1/* AArch64-specific support for NN-bit ELF.
2   Copyright (C) 2009-2017 Free Software Foundation, Inc.
3   Contributed by ARM Ltd.
4
5   This file is part of BFD, the Binary File Descriptor library.
6
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 3 of the License, or
10   (at your option) any later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program; see the file COPYING3. If not,
19   see <http://www.gnu.org/licenses/>.  */
20
21/* Notes on implementation:
22
23  Thread Local Store (TLS)
24
25  Overview:
26
27  The implementation currently supports both traditional TLS and TLS
28  descriptors, but only general dynamic (GD).
29
30  For traditional TLS the assembler will present us with code
31  fragments of the form:
32
33  adrp x0, :tlsgd:foo
34                           R_AARCH64_TLSGD_ADR_PAGE21(foo)
35  add  x0, :tlsgd_lo12:foo
36                           R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37  bl   __tls_get_addr
38  nop
39
40  For TLS descriptors the assembler will present us with code
41  fragments of the form:
42
43  adrp  x0, :tlsdesc:foo                      R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44  ldr   x1, [x0, #:tlsdesc_lo12:foo]          R_AARCH64_TLSDESC_LD64_LO12(foo)
45  add   x0, x0, #:tlsdesc_lo12:foo            R_AARCH64_TLSDESC_ADD_LO12(foo)
46  .tlsdesccall foo
47  blr   x1                                    R_AARCH64_TLSDESC_CALL(foo)
48
49  The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50  indicate that foo is thread local and should be accessed via the
51  traditional TLS mechanims.
52
53  The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54  against foo indicate that 'foo' is thread local and should be accessed
55  via a TLS descriptor mechanism.
56
57  The precise instruction sequence is only relevant from the
58  perspective of linker relaxation which is currently not implemented.
59
60  The static linker must detect that 'foo' is a TLS object and
61  allocate a double GOT entry. The GOT entry must be created for both
62  global and local TLS symbols. Note that this is different to none
63  TLS local objects which do not need a GOT entry.
64
65  In the traditional TLS mechanism, the double GOT entry is used to
66  provide the tls_index structure, containing module and offset
67  entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68  on the module entry. The loader will subsequently fixup this
69  relocation with the module identity.
70
71  For global traditional TLS symbols the static linker places an
72  R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73  will subsequently fixup the offset. For local TLS symbols the static
74  linker fixes up offset.
75
76  In the TLS descriptor mechanism the double GOT entry is used to
77  provide the descriptor. The static linker places the relocation
78  R_AARCH64_TLSDESC on the first GOT slot. The loader will
79  subsequently fix this up.
80
81  Implementation:
82
83  The handling of TLS symbols is implemented across a number of
84  different backend functions. The following is a top level view of
85  what processing is performed where.
86
87  The TLS implementation maintains state information for each TLS
88  symbol. The state information for local and global symbols is kept
89  in different places. Global symbols use generic BFD structures while
90  local symbols use backend specific structures that are allocated and
91  maintained entirely by the backend.
92
93  The flow:
94
95  elfNN_aarch64_check_relocs()
96
97  This function is invoked for each relocation.
98
99  The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100  R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101  spotted. One time creation of local symbol data structures are
102  created when the first local symbol is seen.
103
104  The reference count for a symbol is incremented.  The GOT type for
105  each symbol is marked as general dynamic.
106
107  elfNN_aarch64_allocate_dynrelocs ()
108
109  For each global with positive reference count we allocate a double
110  GOT slot. For a traditional TLS symbol we allocate space for two
111  relocation entries on the GOT, for a TLS descriptor symbol we
112  allocate space for one relocation on the slot. Record the GOT offset
113  for this symbol.
114
115  elfNN_aarch64_size_dynamic_sections ()
116
117  Iterate all input BFDS, look for in the local symbol data structure
118  constructed earlier for local TLS symbols and allocate them double
119  GOT slots along with space for a single GOT relocation. Update the
120  local symbol structure to record the GOT offset allocated.
121
122  elfNN_aarch64_relocate_section ()
123
124  Calls elfNN_aarch64_final_link_relocate ()
125
126  Emit the relevant TLS relocations against the GOT for each TLS
127  symbol. For local TLS symbols emit the GOT offset directly. The GOT
128  relocations are emitted once the first time a TLS symbol is
129  encountered. The implementation uses the LSB of the GOT offset to
130  flag that the relevant GOT relocations for a symbol have been
131  emitted. All of the TLS code that uses the GOT offset needs to take
132  care to mask out this flag bit before using the offset.
133
134  elfNN_aarch64_final_link_relocate ()
135
136  Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations.  */
137
138#include "sysdep.h"
139#include "bfd.h"
140#include "libiberty.h"
141#include "libbfd.h"
142#include "bfd_stdint.h"
143#include "elf-bfd.h"
144#include "bfdlink.h"
145#include "objalloc.h"
146#include "elf/aarch64.h"
147#include "elfxx-aarch64.h"
148
149#define ARCH_SIZE	NN
150
151#if ARCH_SIZE == 64
152#define AARCH64_R(NAME)		R_AARCH64_ ## NAME
153#define AARCH64_R_STR(NAME)	"R_AARCH64_" #NAME
154#define HOWTO64(...)		HOWTO (__VA_ARGS__)
155#define HOWTO32(...)		EMPTY_HOWTO (0)
156#define LOG_FILE_ALIGN	3
157#endif
158
159#if ARCH_SIZE == 32
160#define AARCH64_R(NAME)		R_AARCH64_P32_ ## NAME
161#define AARCH64_R_STR(NAME)	"R_AARCH64_P32_" #NAME
162#define HOWTO64(...)		EMPTY_HOWTO (0)
163#define HOWTO32(...)		HOWTO (__VA_ARGS__)
164#define LOG_FILE_ALIGN	2
165#endif
166
167#define IS_AARCH64_TLS_RELOC(R_TYPE)				\
168  ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC		\
169   || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21		\
170   || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21		\
171   || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC		\
172   || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1		\
173   || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21	\
174   || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC	\
175   || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC	\
176   || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19	\
177   || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC	\
178   || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1	\
179   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12	\
180   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12	\
181   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC	\
182   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC		\
183   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21		\
184   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21		\
185   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12	\
186   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC	\
187   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12	\
188   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC	\
189   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12	\
190   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC	\
191   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12	\
192   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC	\
193   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0	\
194   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC	\
195   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1	\
196   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC	\
197   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2	\
198   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12	\
199   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12	\
200   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC	\
201   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0		\
202   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC	\
203   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1		\
204   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC	\
205   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2		\
206   || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD			\
207   || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL			\
208   || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL			\
209   || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
210
211#define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE)			\
212  ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD		\
213   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC		\
214   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21		\
215   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21		\
216   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL		\
217   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19		\
218   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC	\
219   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR			\
220   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC		\
221   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1		\
222   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR			\
223   || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21		\
224   || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21		\
225   || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC		\
226   || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC		\
227   || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1		\
228   || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21	\
229   || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19	\
230   || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC	\
231   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC		\
232   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21		\
233   || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
234
235#define IS_AARCH64_TLSDESC_RELOC(R_TYPE)			\
236  ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC			\
237   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD			\
238   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC		\
239   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21		\
240   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21		\
241   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL		\
242   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC	\
243   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC	\
244   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR			\
245   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19		\
246   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC		\
247   || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
248
249#define ELIMINATE_COPY_RELOCS 0
250
251/* Return size of a relocation entry.  HTAB is the bfd's
252   elf_aarch64_link_hash_entry.  */
253#define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
254
255/* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32.  */
256#define GOT_ENTRY_SIZE                  (ARCH_SIZE / 8)
257#define PLT_ENTRY_SIZE                  (32)
258#define PLT_SMALL_ENTRY_SIZE            (16)
259#define PLT_TLSDESC_ENTRY_SIZE          (32)
260
261/* Encoding of the nop instruction */
262#define INSN_NOP 0xd503201f
263
264#define aarch64_compute_jump_table_size(htab)		\
265  (((htab)->root.srelplt == NULL) ? 0			\
266   : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
267
268/* The first entry in a procedure linkage table looks like this
269   if the distance between the PLTGOT and the PLT is < 4GB use
270   these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
271   in x16 and needs to work out PLTGOT[1] by using an address of
272   [x16,#-GOT_ENTRY_SIZE].  */
273static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
274{
275  0xf0, 0x7b, 0xbf, 0xa9,	/* stp x16, x30, [sp, #-16]!  */
276  0x10, 0x00, 0x00, 0x90,	/* adrp x16, (GOT+16)  */
277#if ARCH_SIZE == 64
278  0x11, 0x0A, 0x40, 0xf9,	/* ldr x17, [x16, #PLT_GOT+0x10]  */
279  0x10, 0x42, 0x00, 0x91,	/* add x16, x16,#PLT_GOT+0x10   */
280#else
281  0x11, 0x0A, 0x40, 0xb9,	/* ldr w17, [x16, #PLT_GOT+0x8]  */
282  0x10, 0x22, 0x00, 0x11,	/* add w16, w16,#PLT_GOT+0x8   */
283#endif
284  0x20, 0x02, 0x1f, 0xd6,	/* br x17  */
285  0x1f, 0x20, 0x03, 0xd5,	/* nop */
286  0x1f, 0x20, 0x03, 0xd5,	/* nop */
287  0x1f, 0x20, 0x03, 0xd5,	/* nop */
288};
289
290/* Per function entry in a procedure linkage table looks like this
291   if the distance between the PLTGOT and the PLT is < 4GB use
292   these PLT entries.  */
293static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
294{
295  0x10, 0x00, 0x00, 0x90,	/* adrp x16, PLTGOT + n * 8  */
296#if ARCH_SIZE == 64
297  0x11, 0x02, 0x40, 0xf9,	/* ldr x17, [x16, PLTGOT + n * 8] */
298  0x10, 0x02, 0x00, 0x91,	/* add x16, x16, :lo12:PLTGOT + n * 8  */
299#else
300  0x11, 0x02, 0x40, 0xb9,	/* ldr w17, [x16, PLTGOT + n * 4] */
301  0x10, 0x02, 0x00, 0x11,	/* add w16, w16, :lo12:PLTGOT + n * 4  */
302#endif
303  0x20, 0x02, 0x1f, 0xd6,	/* br x17.  */
304};
305
306static const bfd_byte
307elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
308{
309  0xe2, 0x0f, 0xbf, 0xa9,	/* stp x2, x3, [sp, #-16]! */
310  0x02, 0x00, 0x00, 0x90,	/* adrp x2, 0 */
311  0x03, 0x00, 0x00, 0x90,	/* adrp x3, 0 */
312#if ARCH_SIZE == 64
313  0x42, 0x00, 0x40, 0xf9,	/* ldr x2, [x2, #0] */
314  0x63, 0x00, 0x00, 0x91,	/* add x3, x3, 0 */
315#else
316  0x42, 0x00, 0x40, 0xb9,	/* ldr w2, [x2, #0] */
317  0x63, 0x00, 0x00, 0x11,	/* add w3, w3, 0 */
318#endif
319  0x40, 0x00, 0x1f, 0xd6,	/* br x2 */
320  0x1f, 0x20, 0x03, 0xd5,	/* nop */
321  0x1f, 0x20, 0x03, 0xd5,	/* nop */
322};
323
324#define elf_info_to_howto               elfNN_aarch64_info_to_howto
325#define elf_info_to_howto_rel           elfNN_aarch64_info_to_howto
326
327#define AARCH64_ELF_ABI_VERSION		0
328
329/* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
330#define ALL_ONES (~ (bfd_vma) 0)
331
332/* Indexed by the bfd interal reloc enumerators.
