1/* An expandable hash tables datatype.
2   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009, 2010
3   Free Software Foundation, Inc.
4   Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6This file is part of the libiberty library.
7Libiberty is free software; you can redistribute it and/or
8modify it under the terms of the GNU Library General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12Libiberty is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15Library General Public License for more details.
16
17You should have received a copy of the GNU Library General Public
18License along with libiberty; see the file COPYING.LIB.  If
19not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA.  */
21
22/* This package implements basic hash table functionality.  It is possible
23   to search for an entry, create an entry and destroy an entry.
24
25   Elements in the table are generic pointers.
26
27   The size of the table is not fixed; if the occupancy of the table
28   grows too high the hash table will be expanded.
29
30   The abstract data implementation is based on generalized Algorithm D
31   from Knuth's book "The art of computer programming".  Hash table is
32   expanded by creation of new hash table and transferring elements from
33   the old table to the new table. */
34
35#ifdef HAVE_CONFIG_H
36#include "config.h"
37#endif
38
39#include <sys/types.h>
40
41#ifdef HAVE_STDLIB_H
42#include <stdlib.h>
43#endif
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
47#ifdef HAVE_MALLOC_H
48#include <malloc.h>
49#endif
50#ifdef HAVE_LIMITS_H
51#include <limits.h>
52#endif
53#ifdef HAVE_INTTYPES_H
54#include <inttypes.h>
55#endif
56#ifdef HAVE_STDINT_H
57#include <stdint.h>
58#endif
59
60#include <stdio.h>
61
62#include "libiberty.h"
63#include "ansidecl.h"
64#include "hashtab.h"
65
66#ifndef CHAR_BIT
67#define CHAR_BIT 8
68#endif
69
70static unsigned int higher_prime_index (unsigned long);
71static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
72static hashval_t htab_mod (hashval_t, htab_t);
73static hashval_t htab_mod_m2 (hashval_t, htab_t);
74static hashval_t hash_pointer (const void *);
75static int eq_pointer (const void *, const void *);
76static int htab_expand (htab_t);
77static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
78
79/* At some point, we could make these be NULL, and modify the
80   hash-table routines to handle NULL specially; that would avoid
81   function-call overhead for the common case of hashing pointers.  */
82htab_hash htab_hash_pointer = hash_pointer;
83htab_eq htab_eq_pointer = eq_pointer;
84
85/* Table of primes and multiplicative inverses.
86
87   Note that these are not minimally reduced inverses.  Unlike when generating
88   code to divide by a constant, we want to be able to use the same algorithm
89   all the time.  All of these inverses (are implied to) have bit 32 set.
90
91   For the record, here's the function that computed the table; it's a
92   vastly simplified version of the function of the same name from gcc.  */
93
94#if 0
95unsigned int
96ceil_log2 (unsigned int x)
97{
98  int i;
99  for (i = 31; i >= 0 ; --i)
100    if (x > (1u << i))
101      return i+1;
102  abort ();
103}
104
105unsigned int
106choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
107{
108  unsigned long long mhigh;
109  double nx;
110  int lgup, post_shift;
111  int pow, pow2;
112  int n = 32, precision = 32;
113
114  lgup = ceil_log2 (d);
115  pow = n + lgup;
116  pow2 = n + lgup - precision;
117
118  nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
119  mhigh = nx / d;
120
121  *shiftp = lgup - 1;
122  *mlp = mhigh;
123  return mhigh >> 32;
124}
125#endif
126
127struct prime_ent
128{
129  hashval_t prime;
130  hashval_t inv;
131  hashval_t inv_m2;	/* inverse of prime-2 */
132  hashval_t shift;
133};
134
135static struct prime_ent const prime_tab[] = {
136  {          7, 0x24924925, 0x9999999b, 2 },
137  {         13, 0x3b13b13c, 0x745d1747, 3 },
138  {         31, 0x08421085, 0x1a7b9612, 4 },
139  {         61, 0x0c9714fc, 0x15b1e5f8, 5 },
140  {        127, 0x02040811, 0x0624dd30, 6 },
141  {        251, 0x05197f7e, 0x073260a5, 7 },
