1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                               I N L I N E                                --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2015, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Aspects;  use Aspects;
27with Atree;    use Atree;
28with Debug;    use Debug;
29with Einfo;    use Einfo;
30with Elists;   use Elists;
31with Errout;   use Errout;
32with Expander; use Expander;
33with Exp_Ch6;  use Exp_Ch6;
34with Exp_Ch7;  use Exp_Ch7;
35with Exp_Tss;  use Exp_Tss;
36with Exp_Util; use Exp_Util;
37with Fname;    use Fname;
38with Fname.UF; use Fname.UF;
39with Lib;      use Lib;
40with Namet;    use Namet;
41with Nmake;    use Nmake;
42with Nlists;   use Nlists;
43with Output;   use Output;
44with Sem_Aux;  use Sem_Aux;
45with Sem_Ch8;  use Sem_Ch8;
46with Sem_Ch10; use Sem_Ch10;
47with Sem_Ch12; use Sem_Ch12;
48with Sem_Prag; use Sem_Prag;
49with Sem_Util; use Sem_Util;
50with Sinfo;    use Sinfo;
51with Sinput;   use Sinput;
52with Snames;   use Snames;
53with Stand;    use Stand;
54with Uname;    use Uname;
55with Tbuild;   use Tbuild;
56
57package body Inline is
58
59   Check_Inlining_Restrictions : constant Boolean := True;
60   --  In the following cases the frontend rejects inlining because they
61   --  are not handled well by the backend. This variable facilitates
62   --  disabling these restrictions to evaluate future versions of the
63   --  GCC backend in which some of the restrictions may be supported.
64   --
65   --   - subprograms that have:
66   --      - nested subprograms
67   --      - instantiations
68   --      - package declarations
69   --      - task or protected object declarations
70   --      - some of the following statements:
71   --          - abort
72   --          - asynchronous-select
73   --          - conditional-entry-call
74   --          - delay-relative
75   --          - delay-until
76   --          - selective-accept
77   --          - timed-entry-call
78
79   Inlined_Calls : Elist_Id;
80   --  List of frontend inlined calls
81
82   Backend_Calls : Elist_Id;
83   --  List of inline calls passed to the backend
84
85   Backend_Inlined_Subps : Elist_Id;
86   --  List of subprograms inlined by the backend
87
88   Backend_Not_Inlined_Subps : Elist_Id;
89   --  List of subprograms that cannot be inlined by the backend
90
91   --------------------
92   -- Inlined Bodies --
93   --------------------
94
95   --  Inlined functions are actually placed in line by the backend if the
96   --  corresponding bodies are available (i.e. compiled). Whenever we find
97   --  a call to an inlined subprogram, we add the name of the enclosing
98   --  compilation unit to a worklist. After all compilation, and after
99   --  expansion of generic bodies, we traverse the list of pending bodies
100   --  and compile them as well.
101
102   package Inlined_Bodies is new Table.Table (
103     Table_Component_Type => Entity_Id,
104     Table_Index_Type     => Int,
105     Table_Low_Bound      => 0,
106     Table_Initial        => Alloc.Inlined_Bodies_Initial,
107     Table_Increment      => Alloc.Inlined_Bodies_Increment,
108     Table_Name           => "Inlined_Bodies");
109
110   -----------------------
111   -- Inline Processing --
112   -----------------------
113
114   --  For each call to an inlined subprogram, we make entries in a table
115   --  that stores caller and callee, and indicates the call direction from
116   --  one to the other. We also record the compilation unit that contains
117   --  the callee. After analyzing the bodies of all such compilation units,
118   --  we compute the transitive closure of inlined subprograms called from
119   --  the main compilation unit and make it available to the code generator
120   --  in no particular order, thus allowing cycles in the call graph.
121
122   Last_Inlined : Entity_Id := Empty;
123
124   --  For each entry in the table we keep a list of successors in topological
125   --  order, i.e. callers of the current subprogram.
126
127   type Subp_Index is new Nat;
128   No_Subp : constant Subp_Index := 0;
129
130   --  The subprogram entities are hashed into the Inlined table
131
132   Num_Hash_Headers : constant := 512;
133
134   Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
135                                                          of Subp_Index;
136
137   type Succ_Index is new Nat;
138   No_Succ : constant Succ_Index := 0;
139
140   type Succ_Info is record
141      Subp : Subp_Index;
142      Next : Succ_Index;
143   end record;
144
145   --  The following table stores list elements for the successor lists. These
146   --  lists cannot be chained directly through entries in the Inlined table,
147   --  because a given subprogram can appear in several such lists.
148
149   package Successors is new Table.Table (
150      Table_Component_Type => Succ_Info,
151      Table_Index_Type     => Succ_Index,
152      Table_Low_Bound      => 1,
153      Table_Initial        => Alloc.Successors_Initial,
154      Table_Increment      => Alloc.Successors_Increment,
155      Table_Name           => "Successors");
156
157   type Subp_Info is record
158      Name        : Entity_Id  := Empty;
159      Next        : Subp_Index := No_Subp;
160      First_Succ  : Succ_Index := No_Succ;
161      Listed      : Boolean    := False;
162      Main_Call   : Boolean    := False;
163      Processed   : Boolean    := False;
164   end record;
165
166   package Inlined is new Table.Table (
167      Table_Component_Type => Subp_Info,
168      Table_Index_Type     => Subp_Index,
169      Table_Low_Bound      => 1,
170      Table_Initial        => Alloc.Inlined_Initial,
171      Table_Increment      => Alloc.Inlined_Increment,
172      Table_Name           => "Inlined");
173
174   -----------------------
175   -- Local Subprograms --
176   -----------------------
177
178   procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
179   --  Make two entries in Inlined table, for an inlined subprogram being
180   --  called, and for the inlined subprogram that contains the call. If
181   --  the call is in the main compilation unit, Caller is Empty.
182
183   procedure Add_Inlined_Subprogram (Index : Subp_Index);
184   --  Add the subprogram to the list of inlined subprogram for the unit
185
186   function Add_Subp (E : Entity_Id) return Subp_Index;
187   --  Make entry in Inlined table for subprogram E, or return table index
188   --  that already holds E.
189
190   function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id;
191   pragma Inline (Get_Code_Unit_Entity);
192   --  Return the entity node for the unit containing E. Always return the spec
193   --  for a package.
194
195   function Has_Initialized_Type (E : Entity_Id) return Boolean;
196   --  If a candidate for inlining contains type declarations for types with
197   --  non-trivial initialization procedures, they are not worth inlining.
198
199   function Has_Single_Return (N : Node_Id) return Boolean;
200   --  In general we cannot inline functions that return unconstrained type.
201   --  However, we can handle such functions if all return statements return a
202   --  local variable that is the only declaration in the body of the function.
203   --  In that case the call can be replaced by that local variable as is done
204   --  for other inlined calls.
205
206   function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean;
207   --  Return True if E is in the main unit or its spec or in a subunit
208
209   function Is_Nested (E : Entity_Id) return Boolean;
210   --  If the function is nested inside some other function, it will always
211   --  be compiled if that function is, so don't add it to the inline list.
212   --  We cannot compile a nested function outside the scope of the containing
213   --  function anyway. This is also the case if the function is defined in a
214   --  task body or within an entry (for example, an initialization procedure).
215
216   procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id);
217   --  Remove all aspects and/or pragmas that have no meaning in inlined body
218   --  Body_Decl. The analysis of these items is performed on the non-inlined
219   --  body. The items currently removed are:
220   --    Contract_Cases
221   --    Global
222   --    Depends
223   --    Postcondition
224   --    Precondition
225   --    Refined_Global
226   --    Refined_Depends
227   --    Refined_Post
228   --    Test_Case
229   --    Unmodified
230   --    Unreferenced
231
232   ------------------------------
233   -- Deferred Cleanup Actions --
234   ------------------------------
235
236   --  The cleanup actions for scopes that contain instantiations is delayed
237   --  until after expansion of those instantiations, because they may contain
238   --  finalizable objects or tasks that affect the cleanup code. A scope
239   --  that contains instantiations only needs to be finalized once, even
240   --  if it contains more than one instance. We keep a list of scopes
241   --  that must still be finalized, and call cleanup_actions after all
242   --  the instantiations have been completed.
243
244   To_Clean : Elist_Id;
245
246   procedure Add_Scope_To_Clean (Inst : Entity_Id);
247   --  Build set of scopes on which cleanup actions must be performed
248
249   procedure Cleanup_Scopes;
250   --  Complete cleanup actions on scopes that need it
251
252   --------------
253   -- Add_Call --
254   --------------
255
256   procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
257      P1 : constant Subp_Index := Add_Subp (Called);
258      P2 : Subp_Index;
259      J  : Succ_Index;
260
261   begin
262      if Present (Caller) then
263         P2 := Add_Subp (Caller);
264
265         --  Add P1 to the list of successors of P2, if not already there.
266         --  Note that P2 may contain more than one call to P1, and only
267         --  one needs to be recorded.
268
269         J := Inlined.Table (P2).First_Succ;
270         while J /= No_Succ loop
271            if Successors.Table (J).Subp = P1 then
272               return;
273            end if;
274
275            J := Successors.Table (J).Next;
276         end loop;
277
278         --  On exit, make a successor entry for P1
279
280         Successors.Increment_Last;
281         Successors.Table (Successors.Last).Subp := P1;
282         Successors.Table (Successors.Last).Next :=
283                             Inlined.Table (P2).First_Succ;
284         Inlined.Table (P2).First_Succ := Successors.Last;
285      else
286         Inlined.Table (P1).Main_Call := True;
287      end if;
288   end Add_Call;
289
290   ----------------------
291   -- Add_Inlined_Body --
292   ----------------------
293
294   procedure Add_Inlined_Body (E : Entity_Id; N : Node_Id) is
295
296      type Inline_Level_Type is (Dont_Inline, Inline_Call, Inline_Package);
297      --  Level of inlining for the call: Dont_Inline means no inlining,
298      --  Inline_Call means that only the call is considered for inlining,
299      --  Inline_Package means that the call is considered for inlining and
300      --  its package compiled and scanned for more inlining opportunities.
301
302      function Must_Inline return Inline_Level_Type;
303      --  Inlining is only done if the call statement N is in the main unit,
304      --  or within the body of another inlined subprogram.
305
306      -----------------
307      -- Must_Inline --
308      -----------------
309
310      function Must_Inline return Inline_Level_Type is
311         Scop : Entity_Id;
312         Comp : Node_Id;
313
314      begin
315         --  Check if call is in main unit
316
317         Scop := Current_Scope;
318
319         --  Do not try to inline if scope is standard. This could happen, for
320         --  example, for a call to Add_Global_Declaration, and it causes
321         --  trouble to try to inline at this level.
322
323         if Scop = Standard_Standard then
324            return Dont_Inline;
325         end if;
326
327         --  Otherwise lookup scope stack to outer scope
328
329         while Scope (Scop) /= Standard_Standard
330           and then not Is_Child_Unit (Scop)
331         loop
332            Scop := Scope (Scop);
333         end loop;
334
335         Comp := Parent (Scop);
336         while Nkind (Comp) /= N_Compilation_Unit loop
337            Comp := Parent (Comp);
338         end loop;
339
340         --  If the call is in the main unit, inline the call and compile the
341         --  package of the subprogram to find more calls to be inlined.
342
343         if Comp = Cunit (Main_Unit)
344           or else Comp = Library_Unit (Cunit (Main_Unit))
345         then
346            Add_Call (E);
347            return Inline_Package;
348         end if;
349
350         --  The call is not in the main unit. See if it is in some inlined
351         --  subprogram. If so, inline the call and, if the inlining level is
352         --  set to 1, stop there; otherwise also compile the package as above.
353
354         Scop := Current_Scope;
355         while Scope (Scop) /= Standard_Standard
356           and then not Is_Child_Unit (Scop)
357         loop
358            if Is_Overloadable (Scop) and then Is_Inlined (Scop) then
359               Add_Call (E, Scop);
360
361               if Inline_Level = 1 then
362                  return Inline_Call;
363               else
364                  return Inline_Package;
365               end if;
366            end if;
367
368            Scop := Scope (Scop);
369         end loop;
370
371         return Dont_Inline;
372      end Must_Inline;
373
374      Level : Inline_Level_Type;
375
376   --  Start of processing for Add_Inlined_Body
377
378   begin
379      Append_New_Elmt (N, To => Backend_Calls);
380
381      --  Find unit containing E, and add to list of inlined bodies if needed.
382      --  If the body is already present, no need to load any other unit. This
383      --  is the case for an initialization procedure, which appears in the
384      --  package declaration that contains the type. It is also the case if
385      --  the body has already been analyzed. Finally, if the unit enclosing
386      --  E is an instance, the instance body will be analyzed in any case,
387      --  and there is no need to add the enclosing unit (whose body might not
388      --  be available).
389
390      --  Library-level functions must be handled specially, because there is
391      --  no enclosing package to retrieve. In this case, it is the body of
392      --  the function that will have to be loaded.
393
394      if Is_Abstract_Subprogram (E)
395        or else Is_Nested (E)
396        or else Convention (E) = Convention_Protected
397      then
398         return;
399      end if;
400
401      Level := Must_Inline;
402
403      if Level /= Dont_Inline then
404         declare
405            Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
406
407         begin
408            if Pack = E then
409
410               --  Library-level inlined function. Add function itself to
411               --  list of needed units.
412
413               Set_Is_Called (E);
414               Inlined_Bodies.Increment_Last;
415               Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
416
417            elsif Ekind (Pack) = E_Package then
418               Set_Is_Called (E);
419
420               if Is_Generic_Instance (Pack) then
421                  null;
422
423               --  Do not inline the package if the subprogram is an init proc
424               --  or other internally generated subprogram, because in that
425               --  case the subprogram body appears in the same unit that
426               --  declares the type, and that body is visible to the back end.
427               --  Do not inline it either if it is in the main unit.
428
429               elsif Level = Inline_Package
430                 and then not Is_Inlined (Pack)
431                 and then not Is_Internal (E)
432                 and then not In_Main_Unit_Or_Subunit (Pack)
433               then
434                  Set_Is_Inlined (Pack);
435                  Inlined_Bodies.Increment_Last;
436                  Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
437
438               --  Extend the -gnatn2 processing to -gnatn1 for Inline_Always
439               --  calls if the back-end takes care of inlining the call.
440
441               elsif Level = Inline_Call
442                 and then Has_Pragma_Inline_Always (E)
443                 and then Back_End_Inlining
444               then
445                  Set_Is_Inlined (Pack);
446                  Inlined_Bodies.Increment_Last;
447                  Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
448               end if;
449            end if;
450
451            --  If the call was generated by the compiler and is to a function
452            --  in a run-time unit, we need to suppress debugging information
453            --  for it, so that the code that is eventually inlined will not
454            --  affect debugging of the program. We do not do it if the call
455            --  comes from source because, even if the call is inlined, the
456            --  user may expect it to be present in the debugging information.
457
458            if not Comes_From_Source (N)
459               and then In_Extended_Main_Source_Unit (N)
460               and then
461                 Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (E)))
462            then
463               Set_Needs_Debug_Info (E, False);
464            end if;
465         end;
466      end if;
467   end Add_Inlined_Body;
468
469   ----------------------------
470   -- Add_Inlined_Subprogram --
471   ----------------------------
472
473   procedure Add_Inlined_Subprogram (Index : Subp_Index) is
474      E    : constant Entity_Id := Inlined.Table (Index).Name;
475      Decl : constant Node_Id   := Parent (Declaration_Node (E));
476      Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
477
478      procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id);
479      --  Append Subp to the list of subprograms inlined by the backend
480
481      procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id);
482      --  Append Subp to the list of subprograms that cannot be inlined by
483      --  the backend.
484
485      -----------------------------------------
486      -- Register_Backend_Inlined_Subprogram --
487      -----------------------------------------
488
489      procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id) is
490      begin
491         Append_New_Elmt (Subp, To => Backend_Inlined_Subps);
492      end Register_Backend_Inlined_Subprogram;
493
494      ---------------------------------------------
495      -- Register_Backend_Not_Inlined_Subprogram --
496      ---------------------------------------------
497
498      procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id) is
499      begin
500         Append_New_Elmt (Subp, To => Backend_Not_Inlined_Subps);
501      end Register_Backend_Not_Inlined_Subprogram;
502
503   --  Start of processing for Add_Inlined_Subprogram
504
505   begin
506      --  If the subprogram is to be inlined, and if its unit is known to be
507      --  inlined or is an instance whose body will be analyzed anyway or the
508      --  subprogram was generated as a body by the compiler (for example an
509      --  initialization procedure) or its declaration was provided along with
510      --  the body (for example an expression function), and if it is declared
511      --  at the library level not in the main unit, and if it can be inlined
512      --  by the back-end, then insert it in the list of inlined subprograms.
