1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             S E M _ A T T R                              --
6--                                                                          --
7--                                 S p e c                                  --
8--                                                                          --
9--          Copyright (C) 1992-2015, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- You should have received a copy of the GNU General Public License along  --
19-- with this program; see file COPYING3.  If not see                        --
20-- <http://www.gnu.org/licenses/>.                                          --
21--                                                                          --
22-- GNAT was originally developed  by the GNAT team at  New York University. --
23-- Extensive contributions were provided by Ada Core Technologies Inc.      --
24--                                                                          --
25------------------------------------------------------------------------------
26
27--  Attribute handling is isolated in a separate package to ease the addition
28--  of implementation defined attributes. Logically this processing belongs
29--  in chapter 4. See Sem_Ch4 for a description of the relation of the
30--  Analyze and Resolve routines for expression components.
31
32--  This spec also documents all GNAT implementation defined pragmas
33
34with Exp_Tss; use Exp_Tss;
35with Namet;   use Namet;
36with Snames;  use Snames;
37with Types;   use Types;
38
39package Sem_Attr is
40
41   -----------------------------------------
42   -- Implementation Dependent Attributes --
43   -----------------------------------------
44
45   --  This section describes the implementation dependent attributes provided
46   --  in GNAT, as well as constructing an array of flags indicating which
47   --  attributes these are.
48
49   Attribute_Impl_Def : Attribute_Class_Array := Attribute_Class_Array'(
50
51      ------------------
52      -- Abort_Signal --
53      ------------------
54
55      Attribute_Abort_Signal => True,
56      --  Standard'Abort_Signal (Standard is the only allowed prefix) provides
57      --  the entity for the special exception used to signal task abort or
58      --  asynchronous transfer of control. Normally this attribute should only
59      --  be used in the tasking runtime (it is highly peculiar, and completely
60      --  outside the normal semantics of Ada, for a user program to intercept
61      --  the abort exception).
62
63      ------------------
64      -- Address_Size --
65      ------------------
66
67      Attribute_Address_Size => True,
68      --  Standard'Address_Size (Standard is the only allowed prefix) is
69      --  a static constant giving the number of bits in an Address. It
70      --  is used primarily for constructing the definition of Memory_Size
71      --  in package Standard, but may be freely used in user programs.
72      --  This is a static attribute.
73
74      ---------------
75      -- Asm_Input --
76      ---------------
77
78      Attribute_Asm_Input => True,
79      --  Used only in conjunction with the Asm subprograms in package
80      --  Machine_Code to construct machine instructions. See documentation
81      --  in package Machine_Code in file s-maccod.ads.
82
83      ----------------
84      -- Asm_Output --
85      ----------------
86
87      Attribute_Asm_Output => True,
88      --  Used only in conjunction with the Asm subprograms in package
89      --  Machine_Code to construct machine instructions. See documentation
90      --  in package Machine_Code in file s-maccod.ads.
91
92      ---------
93      -- Bit --
94      ---------
95
96      Attribute_Bit => True,
97      --  Obj'Bit, where Obj is any object, yields the bit offset within the
98      --  storage unit (byte) that contains the first bit of storage allocated
99      --  for the object. The attribute value is of type Universal_Integer,
100      --  and is always a non-negative number not exceeding the value of
101      --  System.Storage_Unit.
102      --
103      --  For an object that is a variable or a constant allocated in a
104      --  register, the value is zero. (The use of this attribute does not
105      --  force the allocation of a variable to memory).
106      --
107      --  For an object that is a formal parameter, this attribute applies to
108      --  either the matching actual parameter or to a copy of the matching
109      --  actual parameter.
110      --
111      --  For an access object the value is zero. Note that Obj.all'Bit is
112      --  subject to an Access_Check for the designated object. Similarly
113      --  for a record component X.C'Bit is subject to a discriminant check
114      --  and X(I).Bit and X(I1..I2)'Bit are subject to index checks.
115      --
116      --  This attribute is designed to be compatible with the DEC Ada
117      --  definition and implementation of the Bit attribute.
