In_Place_Function (Nam)
6070        or else Is_Intrinsic_Subprogram (Nam)
6071      then
6072         null;
6073
6074      elsif Expander_Active
6075        and then Is_Type (Etype (Nam))
6076        and then Requires_Transient_Scope (Etype (Nam))
6077        and then
6078          (not Within_Init_Proc
6079            or else
6080              (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
6081      then
6082         Establish_Transient_Scope (N, Sec_Stack => True);
6083
6084         --  If the call appears within the bounds of a loop, it will
6085         --  be rewritten and reanalyzed, nothing left to do here.
6086
6087         if Nkind (N) /= N_Function_Call then
6088            return;
6089         end if;
6090
6091      elsif Is_Init_Proc (Nam)
6092        and then not Within_Init_Proc
6093      then
6094         Check_Initialization_Call (N, Nam);
6095      end if;
6096
6097      --  A protected function cannot be called within the definition of the
6098      --  enclosing protected type, unless it is part of a pre/postcondition
6099      --  on another protected operation.
6100
6101      if Is_Protected_Type (Scope (Nam))
6102        and then In_Open_Scopes (Scope (Nam))
6103        and then not Has_Completion (Scope (Nam))
6104        and then not In_Spec_Expression
6105      then
6106         Error_Msg_NE
6107           ("& cannot be called before end of protected definition", N, Nam);
6108      end if;
6109
6110      --  Propagate interpretation to actuals, and add default expressions
6111      --  where needed.
6112
6113      if Present (First_Formal (Nam)) then
6114         Resolve_Actuals (N, Nam);
6115
6116      --  Overloaded literals are rewritten as function calls, for purpose of
6117      --  resolution. After resolution, we can replace the call with the
6118      --  literal itself.
6119
6120      elsif Ekind (Nam) = E_Enumeration_Literal then
6121         Copy_Node (Subp, N);
6122         Resolve_Entity_Name (N, Typ);
6123
6124         --  Avoid validation, since it is a static function call
6125
6126         Generate_Reference (Nam, Subp);
6127         return;
6128      end if;
6129
6130      --  If the subprogram is not global, then kill all saved values and
6131      --  checks. This is a bit conservative, since in many cases we could do
6132      --  better, but it is not worth the effort. Similarly, we kill constant
6133      --  values. However we do not need to do this for internal entities
6134      --  (unless they are inherited user-defined subprograms), since they
6135      --  are not in the business of molesting local values.
6136
6137      --  If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6138      --  kill all checks and values for calls to global subprograms. This
6139      --  takes care of the case where an access to a local subprogram is
6140      --  taken, and could be passed directly or indirectly and then called
6141      --  from almost any context.
6142
6143      --  Note: we do not do this step till after resolving the actuals. That
6144      --  way we still take advantage of the current value information while
6145      --  scanning the actuals.
6146
6147      --  We suppress killing values if we are processing the nodes associated
6148      --  with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6149      --  type kills all the values as part of analyzing the code that
6150      --  initializes the dispatch tables.
6151
6152      if Inside_Freezing_Actions = 0
6153        and then (not Is_Library_Level_Entity (Nam)
6154                   or else Suppress_Value_Tracking_On_Call
6155                             (Nearest_Dynamic_Scope (Current_Scope)))
6156        and then (Comes_From_Source (Nam)
6157                   or else (Present (Alias (Nam))
6158                             and then Comes_From_Source (Alias (Nam))))
6159      then
6160         Kill_Current_Values;
6161      end if;
6162
6163      --  If we are warning about unread OUT parameters, this is the place to
6164      --  set Last_Assignment for OUT and IN OUT parameters. We have to do this
6165      --  after the above call to Kill_Current_Values (since that call clears
6166      --  the Last_Assignment field of all local variables).
6167
6168      if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6169        and then Comes_From_Source (N)
6170        and then In_Extended_Main_Source_Unit (N)
6171      then
6172         declare
6173            F : Entity_Id;
6174            A : Node_Id;
6175
6176         begin
6177            F := First_Formal (Nam);
6178            A := First_Actual (N);
6179            while Present (F) and then Present (A) loop
6180               if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6181                 and then Warn_On_Modified_As_Out_Parameter (F)
6182                 and then Is_Entity_Name (A)
6183                 and then Present (Entity (A))
6184                 and then Comes_From_Source (N)
6185                 and then Safe_To_Capture_Value (N, Entity (A))
6186               then
6187                  Set_Last_Assignment (Entity (A), A);
6188               end if;
6189
6190               Next_Formal (F);
6191               Next_Actual (A);
6192            end loop;
6193         end;
6194      end if;
6195
6196      --  If the subprogram is a primitive operation, check whether or not
6197      --  it is a correct dispatching call.
6198
6199      if Is_Overloadable (Nam)
6200        and then Is_Dispatching_Operation (Nam)
6201      then
6202         Check_Dispatching_Call (N);
6203
6204      elsif Ekind (Nam) /= E_Subprogram_Type
6205        and then Is_Abstract_Subprogram (Nam)
6206        and then not In_Instance
6207      then
6208         Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6209      end if;
6210
6211      --  If this is a dispatching call, generate the appropriate reference,
6212      --  for better source navigation in GPS.
6213
6214      if Is_Overloadable (Nam)
6215        and then Present (Controlling_Argument (N))
6216      then
6217         Generate_Reference (Nam, Subp, 'R');
6218
6219      --  Normal case, not a dispatching call: generate a call reference
6220
6221      else
6222         Generate_Reference (Nam, Subp, 's');
6223      end if;
6224
6225      if Is_Intrinsic_Subprogram (Nam) then
6226         Check_Intrinsic_Call (N);
6227      end if;
6228
6229      --  Check for violation of restriction No_Specific_Termination_Handlers
6230      --  and warn on a potentially blocking call to Abort_Task.
6231
6232      if Restriction_Check_Required (No_Specific_Termination_Handlers)
6233        and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6234                    or else
6235                  Is_RTE (Nam, RE_Specific_Handler))
6236      then
6237         Check_Restriction (No_Specific_Termination_Handlers, N);
6238
6239      elsif Is_RTE (Nam, RE_Abort_Task) then
6240         Check_Potentially_Blocking_Operation (N);
6241      end if;
6242
6243      --  A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6244      --  timing event violates restriction No_Relative_Delay (AI-0211). We
6245      --  need to check the second argument to determine whether it is an
6246      --  absolute or relative timing event.
6247
6248      if Restriction_Check_Required (No_Relative_Delay)
6249        and then Is_RTE (Nam, RE_Set_Handler)
6250        and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6251      then
6252         Check_Restriction (No_Relative_Delay, N);
6253      end if;
6254
6255      --  Issue an error for a call to an eliminated subprogram. This routine
6256      --  will not perform the check if the call appears within a default
6257      --  expression.
6258
6259      Check_For_Eliminated_Subprogram (Subp, Nam);
6260
6261      --  In formal mode, the primitive operations of a tagged type or type
6262      --  extension do not include functions that return the tagged type.
6263
6264      if Nkind (N) = N_Function_Call
6265        and then Is_Tagged_Type (Etype (N))
6266        and then Is_Entity_Name (Name (N))
6267        and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6268      then
6269         Check_SPARK_05_Restriction ("function not inherited", N);
6270      end if;
6271
6272      --  Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6273      --  class-wide and the call dispatches on result in a context that does
6274      --  not provide a tag, the call raises Program_Error.
6275
6276      if Nkind (N) = N_Function_Call
6277        and then In_Instance
6278        and then Is_Generic_Actual_Type (Typ)
6279        and then Is_Class_Wide_Type (Typ)
6280        and then Has_Controlling_Result (Nam)
6281        and then Nkind (Parent (N)) = N_Object_Declaration
6282      then
6283         --  Verify that none of the formals are controlling
6284
6285         declare
6286            Call_OK : Boolean := False;
6287            F       : Entity_Id;
6288
6289         begin
6290            F := First_Formal (Nam);
6291            while Present (F) loop
6292               if Is_Controlling_Formal (F) then
6293                  Call_OK := True;
6294                  exit;
6295               end if;
6296
6297               Next_Formal (F);
6298            end loop;
6299
6300            if not Call_OK then
6301               Error_Msg_Warn := SPARK_Mode /= On;
6302               Error_Msg_N ("!cannot determine tag of result<<", N);
6303               Error_Msg_N ("\Program_Error [<<!", N);
6304               Insert_Action (N,
6305                 Make_Raise_Program_Error (Sloc (N),
6306                    Reason => PE_Explicit_Raise));
6307            end if;
6308         end;
6309      end if;
6310
6311      --  Check for calling a function with OUT or IN OUT parameter when the
6312      --  calling context (us right now) is not Ada 2012, so does not allow
6313      --  OUT or IN OUT parameters in function calls. Functions declared in
6314      --  a predefined unit are OK, as they may be called indirectly from a
6315      --  user-declared instantiation.
6316
6317      if Ada_Version < Ada_2012
6318        and then Ekind (Nam) = E_Function
6319        and then Has_Out_Or_In_Out_Parameter (Nam)
6320        and then not In_Predefined_Unit (Nam)
6321      then
6322         Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6323         Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6324      end if;
6325
6326      --  Check the dimensions of the actuals in the call. For function calls,
6327      --  propagate the dimensions from the returned type to N.
6328
6329      Analyze_Dimension_Call (N, Nam);
6330
6331      --  All done, evaluate call and deal with elaboration issues
6332
6333      Eval_Call (N);
6334      Check_Elab_Call (N);
6335
6336      --  In GNATprove mode, expansion is disabled, but we want to inline some
6337      --  subprograms to facilitate formal verification. Indirect calls through
6338      --  a subprogram type or within a generic cannot be inlined. Inlining is
6339      --  performed only for calls subject to SPARK_Mode on.
6340
6341      if GNATprove_Mode
6342        and then SPARK_Mode = On
6343        and then Is_Overloadable (Nam)
6344        and then not Inside_A_Generic
6345      then
6346         Nam_UA   := Ultimate_Alias (Nam);
6347         Nam_Decl := Unit_Declaration_Node (Nam_UA);
6348
6349         if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6350            Body_Id := Corresponding_Body (Nam_Decl);
6351
6352            --  Nothing to do if the subprogram is not eligible for inlining in
6353            --  GNATprove mode.
6354
6355            if not Is_Inlined_Always (Nam_UA)
6356              or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6357            then
6358               null;
6359
6360            --  Calls cannot be inlined inside assertions, as GNATprove treats
6361            --  assertions as logic expressions.
6362
6363            elsif In_Assertion_Expr /= 0 then
6364               Error_Msg_NE ("?no contextual analysis of &", N, Nam);
6365               Error_Msg_N ("\call appears in assertion expression", N);
6366               Set_Is_Inlined_Always (Nam_UA, False);
6367
6368            --  Calls cannot be inlined inside default expressions
6369
6370            elsif In_Default_Expr then
6371               Error_Msg_NE ("?no contextual analysis of &", N, Nam);
6372               Error_Msg_N ("\call appears in default expression", N);
6373               Set_Is_Inlined_Always (Nam_UA, False);
6374
6375            --  Inlining should not be performed during pre-analysis
6376
6377            elsif Full_Analysis then
6378
6379               --  With the one-pass inlining technique, a call cannot be
6380               --  inlined if the corresponding body has not been seen yet.
6381
6382               if No (Body_Id) then
6383                  Error_Msg_NE
6384                    ("?no contextual analysis of & (body not seen yet)",
6385                     N, Nam);
6386                  Set_Is_Inlined_Always (Nam_UA, False);
6387
6388               --  Nothing to do if there is no body to inline, indicating that
6389               --  the subprogram is not suitable for inlining in GNATprove
6390               --  mode.
6391
6392               elsif No (Body_To_Inline (Nam_Decl)) then
6393                  null;
6394
6395               --  Calls cannot be inlined inside potentially unevaluated
6396               --  expressions, as this would create complex actions inside
6397               --  expressions, that are not handled by GNATprove.
6398
6399               elsif Is_Potentially_Unevaluated (N) then
6400                  Error_Msg_NE ("?no contextual analysis of &", N, Nam);
6401                  Error_Msg_N
6402                    ("\call appears in potentially unevaluated context", N);
6403                  Set_Is_Inlined_Always (Nam_UA, False);
6404
6405               --  Otherwise, inline the call
6406
6407               else
6408                  Expand_Inlined_Call (N, Nam_UA, Nam);
6409               end if;
6410            end if;
6411         end if;
6412      end if;
6413
6414      Warn_On_Overlapping_Actuals (Nam, N);
6415   end Resolve_Call;
6416
6417   -----------------------------
6418   -- Resolve_Case_Expression --
6419   -----------------------------
6420
6421   procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6422      Alt    : Node_Id;
6423      Is_Dyn : Boolean;
6424
6425   begin
6426      Alt := First (Alternatives (N));
6427      while Present (Alt) loop
6428         Resolve (Expression (Alt), Typ);
6429         Next (Alt);
6430      end loop;
6431
6432      --  Apply RM 4.5.7 (17/3): whether the expression is statically or
6433      --  dynamically tagged must be known statically.
6434
6435      if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6436         Alt := First (Alternatives (N));
6437         Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6438
6439         while Present (Alt) loop
6440            if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6441               Error_Msg_N ("all or none of the dependent expressions "
6442                            & "can be dynamically tagged", N);
6443            end if;
6444
6445            Next (Alt);
6446         end loop;
6447      end if;
6448
6449      Set_Etype (N, Typ);
6450      Eval_Case_Expression (N);
6451   end Resolve_Case_Expression;
6452
6453   -------------------------------
6454   -- Resolve_Character_Literal --
6455   -------------------------------
6456
6457   procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6458      B_Typ : constant Entity_Id := Base_Type (Typ);
6459      C     : Entity_Id;
6460
6461   begin
6462      --  Verify that the character does belong to the type of the context
6463
6464      Set_Etype (N, B_Typ);
6465      Eval_Character_Literal (N);
6466
6467      --  Wide_Wide_Character literals must always be defined, since the set
6468      --  of wide wide character literals is complete, i.e. if a character
6469      --  literal is accepted by the parser, then it is OK for wide wide
6470      --  character (out of range character literals are rejected).
6471
6472      if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6473         return;
6474
6475      --  Always accept character literal for type Any_Character, which
6476      --  occurs in error situations and in comparisons of literals, both
6477      --  of which should accept all literals.
6478
6479      elsif B_Typ = Any_Character then
6480         return;
6481
6482      --  For Standard.Character or a type derived from it, check that the
6483      --  literal is in range.
6484
6485      elsif Root_Type (B_Typ) = Standard_Character then
6486         if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6487            return;
6488         end if;
6489
6490      --  For Standard.Wide_Character or a type derived from it, check that the
6491      --  literal is in range.
6492
6493      elsif Root_Type (B_Typ) = Standard_Wide_Character then
6494         if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6495            return;
6496         end if;
6497
6498      --  For Standard.Wide_Wide_Character or a type derived from it, we
6499      --  know the literal is in range, since the parser checked.
6500
6501      elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6502         return;
6503
6504      --  If the entity is already set, this has already been resolved in a
6505      --  generic context, or comes from expansion. Nothing else to do.
6506
6507      elsif Present (Entity (N)) then
6508         return;
6509
6510      --  Otherwise we have a user defined character type, and we can use the
6511      --  standard visibility mechanisms to locate the referenced entity.
6512
6513      else
6514         C := Current_Entity (N);
6515         while Present (C) loop
6516            if Etype (C) = B_Typ then
6517               Set_Entity_With_Checks (N, C);
6518               Generate_Reference (C, N);
6519               return;
6520            end if;
6521
6522            C := Homonym (C);
6523         end loop;
6524      end if;
6525
6526      --  If we fall through, then the literal does not match any of the
6527      --  entries of the enumeration type. This isn't just a constraint error
6528      --  situation, it is an illegality (see RM 4.2).
6529
6530      Error_Msg_NE
6531        ("character not defined for }", N, First_Subtype (B_Typ));
6532   end Resolve_Character_Literal;
6533
6534   ---------------------------
6535   -- Resolve_Comparison_Op --
6536   ---------------------------
6537
6538   --  Context requires a boolean type, and plays no role in resolution.
6539   --  Processing identical to that for equality operators. The result type is
6540   --  the base type, which matters when pathological subtypes of booleans with
6541   --  limited ranges are used.
6542
6543   procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6544      L : constant Node_Id := Left_Opnd (N);
6545      R : constant Node_Id := Right_Opnd (N);
6546      T : Entity_Id;
6547
6548   begin
6549      --  If this is an intrinsic operation which is not predefined, use the
6550      --  types of its declared arguments to resolve the possibly overloaded
6551      --  operands. Otherwise the operands are unambiguous and specify the
6552      --  expected type.
6553
6554      if Scope (Entity (N)) /= Standard_Standard then
6555         T := Etype (First_Entity (Entity (N)));
6556
6557      else
6558         T := Find_Unique_Type (L, R);
6559
6560         if T = Any_Fixed then
6561            T := Unique_Fixed_Point_Type (L);
6562         end if;
6563      end if;
6564
6565      Set_Etype (N, Base_Type (Typ));
6566      Generate_Reference (T, N, ' ');
6567
6568      --  Skip remaining processing if already set to Any_Type
6569
6570      if T = Any_Type then
6571         return;
6572      end if;
6573
6574      --  Deal with other error cases
6575
6576      if T = Any_String    or else
6577         T = Any_Composite or else
6578         T = Any_Character
6579      then
6580         if T = Any_Character then
6581            Ambiguous_Character (L);
6582         else
6583            Error_Msg_N ("ambiguous operands for comparison", N);
6584         end if;
6585
6586         Set_Etype (N, Any_Type);
6587         return;
6588      end if;
6589
6590      --  Resolve the operands if types OK
6591
6592      Resolve (L, T);
6593      Resolve (R, T);
6594      Check_Unset_Reference (L);
6595      Check_Unset_Reference (R);
6596      Generate_Operator_Reference (N, T);
6597      Check_Low_Bound_Tested (N);
6598
6599      --  In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6600      --  types or array types except String.
6601
6602      if Is_Boolean_Type (T) then
6603         Check_SPARK_05_Restriction
6604           ("comparison is not defined on Boolean type", N);
6605
6606      elsif Is_Array_Type (T)
6607        and then Base_Type (T) /= Standard_String
6608      then
6609         Check_SPARK_05_Restriction
6610           ("comparison is not defined on array types other than String", N);
6611      end if;
6612
6613      --  Check comparison on unordered enumeration
6614
6615      if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6616         Error_Msg_Sloc := Sloc (Etype (L));
6617         Error_Msg_NE
6618           ("comparison on unordered enumeration type& declared#?U?",
6619            N, Etype (L));
6620      end if;
6621
6622      --  Evaluate the relation (note we do this after the above check since
6623      --  this Eval call may change N to True/False.
6624
6625      Analyze_Dimension (N);
6626      Eval_Relational_Op (N);
6627   end Resolve_Comparison_Op;
6628
6629   -----------------------------------------
6630   -- Resolve_Discrete_Subtype_Indication --
6631   -----------------------------------------
6632
6633   procedure Resolve_Discrete_Subtype_Indication
6634     (N   : Node_Id;
6635      Typ : Entity_Id)
6636   is
6637      R : Node_Id;
6638      S : Entity_Id;
6639
6640   begin
6641      Analyze (Subtype_Mark (N));
6642      S := Entity (Subtype_Mark (N));
6643
6644      if Nkind (Constraint (N)) /= N_Range_Constraint then
6645         Error_Msg_N ("expect range constraint for discrete type", N);
6646         Set_Etype (N, Any_Type);
6647
6648      else
6649         R := Range_Expression (Constraint (N));
6650
6651         if R = Error then
6652            return;
6653         end if;
6654
6655         Analyze (R);
6656
6657         if Base_Type (S) /= Base_Type (Typ) then
6658            Error_Msg_NE
6659              ("expect subtype of }", N, First_Subtype (Typ));
6660
6661            --  Rewrite the constraint as a range of Typ
6662            --  to allow compilation to proceed further.
6663
6664            Set_Etype (N, Typ);
6665            Rewrite (Low_Bound (R),
6666              Make_Attribute_Reference (Sloc (Low_Bound (R)),
6667                Prefix         => New_Occurrence_Of (Typ, Sloc (R)),
6668                Attribute_Name => Name_First));
6669            Rewrite (High_Bound (R),
6670              Make_Attribute_Reference (Sloc (High_Bound (R)),
6671                Prefix         => New_Occurrence_Of (Typ, Sloc (R)),
6672                Attribute_Name => Name_First));
6673
6674         else
6675            Resolve (R, Typ);
6676            Set_Etype (N, Etype (R));
6677
6678            --  Additionally, we must check that the bounds are compatible
6679            --  with the given subtype, which might be different from the
6680            --  type of the context.
6681
6682            Apply_Range_Check (R, S);
6683
6684            --  ??? If the above check statically detects a Constraint_Error
6685            --  it replaces the offending bound(s) of the range R with a
6686            --  Constraint_Error node. When the itype which uses these bounds
6687            --  is frozen the resulting call to Duplicate_Subexpr generates
6688            --  a new temporary for the bounds.
6689
6690            --  Unfortunately there are other itypes that are also made depend
6691            --  on these bounds, so when Duplicate_Subexpr is called they get
6692            --  a forward reference to the newly created temporaries and Gigi
6693            --  aborts on such forward references. This is probably sign of a
6694            --  more fundamental problem somewhere else in either the order of
6695            --  itype freezing or the way certain itypes are constructed.
6696
6697            --  To get around this problem we call Remove_Side_Effects right
6698            --  away if either bounds of R are a Constraint_Error.
6699
6700            declare
6701               L : constant Node_Id := Low_Bound (R);
6702               H : constant Node_Id := High_Bound (R);
6703
6704            begin
6705               if Nkind (L) = N_Raise_Constraint_Error then
6706                  Remove_Side_Effects (L);
6707               end if;
6708
6709               if Nkind (H) = N_Raise_Constraint_Error then
6710                  Remove_Side_Effects (H);
6711               end if;
6712            end;
6713
6714            Check_Unset_Reference (Low_Bound  (R));
6715            Check_Unset_Reference (High_Bound (R));
6716         end if;
6717      end if;
6718   end Resolve_Discrete_Subtype_Indication;
6719
6720   -------------------------
6721   -- Resolve_Entity_Name --
6722   -------------------------
6723
6724   --  Used to resolve identifiers and expanded names
6725
6726   procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
6727      function Is_Assignment_Or_Object_Expression
6728        (Context : Node_Id;
6729         Expr    : Node_Id) return Boolean;
6730      --  Determine whether node Context denotes an assignment statement or an
6731      --  object declaration whose expression is node Expr.
6732
6733      function Is_OK_Volatile_Context
6734        (Context : Node_Id;
6735         Obj_Ref : Node_Id) return Boolean;
6736      --  Determine whether node Context denotes a "non-interfering context"
6737      --  (as defined in SPARK RM 7.1.3(13)) where volatile reference Obj_Ref
6738      --  can safely reside.
6739
6740      ----------------------------------------
6741      -- Is_Assignment_Or_Object_Expression --
6742      ----------------------------------------
6743
6744      function Is_Assignment_Or_Object_Expression
6745        (Context : Node_Id;
6746         Expr    : Node_Id) return Boolean
6747      is
6748      begin
6749         if Nkind_In (Context, N_Assignment_Statement,
6750                               N_Object_Declaration)
6751           and then Expression (Context) = Expr
6752         then
6753            return True;
6754
6755         --  Check whether a construct that yields a name is the expression of
6756         --  an assignment statement or an object declaration.
6757
6758         elsif (Nkind_In (Context, N_Attribute_Reference,
6759                                   N_Explicit_Dereference,
6760                                   N_Indexed_Component,
6761                                   N_Selected_Component,
6762                                   N_Slice)
6763                  and then Prefix (Context) = Expr)
6764           or else
6765               (Nkind_In (Context, N_Type_Conversion,
6766                                   N_Unchecked_Type_Conversion)
6767                  and then Expression (Context) = Expr)
6768         then
6769            return
6770              Is_Assignment_Or_Object_Expression
6771                (Context => Parent (Context),
6772                 Expr    => Context);
6773
6774         --  Otherwise the context is not an assignment statement or an object
6775         --  declaration.
6776
6777         else
6778            return False;
6779         end if;
6780      end Is_Assignment_Or_Object_Expression;
6781
6782      ----------------------------
6783      -- Is_OK_Volatile_Context --
6784      ----------------------------
6785
6786      function Is_OK_Volatile_Context
6787        (Context : Node_Id;
6788         Obj_Ref : Node_Id) return Boolean
6789      is
6790         function Within_Check (Nod : Node_Id) return Boolean;
6791         --  Determine whether an arbitrary node appears in a check node
6792
6793         function Within_Procedure_Call (Nod : Node_Id) return Boolean;
6794         --  Determine whether an arbitrary node appears in a procedure call
6795
6796         ------------------
6797         -- Within_Check --
6798         ------------------
6799
6800         function Within_Check (Nod : Node_Id) return Boolean is
6801            Par : Node_Id;
6802
6803         begin
6804            --  Climb the parent chain looking for a check node
6805
6806            Par := Nod;
6807            while Present (Par) loop
6808               if Nkind (Par) in N_Raise_xxx_Error then
6809                  return True;
6810
6811               --  Prevent the search from going too far
6812
6813               elsif Is_Body_Or_Package_Declaration (Par) then
6814                  exit;
6815               end if;
6816
6817               Par := Parent (Par);
6818            end loop;
6819
6820            return False;
6821         end Within_Check;
6822
6823         ---------------------------
6824         -- Within_Procedure_Call --
6825         ---------------------------
6826
6827         function Within_Procedure_Call (Nod : Node_Id) return Boolean is
6828            Par : Node_Id;
6829
6830         begin
6831            --  Climb the parent chain looking for a procedure call
6832
6833            Par := Nod;
6834            while Present (Par) loop
6835               if Nkind (Par) = N_Procedure_Call_Statement then
6836                  return True;
6837
6838               --  Prevent the search from going too far
6839
6840               elsif Is_Body_Or_Package_Declaration (Par) then
6841                  exit;
6842               end if;
6843
6844               Par := Parent (Par);
6845            end loop;
6846
6847            return False;
6848         end Within_Procedure_Call;
6849
6850      --  Start of processing for Is_OK_Volatile_Context
6851
6852      begin
6853         --  The volatile object appears on either side of an assignment
6854
6855         if Nkind (Context) = N_Assignment_Statement then
6856            return True;
6857
6858         --  The volatile object is part of the initialization expression of
6859         --  another object. Ensure that the climb of the parent chain came
6860         --  from the expression side and not from the name side.
6861
6862         elsif Nkind (Context) = N_Object_Declaration
6863           and then Present (Expression (Context))
6864           and then Expression (Context) = Obj_Ref
6865         then
6866            return True;
6867
6868         --  The volatile object appears as an actual parameter in a call to an
6869         --  instance of Unchecked_Conversion whose result is renamed.
6870
6871         elsif Nkind (Context) = N_Function_Call
6872           and then Is_Unchecked_Conversion_Instance (Entity (Name (Context)))
6873           and then Nkind (Parent (Context)) = N_Object_Renaming_Declaration
6874         then
6875            return True;
6876
6877         --  The volatile object appears as the prefix of a name occurring
6878         --  in a non-interfering context.
6879
6880         elsif Nkind_In (Context, N_Attribute_Reference,
6881                                  N_Explicit_Dereference,
6882                                  N_Indexed_Component,
6883                                  N_Selected_Component,
6884                                  N_Slice)
6885           and then Prefix (Context) = Obj_Ref
6886           and then Is_OK_Volatile_Context
6887                      (Context => Parent (Context),
6888                       Obj_Ref => Context)
6889         then
6890            return True;
6891
6892         --  The volatile object appears as the expression of a type conversion
6893         --  occurring in a non-interfering context.