513
514      if Is_Inlined (E)
515        and then (Is_Inlined (Pack)
516                   or else Is_Generic_Instance (Pack)
517                   or else Nkind (Decl) = N_Subprogram_Body
518                   or else Present (Corresponding_Body (Decl)))
519        and then not In_Main_Unit_Or_Subunit (E)
520        and then not Is_Nested (E)
521        and then not Has_Initialized_Type (E)
522      then
523         Register_Backend_Inlined_Subprogram (E);
524
525         if No (Last_Inlined) then
526            Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
527         else
528            Set_Next_Inlined_Subprogram (Last_Inlined, E);
529         end if;
530
531         Last_Inlined := E;
532
533      else
534         Register_Backend_Not_Inlined_Subprogram (E);
535      end if;
536
537      Inlined.Table (Index).Listed := True;
538   end Add_Inlined_Subprogram;
539
540   ------------------------
541   -- Add_Scope_To_Clean --
542   ------------------------
543
544   procedure Add_Scope_To_Clean (Inst : Entity_Id) is
545      Scop : constant Entity_Id := Enclosing_Dynamic_Scope (Inst);
546      Elmt : Elmt_Id;
547
548   begin
549      --  If the instance appears in a library-level package declaration,
550      --  all finalization is global, and nothing needs doing here.
551
552      if Scop = Standard_Standard then
553         return;
554      end if;
555
556      --  If the instance is within a generic unit, no finalization code
557      --  can be generated. Note that at this point all bodies have been
558      --  analyzed, and the scope stack itself is not present, and the flag
559      --  Inside_A_Generic is not set.
560
561      declare
562         S : Entity_Id;
563
564      begin
565         S := Scope (Inst);
566         while Present (S) and then S /= Standard_Standard loop
567            if Is_Generic_Unit (S) then
568               return;
569            end if;
570
571            S := Scope (S);
572         end loop;
573      end;
574
575      Elmt := First_Elmt (To_Clean);
576      while Present (Elmt) loop
577         if Node (Elmt) = Scop then
578            return;
579         end if;
580
581         Elmt := Next_Elmt (Elmt);
582      end loop;
583
584      Append_Elmt (Scop, To_Clean);
585   end Add_Scope_To_Clean;
586
587   --------------
588   -- Add_Subp --
589   --------------
590
591   function Add_Subp (E : Entity_Id) return Subp_Index is
592      Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
593      J     : Subp_Index;
594
595      procedure New_Entry;
596      --  Initialize entry in Inlined table
597
598      procedure New_Entry is
599      begin
600         Inlined.Increment_Last;
601         Inlined.Table (Inlined.Last).Name        := E;
602         Inlined.Table (Inlined.Last).Next        := No_Subp;
603         Inlined.Table (Inlined.Last).First_Succ  := No_Succ;
604         Inlined.Table (Inlined.Last).Listed      := False;
605         Inlined.Table (Inlined.Last).Main_Call   := False;
606         Inlined.Table (Inlined.Last).Processed   := False;
607      end New_Entry;
608
609   --  Start of processing for Add_Subp
610
611   begin
612      if Hash_Headers (Index) = No_Subp then
613         New_Entry;
614         Hash_Headers (Index) := Inlined.Last;
615         return Inlined.Last;
616
617      else
618         J := Hash_Headers (Index);
619         while J /= No_Subp loop
620            if Inlined.Table (J).Name = E then
621               return J;
622            else
623               Index := J;
624               J := Inlined.Table (J).Next;
625            end if;
626         end loop;
627
628         --  On exit, subprogram was not found. Enter in table. Index is
629         --  the current last entry on the hash chain.
630
631         New_Entry;
632         Inlined.Table (Index).Next := Inlined.Last;
633         return Inlined.Last;
634      end if;
635   end Add_Subp;
636
637   ----------------------------
638   -- Analyze_Inlined_Bodies --
639   ----------------------------
640
641   procedure Analyze_Inlined_Bodies is
642      Comp_Unit : Node_Id;
643      J         : Int;
644      Pack      : Entity_Id;
645      Subp      : Subp_Index;
646      S         : Succ_Index;
647
648      type Pending_Index is new Nat;
649
650      package Pending_Inlined is new Table.Table (
651         Table_Component_Type => Subp_Index,
652         Table_Index_Type     => Pending_Index,
653         Table_Low_Bound      => 1,
654         Table_Initial        => Alloc.Inlined_Initial,
655         Table_Increment      => Alloc.Inlined_Increment,
656         Table_Name           => "Pending_Inlined");
657      --  The workpile used to compute the transitive closure
658
659      function Is_Ancestor_Of_Main
660        (U_Name : Entity_Id;
661         Nam    : Node_Id) return Boolean;
662      --  Determine whether the unit whose body is loaded is an ancestor of
663      --  the main unit, and has a with_clause on it. The body is not
664      --  analyzed yet, so the check is purely lexical: the name of the with
665      --  clause is a selected component, and names of ancestors must match.
666
667      -------------------------
668      -- Is_Ancestor_Of_Main --
669      -------------------------
670
671      function Is_Ancestor_Of_Main
672        (U_Name : Entity_Id;
673         Nam    : Node_Id) return Boolean
674      is
675         Pref : Node_Id;
676
677      begin
678         if Nkind (Nam) /= N_Selected_Component then
679            return False;
680
681         else
682            if Chars (Selector_Name (Nam)) /=
683               Chars (Cunit_Entity (Main_Unit))
684            then
685               return False;
686            end if;
687
688            Pref := Prefix (Nam);
689            if Nkind (Pref) = N_Identifier then
690
691               --  Par is an ancestor of Par.Child.
692
693               return Chars (Pref) = Chars (U_Name);
694
695            elsif Nkind (Pref) = N_Selected_Component
696              and then Chars (Selector_Name (Pref)) = Chars (U_Name)
697            then
698               --  Par.Child is an ancestor of Par.Child.Grand.
699
700               return True;   --  should check that ancestor match
701
702            else
703               --  A is an ancestor of A.B.C if it is an ancestor of A.B
704
705               return Is_Ancestor_Of_Main (U_Name, Pref);
706            end if;
707         end if;
708      end Is_Ancestor_Of_Main;
709
710   --  Start of processing for Analyze_Inlined_Bodies
711
712   begin
713      if Serious_Errors_Detected = 0 then
714         Push_Scope (Standard_Standard);
715
716         J := 0;
717         while J <= Inlined_Bodies.Last
718           and then Serious_Errors_Detected = 0
719         loop
720            Pack := Inlined_Bodies.Table (J);
721            while Present (Pack)
722              and then Scope (Pack) /= Standard_Standard
723              and then not Is_Child_Unit (Pack)
724            loop
725               Pack := Scope (Pack);
726            end loop;
727
728            Comp_Unit := Parent (Pack);
729            while Present (Comp_Unit)
730              and then Nkind (Comp_Unit) /= N_Compilation_Unit
731            loop
732               Comp_Unit := Parent (Comp_Unit);
733            end loop;
734
735            --  Load the body, unless it is the main unit, or is an instance
736            --  whose body has already been analyzed.
737
738            if Present (Comp_Unit)
739              and then Comp_Unit /= Cunit (Main_Unit)
740              and then Body_Required (Comp_Unit)
741              and then (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
742                         or else No (Corresponding_Body (Unit (Comp_Unit))))
743            then
744               declare
745                  Bname : constant Unit_Name_Type :=
746                            Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
747
748                  OK : Boolean;
749
750               begin
751                  if not Is_Loaded (Bname) then
752                     Style_Check := False;
753                     Load_Needed_Body (Comp_Unit, OK, Do_Analyze => False);
754
755                     if not OK then
756
757                        --  Warn that a body was not available for inlining
758                        --  by the back-end.
759
760                        Error_Msg_Unit_1 := Bname;
761                        Error_Msg_N
762                          ("one or more inlined subprograms accessed in $!??",
763                           Comp_Unit);
764                        Error_Msg_File_1 :=
765                          Get_File_Name (Bname, Subunit => False);
766                        Error_Msg_N ("\but file{ was not found!??", Comp_Unit);
767
768                     else
769                        --  If the package to be inlined is an ancestor unit of
770                        --  the main unit, and it has a semantic dependence on
771                        --  it, the inlining cannot take place to prevent an
772                        --  elaboration circularity. The desired body is not
773                        --  analyzed yet, to prevent the completion of Taft
774                        --  amendment types that would lead to elaboration
775                        --  circularities in gigi.
776
777                        declare
778                           U_Id      : constant Entity_Id :=
779                                         Defining_Entity (Unit (Comp_Unit));
780                           Body_Unit : constant Node_Id :=
781                                         Library_Unit (Comp_Unit);
782                           Item      : Node_Id;
783
784                        begin
785                           Item := First (Context_Items (Body_Unit));
786                           while Present (Item) loop
787                              if Nkind (Item) = N_With_Clause
788                                and then
789                                  Is_Ancestor_Of_Main (U_Id, Name (Item))
790                              then
791                                 Set_Is_Inlined (U_Id, False);
792                                 exit;
793                              end if;
794
795                              Next (Item);
796                           end loop;
797
798                           --  If no suspicious with_clauses, analyze the body.
799
800                           if Is_Inlined (U_Id) then
801                              Semantics (Body_Unit);
802                           end if;
803                        end;
804                     end if;
805                  end if;
806               end;
807            end if;
808
809            J := J + 1;
810
811            if J > Inlined_Bodies.Last then
812
813               --  The analysis of required bodies may have produced additional
814               --  generic instantiations. To obtain further inlining, we need
815               --  to perform another round of generic body instantiations.
816
817               Instantiate_Bodies;
818
819               --  Symmetrically, the instantiation of required generic bodies
820               --  may have caused additional bodies to be inlined. To obtain
821               --  further inlining, we keep looping over the inlined bodies.
822            end if;
823         end loop;
824
825         --  The list of inlined subprograms is an overestimate, because it
826         --  includes inlined functions called from functions that are compiled
827         --  as part of an inlined package, but are not themselves called. An
828         --  accurate computation of just those subprograms that are needed
829         --  requires that we perform a transitive closure over the call graph,
830         --  starting from calls in the main program.
831
832         for Index in Inlined.First .. Inlined.Last loop
833            if not Is_Called (Inlined.Table (Index).Name) then
834
835               --  This means that Add_Inlined_Body added the subprogram to the
836               --  table but wasn't able to handle its code unit. Do nothing.
837
838               Inlined.Table (Index).Processed := True;
839
840            elsif Inlined.Table (Index).Main_Call then
841               Pending_Inlined.Increment_Last;
842               Pending_Inlined.Table (Pending_Inlined.Last) := Index;
843               Inlined.Table (Index).Processed := True;
844
845            else
846               Set_Is_Called (Inlined.Table (Index).Name, False);
847            end if;
848         end loop;
849
850         --  Iterate over the workpile until it is emptied, propagating the
851         --  Is_Called flag to the successors of the processed subprogram.
852
853         while Pending_Inlined.Last >= Pending_Inlined.First loop
854            Subp := Pending_Inlined.Table (Pending_Inlined.Last);
855            Pending_Inlined.Decrement_Last;
856
857            S := Inlined.Table (Subp).First_Succ;
858
859            while S /= No_Succ loop
860               Subp := Successors.Table (S).Subp;
861
862               if not Inlined.Table (Subp).Processed then
863                  Set_Is_Called (Inlined.Table (Subp).Name);
864                  Pending_Inlined.Increment_Last;
865                  Pending_Inlined.Table (Pending_Inlined.Last) := Subp;
866                  Inlined.Table (Subp).Processed := True;
867               end if;
868
869               S := Successors.Table (S).Next;
870            end loop;
871         end loop;
872
873         --  Finally add the called subprograms to the list of inlined
874         --  subprograms for the unit.
875
876         for Index in Inlined.First .. Inlined.Last loop
877            if Is_Called (Inlined.Table (Index).Name)
878              and then not Inlined.Table (Index).Listed
879            then
880               Add_Inlined_Subprogram (Index);
881            end if;
882         end loop;
883
884         Pop_Scope;
885      end if;
886   end Analyze_Inlined_Bodies;
887
888   --------------------------
889   -- Build_Body_To_Inline --
890   --------------------------
891
892   procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
893      Decl            : constant Node_Id := Unit_Declaration_Node (Spec_Id);
894      Analysis_Status : constant Boolean := Full_Analysis;
895      Original_Body   : Node_Id;
896      Body_To_Analyze : Node_Id;
897      Max_Size        : constant := 10;
898
899      function Has_Pending_Instantiation return Boolean;
900      --  If some enclosing body contains instantiations that appear before
901      --  the corresponding generic body, the enclosing body has a freeze node
902      --  so that it can be elaborated after the generic itself. This might
903      --  conflict with subsequent inlinings, so that it is unsafe to try to
904      --  inline in such a case.
905
906      function Has_Single_Return_In_GNATprove_Mode return Boolean;
907      --  This function is called only in GNATprove mode, and it returns
908      --  True if the subprogram has no return statement or a single return
909      --  statement as last statement. It returns False for subprogram with
910      --  a single return as last statement inside one or more blocks, as
911      --  inlining would generate gotos in that case as well (although the
912      --  goto is useless in that case).
913
914      function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
915      --  If the body of the subprogram includes a call that returns an
916      --  unconstrained type, the secondary stack is involved, and it
917      --  is not worth inlining.
918
919      -------------------------------
920      -- Has_Pending_Instantiation --
921      -------------------------------
922
923      function Has_Pending_Instantiation return Boolean is
924         S : Entity_Id;
925
926      begin
927         S := Current_Scope;
928         while Present (S) loop
929            if Is_Compilation_Unit (S)
930              or else Is_Child_Unit (S)
931            then
932               return False;
933
934            elsif Ekind (S) = E_Package
935              and then Has_Forward_Instantiation (S)
936            then
937               return True;
938            end if;
939
940            S := Scope (S);
941         end loop;
942
943         return False;
944      end Has_Pending_Instantiation;
945
946      -----------------------------------------
947      -- Has_Single_Return_In_GNATprove_Mode --
948      -----------------------------------------
949
950      function Has_Single_Return_In_GNATprove_Mode return Boolean is
951         Last_Statement : Node_Id := Empty;
952
953         function Check_Return (N : Node_Id) return Traverse_Result;
954         --  Returns OK on node N if this is not a return statement different
955         --  from the last statement in the subprogram.
956
957         ------------------
958         -- Check_Return --
959         ------------------
960
961         function Check_Return (N : Node_Id) return Traverse_Result is
962         begin
963            if Nkind_In (N, N_Simple_Return_Statement,
964                            N_Extended_Return_Statement)
965            then
966               if N = Last_Statement then
967                  return OK;
968               else
969                  return Abandon;
970               end if;
971
972            else
973               return OK;
974            end if;
975         end Check_Return;
976
977         function Check_All_Returns is new Traverse_Func (Check_Return);
978
979      --  Start of processing for Has_Single_Return_In_GNATprove_Mode
980
981      begin
982         --  Retrieve the last statement
983
984         Last_Statement := Last (Statements (Handled_Statement_Sequence (N)));
985
986         --  Check that the last statement is the only possible return
987         --  statement in the subprogram.
988
989         return Check_All_Returns (N) = OK;
990      end Has_Single_Return_In_GNATprove_Mode;
991
992      --------------------------
993      -- Uses_Secondary_Stack --
994      --------------------------
995
996      function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
997         function Check_Call (N : Node_Id) return Traverse_Result;
998         --  Look for function calls that return an unconstrained type
999
1000         ----------------
1001         -- Check_Call --
1002         ----------------
1003
1004         function Check_Call (N : Node_Id) return Traverse_Result is
1005         begin
1006            if Nkind (N) = N_Function_Call
1007              and then Is_Entity_Name (Name (N))
1008              and then Is_Composite_Type (Etype (Entity (Name (N))))
1009              and then not Is_Constrained (Etype (Entity (Name (N))))
1010            then
1011               Cannot_Inline
1012                 ("cannot inline & (call returns unconstrained type)?",
1013                  N, Spec_Id);
1014               return Abandon;
1015            else
1016               return OK;
1017            end if;
1018         end Check_Call;
1019
1020         function Check_Calls is new Traverse_Func (Check_Call);
1021
1022      begin
1023         return Check_Calls (Bod) = Abandon;
1024      end Uses_Secondary_Stack;
1025
1026   --  Start of processing for Build_Body_To_Inline
1027
1028   begin
1029      --  Return immediately if done already
1030
1031      if Nkind (Decl) = N_Subprogram_Declaration
1032        and then Present (Body_To_Inline (Decl))
1033      then
1034         return;
1035
1036      --  Subprograms that have return statements in the middle of the body are
1037      --  inlined with gotos. GNATprove does not currently support gotos, so
1038      --  we prevent such inlining.
1039
1040      elsif GNATprove_Mode
1041        and then not Has_Single_Return_In_GNATprove_Mode
1042      then
1043         Cannot_Inline ("cannot inline & (multiple returns)?", N, Spec_Id);
1044         return;
1045
1046      --  Functions that return unconstrained composite types require
1047      --  secondary stack handling, and cannot currently be inlined, unless
1048      --  all return statements return a local variable that is the first
1049      --  local declaration in the body.
1050
1051      elsif Ekind (Spec_Id) = E_Function
1052        and then not Is_Scalar_Type (Etype (Spec_Id))
1053        and then not Is_Access_Type (Etype (Spec_Id))
1054        and then not Is_Constrained (Etype (Spec_Id))
1055      then
1056         if not Has_Single_Return (N) then
1057            Cannot_Inline
1058              ("cannot inline & (unconstrained return type)?", N, Spec_Id);
1059            return;
1060         end if;
1061
1062      --  Ditto for functions that return controlled types, where controlled
1063      --  actions interfere in complex ways with inlining.