118
119      ------------------
120      -- Code_Address --
121      ------------------
122
123      Attribute_Code_Address => True,
124      --  The reference subp'Code_Address, where subp is a subprogram entity,
125      --  gives the address of the first generated instruction for the sub-
126      --  program. This is often, but not always the same as the 'Address
127      --  value, which is the address to be used in a call. The differences
128      --  occur in the case of a nested procedure (where Address yields the
129      --  address of the trampoline code used to load the static link), and on
130      --  some systems which use procedure descriptors (in which case Address
131      --  yields the address of the descriptor).
132
133      -----------------------
134      -- Default_Bit_Order --
135      -----------------------
136
137      Attribute_Default_Bit_Order => True,
138      --  Standard'Default_Bit_Order (Standard is the only permissible prefix)
139      --  provides the value System.Default_Bit_Order as a Pos value (0 for
140      --  High_Order_First, 1 for Low_Order_First). This is used to construct
141      --  the definition of Default_Bit_Order in package System. This is a
142      --  static attribute.
143
144      ----------------------------------
145      -- Default_Scalar_Storage_Order --
146      ----------------------------------
147
148      Attribute_Default_Scalar_Storage_Order => True,
149      --  Standard'Default_Scalar_Storage_Order (Standard is the
150      --  only permissible prefix) provides the current value of the
151      --  default scalar storage order (as specified using pragma
152      --  Default_Scalar_Storage_Order, or equal to Default_Bit_Order if
153      --  unspecified) as a System.Bit_Order value. This is a static attribute.
154
155      -----------
156      -- Deref --
157      -----------
158
159      Attribute_Deref => True,
160      --  typ'Deref (expr) is valid only if expr is of type System'Address.
161      --  The result is an object of type typ that is obtained by treating the
162      --  address as an access-to-typ value that points to the result. It is
163      --  basically equivalent to (atyp!expr).all where atyp is an access type
164      --  for the type.
165
166      ---------------
167      -- Elab_Body --
168      ---------------
169
170      Attribute_Elab_Body => True,
171      --  This attribute can only be applied to a program unit name. It
172      --  returns the entity for the corresponding elaboration procedure for
173      --  elaborating the body of the referenced unit. This is used in the main
174      --  generated elaboration procedure by the binder, and is not normally
175      --  used in any other context, but there may be specialized situations in
176      --  which it is useful to be able to call this elaboration procedure from
177      --  Ada code, e.g. if it is necessary to do selective reelaboration to
178      --  fix some error.
179
180      --------------------
181      -- Elab_Subp_Body --
182      --------------------
183
184      Attribute_Elab_Subp_Body => True,
185      --  This attribute can only be applied to a library level subprogram
186      --  name and is only relevant in CodePeer mode. It returns the entity
187      --  for the corresponding elaboration procedure for elaborating the body
188      --  of the referenced subprogram unit. This is used in the main generated
189      --  elaboration procedure by the binder in CodePeer mode only.
190
191      ---------------
192      -- Elab_Spec --
193      ---------------
194
195      Attribute_Elab_Spec => True,
196      --  This attribute can only be applied to a program unit name. It
197      --  returns the entity for the corresponding elaboration procedure for
198      --  elaborating the spec of the referenced unit. This is used in the main
199      --  generated elaboration procedure by the binder, and is not normally
200      --  used in any other context, but there may be specialized situations in
201      --  which it is useful to be able to call this elaboration procedure from
202      --  Ada code, e.g. if it is necessary to do selective reelaboration to
203      --  fix some error.
204
205      ----------------
206      -- Elaborated --
207      ----------------
208
209      Attribute_Elaborated => True,
210      --  Lunit'Elaborated, where Lunit is a library unit, yields a boolean
211      --  value indicating whether or not the body of the designated library
212      --  unit has been elaborated yet.
213
214      --------------
215      -- Enum_Rep --
216      --------------
217
218      Attribute_Enum_Rep => True,
219      --  For every enumeration subtype S, S'Enum_Rep denotes a function
220      --  with the following specification:
221      --
222      --    function S'Enum_Rep (Arg : S'Base) return universal_integer;
223      --
224      --  The function returns the representation value for the given
225      --  enumeration value. This will be equal to the 'Pos value in the
226      --  absence of an enumeration representation clause. This is a static
227      --  attribute (i.e. the result is static if the argument is static).