6894
6895         elsif Nkind_In (Context, N_Type_Conversion,
6896                                  N_Unchecked_Type_Conversion)
6897           and then Expression (Context) = Obj_Ref
6898           and then Is_OK_Volatile_Context
6899                      (Context => Parent (Context),
6900                       Obj_Ref => Context)
6901         then
6902            return True;
6903
6904         --  Allow references to volatile objects in various checks. This is
6905         --  not a direct SPARK 2014 requirement.
6906
6907         elsif Within_Check (Context) then
6908            return True;
6909
6910         --  Assume that references to effectively volatile objects that appear
6911         --  as actual parameters in a procedure call are always legal. A full
6912         --  legality check is done when the actuals are resolved.
6913
6914         elsif Within_Procedure_Call (Context) then
6915            return True;
6916
6917         --  Otherwise the context is not suitable for an effectively volatile
6918         --  object.
6919
6920         else
6921            return False;
6922         end if;
6923      end Is_OK_Volatile_Context;
6924
6925      --  Local variables
6926
6927      E   : constant Entity_Id := Entity (N);
6928      Par : Node_Id;
6929
6930   --  Start of processing for Resolve_Entity_Name
6931
6932   begin
6933      --  If garbage from errors, set to Any_Type and return
6934
6935      if No (E) and then Total_Errors_Detected /= 0 then
6936         Set_Etype (N, Any_Type);
6937         return;
6938      end if;
6939
6940      --  Replace named numbers by corresponding literals. Note that this is
6941      --  the one case where Resolve_Entity_Name must reset the Etype, since
6942      --  it is currently marked as universal.
6943
6944      if Ekind (E) = E_Named_Integer then
6945         Set_Etype (N, Typ);
6946         Eval_Named_Integer (N);
6947
6948      elsif Ekind (E) = E_Named_Real then
6949         Set_Etype (N, Typ);
6950         Eval_Named_Real (N);
6951
6952      --  For enumeration literals, we need to make sure that a proper style
6953      --  check is done, since such literals are overloaded, and thus we did
6954      --  not do a style check during the first phase of analysis.
6955
6956      elsif Ekind (E) = E_Enumeration_Literal then
6957         Set_Entity_With_Checks (N, E);
6958         Eval_Entity_Name (N);
6959
6960      --  Case of subtype name appearing as an operand in expression
6961
6962      elsif Is_Type (E) then
6963
6964         --  Allow use of subtype if it is a concurrent type where we are
6965         --  currently inside the body. This will eventually be expanded into a
6966         --  call to Self (for tasks) or _object (for protected objects). Any
6967         --  other use of a subtype is invalid.
6968
6969         if Is_Concurrent_Type (E)
6970           and then In_Open_Scopes (E)
6971         then
6972            null;
6973
6974         --  Any other use is an error
6975
6976         else
6977            Error_Msg_N
6978               ("invalid use of subtype mark in expression or call", N);
6979         end if;
6980
6981      --  Check discriminant use if entity is discriminant in current scope,
6982      --  i.e. discriminant of record or concurrent type currently being
6983      --  analyzed. Uses in corresponding body are unrestricted.
6984
6985      elsif Ekind (E) = E_Discriminant
6986        and then Scope (E) = Current_Scope
6987        and then not Has_Completion (Current_Scope)
6988      then
6989         Check_Discriminant_Use (N);
6990
6991      --  A parameterless generic function cannot appear in a context that
6992      --  requires resolution.
6993
6994      elsif Ekind (E) = E_Generic_Function then
6995         Error_Msg_N ("illegal use of generic function", N);
6996
6997      --  In Ada 83 an OUT parameter cannot be read
6998
6999      elsif Ekind (E) = E_Out_Parameter
7000        and then (Nkind (Parent (N)) in N_Op
7001                   or else Nkind (Parent (N)) = N_Explicit_Dereference
7002                   or else Is_Assignment_Or_Object_Expression
7003                             (Context => Parent (N),
7004                              Expr    => N))
7005      then
7006         if Ada_Version = Ada_83 then
7007            Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7008
7009         --  An effectively volatile OUT parameter cannot be read
7010         --  (SPARK RM 7.1.3(11)).
7011
7012         elsif SPARK_Mode = On
7013           and then Is_Effectively_Volatile (E)
7014         then
7015            Error_Msg_N ("illegal reading of volatile OUT parameter", N);
7016         end if;
7017
7018      --  In all other cases, just do the possible static evaluation
7019
7020      else
7021         --  A deferred constant that appears in an expression must have a
7022         --  completion, unless it has been removed by in-place expansion of
7023         --  an aggregate.
7024
7025         if Ekind (E) = E_Constant
7026           and then Comes_From_Source (E)
7027           and then No (Constant_Value (E))
7028           and then Is_Frozen (Etype (E))
7029           and then not In_Spec_Expression
7030           and then not Is_Imported (E)
7031         then
7032            if No_Initialization (Parent (E))
7033              or else (Present (Full_View (E))
7034                        and then No_Initialization (Parent (Full_View (E))))
7035            then
7036               null;
7037            else
7038               Error_Msg_N (
7039                 "deferred constant is frozen before completion", N);
7040            end if;
7041         end if;
7042
7043         Eval_Entity_Name (N);
7044      end if;
7045
7046      Par := Parent (N);
7047
7048      --  When the entity appears in a parameter association, retrieve the
7049      --  related subprogram call.
7050
7051      if Nkind (Par) = N_Parameter_Association then
7052         Par := Parent (Par);
7053      end if;
7054
7055      --  The following checks are only relevant when SPARK_Mode is on as they
7056      --  are not standard Ada legality rules. An effectively volatile object
7057      --  subject to enabled properties Async_Writers or Effective_Reads must
7058      --  appear in a specific context.
7059
7060      if SPARK_Mode = On
7061        and then Is_Object (E)
7062        and then Is_Effectively_Volatile (E)
7063        and then (Async_Writers_Enabled (E)
7064                   or else Effective_Reads_Enabled (E))
7065        and then Comes_From_Source (N)
7066      then
7067         --  The effectively volatile objects appears in a "non-interfering
7068         --  context" as defined in SPARK RM 7.1.3(13).
7069
7070         if Is_OK_Volatile_Context (Par, N) then
7071            null;
7072
7073         --  Otherwise the context causes a side effect with respect to the
7074         --  effectively volatile object.
7075
7076         else
7077            SPARK_Msg_N
7078              ("volatile object cannot appear in this context "
7079               & "(SPARK RM 7.1.3(13))", N);
7080         end if;
7081      end if;
7082
7083      --  A Ghost entity must appear in a specific context
7084
7085      if Is_Ghost_Entity (E) and then Comes_From_Source (N) then
7086         Check_Ghost_Context (E, N);
7087      end if;
7088
7089      --  In SPARK mode, need to check possible elaboration issues
7090
7091      if SPARK_Mode = On and then Ekind (E) = E_Variable then
7092         Check_Elab_Call (N);
7093      end if;
7094   end Resolve_Entity_Name;
7095
7096   -------------------
7097   -- Resolve_Entry --
7098   -------------------
7099
7100   procedure Resolve_Entry (Entry_Name : Node_Id) is
7101      Loc    : constant Source_Ptr := Sloc (Entry_Name);
7102      Nam    : Entity_Id;
7103      New_N  : Node_Id;
7104      S      : Entity_Id;
7105      Tsk    : Entity_Id;
7106      E_Name : Node_Id;
7107      Index  : Node_Id;
7108
7109      function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7110      --  If the bounds of the entry family being called depend on task
7111      --  discriminants, build a new index subtype where a discriminant is
7112      --  replaced with the value of the discriminant of the target task.
7113      --  The target task is the prefix of the entry name in the call.
7114
7115      -----------------------
7116      -- Actual_Index_Type --
7117      -----------------------
7118
7119      function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7120         Typ   : constant Entity_Id := Entry_Index_Type (E);
7121         Tsk   : constant Entity_Id := Scope (E);
7122         Lo    : constant Node_Id   := Type_Low_Bound  (Typ);
7123         Hi    : constant Node_Id   := Type_High_Bound (Typ);
7124         New_T : Entity_Id;
7125
7126         function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7127         --  If the bound is given by a discriminant, replace with a reference
7128         --  to the discriminant of the same name in the target task. If the
7129         --  entry name is the target of a requeue statement and the entry is
7130         --  in the current protected object, the bound to be used is the
7131         --  discriminal of the object (see Apply_Range_Checks for details of
7132         --  the transformation).
7133
7134         -----------------------------
7135         -- Actual_Discriminant_Ref --
7136         -----------------------------
7137
7138         function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7139            Typ : constant Entity_Id := Etype (Bound);
7140            Ref : Node_Id;
7141
7142         begin
7143            Remove_Side_Effects (Bound);
7144
7145            if not Is_Entity_Name (Bound)
7146              or else Ekind (Entity (Bound)) /= E_Discriminant
7147            then
7148               return Bound;
7149
7150            elsif Is_Protected_Type (Tsk)
7151              and then In_Open_Scopes (Tsk)
7152              and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7153            then
7154               --  Note: here Bound denotes a discriminant of the corresponding
7155               --  record type tskV, whose discriminal is a formal of the
7156               --  init-proc tskVIP. What we want is the body discriminal,
7157               --  which is associated to the discriminant of the original
7158               --  concurrent type tsk.
7159
7160               return New_Occurrence_Of
7161                        (Find_Body_Discriminal (Entity (Bound)), Loc);
7162
7163            else
7164               Ref :=
7165                 Make_Selected_Component (Loc,
7166                   Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7167                   Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7168               Analyze (Ref);
7169               Resolve (Ref, Typ);
7170               return Ref;
7171            end if;
7172         end Actual_Discriminant_Ref;
7173
7174      --  Start of processing for Actual_Index_Type
7175
7176      begin
7177         if not Has_Discriminants (Tsk)
7178           or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7179         then
7180            return Entry_Index_Type (E);
7181
7182         else
7183            New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7184            Set_Etype        (New_T, Base_Type (Typ));
7185            Set_Size_Info    (New_T, Typ);
7186            Set_RM_Size      (New_T, RM_Size (Typ));
7187            Set_Scalar_Range (New_T,
7188              Make_Range (Sloc (Entry_Name),
7189                Low_Bound  => Actual_Discriminant_Ref (Lo),
7190                High_Bound => Actual_Discriminant_Ref (Hi)));
7191
7192            return New_T;
7193         end if;
7194      end Actual_Index_Type;
7195
7196   --  Start of processing of Resolve_Entry
7197
7198   begin
7199      --  Find name of entry being called, and resolve prefix of name with its
7200      --  own type. The prefix can be overloaded, and the name and signature of
7201      --  the entry must be taken into account.
7202
7203      if Nkind (Entry_Name) = N_Indexed_Component then
7204
7205         --  Case of dealing with entry family within the current tasks
7206
7207         E_Name := Prefix (Entry_Name);
7208
7209      else
7210         E_Name := Entry_Name;
7211      end if;
7212
7213      if Is_Entity_Name (E_Name) then
7214
7215         --  Entry call to an entry (or entry family) in the current task. This
7216         --  is legal even though the task will deadlock. Rewrite as call to
7217         --  current task.
7218
7219         --  This can also be a call to an entry in an enclosing task. If this
7220         --  is a single task, we have to retrieve its name, because the scope
7221         --  of the entry is the task type, not the object. If the enclosing
7222         --  task is a task type, the identity of the task is given by its own
7223         --  self variable.
7224
7225         --  Finally this can be a requeue on an entry of the same task or
7226         --  protected object.
7227
7228         S := Scope (Entity (E_Name));
7229
7230         for J in reverse 0 .. Scope_Stack.Last loop
7231            if Is_Task_Type (Scope_Stack.Table (J).Entity)
7232              and then not Comes_From_Source (S)
7233            then
7234               --  S is an enclosing task or protected object. The concurrent
7235               --  declaration has been converted into a type declaration, and
7236               --  the object itself has an object declaration that follows
7237               --  the type in the same declarative part.
7238
7239               Tsk := Next_Entity (S);
7240               while Etype (Tsk) /= S loop
7241                  Next_Entity (Tsk);
7242               end loop;
7243
7244               S := Tsk;
7245               exit;
7246
7247            elsif S = Scope_Stack.Table (J).Entity then
7248
7249               --  Call to current task. Will be transformed into call to Self
7250
7251               exit;
7252
7253            end if;
7254         end loop;
7255
7256         New_N :=
7257           Make_Selected_Component (Loc,
7258             Prefix => New_Occurrence_Of (S, Loc),
7259             Selector_Name =>
7260               New_Occurrence_Of (Entity (E_Name), Loc));
7261         Rewrite (E_Name, New_N);
7262         Analyze (E_Name);
7263
7264      elsif Nkind (Entry_Name) = N_Selected_Component
7265        and then Is_Overloaded (Prefix (Entry_Name))
7266      then
7267         --  Use the entry name (which must be unique at this point) to find
7268         --  the prefix that returns the corresponding task/protected type.
7269
7270         declare
7271            Pref : constant Node_Id := Prefix (Entry_Name);
7272            Ent  : constant Entity_Id :=  Entity (Selector_Name (Entry_Name));
7273            I    : Interp_Index;
7274            It   : Interp;
7275
7276         begin
7277            Get_First_Interp (Pref, I, It);
7278            while Present (It.Typ) loop
7279               if Scope (Ent) = It.Typ then
7280                  Set_Etype (Pref, It.Typ);
7281                  exit;
7282               end if;
7283
7284               Get_Next_Interp (I, It);
7285            end loop;
7286         end;
7287      end if;
7288
7289      if Nkind (Entry_Name) = N_Selected_Component then
7290         Resolve (Prefix (Entry_Name));
7291
7292      else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7293         Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7294         Resolve (Prefix (Prefix (Entry_Name)));
7295         Index :=  First (Expressions (Entry_Name));
7296         Resolve (Index, Entry_Index_Type (Nam));
7297
7298         --  Up to this point the expression could have been the actual in a
7299         --  simple entry call, and be given by a named association.
7300
7301         if Nkind (Index) = N_Parameter_Association then
7302            Error_Msg_N ("expect expression for entry index", Index);
7303         else
7304            Apply_Range_Check (Index, Actual_Index_Type (Nam));
7305         end if;
7306      end if;
7307   end Resolve_Entry;
7308
7309   ------------------------
7310   -- Resolve_Entry_Call --
7311   ------------------------
7312
7313   procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7314      Entry_Name  : constant Node_Id    := Name (N);
7315      Loc         : constant Source_Ptr := Sloc (Entry_Name);
7316      Actuals     : List_Id;
7317      First_Named : Node_Id;
7318      Nam         : Entity_Id;
7319      Norm_OK     : Boolean;
7320      Obj         : Node_Id;
7321      Was_Over    : Boolean;
7322
7323   begin
7324      --  We kill all checks here, because it does not seem worth the effort to
7325      --  do anything better, an entry call is a big operation.
7326
7327      Kill_All_Checks;
7328
7329      --  Processing of the name is similar for entry calls and protected
7330      --  operation calls. Once the entity is determined, we can complete
7331      --  the resolution of the actuals.
7332
7333      --  The selector may be overloaded, in the case of a protected object
7334      --  with overloaded functions. The type of the context is used for
7335      --  resolution.
7336
7337      if Nkind (Entry_Name) = N_Selected_Component
7338        and then Is_Overloaded (Selector_Name (Entry_Name))
7339        and then Typ /= Standard_Void_Type
7340      then
7341         declare
7342            I  : Interp_Index;
7343            It : Interp;
7344
7345         begin
7346            Get_First_Interp (Selector_Name (Entry_Name), I, It);
7347            while Present (It.Typ) loop
7348               if Covers (Typ, It.Typ) then
7349                  Set_Entity (Selector_Name (Entry_Name), It.Nam);
7350                  Set_Etype  (Entry_Name, It.Typ);
7351
7352                  Generate_Reference (It.Typ, N, ' ');
7353               end if;
7354
7355               Get_Next_Interp (I, It);
7356            end loop;
7357         end;
7358      end if;
7359
7360      Resolve_Entry (Entry_Name);
7361
7362      if Nkind (Entry_Name) = N_Selected_Component then
7363
7364         --  Simple entry call
7365
7366         Nam := Entity (Selector_Name (Entry_Name));
7367         Obj := Prefix (Entry_Name);
7368         Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7369
7370      else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7371
7372         --  Call to member of entry family
7373
7374         Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7375         Obj := Prefix (Prefix (Entry_Name));
7376         Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7377      end if;
7378
7379      --  We cannot in general check the maximum depth of protected entry calls
7380      --  at compile time. But we can tell that any protected entry call at all
7381      --  violates a specified nesting depth of zero.
7382
7383      if Is_Protected_Type (Scope (Nam)) then
7384         Check_Restriction (Max_Entry_Queue_Length, N);
7385      end if;
7386
7387      --  Use context type to disambiguate a protected function that can be
7388      --  called without actuals and that returns an array type, and where the
7389      --  argument list may be an indexing of the returned value.
7390
7391      if Ekind (Nam) = E_Function
7392        and then Needs_No_Actuals (Nam)
7393        and then Present (Parameter_Associations (N))
7394        and then
7395          ((Is_Array_Type (Etype (Nam))
7396             and then Covers (Typ, Component_Type (Etype (Nam))))
7397
7398            or else (Is_Access_Type (Etype (Nam))
7399                      and then Is_Array_Type (Designated_Type (Etype (Nam)))
7400                      and then
7401                        Covers
7402                         (Typ,
7403                          Component_Type (Designated_Type (Etype (Nam))))))
7404      then
7405         declare
7406            Index_Node : Node_Id;
7407
7408         begin
7409            Index_Node :=
7410              Make_Indexed_Component (Loc,
7411                Prefix =>
7412                  Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7413                Expressions => Parameter_Associations (N));
7414
7415            --  Since we are correcting a node classification error made by the
7416            --  parser, we call Replace rather than Rewrite.
7417
7418            Replace (N, Index_Node);
7419            Set_Etype (Prefix (N), Etype (Nam));
7420            Set_Etype (N, Typ);
7421            Resolve_Indexed_Component (N, Typ);
7422            return;
7423         end;
7424      end if;
7425
7426      if Ekind_In (Nam, E_Entry, E_Entry_Family)
7427        and then Present (PPC_Wrapper (Nam))
7428        and then Current_Scope /= PPC_Wrapper (Nam)
7429      then
7430         --  Rewrite as call to the precondition wrapper, adding the task
7431         --  object to the list of actuals. If the call is to a member of an
7432         --  entry family, include the index as well.
7433
7434         declare
7435            New_Call    : Node_Id;
7436            New_Actuals : List_Id;
7437
7438         begin
7439            New_Actuals := New_List (Obj);
7440
7441            if  Nkind (Entry_Name) = N_Indexed_Component then
7442               Append_To (New_Actuals,
7443                 New_Copy_Tree (First (Expressions (Entry_Name))));
7444            end if;
7445
7446            Append_List (Parameter_Associations (N), New_Actuals);
7447            New_Call :=
7448              Make_Procedure_Call_Statement (Loc,
7449                Name                   =>
7450                  New_Occurrence_Of (PPC_Wrapper (Nam), Loc),
7451                Parameter_Associations => New_Actuals);
7452            Rewrite (N, New_Call);
7453
7454            --  Preanalyze and resolve new call. Current procedure is called
7455            --  from Resolve_Call, after which expansion will take place.
7456
7457            Preanalyze_And_Resolve (N);
7458            return;
7459         end;
7460      end if;
7461
7462      --  The operation name may have been overloaded. Order the actuals
7463      --  according to the formals of the resolved entity, and set the return
7464      --  type to that of the operation.
7465
7466      if Was_Over then
7467         Normalize_Actuals (N, Nam, False, Norm_OK);
7468         pragma Assert (Norm_OK);
7469         Set_Etype (N, Etype (Nam));
7470      end if;
7471
7472      Resolve_Actuals (N, Nam);
7473      Check_Internal_Protected_Use (N, Nam);
7474
7475      --  Create a call reference to the entry
7476
7477      Generate_Reference (Nam, Entry_Name, 's');
7478
7479      if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7480         Check_Potentially_Blocking_Operation (N);
7481      end if;
7482
7483      --  Verify that a procedure call cannot masquerade as an entry
7484      --  call where an entry call is expected.
7485
7486      if Ekind (Nam) = E_Procedure then
7487         if Nkind (Parent (N)) = N_Entry_Call_Alternative
7488           and then N = Entry_Call_Statement (Parent (N))
7489         then
7490            Error_Msg_N ("entry call required in select statement", N);
7491
7492         elsif Nkind (Parent (N)) = N_Triggering_Alternative
7493           and then N = Triggering_Statement (Parent (N))
7494         then
7495            Error_Msg_N ("triggering statement cannot be procedure call", N);
7496
7497         elsif Ekind (Scope (Nam)) = E_Task_Type
7498           and then not In_Open_Scopes (Scope (Nam))
7499         then
7500            Error_Msg_N ("task has no entry with this name", Entry_Name);
7501         end if;
7502      end if;
7503
7504      --  After resolution, entry calls and protected procedure calls are
7505      --  changed into entry calls, for expansion. The structure of the node
7506      --  does not change, so it can safely be done in place. Protected
7507      --  function calls must keep their structure because they are
7508      --  subexpressions.
7509
7510      if Ekind (Nam) /= E_Function then
7511
7512         --  A protected operation that is not a function may modify the
7513         --  corresponding object, and cannot apply to a constant. If this
7514         --  is an internal call, the prefix is the type itself.
7515
7516         if Is_Protected_Type (Scope (Nam))
7517           and then not Is_Variable (Obj)
7518           and then (not Is_Entity_Name (Obj)
7519                       or else not Is_Type (Entity (Obj)))
7520         then
7521            Error_Msg_N
7522              ("prefix of protected procedure or entry call must be variable",
7523               Entry_Name);
7524         end if;
7525
7526         Actuals := Parameter_Associations (N);
7527         First_Named := First_Named_Actual (N);
7528
7529         Rewrite (N,
7530           Make_Entry_Call_Statement (Loc,
7531             Name                   => Entry_Name,
7532             Parameter_Associations => Actuals));
7533
7534         Set_First_Named_Actual (N, First_Named);
7535         Set_Analyzed (N, True);
7536
7537      --  Protected functions can return on the secondary stack, in which
7538      --  case we must trigger the transient scope mechanism.
7539
7540      elsif Expander_Active
7541        and then Requires_Transient_Scope (Etype (Nam))
7542      then
7543         Establish_Transient_Scope (N, Sec_Stack => True);
7544      end if;
7545   end Resolve_Entry_Call;
7546
7547   -------------------------
7548   -- Resolve_Equality_Op --
7549   -------------------------
7550
7551   --  Both arguments must have the same type, and the boolean context does
7552   --  not participate in the resolution. The first pass verifies that the
7553   --  interpretation is not ambiguous, and the type of the left argument is
7554   --  correctly set, or is Any_Type in case of ambiguity. If both arguments
7555   --  are strings or aggregates, allocators, or Null, they are ambiguous even
7556   --  though they carry a single (universal) type. Diagnose this case here.
7557
7558   procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7559      L : constant Node_Id   := Left_Opnd (N);
7560      R : constant Node_Id   := Right_Opnd (N);
7561      T : Entity_Id := Find_Unique_Type (L, R);
7562
7563      procedure Check_If_Expression (Cond : Node_Id);
7564      --  The resolution rule for if expressions requires that each such must
7565      --  have a unique type. This means that if several dependent expressions
7566      --  are of a non-null anonymous access type, and the context does not
7567      --  impose an expected type (as can be the case in an equality operation)
7568      --  the expression must be rejected.
7569
7570      procedure Explain_Redundancy (N : Node_Id);
7571      --  Attempt to explain the nature of a redundant comparison with True. If
7572      --  the expression N is too complex, this routine issues a general error
7573      --  message.
7574
7575      function Find_Unique_Access_Type return Entity_Id;
7576      --  In the case of allocators and access attributes, the context must
7577      --  provide an indication of the specific access type to be used. If
7578      --  one operand is of such a "generic" access type, check whether there
7579      --  is a specific visible access type that has the same designated type.
7580      --  This is semantically dubious, and of no interest to any real code,
7581      --  but c48008a makes it all worthwhile.
7582
7583      -------------------------
7584      -- Check_If_Expression --
7585      -------------------------
7586
7587      procedure Check_If_Expression (Cond : Node_Id) is
7588         Then_Expr : Node_Id;
7589         Else_Expr : Node_Id;
7590
7591      begin
7592         if Nkind (Cond) = N_If_Expression then
7593            Then_Expr := Next (First (Expressions (Cond)));
7594            Else_Expr := Next (Then_Expr);
7595
7596            if Nkind (Then_Expr) /= N_Null
7597              and then Nkind (Else_Expr) /= N_Null
7598            then
7599               Error_Msg_N ("cannot determine type of if expression", Cond);
7600            end if;
7601         end if;
7602      end Check_If_Expression;
7603
7604      ------------------------
7605      -- Explain_Redundancy --
7606      ------------------------
7607
7608      procedure Explain_Redundancy (N : Node_Id) is
7609         Error  : Name_Id;
7610         Val    : Node_Id;
7611         Val_Id : Entity_Id;
7612
7613      begin
7614         Val := N;
7615
7616         --  Strip the operand down to an entity
7617
7618         loop
7619            if Nkind (Val) = N_Selected_Component then
7620               Val := Selector_Name (Val);
7621            else
7622               exit;
7623            end if;
7624         end loop;
7625
7626         --  The construct denotes an entity
7627
7628         if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7629            Val_Id := Entity (Val);
7630
7631            --  Do not generate an error message when the comparison is done
7632            --  against the enumeration literal Standard.True.
7633
7634            if Ekind (Val_Id) /= E_Enumeration_Literal then
7635
7636               --  Build a customized error message
7637
7638               Name_Len := 0;
7639               Add_Str_To_Name_Buffer ("?r?");
7640
7641               if Ekind (Val_Id) = E_Component then
7642                  Add_Str_To_Name_Buffer ("component ");
7643
7644               elsif Ekind (Val_Id) = E_Constant then
7645                  Add_Str_To_Name_Buffer ("constant ");
7646
7647               elsif Ekind (Val_Id) = E_Discriminant then
7648                  Add_Str_To_Name_Buffer ("discriminant ");
7649
7650               elsif Is_Formal (Val_Id) then
7651                  Add_Str_To_Name_Buffer ("parameter ");
7652
7653               elsif Ekind (Val_Id) = E_Variable then
7654                  Add_Str_To_Name_Buffer ("variable ");
7655               end if;
7656
7657               Add_Str_To_Name_Buffer ("& is always True!");
7658               Error := Name_Find;
7659
7660               Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7661            end if;
7662
7663         --  The construct is too complex to disect, issue a general message
7664
7665         else
7666            Error_Msg_N ("?r?expression is always True!", Val);
7667         end if;
7668      end Explain_Redundancy;
7669
7670      -----------------------------
7671      -- Find_Unique_Access_Type --
7672      -----------------------------
7673
7674      function Find_Unique_Access_Type return Entity_Id is
7675         Acc : Entity_Id;
7676         E   : Entity_Id;
7677         S   : Entity_Id;
7678
7679      begin
7680         if Ekind_In (Etype (R), E_Allocator_Type,
7681                                 E_Access_Attribute_Type)
7682         then
7683            Acc := Designated_Type (Etype (R));
7684
7685         elsif Ekind_In (Etype (L), E_Allocator_Type,
7686                                    E_Access_Attribute_Type)
7687         then
7688            Acc := Designated_Type (Etype (L));
7689         else
7690            return Empty;
7691         end if;
7692
7693         S := Current_Scope;
7694         while S /= Standard_Standard loop
7695            E := First_Entity (S);
7696            while Present (E) loop
7697               if Is_Type (E)
7698                 and then Is_Access_Type (E)
7699                 and then Ekind (E) /= E_Allocator_Type
7700                 and then Designated_Type (E) = Base_Type (Acc)
7701               then
7702                  return E;
7703               end if;
7704
7705               Next_Entity (E);
7706            end loop;
7707
7708            S := Scope (S);
7709         end loop;
7710
7711         return Empty;
7712      end Find_Unique_Access_Type;
7713
7714   --  Start of processing for Resolve_Equality_Op
7715
7716   begin
7717      Set_Etype (N, Base_Type (Typ));
7718      Generate_Reference (T, N, ' ');
7719
7720      if T = Any_Fixed then
7721         T := Unique_Fixed_Point_Type (L);
7722      end if;
7723
7724      if T /= Any_Type then
7725         if T = Any_String    or else
7726            T = Any_Composite or else
7727            T = Any_Character
7728         then
7729            if T = Any_Character then
7730               Ambiguous_Character (L);
7731            else
7732               Error_Msg_N ("ambiguous operands for equality", N);
7733            end if;
7734
7735            Set_Etype (N, Any_Type);
7736            return;
7737
7738         elsif T = Any_Access
7739           or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
7740         then
7741            T := Find_Unique_Access_Type;
7742
7743            if No (T) then
7744               Error_Msg_N ("ambiguous operands for equality", N);
7745               Set_Etype (N, Any_Type);
7746               return;
7747            end if;
7748
7749         --  If expressions must have a single type, and if the context does
7750         --  not impose one the dependent expressions cannot be anonymous
7751         --  access types.