1064
1065      elsif Ekind (Spec_Id) = E_Function
1066        and then Needs_Finalization (Etype (Spec_Id))
1067      then
1068         Cannot_Inline
1069           ("cannot inline & (controlled return type)?", N, Spec_Id);
1070         return;
1071      end if;
1072
1073      if Present (Declarations (N))
1074        and then Has_Excluded_Declaration (Spec_Id, Declarations (N))
1075      then
1076         return;
1077      end if;
1078
1079      if Present (Handled_Statement_Sequence (N)) then
1080         if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
1081            Cannot_Inline
1082              ("cannot inline& (exception handler)?",
1083               First (Exception_Handlers (Handled_Statement_Sequence (N))),
1084               Spec_Id);
1085            return;
1086
1087         elsif Has_Excluded_Statement
1088                 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
1089         then
1090            return;
1091         end if;
1092      end if;
1093
1094      --  We do not inline a subprogram that is too large, unless it is marked
1095      --  Inline_Always or we are in GNATprove mode. This pragma does not
1096      --  suppress the other checks on inlining (forbidden declarations,
1097      --  handlers, etc).
1098
1099      if not (Has_Pragma_Inline_Always (Spec_Id) or else GNATprove_Mode)
1100        and then List_Length
1101                   (Statements (Handled_Statement_Sequence (N))) > Max_Size
1102      then
1103         Cannot_Inline ("cannot inline& (body too large)?", N, Spec_Id);
1104         return;
1105      end if;
1106
1107      if Has_Pending_Instantiation then
1108         Cannot_Inline
1109           ("cannot inline& (forward instance within enclosing body)?",
1110             N, Spec_Id);
1111         return;
1112      end if;
1113
1114      --  Within an instance, the body to inline must be treated as a nested
1115      --  generic, so that the proper global references are preserved.
1116
1117      --  Note that we do not do this at the library level, because it is not
1118      --  needed, and furthermore this causes trouble if front end inlining
1119      --  is activated (-gnatN).
1120
1121      if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1122         Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1123         Original_Body := Copy_Generic_Node (N, Empty, True);
1124      else
1125         Original_Body := Copy_Separate_Tree (N);
1126      end if;
1127
1128      --  We need to capture references to the formals in order to substitute
1129      --  the actuals at the point of inlining, i.e. instantiation. To treat
1130      --  the formals as globals to the body to inline, we nest it within a
1131      --  dummy parameterless subprogram, declared within the real one. To
1132      --  avoid generating an internal name (which is never public, and which
1133      --  affects serial numbers of other generated names), we use an internal
1134      --  symbol that cannot conflict with user declarations.
1135
1136      Set_Parameter_Specifications (Specification (Original_Body), No_List);
1137      Set_Defining_Unit_Name
1138        (Specification (Original_Body),
1139         Make_Defining_Identifier (Sloc (N), Name_uParent));
1140      Set_Corresponding_Spec (Original_Body, Empty);
1141
1142      --  Remove all aspects/pragmas that have no meaining in an inlined body
1143
1144      Remove_Aspects_And_Pragmas (Original_Body);
1145
1146      Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
1147
1148      --  Set return type of function, which is also global and does not need
1149      --  to be resolved.
1150
1151      if Ekind (Spec_Id) = E_Function then
1152         Set_Result_Definition
1153           (Specification (Body_To_Analyze),
1154            New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
1155      end if;
1156
1157      if No (Declarations (N)) then
1158         Set_Declarations (N, New_List (Body_To_Analyze));
1159      else
1160         Append (Body_To_Analyze, Declarations (N));
1161      end if;
1162
1163      --  The body to inline is pre-analyzed. In GNATprove mode we must disable
1164      --  full analysis as well so that light expansion does not take place
1165      --  either, and name resolution is unaffected.
1166
1167      Expander_Mode_Save_And_Set (False);
1168      Full_Analysis := False;
1169
1170      Analyze (Body_To_Analyze);
1171      Push_Scope (Defining_Entity (Body_To_Analyze));
1172      Save_Global_References (Original_Body);
1173      End_Scope;
1174      Remove (Body_To_Analyze);
1175
1176      Expander_Mode_Restore;
1177      Full_Analysis := Analysis_Status;
1178
1179      --  Restore environment if previously saved
1180
1181      if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1182         Restore_Env;
1183      end if;
1184
1185      --  If secondary stack is used, there is no point in inlining. We have
1186      --  already issued the warning in this case, so nothing to do.
1187
1188      if Uses_Secondary_Stack (Body_To_Analyze) then
1189         return;
1190      end if;
1191
1192      Set_Body_To_Inline (Decl, Original_Body);
1193      Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
1194      Set_Is_Inlined (Spec_Id);
1195   end Build_Body_To_Inline;
1196
1197   -------------------
1198   -- Cannot_Inline --
1199   -------------------
1200
1201   procedure Cannot_Inline
1202     (Msg        : String;
1203      N          : Node_Id;
1204      Subp       : Entity_Id;
1205      Is_Serious : Boolean := False)
1206   is
1207   begin
1208      --  In GNATprove mode, inlining is the technical means by which the
1209      --  higher-level goal of contextual analysis is reached, so issue
1210      --  messages about failure to apply contextual analysis to a
1211      --  subprogram, rather than failure to inline it.
1212
1213      if GNATprove_Mode
1214        and then Msg (Msg'First .. Msg'First + 12) = "cannot inline"
1215      then
1216         declare
1217            Len1 : constant Positive :=
1218              String (String'("cannot inline"))'Length;
1219            Len2 : constant Positive :=
1220              String (String'("info: no contextual analysis of"))'Length;
1221
1222            New_Msg : String (1 .. Msg'Length + Len2 - Len1);
1223
1224         begin
1225            New_Msg (1 .. Len2) := "info: no contextual analysis of";
1226            New_Msg (Len2 + 1 .. Msg'Length + Len2 - Len1) :=
1227              Msg (Msg'First + Len1 .. Msg'Last);
1228            Cannot_Inline (New_Msg, N, Subp, Is_Serious);
1229            return;
1230         end;
1231      end if;
1232
1233      pragma Assert (Msg (Msg'Last) = '?');
1234
1235      --  Legacy front end inlining model
1236
1237      if not Back_End_Inlining then
1238
1239         --  Do not emit warning if this is a predefined unit which is not
1240         --  the main unit. With validity checks enabled, some predefined
1241         --  subprograms may contain nested subprograms and become ineligible
1242         --  for inlining.
1243
1244         if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
1245           and then not In_Extended_Main_Source_Unit (Subp)
1246         then
1247            null;
1248
1249         --  In GNATprove mode, issue a warning, and indicate that the
1250         --  subprogram is not always inlined by setting flag Is_Inlined_Always
1251         --  to False.
1252
1253         elsif GNATprove_Mode then
1254            Set_Is_Inlined_Always (Subp, False);
1255            Error_Msg_NE (Msg & "p?", N, Subp);
1256
1257         elsif Has_Pragma_Inline_Always (Subp) then
1258
1259            --  Remove last character (question mark) to make this into an
1260            --  error, because the Inline_Always pragma cannot be obeyed.
1261
1262            Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1263
1264         elsif Ineffective_Inline_Warnings then
1265            Error_Msg_NE (Msg & "p?", N, Subp);
1266         end if;
1267
1268      --  New semantics relying on back end inlining
1269
1270      elsif Is_Serious then
1271
1272         --  Remove last character (question mark) to make this into an error.
1273
1274         Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1275
1276      --  In GNATprove mode, issue a warning, and indicate that the subprogram
1277      --  is not always inlined by setting flag Is_Inlined_Always to False.
1278
1279      elsif GNATprove_Mode then
1280         Set_Is_Inlined_Always (Subp, False);
1281         Error_Msg_NE (Msg & "p?", N, Subp);
1282
1283      else
1284
1285         --  Do not emit warning if this is a predefined unit which is not
1286         --  the main unit. This behavior is currently provided for backward
1287         --  compatibility but it will be removed when we enforce the
1288         --  strictness of the new rules.
1289
1290         if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
1291           and then not In_Extended_Main_Source_Unit (Subp)
1292         then
1293            null;
1294
1295         elsif Has_Pragma_Inline_Always (Subp) then
1296
1297            --  Emit a warning if this is a call to a runtime subprogram
1298            --  which is located inside a generic. Previously this call
1299            --  was silently skipped.
1300
1301            if Is_Generic_Instance (Subp) then
1302               declare
1303                  Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
1304               begin
1305                  if Is_Predefined_File_Name
1306                       (Unit_File_Name (Get_Source_Unit (Gen_P)))
1307                  then
1308                     Set_Is_Inlined (Subp, False);
1309                     Error_Msg_NE (Msg & "p?", N, Subp);
1310                     return;
1311                  end if;
1312               end;
1313            end if;
1314
1315            --  Remove last character (question mark) to make this into an
1316            --  error, because the Inline_Always pragma cannot be obeyed.
1317
1318            Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1319
1320         else
1321            Set_Is_Inlined (Subp, False);
1322
1323            if Ineffective_Inline_Warnings then
1324               Error_Msg_NE (Msg & "p?", N, Subp);
1325            end if;
1326         end if;
1327      end if;
1328   end Cannot_Inline;
1329
1330   --------------------------------------
1331   -- Can_Be_Inlined_In_GNATprove_Mode --
1332   --------------------------------------
1333
1334   function Can_Be_Inlined_In_GNATprove_Mode
1335     (Spec_Id : Entity_Id;
1336      Body_Id : Entity_Id) return Boolean
1337   is
1338      function Has_Formal_With_Discriminant_Dependent_Fields
1339        (Id : Entity_Id) return Boolean;
1340      --  Returns true if the subprogram has at least one formal parameter of
1341      --  an unconstrained record type with per-object constraints on component
1342      --  types.
1343
1344      function Has_Some_Contract (Id : Entity_Id) return Boolean;
1345      --  Returns True if subprogram Id has any contract (Pre, Post, Global,
1346      --  Depends, etc.)
1347
1348      function Is_Unit_Subprogram (Id : Entity_Id) return Boolean;
1349      --  Returns True if subprogram Id defines a compilation unit
1350      --  Shouldn't this be in Sem_Aux???
1351
1352      function In_Package_Visible_Spec (Id : Node_Id) return Boolean;
1353      --  Returns True if subprogram Id is defined in the visible part of a
1354      --  package specification.
1355
1356      function Is_Expression_Function (Id : Entity_Id) return Boolean;
1357      --  Returns True if subprogram Id was defined originally as an expression
1358      --  function.
1359
1360      ---------------------------------------------------
1361      -- Has_Formal_With_Discriminant_Dependent_Fields --
1362      ---------------------------------------------------
1363
1364      function Has_Formal_With_Discriminant_Dependent_Fields
1365        (Id : Entity_Id) return Boolean is
1366
1367         function Has_Discriminant_Dependent_Component
1368           (Typ : Entity_Id) return Boolean;
1369         --  Determine whether unconstrained record type Typ has at least
1370         --  one component that depends on a discriminant.
1371
1372         ------------------------------------------
1373         -- Has_Discriminant_Dependent_Component --
1374         ------------------------------------------
1375
1376         function Has_Discriminant_Dependent_Component
1377           (Typ : Entity_Id) return Boolean
1378         is
1379            Comp : Entity_Id;
1380
1381         begin
1382            --  Inspect all components of the record type looking for one
1383            --  that depends on a discriminant.
1384
1385            Comp := First_Component (Typ);
1386            while Present (Comp) loop
1387               if Has_Discriminant_Dependent_Constraint (Comp) then
1388                  return True;
1389               end if;
1390
1391               Next_Component (Comp);
1392            end loop;
1393
1394            return False;
1395         end Has_Discriminant_Dependent_Component;
1396
1397         --  Local variables
1398
1399         Subp_Id    : constant Entity_Id := Ultimate_Alias (Id);
1400         Formal     : Entity_Id;
1401         Formal_Typ : Entity_Id;
1402
1403         --  Start of processing for
1404         --  Has_Formal_With_Discriminant_Dependent_Component
1405
1406      begin
1407         --  Inspect all parameters of the subprogram looking for a formal
1408         --  of an unconstrained record type with at least one discriminant
1409         --  dependent component.
1410
1411         Formal := First_Formal (Subp_Id);
1412         while Present (Formal) loop
1413            Formal_Typ := Etype (Formal);
1414
1415            if Is_Record_Type (Formal_Typ)
1416              and then not Is_Constrained (Formal_Typ)
1417              and then Has_Discriminant_Dependent_Component (Formal_Typ)
1418            then
1419               return True;
1420            end if;
1421
1422            Next_Formal (Formal);
1423         end loop;
1424
1425         return False;
1426      end Has_Formal_With_Discriminant_Dependent_Fields;
1427
1428      -----------------------
1429      -- Has_Some_Contract --
1430      -----------------------
1431
1432      function Has_Some_Contract (Id : Entity_Id) return Boolean is
1433         Items : Node_Id;
1434
1435      begin
1436         --  A call to an expression function may precede the actual body which
1437         --  is inserted at the end of the enclosing declarations. Ensure that
1438         --  the related entity is decorated before inspecting the contract.
1439
1440         if Is_Subprogram_Or_Generic_Subprogram (Id) then
1441            Items := Contract (Id);
1442
1443            return Present (Items)
1444              and then (Present (Pre_Post_Conditions (Items)) or else
1445                        Present (Contract_Test_Cases (Items)) or else
1446                        Present (Classifications     (Items)));
1447         end if;
1448
1449         return False;
1450      end Has_Some_Contract;
1451
1452      -----------------------------
1453      -- In_Package_Visible_Spec --
1454      -----------------------------
1455
1456      function In_Package_Visible_Spec  (Id : Node_Id) return Boolean is
1457         Decl : Node_Id := Parent (Parent (Id));
1458         P    : Node_Id;
1459
1460      begin
1461         if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1462            Decl := Parent (Decl);
1463         end if;
1464
1465         P := Parent (Decl);
1466
1467         return Nkind (P) = N_Package_Specification
1468           and then List_Containing (Decl) = Visible_Declarations (P);
1469      end In_Package_Visible_Spec;
1470
1471      ----------------------------
1472      -- Is_Expression_Function --
1473      ----------------------------
1474
1475      function Is_Expression_Function (Id : Entity_Id) return Boolean is
1476         Decl : Node_Id := Parent (Parent (Id));
1477      begin
1478         if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1479            Decl := Parent (Decl);
1480         end if;
1481
1482         return Nkind (Original_Node (Decl)) = N_Expression_Function;
1483      end Is_Expression_Function;
1484
1485      ------------------------
1486      -- Is_Unit_Subprogram --
1487      ------------------------
1488
1489      function Is_Unit_Subprogram (Id : Entity_Id) return Boolean is
1490         Decl : Node_Id := Parent (Parent (Id));
1491      begin
1492         if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1493            Decl := Parent (Decl);
1494         end if;
1495
1496         return Nkind (Parent (Decl)) = N_Compilation_Unit;
1497      end Is_Unit_Subprogram;
1498
1499      --  Local declarations
1500
1501      Id : Entity_Id;  --  Procedure or function entity for the subprogram
1502
1503   --  Start of Can_Be_Inlined_In_GNATprove_Mode
1504
1505   begin
1506      pragma Assert (Present (Spec_Id) or else Present (Body_Id));
1507
1508      if Present (Spec_Id) then
1509         Id := Spec_Id;
1510      else
1511         Id := Body_Id;
1512      end if;
1513
1514      --  Only local subprograms without contracts are inlined in GNATprove
1515      --  mode, as these are the subprograms which a user is not interested in
1516      --  analyzing in isolation, but rather in the context of their call. This
1517      --  is a convenient convention, that could be changed for an explicit
1518      --  pragma/aspect one day.
1519
1520      --  In a number of special cases, inlining is not desirable or not
1521      --  possible, see below.
1522
1523      --  Do not inline unit-level subprograms
1524
1525      if Is_Unit_Subprogram (Id) then
1526         return False;
1527
1528      --  Do not inline subprograms declared in the visible part of a package
1529
1530      elsif In_Package_Visible_Spec (Id) then
1531         return False;
1532
1533      --  Do not inline subprograms that have a contract on the spec or the
1534      --  body. Use the contract(s) instead in GNATprove.
1535
1536      elsif (Present (Spec_Id) and then Has_Some_Contract (Spec_Id))
1537               or else
1538            (Present (Body_Id) and then Has_Some_Contract (Body_Id))
1539      then
1540         return False;
1541
1542      --  Do not inline expression functions, which are directly inlined at the
1543      --  prover level.
1544
1545      elsif (Present (Spec_Id) and then Is_Expression_Function (Spec_Id))
1546              or else
1547            (Present (Body_Id) and then Is_Expression_Function (Body_Id))
1548      then
1549         return False;
1550
1551      --  Do not inline generic subprogram instances. The visibility rules of
1552      --  generic instances plays badly with inlining.
1553
1554      elsif Is_Generic_Instance (Spec_Id) then
1555         return False;
1556
1557      --  Only inline subprograms whose spec is marked SPARK_Mode On. For
1558      --  the subprogram body, a similar check is performed after the body
1559      --  is analyzed, as this is where a pragma SPARK_Mode might be inserted.