333   Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
334   in reloc.c.   */
335
336static reloc_howto_type elfNN_aarch64_howto_table[] =
337{
338  EMPTY_HOWTO (0),
339
340  /* Basic data relocations.  */
341
342  /* Deprecated, but retained for backwards compatibility.  */
343  HOWTO64 (R_AARCH64_NULL,	/* type */
344	 0,			/* rightshift */
345	 3,			/* size (0 = byte, 1 = short, 2 = long) */
346	 0,			/* bitsize */
347	 FALSE,			/* pc_relative */
348	 0,			/* bitpos */
349	 complain_overflow_dont,	/* complain_on_overflow */
350	 bfd_elf_generic_reloc,	/* special_function */
351	 "R_AARCH64_NULL",	/* name */
352	 FALSE,			/* partial_inplace */
353	 0,			/* src_mask */
354	 0,			/* dst_mask */
355	 FALSE),		/* pcrel_offset */
356  HOWTO (R_AARCH64_NONE,	/* type */
357	 0,			/* rightshift */
358	 3,			/* size (0 = byte, 1 = short, 2 = long) */
359	 0,			/* bitsize */
360	 FALSE,			/* pc_relative */
361	 0,			/* bitpos */
362	 complain_overflow_dont,	/* complain_on_overflow */
363	 bfd_elf_generic_reloc,	/* special_function */
364	 "R_AARCH64_NONE",	/* name */
365	 FALSE,			/* partial_inplace */
366	 0,			/* src_mask */
367	 0,			/* dst_mask */
368	 FALSE),		/* pcrel_offset */
369
370  /* .xword: (S+A) */
371  HOWTO64 (AARCH64_R (ABS64),	/* type */
372	 0,			/* rightshift */
373	 4,			/* size (4 = long long) */
374	 64,			/* bitsize */
375	 FALSE,			/* pc_relative */
376	 0,			/* bitpos */
377	 complain_overflow_unsigned,	/* complain_on_overflow */
378	 bfd_elf_generic_reloc,	/* special_function */
379	 AARCH64_R_STR (ABS64),	/* name */
380	 FALSE,			/* partial_inplace */
381	 ALL_ONES,		/* src_mask */
382	 ALL_ONES,		/* dst_mask */
383	 FALSE),		/* pcrel_offset */
384
385  /* .word: (S+A) */
386  HOWTO (AARCH64_R (ABS32),	/* type */
387	 0,			/* rightshift */
388	 2,			/* size (0 = byte, 1 = short, 2 = long) */
389	 32,			/* bitsize */
390	 FALSE,			/* pc_relative */
391	 0,			/* bitpos */
392	 complain_overflow_unsigned,	/* complain_on_overflow */
393	 bfd_elf_generic_reloc,	/* special_function */
394	 AARCH64_R_STR (ABS32),	/* name */
395	 FALSE,			/* partial_inplace */
396	 0xffffffff,		/* src_mask */
397	 0xffffffff,		/* dst_mask */
398	 FALSE),		/* pcrel_offset */
399
400  /* .half:  (S+A) */
401  HOWTO (AARCH64_R (ABS16),	/* type */
402	 0,			/* rightshift */
403	 1,			/* size (0 = byte, 1 = short, 2 = long) */
404	 16,			/* bitsize */
405	 FALSE,			/* pc_relative */
406	 0,			/* bitpos */
407	 complain_overflow_unsigned,	/* complain_on_overflow */
408	 bfd_elf_generic_reloc,	/* special_function */
409	 AARCH64_R_STR (ABS16),	/* name */
410	 FALSE,			/* partial_inplace */
411	 0xffff,		/* src_mask */
412	 0xffff,		/* dst_mask */
413	 FALSE),		/* pcrel_offset */
414
415  /* .xword: (S+A-P) */
416  HOWTO64 (AARCH64_R (PREL64),	/* type */
417	 0,			/* rightshift */
418	 4,			/* size (4 = long long) */
419	 64,			/* bitsize */
420	 TRUE,			/* pc_relative */
421	 0,			/* bitpos */
422	 complain_overflow_signed,	/* complain_on_overflow */
423	 bfd_elf_generic_reloc,	/* special_function */
424	 AARCH64_R_STR (PREL64),	/* name */
425	 FALSE,			/* partial_inplace */
426	 ALL_ONES,		/* src_mask */
427	 ALL_ONES,		/* dst_mask */
428	 TRUE),			/* pcrel_offset */
429
430  /* .word: (S+A-P) */
431  HOWTO (AARCH64_R (PREL32),	/* type */
432	 0,			/* rightshift */
433	 2,			/* size (0 = byte, 1 = short, 2 = long) */
434	 32,			/* bitsize */
435	 TRUE,			/* pc_relative */
436	 0,			/* bitpos */
437	 complain_overflow_signed,	/* complain_on_overflow */
438	 bfd_elf_generic_reloc,	/* special_function */
439	 AARCH64_R_STR (PREL32),	/* name */
440	 FALSE,			/* partial_inplace */
441	 0xffffffff,		/* src_mask */
442	 0xffffffff,		/* dst_mask */
443	 TRUE),			/* pcrel_offset */
444
445  /* .half: (S+A-P) */
446  HOWTO (AARCH64_R (PREL16),	/* type */
447	 0,			/* rightshift */
448	 1,			/* size (0 = byte, 1 = short, 2 = long) */
449	 16,			/* bitsize */
450	 TRUE,			/* pc_relative */
451	 0,			/* bitpos */
452	 complain_overflow_signed,	/* complain_on_overflow */
453	 bfd_elf_generic_reloc,	/* special_function */
454	 AARCH64_R_STR (PREL16),	/* name */
455	 FALSE,			/* partial_inplace */
456	 0xffff,		/* src_mask */
457	 0xffff,		/* dst_mask */
458	 TRUE),			/* pcrel_offset */
459
460  /* Group relocations to create a 16, 32, 48 or 64 bit
461     unsigned data or abs address inline.  */
462
463  /* MOVZ:   ((S+A) >>  0) & 0xffff */
464  HOWTO (AARCH64_R (MOVW_UABS_G0),	/* type */
465	 0,			/* rightshift */
466	 2,			/* size (0 = byte, 1 = short, 2 = long) */
467	 16,			/* bitsize */
468	 FALSE,			/* pc_relative */
469	 0,			/* bitpos */
470	 complain_overflow_unsigned,	/* complain_on_overflow */
471	 bfd_elf_generic_reloc,	/* special_function */
472	 AARCH64_R_STR (MOVW_UABS_G0),	/* name */
473	 FALSE,			/* partial_inplace */
474	 0xffff,		/* src_mask */
475	 0xffff,		/* dst_mask */
476	 FALSE),		/* pcrel_offset */
477
478  /* MOVK:   ((S+A) >>  0) & 0xffff [no overflow check] */
479  HOWTO (AARCH64_R (MOVW_UABS_G0_NC),	/* type */
480	 0,			/* rightshift */
481	 2,			/* size (0 = byte, 1 = short, 2 = long) */
482	 16,			/* bitsize */
483	 FALSE,			/* pc_relative */
484	 0,			/* bitpos */
485	 complain_overflow_dont,	/* complain_on_overflow */
486	 bfd_elf_generic_reloc,	/* special_function */
487	 AARCH64_R_STR (MOVW_UABS_G0_NC),	/* name */
488	 FALSE,			/* partial_inplace */
489	 0xffff,		/* src_mask */
490	 0xffff,		/* dst_mask */
491	 FALSE),		/* pcrel_offset */
492
493  /* MOVZ:   ((S+A) >> 16) & 0xffff */
494  HOWTO (AARCH64_R (MOVW_UABS_G1),	/* type */
495	 16,			/* rightshift */
496	 2,			/* size (0 = byte, 1 = short, 2 = long) */
497	 16,			/* bitsize */
498	 FALSE,			/* pc_relative */
499	 0,			/* bitpos */
500	 complain_overflow_unsigned,	/* complain_on_overflow */
501	 bfd_elf_generic_reloc,	/* special_function */
502	 AARCH64_R_STR (MOVW_UABS_G1),	/* name */
503	 FALSE,			/* partial_inplace */
504	 0xffff,		/* src_mask */
505	 0xffff,		/* dst_mask */
506	 FALSE),		/* pcrel_offset */
507
508  /* MOVK:   ((S+A) >> 16) & 0xffff [no overflow check] */
509  HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC),	/* type */
510	 16,			/* rightshift */
511	 2,			/* size (0 = byte, 1 = short, 2 = long) */
512	 16,			/* bitsize */
513	 FALSE,			/* pc_relative */
514	 0,			/* bitpos */
515	 complain_overflow_dont,	/* complain_on_overflow */
516	 bfd_elf_generic_reloc,	/* special_function */
517	 AARCH64_R_STR (MOVW_UABS_G1_NC),	/* name */
518	 FALSE,			/* partial_inplace */
519	 0xffff,		/* src_mask */
520	 0xffff,		/* dst_mask */
521	 FALSE),		/* pcrel_offset */
522
523  /* MOVZ:   ((S+A) >> 32) & 0xffff */
524  HOWTO64 (AARCH64_R (MOVW_UABS_G2),	/* type */
525	 32,			/* rightshift */
526	 2,			/* size (0 = byte, 1 = short, 2 = long) */
527	 16,			/* bitsize */
528	 FALSE,			/* pc_relative */
529	 0,			/* bitpos */
530	 complain_overflow_unsigned,	/* complain_on_overflow */
531	 bfd_elf_generic_reloc,	/* special_function */
532	 AARCH64_R_STR (MOVW_UABS_G2),	/* name */
533	 FALSE,			/* partial_inplace */
534	 0xffff,		/* src_mask */
535	 0xffff,		/* dst_mask */
536	 FALSE),		/* pcrel_offset */
537
538  /* MOVK:   ((S+A) >> 32) & 0xffff [no overflow check] */
539  HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC),	/* type */
540	 32,			/* rightshift */
541	 2,			/* size (0 = byte, 1 = short, 2 = long) */
542	 16,			/* bitsize */
543	 FALSE,			/* pc_relative */
544	 0,			/* bitpos */
545	 complain_overflow_dont,	/* complain_on_overflow */
546	 bfd_elf_generic_reloc,	/* special_function */
547	 AARCH64_R_STR (MOVW_UABS_G2_NC),	/* name */
548	 FALSE,			/* partial_inplace */
549	 0xffff,		/* src_mask */
550	 0xffff,		/* dst_mask */
551	 FALSE),		/* pcrel_offset */
552
553  /* MOVZ:   ((S+A) >> 48) & 0xffff */
554  HOWTO64 (AARCH64_R (MOVW_UABS_G3),	/* type */
555	 48,			/* rightshift */
556	 2,			/* size (0 = byte, 1 = short, 2 = long) */
557	 16,			/* bitsize */
558	 FALSE,			/* pc_relative */
559	 0,			/* bitpos */
560	 complain_overflow_unsigned,	/* complain_on_overflow */
561	 bfd_elf_generic_reloc,	/* special_function */
562	 AARCH64_R_STR (MOVW_UABS_G3),	/* name */
563	 FALSE,			/* partial_inplace */
564	 0xffff,		/* src_mask */
565	 0xffff,		/* dst_mask */
566	 FALSE),		/* pcrel_offset */
567
568  /* Group relocations to create high part of a 16, 32, 48 or 64 bit
569     signed data or abs address inline. Will change instruction
570     to MOVN or MOVZ depending on sign of calculated value.  */
571
572  /* MOV[ZN]:   ((S+A) >>  0) & 0xffff */
573  HOWTO (AARCH64_R (MOVW_SABS_G0),	/* type */
574	 0,			/* rightshift */
575	 2,			/* size (0 = byte, 1 = short, 2 = long) */
576	 17,			/* bitsize */
577	 FALSE,			/* pc_relative */
578	 0,			/* bitpos */
579	 complain_overflow_signed,	/* complain_on_overflow */
580	 bfd_elf_generic_reloc,	/* special_function */
581	 AARCH64_R_STR (MOVW_SABS_G0),	/* name */
582	 FALSE,			/* partial_inplace */
583	 0xffff,		/* src_mask */
584	 0xffff,		/* dst_mask */
585	 FALSE),		/* pcrel_offset */
586
587  /* MOV[ZN]:   ((S+A) >> 16) & 0xffff */
588  HOWTO64 (AARCH64_R (MOVW_SABS_G1),	/* type */
589	 16,			/* rightshift */
590	 2,			/* size (0 = byte, 1 = short, 2 = long) */
591	 17,			/* bitsize */
592	 FALSE,			/* pc_relative */
593	 0,			/* bitpos */
594	 complain_overflow_signed,	/* complain_on_overflow */
595	 bfd_elf_generic_reloc,	/* special_function */
596	 AARCH64_R_STR (MOVW_SABS_G1),	/* name */
597	 FALSE,			/* partial_inplace */
598	 0xffff,		/* src_mask */
599	 0xffff,		/* dst_mask */
600	 FALSE),		/* pcrel_offset */
601
602  /* MOV[ZN]:   ((S+A) >> 32) & 0xffff */
603  HOWTO64 (AARCH64_R (MOVW_SABS_G2),	/* type */
604	 32,			/* rightshift */
605	 2,			/* size (0 = byte, 1 = short, 2 = long) */
606	 17,			/* bitsize */
607	 FALSE,			/* pc_relative */
608	 0,			/* bitpos */
609	 complain_overflow_signed,	/* complain_on_overflow */