142  {        509, 0x01824366, 0x02864fc8, 8 },
143  {       1021, 0x00c0906d, 0x014191f7, 9 },
144  {       2039, 0x0121456f, 0x0161e69e, 10 },
145  {       4093, 0x00300902, 0x00501908, 11 },
146  {       8191, 0x00080041, 0x00180241, 12 },
147  {      16381, 0x000c0091, 0x00140191, 13 },
148  {      32749, 0x002605a5, 0x002a06e6, 14 },
149  {      65521, 0x000f00e2, 0x00110122, 15 },
150  {     131071, 0x00008001, 0x00018003, 16 },
151  {     262139, 0x00014002, 0x0001c004, 17 },
152  {     524287, 0x00002001, 0x00006001, 18 },
153  {    1048573, 0x00003001, 0x00005001, 19 },
154  {    2097143, 0x00004801, 0x00005801, 20 },
155  {    4194301, 0x00000c01, 0x00001401, 21 },
156  {    8388593, 0x00001e01, 0x00002201, 22 },
157  {   16777213, 0x00000301, 0x00000501, 23 },
158  {   33554393, 0x00001381, 0x00001481, 24 },
159  {   67108859, 0x00000141, 0x000001c1, 25 },
160  {  134217689, 0x000004e1, 0x00000521, 26 },
161  {  268435399, 0x00000391, 0x000003b1, 27 },
162  {  536870909, 0x00000019, 0x00000029, 28 },
163  { 1073741789, 0x0000008d, 0x00000095, 29 },
164  { 2147483647, 0x00000003, 0x00000007, 30 },
165  /* Avoid "decimal constant so large it is unsigned" for 4294967291.  */
166  { 0xfffffffb, 0x00000006, 0x00000008, 31 }
167};
168
169/* The following function returns an index into the above table of the
170   nearest prime number which is greater than N, and near a power of two. */
171
172static unsigned int
173higher_prime_index (unsigned long n)
174{
175  unsigned int low = 0;
176  unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
177
178  while (low != high)
179    {
180      unsigned int mid = low + (high - low) / 2;
181      if (n > prime_tab[mid].prime)
182	low = mid + 1;
183      else
184	high = mid;
185    }
186
187  /* If we've run out of primes, abort.  */
188  if (n > prime_tab[low].prime)
189    {
190      fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
191      abort ();
192    }
193
194  return low;
195}
196
197/* Returns non-zero if P1 and P2 are equal.  */
198
199static int
200eq_pointer (const PTR p1, const PTR p2)
201{
202  return p1 == p2;
203}
204
205
206/* The parens around the function names in the next two definitions
207   are essential in order to prevent macro expansions of the name.
208   The bodies, however, are expanded as expected, so they are not
209   recursive definitions.  */
210
211/* Return the current size of given hash table.  */
212
213#define htab_size(htab)  ((htab)->size)
214
215size_t
216(htab_size) (htab_t htab)
217{
218  return htab_size (htab);
219}
220
221/* Return the current number of elements in given hash table. */
222
223#define htab_elements(htab)  ((htab)->n_elements - (htab)->n_deleted)
224
225size_t
226(htab_elements) (htab_t htab)
227{
228  return htab_elements (htab);
229}
230
231/* Return X % Y.  */
232
233static inline hashval_t
234htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
235{
236  /* The multiplicative inverses computed above are for 32-bit types, and
237     requires that we be able to compute a highpart multiply.  */
238#ifdef UNSIGNED_64BIT_TYPE
239  __extension__ typedef UNSIGNED_64BIT_TYPE ull;
240  if (sizeof (hashval_t) * CHAR_BIT <= 32)
241    {
242      hashval_t t1, t2, t3, t4, q, r;
243
244      t1 = ((ull)x * inv) >> 32;
245      t2 = x - t1;
246      t3 = t2 >> 1;
247      t4 = t1 + t3;
248      q  = t4 >> shift;
249      r  = x - (q * y);
250
251      return r;
252    }
253#endif
254
255  /* Otherwise just use the native division routines.  */
256  return x % y;
257}
258
259/* Compute the primary hash for HASH given HTAB's current size.  */
260
261static inline hashval_t
262htab_mod (hashval_t hash, htab_t htab)
263{
264  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
265  return htab_mod_1 (hash, p->prime, p->inv, p->shift);
266}
267
268/* Compute the secondary hash for HASH given HTAB's current size.  */
269
270static inline hashval_t
271htab_mod_m2 (hashval_t hash, htab_t htab)
272{
273  const struct prime_ent *p = &prime_tab[htab->size_prime_index];
274  return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
275}
276
277/* This function creates table with length slightly longer than given