7752
7753         --  Why no similar processing for case expressions???
7754
7755         elsif Ada_Version >= Ada_2012
7756           and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
7757                                         E_Anonymous_Access_Subprogram_Type)
7758           and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
7759                                         E_Anonymous_Access_Subprogram_Type)
7760         then
7761            Check_If_Expression (L);
7762            Check_If_Expression (R);
7763         end if;
7764
7765         Resolve (L, T);
7766         Resolve (R, T);
7767
7768         --  In SPARK, equality operators = and /= for array types other than
7769         --  String are only defined when, for each index position, the
7770         --  operands have equal static bounds.
7771
7772         if Is_Array_Type (T) then
7773
7774            --  Protect call to Matching_Static_Array_Bounds to avoid costly
7775            --  operation if not needed.
7776
7777            if Restriction_Check_Required (SPARK_05)
7778              and then Base_Type (T) /= Standard_String
7779              and then Base_Type (Etype (L)) = Base_Type (Etype (R))
7780              and then Etype (L) /= Any_Composite  --  or else L in error
7781              and then Etype (R) /= Any_Composite  --  or else R in error
7782              and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
7783            then
7784               Check_SPARK_05_Restriction
7785                 ("array types should have matching static bounds", N);
7786            end if;
7787         end if;
7788
7789         --  If the unique type is a class-wide type then it will be expanded
7790         --  into a dispatching call to the predefined primitive. Therefore we
7791         --  check here for potential violation of such restriction.
7792
7793         if Is_Class_Wide_Type (T) then
7794            Check_Restriction (No_Dispatching_Calls, N);
7795         end if;
7796
7797         if Warn_On_Redundant_Constructs
7798           and then Comes_From_Source (N)
7799           and then Comes_From_Source (R)
7800           and then Is_Entity_Name (R)
7801           and then Entity (R) = Standard_True
7802         then
7803            Error_Msg_N -- CODEFIX
7804              ("?r?comparison with True is redundant!", N);
7805            Explain_Redundancy (Original_Node (R));
7806         end if;
7807
7808         Check_Unset_Reference (L);
7809         Check_Unset_Reference (R);
7810         Generate_Operator_Reference (N, T);
7811         Check_Low_Bound_Tested (N);
7812
7813         --  If this is an inequality, it may be the implicit inequality
7814         --  created for a user-defined operation, in which case the corres-
7815         --  ponding equality operation is not intrinsic, and the operation
7816         --  cannot be constant-folded. Else fold.
7817
7818         if Nkind (N) = N_Op_Eq
7819           or else Comes_From_Source (Entity (N))
7820           or else Ekind (Entity (N)) = E_Operator
7821           or else Is_Intrinsic_Subprogram
7822                     (Corresponding_Equality (Entity (N)))
7823         then
7824            Analyze_Dimension (N);
7825            Eval_Relational_Op (N);
7826
7827         elsif Nkind (N) = N_Op_Ne
7828           and then Is_Abstract_Subprogram (Entity (N))
7829         then
7830            Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
7831         end if;
7832
7833         --  Ada 2005: If one operand is an anonymous access type, convert the
7834         --  other operand to it, to ensure that the underlying types match in
7835         --  the back-end. Same for access_to_subprogram, and the conversion
7836         --  verifies that the types are subtype conformant.
7837
7838         --  We apply the same conversion in the case one of the operands is a
7839         --  private subtype of the type of the other.
7840
7841         --  Why the Expander_Active test here ???
7842
7843         if Expander_Active
7844           and then
7845             (Ekind_In (T, E_Anonymous_Access_Type,
7846                           E_Anonymous_Access_Subprogram_Type)
7847               or else Is_Private_Type (T))
7848         then
7849            if Etype (L) /= T then
7850               Rewrite (L,
7851                 Make_Unchecked_Type_Conversion (Sloc (L),
7852                   Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
7853                   Expression   => Relocate_Node (L)));
7854               Analyze_And_Resolve (L, T);
7855            end if;
7856
7857            if (Etype (R)) /= T then
7858               Rewrite (R,
7859                  Make_Unchecked_Type_Conversion (Sloc (R),
7860                    Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
7861                    Expression   => Relocate_Node (R)));
7862               Analyze_And_Resolve (R, T);
7863            end if;
7864         end if;
7865      end if;
7866   end Resolve_Equality_Op;
7867
7868   ----------------------------------
7869   -- Resolve_Explicit_Dereference --
7870   ----------------------------------
7871
7872   procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
7873      Loc   : constant Source_Ptr := Sloc (N);
7874      New_N : Node_Id;
7875      P     : constant Node_Id := Prefix (N);
7876
7877      P_Typ : Entity_Id;
7878      --  The candidate prefix type, if overloaded
7879
7880      I     : Interp_Index;
7881      It    : Interp;
7882
7883   begin
7884      Check_Fully_Declared_Prefix (Typ, P);
7885      P_Typ := Empty;
7886
7887      --  A useful optimization:  check whether the dereference denotes an
7888      --  element of a container, and if so rewrite it as a call to the
7889      --  corresponding Element function.
7890
7891      --  Disabled for now, on advice of ARG. A more restricted form of the
7892      --  predicate might be acceptable ???
7893
7894      --  if Is_Container_Element (N) then
7895      --     return;
7896      --  end if;
7897
7898      if Is_Overloaded (P) then
7899
7900         --  Use the context type to select the prefix that has the correct
7901         --  designated type. Keep the first match, which will be the inner-
7902         --  most.
7903
7904         Get_First_Interp (P, I, It);
7905
7906         while Present (It.Typ) loop
7907            if Is_Access_Type (It.Typ)
7908              and then Covers (Typ, Designated_Type (It.Typ))
7909            then
7910               if No (P_Typ) then
7911                  P_Typ := It.Typ;
7912               end if;
7913
7914            --  Remove access types that do not match, but preserve access
7915            --  to subprogram interpretations, in case a further dereference
7916            --  is needed (see below).
7917
7918            elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
7919               Remove_Interp (I);
7920            end if;
7921
7922            Get_Next_Interp (I, It);
7923         end loop;
7924
7925         if Present (P_Typ) then
7926            Resolve (P, P_Typ);
7927            Set_Etype (N, Designated_Type (P_Typ));
7928
7929         else
7930            --  If no interpretation covers the designated type of the prefix,
7931            --  this is the pathological case where not all implementations of
7932            --  the prefix allow the interpretation of the node as a call. Now
7933            --  that the expected type is known, Remove other interpretations
7934            --  from prefix, rewrite it as a call, and resolve again, so that
7935            --  the proper call node is generated.
7936
7937            Get_First_Interp (P, I, It);
7938            while Present (It.Typ) loop
7939               if Ekind (It.Typ) /= E_Access_Subprogram_Type then
7940                  Remove_Interp (I);
7941               end if;
7942
7943               Get_Next_Interp (I, It);
7944            end loop;
7945
7946            New_N :=
7947              Make_Function_Call (Loc,
7948                Name =>
7949                  Make_Explicit_Dereference (Loc,
7950                    Prefix => P),
7951                Parameter_Associations => New_List);
7952
7953            Save_Interps (N, New_N);
7954            Rewrite (N, New_N);
7955            Analyze_And_Resolve (N, Typ);
7956            return;
7957         end if;
7958
7959      --  If not overloaded, resolve P with its own type
7960
7961      else
7962         Resolve (P);
7963      end if;
7964
7965      if Is_Access_Type (Etype (P)) then
7966         Apply_Access_Check (N);
7967      end if;
7968
7969      --  If the designated type is a packed unconstrained array type, and the
7970      --  explicit dereference is not in the context of an attribute reference,
7971      --  then we must compute and set the actual subtype, since it is needed
7972      --  by Gigi. The reason we exclude the attribute case is that this is
7973      --  handled fine by Gigi, and in fact we use such attributes to build the
7974      --  actual subtype. We also exclude generated code (which builds actual
7975      --  subtypes directly if they are needed).
7976
7977      if Is_Array_Type (Etype (N))
7978        and then Is_Packed (Etype (N))
7979        and then not Is_Constrained (Etype (N))
7980        and then Nkind (Parent (N)) /= N_Attribute_Reference
7981        and then Comes_From_Source (N)
7982      then
7983         Set_Etype (N, Get_Actual_Subtype (N));
7984      end if;
7985
7986      --  Note: No Eval processing is required for an explicit dereference,
7987      --  because such a name can never be static.
7988
7989   end Resolve_Explicit_Dereference;
7990
7991   -------------------------------------
7992   -- Resolve_Expression_With_Actions --
7993   -------------------------------------
7994
7995   procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
7996   begin
7997      Set_Etype (N, Typ);
7998
7999      --  If N has no actions, and its expression has been constant folded,
8000      --  then rewrite N as just its expression. Note, we can't do this in
8001      --  the general case of Is_Empty_List (Actions (N)) as this would cause
8002      --  Expression (N) to be expanded again.
8003
8004      if Is_Empty_List (Actions (N))
8005        and then Compile_Time_Known_Value (Expression (N))
8006      then
8007         Rewrite (N, Expression (N));
8008      end if;
8009   end Resolve_Expression_With_Actions;
8010
8011   ----------------------------------
8012   -- Resolve_Generalized_Indexing --
8013   ----------------------------------
8014
8015   procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8016      Indexing : constant Node_Id := Generalized_Indexing (N);
8017      Call     : Node_Id;
8018      Indexes  : List_Id;
8019      Pref     : Node_Id;
8020
8021   begin
8022      --  In ASIS mode, propagate the information about the indexes back to
8023      --  to the original indexing node. The generalized indexing is either
8024      --  a function call, or a dereference of one. The actuals include the
8025      --  prefix of the original node, which is the container expression.
8026
8027      if ASIS_Mode then
8028         Resolve (Indexing, Typ);
8029         Set_Etype  (N, Etype (Indexing));
8030         Set_Is_Overloaded (N, False);
8031
8032         Call := Indexing;
8033         while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8034         loop
8035            Call := Prefix (Call);
8036         end loop;
8037
8038         if Nkind (Call) = N_Function_Call then
8039            Indexes := Parameter_Associations (Call);
8040            Pref := Remove_Head (Indexes);
8041            Set_Expressions (N, Indexes);
8042            Set_Prefix (N, Pref);
8043         end if;
8044
8045      else
8046         Rewrite (N, Indexing);
8047         Resolve (N, Typ);
8048      end if;
8049   end Resolve_Generalized_Indexing;
8050
8051   ---------------------------
8052   -- Resolve_If_Expression --
8053   ---------------------------
8054
8055   procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8056      Condition : constant Node_Id := First (Expressions (N));
8057      Then_Expr : constant Node_Id := Next (Condition);
8058      Else_Expr : Node_Id          := Next (Then_Expr);
8059      Else_Typ  : Entity_Id;
8060      Then_Typ  : Entity_Id;
8061
8062   begin
8063      Resolve (Condition, Any_Boolean);
8064      Resolve (Then_Expr, Typ);
8065      Then_Typ := Etype (Then_Expr);
8066
8067      --  When the "then" expression is of a scalar subtype different from the
8068      --  result subtype, then insert a conversion to ensure the generation of
8069      --  a constraint check. The same is done for the else part below, again
8070      --  comparing subtypes rather than base types.
8071
8072      if Is_Scalar_Type (Then_Typ)
8073        and then Then_Typ /= Typ
8074      then
8075         Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8076         Analyze_And_Resolve (Then_Expr, Typ);
8077      end if;
8078
8079      --  If ELSE expression present, just resolve using the determined type
8080
8081      if Present (Else_Expr) then
8082         Resolve (Else_Expr, Typ);
8083         Else_Typ := Etype (Else_Expr);
8084
8085         if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8086            Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8087            Analyze_And_Resolve (Else_Expr, Typ);
8088
8089         --  Apply RM 4.5.7 (17/3): whether the expression is statically or
8090         --  dynamically tagged must be known statically.
8091
8092         elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8093            if Is_Dynamically_Tagged (Then_Expr) /=
8094               Is_Dynamically_Tagged (Else_Expr)
8095            then
8096               Error_Msg_N ("all or none of the dependent expressions "
8097                            & "can be dynamically tagged", N);
8098            end if;
8099         end if;
8100
8101      --  If no ELSE expression is present, root type must be Standard.Boolean
8102      --  and we provide a Standard.True result converted to the appropriate
8103      --  Boolean type (in case it is a derived boolean type).
8104
8105      elsif Root_Type (Typ) = Standard_Boolean then
8106         Else_Expr :=
8107           Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8108         Analyze_And_Resolve (Else_Expr, Typ);
8109         Append_To (Expressions (N), Else_Expr);
8110
8111      else
8112         Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8113         Append_To (Expressions (N), Error);
8114      end if;
8115
8116      Set_Etype (N, Typ);
8117      Eval_If_Expression (N);
8118   end Resolve_If_Expression;
8119
8120   -------------------------------
8121   -- Resolve_Indexed_Component --
8122   -------------------------------
8123
8124   procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8125      Name       : constant Node_Id := Prefix  (N);
8126      Expr       : Node_Id;
8127      Array_Type : Entity_Id := Empty; -- to prevent junk warning
8128      Index      : Node_Id;
8129
8130   begin
8131      if Present (Generalized_Indexing (N)) then
8132         Resolve_Generalized_Indexing (N, Typ);
8133         return;
8134      end if;
8135
8136      if Is_Overloaded (Name) then
8137
8138         --  Use the context type to select the prefix that yields the correct
8139         --  component type.
8140
8141         declare
8142            I     : Interp_Index;
8143            It    : Interp;
8144            I1    : Interp_Index := 0;
8145            P     : constant Node_Id := Prefix (N);
8146            Found : Boolean := False;
8147
8148         begin
8149            Get_First_Interp (P, I, It);
8150            while Present (It.Typ) loop
8151               if (Is_Array_Type (It.Typ)
8152                     and then Covers (Typ, Component_Type (It.Typ)))
8153                 or else (Is_Access_Type (It.Typ)
8154                            and then Is_Array_Type (Designated_Type (It.Typ))
8155                            and then
8156                              Covers
8157                                (Typ,
8158                                 Component_Type (Designated_Type (It.Typ))))
8159               then
8160                  if Found then
8161                     It := Disambiguate (P, I1, I, Any_Type);
8162
8163                     if It = No_Interp then
8164                        Error_Msg_N ("ambiguous prefix for indexing",  N);
8165                        Set_Etype (N, Typ);
8166                        return;
8167
8168                     else
8169                        Found := True;
8170                        Array_Type := It.Typ;
8171                        I1 := I;
8172                     end if;
8173
8174                  else
8175                     Found := True;
8176                     Array_Type := It.Typ;
8177                     I1 := I;
8178                  end if;
8179               end if;
8180
8181               Get_Next_Interp (I, It);
8182            end loop;
8183         end;
8184
8185      else
8186         Array_Type := Etype (Name);
8187      end if;
8188
8189      Resolve (Name, Array_Type);
8190      Array_Type := Get_Actual_Subtype_If_Available (Name);
8191
8192      --  If prefix is access type, dereference to get real array type.
8193      --  Note: we do not apply an access check because the expander always
8194      --  introduces an explicit dereference, and the check will happen there.
8195
8196      if Is_Access_Type (Array_Type) then
8197         Array_Type := Designated_Type (Array_Type);
8198      end if;
8199
8200      --  If name was overloaded, set component type correctly now
8201      --  If a misplaced call to an entry family (which has no index types)
8202      --  return. Error will be diagnosed from calling context.
8203
8204      if Is_Array_Type (Array_Type) then
8205         Set_Etype (N, Component_Type (Array_Type));
8206      else
8207         return;
8208      end if;
8209
8210      Index := First_Index (Array_Type);
8211      Expr  := First (Expressions (N));
8212
8213      --  The prefix may have resolved to a string literal, in which case its
8214      --  etype has a special representation. This is only possible currently
8215      --  if the prefix is a static concatenation, written in functional
8216      --  notation.
8217
8218      if Ekind (Array_Type) = E_String_Literal_Subtype then
8219         Resolve (Expr, Standard_Positive);
8220
8221      else
8222         while Present (Index) and Present (Expr) loop
8223            Resolve (Expr, Etype (Index));
8224            Check_Unset_Reference (Expr);
8225
8226            if Is_Scalar_Type (Etype (Expr)) then
8227               Apply_Scalar_Range_Check (Expr, Etype (Index));
8228            else
8229               Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8230            end if;
8231
8232            Next_Index (Index);
8233            Next (Expr);
8234         end loop;
8235      end if;
8236
8237      Analyze_Dimension (N);
8238
8239      --  Do not generate the warning on suspicious index if we are analyzing
8240      --  package Ada.Tags; otherwise we will report the warning with the
8241      --  Prims_Ptr field of the dispatch table.
8242
8243      if Scope (Etype (Prefix (N))) = Standard_Standard
8244        or else not
8245          Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8246                  Ada_Tags)
8247      then
8248         Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8249         Eval_Indexed_Component (N);
8250      end if;
8251
8252      --  If the array type is atomic, and the component is not atomic, then
8253      --  this is worth a warning, since we have a situation where the access
8254      --  to the component may cause extra read/writes of the atomic array
8255      --  object, or partial word accesses, which could be unexpected.
8256
8257      if Nkind (N) = N_Indexed_Component
8258        and then Is_Atomic_Ref_With_Address (N)
8259        and then not (Has_Atomic_Components (Array_Type)
8260                       or else (Is_Entity_Name (Prefix (N))
8261                                 and then Has_Atomic_Components
8262                                            (Entity (Prefix (N)))))
8263        and then not Is_Atomic (Component_Type (Array_Type))
8264      then
8265         Error_Msg_N
8266           ("??access to non-atomic component of atomic array", Prefix (N));
8267         Error_Msg_N
8268           ("??\may cause unexpected accesses to atomic object", Prefix (N));
8269      end if;
8270   end Resolve_Indexed_Component;
8271
8272   -----------------------------
8273   -- Resolve_Integer_Literal --
8274   -----------------------------
8275
8276   procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8277   begin
8278      Set_Etype (N, Typ);
8279      Eval_Integer_Literal (N);
8280   end Resolve_Integer_Literal;
8281
8282   --------------------------------
8283   -- Resolve_Intrinsic_Operator --
8284   --------------------------------
8285
8286   procedure Resolve_Intrinsic_Operator  (N : Node_Id; Typ : Entity_Id) is
8287      Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8288      Op   : Entity_Id;
8289      Arg1 : Node_Id;
8290      Arg2 : Node_Id;
8291
8292      function Convert_Operand (Opnd : Node_Id) return Node_Id;
8293      --  If the operand is a literal, it cannot be the expression in a
8294      --  conversion. Use a qualified expression instead.
8295
8296      ---------------------
8297      -- Convert_Operand --
8298      ---------------------
8299
8300      function Convert_Operand (Opnd : Node_Id) return Node_Id is
8301         Loc : constant Source_Ptr := Sloc (Opnd);
8302         Res : Node_Id;
8303
8304      begin
8305         if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8306            Res :=
8307              Make_Qualified_Expression (Loc,
8308                Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8309                Expression   => Relocate_Node (Opnd));
8310            Analyze (Res);
8311
8312         else
8313            Res := Unchecked_Convert_To (Btyp, Opnd);
8314         end if;
8315
8316         return Res;
8317      end Convert_Operand;
8318
8319   --  Start of processing for Resolve_Intrinsic_Operator
8320
8321   begin
8322      --  We must preserve the original entity in a generic setting, so that
8323      --  the legality of the operation can be verified in an instance.
8324
8325      if not Expander_Active then
8326         return;
8327      end if;
8328
8329      Op := Entity (N);
8330      while Scope (Op) /= Standard_Standard loop
8331         Op := Homonym (Op);
8332         pragma Assert (Present (Op));
8333      end loop;
8334
8335      Set_Entity (N, Op);
8336      Set_Is_Overloaded (N, False);
8337
8338      --  If the result or operand types are private, rewrite with unchecked
8339      --  conversions on the operands and the result, to expose the proper
8340      --  underlying numeric type.
8341
8342      if Is_Private_Type (Typ)
8343        or else Is_Private_Type (Etype (Left_Opnd (N)))
8344        or else Is_Private_Type (Etype (Right_Opnd (N)))
8345      then
8346         Arg1 := Convert_Operand (Left_Opnd (N));
8347
8348         if Nkind (N) = N_Op_Expon then
8349            Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8350         else
8351            Arg2 := Convert_Operand (Right_Opnd (N));
8352         end if;
8353
8354         if Nkind (Arg1) = N_Type_Conversion then
8355            Save_Interps (Left_Opnd (N),  Expression (Arg1));
8356         end if;
8357
8358         if Nkind (Arg2) = N_Type_Conversion then
8359            Save_Interps (Right_Opnd (N), Expression (Arg2));
8360         end if;
8361
8362         Set_Left_Opnd  (N, Arg1);
8363         Set_Right_Opnd (N, Arg2);
8364
8365         Set_Etype (N, Btyp);
8366         Rewrite (N, Unchecked_Convert_To (Typ, N));
8367         Resolve (N, Typ);
8368
8369      elsif Typ /= Etype (Left_Opnd (N))
8370        or else Typ /= Etype (Right_Opnd (N))
8371      then
8372         --  Add explicit conversion where needed, and save interpretations in
8373         --  case operands are overloaded.
8374
8375         Arg1 := Convert_To (Typ, Left_Opnd  (N));
8376         Arg2 := Convert_To (Typ, Right_Opnd (N));
8377
8378         if Nkind (Arg1) = N_Type_Conversion then
8379            Save_Interps (Left_Opnd (N), Expression (Arg1));
8380         else
8381            Save_Interps (Left_Opnd (N), Arg1);
8382         end if;
8383
8384         if Nkind (Arg2) = N_Type_Conversion then
8385            Save_Interps (Right_Opnd (N), Expression (Arg2));
8386         else
8387            Save_Interps (Right_Opnd (N), Arg2);
8388         end if;
8389
8390         Rewrite (Left_Opnd  (N), Arg1);
8391         Rewrite (Right_Opnd (N), Arg2);
8392         Analyze (Arg1);
8393         Analyze (Arg2);
8394         Resolve_Arithmetic_Op (N, Typ);
8395
8396      else
8397         Resolve_Arithmetic_Op (N, Typ);
8398      end if;
8399   end Resolve_Intrinsic_Operator;
8400
8401   --------------------------------------
8402   -- Resolve_Intrinsic_Unary_Operator --
8403   --------------------------------------
8404
8405   procedure Resolve_Intrinsic_Unary_Operator
8406     (N   : Node_Id;
8407      Typ : Entity_Id)
8408   is
8409      Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8410      Op   : Entity_Id;
8411      Arg2 : Node_Id;
8412
8413   begin
8414      Op := Entity (N);
8415      while Scope (Op) /= Standard_Standard loop
8416         Op := Homonym (Op);
8417         pragma Assert (Present (Op));
8418      end loop;
8419
8420      Set_Entity (N, Op);
8421
8422      if Is_Private_Type (Typ) then
8423         Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8424         Save_Interps (Right_Opnd (N), Expression (Arg2));
8425
8426         Set_Right_Opnd (N, Arg2);
8427
8428         Set_Etype (N, Btyp);
8429         Rewrite (N, Unchecked_Convert_To (Typ, N));
8430         Resolve (N, Typ);
8431
8432      else
8433         Resolve_Unary_Op (N, Typ);
8434      end if;
8435   end Resolve_Intrinsic_Unary_Operator;
8436
8437   ------------------------
8438   -- Resolve_Logical_Op --
8439   ------------------------
8440
8441   procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8442      B_Typ : Entity_Id;
8443
8444   begin
8445      Check_No_Direct_Boolean_Operators (N);
8446
8447      --  Predefined operations on scalar types yield the base type. On the
8448      --  other hand, logical operations on arrays yield the type of the
8449      --  arguments (and the context).
8450
8451      if Is_Array_Type (Typ) then
8452         B_Typ := Typ;
8453      else
8454         B_Typ := Base_Type (Typ);
8455      end if;
8456
8457      --  The following test is required because the operands of the operation
8458      --  may be literals, in which case the resulting type appears to be
8459      --  compatible with a signed integer type, when in fact it is compatible
8460      --  only with modular types. If the context itself is universal, the
8461      --  operation is illegal.
8462
8463      if not Valid_Boolean_Arg (Typ) then
8464         Error_Msg_N ("invalid context for logical operation", N);
8465         Set_Etype (N, Any_Type);
8466         return;
8467
8468      elsif Typ = Any_Modular then
8469         Error_Msg_N
8470           ("no modular type available in this context", N);
8471         Set_Etype (N, Any_Type);
8472         return;
8473
8474      elsif Is_Modular_Integer_Type (Typ)
8475        and then Etype (Left_Opnd (N)) = Universal_Integer
8476        and then Etype (Right_Opnd (N)) = Universal_Integer
8477      then
8478         Check_For_Visible_Operator (N, B_Typ);
8479      end if;
8480
8481      --  Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8482      --  is active and the result type is standard Boolean (do not mess with
8483      --  ops that return a nonstandard Boolean type, because something strange
8484      --  is going on).
8485
8486      --  Note: you might expect this replacement to be done during expansion,
8487      --  but that doesn't work, because when the pragma Short_Circuit_And_Or
8488      --  is used, no part of the right operand of an "and" or "or" operator
8489      --  should be executed if the left operand would short-circuit the
8490      --  evaluation of the corresponding "and then" or "or else". If we left
8491      --  the replacement to expansion time, then run-time checks associated
8492      --  with such operands would be evaluated unconditionally, due to being
8493      --  before the condition prior to the rewriting as short-circuit forms
8494      --  during expansion.
8495
8496      if Short_Circuit_And_Or
8497        and then B_Typ = Standard_Boolean
8498        and then Nkind_In (N, N_Op_And, N_Op_Or)
8499      then
8500         --  Mark the corresponding putative SCO operator as truly a logical
8501         --  (and short-circuit) operator.