610	 bfd_elf_generic_reloc,	/* special_function */
611	 AARCH64_R_STR (MOVW_SABS_G2),	/* name */
612	 FALSE,			/* partial_inplace */
613	 0xffff,		/* src_mask */
614	 0xffff,		/* dst_mask */
615	 FALSE),		/* pcrel_offset */
616
617/* Relocations to generate 19, 21 and 33 bit PC-relative load/store
618   addresses: PG(x) is (x & ~0xfff).  */
619
620  /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
621  HOWTO (AARCH64_R (LD_PREL_LO19),	/* type */
622	 2,			/* rightshift */
623	 2,			/* size (0 = byte, 1 = short, 2 = long) */
624	 19,			/* bitsize */
625	 TRUE,			/* pc_relative */
626	 0,			/* bitpos */
627	 complain_overflow_signed,	/* complain_on_overflow */
628	 bfd_elf_generic_reloc,	/* special_function */
629	 AARCH64_R_STR (LD_PREL_LO19),	/* name */
630	 FALSE,			/* partial_inplace */
631	 0x7ffff,		/* src_mask */
632	 0x7ffff,		/* dst_mask */
633	 TRUE),			/* pcrel_offset */
634
635  /* ADR:    (S+A-P) & 0x1fffff */
636  HOWTO (AARCH64_R (ADR_PREL_LO21),	/* type */
637	 0,			/* rightshift */
638	 2,			/* size (0 = byte, 1 = short, 2 = long) */
639	 21,			/* bitsize */
640	 TRUE,			/* pc_relative */
641	 0,			/* bitpos */
642	 complain_overflow_signed,	/* complain_on_overflow */
643	 bfd_elf_generic_reloc,	/* special_function */
644	 AARCH64_R_STR (ADR_PREL_LO21),	/* name */
645	 FALSE,			/* partial_inplace */
646	 0x1fffff,		/* src_mask */
647	 0x1fffff,		/* dst_mask */
648	 TRUE),			/* pcrel_offset */
649
650  /* ADRP:   ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
651  HOWTO (AARCH64_R (ADR_PREL_PG_HI21),	/* type */
652	 12,			/* rightshift */
653	 2,			/* size (0 = byte, 1 = short, 2 = long) */
654	 21,			/* bitsize */
655	 TRUE,			/* pc_relative */
656	 0,			/* bitpos */
657	 complain_overflow_signed,	/* complain_on_overflow */
658	 bfd_elf_generic_reloc,	/* special_function */
659	 AARCH64_R_STR (ADR_PREL_PG_HI21),	/* name */
660	 FALSE,			/* partial_inplace */
661	 0x1fffff,		/* src_mask */
662	 0x1fffff,		/* dst_mask */
663	 TRUE),			/* pcrel_offset */
664
665  /* ADRP:   ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
666  HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC),	/* type */
667	 12,			/* rightshift */
668	 2,			/* size (0 = byte, 1 = short, 2 = long) */
669	 21,			/* bitsize */
670	 TRUE,			/* pc_relative */
671	 0,			/* bitpos */
672	 complain_overflow_dont,	/* complain_on_overflow */
673	 bfd_elf_generic_reloc,	/* special_function */
674	 AARCH64_R_STR (ADR_PREL_PG_HI21_NC),	/* name */
675	 FALSE,			/* partial_inplace */
676	 0x1fffff,		/* src_mask */
677	 0x1fffff,		/* dst_mask */
678	 TRUE),			/* pcrel_offset */
679
680  /* ADD:    (S+A) & 0xfff [no overflow check] */
681  HOWTO (AARCH64_R (ADD_ABS_LO12_NC),	/* type */
682	 0,			/* rightshift */
683	 2,			/* size (0 = byte, 1 = short, 2 = long) */
684	 12,			/* bitsize */
685	 FALSE,			/* pc_relative */
686	 10,			/* bitpos */
687	 complain_overflow_dont,	/* complain_on_overflow */
688	 bfd_elf_generic_reloc,	/* special_function */
689	 AARCH64_R_STR (ADD_ABS_LO12_NC),	/* name */
690	 FALSE,			/* partial_inplace */
691	 0x3ffc00,		/* src_mask */
692	 0x3ffc00,		/* dst_mask */
693	 FALSE),		/* pcrel_offset */
694
695  /* LD/ST8:  (S+A) & 0xfff */
696  HOWTO (AARCH64_R (LDST8_ABS_LO12_NC),	/* type */
697	 0,			/* rightshift */
698	 2,			/* size (0 = byte, 1 = short, 2 = long) */
699	 12,			/* bitsize */
700	 FALSE,			/* pc_relative */
701	 0,			/* bitpos */
702	 complain_overflow_dont,	/* complain_on_overflow */
703	 bfd_elf_generic_reloc,	/* special_function */
704	 AARCH64_R_STR (LDST8_ABS_LO12_NC),	/* name */
705	 FALSE,			/* partial_inplace */
706	 0xfff,			/* src_mask */
707	 0xfff,			/* dst_mask */
708	 FALSE),		/* pcrel_offset */
709
710  /* Relocations for control-flow instructions.  */
711
712  /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
713  HOWTO (AARCH64_R (TSTBR14),	/* type */
714	 2,			/* rightshift */
715	 2,			/* size (0 = byte, 1 = short, 2 = long) */
716	 14,			/* bitsize */
717	 TRUE,			/* pc_relative */
718	 0,			/* bitpos */
719	 complain_overflow_signed,	/* complain_on_overflow */
720	 bfd_elf_generic_reloc,	/* special_function */
721	 AARCH64_R_STR (TSTBR14),	/* name */
722	 FALSE,			/* partial_inplace */
723	 0x3fff,		/* src_mask */
724	 0x3fff,		/* dst_mask */
725	 TRUE),			/* pcrel_offset */
726
727  /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
728  HOWTO (AARCH64_R (CONDBR19),	/* type */
729	 2,			/* rightshift */
730	 2,			/* size (0 = byte, 1 = short, 2 = long) */
731	 19,			/* bitsize */
732	 TRUE,			/* pc_relative */
733	 0,			/* bitpos */
734	 complain_overflow_signed,	/* complain_on_overflow */
735	 bfd_elf_generic_reloc,	/* special_function */
736	 AARCH64_R_STR (CONDBR19),	/* name */
737	 FALSE,			/* partial_inplace */
738	 0x7ffff,		/* src_mask */
739	 0x7ffff,		/* dst_mask */
740	 TRUE),			/* pcrel_offset */
741
742  /* B:      ((S+A-P) >> 2) & 0x3ffffff */
743  HOWTO (AARCH64_R (JUMP26),	/* type */
744	 2,			/* rightshift */
745	 2,			/* size (0 = byte, 1 = short, 2 = long) */
746	 26,			/* bitsize */
747	 TRUE,			/* pc_relative */
748	 0,			/* bitpos */
749	 complain_overflow_signed,	/* complain_on_overflow */
750	 bfd_elf_generic_reloc,	/* special_function */
751	 AARCH64_R_STR (JUMP26),	/* name */
752	 FALSE,			/* partial_inplace */
753	 0x3ffffff,		/* src_mask */
754	 0x3ffffff,		/* dst_mask */
755	 TRUE),			/* pcrel_offset */
756
757  /* BL:     ((S+A-P) >> 2) & 0x3ffffff */
758  HOWTO (AARCH64_R (CALL26),	/* type */
759	 2,			/* rightshift */
760	 2,			/* size (0 = byte, 1 = short, 2 = long) */
761	 26,			/* bitsize */
762	 TRUE,			/* pc_relative */
763	 0,			/* bitpos */
764	 complain_overflow_signed,	/* complain_on_overflow */
765	 bfd_elf_generic_reloc,	/* special_function */
766	 AARCH64_R_STR (CALL26),	/* name */
767	 FALSE,			/* partial_inplace */
768	 0x3ffffff,		/* src_mask */
769	 0x3ffffff,		/* dst_mask */
770	 TRUE),			/* pcrel_offset */
771
772  /* LD/ST16:  (S+A) & 0xffe */
773  HOWTO (AARCH64_R (LDST16_ABS_LO12_NC),	/* type */
774	 1,			/* rightshift */
775	 2,			/* size (0 = byte, 1 = short, 2 = long) */
776	 12,			/* bitsize */
777	 FALSE,			/* pc_relative */
778	 0,			/* bitpos */
779	 complain_overflow_dont,	/* complain_on_overflow */
780	 bfd_elf_generic_reloc,	/* special_function */
781	 AARCH64_R_STR (LDST16_ABS_LO12_NC),	/* name */
782	 FALSE,			/* partial_inplace */
783	 0xffe,			/* src_mask */
784	 0xffe,			/* dst_mask */
785	 FALSE),		/* pcrel_offset */
786
787  /* LD/ST32:  (S+A) & 0xffc */
788  HOWTO (AARCH64_R (LDST32_ABS_LO12_NC),	/* type */
789	 2,			/* rightshift */
790	 2,			/* size (0 = byte, 1 = short, 2 = long) */
791	 12,			/* bitsize */
792	 FALSE,			/* pc_relative */
793	 0,			/* bitpos */
794	 complain_overflow_dont,	/* complain_on_overflow */
795	 bfd_elf_generic_reloc,	/* special_function */
796	 AARCH64_R_STR (LDST32_ABS_LO12_NC),	/* name */
797	 FALSE,			/* partial_inplace */
798	 0xffc,			/* src_mask */
799	 0xffc,			/* dst_mask */
800	 FALSE),		/* pcrel_offset */
801
802  /* LD/ST64:  (S+A) & 0xff8 */
803  HOWTO (AARCH64_R (LDST64_ABS_LO12_NC),	/* type */
804	 3,			/* rightshift */
805	 2,			/* size (0 = byte, 1 = short, 2 = long) */
806	 12,			/* bitsize */
807	 FALSE,			/* pc_relative */
808	 0,			/* bitpos */
809	 complain_overflow_dont,	/* complain_on_overflow */
810	 bfd_elf_generic_reloc,	/* special_function */
811	 AARCH64_R_STR (LDST64_ABS_LO12_NC),	/* name */
812	 FALSE,			/* partial_inplace */
813	 0xff8,			/* src_mask */
814	 0xff8,			/* dst_mask */
815	 FALSE),		/* pcrel_offset */
816
817  /* LD/ST128:  (S+A) & 0xff0 */
818  HOWTO (AARCH64_R (LDST128_ABS_LO12_NC),	/* type */
819	 4,			/* rightshift */
820	 2,			/* size (0 = byte, 1 = short, 2 = long) */
821	 12,			/* bitsize */
822	 FALSE,			/* pc_relative */
823	 0,			/* bitpos */
824	 complain_overflow_dont,	/* complain_on_overflow */
825	 bfd_elf_generic_reloc,	/* special_function */
826	 AARCH64_R_STR (LDST128_ABS_LO12_NC),	/* name */
827	 FALSE,			/* partial_inplace */
828	 0xff0,			/* src_mask */
829	 0xff0,			/* dst_mask */
830	 FALSE),		/* pcrel_offset */
831
832  /* Set a load-literal immediate field to bits
833     0x1FFFFC of G(S)-P */
834  HOWTO (AARCH64_R (GOT_LD_PREL19),	/* type */
835	 2,				/* rightshift */
836	 2,				/* size (0 = byte,1 = short,2 = long) */
837	 19,				/* bitsize */
838	 TRUE,				/* pc_relative */
839	 0,				/* bitpos */
840	 complain_overflow_signed,	/* complain_on_overflow */
841	 bfd_elf_generic_reloc,		/* special_function */
842	 AARCH64_R_STR (GOT_LD_PREL19),	/* name */
843	 FALSE,				/* partial_inplace */
844	 0xffffe0,			/* src_mask */
845	 0xffffe0,			/* dst_mask */
846	 TRUE),				/* pcrel_offset */
847
848  /* Get to the page for the GOT entry for the symbol
849     (G(S) - P) using an ADRP instruction.  */
850  HOWTO (AARCH64_R (ADR_GOT_PAGE),	/* type */
851	 12,			/* rightshift */
852	 2,			/* size (0 = byte, 1 = short, 2 = long) */
853	 21,			/* bitsize */
854	 TRUE,			/* pc_relative */
855	 0,			/* bitpos */
856	 complain_overflow_dont,	/* complain_on_overflow */
857	 bfd_elf_generic_reloc,	/* special_function */
858	 AARCH64_R_STR (ADR_GOT_PAGE),	/* name */
859	 FALSE,			/* partial_inplace */
860	 0x1fffff,		/* src_mask */
861	 0x1fffff,		/* dst_mask */
862	 TRUE),			/* pcrel_offset */
863
864  /* LD64: GOT offset G(S) & 0xff8  */
865  HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC),	/* type */
866	 3,			/* rightshift */
867	 2,			/* size (0 = byte, 1 = short, 2 = long) */
868	 12,			/* bitsize */
869	 FALSE,			/* pc_relative */
870	 0,			/* bitpos */
871	 complain_overflow_dont,	/* complain_on_overflow */
872	 bfd_elf_generic_reloc,	/* special_function */
873	 AARCH64_R_STR (LD64_GOT_LO12_NC),	/* name */
874	 FALSE,			/* partial_inplace */
875	 0xff8,			/* src_mask */
876	 0xff8,			/* dst_mask */