278   source length.  Created hash table is initiated as empty (all the
279   hash table entries are HTAB_EMPTY_ENTRY).  The function returns the
280   created hash table, or NULL if memory allocation fails.  */
281
282htab_t
283htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
284                   htab_del del_f, htab_alloc alloc_f, htab_free free_f)
285{
286  return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f,
287				  free_f);
288}
289
290/* As above, but uses the variants of ALLOC_F and FREE_F which accept
291   an extra argument.  */
292
293htab_t
294htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
295		      htab_del del_f, void *alloc_arg,
296		      htab_alloc_with_arg alloc_f,
297		      htab_free_with_arg free_f)
298{
299  htab_t result;
300  unsigned int size_prime_index;
301
302  size_prime_index = higher_prime_index (size);
303  size = prime_tab[size_prime_index].prime;
304
305  result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
306  if (result == NULL)
307    return NULL;
308  result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
309  if (result->entries == NULL)
310    {
311      if (free_f != NULL)
312	(*free_f) (alloc_arg, result);
313      return NULL;
314    }
315  result->size = size;
316  result->size_prime_index = size_prime_index;
317  result->hash_f = hash_f;
318  result->eq_f = eq_f;
319  result->del_f = del_f;
320  result->alloc_arg = alloc_arg;
321  result->alloc_with_arg_f = alloc_f;
322  result->free_with_arg_f = free_f;
323  return result;
324}
325
326/*
327
328@deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @
329htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @
330htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @
331htab_free @var{free_f})
332
333This function creates a hash table that uses two different allocators
334@var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself
335and its entries respectively.  This is useful when variables of different
336types need to be allocated with different allocators.
337
338The created hash table is slightly larger than @var{size} and it is
339initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}).
340The function returns the created hash table, or @code{NULL} if memory
341allocation fails.
342
343@end deftypefn
344
345*/
346
347htab_t
348htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
349			 htab_del del_f, htab_alloc alloc_tab_f,
350			 htab_alloc alloc_f, htab_free free_f)
351{
352  htab_t result;
353  unsigned int size_prime_index;
354
355  size_prime_index = higher_prime_index (size);
356  size = prime_tab[size_prime_index].prime;
357
358  result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab));
359  if (result == NULL)
360    return NULL;
361  result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
362  if (result->entries == NULL)
363    {
364      if (free_f != NULL)
365	(*free_f) (result);
366      return NULL;
367    }
368  result->size = size;
369  result->size_prime_index = size_prime_index;
370  result->hash_f = hash_f;
371  result->eq_f = eq_f;
372  result->del_f = del_f;
373  result->alloc_f = alloc_f;
374  result->free_f = free_f;
375  return result;
376}
377
378
379/* Update the function pointers and allocation parameter in the htab_t.  */
380
381void
382htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
383                       htab_del del_f, PTR alloc_arg,
384                       htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
385{
386  htab->hash_f = hash_f;
387  htab->eq_f = eq_f;
388  htab->del_f = del_f;
389  htab->alloc_arg = alloc_arg;
390  htab->alloc_with_arg_f = alloc_f;
391  htab->free_with_arg_f = free_f;
392}
393
394/* These functions exist solely for backward compatibility.  */
395
396#undef htab_create
397htab_t
398htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
399{
400  return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
401}
402
403htab_t
404htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
405{
406  return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
407}
408
409/* This function frees all memory allocated for given hash table.