1560
1561      elsif Present (Spec_Id)
1562        and then
1563          (No (SPARK_Pragma (Spec_Id))
1564            or else Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Spec_Id)) /= On)
1565      then
1566         return False;
1567
1568      --  Subprograms in generic instances are currently not inlined, to avoid
1569      --  problems with inlining of standard library subprograms.
1570
1571      elsif Instantiation_Location (Sloc (Id)) /= No_Location then
1572         return False;
1573
1574      --  Do not inline predicate functions (treated specially by GNATprove)
1575
1576      elsif Is_Predicate_Function (Id) then
1577         return False;
1578
1579      --  Do not inline subprograms with a parameter of an unconstrained
1580      --  record type if it has discrimiant dependent fields. Indeed, with
1581      --  such parameters, the frontend cannot always ensure type compliance
1582      --  in record component accesses (in particular with records containing
1583      --  packed arrays).
1584
1585      elsif Has_Formal_With_Discriminant_Dependent_Fields (Id) then
1586         return False;
1587
1588      --  Otherwise, this is a subprogram declared inside the private part of a
1589      --  package, or inside a package body, or locally in a subprogram, and it
1590      --  does not have any contract. Inline it.
1591
1592      else
1593         return True;
1594      end if;
1595   end Can_Be_Inlined_In_GNATprove_Mode;
1596
1597   --------------------------------------------
1598   -- Check_And_Split_Unconstrained_Function --
1599   --------------------------------------------
1600
1601   procedure Check_And_Split_Unconstrained_Function
1602     (N       : Node_Id;
1603      Spec_Id : Entity_Id;
1604      Body_Id : Entity_Id)
1605   is
1606      procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
1607      --  Use generic machinery to build an unexpanded body for the subprogram.
1608      --  This body is subsequently used for inline expansions at call sites.
1609
1610      function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
1611      --  Return true if we generate code for the function body N, the function
1612      --  body N has no local declarations and its unique statement is a single
1613      --  extended return statement with a handled statements sequence.
1614
1615      procedure Generate_Subprogram_Body
1616        (N              : Node_Id;
1617         Body_To_Inline : out Node_Id);
1618      --  Generate a parameterless duplicate of subprogram body N. Occurrences
1619      --  of pragmas referencing the formals are removed since they have no
1620      --  meaning when the body is inlined and the formals are rewritten (the
1621      --  analysis of the non-inlined body will handle these pragmas properly).
1622      --  A new internal name is associated with Body_To_Inline.
1623
1624      procedure Split_Unconstrained_Function
1625        (N       : Node_Id;
1626         Spec_Id : Entity_Id);
1627      --  N is an inlined function body that returns an unconstrained type and
1628      --  has a single extended return statement. Split N in two subprograms:
1629      --  a procedure P' and a function F'. The formals of P' duplicate the
1630      --  formals of N plus an extra formal which is used return a value;
1631      --  its body is composed by the declarations and list of statements
1632      --  of the extended return statement of N.
1633
1634      --------------------------
1635      -- Build_Body_To_Inline --
1636      --------------------------
1637
1638      procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
1639         Decl            : constant Node_Id := Unit_Declaration_Node (Spec_Id);
1640         Original_Body   : Node_Id;
1641         Body_To_Analyze : Node_Id;
1642
1643      begin
1644         pragma Assert (Current_Scope = Spec_Id);
1645
1646         --  Within an instance, the body to inline must be treated as a nested
1647         --  generic, so that the proper global references are preserved. We
1648         --  do not do this at the library level, because it is not needed, and
1649         --  furthermore this causes trouble if front end inlining is activated
1650         --  (-gnatN).
1651
1652         if In_Instance
1653           and then Scope (Current_Scope) /= Standard_Standard
1654         then
1655            Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1656         end if;
1657
1658         --  We need to capture references to the formals in order
1659         --  to substitute the actuals at the point of inlining, i.e.
1660         --  instantiation. To treat the formals as globals to the body to
1661         --  inline, we nest it within a dummy parameterless subprogram,
1662         --  declared within the real one.
1663
1664         Generate_Subprogram_Body (N, Original_Body);
1665         Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
1666
1667         --  Set return type of function, which is also global and does not
1668         --  need to be resolved.
1669
1670         if Ekind (Spec_Id) = E_Function then
1671            Set_Result_Definition (Specification (Body_To_Analyze),
1672              New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
1673         end if;
1674
1675         if No (Declarations (N)) then
1676            Set_Declarations (N, New_List (Body_To_Analyze));
1677         else
1678            Append_To (Declarations (N), Body_To_Analyze);
1679         end if;
1680
1681         Preanalyze (Body_To_Analyze);
1682
1683         Push_Scope (Defining_Entity (Body_To_Analyze));
1684         Save_Global_References (Original_Body);
1685         End_Scope;
1686         Remove (Body_To_Analyze);
1687
1688         --  Restore environment if previously saved
1689
1690         if In_Instance
1691           and then Scope (Current_Scope) /= Standard_Standard
1692         then
1693            Restore_Env;
1694         end if;
1695
1696         pragma Assert (No (Body_To_Inline (Decl)));
1697         Set_Body_To_Inline (Decl, Original_Body);
1698         Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
1699      end Build_Body_To_Inline;
1700
1701      --------------------------------------
1702      -- Can_Split_Unconstrained_Function --
1703      --------------------------------------
1704
1705      function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean
1706      is
1707         Ret_Node : constant Node_Id :=
1708                      First (Statements (Handled_Statement_Sequence (N)));
1709         D : Node_Id;
1710
1711      begin
1712         --  No user defined declarations allowed in the function except inside
1713         --  the unique return statement; implicit labels are the only allowed
1714         --  declarations.
1715
1716         if not Is_Empty_List (Declarations (N)) then
1717            D := First (Declarations (N));
1718            while Present (D) loop
1719               if Nkind (D) /= N_Implicit_Label_Declaration then
1720                  return False;
1721               end if;
1722
1723               Next (D);
1724            end loop;
1725         end if;
1726
1727         --  We only split the inlined function when we are generating the code
1728         --  of its body; otherwise we leave duplicated split subprograms in
1729         --  the tree which (if referenced) generate wrong references at link
1730         --  time.
1731
1732         return In_Extended_Main_Code_Unit (N)
1733           and then Present (Ret_Node)
1734           and then Nkind (Ret_Node) = N_Extended_Return_Statement
1735           and then No (Next (Ret_Node))
1736           and then Present (Handled_Statement_Sequence (Ret_Node));
1737      end Can_Split_Unconstrained_Function;
1738
1739      -----------------------------
1740      -- Generate_Body_To_Inline --
1741      -----------------------------
1742
1743      procedure Generate_Subprogram_Body
1744        (N              : Node_Id;
1745         Body_To_Inline : out Node_Id)
1746      is
1747      begin
1748         --  Within an instance, the body to inline must be treated as a nested
1749         --  generic, so that the proper global references are preserved.
1750
1751         --  Note that we do not do this at the library level, because it
1752         --  is not needed, and furthermore this causes trouble if front
1753         --  end inlining is activated (-gnatN).
1754
1755         if In_Instance
1756           and then Scope (Current_Scope) /= Standard_Standard
1757         then
1758            Body_To_Inline := Copy_Generic_Node (N, Empty, True);
1759         else
1760            Body_To_Inline := Copy_Separate_Tree (N);
1761         end if;
1762
1763         --  Remove all aspects/pragmas that have no meaning in an inlined body
1764
1765         Remove_Aspects_And_Pragmas (Body_To_Inline);
1766
1767         --  We need to capture references to the formals in order
1768         --  to substitute the actuals at the point of inlining, i.e.
1769         --  instantiation. To treat the formals as globals to the body to
1770         --  inline, we nest it within a dummy parameterless subprogram,
1771         --  declared within the real one.
1772
1773         Set_Parameter_Specifications
1774           (Specification (Body_To_Inline), No_List);
1775
1776         --  A new internal name is associated with Body_To_Inline to avoid
1777         --  conflicts when the non-inlined body N is analyzed.
1778
1779         Set_Defining_Unit_Name (Specification (Body_To_Inline),
1780            Make_Defining_Identifier (Sloc (N), New_Internal_Name ('P')));
1781         Set_Corresponding_Spec (Body_To_Inline, Empty);
1782      end Generate_Subprogram_Body;
1783
1784      ----------------------------------
1785      -- Split_Unconstrained_Function --
1786      ----------------------------------
1787
1788      procedure Split_Unconstrained_Function
1789        (N        : Node_Id;
1790         Spec_Id  : Entity_Id)
1791      is
1792         Loc      : constant Source_Ptr := Sloc (N);
1793         Ret_Node : constant Node_Id :=
1794                      First (Statements (Handled_Statement_Sequence (N)));
1795         Ret_Obj  : constant Node_Id :=
1796                      First (Return_Object_Declarations (Ret_Node));
1797
1798         procedure Build_Procedure
1799           (Proc_Id   : out Entity_Id;
1800            Decl_List : out List_Id);
1801         --  Build a procedure containing the statements found in the extended
1802         --  return statement of the unconstrained function body N.
1803
1804         ---------------------
1805         -- Build_Procedure --
1806         ---------------------
1807
1808         procedure Build_Procedure
1809           (Proc_Id   : out Entity_Id;
1810            Decl_List : out List_Id)
1811         is
1812            Formal         : Entity_Id;
1813            Formal_List    : constant List_Id := New_List;
1814            Proc_Spec      : Node_Id;
1815            Proc_Body      : Node_Id;
1816            Subp_Name      : constant Name_Id := New_Internal_Name ('F');
1817            Body_Decl_List : List_Id := No_List;
1818            Param_Type     : Node_Id;
1819
1820         begin
1821            if Nkind (Object_Definition (Ret_Obj)) = N_Identifier then
1822               Param_Type :=
1823                 New_Copy (Object_Definition (Ret_Obj));
1824            else
1825               Param_Type :=
1826                 New_Copy (Subtype_Mark (Object_Definition (Ret_Obj)));
1827            end if;
1828
1829            Append_To (Formal_List,
1830              Make_Parameter_Specification (Loc,
1831                Defining_Identifier    =>
1832                  Make_Defining_Identifier (Loc,
1833                    Chars => Chars (Defining_Identifier (Ret_Obj))),
1834                In_Present             => False,
1835                Out_Present            => True,
1836                Null_Exclusion_Present => False,
1837                Parameter_Type         => Param_Type));
1838
1839            Formal := First_Formal (Spec_Id);
1840
1841            --  Note that we copy the parameter type rather than creating
1842            --  a reference to it, because it may be a class-wide entity
1843            --  that will not be retrieved by name.
1844
1845            while Present (Formal) loop
1846               Append_To (Formal_List,
1847                 Make_Parameter_Specification (Loc,
1848                   Defining_Identifier    =>
1849                     Make_Defining_Identifier (Sloc (Formal),
1850                       Chars => Chars (Formal)),
1851                   In_Present             => In_Present (Parent (Formal)),
1852                   Out_Present            => Out_Present (Parent (Formal)),
1853                   Null_Exclusion_Present =>
1854                     Null_Exclusion_Present (Parent (Formal)),
1855                   Parameter_Type         =>
1856                     New_Copy_Tree (Parameter_Type (Parent (Formal))),
1857                   Expression             =>
1858                     Copy_Separate_Tree (Expression (Parent (Formal)))));
1859
1860               Next_Formal (Formal);
1861            end loop;
1862
1863            Proc_Id := Make_Defining_Identifier (Loc, Chars => Subp_Name);
1864
1865            Proc_Spec :=
1866              Make_Procedure_Specification (Loc,
1867                Defining_Unit_Name       => Proc_Id,
1868                Parameter_Specifications => Formal_List);
1869
1870            Decl_List := New_List;
1871
1872            Append_To (Decl_List,
1873              Make_Subprogram_Declaration (Loc, Proc_Spec));
1874
1875            --  Can_Convert_Unconstrained_Function checked that the function
1876            --  has no local declarations except implicit label declarations.
1877            --  Copy these declarations to the built procedure.
1878
1879            if Present (Declarations (N)) then
1880               Body_Decl_List := New_List;
1881
1882               declare
1883                  D     : Node_Id;
1884                  New_D : Node_Id;
1885
1886               begin
1887                  D := First (Declarations (N));
1888                  while Present (D) loop
1889                     pragma Assert (Nkind (D) = N_Implicit_Label_Declaration);
1890
1891                     New_D :=
1892                       Make_Implicit_Label_Declaration (Loc,
1893                         Make_Defining_Identifier (Loc,
1894                           Chars => Chars (Defining_Identifier (D))),
1895                         Label_Construct => Empty);
1896                     Append_To (Body_Decl_List, New_D);
1897
1898                     Next (D);
1899                  end loop;
1900               end;
1901            end if;
1902
1903            pragma Assert (Present (Handled_Statement_Sequence (Ret_Node)));
1904
1905            Proc_Body :=
1906              Make_Subprogram_Body (Loc,
1907                Specification => Copy_Separate_Tree (Proc_Spec),
1908                Declarations  => Body_Decl_List,
1909                Handled_Statement_Sequence =>
1910                  Copy_Separate_Tree (Handled_Statement_Sequence (Ret_Node)));
1911
1912            Set_Defining_Unit_Name (Specification (Proc_Body),
1913               Make_Defining_Identifier (Loc, Subp_Name));
1914
1915            Append_To (Decl_List, Proc_Body);
1916         end Build_Procedure;
1917
1918         --  Local variables
1919
1920         New_Obj   : constant Node_Id := Copy_Separate_Tree (Ret_Obj);
1921         Blk_Stmt  : Node_Id;
1922         Proc_Id   : Entity_Id;
1923         Proc_Call : Node_Id;
1924
1925      --  Start of processing for Split_Unconstrained_Function
1926
1927      begin
1928         --  Build the associated procedure, analyze it and insert it before
1929         --  the function body N.
1930
1931         declare
1932            Scope     : constant Entity_Id := Current_Scope;
1933            Decl_List : List_Id;
1934         begin
1935            Pop_Scope;
1936            Build_Procedure (Proc_Id, Decl_List);
1937            Insert_Actions (N, Decl_List);
1938            Push_Scope (Scope);
1939         end;
1940
1941         --  Build the call to the generated procedure
1942
1943         declare
1944            Actual_List : constant List_Id := New_List;
1945            Formal      : Entity_Id;
1946
1947         begin
1948            Append_To (Actual_List,
1949              New_Occurrence_Of (Defining_Identifier (New_Obj), Loc));
1950
1951            Formal := First_Formal (Spec_Id);
1952            while Present (Formal) loop
1953               Append_To (Actual_List, New_Occurrence_Of (Formal, Loc));
1954
1955               --  Avoid spurious warning on unreferenced formals
1956
1957               Set_Referenced (Formal);
1958               Next_Formal (Formal);
1959            end loop;
1960
1961            Proc_Call :=
1962              Make_Procedure_Call_Statement (Loc,
1963                Name                   => New_Occurrence_Of (Proc_Id, Loc),
1964                Parameter_Associations => Actual_List);
1965         end;
1966
1967         --  Generate
1968
1969         --    declare
1970         --       New_Obj : ...
1971         --    begin
1972         --       main_1__F1b (New_Obj, ...);
1973         --       return Obj;
1974         --    end B10b;
1975
1976         Blk_Stmt :=
1977           Make_Block_Statement (Loc,
1978             Declarations               => New_List (New_Obj),
1979             Handled_Statement_Sequence =>
1980               Make_Handled_Sequence_Of_Statements (Loc,
1981                 Statements => New_List (
1982
1983                   Proc_Call,
1984
1985                   Make_Simple_Return_Statement (Loc,
1986                     Expression =>
1987                       New_Occurrence_Of
1988                         (Defining_Identifier (New_Obj), Loc)))));
1989
1990         Rewrite (Ret_Node, Blk_Stmt);
1991      end Split_Unconstrained_Function;
1992
1993      --  Local variables
1994
1995      Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
1996
1997   --  Start of processing for Check_And_Split_Unconstrained_Function
1998
1999   begin
2000      pragma Assert (Back_End_Inlining
2001        and then Ekind (Spec_Id) = E_Function
2002        and then Returns_Unconstrained_Type (Spec_Id)
2003        and then Comes_From_Source (Body_Id)
2004        and then (Has_Pragma_Inline_Always (Spec_Id)
2005                    or else Optimization_Level > 0));
2006
2007      --  This routine must not be used in GNATprove mode since GNATprove
2008      --  relies on frontend inlining
2009
2010      pragma Assert (not GNATprove_Mode);
2011
2012      --  No need to split the function if we cannot generate the code
2013
2014      if Serious_Errors_Detected /= 0 then
2015         return;
2016      end if;
2017
2018      --  No action needed in stubs since the attribute Body_To_Inline
2019      --  is not available
2020
2021      if Nkind (Decl) = N_Subprogram_Body_Stub then
2022         return;
2023
2024      --  Cannot build the body to inline if the attribute is already set.
2025      --  This attribute may have been set if this is a subprogram renaming
2026      --  declarations (see Freeze.Build_Renamed_Body).
2027
2028      elsif Present (Body_To_Inline (Decl)) then
2029         return;
2030
2031      --  Check excluded declarations
2032
2033      elsif Present (Declarations (N))
2034        and then Has_Excluded_Declaration (Spec_Id, Declarations (N))
2035      then
2036         return;
2037
2038      --  Check excluded statements. There is no need to protect us against
2039      --  exception handlers since they are supported by the GCC backend.