877	 FALSE),		/* pcrel_offset */
878
879  /* LD32: GOT offset G(S) & 0xffc  */
880  HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC),	/* type */
881	 2,			/* rightshift */
882	 2,			/* size (0 = byte, 1 = short, 2 = long) */
883	 12,			/* bitsize */
884	 FALSE,			/* pc_relative */
885	 0,			/* bitpos */
886	 complain_overflow_dont,	/* complain_on_overflow */
887	 bfd_elf_generic_reloc,	/* special_function */
888	 AARCH64_R_STR (LD32_GOT_LO12_NC),	/* name */
889	 FALSE,			/* partial_inplace */
890	 0xffc,			/* src_mask */
891	 0xffc,			/* dst_mask */
892	 FALSE),		/* pcrel_offset */
893
894  /* Lower 16 bits of GOT offset for the symbol.  */
895  HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC),	/* type */
896	 0,			/* rightshift */
897	 2,			/* size (0 = byte, 1 = short, 2 = long) */
898	 16,			/* bitsize */
899	 FALSE,			/* pc_relative */
900	 0,			/* bitpos */
901	 complain_overflow_dont,	/* complain_on_overflow */
902	 bfd_elf_generic_reloc,	/* special_function */
903	 AARCH64_R_STR (MOVW_GOTOFF_G0_NC),	/* name */
904	 FALSE,			/* partial_inplace */
905	 0xffff,		/* src_mask */
906	 0xffff,		/* dst_mask */
907	 FALSE),		/* pcrel_offset */
908
909  /* Higher 16 bits of GOT offset for the symbol.  */
910  HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1),	/* type */
911	 16,			/* rightshift */
912	 2,			/* size (0 = byte, 1 = short, 2 = long) */
913	 16,			/* bitsize */
914	 FALSE,			/* pc_relative */
915	 0,			/* bitpos */
916	 complain_overflow_unsigned,	/* complain_on_overflow */
917	 bfd_elf_generic_reloc,	/* special_function */
918	 AARCH64_R_STR (MOVW_GOTOFF_G1),	/* name */
919	 FALSE,			/* partial_inplace */
920	 0xffff,		/* src_mask */
921	 0xffff,		/* dst_mask */
922	 FALSE),		/* pcrel_offset */
923
924  /* LD64: GOT offset for the symbol.  */
925  HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15),	/* type */
926	 3,			/* rightshift */
927	 2,			/* size (0 = byte, 1 = short, 2 = long) */
928	 12,			/* bitsize */
929	 FALSE,			/* pc_relative */
930	 0,			/* bitpos */
931	 complain_overflow_unsigned,	/* complain_on_overflow */
932	 bfd_elf_generic_reloc,	/* special_function */
933	 AARCH64_R_STR (LD64_GOTOFF_LO15),	/* name */
934	 FALSE,			/* partial_inplace */
935	 0x7ff8,			/* src_mask */
936	 0x7ff8,			/* dst_mask */
937	 FALSE),		/* pcrel_offset */
938
939  /* LD32: GOT offset to the page address of GOT table.
940     (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc.  */
941  HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14),	/* type */
942	 2,			/* rightshift */
943	 2,			/* size (0 = byte, 1 = short, 2 = long) */
944	 12,			/* bitsize */
945	 FALSE,			/* pc_relative */
946	 0,			/* bitpos */
947	 complain_overflow_unsigned,	/* complain_on_overflow */
948	 bfd_elf_generic_reloc,	/* special_function */
949	 AARCH64_R_STR (LD32_GOTPAGE_LO14),	/* name */
950	 FALSE,			/* partial_inplace */
951	 0x5ffc,		/* src_mask */
952	 0x5ffc,		/* dst_mask */
953	 FALSE),		/* pcrel_offset */
954
955  /* LD64: GOT offset to the page address of GOT table.
956     (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8.  */
957  HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15),	/* type */
958	 3,			/* rightshift */
959	 2,			/* size (0 = byte, 1 = short, 2 = long) */
960	 12,			/* bitsize */
961	 FALSE,			/* pc_relative */
962	 0,			/* bitpos */
963	 complain_overflow_unsigned,	/* complain_on_overflow */
964	 bfd_elf_generic_reloc,	/* special_function */
965	 AARCH64_R_STR (LD64_GOTPAGE_LO15),	/* name */
966	 FALSE,			/* partial_inplace */
967	 0x7ff8,		/* src_mask */
968	 0x7ff8,		/* dst_mask */
969	 FALSE),		/* pcrel_offset */
970
971  /* Get to the page for the GOT entry for the symbol
972     (G(S) - P) using an ADRP instruction.  */
973  HOWTO (AARCH64_R (TLSGD_ADR_PAGE21),	/* type */
974	 12,			/* rightshift */
975	 2,			/* size (0 = byte, 1 = short, 2 = long) */
976	 21,			/* bitsize */
977	 TRUE,			/* pc_relative */
978	 0,			/* bitpos */
979	 complain_overflow_dont,	/* complain_on_overflow */
980	 bfd_elf_generic_reloc,	/* special_function */
981	 AARCH64_R_STR (TLSGD_ADR_PAGE21),	/* name */
982	 FALSE,			/* partial_inplace */
983	 0x1fffff,		/* src_mask */
984	 0x1fffff,		/* dst_mask */
985	 TRUE),			/* pcrel_offset */
986
987  HOWTO (AARCH64_R (TLSGD_ADR_PREL21),	/* type */
988	 0,			/* rightshift */
989	 2,			/* size (0 = byte, 1 = short, 2 = long) */
990	 21,			/* bitsize */
991	 TRUE,			/* pc_relative */
992	 0,			/* bitpos */
993	 complain_overflow_dont,	/* complain_on_overflow */
994	 bfd_elf_generic_reloc,	/* special_function */
995	 AARCH64_R_STR (TLSGD_ADR_PREL21),	/* name */
996	 FALSE,			/* partial_inplace */
997	 0x1fffff,		/* src_mask */
998	 0x1fffff,		/* dst_mask */
999	 TRUE),			/* pcrel_offset */
1000
1001  /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1002  HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC),	/* type */
1003	 0,			/* rightshift */
1004	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1005	 12,			/* bitsize */
1006	 FALSE,			/* pc_relative */
1007	 0,			/* bitpos */
1008	 complain_overflow_dont,	/* complain_on_overflow */
1009	 bfd_elf_generic_reloc,	/* special_function */
1010	 AARCH64_R_STR (TLSGD_ADD_LO12_NC),	/* name */
1011	 FALSE,			/* partial_inplace */
1012	 0xfff,			/* src_mask */
1013	 0xfff,			/* dst_mask */
1014	 FALSE),		/* pcrel_offset */
1015
1016  /* Lower 16 bits of GOT offset to tls_index.  */
1017  HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC),	/* type */
1018	 0,			/* rightshift */
1019	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1020	 16,			/* bitsize */
1021	 FALSE,			/* pc_relative */
1022	 0,			/* bitpos */
1023	 complain_overflow_dont,	/* complain_on_overflow */
1024	 bfd_elf_generic_reloc,	/* special_function */
1025	 AARCH64_R_STR (TLSGD_MOVW_G0_NC),	/* name */
1026	 FALSE,			/* partial_inplace */
1027	 0xffff,		/* src_mask */
1028	 0xffff,		/* dst_mask */
1029	 FALSE),		/* pcrel_offset */
1030
1031  /* Higher 16 bits of GOT offset to tls_index.  */
1032  HOWTO64 (AARCH64_R (TLSGD_MOVW_G1),	/* type */
1033	 16,			/* rightshift */
1034	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1035	 16,			/* bitsize */
1036	 FALSE,			/* pc_relative */
1037	 0,			/* bitpos */
1038	 complain_overflow_unsigned,	/* complain_on_overflow */
1039	 bfd_elf_generic_reloc,	/* special_function */
1040	 AARCH64_R_STR (TLSGD_MOVW_G1),	/* name */
1041	 FALSE,			/* partial_inplace */
1042	 0xffff,		/* src_mask */
1043	 0xffff,		/* dst_mask */
1044	 FALSE),		/* pcrel_offset */
1045
1046  HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21),	/* type */
1047	 12,			/* rightshift */
1048	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1049	 21,			/* bitsize */
1050	 FALSE,			/* pc_relative */
1051	 0,			/* bitpos */
1052	 complain_overflow_dont,	/* complain_on_overflow */
1053	 bfd_elf_generic_reloc,	/* special_function */
1054	 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21),	/* name */
1055	 FALSE,			/* partial_inplace */
1056	 0x1fffff,		/* src_mask */
1057	 0x1fffff,		/* dst_mask */
1058	 FALSE),		/* pcrel_offset */
1059
1060  HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC),	/* type */
1061	 3,			/* rightshift */
1062	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1063	 12,			/* bitsize */
1064	 FALSE,			/* pc_relative */
1065	 0,			/* bitpos */
1066	 complain_overflow_dont,	/* complain_on_overflow */
1067	 bfd_elf_generic_reloc,	/* special_function */
1068	 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC),	/* name */
1069	 FALSE,			/* partial_inplace */
1070	 0xff8,			/* src_mask */
1071	 0xff8,			/* dst_mask */
1072	 FALSE),		/* pcrel_offset */
1073
1074  HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC),	/* type */
1075	 2,			/* rightshift */
1076	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1077	 12,			/* bitsize */
1078	 FALSE,			/* pc_relative */
1079	 0,			/* bitpos */
1080	 complain_overflow_dont,	/* complain_on_overflow */
1081	 bfd_elf_generic_reloc,	/* special_function */
1082	 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC),	/* name */
1083	 FALSE,			/* partial_inplace */
1084	 0xffc,			/* src_mask */
1085	 0xffc,			/* dst_mask */
1086	 FALSE),		/* pcrel_offset */
1087
1088  HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19),	/* type */
1089	 2,			/* rightshift */
1090	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1091	 19,			/* bitsize */
1092	 FALSE,			/* pc_relative */
1093	 0,			/* bitpos */
1094	 complain_overflow_dont,	/* complain_on_overflow */
1095	 bfd_elf_generic_reloc,	/* special_function */
1096	 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19),	/* name */
1097	 FALSE,			/* partial_inplace */
1098	 0x1ffffc,		/* src_mask */
1099	 0x1ffffc,		/* dst_mask */
1100	 FALSE),		/* pcrel_offset */
1101
1102  HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC),	/* type */
1103	 0,			/* rightshift */
1104	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1105	 16,			/* bitsize */
1106	 FALSE,			/* pc_relative */
1107	 0,			/* bitpos */
1108	 complain_overflow_dont,	/* complain_on_overflow */
1109	 bfd_elf_generic_reloc,	/* special_function */
1110	 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC),	/* name */
1111	 FALSE,			/* partial_inplace */
1112	 0xffff,		/* src_mask */
1113	 0xffff,		/* dst_mask */
1114	 FALSE),		/* pcrel_offset */
1115
1116  HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1),	/* type */
1117	 16,			/* rightshift */
1118	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1119	 16,			/* bitsize */
1120	 FALSE,			/* pc_relative */
1121	 0,			/* bitpos */
1122	 complain_overflow_unsigned,	/* complain_on_overflow */
1123	 bfd_elf_generic_reloc,	/* special_function */
1124	 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1),	/* name */
1125	 FALSE,			/* partial_inplace */