410   Naturally the hash table must already exist. */
411
412void
413htab_delete (htab_t htab)
414{
415  size_t size = htab_size (htab);
416  PTR *entries = htab->entries;
417  int i;
418
419  if (htab->del_f)
420    for (i = size - 1; i >= 0; i--)
421      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
422	(*htab->del_f) (entries[i]);
423
424  if (htab->free_f != NULL)
425    {
426      (*htab->free_f) (entries);
427      (*htab->free_f) (htab);
428    }
429  else if (htab->free_with_arg_f != NULL)
430    {
431      (*htab->free_with_arg_f) (htab->alloc_arg, entries);
432      (*htab->free_with_arg_f) (htab->alloc_arg, htab);
433    }
434}
435
436/* This function clears all entries in the given hash table.  */
437
438void
439htab_empty (htab_t htab)
440{
441  size_t size = htab_size (htab);
442  PTR *entries = htab->entries;
443  int i;
444
445  if (htab->del_f)
446    for (i = size - 1; i >= 0; i--)
447      if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
448	(*htab->del_f) (entries[i]);
449
450  /* Instead of clearing megabyte, downsize the table.  */
451  if (size > 1024*1024 / sizeof (PTR))
452    {
453      int nindex = higher_prime_index (1024 / sizeof (PTR));
454      int nsize = prime_tab[nindex].prime;
455
456      if (htab->free_f != NULL)
457	(*htab->free_f) (htab->entries);
458      else if (htab->free_with_arg_f != NULL)
459	(*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
460      if (htab->alloc_with_arg_f != NULL)
461	htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
462						           sizeof (PTR *));
463      else
464	htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
465     htab->size = nsize;
466     htab->size_prime_index = nindex;
467    }
468  else
469    memset (entries, 0, size * sizeof (PTR));
470  htab->n_deleted = 0;
471  htab->n_elements = 0;
472}
473
474/* Similar to htab_find_slot, but without several unwanted side effects:
475    - Does not call htab->eq_f when it finds an existing entry.
476    - Does not change the count of elements/searches/collisions in the
477      hash table.
478   This function also assumes there are no deleted entries in the table.
479   HASH is the hash value for the element to be inserted.  */
480
481static PTR *
482find_empty_slot_for_expand (htab_t htab, hashval_t hash)
483{
484  hashval_t index = htab_mod (hash, htab);
485  size_t size = htab_size (htab);
486  PTR *slot = htab->entries + index;
487  hashval_t hash2;
488
489  if (*slot == HTAB_EMPTY_ENTRY)
490    return slot;
491  else if (*slot == HTAB_DELETED_ENTRY)
492    abort ();
493
494  hash2 = htab_mod_m2 (hash, htab);
495  for (;;)
496    {
497      index += hash2;
498      if (index >= size)
499	index -= size;
500
501      slot = htab->entries + index;
502      if (*slot == HTAB_EMPTY_ENTRY)
503	return slot;
504      else if (*slot == HTAB_DELETED_ENTRY)
505	abort ();
506    }
507}
508
509/* The following function changes size of memory allocated for the
510   entries and repeatedly inserts the table elements.  The occupancy
511   of the table after the call will be about 50%.  Naturally the hash
512   table must already exist.  Remember also that the place of the
513   table entries is changed.  If memory allocation failures are allowed,
514   this function will return zero, indicating that the table could not be
515   expanded.  If all goes well, it will return a non-zero value.  */
516
517static int
518htab_expand (htab_t htab)
519{
520  PTR *oentries;
521  PTR *olimit;
522  PTR *p;
523  PTR *nentries;
524  size_t nsize, osize, elts;
525  unsigned int oindex, nindex;
526
527  oentries = htab->entries;
528  oindex = htab->size_prime_index;
529  osize = htab->size;
530  olimit = oentries + osize;
531  elts = htab_elements (htab);
532
533  /* Resize only when table after removal of unused elements is either
534     too full or too empty.  */
535  if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
536    {
537      nindex = higher_prime_index (elts * 2);
538      nsize = prime_tab[nindex].prime;
539    }
540  else
541    {
542      nindex = oindex;
543      nsize = osize;
544    }
545
546  if (htab->alloc_with_arg_f != NULL)
547    nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
548						  sizeof (PTR *));
549  else
550    nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
551  if (nentries == NULL)
552    return 0;
553  htab->entries = nentries;
554  htab->size = nsize;
555  htab->size_prime_index = nindex;
556  htab->n_elements -= htab->n_deleted;
557  htab->n_deleted = 0;
558
559  p = oentries;
560  do
561    {
562      PTR x = *p;
563
564      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
565	{
566	  PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
567