2040
2041      elsif Present (Handled_Statement_Sequence (N))
2042        and then Has_Excluded_Statement
2043                   (Spec_Id, Statements (Handled_Statement_Sequence (N)))
2044      then
2045         return;
2046      end if;
2047
2048      --  Build the body to inline only if really needed
2049
2050      if Can_Split_Unconstrained_Function (N) then
2051         Split_Unconstrained_Function (N, Spec_Id);
2052         Build_Body_To_Inline (N, Spec_Id);
2053         Set_Is_Inlined (Spec_Id);
2054      end if;
2055   end Check_And_Split_Unconstrained_Function;
2056
2057   -------------------------------------
2058   -- Check_Package_Body_For_Inlining --
2059   -------------------------------------
2060
2061   procedure Check_Package_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
2062      Bname : Unit_Name_Type;
2063      E     : Entity_Id;
2064      OK    : Boolean;
2065
2066   begin
2067      --  Legacy implementation (relying on frontend inlining)
2068
2069      if not Back_End_Inlining
2070        and then Is_Compilation_Unit (P)
2071        and then not Is_Generic_Instance (P)
2072      then
2073         Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
2074
2075         E := First_Entity (P);
2076         while Present (E) loop
2077            if Has_Pragma_Inline_Always (E)
2078              or else (Has_Pragma_Inline (E) and Front_End_Inlining)
2079            then
2080               if not Is_Loaded (Bname) then
2081                  Load_Needed_Body (N, OK);
2082
2083                  if OK then
2084
2085                     --  Check we are not trying to inline a parent whose body
2086                     --  depends on a child, when we are compiling the body of
2087                     --  the child. Otherwise we have a potential elaboration
2088                     --  circularity with inlined subprograms and with
2089                     --  Taft-Amendment types.
2090
2091                     declare
2092                        Comp        : Node_Id;      --  Body just compiled
2093                        Child_Spec  : Entity_Id;    --  Spec of main unit
2094                        Ent         : Entity_Id;    --  For iteration
2095                        With_Clause : Node_Id;      --  Context of body.
2096
2097                     begin
2098                        if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
2099                          and then Present (Body_Entity (P))
2100                        then
2101                           Child_Spec :=
2102                             Defining_Entity
2103                               ((Unit (Library_Unit (Cunit (Main_Unit)))));
2104
2105                           Comp :=
2106                             Parent (Unit_Declaration_Node (Body_Entity (P)));
2107
2108                           --  Check whether the context of the body just
2109                           --  compiled includes a child of itself, and that
2110                           --  child is the spec of the main compilation.
2111
2112                           With_Clause := First (Context_Items (Comp));
2113                           while Present (With_Clause) loop
2114                              if Nkind (With_Clause) = N_With_Clause
2115                                and then
2116                                  Scope (Entity (Name (With_Clause))) = P
2117                                and then
2118                                  Entity (Name (With_Clause)) = Child_Spec
2119                              then
2120                                 Error_Msg_Node_2 := Child_Spec;
2121                                 Error_Msg_NE
2122                                   ("body of & depends on child unit&??",
2123                                    With_Clause, P);
2124                                 Error_Msg_N
2125                                   ("\subprograms in body cannot be inlined??",
2126                                    With_Clause);
2127
2128                                 --  Disable further inlining from this unit,
2129                                 --  and keep Taft-amendment types incomplete.
2130
2131                                 Ent := First_Entity (P);
2132                                 while Present (Ent) loop
2133                                    if Is_Type (Ent)
2134                                      and then Has_Completion_In_Body (Ent)
2135                                    then
2136                                       Set_Full_View (Ent, Empty);
2137
2138                                    elsif Is_Subprogram (Ent) then
2139                                       Set_Is_Inlined (Ent, False);
2140                                    end if;
2141
2142                                    Next_Entity (Ent);
2143                                 end loop;
2144
2145                                 return;
2146                              end if;
2147
2148                              Next (With_Clause);
2149                           end loop;
2150                        end if;
2151                     end;
2152
2153                  elsif Ineffective_Inline_Warnings then
2154                     Error_Msg_Unit_1 := Bname;
2155                     Error_Msg_N
2156                       ("unable to inline subprograms defined in $??", P);
2157                     Error_Msg_N ("\body not found??", P);
2158                     return;
2159                  end if;
2160               end if;
2161
2162               return;
2163            end if;
2164
2165            Next_Entity (E);
2166         end loop;
2167      end if;
2168   end Check_Package_Body_For_Inlining;
2169
2170   --------------------
2171   -- Cleanup_Scopes --
2172   --------------------
2173
2174   procedure Cleanup_Scopes is
2175      Elmt : Elmt_Id;
2176      Decl : Node_Id;
2177      Scop : Entity_Id;
2178
2179   begin
2180      Elmt := First_Elmt (To_Clean);
2181      while Present (Elmt) loop
2182         Scop := Node (Elmt);
2183
2184         if Ekind (Scop) = E_Entry then
2185            Scop := Protected_Body_Subprogram (Scop);
2186
2187         elsif Is_Subprogram (Scop)
2188           and then Is_Protected_Type (Scope (Scop))
2189           and then Present (Protected_Body_Subprogram (Scop))
2190         then
2191            --  If a protected operation contains an instance, its cleanup
2192            --  operations have been delayed, and the subprogram has been
2193            --  rewritten in the expansion of the enclosing protected body. It
2194            --  is the corresponding subprogram that may require the cleanup
2195            --  operations, so propagate the information that triggers cleanup
2196            --  activity.
2197
2198            Set_Uses_Sec_Stack
2199              (Protected_Body_Subprogram (Scop),
2200                Uses_Sec_Stack (Scop));
2201
2202            Scop := Protected_Body_Subprogram (Scop);
2203         end if;
2204
2205         if Ekind (Scop) = E_Block then
2206            Decl := Parent (Block_Node (Scop));
2207
2208         else
2209            Decl := Unit_Declaration_Node (Scop);
2210
2211            if Nkind_In (Decl, N_Subprogram_Declaration,
2212                               N_Task_Type_Declaration,
2213                               N_Subprogram_Body_Stub)
2214            then
2215               Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
2216            end if;
2217         end if;
2218
2219         Push_Scope (Scop);
2220         Expand_Cleanup_Actions (Decl);
2221         End_Scope;
2222
2223         Elmt := Next_Elmt (Elmt);
2224      end loop;
2225   end Cleanup_Scopes;
2226
2227   -------------------------
2228   -- Expand_Inlined_Call --
2229   -------------------------
2230
2231   procedure Expand_Inlined_Call
2232    (N         : Node_Id;
2233     Subp      : Entity_Id;
2234     Orig_Subp : Entity_Id)
2235   is
2236      Loc       : constant Source_Ptr := Sloc (N);
2237      Is_Predef : constant Boolean :=
2238                    Is_Predefined_File_Name
2239                      (Unit_File_Name (Get_Source_Unit (Subp)));
2240      Orig_Bod  : constant Node_Id :=
2241                    Body_To_Inline (Unit_Declaration_Node (Subp));
2242
2243      Blk      : Node_Id;
2244      Decl     : Node_Id;
2245      Decls    : constant List_Id := New_List;
2246      Exit_Lab : Entity_Id        := Empty;
2247      F        : Entity_Id;
2248      A        : Node_Id;
2249      Lab_Decl : Node_Id;
2250      Lab_Id   : Node_Id;
2251      New_A    : Node_Id;
2252      Num_Ret  : Int := 0;
2253      Ret_Type : Entity_Id;
2254
2255      Targ : Node_Id;
2256      --  The target of the call. If context is an assignment statement then
2257      --  this is the left-hand side of the assignment, else it is a temporary
2258      --  to which the return value is assigned prior to rewriting the call.
2259
2260      Targ1 : Node_Id;
2261      --  A separate target used when the return type is unconstrained
2262
2263      Temp     : Entity_Id;
2264      Temp_Typ : Entity_Id;
2265
2266      Return_Object : Entity_Id := Empty;
2267      --  Entity in declaration in an extended_return_statement
2268
2269      Is_Unc      : Boolean;
2270      Is_Unc_Decl : Boolean;
2271      --  If the type returned by the function is unconstrained and the call
2272      --  can be inlined, special processing is required.
2273
2274      procedure Make_Exit_Label;
2275      --  Build declaration for exit label to be used in Return statements,
2276      --  sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
2277      --  declaration). Does nothing if Exit_Lab already set.
2278
2279      function Process_Formals (N : Node_Id) return Traverse_Result;
2280      --  Replace occurrence of a formal with the corresponding actual, or the
2281      --  thunk generated for it. Replace a return statement with an assignment
2282      --  to the target of the call, with appropriate conversions if needed.
2283
2284      function Process_Sloc (Nod : Node_Id) return Traverse_Result;
2285      --  If the call being expanded is that of an internal subprogram, set the
2286      --  sloc of the generated block to that of the call itself, so that the
2287      --  expansion is skipped by the "next" command in gdb. Same processing
2288      --  for a subprogram in a predefined file, e.g. Ada.Tags. If
2289      --  Debug_Generated_Code is true, suppress this change to simplify our
2290      --  own development. Same in GNATprove mode, to ensure that warnings and
2291      --  diagnostics point to the proper location.
2292
2293      procedure Reset_Dispatching_Calls (N : Node_Id);
2294      --  In subtree N search for occurrences of dispatching calls that use the
2295      --  Ada 2005 Object.Operation notation and the object is a formal of the
2296      --  inlined subprogram. Reset the entity associated with Operation in all
2297      --  the found occurrences.
2298
2299      procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
2300      --  If the function body is a single expression, replace call with
2301      --  expression, else insert block appropriately.
2302
2303      procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
2304      --  If procedure body has no local variables, inline body without
2305      --  creating block, otherwise rewrite call with block.
2306
2307      function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
2308      --  Determine whether a formal parameter is used only once in Orig_Bod
2309
2310      ---------------------
2311      -- Make_Exit_Label --
2312      ---------------------
2313
2314      procedure Make_Exit_Label is
2315         Lab_Ent : Entity_Id;
2316      begin
2317         if No (Exit_Lab) then
2318            Lab_Ent := Make_Temporary (Loc, 'L');
2319            Lab_Id  := New_Occurrence_Of (Lab_Ent, Loc);
2320            Exit_Lab := Make_Label (Loc, Lab_Id);
2321            Lab_Decl :=
2322              Make_Implicit_Label_Declaration (Loc,
2323                Defining_Identifier => Lab_Ent,
2324                Label_Construct     => Exit_Lab);
2325         end if;
2326      end Make_Exit_Label;
2327
2328      ---------------------
2329      -- Process_Formals --
2330      ---------------------
2331
2332      function Process_Formals (N : Node_Id) return Traverse_Result is
2333         A   : Entity_Id;
2334         E   : Entity_Id;
2335         Ret : Node_Id;
2336
2337      begin
2338         if Is_Entity_Name (N) and then Present (Entity (N)) then
2339            E := Entity (N);
2340
2341            if Is_Formal (E) and then Scope (E) = Subp then
2342               A := Renamed_Object (E);
2343
2344               --  Rewrite the occurrence of the formal into an occurrence of
2345               --  the actual. Also establish visibility on the proper view of
2346               --  the actual's subtype for the body's context (if the actual's
2347               --  subtype is private at the call point but its full view is
2348               --  visible to the body, then the inlined tree here must be
2349               --  analyzed with the full view).
2350
2351               if Is_Entity_Name (A) then
2352                  Rewrite (N, New_Occurrence_Of (Entity (A), Sloc (N)));
2353                  Check_Private_View (N);
2354
2355               elsif Nkind (A) = N_Defining_Identifier then
2356                  Rewrite (N, New_Occurrence_Of (A, Sloc (N)));
2357                  Check_Private_View (N);
2358
2359               --  Numeric literal
2360
2361               else
2362                  Rewrite (N, New_Copy (A));
2363               end if;
2364            end if;
2365
2366            return Skip;
2367
2368         elsif Is_Entity_Name (N)
2369           and then Present (Return_Object)
2370           and then Chars (N) = Chars (Return_Object)
2371         then
2372            --  Occurrence within an extended return statement. The return
2373            --  object is local to the body been inlined, and thus the generic
2374            --  copy is not analyzed yet, so we match by name, and replace it
2375            --  with target of call.
2376
2377            if Nkind (Targ) = N_Defining_Identifier then
2378               Rewrite (N, New_Occurrence_Of (Targ, Loc));
2379            else
2380               Rewrite (N, New_Copy_Tree (Targ));
2381            end if;
2382
2383            return Skip;
2384
2385         elsif Nkind (N) = N_Simple_Return_Statement then
2386            if No (Expression (N)) then
2387               Make_Exit_Label;
2388               Rewrite (N,
2389                 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
2390
2391            else
2392               if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
2393                 and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
2394               then
2395                  --  Function body is a single expression. No need for
2396                  --  exit label.
2397
2398                  null;
2399
2400               else
2401                  Num_Ret := Num_Ret + 1;
2402                  Make_Exit_Label;
2403               end if;
2404
2405               --  Because of the presence of private types, the views of the
2406               --  expression and the context may be different, so place an
2407               --  unchecked conversion to the context type to avoid spurious
2408               --  errors, e.g. when the expression is a numeric literal and
2409               --  the context is private. If the expression is an aggregate,
2410               --  use a qualified expression, because an aggregate is not a
2411               --  legal argument of a conversion. Ditto for numeric literals,
2412               --  which must be resolved to a specific type.
2413
2414               if Nkind_In (Expression (N), N_Aggregate,
2415                                            N_Null,
2416                                            N_Real_Literal,
2417                                            N_Integer_Literal)
2418               then
2419                  Ret :=
2420                    Make_Qualified_Expression (Sloc (N),
2421                      Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
2422                      Expression   => Relocate_Node (Expression (N)));
2423               else
2424                  Ret :=
2425                    Unchecked_Convert_To
2426                      (Ret_Type, Relocate_Node (Expression (N)));
2427               end if;
2428
2429               if Nkind (Targ) = N_Defining_Identifier then
2430                  Rewrite (N,
2431                    Make_Assignment_Statement (Loc,
2432                      Name       => New_Occurrence_Of (Targ, Loc),
2433                      Expression => Ret));
2434               else
2435                  Rewrite (N,
2436                    Make_Assignment_Statement (Loc,
2437                      Name       => New_Copy (Targ),
2438                      Expression => Ret));
2439               end if;
2440
2441               Set_Assignment_OK (Name (N));
2442
2443               if Present (Exit_Lab) then
2444                  Insert_After (N,
2445                    Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
2446               end if;
2447            end if;
2448
2449            return OK;
2450
2451         --  An extended return becomes a block whose first statement is the
2452         --  assignment of the initial expression of the return object to the
2453         --  target of the call itself.
2454
2455         elsif Nkind (N) = N_Extended_Return_Statement then
2456            declare
2457               Return_Decl : constant Entity_Id :=
2458                               First (Return_Object_Declarations (N));
2459               Assign      : Node_Id;
2460
2461            begin
2462               Return_Object := Defining_Identifier (Return_Decl);
2463
2464               if Present (Expression (Return_Decl)) then
2465                  if Nkind (Targ) = N_Defining_Identifier then
2466                     Assign :=
2467                       Make_Assignment_Statement (Loc,
2468                         Name       => New_Occurrence_Of (Targ, Loc),
2469                         Expression => Expression (Return_Decl));
2470                  else
2471                     Assign :=
2472                       Make_Assignment_Statement (Loc,
2473                         Name       => New_Copy (Targ),
2474                         Expression => Expression (Return_Decl));
2475                  end if;
2476
2477                  Set_Assignment_OK (Name (Assign));
2478
2479                  if No (Handled_Statement_Sequence (N)) then
2480                     Set_Handled_Statement_Sequence (N,
2481                       Make_Handled_Sequence_Of_Statements (Loc,
2482                         Statements => New_List));
2483                  end if;
2484
2485                  Prepend (Assign,
2486                    Statements (Handled_Statement_Sequence (N)));
2487               end if;
2488
2489               Rewrite (N,
2490                 Make_Block_Statement (Loc,
2491                    Handled_Statement_Sequence =>
2492                      Handled_Statement_Sequence (N)));
2493
2494               return OK;
2495            end;
2496
2497         --  Remove pragma Unreferenced since it may refer to formals that
2498         --  are not visible in the inlined body, and in any case we will
2499         --  not be posting warnings on the inlined body so it is unneeded.
2500
2501         elsif Nkind (N) = N_Pragma
2502           and then Pragma_Name (N) = Name_Unreferenced
2503         then
2504            Rewrite (N, Make_Null_Statement (Sloc (N)));
2505            return OK;
2506
2507         else
2508            return OK;
2509         end if;
2510      end Process_Formals;
2511
2512      procedure Replace_Formals is new Traverse_Proc (Process_Formals);
2513
2514      ------------------
2515      -- Process_Sloc --
2516      ------------------
2517
2518      function Process_Sloc (Nod : Node_Id) return Traverse_Result is
2519      begin
2520         if not Debug_Generated_Code then
2521            Set_Sloc (Nod, Sloc (N));
2522            Set_Comes_From_Source (Nod, False);
2523         end if;
2524
2525         return OK;
2526      end Process_Sloc;
2527
2528      procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
2529
2530      ------------------------------
2531      --  Reset_Dispatching_Calls --
2532      ------------------------------
2533
2534      procedure Reset_Dispatching_Calls (N : Node_Id) is
2535
2536         function Do_Reset (N : Node_Id) return Traverse_Result;
2537         --  Comment required ???