1126	 0xffff,		/* src_mask */
1127	 0xffff,		/* dst_mask */
1128	 FALSE),		/* pcrel_offset */
1129
1130  /* ADD: bit[23:12] of byte offset to module TLS base address.  */
1131  HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12),	/* type */
1132	 12,			/* rightshift */
1133	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1134	 12,			/* bitsize */
1135	 FALSE,			/* pc_relative */
1136	 0,			/* bitpos */
1137	 complain_overflow_unsigned,	/* complain_on_overflow */
1138	 bfd_elf_generic_reloc,	/* special_function */
1139	 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12),	/* name */
1140	 FALSE,			/* partial_inplace */
1141	 0xfff,			/* src_mask */
1142	 0xfff,			/* dst_mask */
1143	 FALSE),		/* pcrel_offset */
1144
1145  /* Unsigned 12 bit byte offset to module TLS base address.  */
1146  HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12),	/* type */
1147	 0,			/* rightshift */
1148	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1149	 12,			/* bitsize */
1150	 FALSE,			/* pc_relative */
1151	 0,			/* bitpos */
1152	 complain_overflow_unsigned,	/* complain_on_overflow */
1153	 bfd_elf_generic_reloc,	/* special_function */
1154	 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12),	/* name */
1155	 FALSE,			/* partial_inplace */
1156	 0xfff,			/* src_mask */
1157	 0xfff,			/* dst_mask */
1158	 FALSE),		/* pcrel_offset */
1159
1160  /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12.  */
1161  HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC),	/* type */
1162	 0,			/* rightshift */
1163	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1164	 12,			/* bitsize */
1165	 FALSE,			/* pc_relative */
1166	 0,			/* bitpos */
1167	 complain_overflow_dont,	/* complain_on_overflow */
1168	 bfd_elf_generic_reloc,	/* special_function */
1169	 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC),	/* name */
1170	 FALSE,			/* partial_inplace */
1171	 0xfff,			/* src_mask */
1172	 0xfff,			/* dst_mask */
1173	 FALSE),		/* pcrel_offset */
1174
1175  /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1176  HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC),	/* type */
1177	 0,			/* rightshift */
1178	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1179	 12,			/* bitsize */
1180	 FALSE,			/* pc_relative */
1181	 0,			/* bitpos */
1182	 complain_overflow_dont,	/* complain_on_overflow */
1183	 bfd_elf_generic_reloc,	/* special_function */
1184	 AARCH64_R_STR (TLSLD_ADD_LO12_NC),	/* name */
1185	 FALSE,			/* partial_inplace */
1186	 0xfff,			/* src_mask */
1187	 0xfff,			/* dst_mask */
1188	 FALSE),		/* pcrel_offset */
1189
1190  /* Get to the page for the GOT entry for the symbol
1191     (G(S) - P) using an ADRP instruction.  */
1192  HOWTO (AARCH64_R (TLSLD_ADR_PAGE21),	/* type */
1193	 12,			/* rightshift */
1194	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1195	 21,			/* bitsize */
1196	 TRUE,			/* pc_relative */
1197	 0,			/* bitpos */
1198	 complain_overflow_signed,	/* complain_on_overflow */
1199	 bfd_elf_generic_reloc,	/* special_function */
1200	 AARCH64_R_STR (TLSLD_ADR_PAGE21),	/* name */
1201	 FALSE,			/* partial_inplace */
1202	 0x1fffff,		/* src_mask */
1203	 0x1fffff,		/* dst_mask */
1204	 TRUE),			/* pcrel_offset */
1205
1206  HOWTO (AARCH64_R (TLSLD_ADR_PREL21),	/* type */
1207	 0,			/* rightshift */
1208	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1209	 21,			/* bitsize */
1210	 TRUE,			/* pc_relative */
1211	 0,			/* bitpos */
1212	 complain_overflow_signed,	/* complain_on_overflow */
1213	 bfd_elf_generic_reloc,	/* special_function */
1214	 AARCH64_R_STR (TLSLD_ADR_PREL21),	/* name */
1215	 FALSE,			/* partial_inplace */
1216	 0x1fffff,		/* src_mask */
1217	 0x1fffff,		/* dst_mask */
1218	 TRUE),			/* pcrel_offset */
1219
1220  /* LD/ST16: bit[11:1] of byte offset to module TLS base address.  */
1221  HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12),	/* type */
1222	 1,			/* rightshift */
1223	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1224	 11,			/* bitsize */
1225	 FALSE,			/* pc_relative */
1226	 10,			/* bitpos */
1227	 complain_overflow_unsigned,	/* complain_on_overflow */
1228	 bfd_elf_generic_reloc,	/* special_function */
1229	 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12),	/* name */
1230	 FALSE,			/* partial_inplace */
1231	 0x1ffc00,		/* src_mask */
1232	 0x1ffc00,		/* dst_mask */
1233	 FALSE),		/* pcrel_offset */
1234
1235  /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check.  */
1236  HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC),	/* type */
1237	 1,			/* rightshift */
1238	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1239	 11,			/* bitsize */
1240	 FALSE,			/* pc_relative */
1241	 10,			/* bitpos */
1242	 complain_overflow_dont,	/* complain_on_overflow */
1243	 bfd_elf_generic_reloc,	/* special_function */
1244	 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC),	/* name */
1245	 FALSE,			/* partial_inplace */
1246	 0x1ffc00,		/* src_mask */
1247	 0x1ffc00,		/* dst_mask */
1248	 FALSE),		/* pcrel_offset */
1249
1250  /* LD/ST32: bit[11:2] of byte offset to module TLS base address.  */
1251  HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12),	/* type */
1252	 2,			/* rightshift */
1253	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1254	 10,			/* bitsize */
1255	 FALSE,			/* pc_relative */
1256	 10,			/* bitpos */
1257	 complain_overflow_unsigned,	/* complain_on_overflow */
1258	 bfd_elf_generic_reloc,	/* special_function */
1259	 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12),	/* name */
1260	 FALSE,			/* partial_inplace */
1261	 0x3ffc00,		/* src_mask */
1262	 0x3ffc00,		/* dst_mask */
1263	 FALSE),		/* pcrel_offset */
1264
1265  /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check.  */
1266  HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC),	/* type */
1267	 2,			/* rightshift */
1268	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1269	 10,			/* bitsize */
1270	 FALSE,			/* pc_relative */
1271	 10,			/* bitpos */
1272	 complain_overflow_dont,	/* complain_on_overflow */
1273	 bfd_elf_generic_reloc,	/* special_function */
1274	 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC),	/* name */
1275	 FALSE,			/* partial_inplace */
1276	 0xffc00,		/* src_mask */
1277	 0xffc00,		/* dst_mask */
1278	 FALSE),		/* pcrel_offset */
1279
1280  /* LD/ST64: bit[11:3] of byte offset to module TLS base address.  */
1281  HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12),	/* type */
1282	 3,			/* rightshift */
1283	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1284	 9,			/* bitsize */
1285	 FALSE,			/* pc_relative */
1286	 10,			/* bitpos */
1287	 complain_overflow_unsigned,	/* complain_on_overflow */
1288	 bfd_elf_generic_reloc,	/* special_function */
1289	 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12),	/* name */
1290	 FALSE,			/* partial_inplace */
1291	 0x3ffc00,		/* src_mask */
1292	 0x3ffc00,		/* dst_mask */
1293	 FALSE),		/* pcrel_offset */
1294
1295  /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check.  */
1296  HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC),	/* type */
1297	 3,			/* rightshift */
1298	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1299	 9,			/* bitsize */
1300	 FALSE,			/* pc_relative */
1301	 10,			/* bitpos */
1302	 complain_overflow_dont,	/* complain_on_overflow */
1303	 bfd_elf_generic_reloc,	/* special_function */
1304	 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC),	/* name */
1305	 FALSE,			/* partial_inplace */
1306	 0x7fc00,		/* src_mask */
1307	 0x7fc00,		/* dst_mask */
1308	 FALSE),		/* pcrel_offset */
1309
1310  /* LD/ST8: bit[11:0] of byte offset to module TLS base address.  */
1311  HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12),	/* type */
1312	 0,			/* rightshift */
1313	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1314	 12,			/* bitsize */
1315	 FALSE,			/* pc_relative */
1316	 10,			/* bitpos */
1317	 complain_overflow_unsigned,	/* complain_on_overflow */
1318	 bfd_elf_generic_reloc,	/* special_function */
1319	 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12),	/* name */
1320	 FALSE,			/* partial_inplace */
1321	 0x3ffc00,		/* src_mask */
1322	 0x3ffc00,		/* dst_mask */
1323	 FALSE),		/* pcrel_offset */
1324
1325  /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check.  */
1326  HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC),	/* type */
1327	 0,			/* rightshift */
1328	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1329	 12,			/* bitsize */
1330	 FALSE,			/* pc_relative */
1331	 10,			/* bitpos */
1332	 complain_overflow_dont,	/* complain_on_overflow */
1333	 bfd_elf_generic_reloc,	/* special_function */
1334	 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC),	/* name */
1335	 FALSE,			/* partial_inplace */
1336	 0x3ffc00,		/* src_mask */
1337	 0x3ffc00,		/* dst_mask */
1338	 FALSE),		/* pcrel_offset */
1339
1340  /* MOVZ: bit[15:0] of byte offset to module TLS base address.  */
1341  HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0),	/* type */
1342	 0,			/* rightshift */
1343	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1344	 16,			/* bitsize */
1345	 FALSE,			/* pc_relative */
1346	 0,			/* bitpos */
1347	 complain_overflow_unsigned,	/* complain_on_overflow */
1348	 bfd_elf_generic_reloc,	/* special_function */
1349	 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0),	/* name */
1350	 FALSE,			/* partial_inplace */
1351	 0xffff,		/* src_mask */
1352	 0xffff,		/* dst_mask */
1353	 FALSE),		/* pcrel_offset */
1354
1355  /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0.  */
1356  HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC),	/* type */
1357	 0,			/* rightshift */
1358	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1359	 16,			/* bitsize */
1360	 FALSE,			/* pc_relative */