568	  *q = x;
569	}
570
571      p++;
572    }
573  while (p < olimit);
574
575  if (htab->free_f != NULL)
576    (*htab->free_f) (oentries);
577  else if (htab->free_with_arg_f != NULL)
578    (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
579  return 1;
580}
581
582/* This function searches for a hash table entry equal to the given
583   element.  It cannot be used to insert or delete an element.  */
584
585PTR
586htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
587{
588  hashval_t index, hash2;
589  size_t size;
590  PTR entry;
591
592  htab->searches++;
593  size = htab_size (htab);
594  index = htab_mod (hash, htab);
595
596  entry = htab->entries[index];
597  if (entry == HTAB_EMPTY_ENTRY
598      || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
599    return entry;
600
601  hash2 = htab_mod_m2 (hash, htab);
602  for (;;)
603    {
604      htab->collisions++;
605      index += hash2;
606      if (index >= size)
607	index -= size;
608
609      entry = htab->entries[index];
610      if (entry == HTAB_EMPTY_ENTRY
611	  || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
612	return entry;
613    }
614}
615
616/* Like htab_find_slot_with_hash, but compute the hash value from the
617   element.  */
618
619PTR
620htab_find (htab_t htab, const PTR element)
621{
622  return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
623}
624
625/* This function searches for a hash table slot containing an entry
626   equal to the given element.  To delete an entry, call this with
627   insert=NO_INSERT, then call htab_clear_slot on the slot returned
628   (possibly after doing some checks).  To insert an entry, call this
629   with insert=INSERT, then write the value you want into the returned
630   slot.  When inserting an entry, NULL may be returned if memory
631   allocation fails.  */
632
633PTR *
634htab_find_slot_with_hash (htab_t htab, const PTR element,
635                          hashval_t hash, enum insert_option insert)
636{
637  PTR *first_deleted_slot;
638  hashval_t index, hash2;
639  size_t size;
640  PTR entry;
641
642  size = htab_size (htab);
643  if (insert == INSERT && size * 3 <= htab->n_elements * 4)
644    {
645      if (htab_expand (htab) == 0)
646	return NULL;
647      size = htab_size (htab);
648    }
649
650  index = htab_mod (hash, htab);
651
652  htab->searches++;
653  first_deleted_slot = NULL;
654
655  entry = htab->entries[index];
656  if (entry == HTAB_EMPTY_ENTRY)
657    goto empty_entry;
658  else if (entry == HTAB_DELETED_ENTRY)
659    first_deleted_slot = &htab->entries[index];
660  else if ((*htab->eq_f) (entry, element))
661    return &htab->entries[index];
662
663  hash2 = htab_mod_m2 (hash, htab);
664  for (;;)
665    {
666      htab->collisions++;
667      index += hash2;
668      if (index >= size)
669	index -= size;
670
671      entry = htab->entries[index];
672      if (entry == HTAB_EMPTY_ENTRY)
673	goto empty_entry;
674      else if (entry == HTAB_DELETED_ENTRY)
675	{
676	  if (!first_deleted_slot)
677	    first_deleted_slot = &htab->entries[index];
678	}
679      else if ((*htab->eq_f) (entry, element))
680	return &htab->entries[index];
681    }
682
683 empty_entry:
684  if (insert == NO_INSERT)
685    return NULL;
686
687  if (first_deleted_slot)
688    {
689      htab->n_deleted--;
690      *first_deleted_slot = HTAB_EMPTY_ENTRY;
691      return first_deleted_slot;
692    }
693
694  htab->n_elements++;
695  return &htab->entries[index];
696}
697
698/* Like htab_find_slot_with_hash, but compute the hash value from the
699   element.  */
700
701PTR *
702htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
703{
704  return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
705				   insert);
706}
707
708/* This function deletes an element with the given value from hash
709   table (the hash is computed from the element).  If there is no matching
710   element in the hash table, this function does nothing.  */
711
712void
713htab_remove_elt (htab_t htab, PTR element)
714{
715  htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
716}
717
718
719/* This function deletes an element with the given value from hash
720   table.  If there is no matching element in the hash table, this
721   function does nothing.  */
722
723void
724htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
725{
726  PTR *slot;
727
728  slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
729  if (*slot == HTAB_EMPTY_ENTRY)
730    return;
731
732  if (htab->del_f)
733    (*htab->del_f) (*slot);
734
735  *slot = HTAB_DELETED_ENTRY;
736  htab->n_deleted++;
737}
738
739/* This function clears a specified slot in a hash table.  It is
740   useful when you've already done the lookup and don't want to do it