2538
2539         --------------
2540         -- Do_Reset --
2541         --------------
2542
2543         function Do_Reset (N : Node_Id) return Traverse_Result is
2544         begin
2545            if Nkind (N) = N_Procedure_Call_Statement
2546              and then Nkind (Name (N)) = N_Selected_Component
2547              and then Nkind (Prefix (Name (N))) = N_Identifier
2548              and then Is_Formal (Entity (Prefix (Name (N))))
2549              and then Is_Dispatching_Operation
2550                         (Entity (Selector_Name (Name (N))))
2551            then
2552               Set_Entity (Selector_Name (Name (N)), Empty);
2553            end if;
2554
2555            return OK;
2556         end Do_Reset;
2557
2558         function Do_Reset_Calls is new Traverse_Func (Do_Reset);
2559
2560         --  Local variables
2561
2562         Dummy : constant Traverse_Result := Do_Reset_Calls (N);
2563         pragma Unreferenced (Dummy);
2564
2565         --  Start of processing for Reset_Dispatching_Calls
2566
2567      begin
2568         null;
2569      end Reset_Dispatching_Calls;
2570
2571      ---------------------------
2572      -- Rewrite_Function_Call --
2573      ---------------------------
2574
2575      procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
2576         HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
2577         Fst : constant Node_Id := First (Statements (HSS));
2578
2579      begin
2580         --  Optimize simple case: function body is a single return statement,
2581         --  which has been expanded into an assignment.
2582
2583         if Is_Empty_List (Declarations (Blk))
2584           and then Nkind (Fst) = N_Assignment_Statement
2585           and then No (Next (Fst))
2586         then
2587            --  The function call may have been rewritten as the temporary
2588            --  that holds the result of the call, in which case remove the
2589            --  now useless declaration.
2590
2591            if Nkind (N) = N_Identifier
2592              and then Nkind (Parent (Entity (N))) = N_Object_Declaration
2593            then
2594               Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
2595            end if;
2596
2597            Rewrite (N, Expression (Fst));
2598
2599         elsif Nkind (N) = N_Identifier
2600           and then Nkind (Parent (Entity (N))) = N_Object_Declaration
2601         then
2602            --  The block assigns the result of the call to the temporary
2603
2604            Insert_After (Parent (Entity (N)), Blk);
2605
2606         --  If the context is an assignment, and the left-hand side is free of
2607         --  side-effects, the replacement is also safe.
2608         --  Can this be generalized further???
2609
2610         elsif Nkind (Parent (N)) = N_Assignment_Statement
2611           and then
2612            (Is_Entity_Name (Name (Parent (N)))
2613              or else
2614                (Nkind (Name (Parent (N))) = N_Explicit_Dereference
2615                  and then Is_Entity_Name (Prefix (Name (Parent (N)))))
2616
2617              or else
2618                (Nkind (Name (Parent (N))) = N_Selected_Component
2619                  and then Is_Entity_Name (Prefix (Name (Parent (N))))))
2620         then
2621            --  Replace assignment with the block
2622
2623            declare
2624               Original_Assignment : constant Node_Id := Parent (N);
2625
2626            begin
2627               --  Preserve the original assignment node to keep the complete
2628               --  assignment subtree consistent enough for Analyze_Assignment
2629               --  to proceed (specifically, the original Lhs node must still
2630               --  have an assignment statement as its parent).
2631
2632               --  We cannot rely on Original_Node to go back from the block
2633               --  node to the assignment node, because the assignment might
2634               --  already be a rewrite substitution.
2635
2636               Discard_Node (Relocate_Node (Original_Assignment));
2637               Rewrite (Original_Assignment, Blk);
2638            end;
2639
2640         elsif Nkind (Parent (N)) = N_Object_Declaration then
2641
2642            --  A call to a function which returns an unconstrained type
2643            --  found in the expression initializing an object-declaration is
2644            --  expanded into a procedure call which must be added after the
2645            --  object declaration.
2646
2647            if Is_Unc_Decl and Back_End_Inlining then
2648               Insert_Action_After (Parent (N), Blk);
2649            else
2650               Set_Expression (Parent (N), Empty);
2651               Insert_After (Parent (N), Blk);
2652            end if;
2653
2654         elsif Is_Unc and then not Back_End_Inlining then
2655            Insert_Before (Parent (N), Blk);
2656         end if;
2657      end Rewrite_Function_Call;
2658
2659      ----------------------------
2660      -- Rewrite_Procedure_Call --
2661      ----------------------------
2662
2663      procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
2664         HSS  : constant Node_Id := Handled_Statement_Sequence (Blk);
2665
2666      begin
2667         --  If there is a transient scope for N, this will be the scope of the
2668         --  actions for N, and the statements in Blk need to be within this
2669         --  scope. For example, they need to have visibility on the constant
2670         --  declarations created for the formals.
2671
2672         --  If N needs no transient scope, and if there are no declarations in
2673         --  the inlined body, we can do a little optimization and insert the
2674         --  statements for the body directly after N, and rewrite N to a
2675         --  null statement, instead of rewriting N into a full-blown block
2676         --  statement.
2677
2678         if not Scope_Is_Transient
2679           and then Is_Empty_List (Declarations (Blk))
2680         then
2681            Insert_List_After (N, Statements (HSS));
2682            Rewrite (N, Make_Null_Statement (Loc));
2683         else
2684            Rewrite (N, Blk);
2685         end if;
2686      end Rewrite_Procedure_Call;
2687
2688      -------------------------
2689      -- Formal_Is_Used_Once --
2690      -------------------------
2691
2692      function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
2693         Use_Counter : Int := 0;
2694
2695         function Count_Uses (N : Node_Id) return Traverse_Result;
2696         --  Traverse the tree and count the uses of the formal parameter.
2697         --  In this case, for optimization purposes, we do not need to
2698         --  continue the traversal once more than one use is encountered.
2699
2700         ----------------
2701         -- Count_Uses --
2702         ----------------
2703
2704         function Count_Uses (N : Node_Id) return Traverse_Result is
2705         begin
2706            --  The original node is an identifier
2707
2708            if Nkind (N) = N_Identifier
2709              and then Present (Entity (N))
2710
2711               --  Original node's entity points to the one in the copied body
2712
2713              and then Nkind (Entity (N)) = N_Identifier
2714              and then Present (Entity (Entity (N)))
2715
2716               --  The entity of the copied node is the formal parameter
2717
2718              and then Entity (Entity (N)) = Formal
2719            then
2720               Use_Counter := Use_Counter + 1;
2721
2722               if Use_Counter > 1 then
2723
2724                  --  Denote more than one use and abandon the traversal
2725
2726                  Use_Counter := 2;
2727                  return Abandon;
2728
2729               end if;
2730            end if;
2731
2732            return OK;
2733         end Count_Uses;
2734
2735         procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
2736
2737      --  Start of processing for Formal_Is_Used_Once
2738
2739      begin
2740         Count_Formal_Uses (Orig_Bod);
2741         return Use_Counter = 1;
2742      end Formal_Is_Used_Once;
2743
2744   --  Start of processing for Expand_Inlined_Call
2745
2746   begin
2747      --  Initializations for old/new semantics
2748
2749      if not Back_End_Inlining then
2750         Is_Unc      := Is_Array_Type (Etype (Subp))
2751                          and then not Is_Constrained (Etype (Subp));
2752         Is_Unc_Decl := False;
2753      else
2754         Is_Unc      := Returns_Unconstrained_Type (Subp)
2755                          and then Optimization_Level > 0;
2756         Is_Unc_Decl := Nkind (Parent (N)) = N_Object_Declaration
2757                          and then Is_Unc;
2758      end if;
2759
2760      --  Check for an illegal attempt to inline a recursive procedure. If the
2761      --  subprogram has parameters this is detected when trying to supply a
2762      --  binding for parameters that already have one. For parameterless
2763      --  subprograms this must be done explicitly.
2764
2765      if In_Open_Scopes (Subp) then
2766         Error_Msg_N ("call to recursive subprogram cannot be inlined??", N);
2767         Set_Is_Inlined (Subp, False);
2768
2769         --  In GNATprove mode, issue a warning, and indicate that the
2770         --  subprogram is not always inlined by setting flag Is_Inlined_Always
2771         --  to False.
2772
2773         if GNATprove_Mode then
2774            Set_Is_Inlined_Always (Subp, False);
2775         end if;
2776
2777         return;
2778
2779      --  Skip inlining if this is not a true inlining since the attribute
2780      --  Body_To_Inline is also set for renamings (see sinfo.ads). For a
2781      --  true inlining, Orig_Bod has code rather than being an entity.
2782
2783      elsif Nkind (Orig_Bod) in N_Entity then
2784         return;
2785
2786      --  Skip inlining if the function returns an unconstrained type using
2787      --  an extended return statement since this part of the new inlining
2788      --  model which is not yet supported by the current implementation. ???
2789
2790      elsif Is_Unc
2791        and then
2792          Nkind (First (Statements (Handled_Statement_Sequence (Orig_Bod))))
2793            = N_Extended_Return_Statement
2794        and then not Back_End_Inlining
2795      then
2796         return;
2797      end if;
2798
2799      if Nkind (Orig_Bod) = N_Defining_Identifier
2800        or else Nkind (Orig_Bod) = N_Defining_Operator_Symbol
2801      then
2802         --  Subprogram is renaming_as_body. Calls occurring after the renaming
2803         --  can be replaced with calls to the renamed entity directly, because
2804         --  the subprograms are subtype conformant. If the renamed subprogram
2805         --  is an inherited operation, we must redo the expansion because
2806         --  implicit conversions may be needed. Similarly, if the renamed
2807         --  entity is inlined, expand the call for further optimizations.
2808
2809         Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
2810
2811         if Present (Alias (Orig_Bod)) or else Is_Inlined (Orig_Bod) then
2812            Expand_Call (N);
2813         end if;
2814
2815         return;
2816      end if;
2817
2818      --  Register the call in the list of inlined calls
2819
2820      Append_New_Elmt (N, To => Inlined_Calls);
2821
2822      --  Use generic machinery to copy body of inlined subprogram, as if it
2823      --  were an instantiation, resetting source locations appropriately, so
2824      --  that nested inlined calls appear in the main unit.
2825
2826      Save_Env (Subp, Empty);
2827      Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
2828
2829      --  Old semantics
2830
2831      if not Back_End_Inlining then
2832         declare
2833            Bod : Node_Id;
2834
2835         begin
2836            Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
2837            Blk :=
2838              Make_Block_Statement (Loc,
2839                Declarations               => Declarations (Bod),
2840                Handled_Statement_Sequence =>
2841                  Handled_Statement_Sequence (Bod));
2842
2843            if No (Declarations (Bod)) then
2844               Set_Declarations (Blk, New_List);
2845            end if;
2846
2847            --  For the unconstrained case, capture the name of the local
2848            --  variable that holds the result. This must be the first
2849            --  declaration in the block, because its bounds cannot depend
2850            --  on local variables. Otherwise there is no way to declare the
2851            --  result outside of the block. Needless to say, in general the
2852            --  bounds will depend on the actuals in the call.
2853
2854            --  If the context is an assignment statement, as is the case
2855            --  for the expansion of an extended return, the left-hand side
2856            --  provides bounds even if the return type is unconstrained.
2857
2858            if Is_Unc then
2859               declare
2860                  First_Decl : Node_Id;
2861
2862               begin
2863                  First_Decl := First (Declarations (Blk));
2864
2865                  if Nkind (First_Decl) /= N_Object_Declaration then
2866                     return;
2867                  end if;
2868
2869                  if Nkind (Parent (N)) /= N_Assignment_Statement then
2870                     Targ1 := Defining_Identifier (First_Decl);
2871                  else
2872                     Targ1 := Name (Parent (N));
2873                  end if;
2874               end;
2875            end if;
2876         end;
2877
2878      --  New semantics
2879
2880      else
2881         declare
2882            Bod : Node_Id;
2883
2884         begin
2885            --  General case
2886
2887            if not Is_Unc then
2888               Bod :=
2889                 Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
2890               Blk :=
2891                 Make_Block_Statement (Loc,
2892                   Declarations               => Declarations (Bod),
2893                   Handled_Statement_Sequence =>
2894                     Handled_Statement_Sequence (Bod));
2895
2896            --  Inline a call to a function that returns an unconstrained type.
2897            --  The semantic analyzer checked that frontend-inlined functions
2898            --  returning unconstrained types have no declarations and have
2899            --  a single extended return statement. As part of its processing
2900            --  the function was split in two subprograms: a procedure P and
2901            --  a function F that has a block with a call to procedure P (see
2902            --  Split_Unconstrained_Function).
2903
2904            else
2905               pragma Assert
2906                 (Nkind
2907                   (First
2908                     (Statements (Handled_Statement_Sequence (Orig_Bod)))) =
2909                                                         N_Block_Statement);
2910
2911               declare
2912                  Blk_Stmt    : constant Node_Id :=
2913                    First (Statements (Handled_Statement_Sequence (Orig_Bod)));
2914                  First_Stmt  : constant Node_Id :=
2915                    First (Statements (Handled_Statement_Sequence (Blk_Stmt)));
2916                  Second_Stmt : constant Node_Id := Next (First_Stmt);
2917
2918               begin
2919                  pragma Assert
2920                    (Nkind (First_Stmt) = N_Procedure_Call_Statement
2921                      and then Nkind (Second_Stmt) = N_Simple_Return_Statement
2922                      and then No (Next (Second_Stmt)));
2923
2924                  Bod :=
2925                    Copy_Generic_Node
2926                      (First
2927                        (Statements (Handled_Statement_Sequence (Orig_Bod))),
2928                       Empty, Instantiating => True);
2929                  Blk := Bod;
2930
2931                  --  Capture the name of the local variable that holds the
2932                  --  result. This must be the first declaration in the block,
2933                  --  because its bounds cannot depend on local variables.
2934                  --  Otherwise there is no way to declare the result outside
2935                  --  of the block. Needless to say, in general the bounds will
2936                  --  depend on the actuals in the call.
2937
2938                  if Nkind (Parent (N)) /= N_Assignment_Statement then
2939                     Targ1 := Defining_Identifier (First (Declarations (Blk)));
2940
2941                  --  If the context is an assignment statement, as is the case
2942                  --  for the expansion of an extended return, the left-hand
2943                  --  side provides bounds even if the return type is
2944                  --  unconstrained.
2945
2946                  else
2947                     Targ1 := Name (Parent (N));
2948                  end if;
2949               end;
2950            end if;
2951
2952            if No (Declarations (Bod)) then
2953               Set_Declarations (Blk, New_List);
2954            end if;
2955         end;
2956      end if;
2957
2958      --  If this is a derived function, establish the proper return type
2959
2960      if Present (Orig_Subp) and then Orig_Subp /= Subp then
2961         Ret_Type := Etype (Orig_Subp);
2962      else
2963         Ret_Type := Etype (Subp);
2964      end if;
2965
2966      --  Create temporaries for the actuals that are expressions, or that are
2967      --  scalars and require copying to preserve semantics.
2968
2969      F := First_Formal (Subp);
2970      A := First_Actual (N);
2971      while Present (F) loop
2972         if Present (Renamed_Object (F)) then
2973
2974            --  If expander is active, it is an error to try to inline a
2975            --  recursive program. In GNATprove mode, just indicate that the
2976            --  inlining will not happen, and mark the subprogram as not always
2977            --  inlined.
2978
2979            if GNATprove_Mode then
2980               Cannot_Inline
2981                 ("cannot inline call to recursive subprogram?", N, Subp);
2982               Set_Is_Inlined_Always (Subp, False);
2983            else
2984               Error_Msg_N
2985                 ("cannot inline call to recursive subprogram", N);
2986            end if;
2987
2988            return;
2989         end if;
2990
2991         --  Reset Last_Assignment for any parameters of mode out or in out, to
2992         --  prevent spurious warnings about overwriting for assignments to the
2993         --  formal in the inlined code.
2994
2995         if Is_Entity_Name (A) and then Ekind (F) /= E_In_Parameter then
2996            Set_Last_Assignment (Entity (A), Empty);
2997         end if;
2998
2999         --  If the argument may be a controlling argument in a call within
3000         --  the inlined body, we must preserve its classwide nature to insure
3001         --  that dynamic dispatching take place subsequently. If the formal
3002         --  has a constraint it must be preserved to retain the semantics of
3003         --  the body.
3004
3005         if Is_Class_Wide_Type (Etype (F))
3006           or else (Is_Access_Type (Etype (F))
3007                     and then Is_Class_Wide_Type (Designated_Type (Etype (F))))
3008         then
3009            Temp_Typ := Etype (F);
3010
3011         elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
3012           and then Etype (F) /= Base_Type (Etype (F))
3013         then
3014            Temp_Typ := Etype (F);
3015         else
3016            Temp_Typ := Etype (A);
3017         end if;
3018
3019         --  If the actual is a simple name or a literal, no need to
3020         --  create a temporary, object can be used directly.