8502
8503         if Generate_SCO and then Comes_From_Source (N) then
8504            Set_SCO_Logical_Operator (N);
8505         end if;
8506
8507         if Nkind (N) = N_Op_And then
8508            Rewrite (N,
8509              Make_And_Then (Sloc (N),
8510                Left_Opnd  => Relocate_Node (Left_Opnd (N)),
8511                Right_Opnd => Relocate_Node (Right_Opnd (N))));
8512            Analyze_And_Resolve (N, B_Typ);
8513
8514         --  Case of OR changed to OR ELSE
8515
8516         else
8517            Rewrite (N,
8518              Make_Or_Else (Sloc (N),
8519                Left_Opnd  => Relocate_Node (Left_Opnd (N)),
8520                Right_Opnd => Relocate_Node (Right_Opnd (N))));
8521            Analyze_And_Resolve (N, B_Typ);
8522         end if;
8523
8524         --  Return now, since analysis of the rewritten ops will take care of
8525         --  other reference bookkeeping and expression folding.
8526
8527         return;
8528      end if;
8529
8530      Resolve (Left_Opnd (N), B_Typ);
8531      Resolve (Right_Opnd (N), B_Typ);
8532
8533      Check_Unset_Reference (Left_Opnd  (N));
8534      Check_Unset_Reference (Right_Opnd (N));
8535
8536      Set_Etype (N, B_Typ);
8537      Generate_Operator_Reference (N, B_Typ);
8538      Eval_Logical_Op (N);
8539
8540      --  In SPARK, logical operations AND, OR and XOR for arrays are defined
8541      --  only when both operands have same static lower and higher bounds. Of
8542      --  course the types have to match, so only check if operands are
8543      --  compatible and the node itself has no errors.
8544
8545      if Is_Array_Type (B_Typ)
8546        and then Nkind (N) in N_Binary_Op
8547      then
8548         declare
8549            Left_Typ  : constant Node_Id := Etype (Left_Opnd (N));
8550            Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8551
8552         begin
8553            --  Protect call to Matching_Static_Array_Bounds to avoid costly
8554            --  operation if not needed.
8555
8556            if Restriction_Check_Required (SPARK_05)
8557              and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8558              and then Left_Typ /= Any_Composite  --  or Left_Opnd in error
8559              and then Right_Typ /= Any_Composite  --  or Right_Opnd in error
8560              and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8561            then
8562               Check_SPARK_05_Restriction
8563                 ("array types should have matching static bounds", N);
8564            end if;
8565         end;
8566      end if;
8567
8568      Check_Function_Writable_Actuals (N);
8569   end Resolve_Logical_Op;
8570
8571   ---------------------------
8572   -- Resolve_Membership_Op --
8573   ---------------------------
8574
8575   --  The context can only be a boolean type, and does not determine the
8576   --  arguments. Arguments should be unambiguous, but the preference rule for
8577   --  universal types applies.
8578
8579   procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8580      pragma Warnings (Off, Typ);
8581
8582      L : constant Node_Id := Left_Opnd  (N);
8583      R : constant Node_Id := Right_Opnd (N);
8584      T : Entity_Id;
8585
8586      procedure Resolve_Set_Membership;
8587      --  Analysis has determined a unique type for the left operand. Use it to
8588      --  resolve the disjuncts.
8589
8590      ----------------------------
8591      -- Resolve_Set_Membership --
8592      ----------------------------
8593
8594      procedure Resolve_Set_Membership is
8595         Alt  : Node_Id;
8596         Ltyp : Entity_Id;
8597
8598      begin
8599         --  If the left operand is overloaded, find type compatible with not
8600         --  overloaded alternative of the right operand.
8601
8602         if Is_Overloaded (L) then
8603            Ltyp := Empty;
8604            Alt := First (Alternatives (N));
8605            while Present (Alt) loop
8606               if not Is_Overloaded (Alt) then
8607                  Ltyp := Intersect_Types (L, Alt);
8608                  exit;
8609               else
8610                  Next (Alt);
8611               end if;
8612            end loop;
8613
8614            --  Unclear how to resolve expression if all alternatives are also
8615            --  overloaded.
8616
8617            if No (Ltyp) then
8618               Error_Msg_N ("ambiguous expression", N);
8619            end if;
8620
8621         else
8622            Ltyp := Etype (L);
8623         end if;
8624
8625         Resolve (L, Ltyp);
8626
8627         Alt := First (Alternatives (N));
8628         while Present (Alt) loop
8629
8630            --  Alternative is an expression, a range
8631            --  or a subtype mark.
8632
8633            if not Is_Entity_Name (Alt)
8634              or else not Is_Type (Entity (Alt))
8635            then
8636               Resolve (Alt, Ltyp);
8637            end if;
8638
8639            Next (Alt);
8640         end loop;
8641
8642         --  Check for duplicates for discrete case
8643
8644         if Is_Discrete_Type (Ltyp) then
8645            declare
8646               type Ent is record
8647                  Alt : Node_Id;
8648                  Val : Uint;
8649               end record;
8650
8651               Alts  : array (0 .. List_Length (Alternatives (N))) of Ent;
8652               Nalts : Nat;
8653
8654            begin
8655               --  Loop checking duplicates. This is quadratic, but giant sets
8656               --  are unlikely in this context so it's a reasonable choice.
8657
8658               Nalts := 0;
8659               Alt := First (Alternatives (N));
8660               while Present (Alt) loop
8661                  if Is_OK_Static_Expression (Alt)
8662                    and then (Nkind_In (Alt, N_Integer_Literal,
8663                                             N_Character_Literal)
8664                               or else Nkind (Alt) in N_Has_Entity)
8665                  then
8666                     Nalts := Nalts + 1;
8667                     Alts (Nalts) := (Alt, Expr_Value (Alt));
8668
8669                     for J in 1 .. Nalts - 1 loop
8670                        if Alts (J).Val = Alts (Nalts).Val then
8671                           Error_Msg_Sloc := Sloc (Alts (J).Alt);
8672                           Error_Msg_N ("duplicate of value given#??", Alt);
8673                        end if;
8674                     end loop;
8675                  end if;
8676
8677                  Alt := Next (Alt);
8678               end loop;
8679            end;
8680         end if;
8681      end Resolve_Set_Membership;
8682
8683   --  Start of processing for Resolve_Membership_Op
8684
8685   begin
8686      if L = Error or else R = Error then
8687         return;
8688      end if;
8689
8690      if Present (Alternatives (N)) then
8691         Resolve_Set_Membership;
8692         goto SM_Exit;
8693
8694      elsif not Is_Overloaded (R)
8695        and then
8696          (Etype (R) = Universal_Integer
8697             or else
8698           Etype (R) = Universal_Real)
8699        and then Is_Overloaded (L)
8700      then
8701         T := Etype (R);
8702
8703      --  Ada 2005 (AI-251): Support the following case:
8704
8705      --      type I is interface;
8706      --      type T is tagged ...
8707
8708      --      function Test (O : I'Class) is
8709      --      begin
8710      --         return O in T'Class.
8711      --      end Test;
8712
8713      --  In this case we have nothing else to do. The membership test will be
8714      --  done at run time.
8715
8716      elsif Ada_Version >= Ada_2005
8717        and then Is_Class_Wide_Type (Etype (L))
8718        and then Is_Interface (Etype (L))
8719        and then Is_Class_Wide_Type (Etype (R))
8720        and then not Is_Interface (Etype (R))
8721      then
8722         return;
8723      else
8724         T := Intersect_Types (L, R);
8725      end if;
8726
8727      --  If mixed-mode operations are present and operands are all literal,
8728      --  the only interpretation involves Duration, which is probably not
8729      --  the intention of the programmer.
8730
8731      if T = Any_Fixed then
8732         T := Unique_Fixed_Point_Type (N);
8733
8734         if T = Any_Type then
8735            return;
8736         end if;
8737      end if;
8738
8739      Resolve (L, T);
8740      Check_Unset_Reference (L);
8741
8742      if Nkind (R) = N_Range
8743        and then not Is_Scalar_Type (T)
8744      then
8745         Error_Msg_N ("scalar type required for range", R);
8746      end if;
8747
8748      if Is_Entity_Name (R) then
8749         Freeze_Expression (R);
8750      else
8751         Resolve (R, T);
8752         Check_Unset_Reference (R);
8753      end if;
8754
8755      --  Here after resolving membership operation
8756
8757      <<SM_Exit>>
8758
8759      Eval_Membership_Op (N);
8760      Check_Function_Writable_Actuals (N);
8761   end Resolve_Membership_Op;
8762
8763   ------------------
8764   -- Resolve_Null --
8765   ------------------
8766
8767   procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
8768      Loc : constant Source_Ptr := Sloc (N);
8769
8770   begin
8771      --  Handle restriction against anonymous null access values This
8772      --  restriction can be turned off using -gnatdj.
8773
8774      --  Ada 2005 (AI-231): Remove restriction
8775
8776      if Ada_Version < Ada_2005
8777        and then not Debug_Flag_J
8778        and then Ekind (Typ) = E_Anonymous_Access_Type
8779        and then Comes_From_Source (N)
8780      then
8781         --  In the common case of a call which uses an explicitly null value
8782         --  for an access parameter, give specialized error message.
8783
8784         if Nkind (Parent (N)) in N_Subprogram_Call then
8785            Error_Msg_N
8786              ("null is not allowed as argument for an access parameter", N);
8787
8788         --  Standard message for all other cases (are there any?)
8789
8790         else
8791            Error_Msg_N
8792              ("null cannot be of an anonymous access type", N);
8793         end if;
8794      end if;
8795
8796      --  Ada 2005 (AI-231): Generate the null-excluding check in case of
8797      --  assignment to a null-excluding object
8798
8799      if Ada_Version >= Ada_2005
8800        and then Can_Never_Be_Null (Typ)
8801        and then Nkind (Parent (N)) = N_Assignment_Statement
8802      then
8803         if not Inside_Init_Proc then
8804            Insert_Action
8805              (Compile_Time_Constraint_Error (N,
8806                 "(Ada 2005) null not allowed in null-excluding objects??"),
8807               Make_Raise_Constraint_Error (Loc,
8808                 Reason => CE_Access_Check_Failed));
8809         else
8810            Insert_Action (N,
8811              Make_Raise_Constraint_Error (Loc,
8812                Reason => CE_Access_Check_Failed));
8813         end if;
8814      end if;
8815
8816      --  In a distributed context, null for a remote access to subprogram may
8817      --  need to be replaced with a special record aggregate. In this case,
8818      --  return after having done the transformation.
8819
8820      if (Ekind (Typ) = E_Record_Type
8821           or else Is_Remote_Access_To_Subprogram_Type (Typ))
8822        and then Remote_AST_Null_Value (N, Typ)
8823      then
8824         return;
8825      end if;
8826
8827      --  The null literal takes its type from the context
8828
8829      Set_Etype (N, Typ);
8830   end Resolve_Null;
8831
8832   -----------------------
8833   -- Resolve_Op_Concat --
8834   -----------------------
8835
8836   procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
8837
8838      --  We wish to avoid deep recursion, because concatenations are often
8839      --  deeply nested, as in A&B&...&Z. Therefore, we walk down the left
8840      --  operands nonrecursively until we find something that is not a simple
8841      --  concatenation (A in this case). We resolve that, and then walk back
8842      --  up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
8843      --  to do the rest of the work at each level. The Parent pointers allow
8844      --  us to avoid recursion, and thus avoid running out of memory. See also
8845      --  Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
8846
8847      NN  : Node_Id := N;
8848      Op1 : Node_Id;
8849
8850   begin
8851      --  The following code is equivalent to:
8852
8853      --    Resolve_Op_Concat_First (NN, Typ);
8854      --    Resolve_Op_Concat_Arg (N, ...);
8855      --    Resolve_Op_Concat_Rest (N, Typ);
8856
8857      --  where the Resolve_Op_Concat_Arg call recurses back here if the left
8858      --  operand is a concatenation.
8859
8860      --  Walk down left operands
8861
8862      loop
8863         Resolve_Op_Concat_First (NN, Typ);
8864         Op1 := Left_Opnd (NN);
8865         exit when not (Nkind (Op1) = N_Op_Concat
8866                         and then not Is_Array_Type (Component_Type (Typ))
8867                         and then Entity (Op1) = Entity (NN));
8868         NN := Op1;
8869      end loop;
8870
8871      --  Now (given the above example) NN is A&B and Op1 is A
8872
8873      --  First resolve Op1 ...
8874
8875      Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd  (NN));
8876
8877      --  ... then walk NN back up until we reach N (where we started), calling
8878      --  Resolve_Op_Concat_Rest along the way.
8879
8880      loop
8881         Resolve_Op_Concat_Rest (NN, Typ);
8882         exit when NN = N;
8883         NN := Parent (NN);
8884      end loop;
8885
8886      if Base_Type (Etype (N)) /= Standard_String then
8887         Check_SPARK_05_Restriction
8888           ("result of concatenation should have type String", N);
8889      end if;
8890   end Resolve_Op_Concat;
8891
8892   ---------------------------
8893   -- Resolve_Op_Concat_Arg --
8894   ---------------------------
8895
8896   procedure Resolve_Op_Concat_Arg
8897     (N       : Node_Id;
8898      Arg     : Node_Id;
8899      Typ     : Entity_Id;
8900      Is_Comp : Boolean)
8901   is
8902      Btyp : constant Entity_Id := Base_Type (Typ);
8903      Ctyp : constant Entity_Id := Component_Type (Typ);
8904
8905   begin
8906      if In_Instance then
8907         if Is_Comp
8908           or else (not Is_Overloaded (Arg)
8909                     and then Etype (Arg) /= Any_Composite
8910                     and then Covers (Ctyp, Etype (Arg)))
8911         then
8912            Resolve (Arg, Ctyp);
8913         else
8914            Resolve (Arg, Btyp);
8915         end if;
8916
8917      --  If both Array & Array and Array & Component are visible, there is a
8918      --  potential ambiguity that must be reported.
8919
8920      elsif Has_Compatible_Type (Arg, Ctyp) then
8921         if Nkind (Arg) = N_Aggregate
8922           and then Is_Composite_Type (Ctyp)
8923         then
8924            if Is_Private_Type (Ctyp) then
8925               Resolve (Arg, Btyp);
8926
8927            --  If the operation is user-defined and not overloaded use its
8928            --  profile. The operation may be a renaming, in which case it has
8929            --  been rewritten, and we want the original profile.
8930
8931            elsif not Is_Overloaded (N)
8932              and then Comes_From_Source (Entity (Original_Node (N)))
8933              and then Ekind (Entity (Original_Node (N))) = E_Function
8934            then
8935               Resolve (Arg,
8936                 Etype
8937                   (Next_Formal (First_Formal (Entity (Original_Node (N))))));
8938               return;
8939
8940            --  Otherwise an aggregate may match both the array type and the
8941            --  component type.
8942
8943            else
8944               Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
8945               Set_Etype (Arg, Any_Type);
8946            end if;
8947
8948         else
8949            if Is_Overloaded (Arg)
8950              and then Has_Compatible_Type (Arg, Typ)
8951              and then Etype (Arg) /= Any_Type
8952            then
8953               declare
8954                  I    : Interp_Index;
8955                  It   : Interp;
8956                  Func : Entity_Id;
8957
8958               begin
8959                  Get_First_Interp (Arg, I, It);
8960                  Func := It.Nam;
8961                  Get_Next_Interp (I, It);
8962
8963                  --  Special-case the error message when the overloading is
8964                  --  caused by a function that yields an array and can be
8965                  --  called without parameters.
8966
8967                  if It.Nam = Func then
8968                     Error_Msg_Sloc := Sloc (Func);
8969                     Error_Msg_N ("ambiguous call to function#", Arg);
8970                     Error_Msg_NE
8971                       ("\\interpretation as call yields&", Arg, Typ);
8972                     Error_Msg_NE
8973                       ("\\interpretation as indexing of call yields&",
8974                         Arg, Component_Type (Typ));
8975
8976                  else
8977                     Error_Msg_N ("ambiguous operand for concatenation!", Arg);
8978
8979                     Get_First_Interp (Arg, I, It);
8980                     while Present (It.Nam) loop
8981                        Error_Msg_Sloc := Sloc (It.Nam);
8982
8983                        if Base_Type (It.Typ) = Btyp
8984                             or else
8985                           Base_Type (It.Typ) = Base_Type (Ctyp)
8986                        then
8987                           Error_Msg_N -- CODEFIX
8988                             ("\\possible interpretation#", Arg);
8989                        end if;
8990
8991                        Get_Next_Interp (I, It);
8992                     end loop;
8993                  end if;
8994               end;
8995            end if;
8996
8997            Resolve (Arg, Component_Type (Typ));
8998
8999            if Nkind (Arg) = N_String_Literal then
9000               Set_Etype (Arg, Component_Type (Typ));
9001            end if;
9002
9003            if Arg = Left_Opnd (N) then
9004               Set_Is_Component_Left_Opnd (N);
9005            else
9006               Set_Is_Component_Right_Opnd (N);
9007            end if;
9008         end if;
9009
9010      else
9011         Resolve (Arg, Btyp);
9012      end if;
9013
9014      --  Concatenation is restricted in SPARK: each operand must be either a
9015      --  string literal, the name of a string constant, a static character or
9016      --  string expression, or another concatenation. Arg cannot be a
9017      --  concatenation here as callers of Resolve_Op_Concat_Arg call it
9018      --  separately on each final operand, past concatenation operations.
9019
9020      if Is_Character_Type (Etype (Arg)) then
9021         if not Is_OK_Static_Expression (Arg) then
9022            Check_SPARK_05_Restriction
9023              ("character operand for concatenation should be static", Arg);
9024         end if;
9025
9026      elsif Is_String_Type (Etype (Arg)) then
9027         if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9028                  and then Is_Constant_Object (Entity (Arg)))
9029           and then not Is_OK_Static_Expression (Arg)
9030         then
9031            Check_SPARK_05_Restriction
9032              ("string operand for concatenation should be static", Arg);
9033         end if;
9034
9035      --  Do not issue error on an operand that is neither a character nor a
9036      --  string, as the error is issued in Resolve_Op_Concat.
9037
9038      else
9039         null;
9040      end if;
9041
9042      Check_Unset_Reference (Arg);
9043   end Resolve_Op_Concat_Arg;
9044
9045   -----------------------------
9046   -- Resolve_Op_Concat_First --
9047   -----------------------------
9048
9049   procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9050      Btyp : constant Entity_Id := Base_Type (Typ);
9051      Op1  : constant Node_Id := Left_Opnd (N);
9052      Op2  : constant Node_Id := Right_Opnd (N);
9053
9054   begin
9055      --  The parser folds an enormous sequence of concatenations of string
9056      --  literals into "" & "...", where the Is_Folded_In_Parser flag is set
9057      --  in the right operand. If the expression resolves to a predefined "&"
9058      --  operator, all is well. Otherwise, the parser's folding is wrong, so
9059      --  we give an error. See P_Simple_Expression in Par.Ch4.
9060
9061      if Nkind (Op2) = N_String_Literal
9062        and then Is_Folded_In_Parser (Op2)
9063        and then Ekind (Entity (N)) = E_Function
9064      then
9065         pragma Assert (Nkind (Op1) = N_String_Literal  --  should be ""
9066               and then String_Length (Strval (Op1)) = 0);
9067         Error_Msg_N ("too many user-defined concatenations", N);
9068         return;
9069      end if;
9070
9071      Set_Etype (N, Btyp);
9072
9073      if Is_Limited_Composite (Btyp) then
9074         Error_Msg_N ("concatenation not available for limited array", N);
9075         Explain_Limited_Type (Btyp, N);
9076      end if;
9077   end Resolve_Op_Concat_First;
9078
9079   ----------------------------
9080   -- Resolve_Op_Concat_Rest --
9081   ----------------------------
9082
9083   procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9084      Op1  : constant Node_Id := Left_Opnd (N);
9085      Op2  : constant Node_Id := Right_Opnd (N);
9086
9087   begin
9088      Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd  (N));
9089
9090      Generate_Operator_Reference (N, Typ);
9091
9092      if Is_String_Type (Typ) then
9093         Eval_Concatenation (N);
9094      end if;
9095
9096      --  If this is not a static concatenation, but the result is a string
9097      --  type (and not an array of strings) ensure that static string operands
9098      --  have their subtypes properly constructed.
9099
9100      if Nkind (N) /= N_String_Literal
9101        and then Is_Character_Type (Component_Type (Typ))
9102      then
9103         Set_String_Literal_Subtype (Op1, Typ);
9104         Set_String_Literal_Subtype (Op2, Typ);
9105      end if;
9106   end Resolve_Op_Concat_Rest;
9107
9108   ----------------------
9109   -- Resolve_Op_Expon --
9110   ----------------------
9111
9112   procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9113      B_Typ : constant Entity_Id := Base_Type (Typ);
9114
9115   begin
9116      --  Catch attempts to do fixed-point exponentiation with universal
9117      --  operands, which is a case where the illegality is not caught during
9118      --  normal operator analysis. This is not done in preanalysis mode
9119      --  since the tree is not fully decorated during preanalysis.
9120
9121      if Full_Analysis then
9122         if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9123            Error_Msg_N ("exponentiation not available for fixed point", N);
9124            return;
9125
9126         elsif Nkind (Parent (N)) in N_Op
9127           and then Is_Fixed_Point_Type (Etype (Parent (N)))
9128           and then Etype (N) = Universal_Real
9129           and then Comes_From_Source (N)
9130         then
9131            Error_Msg_N ("exponentiation not available for fixed point", N);
9132            return;
9133         end if;
9134      end if;
9135
9136      if Comes_From_Source (N)
9137        and then Ekind (Entity (N)) = E_Function
9138        and then Is_Imported (Entity (N))
9139        and then Is_Intrinsic_Subprogram (Entity (N))
9140      then
9141         Resolve_Intrinsic_Operator (N, Typ);
9142         return;
9143      end if;
9144
9145      if Etype (Left_Opnd (N)) = Universal_Integer
9146        or else Etype (Left_Opnd (N)) = Universal_Real
9147      then
9148         Check_For_Visible_Operator (N, B_Typ);
9149      end if;
9150
9151      --  We do the resolution using the base type, because intermediate values
9152      --  in expressions are always of the base type, not a subtype of it.
9153
9154      Resolve (Left_Opnd (N), B_Typ);
9155      Resolve (Right_Opnd (N), Standard_Integer);
9156
9157      --  For integer types, right argument must be in Natural range
9158
9159      if Is_Integer_Type (Typ) then
9160         Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9161      end if;
9162
9163      Check_Unset_Reference (Left_Opnd  (N));
9164      Check_Unset_Reference (Right_Opnd (N));
9165
9166      Set_Etype (N, B_Typ);
9167      Generate_Operator_Reference (N, B_Typ);
9168
9169      Analyze_Dimension (N);
9170
9171      if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9172         --  Evaluate the exponentiation operator for dimensioned type
9173
9174         Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9175      else
9176         Eval_Op_Expon (N);
9177      end if;
9178
9179      --  Set overflow checking bit. Much cleverer code needed here eventually
9180      --  and perhaps the Resolve routines should be separated for the various
9181      --  arithmetic operations, since they will need different processing. ???
9182
9183      if Nkind (N) in N_Op then
9184         if not Overflow_Checks_Suppressed (Etype (N)) then
9185            Enable_Overflow_Check (N);
9186         end if;
9187      end if;
9188   end Resolve_Op_Expon;
9189
9190   --------------------
9191   -- Resolve_Op_Not --
9192   --------------------
9193
9194   procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9195      B_Typ : Entity_Id;
9196
9197      function Parent_Is_Boolean return Boolean;
9198      --  This function determines if the parent node is a boolean operator or
9199      --  operation (comparison op, membership test, or short circuit form) and
9200      --  the not in question is the left operand of this operation. Note that
9201      --  if the not is in parens, then false is returned.
9202
9203      -----------------------
9204      -- Parent_Is_Boolean --
9205      -----------------------
9206
9207      function Parent_Is_Boolean return Boolean is
9208      begin
9209         if Paren_Count (N) /= 0 then
9210            return False;
9211
9212         else
9213            case Nkind (Parent (N)) is
9214               when N_Op_And   |
9215                    N_Op_Eq    |
9216                    N_Op_Ge    |
9217                    N_Op_Gt    |
9218                    N_Op_Le    |
9219                    N_Op_Lt    |
9220                    N_Op_Ne    |
9221                    N_Op_Or    |
9222                    N_Op_Xor   |
9223                    N_In       |
9224                    N_Not_In   |
9225                    N_And_Then |
9226                    N_Or_Else  =>
9227
9228                  return Left_Opnd (Parent (N)) = N;
9229
9230               when others =>
9231                  return False;
9232            end case;
9233         end if;
9234      end Parent_Is_Boolean;
9235
9236   --  Start of processing for Resolve_Op_Not
9237
9238   begin
9239      --  Predefined operations on scalar types yield the base type. On the
9240      --  other hand, logical operations on arrays yield the type of the
9241      --  arguments (and the context).
9242
9243      if Is_Array_Type (Typ) then
9244         B_Typ := Typ;
9245      else
9246         B_Typ := Base_Type (Typ);
9247      end if;
9248
9249      --  Straightforward case of incorrect arguments
9250
9251      if not Valid_Boolean_Arg (Typ) then
9252         Error_Msg_N ("invalid operand type for operator&", N);
9253         Set_Etype (N, Any_Type);
9254         return;
9255
9256      --  Special case of probable missing parens
9257
9258      elsif Typ = Universal_Integer or else Typ = Any_Modular then
9259         if Parent_Is_Boolean then
9260            Error_Msg_N
9261              ("operand of not must be enclosed in parentheses",
9262               Right_Opnd (N));
9263         else
9264            Error_Msg_N
9265              ("no modular type available in this context", N);
9266         end if;
9267
9268         Set_Etype (N, Any_Type);
9269         return;
9270
9271      --  OK resolution of NOT
9272
9273      else
9274         --  Warn if non-boolean types involved. This is a case like not a < b
9275         --  where a and b are modular, where we will get (not a) < b and most
9276         --  likely not (a < b) was intended.
9277
9278         if Warn_On_Questionable_Missing_Parens
9279           and then not Is_Boolean_Type (Typ)
9280           and then Parent_Is_Boolean
9281         then
9282            Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9283         end if;
9284
9285         --  Warn on double negation if checking redundant constructs
9286
9287         if Warn_On_Redundant_Constructs
9288           and then Comes_From_Source (N)
9289           and then Comes_From_Source (Right_Opnd (N))
9290           and then Root_Type (Typ) = Standard_Boolean
9291           and then Nkind (Right_Opnd (N)) = N_Op_Not
9292         then
9293            Error_Msg_N ("redundant double negation?r?", N);
9294         end if;
9295
9296         --  Complete resolution and evaluation of NOT
9297
9298         Resolve (Right_Opnd (N), B_Typ);
9299         Check_Unset_Reference (Right_Opnd (N));
9300         Set_Etype (N, B_Typ);
9301         Generate_Operator_Reference (N, B_Typ);
9302         Eval_Op_Not (N);
9303      end if;
9304   end Resolve_Op_Not;
9305
9306   -----------------------------
9307   -- Resolve_Operator_Symbol --
9308   -----------------------------
9309
9310   --  Nothing to be done, all resolved already
9311
9312   procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9313      pragma Warnings (Off, N);
9314      pragma Warnings (Off, Typ);
9315
9316   begin
9317      null;
9318   end Resolve_Operator_Symbol;
9319
9320   ----------------------------------
9321   -- Resolve_Qualified_Expression --
9322   ----------------------------------
9323
9324   procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9325      pragma Warnings (Off, Typ);
9326
9327      Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9328      Expr       : constant Node_Id   := Expression (N);
9329
9330   begin
9331      Resolve (Expr, Target_Typ);
9332
9333      --  Protect call to Matching_Static_Array_Bounds to avoid costly
9334      --  operation if not needed.