741   again.  */
742
743void
744htab_clear_slot (htab_t htab, PTR *slot)
745{
746  if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
747      || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
748    abort ();
749
750  if (htab->del_f)
751    (*htab->del_f) (*slot);
752
753  *slot = HTAB_DELETED_ENTRY;
754  htab->n_deleted++;
755}
756
757/* This function scans over the entire hash table calling
758   CALLBACK for each live entry.  If CALLBACK returns false,
759   the iteration stops.  INFO is passed as CALLBACK's second
760   argument.  */
761
762void
763htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
764{
765  PTR *slot;
766  PTR *limit;
767
768  slot = htab->entries;
769  limit = slot + htab_size (htab);
770
771  do
772    {
773      PTR x = *slot;
774
775      if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
776	if (!(*callback) (slot, info))
777	  break;
778    }
779  while (++slot < limit);
780}
781
782/* Like htab_traverse_noresize, but does resize the table when it is
783   too empty to improve effectivity of subsequent calls.  */
784
785void
786htab_traverse (htab_t htab, htab_trav callback, PTR info)
787{
788  size_t size = htab_size (htab);
789  if (htab_elements (htab) * 8 < size && size > 32)
790    htab_expand (htab);
791
792  htab_traverse_noresize (htab, callback, info);
793}
794
795/* Return the fraction of fixed collisions during all work with given
796   hash table. */
797
798double
799htab_collisions (htab_t htab)
800{
801  if (htab->searches == 0)
802    return 0.0;
803
804  return (double) htab->collisions / (double) htab->searches;
805}
806
807/* Hash P as a null-terminated string.
808
809   Copied from gcc/hashtable.c.  Zack had the following to say with respect
810   to applicability, though note that unlike hashtable.c, this hash table
811   implementation re-hashes rather than chain buckets.
812
813   http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
814   From: Zack Weinberg <zackw@panix.com>
815   Date: Fri, 17 Aug 2001 02:15:56 -0400
816
817   I got it by extracting all the identifiers from all the source code
818   I had lying around in mid-1999, and testing many recurrences of
819   the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
820   prime numbers or the appropriate identity.  This was the best one.
821   I don't remember exactly what constituted "best", except I was
822   looking at bucket-length distributions mostly.
823
824   So it should be very good at hashing identifiers, but might not be
825   as good at arbitrary strings.
826
827   I'll add that it thoroughly trounces the hash functions recommended
828   for this use at http://burtleburtle.net/bob/hash/index.html, both
829   on speed and bucket distribution.  I haven't tried it against the
830   function they just started using for Perl's hashes.  */
831
832hashval_t
833htab_hash_string (const PTR p)
834{
835  const unsigned char *str = (const unsigned char *) p;
836  hashval_t r = 0;
837  unsigned char c;
838
839  while ((c = *str++) != 0)
840    r = r * 67 + c - 113;
841
842  return r;
843}
844
845/* DERIVED FROM:
846--------------------------------------------------------------------
847lookup2.c, by Bob Jenkins, December 1996, Public Domain.
848hash(), hash2(), hash3, and mix() are externally useful functions.
849Routines to test the hash are included if SELF_TEST is defined.
850You can use this free for any purpose.  It has no warranty.
851--------------------------------------------------------------------
852*/
853
854/*
855--------------------------------------------------------------------
856mix -- mix 3 32-bit values reversibly.
857For every delta with one or two bit set, and the deltas of all three
858  high bits or all three low bits, whether the original value of a,b,c
859  is almost all zero or is uniformly distributed,
860* If mix() is run forward or backward, at least 32 bits in a,b,c
861  have at least 1/4 probability of changing.
862* If mix() is run forward, every bit of c will change between 1/3 and
863  2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.)
864mix() was built out of 36 single-cycle latency instructions in a
865  structure that could supported 2x parallelism, like so:
866      a -= b;
867      a -= c; x = (c>>13);
868      b -= c; a ^= x;
869      b -= a; x = (a<<8);
870      c -= a; b ^= x;
871      c -= b; x = (b>>13);
872      ...
873  Unfortunately, superscalar Pentiums and Sparcs can't take advantage
874  of that parallelism.  They've also turned some of those single-cycle
875  latency instructions into multi-cycle latency instructions.  Still,
876  this is the fastest good hash I could find.  There were about 2^^68
877  to choose from.  I only looked at a billion or so.