1361	 0,			/* bitpos */
1362	 complain_overflow_dont,	/* complain_on_overflow */
1363	 bfd_elf_generic_reloc,	/* special_function */
1364	 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC),	/* name */
1365	 FALSE,			/* partial_inplace */
1366	 0xffff,		/* src_mask */
1367	 0xffff,		/* dst_mask */
1368	 FALSE),		/* pcrel_offset */
1369
1370  /* MOVZ: bit[31:16] of byte offset to module TLS base address.  */
1371  HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1),	/* type */
1372	 16,			/* rightshift */
1373	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1374	 16,			/* bitsize */
1375	 FALSE,			/* pc_relative */
1376	 0,			/* bitpos */
1377	 complain_overflow_unsigned,	/* complain_on_overflow */
1378	 bfd_elf_generic_reloc,	/* special_function */
1379	 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1),	/* name */
1380	 FALSE,			/* partial_inplace */
1381	 0xffff,		/* src_mask */
1382	 0xffff,		/* dst_mask */
1383	 FALSE),		/* pcrel_offset */
1384
1385  /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1.  */
1386  HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC),	/* type */
1387	 16,			/* rightshift */
1388	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1389	 16,			/* bitsize */
1390	 FALSE,			/* pc_relative */
1391	 0,			/* bitpos */
1392	 complain_overflow_dont,	/* complain_on_overflow */
1393	 bfd_elf_generic_reloc,	/* special_function */
1394	 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC),	/* name */
1395	 FALSE,			/* partial_inplace */
1396	 0xffff,		/* src_mask */
1397	 0xffff,		/* dst_mask */
1398	 FALSE),		/* pcrel_offset */
1399
1400  /* MOVZ: bit[47:32] of byte offset to module TLS base address.  */
1401  HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2),	/* type */
1402	 32,			/* rightshift */
1403	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1404	 16,			/* bitsize */
1405	 FALSE,			/* pc_relative */
1406	 0,			/* bitpos */
1407	 complain_overflow_unsigned,	/* complain_on_overflow */
1408	 bfd_elf_generic_reloc,	/* special_function */
1409	 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2),	/* name */
1410	 FALSE,			/* partial_inplace */
1411	 0xffff,		/* src_mask */
1412	 0xffff,		/* dst_mask */
1413	 FALSE),		/* pcrel_offset */
1414
1415  HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2),	/* type */
1416	 32,			/* rightshift */
1417	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1418	 16,			/* bitsize */
1419	 FALSE,			/* pc_relative */
1420	 0,			/* bitpos */
1421	 complain_overflow_unsigned,	/* complain_on_overflow */
1422	 bfd_elf_generic_reloc,	/* special_function */
1423	 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2),	/* name */
1424	 FALSE,			/* partial_inplace */
1425	 0xffff,		/* src_mask */
1426	 0xffff,		/* dst_mask */
1427	 FALSE),		/* pcrel_offset */
1428
1429  HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1),	/* type */
1430	 16,			/* rightshift */
1431	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1432	 16,			/* bitsize */
1433	 FALSE,			/* pc_relative */
1434	 0,			/* bitpos */
1435	 complain_overflow_dont,	/* complain_on_overflow */
1436	 bfd_elf_generic_reloc,	/* special_function */
1437	 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1),	/* name */
1438	 FALSE,			/* partial_inplace */
1439	 0xffff,		/* src_mask */
1440	 0xffff,		/* dst_mask */
1441	 FALSE),		/* pcrel_offset */
1442
1443  HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC),	/* type */
1444	 16,			/* rightshift */
1445	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1446	 16,			/* bitsize */
1447	 FALSE,			/* pc_relative */
1448	 0,			/* bitpos */
1449	 complain_overflow_dont,	/* complain_on_overflow */
1450	 bfd_elf_generic_reloc,	/* special_function */
1451	 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC),	/* name */
1452	 FALSE,			/* partial_inplace */
1453	 0xffff,		/* src_mask */
1454	 0xffff,		/* dst_mask */
1455	 FALSE),		/* pcrel_offset */
1456
1457  HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0),	/* type */
1458	 0,			/* rightshift */
1459	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1460	 16,			/* bitsize */
1461	 FALSE,			/* pc_relative */
1462	 0,			/* bitpos */
1463	 complain_overflow_dont,	/* complain_on_overflow */
1464	 bfd_elf_generic_reloc,	/* special_function */
1465	 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0),	/* name */
1466	 FALSE,			/* partial_inplace */
1467	 0xffff,		/* src_mask */
1468	 0xffff,		/* dst_mask */
1469	 FALSE),		/* pcrel_offset */
1470
1471  HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC),	/* type */
1472	 0,			/* rightshift */
1473	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1474	 16,			/* bitsize */
1475	 FALSE,			/* pc_relative */
1476	 0,			/* bitpos */
1477	 complain_overflow_dont,	/* complain_on_overflow */
1478	 bfd_elf_generic_reloc,	/* special_function */
1479	 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC),	/* name */
1480	 FALSE,			/* partial_inplace */
1481	 0xffff,		/* src_mask */
1482	 0xffff,		/* dst_mask */
1483	 FALSE),		/* pcrel_offset */
1484
1485  HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12),	/* type */
1486	 12,			/* rightshift */
1487	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1488	 12,			/* bitsize */
1489	 FALSE,			/* pc_relative */
1490	 0,			/* bitpos */
1491	 complain_overflow_unsigned,	/* complain_on_overflow */
1492	 bfd_elf_generic_reloc,	/* special_function */
1493	 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12),	/* name */
1494	 FALSE,			/* partial_inplace */
1495	 0xfff,			/* src_mask */
1496	 0xfff,			/* dst_mask */
1497	 FALSE),		/* pcrel_offset */
1498
1499  HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12),	/* type */
1500	 0,			/* rightshift */
1501	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1502	 12,			/* bitsize */
1503	 FALSE,			/* pc_relative */
1504	 0,			/* bitpos */
1505	 complain_overflow_unsigned,	/* complain_on_overflow */
1506	 bfd_elf_generic_reloc,	/* special_function */
1507	 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12),	/* name */
1508	 FALSE,			/* partial_inplace */
1509	 0xfff,			/* src_mask */
1510	 0xfff,			/* dst_mask */
1511	 FALSE),		/* pcrel_offset */
1512
1513  HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC),	/* type */
1514	 0,			/* rightshift */
1515	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1516	 12,			/* bitsize */
1517	 FALSE,			/* pc_relative */
1518	 0,			/* bitpos */
1519	 complain_overflow_dont,	/* complain_on_overflow */
1520	 bfd_elf_generic_reloc,	/* special_function */
1521	 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC),	/* name */
1522	 FALSE,			/* partial_inplace */
1523	 0xfff,			/* src_mask */
1524	 0xfff,			/* dst_mask */
1525	 FALSE),		/* pcrel_offset */
1526
1527  HOWTO (AARCH64_R (TLSDESC_LD_PREL19),	/* type */
1528	 2,			/* rightshift */
1529	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1530	 19,			/* bitsize */
1531	 TRUE,			/* pc_relative */
1532	 0,			/* bitpos */
1533	 complain_overflow_dont,	/* complain_on_overflow */
1534	 bfd_elf_generic_reloc,	/* special_function */
1535	 AARCH64_R_STR (TLSDESC_LD_PREL19),	/* name */
1536	 FALSE,			/* partial_inplace */
1537	 0x0ffffe0,		/* src_mask */
1538	 0x0ffffe0,		/* dst_mask */
1539	 TRUE),			/* pcrel_offset */
1540
1541  HOWTO (AARCH64_R (TLSDESC_ADR_PREL21),	/* type */
1542	 0,			/* rightshift */
1543	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1544	 21,			/* bitsize */
1545	 TRUE,			/* pc_relative */
1546	 0,			/* bitpos */
1547	 complain_overflow_dont,	/* complain_on_overflow */
1548	 bfd_elf_generic_reloc,	/* special_function */
1549	 AARCH64_R_STR (TLSDESC_ADR_PREL21),	/* name */
1550	 FALSE,			/* partial_inplace */
1551	 0x1fffff,		/* src_mask */
1552	 0x1fffff,		/* dst_mask */
1553	 TRUE),			/* pcrel_offset */
1554
1555  /* Get to the page for the GOT entry for the symbol
1556     (G(S) - P) using an ADRP instruction.  */
1557  HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21),	/* type */
1558	 12,			/* rightshift */
1559	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1560	 21,			/* bitsize */
1561	 TRUE,			/* pc_relative */
1562	 0,			/* bitpos */
1563	 complain_overflow_dont,	/* complain_on_overflow */
1564	 bfd_elf_generic_reloc,	/* special_function */
1565	 AARCH64_R_STR (TLSDESC_ADR_PAGE21),	/* name */
1566	 FALSE,			/* partial_inplace */
1567	 0x1fffff,		/* src_mask */
1568	 0x1fffff,		/* dst_mask */
1569	 TRUE),			/* pcrel_offset */
1570
1571  /* LD64: GOT offset G(S) & 0xff8.  */
1572  HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC),	/* type */
1573	 3,			/* rightshift */
1574	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1575	 12,			/* bitsize */
1576	 FALSE,			/* pc_relative */
1577	 0,			/* bitpos */
1578	 complain_overflow_dont,	/* complain_on_overflow */
1579	 bfd_elf_generic_reloc,	/* special_function */
1580	 AARCH64_R_STR (TLSDESC_LD64_LO12_NC),	/* name */
1581	 FALSE,			/* partial_inplace */
1582	 0xff8,			/* src_mask */
1583	 0xff8,			/* dst_mask */
1584	 FALSE),		/* pcrel_offset */
1585
1586  /* LD32: GOT offset G(S) & 0xffc.  */
1587  HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC),	/* type */
1588	 2,			/* rightshift */
1589	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1590	 12,			/* bitsize */
1591	 FALSE,			/* pc_relative */
1592	 0,			/* bitpos */
1593	 complain_overflow_dont,	/* complain_on_overflow */
1594	 bfd_elf_generic_reloc,	/* special_function */
1595	 AARCH64_R_STR (TLSDESC_LD32_LO12_NC),	/* name */
1596	 FALSE,			/* partial_inplace */
1597	 0xffc,			/* src_mask */
1598	 0xffc,			/* dst_mask */
1599	 FALSE),		/* pcrel_offset */
1600
1601  /* ADD: GOT offset G(S) & 0xfff.  */
1602  HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC),	/* type */
1603	 0,			/* rightshift */