9335
9336      if Restriction_Check_Required (SPARK_05)
9337        and then Is_Array_Type (Target_Typ)
9338        and then Is_Array_Type (Etype (Expr))
9339        and then Etype (Expr) /= Any_Composite  --  or else Expr in error
9340        and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9341      then
9342         Check_SPARK_05_Restriction
9343           ("array types should have matching static bounds", N);
9344      end if;
9345
9346      --  A qualified expression requires an exact match of the type, class-
9347      --  wide matching is not allowed. However, if the qualifying type is
9348      --  specific and the expression has a class-wide type, it may still be
9349      --  okay, since it can be the result of the expansion of a call to a
9350      --  dispatching function, so we also have to check class-wideness of the
9351      --  type of the expression's original node.
9352
9353      if (Is_Class_Wide_Type (Target_Typ)
9354           or else
9355             (Is_Class_Wide_Type (Etype (Expr))
9356               and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9357        and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9358      then
9359         Wrong_Type (Expr, Target_Typ);
9360      end if;
9361
9362      --  If the target type is unconstrained, then we reset the type of the
9363      --  result from the type of the expression. For other cases, the actual
9364      --  subtype of the expression is the target type.
9365
9366      if Is_Composite_Type (Target_Typ)
9367        and then not Is_Constrained (Target_Typ)
9368      then
9369         Set_Etype (N, Etype (Expr));
9370      end if;
9371
9372      Analyze_Dimension (N);
9373      Eval_Qualified_Expression (N);
9374
9375      --  If we still have a qualified expression after the static evaluation,
9376      --  then apply a scalar range check if needed. The reason that we do this
9377      --  after the Eval call is that otherwise, the application of the range
9378      --  check may convert an illegal static expression and result in warning
9379      --  rather than giving an error (e.g Integer'(Integer'Last + 1)).
9380
9381      if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9382         Apply_Scalar_Range_Check (Expr, Typ);
9383      end if;
9384   end Resolve_Qualified_Expression;
9385
9386   ------------------------------
9387   -- Resolve_Raise_Expression --
9388   ------------------------------
9389
9390   procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9391   begin
9392      if Typ = Raise_Type then
9393         Error_Msg_N ("cannot find unique type for raise expression", N);
9394         Set_Etype (N, Any_Type);
9395      else
9396         Set_Etype (N, Typ);
9397      end if;
9398   end Resolve_Raise_Expression;
9399
9400   -------------------
9401   -- Resolve_Range --
9402   -------------------
9403
9404   procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9405      L : constant Node_Id := Low_Bound (N);
9406      H : constant Node_Id := High_Bound (N);
9407
9408      function First_Last_Ref return Boolean;
9409      --  Returns True if N is of the form X'First .. X'Last where X is the
9410      --  same entity for both attributes.
9411
9412      --------------------
9413      -- First_Last_Ref --
9414      --------------------
9415
9416      function First_Last_Ref return Boolean is
9417         Lorig : constant Node_Id := Original_Node (L);
9418         Horig : constant Node_Id := Original_Node (H);
9419
9420      begin
9421         if Nkind (Lorig) = N_Attribute_Reference
9422           and then Nkind (Horig) = N_Attribute_Reference
9423           and then Attribute_Name (Lorig) = Name_First
9424           and then Attribute_Name (Horig) = Name_Last
9425         then
9426            declare
9427               PL : constant Node_Id := Prefix (Lorig);
9428               PH : constant Node_Id := Prefix (Horig);
9429            begin
9430               if Is_Entity_Name (PL)
9431                 and then Is_Entity_Name (PH)
9432                 and then Entity (PL) = Entity (PH)
9433               then
9434                  return True;
9435               end if;
9436            end;
9437         end if;
9438
9439         return False;
9440      end First_Last_Ref;
9441
9442   --  Start of processing for Resolve_Range
9443
9444   begin
9445      Set_Etype (N, Typ);
9446      Resolve (L, Typ);
9447      Resolve (H, Typ);
9448
9449      --  Check for inappropriate range on unordered enumeration type
9450
9451      if Bad_Unordered_Enumeration_Reference (N, Typ)
9452
9453        --  Exclude X'First .. X'Last if X is the same entity for both
9454
9455        and then not First_Last_Ref
9456      then
9457         Error_Msg_Sloc := Sloc (Typ);
9458         Error_Msg_NE
9459           ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9460      end if;
9461
9462      Check_Unset_Reference (L);
9463      Check_Unset_Reference (H);
9464
9465      --  We have to check the bounds for being within the base range as
9466      --  required for a non-static context. Normally this is automatic and
9467      --  done as part of evaluating expressions, but the N_Range node is an
9468      --  exception, since in GNAT we consider this node to be a subexpression,
9469      --  even though in Ada it is not. The circuit in Sem_Eval could check for
9470      --  this, but that would put the test on the main evaluation path for
9471      --  expressions.
9472
9473      Check_Non_Static_Context (L);
9474      Check_Non_Static_Context (H);
9475
9476      --  Check for an ambiguous range over character literals. This will
9477      --  happen with a membership test involving only literals.
9478
9479      if Typ = Any_Character then
9480         Ambiguous_Character (L);
9481         Set_Etype (N, Any_Type);
9482         return;
9483      end if;
9484
9485      --  If bounds are static, constant-fold them, so size computations are
9486      --  identical between front-end and back-end. Do not perform this
9487      --  transformation while analyzing generic units, as type information
9488      --  would be lost when reanalyzing the constant node in the instance.
9489
9490      if Is_Discrete_Type (Typ) and then Expander_Active then
9491         if Is_OK_Static_Expression (L) then
9492            Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9493         end if;
9494
9495         if Is_OK_Static_Expression (H) then
9496            Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9497         end if;
9498      end if;
9499   end Resolve_Range;
9500
9501   --------------------------
9502   -- Resolve_Real_Literal --
9503   --------------------------
9504
9505   procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9506      Actual_Typ : constant Entity_Id := Etype (N);
9507
9508   begin
9509      --  Special processing for fixed-point literals to make sure that the
9510      --  value is an exact multiple of small where this is required. We skip
9511      --  this for the universal real case, and also for generic types.
9512
9513      if Is_Fixed_Point_Type (Typ)
9514        and then Typ /= Universal_Fixed
9515        and then Typ /= Any_Fixed
9516        and then not Is_Generic_Type (Typ)
9517      then
9518         declare
9519            Val   : constant Ureal := Realval (N);
9520            Cintr : constant Ureal := Val / Small_Value (Typ);
9521            Cint  : constant Uint  := UR_Trunc (Cintr);
9522            Den   : constant Uint  := Norm_Den (Cintr);
9523            Stat  : Boolean;
9524
9525         begin
9526            --  Case of literal is not an exact multiple of the Small
9527
9528            if Den /= 1 then
9529
9530               --  For a source program literal for a decimal fixed-point type,
9531               --  this is statically illegal (RM 4.9(36)).
9532
9533               if Is_Decimal_Fixed_Point_Type (Typ)
9534                 and then Actual_Typ = Universal_Real
9535                 and then Comes_From_Source (N)
9536               then
9537                  Error_Msg_N ("value has extraneous low order digits", N);
9538               end if;
9539
9540               --  Generate a warning if literal from source
9541
9542               if Is_OK_Static_Expression (N)
9543                 and then Warn_On_Bad_Fixed_Value
9544               then
9545                  Error_Msg_N
9546                    ("?b?static fixed-point value is not a multiple of Small!",
9547                     N);
9548               end if;
9549
9550               --  Replace literal by a value that is the exact representation
9551               --  of a value of the type, i.e. a multiple of the small value,
9552               --  by truncation, since Machine_Rounds is false for all GNAT
9553               --  fixed-point types (RM 4.9(38)).
9554
9555               Stat := Is_OK_Static_Expression (N);
9556               Rewrite (N,
9557                 Make_Real_Literal (Sloc (N),
9558                   Realval => Small_Value (Typ) * Cint));
9559
9560               Set_Is_Static_Expression (N, Stat);
9561            end if;
9562
9563            --  In all cases, set the corresponding integer field
9564
9565            Set_Corresponding_Integer_Value (N, Cint);
9566         end;
9567      end if;
9568
9569      --  Now replace the actual type by the expected type as usual
9570
9571      Set_Etype (N, Typ);
9572      Eval_Real_Literal (N);
9573   end Resolve_Real_Literal;
9574
9575   -----------------------
9576   -- Resolve_Reference --
9577   -----------------------
9578
9579   procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9580      P : constant Node_Id := Prefix (N);
9581
9582   begin
9583      --  Replace general access with specific type
9584
9585      if Ekind (Etype (N)) = E_Allocator_Type then
9586         Set_Etype (N, Base_Type (Typ));
9587      end if;
9588
9589      Resolve (P, Designated_Type (Etype (N)));
9590
9591      --  If we are taking the reference of a volatile entity, then treat it as
9592      --  a potential modification of this entity. This is too conservative,
9593      --  but necessary because remove side effects can cause transformations
9594      --  of normal assignments into reference sequences that otherwise fail to
9595      --  notice the modification.
9596
9597      if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9598         Note_Possible_Modification (P, Sure => False);
9599      end if;
9600   end Resolve_Reference;
9601
9602   --------------------------------
9603   -- Resolve_Selected_Component --
9604   --------------------------------
9605
9606   procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9607      Comp  : Entity_Id;
9608      Comp1 : Entity_Id        := Empty; -- prevent junk warning
9609      P     : constant Node_Id := Prefix (N);
9610      S     : constant Node_Id := Selector_Name (N);
9611      T     : Entity_Id        := Etype (P);
9612      I     : Interp_Index;
9613      I1    : Interp_Index := 0; -- prevent junk warning
9614      It    : Interp;
9615      It1   : Interp;
9616      Found : Boolean;
9617
9618      function Init_Component return Boolean;
9619      --  Check whether this is the initialization of a component within an
9620      --  init proc (by assignment or call to another init proc). If true,
9621      --  there is no need for a discriminant check.
9622
9623      --------------------
9624      -- Init_Component --
9625      --------------------
9626
9627      function Init_Component return Boolean is
9628      begin
9629         return Inside_Init_Proc
9630           and then Nkind (Prefix (N)) = N_Identifier
9631           and then Chars (Prefix (N)) = Name_uInit
9632           and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9633      end Init_Component;
9634
9635   --  Start of processing for Resolve_Selected_Component
9636
9637   begin
9638      if Is_Overloaded (P) then
9639
9640         --  Use the context type to select the prefix that has a selector
9641         --  of the correct name and type.
9642
9643         Found := False;
9644         Get_First_Interp (P, I, It);
9645
9646         Search : while Present (It.Typ) loop
9647            if Is_Access_Type (It.Typ) then
9648               T := Designated_Type (It.Typ);
9649            else
9650               T := It.Typ;
9651            end if;
9652
9653            --  Locate selected component. For a private prefix the selector
9654            --  can denote a discriminant.
9655
9656            if Is_Record_Type (T) or else Is_Private_Type (T) then
9657
9658               --  The visible components of a class-wide type are those of
9659               --  the root type.
9660
9661               if Is_Class_Wide_Type (T) then
9662                  T := Etype (T);
9663               end if;
9664
9665               Comp := First_Entity (T);
9666               while Present (Comp) loop
9667                  if Chars (Comp) = Chars (S)
9668                    and then Covers (Typ, Etype (Comp))
9669                  then
9670                     if not Found then
9671                        Found := True;
9672                        I1  := I;
9673                        It1 := It;
9674                        Comp1 := Comp;
9675
9676                     else
9677                        It := Disambiguate (P, I1, I, Any_Type);
9678
9679                        if It = No_Interp then
9680                           Error_Msg_N
9681                             ("ambiguous prefix for selected component",  N);
9682                           Set_Etype (N, Typ);
9683                           return;
9684
9685                        else
9686                           It1 := It;
9687
9688                           --  There may be an implicit dereference. Retrieve
9689                           --  designated record type.
9690
9691                           if Is_Access_Type (It1.Typ) then
9692                              T := Designated_Type (It1.Typ);
9693                           else
9694                              T := It1.Typ;
9695                           end if;
9696
9697                           if Scope (Comp1) /= T then
9698
9699                              --  Resolution chooses the new interpretation.
9700                              --  Find the component with the right name.
9701
9702                              Comp1 := First_Entity (T);
9703                              while Present (Comp1)
9704                                and then Chars (Comp1) /= Chars (S)
9705                              loop
9706                                 Comp1 := Next_Entity (Comp1);
9707                              end loop;
9708                           end if;
9709
9710                           exit Search;
9711                        end if;
9712                     end if;
9713                  end if;
9714
9715                  Comp := Next_Entity (Comp);
9716               end loop;
9717            end if;
9718
9719            Get_Next_Interp (I, It);
9720         end loop Search;
9721
9722         --  There must be a legal interpretation at this point
9723
9724         pragma Assert (Found);
9725         Resolve (P, It1.Typ);
9726         Set_Etype (N, Typ);
9727         Set_Entity_With_Checks (S, Comp1);
9728
9729      else
9730         --  Resolve prefix with its type
9731
9732         Resolve (P, T);
9733      end if;
9734
9735      --  Generate cross-reference. We needed to wait until full overloading
9736      --  resolution was complete to do this, since otherwise we can't tell if
9737      --  we are an lvalue or not.
9738
9739      if May_Be_Lvalue (N) then
9740         Generate_Reference (Entity (S), S, 'm');
9741      else
9742         Generate_Reference (Entity (S), S, 'r');
9743      end if;
9744
9745      --  If prefix is an access type, the node will be transformed into an
9746      --  explicit dereference during expansion. The type of the node is the
9747      --  designated type of that of the prefix.
9748
9749      if Is_Access_Type (Etype (P)) then
9750         T := Designated_Type (Etype (P));
9751         Check_Fully_Declared_Prefix (T, P);
9752      else
9753         T := Etype (P);
9754      end if;
9755
9756      --  Set flag for expander if discriminant check required
9757
9758      if Has_Discriminants (T)
9759        and then Ekind_In (Entity (S), E_Component, E_Discriminant)
9760        and then Present (Original_Record_Component (Entity (S)))
9761        and then Ekind (Original_Record_Component (Entity (S))) = E_Component
9762        and then not Discriminant_Checks_Suppressed (T)
9763        and then not Init_Component
9764      then
9765         Set_Do_Discriminant_Check (N);
9766      end if;
9767
9768      if Ekind (Entity (S)) = E_Void then
9769         Error_Msg_N ("premature use of component", S);
9770      end if;
9771
9772      --  If the prefix is a record conversion, this may be a renamed
9773      --  discriminant whose bounds differ from those of the original
9774      --  one, so we must ensure that a range check is performed.
9775
9776      if Nkind (P) = N_Type_Conversion
9777        and then Ekind (Entity (S)) = E_Discriminant
9778        and then Is_Discrete_Type (Typ)
9779      then
9780         Set_Etype (N, Base_Type (Typ));
9781      end if;
9782
9783      --  Note: No Eval processing is required, because the prefix is of a
9784      --  record type, or protected type, and neither can possibly be static.
9785
9786      --  If the record type is atomic, and the component is non-atomic, then
9787      --  this is worth a warning, since we have a situation where the access
9788      --  to the component may cause extra read/writes of the atomic array
9789      --  object, or partial word accesses, both of which may be unexpected.
9790
9791      if Nkind (N) = N_Selected_Component
9792        and then Is_Atomic_Ref_With_Address (N)
9793        and then not Is_Atomic (Entity (S))
9794        and then not Is_Atomic (Etype (Entity (S)))
9795      then
9796         Error_Msg_N
9797           ("??access to non-atomic component of atomic record",
9798            Prefix (N));
9799         Error_Msg_N
9800           ("\??may cause unexpected accesses to atomic object",
9801            Prefix (N));
9802      end if;
9803
9804      Analyze_Dimension (N);
9805   end Resolve_Selected_Component;
9806
9807   -------------------
9808   -- Resolve_Shift --
9809   -------------------
9810
9811   procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
9812      B_Typ : constant Entity_Id := Base_Type (Typ);
9813      L     : constant Node_Id   := Left_Opnd  (N);
9814      R     : constant Node_Id   := Right_Opnd (N);
9815
9816   begin
9817      --  We do the resolution using the base type, because intermediate values
9818      --  in expressions always are of the base type, not a subtype of it.
9819
9820      Resolve (L, B_Typ);
9821      Resolve (R, Standard_Natural);
9822
9823      Check_Unset_Reference (L);
9824      Check_Unset_Reference (R);
9825
9826      Set_Etype (N, B_Typ);
9827      Generate_Operator_Reference (N, B_Typ);
9828      Eval_Shift (N);
9829   end Resolve_Shift;
9830
9831   ---------------------------
9832   -- Resolve_Short_Circuit --
9833   ---------------------------
9834
9835   procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
9836      B_Typ : constant Entity_Id := Base_Type (Typ);
9837      L     : constant Node_Id   := Left_Opnd  (N);
9838      R     : constant Node_Id   := Right_Opnd (N);
9839
9840   begin
9841      --  Ensure all actions associated with the left operand (e.g.
9842      --  finalization of transient controlled objects) are fully evaluated
9843      --  locally within an expression with actions. This is particularly
9844      --  helpful for coverage analysis. However this should not happen in
9845      --  generics.
9846
9847      if Expander_Active then
9848         declare
9849            Reloc_L : constant Node_Id := Relocate_Node (L);
9850         begin
9851            Save_Interps (Old_N => L, New_N => Reloc_L);
9852
9853            Rewrite (L,
9854              Make_Expression_With_Actions (Sloc (L),
9855                Actions    => New_List,
9856                Expression => Reloc_L));
9857
9858            --  Set Comes_From_Source on L to preserve warnings for unset
9859            --  reference.
9860
9861            Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
9862         end;
9863      end if;
9864
9865      Resolve (L, B_Typ);
9866      Resolve (R, B_Typ);
9867
9868      --  Check for issuing warning for always False assert/check, this happens
9869      --  when assertions are turned off, in which case the pragma Assert/Check
9870      --  was transformed into:
9871
9872      --     if False and then <condition> then ...
9873
9874      --  and we detect this pattern
9875
9876      if Warn_On_Assertion_Failure
9877        and then Is_Entity_Name (R)
9878        and then Entity (R) = Standard_False
9879        and then Nkind (Parent (N)) = N_If_Statement
9880        and then Nkind (N) = N_And_Then
9881        and then Is_Entity_Name (L)
9882        and then Entity (L) = Standard_False
9883      then
9884         declare
9885            Orig : constant Node_Id := Original_Node (Parent (N));
9886
9887         begin
9888            --  Special handling of Asssert pragma
9889
9890            if Nkind (Orig) = N_Pragma
9891              and then Pragma_Name (Orig) = Name_Assert
9892            then
9893               declare
9894                  Expr : constant Node_Id :=
9895                           Original_Node
9896                             (Expression
9897                               (First (Pragma_Argument_Associations (Orig))));
9898
9899               begin
9900                  --  Don't warn if original condition is explicit False,
9901                  --  since obviously the failure is expected in this case.
9902
9903                  if Is_Entity_Name (Expr)
9904                    and then Entity (Expr) = Standard_False
9905                  then
9906                     null;
9907
9908                  --  Issue warning. We do not want the deletion of the
9909                  --  IF/AND-THEN to take this message with it. We achieve this
9910                  --  by making sure that the expanded code points to the Sloc
9911                  --  of the expression, not the original pragma.
9912
9913                  else
9914                     --  Note: Use Error_Msg_F here rather than Error_Msg_N.
9915                     --  The source location of the expression is not usually
9916                     --  the best choice here. For example, it gets located on
9917                     --  the last AND keyword in a chain of boolean expressiond
9918                     --  AND'ed together. It is best to put the message on the
9919                     --  first character of the assertion, which is the effect
9920                     --  of the First_Node call here.
9921
9922                     Error_Msg_F
9923                       ("?A?assertion would fail at run time!",
9924                        Expression
9925                          (First (Pragma_Argument_Associations (Orig))));
9926                  end if;
9927               end;
9928
9929            --  Similar processing for Check pragma
9930
9931            elsif Nkind (Orig) = N_Pragma
9932              and then Pragma_Name (Orig) = Name_Check
9933            then
9934               --  Don't want to warn if original condition is explicit False
9935
9936               declare
9937                  Expr : constant Node_Id :=
9938                    Original_Node
9939                      (Expression
9940                        (Next (First (Pragma_Argument_Associations (Orig)))));
9941               begin
9942                  if Is_Entity_Name (Expr)
9943                    and then Entity (Expr) = Standard_False
9944                  then
9945                     null;
9946
9947                  --  Post warning
9948
9949                  else
9950                     --  Again use Error_Msg_F rather than Error_Msg_N, see
9951                     --  comment above for an explanation of why we do this.
9952
9953                     Error_Msg_F
9954                       ("?A?check would fail at run time!",
9955                        Expression
9956                          (Last (Pragma_Argument_Associations (Orig))));
9957                  end if;
9958               end;
9959            end if;
9960         end;
9961      end if;
9962
9963      --  Continue with processing of short circuit
9964
9965      Check_Unset_Reference (L);
9966      Check_Unset_Reference (R);
9967
9968      Set_Etype (N, B_Typ);
9969      Eval_Short_Circuit (N);
9970   end Resolve_Short_Circuit;
9971
9972   -------------------
9973   -- Resolve_Slice --
9974   -------------------
9975
9976   procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
9977      Drange     : constant Node_Id := Discrete_Range (N);
9978      Name       : constant Node_Id := Prefix (N);
9979      Array_Type : Entity_Id        := Empty;
9980      Dexpr      : Node_Id          := Empty;
9981      Index_Type : Entity_Id;
9982
9983   begin
9984      if Is_Overloaded (Name) then
9985
9986         --  Use the context type to select the prefix that yields the correct
9987         --  array type.
9988
9989         declare
9990            I      : Interp_Index;
9991            I1     : Interp_Index := 0;
9992            It     : Interp;
9993            P      : constant Node_Id := Prefix (N);
9994            Found  : Boolean := False;
9995
9996         begin
9997            Get_First_Interp (P, I,  It);
9998            while Present (It.Typ) loop
9999               if (Is_Array_Type (It.Typ)
10000                    and then Covers (Typ,  It.Typ))
10001                 or else (Is_Access_Type (It.Typ)
10002                           and then Is_Array_Type (Designated_Type (It.Typ))
10003                           and then Covers (Typ, Designated_Type (It.Typ)))
10004               then
10005                  if Found then
10006                     It := Disambiguate (P, I1, I, Any_Type);
10007
10008                     if It = No_Interp then
10009                        Error_Msg_N ("ambiguous prefix for slicing",  N);
10010                        Set_Etype (N, Typ);
10011                        return;
10012                     else
10013                        Found := True;
10014                        Array_Type := It.Typ;
10015                        I1 := I;
10016                     end if;
10017                  else
10018                     Found := True;
10019                     Array_Type := It.Typ;
10020                     I1 := I;
10021                  end if;
10022               end if;
10023
10024               Get_Next_Interp (I, It);
10025            end loop;
10026         end;
10027
10028      else
10029         Array_Type := Etype (Name);
10030      end if;
10031
10032      Resolve (Name, Array_Type);
10033
10034      if Is_Access_Type (Array_Type) then
10035         Apply_Access_Check (N);
10036         Array_Type := Designated_Type (Array_Type);
10037
10038         --  If the prefix is an access to an unconstrained array, we must use
10039         --  the actual subtype of the object to perform the index checks. The
10040         --  object denoted by the prefix is implicit in the node, so we build
10041         --  an explicit representation for it in order to compute the actual
10042         --  subtype.
10043
10044         if not Is_Constrained (Array_Type) then
10045            Remove_Side_Effects (Prefix (N));
10046
10047            declare
10048               Obj : constant Node_Id :=
10049                       Make_Explicit_Dereference (Sloc (N),
10050                         Prefix => New_Copy_Tree (Prefix (N)));
10051            begin
10052               Set_Etype (Obj, Array_Type);
10053               Set_Parent (Obj, Parent (N));
10054               Array_Type := Get_Actual_Subtype (Obj);
10055            end;
10056         end if;
10057
10058      elsif Is_Entity_Name (Name)
10059        or else Nkind (Name) = N_Explicit_Dereference
10060        or else (Nkind (Name) = N_Function_Call
10061                  and then not Is_Constrained (Etype (Name)))
10062      then
10063         Array_Type := Get_Actual_Subtype (Name);
10064
10065      --  If the name is a selected component that depends on discriminants,
10066      --  build an actual subtype for it. This can happen only when the name
10067      --  itself is overloaded; otherwise the actual subtype is created when
10068      --  the selected component is analyzed.
10069
10070      elsif Nkind (Name) = N_Selected_Component
10071        and then Full_Analysis
10072        and then Depends_On_Discriminant (First_Index (Array_Type))
10073      then
10074         declare
10075            Act_Decl : constant Node_Id :=
10076                         Build_Actual_Subtype_Of_Component (Array_Type, Name);
10077         begin
10078            Insert_Action (N, Act_Decl);
10079            Array_Type := Defining_Identifier (Act_Decl);
10080         end;
10081
10082      --  Maybe this should just be "else", instead of checking for the
10083      --  specific case of slice??? This is needed for the case where the
10084      --  prefix is an Image attribute, which gets expanded to a slice, and so
10085      --  has a constrained subtype which we want to use for the slice range
10086      --  check applied below (the range check won't get done if the
10087      --  unconstrained subtype of the 'Image is used).
10088
10089      elsif Nkind (Name) = N_Slice then
10090         Array_Type := Etype (Name);
10091      end if;
10092
10093      --  Obtain the type of the array index
10094
10095      if Ekind (Array_Type) = E_String_Literal_Subtype then
10096         Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10097      else
10098         Index_Type := Etype (First_Index (Array_Type));
10099      end if;
10100
10101      --  If name was overloaded, set slice type correctly now
10102
10103      Set_Etype (N, Array_Type);
10104
10105      --  Handle the generation of a range check that compares the array index
10106      --  against the discrete_range. The check is not applied to internally
10107      --  built nodes associated with the expansion of dispatch tables. Check
10108      --  that Ada.Tags has already been loaded to avoid extra dependencies on
10109      --  the unit.
10110
10111      if Tagged_Type_Expansion
10112        and then RTU_Loaded (Ada_Tags)
10113        and then Nkind (Prefix (N)) = N_Selected_Component
10114        and then Present (Entity (Selector_Name (Prefix (N))))
10115        and then Entity (Selector_Name (Prefix (N))) =
10116                   RTE_Record_Component (RE_Prims_Ptr)
10117      then
10118         null;
10119
10120      --  The discrete_range is specified by a subtype indication. Create a
10121      --  shallow copy and inherit the type, parent and source location from
10122      --  the discrete_range. This ensures that the range check is inserted
10123      --  relative to the slice and that the runtime exception points to the
10124      --  proper construct.
10125
10126      elsif Is_Entity_Name (Drange) then
10127         Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10128
10129         Set_Etype  (Dexpr, Etype  (Drange));
10130         Set_Parent (Dexpr, Parent (Drange));
10131         Set_Sloc   (Dexpr, Sloc   (Drange));
10132
10133      --  The discrete_range is a regular range. Resolve the bounds and remove
10134      --  their side effects.