228
229      --------------
230      -- Enum_Val --
231      --------------
232
233      Attribute_Enum_Val => True,
234      --  For every enumeration subtype S, S'Enum_Val denotes a function with
235      --  the following specification:
236      --
237      --    function S'Enum_Val (Arg : universal_integer) return S'Base;
238      --
239      --  This function performs the inverse transformation to Enum_Rep. Given
240      --  a representation value for the type, it returns the corresponding
241      --  enumeration value. Constraint_Error is raised if no value of the
242      --  enumeration type corresponds to the given integer value.
243
244      -----------------
245      -- Fixed_Value --
246      -----------------
247
248      Attribute_Fixed_Value => True,
249      --  For every fixed-point type S, S'Fixed_Value denotes a function
250      --  with the following specification:
251      --
252      --    function S'Fixed_Value (Arg : universal_integer) return S;
253      --
254      --  The value returned is the fixed-point value V such that
255      --
256      --    V = Arg * S'Small
257      --
258      --  The effect is thus equivalent to first converting the argument to
259      --  the integer type used to represent S, and then doing an unchecked
260      --  conversion to the fixed-point type. This attribute is primarily
261      --  intended for use in implementation of the input-output functions
262      --  for fixed-point values.
263
264      -----------------------
265      -- Has_Discriminants --
266      -----------------------
267
268      Attribute_Has_Discriminants => True,
269      --  Gtyp'Has_Discriminants, where Gtyp is a generic formal type, yields
270      --  a Boolean value indicating whether or not the actual instantiation
271      --  type has discriminants.
272
273      ---------
274      -- Img --
275      ---------
276
277      Attribute_Img => True,
278      --  The 'Img function is defined for any prefix, P, that denotes an
279      --  object of scalar type T. P'Img is equivalent to T'Image (P). This
280      --  is convenient for debugging. For example:
281      --
282      --     Put_Line ("X = " & X'Img);
283      --
284      --  has the same meaning as the more verbose:
285      --
286      --     Put_Line ("X = " & Temperature_Type'Image (X));
287      --
288      --  where Temperature_Type is the subtype of the object X.
289
290      -------------------
291      -- Integer_Value --
292      -------------------
293
294      Attribute_Integer_Value => True,
295      --  For every integer type S, S'Integer_Value denotes a function
296      --  with the following specification:
297      --
298      --    function S'Integer_Value (Arg : universal_fixed) return S;
299      --
300      --  The value returned is the integer value V, such that
301      --
302      --    Arg = V * fixed-type'Small
303      --
304      --  The effect is thus equivalent to first doing an unchecked convert
305      --  from the fixed-point type to its corresponding implementation type,
306      --  and then converting the result to the target integer type. This
307      --  attribute is primarily intended for use in implementation of the
308      --  standard input-output functions for fixed-point values.
309
310      Attribute_Invalid_Value => True,
311      --  For every scalar type, S'Invalid_Value designates an undefined value
312      --  of the type. If possible this value is an invalid value, and in fact
313      --  is identical to the value that would be set if Initialize_Scalars
314      --  mode were in effect (including the behavior of its value on
315      --  environment variables or binder switches). The intended use is to
316      --  set a value where initialization is required (e.g. as a result of the
317      --  coding standards in use), but logically no initialization is needed,
318      --  and the value should never be accessed.
319
320      Attribute_Loop_Entry => True,
321      --  For every object of a non-limited type, S'Loop_Entry [(Loop_Name)]
322      --  denotes the constant value of prefix S at the point of entry into the
323      --  related loop. The type of the attribute is the type of the prefix.
324
325      ------------------
326      -- Machine_Size --
327      ------------------
328
329      Attribute_Machine_Size => True,
330      --  This attribute is identical to the Object_Size attribute. It is
331      --  provided for compatibility with the DEC attribute of this name.
332
333      -----------------------
334      -- Maximum_Alignment --
335      -----------------------
336
337      Attribute_Maximum_Alignment => True,
338      --  Standard'Maximum_Alignment (Standard is the only permissible prefix)
339      --  provides the maximum useful alignment value for the target. This is a
340      --  static value that can be used to specify the alignment for an object,
341      --  guaranteeing that it is properly aligned in all cases. The time this
342      --  is useful is when an external object is imported and its alignment
343      --  requirements are unknown. This is a static attribute.