1604	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1605	 12,			/* bitsize */
1606	 FALSE,			/* pc_relative */
1607	 0,			/* bitpos */
1608	 complain_overflow_dont,	/* complain_on_overflow */
1609	 bfd_elf_generic_reloc,	/* special_function */
1610	 AARCH64_R_STR (TLSDESC_ADD_LO12_NC),	/* name */
1611	 FALSE,			/* partial_inplace */
1612	 0xfff,			/* src_mask */
1613	 0xfff,			/* dst_mask */
1614	 FALSE),		/* pcrel_offset */
1615
1616  HOWTO64 (AARCH64_R (TLSDESC_OFF_G1),	/* type */
1617	 16,			/* rightshift */
1618	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1619	 12,			/* bitsize */
1620	 FALSE,			/* pc_relative */
1621	 0,			/* bitpos */
1622	 complain_overflow_unsigned,	/* complain_on_overflow */
1623	 bfd_elf_generic_reloc,	/* special_function */
1624	 AARCH64_R_STR (TLSDESC_OFF_G1),	/* name */
1625	 FALSE,			/* partial_inplace */
1626	 0xffff,		/* src_mask */
1627	 0xffff,		/* dst_mask */
1628	 FALSE),		/* pcrel_offset */
1629
1630  HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC),	/* type */
1631	 0,			/* rightshift */
1632	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1633	 12,			/* bitsize */
1634	 FALSE,			/* pc_relative */
1635	 0,			/* bitpos */
1636	 complain_overflow_dont,	/* complain_on_overflow */
1637	 bfd_elf_generic_reloc,	/* special_function */
1638	 AARCH64_R_STR (TLSDESC_OFF_G0_NC),	/* name */
1639	 FALSE,			/* partial_inplace */
1640	 0xffff,		/* src_mask */
1641	 0xffff,		/* dst_mask */
1642	 FALSE),		/* pcrel_offset */
1643
1644  HOWTO64 (AARCH64_R (TLSDESC_LDR),	/* type */
1645	 0,			/* rightshift */
1646	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1647	 12,			/* bitsize */
1648	 FALSE,			/* pc_relative */
1649	 0,			/* bitpos */
1650	 complain_overflow_dont,	/* complain_on_overflow */
1651	 bfd_elf_generic_reloc,	/* special_function */
1652	 AARCH64_R_STR (TLSDESC_LDR),	/* name */
1653	 FALSE,			/* partial_inplace */
1654	 0x0,			/* src_mask */
1655	 0x0,			/* dst_mask */
1656	 FALSE),		/* pcrel_offset */
1657
1658  HOWTO64 (AARCH64_R (TLSDESC_ADD),	/* type */
1659	 0,			/* rightshift */
1660	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1661	 12,			/* bitsize */
1662	 FALSE,			/* pc_relative */
1663	 0,			/* bitpos */
1664	 complain_overflow_dont,	/* complain_on_overflow */
1665	 bfd_elf_generic_reloc,	/* special_function */
1666	 AARCH64_R_STR (TLSDESC_ADD),	/* name */
1667	 FALSE,			/* partial_inplace */
1668	 0x0,			/* src_mask */
1669	 0x0,			/* dst_mask */
1670	 FALSE),		/* pcrel_offset */
1671
1672  HOWTO (AARCH64_R (TLSDESC_CALL),	/* type */
1673	 0,			/* rightshift */
1674	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1675	 0,			/* bitsize */
1676	 FALSE,			/* pc_relative */
1677	 0,			/* bitpos */
1678	 complain_overflow_dont,	/* complain_on_overflow */
1679	 bfd_elf_generic_reloc,	/* special_function */
1680	 AARCH64_R_STR (TLSDESC_CALL),	/* name */
1681	 FALSE,			/* partial_inplace */
1682	 0x0,			/* src_mask */
1683	 0x0,			/* dst_mask */
1684	 FALSE),		/* pcrel_offset */
1685
1686  HOWTO (AARCH64_R (COPY),	/* type */
1687	 0,			/* rightshift */
1688	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1689	 64,			/* bitsize */
1690	 FALSE,			/* pc_relative */
1691	 0,			/* bitpos */
1692	 complain_overflow_bitfield,	/* complain_on_overflow */
1693	 bfd_elf_generic_reloc,	/* special_function */
1694	 AARCH64_R_STR (COPY),	/* name */
1695	 TRUE,			/* partial_inplace */
1696	 0xffffffff,		/* src_mask */
1697	 0xffffffff,		/* dst_mask */
1698	 FALSE),		/* pcrel_offset */
1699
1700  HOWTO (AARCH64_R (GLOB_DAT),	/* type */
1701	 0,			/* rightshift */
1702	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1703	 64,			/* bitsize */
1704	 FALSE,			/* pc_relative */
1705	 0,			/* bitpos */
1706	 complain_overflow_bitfield,	/* complain_on_overflow */
1707	 bfd_elf_generic_reloc,	/* special_function */
1708	 AARCH64_R_STR (GLOB_DAT),	/* name */
1709	 TRUE,			/* partial_inplace */
1710	 0xffffffff,		/* src_mask */
1711	 0xffffffff,		/* dst_mask */
1712	 FALSE),		/* pcrel_offset */
1713
1714  HOWTO (AARCH64_R (JUMP_SLOT),	/* type */
1715	 0,			/* rightshift */
1716	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1717	 64,			/* bitsize */
1718	 FALSE,			/* pc_relative */
1719	 0,			/* bitpos */
1720	 complain_overflow_bitfield,	/* complain_on_overflow */
1721	 bfd_elf_generic_reloc,	/* special_function */
1722	 AARCH64_R_STR (JUMP_SLOT),	/* name */
1723	 TRUE,			/* partial_inplace */
1724	 0xffffffff,		/* src_mask */
1725	 0xffffffff,		/* dst_mask */
1726	 FALSE),		/* pcrel_offset */
1727
1728  HOWTO (AARCH64_R (RELATIVE),	/* type */
1729	 0,			/* rightshift */
1730	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1731	 64,			/* bitsize */
1732	 FALSE,			/* pc_relative */
1733	 0,			/* bitpos */
1734	 complain_overflow_bitfield,	/* complain_on_overflow */
1735	 bfd_elf_generic_reloc,	/* special_function */
1736	 AARCH64_R_STR (RELATIVE),	/* name */
1737	 TRUE,			/* partial_inplace */
1738	 ALL_ONES,		/* src_mask */
1739	 ALL_ONES,		/* dst_mask */
1740	 FALSE),		/* pcrel_offset */
1741
1742  HOWTO (AARCH64_R (TLS_DTPMOD),	/* type */
1743	 0,			/* rightshift */
1744	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1745	 64,			/* bitsize */
1746	 FALSE,			/* pc_relative */
1747	 0,			/* bitpos */
1748	 complain_overflow_dont,	/* complain_on_overflow */
1749	 bfd_elf_generic_reloc,	/* special_function */
1750#if ARCH_SIZE == 64
1751	 AARCH64_R_STR (TLS_DTPMOD64),	/* name */
1752#else
1753	 AARCH64_R_STR (TLS_DTPMOD),	/* name */
1754#endif
1755	 FALSE,			/* partial_inplace */
1756	 0,			/* src_mask */
1757	 ALL_ONES,		/* dst_mask */
1758	 FALSE),		/* pc_reloffset */
1759
1760  HOWTO (AARCH64_R (TLS_DTPREL),	/* type */
1761	 0,			/* rightshift */
1762	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1763	 64,			/* bitsize */
1764	 FALSE,			/* pc_relative */
1765	 0,			/* bitpos */
1766	 complain_overflow_dont,	/* complain_on_overflow */
1767	 bfd_elf_generic_reloc,	/* special_function */
1768#if ARCH_SIZE == 64
1769	 AARCH64_R_STR (TLS_DTPREL64),	/* name */
1770#else
1771	 AARCH64_R_STR (TLS_DTPREL),	/* name */
1772#endif
1773	 FALSE,			/* partial_inplace */
1774	 0,			/* src_mask */
1775	 ALL_ONES,		/* dst_mask */
1776	 FALSE),		/* pcrel_offset */
1777
1778  HOWTO (AARCH64_R (TLS_TPREL),	/* type */
1779	 0,			/* rightshift */
1780	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1781	 64,			/* bitsize */
1782	 FALSE,			/* pc_relative */
1783	 0,			/* bitpos */
1784	 complain_overflow_dont,	/* complain_on_overflow */
1785	 bfd_elf_generic_reloc,	/* special_function */
1786#if ARCH_SIZE == 64
1787	 AARCH64_R_STR (TLS_TPREL64),	/* name */
1788#else
1789	 AARCH64_R_STR (TLS_TPREL),	/* name */
1790#endif
1791	 FALSE,			/* partial_inplace */
1792	 0,			/* src_mask */
1793	 ALL_ONES,		/* dst_mask */
1794	 FALSE),		/* pcrel_offset */
1795
1796  HOWTO (AARCH64_R (TLSDESC),	/* type */
1797	 0,			/* rightshift */
1798	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1799	 64,			/* bitsize */
1800	 FALSE,			/* pc_relative */
1801	 0,			/* bitpos */
1802	 complain_overflow_dont,	/* complain_on_overflow */
1803	 bfd_elf_generic_reloc,	/* special_function */
1804	 AARCH64_R_STR (TLSDESC),	/* name */
1805	 FALSE,			/* partial_inplace */
1806	 0,			/* src_mask */
1807	 ALL_ONES,		/* dst_mask */
1808	 FALSE),		/* pcrel_offset */
1809
1810  HOWTO (AARCH64_R (IRELATIVE),	/* type */
1811	 0,			/* rightshift */
1812	 2,			/* size (0 = byte, 1 = short, 2 = long) */
1813	 64,			/* bitsize */
1814	 FALSE,			/* pc_relative */
1815	 0,			/* bitpos */
1816	 complain_overflow_bitfield,	/* complain_on_overflow */
1817	 bfd_elf_generic_reloc,	/* special_function */
1818	 AARCH64_R_STR (IRELATIVE),	/* name */
1819	 FALSE,			/* partial_inplace */
1820	 0,			/* src_mask */
1821	 ALL_ONES,		/* dst_mask */
1822	 FALSE),		/* pcrel_offset */
1823
1824  EMPTY_HOWTO (0),
1825};
1826
1827static reloc_howto_type elfNN_aarch64_howto_none =
1828  HOWTO (R_AARCH64_NONE,	/* type */
1829	 0,			/* rightshift */
1830	 3,			/* size (0 = byte, 1 = short, 2 = long) */
1831	 0,			/* bitsize */
1832	 FALSE,			/* pc_relative */
1833	 0,			/* bitpos */
1834	 complain_overflow_dont,/* complain_on_overflow */
1835	 bfd_elf_generic_reloc,	/* special_function */
1836	 "R_AARCH64_NONE",	/* name */
1837	 FALSE,			/* partial_inplace */
1838	 0,			/* src_mask */
1839	 0,			/* dst_mask */
1840	 FALSE);		/* pcrel_offset */
1841
1842/* Given HOWTO, return the bfd internal relocation enumerator.  */
1843
1844static bfd_reloc_code_real_type
1845elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1846{
1847  const int size
1848    = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1849  const ptrdiff_t offset
1850    = howto - elfNN_aarch64_howto_table;
1851
1852  if (offset > 0 && offset < size - 1)
1853    return BFD_RELOC_AARCH64_RELOC_START + offset;
1854
1855  if (howto == &elfNN_aarch64_howto_none)
1856    return BFD_RELOC_AARCH64_NONE;
1857
1858  return BFD_RELOC_AARCH64_RELOC_START;
1859}
1860
1861/* Given R_TYPE, return the bfd internal relocation enumerator.  */
1862
1863static bfd_reloc_code_real_type
1864elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1865{
1866  static bfd_boolean initialized_p = FALSE;
1867  /* Indexed by R_TYPE, values are offsets in the howto_table.  */
1868  static unsigned int offsets[R_AARCH64_end];
1869
1870  if (initialized_p == FALSE)
1871    {
1872      unsigned int i;
1873
1874      for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1875	if (elfNN_aarch64_howto_table[i].type != 0)
1876	  offsets[elfNN_aarch64_howto_table[i].type] = i;
1877
1878      initialized_p = TRUE;
1879    }
1880
1881  if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1882    return BFD_RELOC_AARCH64_NONE;
1883
1884  /* PR 17512: file: b371e70a.  */
1885  if (r_type >= R_AARCH64_end)
1886    {