10135
10136      else
10137         Resolve (Drange, Base_Type (Index_Type));
10138
10139         if Nkind (Drange) = N_Range then
10140            Force_Evaluation (Low_Bound  (Drange));
10141            Force_Evaluation (High_Bound (Drange));
10142
10143            Dexpr := Drange;
10144         end if;
10145      end if;
10146
10147      if Present (Dexpr) then
10148         Apply_Range_Check (Dexpr, Index_Type);
10149      end if;
10150
10151      Set_Slice_Subtype (N);
10152
10153      --  Check bad use of type with predicates
10154
10155      declare
10156         Subt : Entity_Id;
10157
10158      begin
10159         if Nkind (Drange) = N_Subtype_Indication
10160           and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10161         then
10162            Subt := Entity (Subtype_Mark (Drange));
10163         else
10164            Subt := Etype (Drange);
10165         end if;
10166
10167         if Has_Predicates (Subt) then
10168            Bad_Predicated_Subtype_Use
10169              ("subtype& has predicate, not allowed in slice", Drange, Subt);
10170         end if;
10171      end;
10172
10173      --  Otherwise here is where we check suspicious indexes
10174
10175      if Nkind (Drange) = N_Range then
10176         Warn_On_Suspicious_Index (Name, Low_Bound  (Drange));
10177         Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10178      end if;
10179
10180      Analyze_Dimension (N);
10181      Eval_Slice (N);
10182   end Resolve_Slice;
10183
10184   ----------------------------
10185   -- Resolve_String_Literal --
10186   ----------------------------
10187
10188   procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10189      C_Typ      : constant Entity_Id  := Component_Type (Typ);
10190      R_Typ      : constant Entity_Id  := Root_Type (C_Typ);
10191      Loc        : constant Source_Ptr := Sloc (N);
10192      Str        : constant String_Id  := Strval (N);
10193      Strlen     : constant Nat        := String_Length (Str);
10194      Subtype_Id : Entity_Id;
10195      Need_Check : Boolean;
10196
10197   begin
10198      --  For a string appearing in a concatenation, defer creation of the
10199      --  string_literal_subtype until the end of the resolution of the
10200      --  concatenation, because the literal may be constant-folded away. This
10201      --  is a useful optimization for long concatenation expressions.
10202
10203      --  If the string is an aggregate built for a single character (which
10204      --  happens in a non-static context) or a is null string to which special
10205      --  checks may apply, we build the subtype. Wide strings must also get a
10206      --  string subtype if they come from a one character aggregate. Strings
10207      --  generated by attributes might be static, but it is often hard to
10208      --  determine whether the enclosing context is static, so we generate
10209      --  subtypes for them as well, thus losing some rarer optimizations ???
10210      --  Same for strings that come from a static conversion.
10211
10212      Need_Check :=
10213        (Strlen = 0 and then Typ /= Standard_String)
10214          or else Nkind (Parent (N)) /= N_Op_Concat
10215          or else (N /= Left_Opnd (Parent (N))
10216                    and then N /= Right_Opnd (Parent (N)))
10217          or else ((Typ = Standard_Wide_String
10218                      or else Typ = Standard_Wide_Wide_String)
10219                    and then Nkind (Original_Node (N)) /= N_String_Literal);
10220
10221      --  If the resolving type is itself a string literal subtype, we can just
10222      --  reuse it, since there is no point in creating another.
10223
10224      if Ekind (Typ) = E_String_Literal_Subtype then
10225         Subtype_Id := Typ;
10226
10227      elsif Nkind (Parent (N)) = N_Op_Concat
10228        and then not Need_Check
10229        and then not Nkind_In (Original_Node (N), N_Character_Literal,
10230                                                  N_Attribute_Reference,
10231                                                  N_Qualified_Expression,
10232                                                  N_Type_Conversion)
10233      then
10234         Subtype_Id := Typ;
10235
10236      --  Do not generate a string literal subtype for the default expression
10237      --  of a formal parameter in GNATprove mode. This is because the string
10238      --  subtype is associated with the freezing actions of the subprogram,
10239      --  however freezing is disabled in GNATprove mode and as a result the
10240      --  subtype is unavailable.
10241
10242      elsif GNATprove_Mode
10243        and then Nkind (Parent (N)) = N_Parameter_Specification
10244      then
10245         Subtype_Id := Typ;
10246
10247      --  Otherwise we must create a string literal subtype. Note that the
10248      --  whole idea of string literal subtypes is simply to avoid the need
10249      --  for building a full fledged array subtype for each literal.
10250
10251      else
10252         Set_String_Literal_Subtype (N, Typ);
10253         Subtype_Id := Etype (N);
10254      end if;
10255
10256      if Nkind (Parent (N)) /= N_Op_Concat
10257        or else Need_Check
10258      then
10259         Set_Etype (N, Subtype_Id);
10260         Eval_String_Literal (N);
10261      end if;
10262
10263      if Is_Limited_Composite (Typ)
10264        or else Is_Private_Composite (Typ)
10265      then
10266         Error_Msg_N ("string literal not available for private array", N);
10267         Set_Etype (N, Any_Type);
10268         return;
10269      end if;
10270
10271      --  The validity of a null string has been checked in the call to
10272      --  Eval_String_Literal.
10273
10274      if Strlen = 0 then
10275         return;
10276
10277      --  Always accept string literal with component type Any_Character, which
10278      --  occurs in error situations and in comparisons of literals, both of
10279      --  which should accept all literals.
10280
10281      elsif R_Typ = Any_Character then
10282         return;
10283
10284      --  If the type is bit-packed, then we always transform the string
10285      --  literal into a full fledged aggregate.
10286
10287      elsif Is_Bit_Packed_Array (Typ) then
10288         null;
10289
10290      --  Deal with cases of Wide_Wide_String, Wide_String, and String
10291
10292      else
10293         --  For Standard.Wide_Wide_String, or any other type whose component
10294         --  type is Standard.Wide_Wide_Character, we know that all the
10295         --  characters in the string must be acceptable, since the parser
10296         --  accepted the characters as valid character literals.
10297
10298         if R_Typ = Standard_Wide_Wide_Character then
10299            null;
10300
10301         --  For the case of Standard.String, or any other type whose component
10302         --  type is Standard.Character, we must make sure that there are no
10303         --  wide characters in the string, i.e. that it is entirely composed
10304         --  of characters in range of type Character.
10305
10306         --  If the string literal is the result of a static concatenation, the
10307         --  test has already been performed on the components, and need not be
10308         --  repeated.
10309
10310         elsif R_Typ = Standard_Character
10311           and then Nkind (Original_Node (N)) /= N_Op_Concat
10312         then
10313            for J in 1 .. Strlen loop
10314               if not In_Character_Range (Get_String_Char (Str, J)) then
10315
10316                  --  If we are out of range, post error. This is one of the
10317                  --  very few places that we place the flag in the middle of
10318                  --  a token, right under the offending wide character. Not
10319                  --  quite clear if this is right wrt wide character encoding
10320                  --  sequences, but it's only an error message.
10321
10322                  Error_Msg
10323                    ("literal out of range of type Standard.Character",
10324                     Source_Ptr (Int (Loc) + J));
10325                  return;
10326               end if;
10327            end loop;
10328
10329         --  For the case of Standard.Wide_String, or any other type whose
10330         --  component type is Standard.Wide_Character, we must make sure that
10331         --  there are no wide characters in the string, i.e. that it is
10332         --  entirely composed of characters in range of type Wide_Character.
10333
10334         --  If the string literal is the result of a static concatenation,
10335         --  the test has already been performed on the components, and need
10336         --  not be repeated.
10337
10338         elsif R_Typ = Standard_Wide_Character
10339           and then Nkind (Original_Node (N)) /= N_Op_Concat
10340         then
10341            for J in 1 .. Strlen loop
10342               if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10343
10344                  --  If we are out of range, post error. This is one of the
10345                  --  very few places that we place the flag in the middle of
10346                  --  a token, right under the offending wide character.
10347
10348                  --  This is not quite right, because characters in general
10349                  --  will take more than one character position ???
10350
10351                  Error_Msg
10352                    ("literal out of range of type Standard.Wide_Character",
10353                     Source_Ptr (Int (Loc) + J));
10354                  return;
10355               end if;
10356            end loop;
10357
10358         --  If the root type is not a standard character, then we will convert
10359         --  the string into an aggregate and will let the aggregate code do
10360         --  the checking. Standard Wide_Wide_Character is also OK here.
10361
10362         else
10363            null;
10364         end if;
10365
10366         --  See if the component type of the array corresponding to the string
10367         --  has compile time known bounds. If yes we can directly check
10368         --  whether the evaluation of the string will raise constraint error.
10369         --  Otherwise we need to transform the string literal into the
10370         --  corresponding character aggregate and let the aggregate code do
10371         --  the checking.
10372
10373         if Is_Standard_Character_Type (R_Typ) then
10374
10375            --  Check for the case of full range, where we are definitely OK
10376
10377            if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10378               return;
10379            end if;
10380
10381            --  Here the range is not the complete base type range, so check
10382
10383            declare
10384               Comp_Typ_Lo : constant Node_Id :=
10385                               Type_Low_Bound (Component_Type (Typ));
10386               Comp_Typ_Hi : constant Node_Id :=
10387                               Type_High_Bound (Component_Type (Typ));
10388
10389               Char_Val : Uint;
10390
10391            begin
10392               if Compile_Time_Known_Value (Comp_Typ_Lo)
10393                 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10394               then
10395                  for J in 1 .. Strlen loop
10396                     Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10397
10398                     if Char_Val < Expr_Value (Comp_Typ_Lo)
10399                       or else Char_Val > Expr_Value (Comp_Typ_Hi)
10400                     then
10401                        Apply_Compile_Time_Constraint_Error
10402                          (N, "character out of range??",
10403                           CE_Range_Check_Failed,
10404                           Loc => Source_Ptr (Int (Loc) + J));
10405                     end if;
10406                  end loop;
10407
10408                  return;
10409               end if;
10410            end;
10411         end if;
10412      end if;
10413
10414      --  If we got here we meed to transform the string literal into the
10415      --  equivalent qualified positional array aggregate. This is rather
10416      --  heavy artillery for this situation, but it is hard work to avoid.
10417
10418      declare
10419         Lits : constant List_Id    := New_List;
10420         P    : Source_Ptr := Loc + 1;
10421         C    : Char_Code;
10422
10423      begin
10424         --  Build the character literals, we give them source locations that
10425         --  correspond to the string positions, which is a bit tricky given
10426         --  the possible presence of wide character escape sequences.
10427
10428         for J in 1 .. Strlen loop
10429            C := Get_String_Char (Str, J);
10430            Set_Character_Literal_Name (C);
10431
10432            Append_To (Lits,
10433              Make_Character_Literal (P,
10434                Chars              => Name_Find,
10435                Char_Literal_Value => UI_From_CC (C)));
10436
10437            if In_Character_Range (C) then
10438               P := P + 1;
10439
10440            --  Should we have a call to Skip_Wide here ???
10441
10442            --  ???     else
10443            --             Skip_Wide (P);
10444
10445            end if;
10446         end loop;
10447
10448         Rewrite (N,
10449           Make_Qualified_Expression (Loc,
10450             Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10451             Expression   =>
10452               Make_Aggregate (Loc, Expressions => Lits)));
10453
10454         Analyze_And_Resolve (N, Typ);
10455      end;
10456   end Resolve_String_Literal;
10457
10458   -----------------------------
10459   -- Resolve_Type_Conversion --
10460   -----------------------------
10461
10462   procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10463      Conv_OK     : constant Boolean   := Conversion_OK (N);
10464      Operand     : constant Node_Id   := Expression (N);
10465      Operand_Typ : constant Entity_Id := Etype (Operand);
10466      Target_Typ  : constant Entity_Id := Etype (N);
10467      Rop         : Node_Id;
10468      Orig_N      : Node_Id;
10469      Orig_T      : Node_Id;
10470
10471      Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10472      --  Set to False to suppress cases where we want to suppress the test
10473      --  for redundancy to avoid possible false positives on this warning.
10474
10475   begin
10476      if not Conv_OK
10477        and then not Valid_Conversion (N, Target_Typ, Operand)
10478      then
10479         return;
10480      end if;
10481
10482      --  If the Operand Etype is Universal_Fixed, then the conversion is
10483      --  never redundant. We need this check because by the time we have
10484      --  finished the rather complex transformation, the conversion looks
10485      --  redundant when it is not.
10486
10487      if Operand_Typ = Universal_Fixed then
10488         Test_Redundant := False;
10489
10490      --  If the operand is marked as Any_Fixed, then special processing is
10491      --  required. This is also a case where we suppress the test for a
10492      --  redundant conversion, since most certainly it is not redundant.
10493
10494      elsif Operand_Typ = Any_Fixed then
10495         Test_Redundant := False;
10496
10497         --  Mixed-mode operation involving a literal. Context must be a fixed
10498         --  type which is applied to the literal subsequently.
10499
10500         if Is_Fixed_Point_Type (Typ) then
10501            Set_Etype (Operand, Universal_Real);
10502
10503         elsif Is_Numeric_Type (Typ)
10504           and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10505           and then (Etype (Right_Opnd (Operand)) = Universal_Real
10506                       or else
10507                     Etype (Left_Opnd  (Operand)) = Universal_Real)
10508         then
10509            --  Return if expression is ambiguous
10510
10511            if Unique_Fixed_Point_Type (N) = Any_Type then
10512               return;
10513
10514            --  If nothing else, the available fixed type is Duration
10515
10516            else
10517               Set_Etype (Operand, Standard_Duration);
10518            end if;
10519
10520            --  Resolve the real operand with largest available precision
10521
10522            if Etype (Right_Opnd (Operand)) = Universal_Real then
10523               Rop := New_Copy_Tree (Right_Opnd (Operand));
10524            else
10525               Rop := New_Copy_Tree (Left_Opnd (Operand));
10526            end if;
10527
10528            Resolve (Rop, Universal_Real);
10529
10530            --  If the operand is a literal (it could be a non-static and
10531            --  illegal exponentiation) check whether the use of Duration
10532            --  is potentially inaccurate.
10533
10534            if Nkind (Rop) = N_Real_Literal
10535              and then Realval (Rop) /= Ureal_0
10536              and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10537            then
10538               Error_Msg_N
10539                 ("??universal real operand can only "
10540                  & "be interpreted as Duration!", Rop);
10541               Error_Msg_N
10542                 ("\??precision will be lost in the conversion!", Rop);
10543            end if;
10544
10545         elsif Is_Numeric_Type (Typ)
10546           and then Nkind (Operand) in N_Op
10547           and then Unique_Fixed_Point_Type (N) /= Any_Type
10548         then
10549            Set_Etype (Operand, Standard_Duration);
10550
10551         else
10552            Error_Msg_N ("invalid context for mixed mode operation", N);
10553            Set_Etype (Operand, Any_Type);
10554            return;
10555         end if;
10556      end if;
10557
10558      Resolve (Operand);
10559
10560      --  In SPARK, a type conversion between array types should be restricted
10561      --  to types which have matching static bounds.
10562
10563      --  Protect call to Matching_Static_Array_Bounds to avoid costly
10564      --  operation if not needed.
10565
10566      if Restriction_Check_Required (SPARK_05)
10567        and then Is_Array_Type (Target_Typ)
10568        and then Is_Array_Type (Operand_Typ)
10569        and then Operand_Typ /= Any_Composite  --  or else Operand in error
10570        and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10571      then
10572         Check_SPARK_05_Restriction
10573           ("array types should have matching static bounds", N);
10574      end if;
10575
10576      --  In formal mode, the operand of an ancestor type conversion must be an
10577      --  object (not an expression).
10578
10579      if Is_Tagged_Type (Target_Typ)
10580        and then not Is_Class_Wide_Type (Target_Typ)
10581        and then Is_Tagged_Type (Operand_Typ)
10582        and then not Is_Class_Wide_Type (Operand_Typ)
10583        and then Is_Ancestor (Target_Typ, Operand_Typ)
10584        and then not Is_SPARK_05_Object_Reference (Operand)
10585      then
10586         Check_SPARK_05_Restriction ("object required", Operand);
10587      end if;
10588
10589      Analyze_Dimension (N);
10590
10591      --  Note: we do the Eval_Type_Conversion call before applying the
10592      --  required checks for a subtype conversion. This is important, since
10593      --  both are prepared under certain circumstances to change the type
10594      --  conversion to a constraint error node, but in the case of
10595      --  Eval_Type_Conversion this may reflect an illegality in the static
10596      --  case, and we would miss the illegality (getting only a warning
10597      --  message), if we applied the type conversion checks first.
10598
10599      Eval_Type_Conversion (N);
10600
10601      --  Even when evaluation is not possible, we may be able to simplify the
10602      --  conversion or its expression. This needs to be done before applying
10603      --  checks, since otherwise the checks may use the original expression
10604      --  and defeat the simplifications. This is specifically the case for
10605      --  elimination of the floating-point Truncation attribute in
10606      --  float-to-int conversions.
10607
10608      Simplify_Type_Conversion (N);
10609
10610      --  If after evaluation we still have a type conversion, then we may need
10611      --  to apply checks required for a subtype conversion.
10612
10613      --  Skip these type conversion checks if universal fixed operands
10614      --  operands involved, since range checks are handled separately for
10615      --  these cases (in the appropriate Expand routines in unit Exp_Fixd).
10616
10617      if Nkind (N) = N_Type_Conversion
10618        and then not Is_Generic_Type (Root_Type (Target_Typ))
10619        and then Target_Typ  /= Universal_Fixed
10620        and then Operand_Typ /= Universal_Fixed
10621      then
10622         Apply_Type_Conversion_Checks (N);
10623      end if;
10624
10625      --  Issue warning for conversion of simple object to its own type. We
10626      --  have to test the original nodes, since they may have been rewritten
10627      --  by various optimizations.
10628
10629      Orig_N := Original_Node (N);
10630
10631      --  Here we test for a redundant conversion if the warning mode is
10632      --  active (and was not locally reset), and we have a type conversion
10633      --  from source not appearing in a generic instance.
10634
10635      if Test_Redundant
10636        and then Nkind (Orig_N) = N_Type_Conversion
10637        and then Comes_From_Source (Orig_N)
10638        and then not In_Instance
10639      then
10640         Orig_N := Original_Node (Expression (Orig_N));
10641         Orig_T := Target_Typ;
10642
10643         --  If the node is part of a larger expression, the Target_Type
10644         --  may not be the original type of the node if the context is a
10645         --  condition. Recover original type to see if conversion is needed.
10646
10647         if Is_Boolean_Type (Orig_T)
10648          and then Nkind (Parent (N)) in N_Op
10649         then
10650            Orig_T := Etype (Parent (N));
10651         end if;
10652
10653         --  If we have an entity name, then give the warning if the entity
10654         --  is the right type, or if it is a loop parameter covered by the
10655         --  original type (that's needed because loop parameters have an
10656         --  odd subtype coming from the bounds).
10657
10658         if (Is_Entity_Name (Orig_N)
10659              and then
10660                (Etype (Entity (Orig_N)) = Orig_T
10661                  or else
10662                    (Ekind (Entity (Orig_N)) = E_Loop_Parameter
10663                      and then Covers (Orig_T, Etype (Entity (Orig_N))))))
10664
10665           --  If not an entity, then type of expression must match
10666
10667           or else Etype (Orig_N) = Orig_T
10668         then
10669            --  One more check, do not give warning if the analyzed conversion
10670            --  has an expression with non-static bounds, and the bounds of the
10671            --  target are static. This avoids junk warnings in cases where the
10672            --  conversion is necessary to establish staticness, for example in
10673            --  a case statement.
10674
10675            if not Is_OK_Static_Subtype (Operand_Typ)
10676              and then Is_OK_Static_Subtype (Target_Typ)
10677            then
10678               null;
10679
10680            --  Finally, if this type conversion occurs in a context requiring
10681            --  a prefix, and the expression is a qualified expression then the
10682            --  type conversion is not redundant, since a qualified expression
10683            --  is not a prefix, whereas a type conversion is. For example, "X
10684            --  := T'(Funx(...)).Y;" is illegal because a selected component
10685            --  requires a prefix, but a type conversion makes it legal: "X :=
10686            --  T(T'(Funx(...))).Y;"
10687
10688            --  In Ada 2012, a qualified expression is a name, so this idiom is
10689            --  no longer needed, but we still suppress the warning because it
10690            --  seems unfriendly for warnings to pop up when you switch to the
10691            --  newer language version.
10692
10693            elsif Nkind (Orig_N) = N_Qualified_Expression
10694              and then Nkind_In (Parent (N), N_Attribute_Reference,
10695                                             N_Indexed_Component,
10696                                             N_Selected_Component,
10697                                             N_Slice,
10698                                             N_Explicit_Dereference)
10699            then
10700               null;
10701
10702            --  Never warn on conversion to Long_Long_Integer'Base since
10703            --  that is most likely an artifact of the extended overflow
10704            --  checking and comes from complex expanded code.
10705
10706            elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
10707               null;
10708
10709            --  Here we give the redundant conversion warning. If it is an
10710            --  entity, give the name of the entity in the message. If not,
10711            --  just mention the expression.
10712
10713            --  Shoudn't we test Warn_On_Redundant_Constructs here ???
10714
10715            else
10716               if Is_Entity_Name (Orig_N) then
10717                  Error_Msg_Node_2 := Orig_T;
10718                  Error_Msg_NE -- CODEFIX
10719                    ("??redundant conversion, & is of type &!",
10720                     N, Entity (Orig_N));
10721               else
10722                  Error_Msg_NE
10723                    ("??redundant conversion, expression is of type&!",
10724                     N, Orig_T);
10725               end if;
10726            end if;
10727         end if;
10728      end if;
10729
10730      --  Ada 2005 (AI-251): Handle class-wide interface type conversions.
10731      --  No need to perform any interface conversion if the type of the
10732      --  expression coincides with the target type.
10733
10734      if Ada_Version >= Ada_2005
10735        and then Expander_Active
10736        and then Operand_Typ /= Target_Typ
10737      then
10738         declare
10739            Opnd   : Entity_Id := Operand_Typ;
10740            Target : Entity_Id := Target_Typ;
10741
10742         begin
10743            --  If the type of the operand is a limited view, use nonlimited
10744            --  view when available. If it is a class-wide type, recover the
10745            --  class-wide type of the nonlimited view.
10746
10747            if From_Limited_With (Opnd) then
10748               if Ekind (Opnd) in Incomplete_Kind
10749                 and then Present (Non_Limited_View (Opnd))
10750               then
10751                  Opnd := Non_Limited_View (Opnd);
10752                  Set_Etype (Expression (N), Opnd);
10753
10754               elsif Is_Class_Wide_Type (Opnd)
10755                 and then Present (Non_Limited_View (Etype (Opnd)))
10756               then
10757                  Opnd := Class_Wide_Type (Non_Limited_View (Etype (Opnd)));
10758                  Set_Etype (Expression (N), Opnd);
10759               end if;
10760            end if;
10761
10762            if Is_Access_Type (Opnd) then
10763               Opnd := Designated_Type (Opnd);
10764            end if;
10765
10766            if Is_Access_Type (Target_Typ) then
10767               Target := Designated_Type (Target);
10768            end if;
10769
10770            if Opnd = Target then
10771               null;
10772
10773            --  Conversion from interface type
10774
10775            elsif Is_Interface (Opnd) then
10776
10777               --  Ada 2005 (AI-217): Handle entities from limited views
10778
10779               if From_Limited_With (Opnd) then
10780                  Error_Msg_Qual_Level := 99;
10781                  Error_Msg_NE -- CODEFIX
10782                    ("missing WITH clause on package &", N,
10783                    Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
10784                  Error_Msg_N
10785                    ("type conversions require visibility of the full view",
10786                     N);
10787
10788               elsif From_Limited_With (Target)
10789                 and then not
10790                   (Is_Access_Type (Target_Typ)
10791                      and then Present (Non_Limited_View (Etype (Target))))
10792               then
10793                  Error_Msg_Qual_Level := 99;
10794                  Error_Msg_NE -- CODEFIX
10795                    ("missing WITH clause on package &", N,
10796                    Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
10797                  Error_Msg_N
10798                    ("type conversions require visibility of the full view",
10799                     N);
10800
10801               else
10802                  Expand_Interface_Conversion (N);
10803               end if;
10804
10805            --  Conversion to interface type
10806
10807            elsif Is_Interface (Target) then
10808
10809               --  Handle subtypes
10810
10811               if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
10812                  Opnd := Etype (Opnd);
10813               end if;
10814
10815               if Is_Class_Wide_Type (Opnd)
10816                 or else Interface_Present_In_Ancestor
10817                           (Typ   => Opnd,
10818                            Iface => Target)
10819               then
10820                  Expand_Interface_Conversion (N);
10821               else
10822                  Error_Msg_Name_1 := Chars (Etype (Target));
10823                  Error_Msg_Name_2 := Chars (Opnd);
10824                  Error_Msg_N
10825                    ("wrong interface conversion (% is not a progenitor "
10826                     & "of %)", N);
10827               end if;
10828            end if;
10829         end;
10830      end if;
10831
10832      --  Ada 2012: if target type has predicates, the result requires a
10833      --  predicate check. If the context is a call to another predicate
10834      --  check we must prevent infinite recursion.
10835
10836      if Has_Predicates (Target_Typ) then
10837         if Nkind (Parent (N)) = N_Function_Call
10838           and then Present (Name (Parent (N)))
10839           and then (Is_Predicate_Function (Entity (Name (Parent (N))))
10840                       or else
10841                     Is_Predicate_Function_M (Entity (Name (Parent (N)))))
10842         then
10843            null;
10844
10845         else
10846            Apply_Predicate_Check (N, Target_Typ);
10847         end if;
10848      end if;
10849
10850      --  If at this stage we have a real to integer conversion, make sure
10851      --  that the Do_Range_Check flag is set, because such conversions in
10852      --  general need a range check. We only need this if expansion is off
10853      --  or we are in GNATProve mode.
10854
10855      if Nkind (N) = N_Type_Conversion
10856        and then (GNATprove_Mode or not Expander_Active)
10857        and then Is_Integer_Type (Target_Typ)
10858        and then Is_Real_Type (Operand_Typ)
10859      then
10860         Set_Do_Range_Check (Operand);
10861      end if;
10862   end Resolve_Type_Conversion;
10863
10864   ----------------------
10865   -- Resolve_Unary_Op --
10866   ----------------------
10867
10868   procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
10869      B_Typ : constant Entity_Id := Base_Type (Typ);
10870      R     : constant Node_Id   := Right_Opnd (N);
10871      OK    : Boolean;
10872      Lo    : Uint;
10873      Hi    : Uint;
10874
10875   begin
10876      if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
10877         Error_Msg_Name_1 := Chars (Typ);
10878         Check_SPARK_05_Restriction
10879           ("unary operator not defined for modular type%", N);
10880      end if;
10881
10882      --  Deal with intrinsic unary operators
10883
10884      if Comes_From_Source (N)
10885        and then Ekind (Entity (N)) = E_Function
10886        and then Is_Imported (Entity (N))
10887        and then Is_Intrinsic_Subprogram (Entity (N))
10888      then
10889         Resolve_Intrinsic_Unary_Operator (N, Typ);
10890         return;
10891      end if;
10892
10893      --  Deal with universal cases
10894
10895      if Etype (R) = Universal_Integer
10896           or else
10897         Etype (R) = Universal_Real
10898      then
10899         Check_For_Visible_Operator (N, B_Typ);
10900      end if;
10901
10902      Set_Etype (N, B_Typ);
10903      Resolve (R, B_Typ);
10904
10905      --  Generate warning for expressions like abs (x mod 2)
10906
10907      if Warn_On_Redundant_Constructs
10908        and then Nkind (N) = N_Op_Abs
10909      then
10910         Determine_Range (Right_Opnd (N), OK, Lo, Hi);
10911
10912         if OK and then Hi >= Lo and then Lo >= 0 then
10913            Error_Msg_N -- CODEFIX
10914             ("?r?abs applied to known non-negative value has no effect", N);
10915         end if;
10916      end if;
10917
10918      --  Deal with reference generation
10919
10920      Check_Unset_Reference (R);
10921      Generate_Operator_Reference (N, B_Typ);
10922      Analyze_Dimension (N);
10923      Eval_Unary_Op (N);
10924
10925      --  Set overflow checking bit. Much cleverer code needed here eventually
10926      --  and perhaps the Resolve routines should be separated for the various
10927      --  arithmetic operations, since they will need different processing ???
10928
10929      if Nkind (N) in N_Op then
10930         if not Overflow_Checks_Suppressed (Etype (N)) then
10931            Enable_Overflow_Check (N);
10932         end if;
10933      end if;
10934
10935      --  Generate warning for expressions like -5 mod 3 for integers. No need
10936      --  to worry in the floating-point case, since parens do not affect the
10937      --  result so there is no point in giving in a warning.