344
345      --------------------
346      -- Mechanism_Code --
347      --------------------
348
349      Attribute_Mechanism_Code => True,
350      --  function'Mechanism_Code yields an integer code for the mechanism
351      --  used for the result of function, and subprogram'Mechanism_Code (n)
352      --  yields the mechanism used for formal parameter number n (a static
353      --  integer value, 1 = first parameter). The code returned is:
354      --
355      --     1 = by copy (value)
356      --     2 = by reference
357      --     3 = by descriptor (default descriptor type)
358      --     4 = by descriptor (UBS  unaligned bit string)
359      --     5 = by descriptor (UBSB aligned bit string with arbitrary bounds)
360      --     6 = by descriptor (UBA  unaligned bit array)
361      --     7 = by descriptor (S    string, also scalar access type parameter)
362      --     8 = by descriptor (SB   string with arbitrary bounds)
363      --     9 = by descriptor (A    contiguous array)
364      --    10 = by descriptor (NCA  non-contiguous array)
365
366      --------------------
367      -- Null_Parameter --
368      --------------------
369
370      Attribute_Null_Parameter => True,
371      --  A reference T'Null_Parameter denotes an (imaginary) object of type
372      --  or subtype T allocated at (machine) address zero. The attribute is
373      --  allowed only as the default expression of a formal parameter, or
374      --  as an actual expression of a subprogram call. In either case, the
375      --  subprogram must be imported.
376      --
377      --  The identity of the object is represented by the address zero in
378      --  the argument list, independent of the passing mechanism (explicit
379      --  or default).
380      --
381      --  The reason that this capability is needed is that for a record or
382      --  other composite object passed by reference, there is no other way
383      --  of specifying that a zero address should be passed.
384
385      -----------------
386      -- Object_Size --
387      -----------------
388
389      Attribute_Object_Size => True,
390      --  Type'Object_Size is the same as Type'Size for all types except
391      --  fixed-point types and discrete types. For fixed-point types and
392      --  discrete types, this attribute gives the size used for default
393      --  allocation of objects and components of the size. See section in
394      --  Einfo ("Handling of type'Size values") for further details.
395
396      -------------------------
397      -- Passed_By_Reference --
398      -------------------------
399
400      Attribute_Passed_By_Reference => True,
401      --  T'Passed_By_Reference for any subtype T returns a boolean value that
402      --  is true if the type is normally passed by reference and false if the
403      --  type is normally passed by copy in calls. For scalar types, the
404      --  result is always False and is static. For non-scalar types, the
405      --  result is non-static (since it is computed by Gigi).
406
407      ------------------
408      -- Range_Length --
409      ------------------
410
411      Attribute_Range_Length => True,
412      --  T'Range_Length for any discrete type T yields the number of values
413      --  represented by the subtype (zero for a null range). The result is
414      --  static for static subtypes. Note that Range_Length applied to the
415      --  index subtype of a one dimensional array always gives the same result
416      --  as Range applied to the array itself. The result is of type universal
417      --  integer.
418
419      ---------
420      -- Ref --
421      ---------
422
423      Attribute_Ref => True,
424      --  System.Address'Ref (Address is the only permissible prefix) is
425      --  equivalent to System'To_Address, provided for compatibility with
426      --  other compilers.
427
428      ------------------
429      -- Storage_Unit --
430      ------------------
431
432      Attribute_Storage_Unit => True,
433      --  Standard'Storage_Unit (Standard is the only permissible prefix)
434      --  provides the value System.Storage_Unit, and is intended primarily
435      --  for constructing this definition in package System (see note above
436      --  in Default_Bit_Order description). The is a static attribute.
437
438      ---------------
439      -- Stub_Type --
440      ---------------
441
442      Attribute_Stub_Type => True,
443      --  The GNAT implementation of remote access-to-classwide types is
444      --  organised as described in AARM E.4(20.t): a value of an RACW type
445      --  (designating a remote object) is represented as a normal access
446      --  value, pointing to a "stub" object which in turn contains the
447      --  necessary information to contact the designated remote object. A
448      --  call on any dispatching operation of such a stub object does the
449      --  remote call, if necessary, using the information in the stub object
450      --  to locate the target partition, etc.
451      --
452      --  For a prefix T that denotes a remote access-to-classwide type,
453      --  T'Stub_Type denotes the type of the corresponding stub objects.