3021
3022         --  If the actual is a literal and the formal has its address taken,
3023         --  we cannot pass the literal itself as an argument, so its value
3024         --  must be captured in a temporary.
3025
3026         if (Is_Entity_Name (A)
3027              and then
3028               (not Is_Scalar_Type (Etype (A))
3029                 or else Ekind (Entity (A)) = E_Enumeration_Literal))
3030
3031         --  When the actual is an identifier and the corresponding formal is
3032         --  used only once in the original body, the formal can be substituted
3033         --  directly with the actual parameter.
3034
3035           or else (Nkind (A) = N_Identifier
3036             and then Formal_Is_Used_Once (F))
3037
3038           or else
3039             (Nkind_In (A, N_Real_Literal,
3040                           N_Integer_Literal,
3041                           N_Character_Literal)
3042               and then not Address_Taken (F))
3043         then
3044            if Etype (F) /= Etype (A) then
3045               Set_Renamed_Object
3046                 (F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
3047            else
3048               Set_Renamed_Object (F, A);
3049            end if;
3050
3051         else
3052            Temp := Make_Temporary (Loc, 'C');
3053
3054            --  If the actual for an in/in-out parameter is a view conversion,
3055            --  make it into an unchecked conversion, given that an untagged
3056            --  type conversion is not a proper object for a renaming.
3057
3058            --  In-out conversions that involve real conversions have already
3059            --  been transformed in Expand_Actuals.
3060
3061            if Nkind (A) = N_Type_Conversion
3062              and then Ekind (F) /= E_In_Parameter
3063            then
3064               New_A :=
3065                 Make_Unchecked_Type_Conversion (Loc,
3066                   Subtype_Mark => New_Occurrence_Of (Etype (F), Loc),
3067                   Expression   => Relocate_Node (Expression (A)));
3068
3069            elsif Etype (F) /= Etype (A) then
3070               New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
3071               Temp_Typ := Etype (F);
3072
3073            else
3074               New_A := Relocate_Node (A);
3075            end if;
3076
3077            Set_Sloc (New_A, Sloc (N));
3078
3079            --  If the actual has a by-reference type, it cannot be copied,
3080            --  so its value is captured in a renaming declaration. Otherwise
3081            --  declare a local constant initialized with the actual.
3082
3083            --  We also use a renaming declaration for expressions of an array
3084            --  type that is not bit-packed, both for efficiency reasons and to
3085            --  respect the semantics of the call: in most cases the original
3086            --  call will pass the parameter by reference, and thus the inlined
3087            --  code will have the same semantics.
3088
3089            --  Finally, we need a renaming declaration in the case of limited
3090            --  types for which initialization cannot be by copy either.
3091
3092            if Ekind (F) = E_In_Parameter
3093              and then not Is_By_Reference_Type (Etype (A))
3094              and then not Is_Limited_Type (Etype (A))
3095              and then
3096                (not Is_Array_Type (Etype (A))
3097                  or else not Is_Object_Reference (A)
3098                  or else Is_Bit_Packed_Array (Etype (A)))
3099            then
3100               Decl :=
3101                 Make_Object_Declaration (Loc,
3102                   Defining_Identifier => Temp,
3103                   Constant_Present    => True,
3104                   Object_Definition   => New_Occurrence_Of (Temp_Typ, Loc),
3105                   Expression          => New_A);
3106            else
3107               Decl :=
3108                 Make_Object_Renaming_Declaration (Loc,
3109                   Defining_Identifier => Temp,
3110                   Subtype_Mark        => New_Occurrence_Of (Temp_Typ, Loc),
3111                   Name                => New_A);
3112            end if;
3113
3114            Append (Decl, Decls);
3115            Set_Renamed_Object (F, Temp);
3116         end if;
3117
3118         Next_Formal (F);
3119         Next_Actual (A);
3120      end loop;
3121
3122      --  Establish target of function call. If context is not assignment or
3123      --  declaration, create a temporary as a target. The declaration for the
3124      --  temporary may be subsequently optimized away if the body is a single
3125      --  expression, or if the left-hand side of the assignment is simple
3126      --  enough, i.e. an entity or an explicit dereference of one.
3127
3128      if Ekind (Subp) = E_Function then
3129         if Nkind (Parent (N)) = N_Assignment_Statement
3130           and then Is_Entity_Name (Name (Parent (N)))
3131         then
3132            Targ := Name (Parent (N));
3133
3134         elsif Nkind (Parent (N)) = N_Assignment_Statement
3135           and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
3136           and then Is_Entity_Name (Prefix (Name (Parent (N))))
3137         then
3138            Targ := Name (Parent (N));
3139
3140         elsif Nkind (Parent (N)) = N_Assignment_Statement
3141           and then Nkind (Name (Parent (N))) = N_Selected_Component
3142           and then Is_Entity_Name (Prefix (Name (Parent (N))))
3143         then
3144            Targ := New_Copy_Tree (Name (Parent (N)));
3145
3146         elsif Nkind (Parent (N)) = N_Object_Declaration
3147           and then Is_Limited_Type (Etype (Subp))
3148         then
3149            Targ := Defining_Identifier (Parent (N));
3150
3151         --  New semantics: In an object declaration avoid an extra copy
3152         --  of the result of a call to an inlined function that returns
3153         --  an unconstrained type
3154
3155         elsif Back_End_Inlining
3156           and then Nkind (Parent (N)) = N_Object_Declaration
3157           and then Is_Unc
3158         then
3159            Targ := Defining_Identifier (Parent (N));
3160
3161         else
3162            --  Replace call with temporary and create its declaration
3163
3164            Temp := Make_Temporary (Loc, 'C');
3165            Set_Is_Internal (Temp);
3166
3167            --  For the unconstrained case, the generated temporary has the
3168            --  same constrained declaration as the result variable. It may
3169            --  eventually be possible to remove that temporary and use the
3170            --  result variable directly.
3171
3172            if Is_Unc and then Nkind (Parent (N)) /= N_Assignment_Statement
3173            then
3174               Decl :=
3175                 Make_Object_Declaration (Loc,
3176                   Defining_Identifier => Temp,
3177                   Object_Definition   =>
3178                     New_Copy_Tree (Object_Definition (Parent (Targ1))));
3179
3180               Replace_Formals (Decl);
3181
3182            else
3183               Decl :=
3184                 Make_Object_Declaration (Loc,
3185                   Defining_Identifier => Temp,
3186                   Object_Definition   => New_Occurrence_Of (Ret_Type, Loc));
3187
3188               Set_Etype (Temp, Ret_Type);
3189            end if;
3190
3191            Set_No_Initialization (Decl);
3192            Append (Decl, Decls);
3193            Rewrite (N, New_Occurrence_Of (Temp, Loc));
3194            Targ := Temp;
3195         end if;
3196      end if;
3197
3198      Insert_Actions (N, Decls);
3199
3200      if Is_Unc_Decl then
3201
3202         --  Special management for inlining a call to a function that returns
3203         --  an unconstrained type and initializes an object declaration: we
3204         --  avoid generating undesired extra calls and goto statements.
3205
3206         --     Given:
3207         --                 function Func (...) return ...
3208         --                 begin
3209         --                    declare
3210         --                       Result : String (1 .. 4);
3211         --                    begin
3212         --                       Proc (Result, ...);
3213         --                       return Result;
3214         --                    end;
3215         --                 end F;
3216
3217         --                 Result : String := Func (...);
3218
3219         --     Replace this object declaration by:
3220
3221         --                 Result : String (1 .. 4);
3222         --                 Proc (Result, ...);
3223
3224         Remove_Homonym (Targ);
3225
3226         Decl :=
3227           Make_Object_Declaration
3228             (Loc,
3229              Defining_Identifier => Targ,
3230              Object_Definition   =>
3231                New_Copy_Tree (Object_Definition (Parent (Targ1))));
3232         Replace_Formals (Decl);
3233         Rewrite (Parent (N), Decl);
3234         Analyze (Parent (N));
3235
3236         --  Avoid spurious warnings since we know that this declaration is
3237         --  referenced by the procedure call.
3238
3239         Set_Never_Set_In_Source (Targ, False);
3240
3241         --  Remove the local declaration of the extended return stmt from the
3242         --  inlined code
3243
3244         Remove (Parent (Targ1));
3245
3246         --  Update the reference to the result (since we have rewriten the
3247         --  object declaration)
3248
3249         declare
3250            Blk_Call_Stmt : Node_Id;
3251
3252         begin
3253            --  Capture the call to the procedure
3254
3255            Blk_Call_Stmt :=
3256              First (Statements (Handled_Statement_Sequence (Blk)));
3257            pragma Assert
3258              (Nkind (Blk_Call_Stmt) = N_Procedure_Call_Statement);
3259
3260            Remove (First (Parameter_Associations (Blk_Call_Stmt)));
3261            Prepend_To (Parameter_Associations (Blk_Call_Stmt),
3262              New_Occurrence_Of (Targ, Loc));
3263         end;
3264
3265         --  Remove the return statement
3266
3267         pragma Assert
3268           (Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
3269                                                   N_Simple_Return_Statement);
3270
3271         Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
3272      end if;
3273
3274      --  Traverse the tree and replace formals with actuals or their thunks.
3275      --  Attach block to tree before analysis and rewriting.
3276
3277      Replace_Formals (Blk);
3278      Set_Parent (Blk, N);
3279
3280      if GNATprove_Mode then
3281         null;
3282
3283      elsif not Comes_From_Source (Subp) or else Is_Predef then
3284         Reset_Slocs (Blk);
3285      end if;
3286
3287      if Is_Unc_Decl then
3288
3289         --  No action needed since return statement has been already removed
3290
3291         null;
3292
3293      elsif Present (Exit_Lab) then
3294
3295         --  If the body was a single expression, the single return statement
3296         --  and the corresponding label are useless.
3297
3298         if Num_Ret = 1
3299           and then
3300             Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
3301                                                            N_Goto_Statement
3302         then
3303            Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
3304         else
3305            Append (Lab_Decl, (Declarations (Blk)));
3306            Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
3307         end if;
3308      end if;
3309
3310      --  Analyze Blk with In_Inlined_Body set, to avoid spurious errors
3311      --  on conflicting private views that Gigi would ignore. If this is a
3312      --  predefined unit, analyze with checks off, as is done in the non-
3313      --  inlined run-time units.
3314
3315      declare
3316         I_Flag : constant Boolean := In_Inlined_Body;
3317
3318      begin
3319         In_Inlined_Body := True;
3320
3321         if Is_Predef then
3322            declare
3323               Style : constant Boolean := Style_Check;
3324
3325            begin
3326               Style_Check := False;
3327
3328               --  Search for dispatching calls that use the Object.Operation
3329               --  notation using an Object that is a parameter of the inlined
3330               --  function. We reset the decoration of Operation to force
3331               --  the reanalysis of the inlined dispatching call because
3332               --  the actual object has been inlined.
3333
3334               Reset_Dispatching_Calls (Blk);
3335
3336               Analyze (Blk, Suppress => All_Checks);
3337               Style_Check := Style;
3338            end;
3339
3340         else
3341            Analyze (Blk);
3342         end if;
3343
3344         In_Inlined_Body := I_Flag;
3345      end;
3346
3347      if Ekind (Subp) = E_Procedure then
3348         Rewrite_Procedure_Call (N, Blk);
3349
3350      else
3351         Rewrite_Function_Call (N, Blk);
3352
3353         if Is_Unc_Decl then
3354            null;
3355
3356         --  For the unconstrained case, the replacement of the call has been
3357         --  made prior to the complete analysis of the generated declarations.
3358         --  Propagate the proper type now.
3359
3360         elsif Is_Unc then
3361            if Nkind (N) = N_Identifier then
3362               Set_Etype (N, Etype (Entity (N)));
3363            else
3364               Set_Etype (N, Etype (Targ1));
3365            end if;
3366         end if;
3367      end if;
3368
3369      Restore_Env;
3370
3371      --  Cleanup mapping between formals and actuals for other expansions
3372
3373      F := First_Formal (Subp);
3374      while Present (F) loop
3375         Set_Renamed_Object (F, Empty);
3376         Next_Formal (F);
3377      end loop;
3378   end Expand_Inlined_Call;
3379
3380   --------------------------
3381   -- Get_Code_Unit_Entity --
3382   --------------------------
3383
3384   function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id is
3385      Unit : Entity_Id := Cunit_Entity (Get_Code_Unit (E));
3386
3387   begin
3388      if Ekind (Unit) = E_Package_Body then
3389         Unit := Spec_Entity (Unit);
3390      end if;
3391
3392      return Unit;
3393   end Get_Code_Unit_Entity;
3394
3395   ------------------------------
3396   -- Has_Excluded_Declaration --
3397   ------------------------------
3398
3399   function Has_Excluded_Declaration
3400     (Subp  : Entity_Id;
3401      Decls : List_Id) return Boolean
3402   is
3403      D : Node_Id;
3404
3405      function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
3406      --  Nested subprograms make a given body ineligible for inlining, but
3407      --  we make an exception for instantiations of unchecked conversion.
3408      --  The body has not been analyzed yet, so check the name, and verify
3409      --  that the visible entity with that name is the predefined unit.