10938
10939      declare
10940         Norig : constant Node_Id := Original_Node (N);
10941         Rorig : Node_Id;
10942         Val   : Uint;
10943         HB    : Uint;
10944         LB    : Uint;
10945         Lval  : Uint;
10946         Opnd  : Node_Id;
10947
10948      begin
10949         if Warn_On_Questionable_Missing_Parens
10950           and then Comes_From_Source (Norig)
10951           and then Is_Integer_Type (Typ)
10952           and then Nkind (Norig) = N_Op_Minus
10953         then
10954            Rorig := Original_Node (Right_Opnd (Norig));
10955
10956            --  We are looking for cases where the right operand is not
10957            --  parenthesized, and is a binary operator, multiply, divide, or
10958            --  mod. These are the cases where the grouping can affect results.
10959
10960            if Paren_Count (Rorig) = 0
10961              and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
10962            then
10963               --  For mod, we always give the warning, since the value is
10964               --  affected by the parenthesization (e.g. (-5) mod 315 /=
10965               --  -(5 mod 315)). But for the other cases, the only concern is
10966               --  overflow, e.g. for the case of 8 big signed (-(2 * 64)
10967               --  overflows, but (-2) * 64 does not). So we try to give the
10968               --  message only when overflow is possible.
10969
10970               if Nkind (Rorig) /= N_Op_Mod
10971                 and then Compile_Time_Known_Value (R)
10972               then
10973                  Val := Expr_Value (R);
10974
10975                  if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
10976                     HB := Expr_Value (Type_High_Bound (Typ));
10977                  else
10978                     HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
10979                  end if;
10980
10981                  if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
10982                     LB := Expr_Value (Type_Low_Bound (Typ));
10983                  else
10984                     LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
10985                  end if;
10986
10987                  --  Note that the test below is deliberately excluding the
10988                  --  largest negative number, since that is a potentially
10989                  --  troublesome case (e.g. -2 * x, where the result is the
10990                  --  largest negative integer has an overflow with 2 * x).
10991
10992                  if Val > LB and then Val <= HB then
10993                     return;
10994                  end if;
10995               end if;
10996
10997               --  For the multiplication case, the only case we have to worry
10998               --  about is when (-a)*b is exactly the largest negative number
10999               --  so that -(a*b) can cause overflow. This can only happen if
11000               --  a is a power of 2, and more generally if any operand is a
11001               --  constant that is not a power of 2, then the parentheses
11002               --  cannot affect whether overflow occurs. We only bother to
11003               --  test the left most operand
11004
11005               --  Loop looking at left operands for one that has known value
11006
11007               Opnd := Rorig;
11008               Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11009                  if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11010                     Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11011
11012                     --  Operand value of 0 or 1 skips warning
11013
11014                     if Lval <= 1 then
11015                        return;
11016
11017                     --  Otherwise check power of 2, if power of 2, warn, if
11018                     --  anything else, skip warning.
11019
11020                     else
11021                        while Lval /= 2 loop
11022                           if Lval mod 2 = 1 then
11023                              return;
11024                           else
11025                              Lval := Lval / 2;
11026                           end if;
11027                        end loop;
11028
11029                        exit Opnd_Loop;
11030                     end if;
11031                  end if;
11032
11033                  --  Keep looking at left operands
11034
11035                  Opnd := Left_Opnd (Opnd);
11036               end loop Opnd_Loop;
11037
11038               --  For rem or "/" we can only have a problematic situation
11039               --  if the divisor has a value of minus one or one. Otherwise
11040               --  overflow is impossible (divisor > 1) or we have a case of
11041               --  division by zero in any case.
11042
11043               if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11044                 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11045                 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11046               then
11047                  return;
11048               end if;
11049
11050               --  If we fall through warning should be issued
11051
11052               --  Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11053
11054               Error_Msg_N
11055                 ("??unary minus expression should be parenthesized here!", N);
11056            end if;
11057         end if;
11058      end;
11059   end Resolve_Unary_Op;
11060
11061   ----------------------------------
11062   -- Resolve_Unchecked_Expression --
11063   ----------------------------------
11064
11065   procedure Resolve_Unchecked_Expression
11066     (N   : Node_Id;
11067      Typ : Entity_Id)
11068   is
11069   begin
11070      Resolve (Expression (N), Typ, Suppress => All_Checks);
11071      Set_Etype (N, Typ);
11072   end Resolve_Unchecked_Expression;
11073
11074   ---------------------------------------
11075   -- Resolve_Unchecked_Type_Conversion --
11076   ---------------------------------------
11077
11078   procedure Resolve_Unchecked_Type_Conversion
11079     (N   : Node_Id;
11080      Typ : Entity_Id)
11081   is
11082      pragma Warnings (Off, Typ);
11083
11084      Operand   : constant Node_Id   := Expression (N);
11085      Opnd_Type : constant Entity_Id := Etype (Operand);
11086
11087   begin
11088      --  Resolve operand using its own type
11089
11090      Resolve (Operand, Opnd_Type);
11091
11092      --  In an inlined context, the unchecked conversion may be applied
11093      --  to a literal, in which case its type is the type of the context.
11094      --  (In other contexts conversions cannot apply to literals).
11095
11096      if In_Inlined_Body
11097        and then (Opnd_Type = Any_Character or else
11098                  Opnd_Type = Any_Integer   or else
11099                  Opnd_Type = Any_Real)
11100      then
11101         Set_Etype (Operand, Typ);
11102      end if;
11103
11104      Analyze_Dimension (N);
11105      Eval_Unchecked_Conversion (N);
11106   end Resolve_Unchecked_Type_Conversion;
11107
11108   ------------------------------
11109   -- Rewrite_Operator_As_Call --
11110   ------------------------------
11111
11112   procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11113      Loc     : constant Source_Ptr := Sloc (N);
11114      Actuals : constant List_Id    := New_List;
11115      New_N   : Node_Id;
11116
11117   begin
11118      if Nkind (N) in  N_Binary_Op then
11119         Append (Left_Opnd (N), Actuals);
11120      end if;
11121
11122      Append (Right_Opnd (N), Actuals);
11123
11124      New_N :=
11125        Make_Function_Call (Sloc => Loc,
11126          Name => New_Occurrence_Of (Nam, Loc),
11127          Parameter_Associations => Actuals);
11128
11129      Preserve_Comes_From_Source (New_N, N);
11130      Preserve_Comes_From_Source (Name (New_N), N);
11131      Rewrite (N, New_N);
11132      Set_Etype (N, Etype (Nam));
11133   end Rewrite_Operator_As_Call;
11134
11135   ------------------------------
11136   -- Rewrite_Renamed_Operator --
11137   ------------------------------
11138
11139   procedure Rewrite_Renamed_Operator
11140     (N   : Node_Id;
11141      Op  : Entity_Id;
11142      Typ : Entity_Id)
11143   is
11144      Nam       : constant Name_Id := Chars (Op);
11145      Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11146      Op_Node   : Node_Id;
11147
11148   begin
11149      --  Do not perform this transformation within a pre/postcondition,
11150      --  because the expression will be re-analyzed, and the transformation
11151      --  might affect the visibility of the operator, e.g. in an instance.
11152
11153      if In_Assertion_Expr > 0 then
11154         return;
11155      end if;
11156
11157      --  Rewrite the operator node using the real operator, not its renaming.
11158      --  Exclude user-defined intrinsic operations of the same name, which are
11159      --  treated separately and rewritten as calls.
11160
11161      if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11162         Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11163         Set_Chars      (Op_Node, Nam);
11164         Set_Etype      (Op_Node, Etype (N));
11165         Set_Entity     (Op_Node, Op);
11166         Set_Right_Opnd (Op_Node, Right_Opnd (N));
11167
11168         --  Indicate that both the original entity and its renaming are
11169         --  referenced at this point.
11170
11171         Generate_Reference (Entity (N), N);
11172         Generate_Reference (Op, N);
11173
11174         if Is_Binary then
11175            Set_Left_Opnd  (Op_Node, Left_Opnd  (N));
11176         end if;
11177
11178         Rewrite (N, Op_Node);
11179
11180         --  If the context type is private, add the appropriate conversions so
11181         --  that the operator is applied to the full view. This is done in the
11182         --  routines that resolve intrinsic operators.
11183
11184         if Is_Intrinsic_Subprogram (Op)
11185           and then Is_Private_Type (Typ)
11186         then
11187            case Nkind (N) is
11188               when N_Op_Add   | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
11189                    N_Op_Expon | N_Op_Mod      | N_Op_Rem      =>
11190                  Resolve_Intrinsic_Operator (N, Typ);
11191
11192               when N_Op_Plus  | N_Op_Minus    | N_Op_Abs      =>
11193                  Resolve_Intrinsic_Unary_Operator (N, Typ);
11194
11195               when others =>
11196                  Resolve (N, Typ);
11197            end case;
11198         end if;
11199
11200      elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11201
11202         --  Operator renames a user-defined operator of the same name. Use the
11203         --  original operator in the node, which is the one Gigi knows about.
11204
11205         Set_Entity (N, Op);
11206         Set_Is_Overloaded (N, False);
11207      end if;
11208   end Rewrite_Renamed_Operator;
11209
11210   -----------------------
11211   -- Set_Slice_Subtype --
11212   -----------------------
11213
11214   --  Build an implicit subtype declaration to represent the type delivered by
11215   --  the slice. This is an abbreviated version of an array subtype. We define
11216   --  an index subtype for the slice, using either the subtype name or the
11217   --  discrete range of the slice. To be consistent with index usage elsewhere
11218   --  we create a list header to hold the single index. This list is not
11219   --  otherwise attached to the syntax tree.
11220
11221   procedure Set_Slice_Subtype (N : Node_Id) is
11222      Loc           : constant Source_Ptr := Sloc (N);
11223      Index_List    : constant List_Id    := New_List;
11224      Index         : Node_Id;
11225      Index_Subtype : Entity_Id;
11226      Index_Type    : Entity_Id;
11227      Slice_Subtype : Entity_Id;
11228      Drange        : constant Node_Id := Discrete_Range (N);
11229
11230   begin
11231      Index_Type := Base_Type (Etype (Drange));
11232
11233      if Is_Entity_Name (Drange) then
11234         Index_Subtype := Entity (Drange);
11235
11236      else
11237         --  We force the evaluation of a range. This is definitely needed in
11238         --  the renamed case, and seems safer to do unconditionally. Note in
11239         --  any case that since we will create and insert an Itype referring
11240         --  to this range, we must make sure any side effect removal actions
11241         --  are inserted before the Itype definition.
11242
11243         if Nkind (Drange) = N_Range then
11244            Force_Evaluation (Low_Bound (Drange));
11245            Force_Evaluation (High_Bound (Drange));
11246
11247         --  If the discrete range is given by a subtype indication, the
11248         --  type of the slice is the base of the subtype mark.
11249
11250         elsif Nkind (Drange) = N_Subtype_Indication then
11251            declare
11252               R : constant Node_Id := Range_Expression (Constraint (Drange));
11253            begin
11254               Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11255               Force_Evaluation (Low_Bound  (R));
11256               Force_Evaluation (High_Bound (R));
11257            end;
11258         end if;
11259
11260         Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11261
11262         --  Take a new copy of Drange (where bounds have been rewritten to
11263         --  reference side-effect-free names). Using a separate tree ensures
11264         --  that further expansion (e.g. while rewriting a slice assignment
11265         --  into a FOR loop) does not attempt to remove side effects on the
11266         --  bounds again (which would cause the bounds in the index subtype
11267         --  definition to refer to temporaries before they are defined) (the
11268         --  reason is that some names are considered side effect free here
11269         --  for the subtype, but not in the context of a loop iteration
11270         --  scheme).
11271
11272         Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11273         Set_Parent       (Scalar_Range (Index_Subtype), Index_Subtype);
11274         Set_Etype        (Index_Subtype, Index_Type);
11275         Set_Size_Info    (Index_Subtype, Index_Type);
11276         Set_RM_Size      (Index_Subtype, RM_Size (Index_Type));
11277      end if;
11278
11279      Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11280
11281      Index := New_Occurrence_Of (Index_Subtype, Loc);
11282      Set_Etype (Index, Index_Subtype);
11283      Append (Index, Index_List);
11284
11285      Set_First_Index    (Slice_Subtype, Index);
11286      Set_Etype          (Slice_Subtype, Base_Type (Etype (N)));
11287      Set_Is_Constrained (Slice_Subtype, True);
11288
11289      Check_Compile_Time_Size (Slice_Subtype);
11290
11291      --  The Etype of the existing Slice node is reset to this slice subtype.
11292      --  Its bounds are obtained from its first index.
11293
11294      Set_Etype (N, Slice_Subtype);
11295
11296      --  For packed slice subtypes, freeze immediately (except in the case of
11297      --  being in a "spec expression" where we never freeze when we first see
11298      --  the expression).
11299
11300      if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
11301         Freeze_Itype (Slice_Subtype, N);
11302
11303      --  For all other cases insert an itype reference in the slice's actions
11304      --  so that the itype is frozen at the proper place in the tree (i.e. at
11305      --  the point where actions for the slice are analyzed). Note that this
11306      --  is different from freezing the itype immediately, which might be
11307      --  premature (e.g. if the slice is within a transient scope). This needs
11308      --  to be done only if expansion is enabled.
11309
11310      elsif Expander_Active then
11311         Ensure_Defined (Typ => Slice_Subtype, N => N);
11312      end if;
11313   end Set_Slice_Subtype;
11314
11315   --------------------------------
11316   -- Set_String_Literal_Subtype --
11317   --------------------------------
11318
11319   procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11320      Loc        : constant Source_Ptr := Sloc (N);
11321      Low_Bound  : constant Node_Id :=
11322                     Type_Low_Bound (Etype (First_Index (Typ)));
11323      Subtype_Id : Entity_Id;
11324
11325   begin
11326      if Nkind (N) /= N_String_Literal then
11327         return;
11328      end if;
11329
11330      Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11331      Set_String_Literal_Length (Subtype_Id, UI_From_Int
11332                                               (String_Length (Strval (N))));
11333      Set_Etype          (Subtype_Id, Base_Type (Typ));
11334      Set_Is_Constrained (Subtype_Id);
11335      Set_Etype          (N, Subtype_Id);
11336
11337      --  The low bound is set from the low bound of the corresponding index
11338      --  type. Note that we do not store the high bound in the string literal
11339      --  subtype, but it can be deduced if necessary from the length and the
11340      --  low bound.
11341
11342      if Is_OK_Static_Expression (Low_Bound) then
11343         Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11344
11345      --  If the lower bound is not static we create a range for the string
11346      --  literal, using the index type and the known length of the literal.
11347      --  The index type is not necessarily Positive, so the upper bound is
11348      --  computed as T'Val (T'Pos (Low_Bound) + L - 1).
11349
11350      else
11351         declare
11352            Index_List : constant List_Id   := New_List;
11353            Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11354            High_Bound : constant Node_Id   :=
11355                           Make_Attribute_Reference (Loc,
11356                             Attribute_Name => Name_Val,
11357                             Prefix         =>
11358                               New_Occurrence_Of (Index_Type, Loc),
11359                             Expressions    => New_List (
11360                               Make_Op_Add (Loc,
11361                                 Left_Opnd  =>
11362                                   Make_Attribute_Reference (Loc,
11363                                     Attribute_Name => Name_Pos,
11364                                     Prefix         =>
11365                                       New_Occurrence_Of (Index_Type, Loc),
11366                                     Expressions    =>
11367                                       New_List (New_Copy_Tree (Low_Bound))),
11368                                 Right_Opnd =>
11369                                   Make_Integer_Literal (Loc,
11370                                     String_Length (Strval (N)) - 1))));
11371
11372            Array_Subtype : Entity_Id;
11373            Drange        : Node_Id;
11374            Index         : Node_Id;
11375            Index_Subtype : Entity_Id;
11376
11377         begin
11378            if Is_Integer_Type (Index_Type) then
11379               Set_String_Literal_Low_Bound
11380                 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11381
11382            else
11383               --  If the index type is an enumeration type, build bounds
11384               --  expression with attributes.
11385
11386               Set_String_Literal_Low_Bound
11387                 (Subtype_Id,
11388                  Make_Attribute_Reference (Loc,
11389                    Attribute_Name => Name_First,
11390                    Prefix         =>
11391                      New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11392               Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11393            end if;
11394
11395            Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11396
11397            --  Build bona fide subtype for the string, and wrap it in an
11398            --  unchecked conversion, because the backend expects the
11399            --  String_Literal_Subtype to have a static lower bound.
11400
11401            Index_Subtype :=
11402              Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11403            Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11404            Set_Scalar_Range (Index_Subtype, Drange);
11405            Set_Parent (Drange, N);
11406            Analyze_And_Resolve (Drange, Index_Type);
11407
11408            --  In the context, the Index_Type may already have a constraint,
11409            --  so use common base type on string subtype. The base type may
11410            --  be used when generating attributes of the string, for example
11411            --  in the context of a slice assignment.
11412
11413            Set_Etype     (Index_Subtype, Base_Type (Index_Type));
11414            Set_Size_Info (Index_Subtype, Index_Type);
11415            Set_RM_Size   (Index_Subtype, RM_Size (Index_Type));
11416
11417            Array_Subtype := Create_Itype (E_Array_Subtype, N);
11418
11419            Index := New_Occurrence_Of (Index_Subtype, Loc);
11420            Set_Etype (Index, Index_Subtype);
11421            Append (Index, Index_List);
11422
11423            Set_First_Index    (Array_Subtype, Index);
11424            Set_Etype          (Array_Subtype, Base_Type (Typ));
11425            Set_Is_Constrained (Array_Subtype, True);
11426
11427            Rewrite (N,
11428              Make_Unchecked_Type_Conversion (Loc,
11429                Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11430                Expression   => Relocate_Node (N)));
11431            Set_Etype (N, Array_Subtype);
11432         end;
11433      end if;
11434   end Set_String_Literal_Subtype;
11435
11436   ------------------------------
11437   -- Simplify_Type_Conversion --
11438   ------------------------------
11439
11440   procedure Simplify_Type_Conversion (N : Node_Id) is
11441   begin
11442      if Nkind (N) = N_Type_Conversion then
11443         declare
11444            Operand    : constant Node_Id   := Expression (N);
11445            Target_Typ : constant Entity_Id := Etype (N);
11446            Opnd_Typ   : constant Entity_Id := Etype (Operand);
11447
11448         begin
11449            --  Special processing if the conversion is the expression of a
11450            --  Rounding or Truncation attribute reference. In this case we
11451            --  replace:
11452
11453            --     ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11454
11455            --  by
11456
11457            --     ityp (x)
11458
11459            --  with the Float_Truncate flag set to False or True respectively,
11460            --  which is more efficient.
11461
11462            if Is_Floating_Point_Type (Opnd_Typ)
11463              and then
11464                (Is_Integer_Type (Target_Typ)
11465                  or else (Is_Fixed_Point_Type (Target_Typ)
11466                            and then Conversion_OK (N)))
11467              and then Nkind (Operand) = N_Attribute_Reference
11468              and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11469                                                         Name_Truncation)
11470            then
11471               declare
11472                  Truncate : constant Boolean :=
11473                               Attribute_Name (Operand) = Name_Truncation;
11474               begin
11475                  Rewrite (Operand,
11476                    Relocate_Node (First (Expressions (Operand))));
11477                  Set_Float_Truncate (N, Truncate);
11478               end;
11479            end if;
11480         end;
11481      end if;
11482   end Simplify_Type_Conversion;
11483
11484   -----------------------------
11485   -- Unique_Fixed_Point_Type --
11486   -----------------------------
11487
11488   function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11489      T1   : Entity_Id := Empty;
11490      T2   : Entity_Id;
11491      Item : Node_Id;
11492      Scop : Entity_Id;
11493
11494      procedure Fixed_Point_Error;
11495      --  Give error messages for true ambiguity. Messages are posted on node
11496      --  N, and entities T1, T2 are the possible interpretations.
11497
11498      -----------------------
11499      -- Fixed_Point_Error --
11500      -----------------------
11501
11502      procedure Fixed_Point_Error is
11503      begin
11504         Error_Msg_N ("ambiguous universal_fixed_expression", N);
11505         Error_Msg_NE ("\\possible interpretation as}", N, T1);
11506         Error_Msg_NE ("\\possible interpretation as}", N, T2);
11507      end Fixed_Point_Error;
11508
11509   --  Start of processing for Unique_Fixed_Point_Type
11510
11511   begin
11512      --  The operations on Duration are visible, so Duration is always a
11513      --  possible interpretation.
11514
11515      T1 := Standard_Duration;
11516
11517      --  Look for fixed-point types in enclosing scopes
11518
11519      Scop := Current_Scope;
11520      while Scop /= Standard_Standard loop
11521         T2 := First_Entity (Scop);
11522         while Present (T2) loop
11523            if Is_Fixed_Point_Type (T2)
11524              and then Current_Entity (T2) = T2
11525              and then Scope (Base_Type (T2)) = Scop
11526            then
11527               if Present (T1) then
11528                  Fixed_Point_Error;
11529                  return Any_Type;
11530               else
11531                  T1 := T2;
11532               end if;
11533            end if;
11534
11535            Next_Entity (T2);
11536         end loop;
11537
11538         Scop := Scope (Scop);
11539      end loop;
11540
11541      --  Look for visible fixed type declarations in the context
11542
11543      Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11544      while Present (Item) loop
11545         if Nkind (Item) = N_With_Clause then
11546            Scop := Entity (Name (Item));
11547            T2 := First_Entity (Scop);
11548            while Present (T2) loop
11549               if Is_Fixed_Point_Type (T2)
11550                 and then Scope (Base_Type (T2)) = Scop
11551                 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11552               then
11553                  if Present (T1) then
11554                     Fixed_Point_Error;
11555                     return Any_Type;
11556                  else
11557                     T1 := T2;
11558                  end if;
11559               end if;
11560
11561               Next_Entity (T2);
11562            end loop;
11563         end if;
11564
11565         Next (Item);
11566      end loop;
11567
11568      if Nkind (N) = N_Real_Literal then
11569         Error_Msg_NE
11570           ("??real literal interpreted as }!", N, T1);
11571      else
11572         Error_Msg_NE
11573           ("??universal_fixed expression interpreted as }!", N, T1);
11574      end if;
11575
11576      return T1;
11577   end Unique_Fixed_Point_Type;
11578
11579   ----------------------
11580   -- Valid_Conversion --
11581   ----------------------
11582
11583   function Valid_Conversion
11584     (N           : Node_Id;
11585      Target      : Entity_Id;
11586      Operand     : Node_Id;
11587      Report_Errs : Boolean := True) return Boolean
11588   is
11589      Target_Type  : constant Entity_Id := Base_Type (Target);
11590      Opnd_Type    : Entity_Id          := Etype (Operand);
11591      Inc_Ancestor : Entity_Id;
11592
11593      function Conversion_Check
11594        (Valid : Boolean;
11595         Msg   : String) return Boolean;
11596      --  Little routine to post Msg if Valid is False, returns Valid value
11597
11598      procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
11599      --  If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11600
11601      procedure Conversion_Error_NE
11602        (Msg : String;
11603         N   : Node_Or_Entity_Id;
11604         E   : Node_Or_Entity_Id);
11605      --  If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11606
11607      function Valid_Tagged_Conversion
11608        (Target_Type : Entity_Id;
11609         Opnd_Type   : Entity_Id) return Boolean;
11610      --  Specifically test for validity of tagged conversions
11611
11612      function Valid_Array_Conversion return Boolean;
11613      --  Check index and component conformance, and accessibility levels if
11614      --  the component types are anonymous access types (Ada 2005).
11615
11616      ----------------------
11617      -- Conversion_Check --
11618      ----------------------
11619
11620      function Conversion_Check
11621        (Valid : Boolean;
11622         Msg   : String) return Boolean
11623      is
11624      begin
11625         if not Valid
11626
11627            --  A generic unit has already been analyzed and we have verified
11628            --  that a particular conversion is OK in that context. Since the
11629            --  instance is reanalyzed without relying on the relationships
11630            --  established during the analysis of the generic, it is possible
11631            --  to end up with inconsistent views of private types. Do not emit
11632            --  the error message in such cases. The rest of the machinery in
11633            --  Valid_Conversion still ensures the proper compatibility of
11634            --  target and operand types.
11635
11636           and then not In_Instance
11637         then
11638            Conversion_Error_N (Msg, Operand);
11639         end if;
11640
11641         return Valid;
11642      end Conversion_Check;
11643
11644      ------------------------
11645      -- Conversion_Error_N --
11646      ------------------------
11647
11648      procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
11649      begin
11650         if Report_Errs then
11651            Error_Msg_N (Msg, N);
11652         end if;
11653      end Conversion_Error_N;
11654
11655      -------------------------
11656      -- Conversion_Error_NE --
11657      -------------------------
11658
11659      procedure Conversion_Error_NE
11660        (Msg : String;
11661         N   : Node_Or_Entity_Id;
11662         E   : Node_Or_Entity_Id)
11663      is
11664      begin
11665         if Report_Errs then
11666            Error_Msg_NE (Msg, N, E);
11667         end if;
11668      end Conversion_Error_NE;
11669
11670      ----------------------------
11671      -- Valid_Array_Conversion --
11672      ----------------------------
11673
11674      function Valid_Array_Conversion return Boolean
11675      is
11676         Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
11677         Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
11678
11679         Opnd_Index      : Node_Id;
11680         Opnd_Index_Type : Entity_Id;
11681
11682         Target_Comp_Type : constant Entity_Id :=
11683                              Component_Type (Target_Type);
11684         Target_Comp_Base : constant Entity_Id :=
11685                              Base_Type (Target_Comp_Type);
11686
11687         Target_Index      : Node_Id;
11688         Target_Index_Type : Entity_Id;
11689
11690      begin
11691         --  Error if wrong number of dimensions
11692
11693         if
11694           Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
11695         then
11696            Conversion_Error_N
11697              ("incompatible number of dimensions for conversion", Operand);
11698            return False;
11699
11700         --  Number of dimensions matches
11701
11702         else
11703            --  Loop through indexes of the two arrays
11704
11705            Target_Index := First_Index (Target_Type);
11706            Opnd_Index   := First_Index (Opnd_Type);
11707            while Present (Target_Index) and then Present (Opnd_Index) loop
11708               Target_Index_Type := Etype (Target_Index);
11709               Opnd_Index_Type   := Etype (Opnd_Index);
11710
11711               --  Error if index types are incompatible
11712
11713               if not (Is_Integer_Type (Target_Index_Type)
11714                       and then Is_Integer_Type (Opnd_Index_Type))
11715                 and then (Root_Type (Target_Index_Type)
11716                           /= Root_Type (Opnd_Index_Type))
11717               then
11718                  Conversion_Error_N
11719                    ("incompatible index types for array conversion",
11720                     Operand);
11721                  return False;
11722               end if;
11723
11724               Next_Index (Target_Index);
11725               Next_Index (Opnd_Index);
11726            end loop;
11727
11728            --  If component types have same base type, all set
11729
11730            if Target_Comp_Base  = Opnd_Comp_Base then
11731               null;
11732
11733               --  Here if base types of components are not the same. The only
11734               --  time this is allowed is if we have anonymous access types.
11735
11736               --  The conversion of arrays of anonymous access types can lead
11737               --  to dangling pointers. AI-392 formalizes the accessibility
11738               --  checks that must be applied to such conversions to prevent
11739               --  out-of-scope references.