454      --
455      --  By construction, the layout of T'Stub_Type is identical to that of
456      --  System.Partition_Interface.RACW_Stub_Type (see implementation notes
457      --  in body of Exp_Dist).
458
459      -----------------
460      -- Target_Name --
461      -----------------
462
463      Attribute_Target_Name => True,
464      --  Standard'Target_Name yields the string identifying the target for the
465      --  compilation, taken from Sdefault.Target_Name.
466
467      ----------------
468      -- To_Address --
469      ----------------
470
471      Attribute_To_Address => True,
472      --  System'To_Address (System is the only permissible prefix) is a
473      --  function that takes any integer value, and converts it into an
474      --  address value. The semantics is to first convert the integer value to
475      --  type Integer_Address according to normal conversion rules, and then
476      --  to convert this to an address using the same semantics as the
477      --  System.Storage_Elements.To_Address function. The important difference
478      --  is that this is a static attribute so it can be used in
479      --  initializations in preelaborate packages.
480
481      ----------------
482      -- Type_Class --
483      ----------------
484
485      Attribute_Type_Class => True,
486      --  T'Type_Class for any type or subtype T yields the value of the type
487      --  class for the full type of T. If T is a generic formal type, then the
488      --  value is the value for the corresponding actual subtype. The value of
489      --  this attribute is of type System.Aux_DEC.Type_Class, which has the
490      --  following definition:
491      --
492      --    type Type_Class is
493      --      (Type_Class_Enumeration,
494      --       Type_Class_Integer,
495      --       Type_Class_Fixed_Point,
496      --       Type_Class_Floating_Point,
497      --       Type_Class_Array,
498      --       Type_Class_Record,
499      --       Type_Class_Access,
500      --       Type_Class_Task,
501      --       Type_Class_Address);
502      --
503      --  Protected types yield the value Type_Class_Task, which thus applies
504      --  to all concurrent types. This attribute is designed to be compatible
505      --  with the DEC Ada attribute of the same name.
506      --
507      --  Note: if pragma Extend_System is used to merge the definitions of
508      --  Aux_DEC into System, then the type Type_Class can be referenced
509      --  as an entity within System, as can its enumeration literals.
510
511      -----------------
512      -- UET_Address --
513      -----------------
514
515      Attribute_UET_Address => True,
516      --  Unit'UET_Address, where Unit is a program unit, yields the address
517      --  of the unit exception table for the specified unit. This is only
518      --  used in the internal implementation of exception handling. See the
519      --  implementation of unit Ada.Exceptions for details on its use.
520
521      ------------------------------
522      -- Universal_Literal_String --
523      ------------------------------
524
525      Attribute_Universal_Literal_String => True,
526      --  The prefix of 'Universal_Literal_String must be a named number.
527      --  The static result is the string consisting of the characters of
528      --  the number as defined in the original source. This allows the
529      --  user program to access the actual text of named numbers without
530      --  intermediate conversions and without the need to enclose the
531      --  strings in quotes (which would preclude their use as numbers).
532
533      -------------------------
534      -- Unrestricted_Access --
535      -------------------------
536
537      Attribute_Unrestricted_Access => True,
538      --  The Unrestricted_Access attribute is similar to Access except that
539      --  all accessibility and aliased view checks are omitted. This is very
540      --  much a user-beware attribute. Basically its status is very similar
541      --  to Address, for which it is a desirable replacement where the value
542      --  desired is an access type. In other words, its effect is identical
543      --  to first taking 'Address and then doing an unchecked conversion to
544      --  a desired access type. Note that in GNAT, but not necessarily in
545      --  other implementations, the use of static chains for inner level
546      --  subprograms means that Unrestricted_Access applied to a subprogram
547      --  yields a value that can be called as long as the subprogram is in
548      --  scope (normal Ada 95 accessibility rules restrict this usage).
549
550      ---------------
551      -- VADS_Size --
552      ---------------
553
554      Attribute_VADS_Size => True,
555      --  Typ'VADS_Size yields the Size value typically yielded by some Ada 83
556      --  compilers. The differences between VADS_Size and Size is that for
557      --  scalar types for which no Size has been specified, VADS_Size yields
558      --  the Object_Size rather than the Value_Size. For example, while
559      --  Natural'Size is typically 31, the value of Natural'VADS_Size is 32.