3410
3411      -----------------------------
3412      -- Is_Unchecked_Conversion --
3413      -----------------------------
3414
3415      function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
3416         Id   : constant Node_Id := Name (D);
3417         Conv : Entity_Id;
3418
3419      begin
3420         if Nkind (Id) = N_Identifier
3421           and then Chars (Id) = Name_Unchecked_Conversion
3422         then
3423            Conv := Current_Entity (Id);
3424
3425         elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
3426           and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
3427         then
3428            Conv := Current_Entity (Selector_Name (Id));
3429         else
3430            return False;
3431         end if;
3432
3433         return Present (Conv)
3434           and then Is_Predefined_File_Name
3435                      (Unit_File_Name (Get_Source_Unit (Conv)))
3436           and then Is_Intrinsic_Subprogram (Conv);
3437      end Is_Unchecked_Conversion;
3438
3439   --  Start of processing for Has_Excluded_Declaration
3440
3441   begin
3442      --  No action needed if the check is not needed
3443
3444      if not Check_Inlining_Restrictions then
3445         return False;
3446      end if;
3447
3448      D := First (Decls);
3449      while Present (D) loop
3450
3451         --  First declarations universally excluded
3452
3453         if Nkind (D) = N_Package_Declaration then
3454            Cannot_Inline
3455              ("cannot inline & (nested package declaration)?",
3456               D, Subp);
3457            return True;
3458
3459         elsif Nkind (D) = N_Package_Instantiation then
3460            Cannot_Inline
3461              ("cannot inline & (nested package instantiation)?",
3462               D, Subp);
3463            return True;
3464         end if;
3465
3466         --  Then declarations excluded only for front end inlining
3467
3468         if Back_End_Inlining then
3469            null;
3470
3471         elsif Nkind (D) = N_Task_Type_Declaration
3472           or else Nkind (D) = N_Single_Task_Declaration
3473         then
3474            Cannot_Inline
3475              ("cannot inline & (nested task type declaration)?",
3476               D, Subp);
3477            return True;
3478
3479         elsif Nkind (D) = N_Protected_Type_Declaration
3480           or else Nkind (D) = N_Single_Protected_Declaration
3481         then
3482            Cannot_Inline
3483              ("cannot inline & (nested protected type declaration)?",
3484               D, Subp);
3485            return True;
3486
3487         elsif Nkind (D) = N_Subprogram_Body then
3488            Cannot_Inline
3489              ("cannot inline & (nested subprogram)?",
3490               D, Subp);
3491            return True;
3492
3493         elsif Nkind (D) = N_Function_Instantiation
3494           and then not Is_Unchecked_Conversion (D)
3495         then
3496            Cannot_Inline
3497              ("cannot inline & (nested function instantiation)?",
3498               D, Subp);
3499            return True;
3500
3501         elsif Nkind (D) = N_Procedure_Instantiation then
3502            Cannot_Inline
3503              ("cannot inline & (nested procedure instantiation)?",
3504               D, Subp);
3505            return True;
3506         end if;
3507
3508         Next (D);
3509      end loop;
3510
3511      return False;
3512   end Has_Excluded_Declaration;
3513
3514   ----------------------------
3515   -- Has_Excluded_Statement --
3516   ----------------------------
3517
3518   function Has_Excluded_Statement
3519     (Subp  : Entity_Id;
3520      Stats : List_Id) return Boolean
3521   is
3522      S : Node_Id;
3523      E : Node_Id;
3524
3525   begin
3526      --  No action needed if the check is not needed
3527
3528      if not Check_Inlining_Restrictions then
3529         return False;
3530      end if;
3531
3532      S := First (Stats);
3533      while Present (S) loop
3534         if Nkind_In (S, N_Abort_Statement,
3535                         N_Asynchronous_Select,
3536                         N_Conditional_Entry_Call,
3537                         N_Delay_Relative_Statement,
3538                         N_Delay_Until_Statement,
3539                         N_Selective_Accept,
3540                         N_Timed_Entry_Call)
3541         then
3542            Cannot_Inline
3543              ("cannot inline & (non-allowed statement)?", S, Subp);
3544            return True;
3545
3546         elsif Nkind (S) = N_Block_Statement then
3547            if Present (Declarations (S))
3548              and then Has_Excluded_Declaration (Subp, Declarations (S))
3549            then
3550               return True;
3551
3552            elsif Present (Handled_Statement_Sequence (S)) then
3553               if not Back_End_Inlining
3554                 and then
3555                   Present
3556                     (Exception_Handlers (Handled_Statement_Sequence (S)))
3557               then
3558                  Cannot_Inline
3559                    ("cannot inline& (exception handler)?",
3560                     First (Exception_Handlers
3561                              (Handled_Statement_Sequence (S))),
3562                     Subp);
3563                  return True;
3564
3565               elsif Has_Excluded_Statement
3566                       (Subp, Statements (Handled_Statement_Sequence (S)))
3567               then
3568                  return True;
3569               end if;
3570            end if;
3571
3572         elsif Nkind (S) = N_Case_Statement then
3573            E := First (Alternatives (S));
3574            while Present (E) loop
3575               if Has_Excluded_Statement (Subp, Statements (E)) then
3576                  return True;
3577               end if;
3578
3579               Next (E);
3580            end loop;
3581
3582         elsif Nkind (S) = N_If_Statement then
3583            if Has_Excluded_Statement (Subp, Then_Statements (S)) then
3584               return True;
3585            end if;
3586
3587            if Present (Elsif_Parts (S)) then
3588               E := First (Elsif_Parts (S));
3589               while Present (E) loop
3590                  if Has_Excluded_Statement (Subp, Then_Statements (E)) then
3591                     return True;
3592                  end if;
3593
3594                  Next (E);
3595               end loop;
3596            end if;
3597
3598            if Present (Else_Statements (S))
3599              and then Has_Excluded_Statement (Subp, Else_Statements (S))
3600            then
3601               return True;
3602            end if;
3603
3604         elsif Nkind (S) = N_Loop_Statement
3605           and then Has_Excluded_Statement (Subp, Statements (S))
3606         then
3607            return True;
3608
3609         elsif Nkind (S) = N_Extended_Return_Statement then
3610            if Present (Handled_Statement_Sequence (S))
3611              and then
3612                Has_Excluded_Statement
3613                  (Subp, Statements (Handled_Statement_Sequence (S)))
3614            then
3615               return True;
3616
3617            elsif not Back_End_Inlining
3618              and then Present (Handled_Statement_Sequence (S))
3619              and then
3620                Present (Exception_Handlers
3621                          (Handled_Statement_Sequence (S)))
3622            then
3623               Cannot_Inline
3624                 ("cannot inline& (exception handler)?",
3625                  First (Exception_Handlers (Handled_Statement_Sequence (S))),
3626                  Subp);
3627               return True;
3628            end if;
3629         end if;
3630
3631         Next (S);
3632      end loop;
3633
3634      return False;
3635   end Has_Excluded_Statement;
3636
3637   --------------------------
3638   -- Has_Initialized_Type --
3639   --------------------------
3640
3641   function Has_Initialized_Type (E : Entity_Id) return Boolean is
3642      E_Body : constant Node_Id := Get_Subprogram_Body (E);
3643      Decl   : Node_Id;
3644
3645   begin
3646      if No (E_Body) then        --  imported subprogram
3647         return False;
3648
3649      else
3650         Decl := First (Declarations (E_Body));
3651         while Present (Decl) loop
3652            if Nkind (Decl) = N_Full_Type_Declaration
3653              and then Present (Init_Proc (Defining_Identifier (Decl)))
3654            then
3655               return True;
3656            end if;
3657
3658            Next (Decl);
3659         end loop;
3660      end if;
3661
3662      return False;
3663   end Has_Initialized_Type;
3664
3665   -----------------------
3666   -- Has_Single_Return --
3667   -----------------------
3668
3669   function Has_Single_Return (N : Node_Id) return Boolean is
3670      Return_Statement : Node_Id := Empty;
3671
3672      function Check_Return (N : Node_Id) return Traverse_Result;
3673
3674      ------------------
3675      -- Check_Return --
3676      ------------------
3677
3678      function Check_Return (N : Node_Id) return Traverse_Result is
3679      begin
3680         if Nkind (N) = N_Simple_Return_Statement then
3681            if Present (Expression (N))
3682              and then Is_Entity_Name (Expression (N))
3683            then
3684               if No (Return_Statement) then
3685                  Return_Statement := N;
3686                  return OK;
3687
3688               elsif Chars (Expression (N)) =
3689                     Chars (Expression (Return_Statement))
3690               then
3691                  return OK;
3692
3693               else
3694                  return Abandon;
3695               end if;
3696
3697            --  A return statement within an extended return is a noop
3698            --  after inlining.
3699
3700            elsif No (Expression (N))
3701              and then
3702                Nkind (Parent (Parent (N))) = N_Extended_Return_Statement
3703            then
3704               return OK;
3705
3706            else
3707               --  Expression has wrong form
3708
3709               return Abandon;
3710            end if;
3711
3712         --  We can only inline a build-in-place function if it has a single
3713         --  extended return.
3714
3715         elsif Nkind (N) = N_Extended_Return_Statement then
3716            if No (Return_Statement) then
3717               Return_Statement := N;
3718               return OK;
3719
3720            else
3721               return Abandon;
3722            end if;
3723
3724         else
3725            return OK;
3726         end if;
3727      end Check_Return;
3728
3729      function Check_All_Returns is new Traverse_Func (Check_Return);
3730
3731   --  Start of processing for Has_Single_Return
3732
3733   begin
3734      if Check_All_Returns (N) /= OK then
3735         return False;
3736
3737      elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
3738         return True;
3739
3740      else
3741         return Present (Declarations (N))
3742           and then Present (First (Declarations (N)))
3743           and then Chars (Expression (Return_Statement)) =
3744                    Chars (Defining_Identifier (First (Declarations (N))));
3745      end if;
3746   end Has_Single_Return;
3747
3748   -----------------------------
3749   -- In_Main_Unit_Or_Subunit --
3750   -----------------------------
3751
3752   function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean is
3753      Comp : Node_Id := Cunit (Get_Code_Unit (E));
3754
3755   begin
3756      --  Check whether the subprogram or package to inline is within the main
3757      --  unit or its spec or within a subunit. In either case there are no
3758      --  additional bodies to process. If the subprogram appears in a parent
3759      --  of the current unit, the check on whether inlining is possible is
3760      --  done in Analyze_Inlined_Bodies.
3761
3762      while Nkind (Unit (Comp)) = N_Subunit loop
3763         Comp := Library_Unit (Comp);
3764      end loop;
3765
3766      return Comp = Cunit (Main_Unit)
3767        or else Comp = Library_Unit (Cunit (Main_Unit));
3768   end In_Main_Unit_Or_Subunit;
3769
3770   ----------------
3771   -- Initialize --
3772   ----------------
3773
3774   procedure Initialize is
3775   begin
3776      Pending_Descriptor.Init;
3777      Pending_Instantiations.Init;
3778      Inlined_Bodies.Init;
3779      Successors.Init;
3780      Inlined.Init;
3781
3782      for J in Hash_Headers'Range loop
3783         Hash_Headers (J) := No_Subp;
3784      end loop;
3785
3786      Inlined_Calls := No_Elist;
3787      Backend_Calls := No_Elist;
3788      Backend_Inlined_Subps := No_Elist;
3789      Backend_Not_Inlined_Subps := No_Elist;
3790   end Initialize;
3791
3792   ------------------------
3793   -- Instantiate_Bodies --
3794   ------------------------
3795
3796   --  Generic bodies contain all the non-local references, so an
3797   --  instantiation does not need any more context than Standard
3798   --  itself, even if the instantiation appears in an inner scope.
3799   --  Generic associations have verified that the contract model is
3800   --  satisfied, so that any error that may occur in the analysis of
3801   --  the body is an internal error.
3802
3803   procedure Instantiate_Bodies is
3804      J    : Int;
3805      Info : Pending_Body_Info;
3806
3807   begin
3808      if Serious_Errors_Detected = 0 then
3809         Expander_Active := (Operating_Mode = Opt.Generate_Code);
3810         Push_Scope (Standard_Standard);
3811         To_Clean := New_Elmt_List;
3812
3813         if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
3814            Start_Generic;
3815         end if;
3816
3817         --  A body instantiation may generate additional instantiations, so
3818         --  the following loop must scan to the end of a possibly expanding
3819         --  set (that's why we can't simply use a FOR loop here).
3820
3821         J := 0;
3822         while J <= Pending_Instantiations.Last
3823           and then Serious_Errors_Detected = 0
3824         loop
3825            Info := Pending_Instantiations.Table (J);
3826
3827            --  If the instantiation node is absent, it has been removed
3828            --  as part of unreachable code.
3829
3830            if No (Info.Inst_Node) then
3831               null;
3832
3833            elsif Nkind (Info.Act_Decl) = N_Package_Declaration then
3834               Instantiate_Package_Body (Info);
3835               Add_Scope_To_Clean (Defining_Entity (Info.Act_Decl));
3836
3837            else
3838               Instantiate_Subprogram_Body (Info);
3839            end if;
3840
3841            J := J + 1;
3842         end loop;
3843
3844         --  Reset the table of instantiations. Additional instantiations
3845         --  may be added through inlining, when additional bodies are
3846         --  analyzed.
3847
3848         Pending_Instantiations.Init;
3849
3850         --  We can now complete the cleanup actions of scopes that contain
3851         --  pending instantiations (skipped for generic units, since we
3852         --  never need any cleanups in generic units).
3853         --  pending instantiations.
3854
3855         if Expander_Active
3856           and then not Is_Generic_Unit (Main_Unit_Entity)
3857         then
3858            Cleanup_Scopes;
3859         elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
3860            End_Generic;
3861         end if;
3862
3863         Pop_Scope;
3864      end if;
3865   end Instantiate_Bodies;
3866
3867   ---------------
3868   -- Is_Nested --
3869   ---------------
3870
3871   function Is_Nested (E : Entity_Id) return Boolean is
3872      Scop : Entity_Id;
3873
3874   begin
3875      Scop := Scope (E);
3876      while Scop /= Standard_Standard loop
3877         if Ekind (Scop) in Subprogram_Kind then
3878            return True;
3879
3880         elsif Ekind (Scop) = E_Task_Type
3881           or else Ekind (Scop) = E_Entry
3882           or else Ekind (Scop) = E_Entry_Family
3883         then
3884            return True;
3885         end if;
3886
3887         Scop := Scope (Scop);
3888      end loop;
3889
3890      return False;
3891   end Is_Nested;
3892
3893   ------------------------
3894   -- List_Inlining_Info --
3895   ------------------------
3896
3897   procedure List_Inlining_Info is
3898      Elmt  : Elmt_Id;
3899      Nod   : Node_Id;
3900      Count : Nat;
3901
3902   begin
3903      if not Debug_Flag_Dot_J then
3904         return;
3905      end if;
3906
3907      --  Generate listing of calls inlined by the frontend
3908
3909      if Present (Inlined_Calls) then
3910         Count := 0;
3911         Elmt  := First_Elmt (Inlined_Calls);
3912         while Present (Elmt) loop
3913            Nod := Node (Elmt);
3914
3915            if In_Extended_Main_Code_Unit (Nod) then
3916               Count := Count + 1;
3917
3918               if Count = 1 then
3919                  Write_Str ("List of calls inlined by the frontend");
3920                  Write_Eol;
3921               end if;
3922
3923               Write_Str ("  ");
3924               Write_Int (Count);
3925               Write_Str (":");
3926               Write_Location (Sloc (Nod));
3927               Write_Str (":");
3928               Output.Write_Eol;
3929            end if;
3930
3931            Next_Elmt (Elmt);
3932         end loop;
3933      end if;
3934
3935      --  Generate listing of calls passed to the backend
3936
3937      if Present (Backend_Calls) then
3938         Count := 0;
3939
3940         Elmt := First_Elmt (Backend_Calls);
3941         while Present (Elmt) loop
3942            Nod := Node (Elmt);
3943
3944            if In_Extended_Main_Code_Unit (Nod) then
3945               Count := Count + 1;
3946
3947               if Count = 1 then
3948                  Write_Str ("List of inlined calls passed to the backend");
3949                  Write_Eol;
3950               end if;
3951
3952               Write_Str ("  ");
3953               Write_Int (Count);
3954               Write_Str (":");
3955               Write_Location (Sloc (Nod));
3956               Output.Write_Eol;
3957            end if;
3958
3959            Next_Elmt (Elmt);
3960         end loop;
3961      end if;
3962
3963      --  Generate listing of subprograms passed to the backend
3964
3965      if Present (Backend_Inlined_Subps) and then Back_End_Inlining then
3966         Count := 0;
3967
3968         Elmt := First_Elmt (Backend_Inlined_Subps);
3969         while Present (Elmt) loop
3970            Nod := Node (Elmt);
3971
3972            Count := Count + 1;
3973
3974            if Count = 1 then
3975               Write_Str
3976                 ("List of inlined subprograms passed to the backend");
3977               Write_Eol;
3978            end if;
3979
3980            Write_Str ("  ");
3981            Write_Int (Count);
3982            Write_Str (":");
3983            Write_Name (Chars (Nod));
3984            Write_Str (" (");
3985            Write_Location (Sloc (Nod));
3986            Write_Str (")");
3987            Output.Write_Eol;
3988
3989            Next_Elmt (Elmt);
3990         end loop;
3991      end if;
3992
3993      --  Generate listing of subprograms that cannot be inlined by the backend
3994
3995      if Present (Backend_Not_Inlined_Subps) and then Back_End_Inlining then
3996         Count := 0;
3997
3998         Elmt := First_Elmt (Backend_Not_Inlined_Subps);
3999         while Present (Elmt) loop
4000            Nod := Node (Elmt);
4001
4002            Count := Count + 1;
4003
4004            if Count = 1 then
4005               Write_Str
4006                 ("List of subprograms that cannot be inlined by the backend");
4007               Write_Eol;
4008            end if;
4009
4010            Write_Str ("  ");
4011            Write_Int (Count);
4012            Write_Str (":");
4013            Write_Name (Chars (Nod));
4014            Write_Str (" (");
4015            Write_Location (Sloc (Nod));
4016            Write_Str (")");
4017            Output.Write_Eol;
4018
4019            Next_Elmt (Elmt);
4020         end loop;
4021      end if;
4022   end List_Inlining_Info;
4023
4024   ----------
4025   -- Lock --
4026   ----------
4027
4028   procedure Lock is
4029   begin
4030      Pending_Instantiations.Locked := True;
4031      Inlined_Bodies.Locked := True;
4032      Successors.Locked := True;
4033      Inlined.Locked := True;
4034      Pending_Instantiations.Release;
4035      Inlined_Bodies.Release;
4036      Successors.Release;
4037      Inlined.Release;
4038   end Lock;
4039
4040   --------------------------------
4041   -- Remove_Aspects_And_Pragmas --
4042   --------------------------------
4043
4044   procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id) is
4045      procedure Remove_Items (List : List_Id);
4046      --  Remove all useless aspects/pragmas from a particular list
4047
4048      ------------------
4049      -- Remove_Items --
4050      ------------------
4051
4052      procedure Remove_Items (List : List_Id) is
4053         Item      : Node_Id;
4054         Item_Id   : Node_Id;
4055         Next_Item : Node_Id;
4056
4057      begin
4058         --  Traverse the list looking for an aspect specification or a pragma
4059
4060         Item := First (List);
4061         while Present (Item) loop
4062            Next_Item := Next (Item);
4063
4064            if Nkind (Item) = N_Aspect_Specification then
4065               Item_Id := Identifier (Item);
4066            elsif Nkind (Item) = N_Pragma then
4067               Item_Id := Pragma_Identifier (Item);
4068            else
4069               Item_Id := Empty;
4070            end if;
4071
4072            if Present (Item_Id)
4073              and then Nam_In (Chars (Item_Id), Name_Contract_Cases,
4074                                                Name_Global,
4075                                                Name_Depends,
4076                                                Name_Postcondition,
4077                                                Name_Precondition,
4078                                                Name_Refined_Global,
4079                                                Name_Refined_Depends,
4080                                                Name_Refined_Post,
4081                                                Name_Test_Case,
4082                                                Name_Unmodified,
4083                                                Name_Unreferenced)
4084            then
4085               Remove (Item);
4086            end if;
4087
4088            Item := Next_Item;
4089         end loop;
4090      end Remove_Items;
4091
4092   --  Start of processing for Remove_Aspects_And_Pragmas
4093
4094   begin
4095      Remove_Items (Aspect_Specifications (Body_Decl));
4096      Remove_Items (Declarations          (Body_Decl));
4097   end Remove_Aspects_And_Pragmas;
4098
4099   --------------------------
4100   -- Remove_Dead_Instance --
4101   --------------------------
4102
4103   procedure Remove_Dead_Instance (N : Node_Id) is
4104      J : Int;
4105
4106   begin
4107      J := 0;
4108      while J <= Pending_Instantiations.Last loop
4109         if Pending_Instantiations.Table (J).Inst_Node = N then
4110            Pending_Instantiations.Table (J).Inst_Node := Empty;
4111            return;
4112         end if;
4113
4114         J := J + 1;
4115      end loop;
4116   end Remove_Dead_Instance;
4117
4118end Inline;
4119