11740
11741            elsif Ekind_In
11742                    (Target_Comp_Base, E_Anonymous_Access_Type,
11743                                       E_Anonymous_Access_Subprogram_Type)
11744              and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
11745              and then
11746                Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
11747            then
11748               if Type_Access_Level (Target_Type) <
11749                    Deepest_Type_Access_Level (Opnd_Type)
11750               then
11751                  if In_Instance_Body then
11752                     Error_Msg_Warn := SPARK_Mode /= On;
11753                     Conversion_Error_N
11754                       ("source array type has deeper accessibility "
11755                        & "level than target<<", Operand);
11756                     Conversion_Error_N ("\Program_Error [<<", Operand);
11757                     Rewrite (N,
11758                       Make_Raise_Program_Error (Sloc (N),
11759                         Reason => PE_Accessibility_Check_Failed));
11760                     Set_Etype (N, Target_Type);
11761                     return False;
11762
11763                  --  Conversion not allowed because of accessibility levels
11764
11765                  else
11766                     Conversion_Error_N
11767                       ("source array type has deeper accessibility "
11768                        & "level than target", Operand);
11769                     return False;
11770                  end if;
11771
11772               else
11773                  null;
11774               end if;
11775
11776            --  All other cases where component base types do not match
11777
11778            else
11779               Conversion_Error_N
11780                 ("incompatible component types for array conversion",
11781                  Operand);
11782               return False;
11783            end if;
11784
11785            --  Check that component subtypes statically match. For numeric
11786            --  types this means that both must be either constrained or
11787            --  unconstrained. For enumeration types the bounds must match.
11788            --  All of this is checked in Subtypes_Statically_Match.
11789
11790            if not Subtypes_Statically_Match
11791                     (Target_Comp_Type, Opnd_Comp_Type)
11792            then
11793               Conversion_Error_N
11794                 ("component subtypes must statically match", Operand);
11795               return False;
11796            end if;
11797         end if;
11798
11799         return True;
11800      end Valid_Array_Conversion;
11801
11802      -----------------------------
11803      -- Valid_Tagged_Conversion --
11804      -----------------------------
11805
11806      function Valid_Tagged_Conversion
11807        (Target_Type : Entity_Id;
11808         Opnd_Type   : Entity_Id) return Boolean
11809      is
11810      begin
11811         --  Upward conversions are allowed (RM 4.6(22))
11812
11813         if Covers (Target_Type, Opnd_Type)
11814           or else Is_Ancestor (Target_Type, Opnd_Type)
11815         then
11816            return True;
11817
11818         --  Downward conversion are allowed if the operand is class-wide
11819         --  (RM 4.6(23)).
11820
11821         elsif Is_Class_Wide_Type (Opnd_Type)
11822           and then Covers (Opnd_Type, Target_Type)
11823         then
11824            return True;
11825
11826         elsif Covers (Opnd_Type, Target_Type)
11827           or else Is_Ancestor (Opnd_Type, Target_Type)
11828         then
11829            return
11830              Conversion_Check (False,
11831                "downward conversion of tagged objects not allowed");
11832
11833         --  Ada 2005 (AI-251): The conversion to/from interface types is
11834         --  always valid
11835
11836         elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
11837            return True;
11838
11839         --  If the operand is a class-wide type obtained through a limited_
11840         --  with clause, and the context includes the nonlimited view, use
11841         --  it to determine whether the conversion is legal.
11842
11843         elsif Is_Class_Wide_Type (Opnd_Type)
11844           and then From_Limited_With (Opnd_Type)
11845           and then Present (Non_Limited_View (Etype (Opnd_Type)))
11846           and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
11847         then
11848            return True;
11849
11850         elsif Is_Access_Type (Opnd_Type)
11851           and then Is_Interface (Directly_Designated_Type (Opnd_Type))
11852         then
11853            return True;
11854
11855         else
11856            Conversion_Error_NE
11857              ("invalid tagged conversion, not compatible with}",
11858               N, First_Subtype (Opnd_Type));
11859            return False;
11860         end if;
11861      end Valid_Tagged_Conversion;
11862
11863   --  Start of processing for Valid_Conversion
11864
11865   begin
11866      Check_Parameterless_Call (Operand);
11867
11868      if Is_Overloaded (Operand) then
11869         declare
11870            I   : Interp_Index;
11871            I1  : Interp_Index;
11872            It  : Interp;
11873            It1 : Interp;
11874            N1  : Entity_Id;
11875            T1  : Entity_Id;
11876
11877         begin
11878            --  Remove procedure calls, which syntactically cannot appear in
11879            --  this context, but which cannot be removed by type checking,
11880            --  because the context does not impose a type.
11881
11882            --  The node may be labelled overloaded, but still contain only one
11883            --  interpretation because others were discarded earlier. If this
11884            --  is the case, retain the single interpretation if legal.
11885
11886            Get_First_Interp (Operand, I, It);
11887            Opnd_Type := It.Typ;
11888            Get_Next_Interp (I, It);
11889
11890            if Present (It.Typ)
11891              and then Opnd_Type /= Standard_Void_Type
11892            then
11893               --  More than one candidate interpretation is available
11894
11895               Get_First_Interp (Operand, I, It);
11896               while Present (It.Typ) loop
11897                  if It.Typ = Standard_Void_Type then
11898                     Remove_Interp (I);
11899                  end if;
11900
11901                  --  When compiling for a system where Address is of a visible
11902                  --  integer type, spurious ambiguities can be produced when
11903                  --  arithmetic operations have a literal operand and return
11904                  --  System.Address or a descendant of it. These ambiguities
11905                  --  are usually resolved by the context, but for conversions
11906                  --  there is no context type and the removal of the spurious
11907                  --  operations must be done explicitly here.
11908
11909                  if not Address_Is_Private
11910                    and then Is_Descendent_Of_Address (It.Typ)
11911                  then
11912                     Remove_Interp (I);
11913                  end if;
11914
11915                  Get_Next_Interp (I, It);
11916               end loop;
11917            end if;
11918
11919            Get_First_Interp (Operand, I, It);
11920            I1  := I;
11921            It1 := It;
11922
11923            if No (It.Typ) then
11924               Conversion_Error_N ("illegal operand in conversion", Operand);
11925               return False;
11926            end if;
11927
11928            Get_Next_Interp (I, It);
11929
11930            if Present (It.Typ) then
11931               N1  := It1.Nam;
11932               T1  := It1.Typ;
11933               It1 :=  Disambiguate (Operand, I1, I, Any_Type);
11934
11935               if It1 = No_Interp then
11936                  Conversion_Error_N
11937                    ("ambiguous operand in conversion", Operand);
11938
11939                  --  If the interpretation involves a standard operator, use
11940                  --  the location of the type, which may be user-defined.
11941
11942                  if Sloc (It.Nam) = Standard_Location then
11943                     Error_Msg_Sloc := Sloc (It.Typ);
11944                  else
11945                     Error_Msg_Sloc := Sloc (It.Nam);
11946                  end if;
11947
11948                  Conversion_Error_N -- CODEFIX
11949                    ("\\possible interpretation#!", Operand);
11950
11951                  if Sloc (N1) = Standard_Location then
11952                     Error_Msg_Sloc := Sloc (T1);
11953                  else
11954                     Error_Msg_Sloc := Sloc (N1);
11955                  end if;
11956
11957                  Conversion_Error_N -- CODEFIX
11958                    ("\\possible interpretation#!", Operand);
11959
11960                  return False;
11961               end if;
11962            end if;
11963
11964            Set_Etype (Operand, It1.Typ);
11965            Opnd_Type := It1.Typ;
11966         end;
11967      end if;
11968
11969      --  Deal with conversion of integer type to address if the pragma
11970      --  Allow_Integer_Address is in effect. We convert the conversion to
11971      --  an unchecked conversion in this case and we are all done.
11972
11973      if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
11974         Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
11975         Analyze_And_Resolve (N, Target_Type);
11976         return True;
11977      end if;
11978
11979      --  If we are within a child unit, check whether the type of the
11980      --  expression has an ancestor in a parent unit, in which case it
11981      --  belongs to its derivation class even if the ancestor is private.
11982      --  See RM 7.3.1 (5.2/3).
11983
11984      Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
11985
11986      --  Numeric types
11987
11988      if Is_Numeric_Type (Target_Type) then
11989
11990         --  A universal fixed expression can be converted to any numeric type
11991
11992         if Opnd_Type = Universal_Fixed then
11993            return True;
11994
11995         --  Also no need to check when in an instance or inlined body, because
11996         --  the legality has been established when the template was analyzed.
11997         --  Furthermore, numeric conversions may occur where only a private
11998         --  view of the operand type is visible at the instantiation point.
11999         --  This results in a spurious error if we check that the operand type
12000         --  is a numeric type.
12001
12002         --  Note: in a previous version of this unit, the following tests were
12003         --  applied only for generated code (Comes_From_Source set to False),
12004         --  but in fact the test is required for source code as well, since
12005         --  this situation can arise in source code.
12006
12007         elsif In_Instance or else In_Inlined_Body then
12008            return True;
12009
12010         --  Otherwise we need the conversion check
12011
12012         else
12013            return Conversion_Check
12014                     (Is_Numeric_Type (Opnd_Type)
12015                       or else
12016                         (Present (Inc_Ancestor)
12017                           and then Is_Numeric_Type (Inc_Ancestor)),
12018                      "illegal operand for numeric conversion");
12019         end if;
12020
12021      --  Array types
12022
12023      elsif Is_Array_Type (Target_Type) then
12024         if not Is_Array_Type (Opnd_Type)
12025           or else Opnd_Type = Any_Composite
12026           or else Opnd_Type = Any_String
12027         then
12028            Conversion_Error_N
12029              ("illegal operand for array conversion", Operand);
12030            return False;
12031
12032         else
12033            return Valid_Array_Conversion;
12034         end if;
12035
12036      --  Ada 2005 (AI-251): Internally generated conversions of access to
12037      --  interface types added to force the displacement of the pointer to
12038      --  reference the corresponding dispatch table.
12039
12040      elsif not Comes_From_Source (N)
12041         and then Is_Access_Type (Target_Type)
12042         and then Is_Interface (Designated_Type (Target_Type))
12043      then
12044         return True;
12045
12046      --  Ada 2005 (AI-251): Anonymous access types where target references an
12047      --  interface type.
12048
12049      elsif Is_Access_Type (Opnd_Type)
12050        and then Ekind_In (Target_Type, E_General_Access_Type,
12051                                        E_Anonymous_Access_Type)
12052        and then Is_Interface (Directly_Designated_Type (Target_Type))
12053      then
12054         --  Check the static accessibility rule of 4.6(17). Note that the
12055         --  check is not enforced when within an instance body, since the
12056         --  RM requires such cases to be caught at run time.
12057
12058         --  If the operand is a rewriting of an allocator no check is needed
12059         --  because there are no accessibility issues.
12060
12061         if Nkind (Original_Node (N)) = N_Allocator then
12062            null;
12063
12064         elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12065            if Type_Access_Level (Opnd_Type) >
12066               Deepest_Type_Access_Level (Target_Type)
12067            then
12068               --  In an instance, this is a run-time check, but one we know
12069               --  will fail, so generate an appropriate warning. The raise
12070               --  will be generated by Expand_N_Type_Conversion.
12071
12072               if In_Instance_Body then
12073                  Error_Msg_Warn := SPARK_Mode /= On;
12074                  Conversion_Error_N
12075                    ("cannot convert local pointer to non-local access type<<",
12076                     Operand);
12077                  Conversion_Error_N ("\Program_Error [<<", Operand);
12078
12079               else
12080                  Conversion_Error_N
12081                    ("cannot convert local pointer to non-local access type",
12082                     Operand);
12083                  return False;
12084               end if;
12085
12086            --  Special accessibility checks are needed in the case of access
12087            --  discriminants declared for a limited type.
12088
12089            elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12090              and then not Is_Local_Anonymous_Access (Opnd_Type)
12091            then
12092               --  When the operand is a selected access discriminant the check
12093               --  needs to be made against the level of the object denoted by
12094               --  the prefix of the selected name (Object_Access_Level handles
12095               --  checking the prefix of the operand for this case).
12096
12097               if Nkind (Operand) = N_Selected_Component
12098                 and then Object_Access_Level (Operand) >
12099                   Deepest_Type_Access_Level (Target_Type)
12100               then
12101                  --  In an instance, this is a run-time check, but one we know
12102                  --  will fail, so generate an appropriate warning. The raise
12103                  --  will be generated by Expand_N_Type_Conversion.
12104
12105                  if In_Instance_Body then
12106                     Error_Msg_Warn := SPARK_Mode /= On;
12107                     Conversion_Error_N
12108                       ("cannot convert access discriminant to non-local "
12109                        & "access type<<", Operand);
12110                     Conversion_Error_N ("\Program_Error [<<", Operand);
12111
12112                  --  Real error if not in instance body
12113
12114                  else
12115                     Conversion_Error_N
12116                       ("cannot convert access discriminant to non-local "
12117                        & "access type", Operand);
12118                     return False;
12119                  end if;
12120               end if;
12121
12122               --  The case of a reference to an access discriminant from
12123               --  within a limited type declaration (which will appear as
12124               --  a discriminal) is always illegal because the level of the
12125               --  discriminant is considered to be deeper than any (nameable)
12126               --  access type.
12127
12128               if Is_Entity_Name (Operand)
12129                 and then not Is_Local_Anonymous_Access (Opnd_Type)
12130                 and then
12131                   Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12132                 and then Present (Discriminal_Link (Entity (Operand)))
12133               then
12134                  Conversion_Error_N
12135                    ("discriminant has deeper accessibility level than target",
12136                     Operand);
12137                  return False;
12138               end if;
12139            end if;
12140         end if;
12141
12142         return True;
12143
12144      --  General and anonymous access types
12145
12146      elsif Ekind_In (Target_Type, E_General_Access_Type,
12147                                   E_Anonymous_Access_Type)
12148          and then
12149            Conversion_Check
12150              (Is_Access_Type (Opnd_Type)
12151                and then not
12152                  Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12153                                       E_Access_Protected_Subprogram_Type),
12154               "must be an access-to-object type")
12155      then
12156         if Is_Access_Constant (Opnd_Type)
12157           and then not Is_Access_Constant (Target_Type)
12158         then
12159            Conversion_Error_N
12160              ("access-to-constant operand type not allowed", Operand);
12161            return False;
12162         end if;
12163
12164         --  Check the static accessibility rule of 4.6(17). Note that the
12165         --  check is not enforced when within an instance body, since the RM
12166         --  requires such cases to be caught at run time.
12167
12168         if Ekind (Target_Type) /= E_Anonymous_Access_Type
12169           or else Is_Local_Anonymous_Access (Target_Type)
12170           or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12171                     N_Object_Declaration
12172         then
12173            --  Ada 2012 (AI05-0149): Perform legality checking on implicit
12174            --  conversions from an anonymous access type to a named general
12175            --  access type. Such conversions are not allowed in the case of
12176            --  access parameters and stand-alone objects of an anonymous
12177            --  access type. The implicit conversion case is recognized by
12178            --  testing that Comes_From_Source is False and that it's been
12179            --  rewritten. The Comes_From_Source test isn't sufficient because
12180            --  nodes in inlined calls to predefined library routines can have
12181            --  Comes_From_Source set to False. (Is there a better way to test
12182            --  for implicit conversions???)
12183
12184            if Ada_Version >= Ada_2012
12185              and then not Comes_From_Source (N)
12186              and then N /= Original_Node (N)
12187              and then Ekind (Target_Type) = E_General_Access_Type
12188              and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12189            then
12190               if Is_Itype (Opnd_Type) then
12191
12192                  --  Implicit conversions aren't allowed for objects of an
12193                  --  anonymous access type, since such objects have nonstatic
12194                  --  levels in Ada 2012.
12195
12196                  if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12197                       N_Object_Declaration
12198                  then
12199                     Conversion_Error_N
12200                       ("implicit conversion of stand-alone anonymous "
12201                        & "access object not allowed", Operand);
12202                     return False;
12203
12204                  --  Implicit conversions aren't allowed for anonymous access
12205                  --  parameters. The "not Is_Local_Anonymous_Access_Type" test
12206                  --  is done to exclude anonymous access results.
12207
12208                  elsif not Is_Local_Anonymous_Access (Opnd_Type)
12209                    and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12210                                       N_Function_Specification,
12211                                       N_Procedure_Specification)
12212                  then
12213                     Conversion_Error_N
12214                       ("implicit conversion of anonymous access formal "
12215                        & "not allowed", Operand);
12216                     return False;
12217
12218                  --  This is a case where there's an enclosing object whose
12219                  --  to which the "statically deeper than" relationship does
12220                  --  not apply (such as an access discriminant selected from
12221                  --  a dereference of an access parameter).
12222
12223                  elsif Object_Access_Level (Operand)
12224                          = Scope_Depth (Standard_Standard)
12225                  then
12226                     Conversion_Error_N
12227                       ("implicit conversion of anonymous access value "
12228                        & "not allowed", Operand);
12229                     return False;
12230
12231                  --  In other cases, the level of the operand's type must be
12232                  --  statically less deep than that of the target type, else
12233                  --  implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12234
12235                  elsif Type_Access_Level (Opnd_Type) >
12236                        Deepest_Type_Access_Level (Target_Type)
12237                  then
12238                     Conversion_Error_N
12239                       ("implicit conversion of anonymous access value "
12240                        & "violates accessibility", Operand);
12241                     return False;
12242                  end if;
12243               end if;
12244
12245            elsif Type_Access_Level (Opnd_Type) >
12246                    Deepest_Type_Access_Level (Target_Type)
12247            then
12248               --  In an instance, this is a run-time check, but one we know
12249               --  will fail, so generate an appropriate warning. The raise
12250               --  will be generated by Expand_N_Type_Conversion.
12251
12252               if In_Instance_Body then
12253                  Error_Msg_Warn := SPARK_Mode /= On;
12254                  Conversion_Error_N
12255                    ("cannot convert local pointer to non-local access type<<",
12256                     Operand);
12257                  Conversion_Error_N ("\Program_Error [<<", Operand);
12258
12259               --  If not in an instance body, this is a real error
12260
12261               else
12262                  --  Avoid generation of spurious error message
12263
12264                  if not Error_Posted (N) then
12265                     Conversion_Error_N
12266                      ("cannot convert local pointer to non-local access type",
12267                       Operand);
12268                  end if;
12269
12270                  return False;
12271               end if;
12272
12273            --  Special accessibility checks are needed in the case of access
12274            --  discriminants declared for a limited type.
12275
12276            elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12277              and then not Is_Local_Anonymous_Access (Opnd_Type)
12278            then
12279               --  When the operand is a selected access discriminant the check
12280               --  needs to be made against the level of the object denoted by
12281               --  the prefix of the selected name (Object_Access_Level handles
12282               --  checking the prefix of the operand for this case).
12283
12284               if Nkind (Operand) = N_Selected_Component
12285                 and then Object_Access_Level (Operand) >
12286                          Deepest_Type_Access_Level (Target_Type)
12287               then
12288                  --  In an instance, this is a run-time check, but one we know
12289                  --  will fail, so generate an appropriate warning. The raise
12290                  --  will be generated by Expand_N_Type_Conversion.
12291
12292                  if In_Instance_Body then
12293                     Error_Msg_Warn := SPARK_Mode /= On;
12294                     Conversion_Error_N
12295                       ("cannot convert access discriminant to non-local "
12296                        & "access type<<", Operand);
12297                     Conversion_Error_N ("\Program_Error [<<", Operand);
12298
12299                  --  If not in an instance body, this is a real error
12300
12301                  else
12302                     Conversion_Error_N
12303                       ("cannot convert access discriminant to non-local "
12304                        & "access type", Operand);
12305                     return False;
12306                  end if;
12307               end if;
12308
12309               --  The case of a reference to an access discriminant from
12310               --  within a limited type declaration (which will appear as
12311               --  a discriminal) is always illegal because the level of the
12312               --  discriminant is considered to be deeper than any (nameable)
12313               --  access type.
12314
12315               if Is_Entity_Name (Operand)
12316                 and then
12317                   Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12318                 and then Present (Discriminal_Link (Entity (Operand)))
12319               then
12320                  Conversion_Error_N
12321                    ("discriminant has deeper accessibility level than target",
12322                     Operand);
12323                  return False;
12324               end if;
12325            end if;
12326         end if;
12327
12328         --  In the presence of limited_with clauses we have to use nonlimited
12329         --  views, if available.
12330
12331         Check_Limited : declare
12332            function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12333            --  Helper function to handle limited views
12334
12335            --------------------------
12336            -- Full_Designated_Type --
12337            --------------------------
12338
12339            function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12340               Desig : constant Entity_Id := Designated_Type (T);
12341
12342            begin
12343               --  Handle the limited view of a type
12344
12345               if Is_Incomplete_Type (Desig)
12346                 and then From_Limited_With (Desig)
12347                 and then Present (Non_Limited_View (Desig))
12348               then
12349                  return Available_View (Desig);
12350               else
12351                  return Desig;
12352               end if;
12353            end Full_Designated_Type;
12354
12355            --  Local Declarations
12356
12357            Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12358            Opnd   : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12359
12360            Same_Base : constant Boolean :=
12361                          Base_Type (Target) = Base_Type (Opnd);
12362
12363         --  Start of processing for Check_Limited
12364
12365         begin
12366            if Is_Tagged_Type (Target) then
12367               return Valid_Tagged_Conversion (Target, Opnd);
12368
12369            else
12370               if not Same_Base then
12371                  Conversion_Error_NE
12372                    ("target designated type not compatible with }",
12373                     N, Base_Type (Opnd));
12374                  return False;
12375
12376               --  Ada 2005 AI-384: legality rule is symmetric in both
12377               --  designated types. The conversion is legal (with possible
12378               --  constraint check) if either designated type is
12379               --  unconstrained.
12380
12381               elsif Subtypes_Statically_Match (Target, Opnd)
12382                 or else
12383                   (Has_Discriminants (Target)
12384                     and then
12385                      (not Is_Constrained (Opnd)
12386                        or else not Is_Constrained (Target)))
12387               then
12388                  --  Special case, if Value_Size has been used to make the
12389                  --  sizes different, the conversion is not allowed even
12390                  --  though the subtypes statically match.
12391
12392                  if Known_Static_RM_Size (Target)
12393                    and then Known_Static_RM_Size (Opnd)
12394                    and then RM_Size (Target) /= RM_Size (Opnd)
12395                  then
12396                     Conversion_Error_NE
12397                       ("target designated subtype not compatible with }",
12398                        N, Opnd);
12399                     Conversion_Error_NE
12400                       ("\because sizes of the two designated subtypes differ",
12401                        N, Opnd);
12402                     return False;
12403
12404                  --  Normal case where conversion is allowed
12405
12406                  else
12407                     return True;
12408                  end if;
12409
12410               else
12411                  Error_Msg_NE
12412                    ("target designated subtype not compatible with }",
12413                     N, Opnd);
12414                  return False;
12415               end if;
12416            end if;
12417         end Check_Limited;
12418
12419      --  Access to subprogram types. If the operand is an access parameter,
12420      --  the type has a deeper accessibility that any master, and cannot be
12421      --  assigned. We must make an exception if the conversion is part of an
12422      --  assignment and the target is the return object of an extended return
12423      --  statement, because in that case the accessibility check takes place
12424      --  after the return.
12425
12426      elsif Is_Access_Subprogram_Type (Target_Type)
12427
12428        --  Note: this test of Opnd_Type is there to prevent entering this
12429        --  branch in the case of a remote access to subprogram type, which
12430        --  is internally represented as an E_Record_Type.
12431
12432        and then Is_Access_Type (Opnd_Type)
12433      then
12434         if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12435           and then Is_Entity_Name (Operand)
12436           and then Ekind (Entity (Operand)) = E_In_Parameter
12437           and then
12438             (Nkind (Parent (N)) /= N_Assignment_Statement
12439               or else not Is_Entity_Name (Name (Parent (N)))
12440               or else not Is_Return_Object (Entity (Name (Parent (N)))))
12441         then
12442            Conversion_Error_N
12443              ("illegal attempt to store anonymous access to subprogram",
12444               Operand);
12445            Conversion_Error_N
12446              ("\value has deeper accessibility than any master "
12447               & "(RM 3.10.2 (13))",
12448               Operand);
12449
12450            Error_Msg_NE
12451             ("\use named access type for& instead of access parameter",
12452               Operand, Entity (Operand));
12453         end if;
12454
12455         --  Check that the designated types are subtype conformant
12456
12457         Check_Subtype_Conformant (New_Id  => Designated_Type (Target_Type),
12458                                   Old_Id  => Designated_Type (Opnd_Type),
12459                                   Err_Loc => N);
12460
12461         --  Check the static accessibility rule of 4.6(20)
12462
12463         if Type_Access_Level (Opnd_Type) >
12464            Deepest_Type_Access_Level (Target_Type)
12465         then
12466            Conversion_Error_N
12467              ("operand type has deeper accessibility level than target",
12468               Operand);
12469
12470         --  Check that if the operand type is declared in a generic body,
12471         --  then the target type must be declared within that same body
12472         --  (enforces last sentence of 4.6(20)).
12473
12474         elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12475            declare
12476               O_Gen : constant Node_Id :=
12477                         Enclosing_Generic_Body (Opnd_Type);
12478
12479               T_Gen : Node_Id;
12480
12481            begin
12482               T_Gen := Enclosing_Generic_Body (Target_Type);
12483               while Present (T_Gen) and then T_Gen /= O_Gen loop
12484                  T_Gen := Enclosing_Generic_Body (T_Gen);
12485               end loop;
12486
12487               if T_Gen /= O_Gen then
12488                  Conversion_Error_N
12489                    ("target type must be declared in same generic body "
12490                     & "as operand type", N);
12491               end if;
12492            end;
12493         end if;
12494
12495         return True;
12496
12497      --  Remote access to subprogram types
12498
12499      elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12500        and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12501      then
12502         --  It is valid to convert from one RAS type to another provided
12503         --  that their specification statically match.
12504
12505         --  Note: at this point, remote access to subprogram types have been
12506         --  expanded to their E_Record_Type representation, and we need to
12507         --  go back to the original access type definition using the
12508         --  Corresponding_Remote_Type attribute in order to check that the
12509         --  designated profiles match.
12510
12511         pragma Assert (Ekind (Target_Type) = E_Record_Type);
12512         pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
12513
12514         Check_Subtype_Conformant
12515           (New_Id  =>
12516              Designated_Type (Corresponding_Remote_Type (Target_Type)),
12517            Old_Id  =>
12518              Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
12519            Err_Loc =>
12520              N);
12521         return True;
12522
12523      --  If it was legal in the generic, it's legal in the instance
12524
12525      elsif In_Instance_Body then
12526         return True;
12527
12528      --  If both are tagged types, check legality of view conversions
12529
12530      elsif Is_Tagged_Type (Target_Type)
12531              and then
12532            Is_Tagged_Type (Opnd_Type)
12533      then
12534         return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
12535
12536      --  Types derived from the same root type are convertible
12537
12538      elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
12539         return True;
12540
12541      --  In an instance or an inlined body, there may be inconsistent views of
12542      --  the same type, or of types derived from a common root.
12543
12544      elsif (In_Instance or In_Inlined_Body)
12545        and then
12546          Root_Type (Underlying_Type (Target_Type)) =
12547          Root_Type (Underlying_Type (Opnd_Type))
12548      then
12549         return True;
12550
12551      --  Special check for common access type error case
12552
12553      elsif Ekind (Target_Type) = E_Access_Type
12554         and then Is_Access_Type (Opnd_Type)
12555      then
12556         Conversion_Error_N ("target type must be general access type!", N);
12557         Conversion_Error_NE -- CODEFIX
12558            ("add ALL to }!", N, Target_Type);
12559         return False;
12560
12561      --  Here we have a real conversion error
12562
12563      else
12564         Conversion_Error_NE
12565           ("invalid conversion, not compatible with }", N, Opnd_Type);
12566         return False;
12567      end if;
12568   end Valid_Conversion;
12569
12570end Sem_Res;
12571