560      --  For all other types, Size and VADS_Size yield the same value.
561
562      -------------------
563      -- Valid_Scalars --
564      -------------------
565
566      Attribute_Valid_Scalars => True,
567      --  Obj'Valid_Scalars can be applied to any object. The result depends
568      --  on the type of the object:
569      --
570      --    For a scalar type, the result is the same as obj'Valid
571      --
572      --    For an array object, the result is True if the result of applying
573      --    Valid_Scalars to every component is True. For an empty array the
574      --    result is True.
575      --
576      --    For a record object, the result is True if the result of applying
577      --    Valid_Scalars to every component is True. For class-wide types,
578      --    only the components of the base type are checked. For variant
579      --    records, only the components actually present are checked. The
580      --    discriminants, if any, are also checked. If there are no components
581      --    or discriminants, the result is True.
582      --
583      --    For any other type that has discriminants, the result is True if
584      --    the result of applying Valid_Scalars to each discriminant is True.
585      --
586      --    For all other types, the result is always True
587      --
588      --  A warning is given for a trivially True result, when the attribute
589      --  is applied to an object that is not of scalar, array, or record
590      --  type, or in the composite case if no scalar subcomponents exist. For
591      --  a variant record, the warning is given only if none of the variants
592      --  have scalar subcomponents. In addition, the warning is suppressed
593      --  for private types, or generic formal types in an instance.
594
595      ----------------
596      -- Value_Size --
597      ----------------
598
599      Attribute_Value_Size => True,
600      --  Type'Value_Size is the number of bits required to represent value of
601      --  the given subtype. It is the same as Type'Size, but, unlike Size, may
602      --  be set for non-first subtypes. See section in Einfo ("Handling of
603      --  type'Size values") for further details.
604
605      ---------------
606      -- Word_Size --
607      ---------------
608
609      Attribute_Word_Size => True,
610      --  Standard'Word_Size (Standard is the only permissible prefix)
611      --  provides the value System.Word_Size, and is intended primarily
612      --  for constructing this definition in package System (see note above
613      --  in Default_Bit_Order description). This is a static attribute.
614
615      others => False);
616
617   -----------------
618   -- Subprograms --
619   -----------------
620
621   procedure Analyze_Attribute (N : Node_Id);
622   --  Performs bottom up semantic analysis of an attribute. Note that the
623   --  parser has already checked that type returning attributes appear only
624   --  in appropriate contexts (i.e. in subtype marks, or as prefixes for
625   --  other attributes).
626
627   function Name_Implies_Lvalue_Prefix (Nam : Name_Id) return Boolean;
628   --  Determine whether the name of an attribute reference categorizes its
629   --  prefix as an lvalue. The following attributes fall under this bracket
630   --  by directly or indirectly modifying their prefixes.
631   --     Access
632   --     Address
633   --     Input
634   --     Read
635   --     Unchecked_Access
636   --     Unrestricted_Access
637
638   procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id);
639   --  Performs type resolution of attribute. If the attribute yields a
640   --  universal value, mark its type as that of the context. On the other
641   --  hand, if the context itself is universal (as in T'Val (T'Pos (X)), mark
642   --  the type as being the largest type of that class that can be used at
643   --  run-time. This is correct since either the value gets folded (in which
644   --  case it doesn't matter what type of the class we give if, since the
645   --  folding uses universal arithmetic anyway) or it doesn't get folded (in
646   --  which case it is going to be dealt with at runtime, and the largest type
647   --  is right).
648
649   function Stream_Attribute_Available
650     (Typ          : Entity_Id;
651      Nam          : TSS_Name_Type;
652      Partial_View : Entity_Id := Empty) return Boolean;
653   --  For a limited type Typ, return True if and only if the given attribute
654   --  is available. For Ada 2005, availability is defined by 13.13.2(36/1).
655   --  For Ada 95, an attribute is considered to be available if it has been
656   --  specified using an attribute definition clause for the type, or for its
657   --  full view, or for an ancestor of either. Parameter Partial_View is used
658   --  only internally, when checking for an attribute definition clause that
659   --  is not visible (Ada 95 only).
660
661end Sem_Attr;
662