878--------------------------------------------------------------------
879*/
880/* same, but slower, works on systems that might have 8 byte hashval_t's */
881#define mix(a,b,c) \
882{ \
883  a -= b; a -= c; a ^= (c>>13); \
884  b -= c; b -= a; b ^= (a<< 8); \
885  c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
886  a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
887  b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
888  c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
889  a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
890  b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
891  c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
892}
893
894/*
895--------------------------------------------------------------------
896hash() -- hash a variable-length key into a 32-bit value
897  k     : the key (the unaligned variable-length array of bytes)
898  len   : the length of the key, counting by bytes
899  level : can be any 4-byte value
900Returns a 32-bit value.  Every bit of the key affects every bit of
901the return value.  Every 1-bit and 2-bit delta achieves avalanche.
902About 36+6len instructions.
903
904The best hash table sizes are powers of 2.  There is no need to do
905mod a prime (mod is sooo slow!).  If you need less than 32 bits,
906use a bitmask.  For example, if you need only 10 bits, do
907  h = (h & hashmask(10));
908In which case, the hash table should have hashsize(10) elements.
909
910If you are hashing n strings (ub1 **)k, do it like this:
911  for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
912
913By Bob Jenkins, 1996.  bob_jenkins@burtleburtle.net.  You may use this
914code any way you wish, private, educational, or commercial.  It's free.
915
916See http://burtleburtle.net/bob/hash/evahash.html
917Use for hash table lookup, or anything where one collision in 2^32 is
918acceptable.  Do NOT use for cryptographic purposes.
919--------------------------------------------------------------------
920*/
921
922hashval_t
923iterative_hash (const PTR k_in /* the key */,
924                register size_t  length /* the length of the key */,
925                register hashval_t initval /* the previous hash, or
926                                              an arbitrary value */)
927{
928  register const unsigned char *k = (const unsigned char *)k_in;
929  register hashval_t a,b,c,len;
930
931  /* Set up the internal state */
932  len = length;
933  a = b = 0x9e3779b9;  /* the golden ratio; an arbitrary value */
934  c = initval;           /* the previous hash value */
935
936  /*---------------------------------------- handle most of the key */
937#ifndef WORDS_BIGENDIAN
938  /* On a little-endian machine, if the data is 4-byte aligned we can hash
939     by word for better speed.  This gives nondeterministic results on
940     big-endian machines.  */
941  if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
942    while (len >= 12)    /* aligned */
943      {
944	a += *(hashval_t *)(k+0);
945	b += *(hashval_t *)(k+4);
946	c += *(hashval_t *)(k+8);
947	mix(a,b,c);
948	k += 12; len -= 12;
949      }
950  else /* unaligned */
951#endif
952    while (len >= 12)
953      {
954	a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
955	b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
956	c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
957	mix(a,b,c);
958	k += 12; len -= 12;
959      }
960
961  /*------------------------------------- handle the last 11 bytes */
962  c += length;
963  switch(len)              /* all the case statements fall through */
964    {
965    case 11: c+=((hashval_t)k[10]<<24);	/* fall through */
966    case 10: c+=((hashval_t)k[9]<<16);	/* fall through */
967    case 9 : c+=((hashval_t)k[8]<<8);	/* fall through */
968      /* the first byte of c is reserved for the length */
969    case 8 : b+=((hashval_t)k[7]<<24);	/* fall through */
970    case 7 : b+=((hashval_t)k[6]<<16);	/* fall through */
971    case 6 : b+=((hashval_t)k[5]<<8);	/* fall through */
972    case 5 : b+=k[4];			/* fall through */
973    case 4 : a+=((hashval_t)k[3]<<24);	/* fall through */
974    case 3 : a+=((hashval_t)k[2]<<16);	/* fall through */
975    case 2 : a+=((hashval_t)k[1]<<8);	/* fall through */
976    case 1 : a+=k[0];
977      /* case 0: nothing left to add */
978    }
979  mix(a,b,c);
980  /*-------------------------------------------- report the result */
981  return c;
982}
983
984/* Returns a hash code for pointer P. Simplified version of evahash */
985
986static hashval_t
987hash_pointer (const PTR p)
988{
989  intptr_t v = (intptr_t) p;
990  unsigned a, b, c;
991
992  a = b = 0x9e3779b9;
993  a += v >> (sizeof (intptr_t) * CHAR_BIT / 2);
994  b += v & (((intptr_t) 1 << (sizeof (intptr_t) * CHAR_BIT / 2)) - 1);
995  c = 0x42135234;
996  mix (a, b, c);
997  return c;
998}
999