1887      _bfd_error_handler (_("Invalid AArch64 reloc number: %d"), r_type);
1888      bfd_set_error (bfd_error_bad_value);
1889      return BFD_RELOC_AARCH64_NONE;
1890    }
1891
1892  return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1893}
1894
1895struct elf_aarch64_reloc_map
1896{
1897  bfd_reloc_code_real_type from;
1898  bfd_reloc_code_real_type to;
1899};
1900
1901/* Map bfd generic reloc to AArch64-specific reloc.  */
1902static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1903{
1904  {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1905
1906  /* Basic data relocations.  */
1907  {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1908  {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1909  {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1910  {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1911  {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1912  {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1913  {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1914};
1915
1916/* Given the bfd internal relocation enumerator in CODE, return the
1917   corresponding howto entry.  */
1918
1919static reloc_howto_type *
1920elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1921{
1922  unsigned int i;
1923
1924  /* Convert bfd generic reloc to AArch64-specific reloc.  */
1925  if (code < BFD_RELOC_AARCH64_RELOC_START
1926      || code > BFD_RELOC_AARCH64_RELOC_END)
1927    for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1928      if (elf_aarch64_reloc_map[i].from == code)
1929	{
1930	  code = elf_aarch64_reloc_map[i].to;
1931	  break;
1932	}
1933
1934  if (code > BFD_RELOC_AARCH64_RELOC_START
1935      && code < BFD_RELOC_AARCH64_RELOC_END)
1936    if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1937      return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1938
1939  if (code == BFD_RELOC_AARCH64_NONE)
1940    return &elfNN_aarch64_howto_none;
1941
1942  return NULL;
1943}
1944
1945static reloc_howto_type *
1946elfNN_aarch64_howto_from_type (unsigned int r_type)
1947{
1948  bfd_reloc_code_real_type val;
1949  reloc_howto_type *howto;
1950
1951#if ARCH_SIZE == 32
1952  if (r_type > 256)
1953    {
1954      bfd_set_error (bfd_error_bad_value);
1955      return NULL;
1956    }
1957#endif
1958
1959  if (r_type == R_AARCH64_NONE)
1960    return &elfNN_aarch64_howto_none;
1961
1962  val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1963  howto = elfNN_aarch64_howto_from_bfd_reloc (val);
1964
1965  if (howto != NULL)
1966    return howto;
1967
1968  bfd_set_error (bfd_error_bad_value);
1969  return NULL;
1970}
1971
1972static void
1973elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
1974			     Elf_Internal_Rela *elf_reloc)
1975{
1976  unsigned int r_type;
1977
1978  r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1979  bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
1980}
1981
1982static reloc_howto_type *
1983elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1984				 bfd_reloc_code_real_type code)
1985{
1986  reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
1987
1988  if (howto != NULL)
1989    return howto;
1990
1991  bfd_set_error (bfd_error_bad_value);
1992  return NULL;
1993}
1994
1995static reloc_howto_type *
1996elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1997				 const char *r_name)
1998{
1999  unsigned int i;
2000
2001  for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2002    if (elfNN_aarch64_howto_table[i].name != NULL
2003	&& strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2004      return &elfNN_aarch64_howto_table[i];
2005
2006  return NULL;
2007}
2008
2009#define TARGET_LITTLE_SYM               aarch64_elfNN_le_vec
2010#define TARGET_LITTLE_NAME              "elfNN-littleaarch64"
2011#define TARGET_BIG_SYM                  aarch64_elfNN_be_vec
2012#define TARGET_BIG_NAME                 "elfNN-bigaarch64"
2013
2014/* The linker script knows the section names for placement.
2015   The entry_names are used to do simple name mangling on the stubs.
2016   Given a function name, and its type, the stub can be found. The
2017   name can be changed. The only requirement is the %s be present.  */
2018#define STUB_ENTRY_NAME   "__%s_veneer"
2019
2020/* The name of the dynamic interpreter.  This is put in the .interp
2021   section.  */
2022#define ELF_DYNAMIC_INTERPRETER     "/lib/ld.so.1"
2023
2024#define AARCH64_MAX_FWD_BRANCH_OFFSET \
2025  (((1 << 25) - 1) << 2)
2026#define AARCH64_MAX_BWD_BRANCH_OFFSET \
2027  (-((1 << 25) << 2))
2028
2029#define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2030#define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2031
2032static int
2033aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2034{
2035  bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2036  return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2037}
2038
2039static int
2040aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2041{
2042  bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2043  return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2044	  && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2045}
2046
2047static const uint32_t aarch64_adrp_branch_stub [] =
2048{
2049  0x90000010,			/*	adrp	ip0, X */
2050				/*		R_AARCH64_ADR_HI21_PCREL(X) */
2051  0x91000210,			/*	add	ip0, ip0, :lo12:X */
2052				/*		R_AARCH64_ADD_ABS_LO12_NC(X) */
2053  0xd61f0200,			/*	br	ip0 */
2054};
2055
2056static const uint32_t aarch64_long_branch_stub[] =
2057{
2058#if ARCH_SIZE == 64
2059  0x58000090,			/*	ldr   ip0, 1f */
2060#else
2061  0x18000090,			/*	ldr   wip0, 1f */
2062#endif
2063  0x10000011,			/*	adr   ip1, #0 */
2064  0x8b110210,			/*	add   ip0, ip0, ip1 */
2065  0xd61f0200,			/*	br	ip0 */
2066  0x00000000,			/* 1:	.xword or .word
2067				   R_AARCH64_PRELNN(X) + 12
2068				 */
2069  0x00000000,
2070};
2071
2072static const uint32_t aarch64_erratum_835769_stub[] =
2073{
2074  0x00000000,    /* Placeholder for multiply accumulate.  */
2075  0x14000000,    /* b <label> */
2076};
2077
2078static const uint32_t aarch64_erratum_843419_stub[] =
2079{
2080  0x00000000,    /* Placeholder for LDR instruction.  */
2081  0x14000000,    /* b <label> */
2082};
2083
2084/* Section name for stubs is the associated section name plus this
2085   string.  */
2086#define STUB_SUFFIX ".stub"
2087
2088enum elf_aarch64_stub_type
2089{
2090  aarch64_stub_none,
2091  aarch64_stub_adrp_branch,
2092  aarch64_stub_long_branch,
2093  aarch64_stub_erratum_835769_veneer,
2094  aarch64_stub_erratum_843419_veneer,
2095};
2096
2097struct elf_aarch64_stub_hash_entry
2098{
2099  /* Base hash table entry structure.  */
2100  struct bfd_hash_entry root;
2101
2102  /* The stub section.  */
2103  asection *stub_sec;
2104
2105  /* Offset within stub_sec of the beginning of this stub.  */
2106  bfd_vma stub_offset;
2107
2108  /* Given the symbol's value and its section we can determine its final
2109     value when building the stubs (so the stub knows where to jump).  */
2110  bfd_vma target_value;
2111  asection *target_section;
2112
2113  enum elf_aarch64_stub_type stub_type;
2114
2115  /* The symbol table entry, if any, that this was derived from.  */
2116  struct elf_aarch64_link_hash_entry *h;
2117
2118  /* Destination symbol type */
2119  unsigned char st_type;
2120
2121  /* Where this stub is being called from, or, in the case of combined
2122     stub sections, the first input section in the group.  */
2123  asection *id_sec;
2124
2125  /* The name for the local symbol at the start of this stub.  The
2126     stub name in the hash table has to be unique; this does not, so
2127     it can be friendlier.  */
2128  char *output_name;
2129
2130  /* The instruction which caused this stub to be generated (only valid for
2131     erratum 835769 workaround stubs at present).  */
2132  uint32_t veneered_insn;
2133
2134  /* In an erratum 843419 workaround stub, the ADRP instruction offset.  */
2135  bfd_vma adrp_offset;
2136};
2137
2138/* Used to build a map of a section.  This is required for mixed-endian
2139   code/data.  */
2140
2141typedef struct elf_elf_section_map
2142{
2143  bfd_vma vma;
2144  char type;
2145}
2146elf_aarch64_section_map;
2147
2148
2149typedef struct _aarch64_elf_section_data
2150{
2151  struct bfd_elf_section_data elf;
2152  unsigned int mapcount;
2153  unsigned int mapsize;
2154  elf_aarch64_section_map *map;
2155}
2156_aarch64_elf_section_data;
2157
2158#define elf_aarch64_section_data(sec) \
2159  ((_aarch64_elf_section_data *) elf_section_data (sec))
2160
2161/* The size of the thread control block which is defined to be two pointers.  */
2162#define TCB_SIZE	(ARCH_SIZE/8)*2
2163
2164struct elf_aarch64_local_symbol
2165{
2166  unsigned int got_type;
2167  bfd_signed_vma got_refcount;
2168  bfd_vma got_offset;
2169
2170  /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2171     offset is from the end of the jump table and reserved entries
2172     within the PLTGOT.
2173
2174     The magic value (bfd_vma) -1 indicates that an offset has not be
2175     allocated.  */
2176  bfd_vma tlsdesc_got_jump_table_offset;
2177};
2178
2179struct elf_aarch64_obj_tdata
2180{
2181  struct elf_obj_tdata root;
2182
2183  /* local symbol descriptors */
2184  struct elf_aarch64_local_symbol *locals;
2185
2186  /* Zero to warn when linking objects with incompatible enum sizes.  */
2187  int no_enum_size_warning;
2188
2189  /* Zero to warn when linking objects with incompatible wchar_t sizes.  */
2190  int no_wchar_size_warning;
2191};
2192
2193#define elf_aarch64_tdata(bfd)				\
2194  ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2195
2196#define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2197
2198#define is_aarch64_elf(bfd)				\
2199  (bfd_get_flavour (bfd) == bfd_target_elf_flavour	\
2200   && elf_tdata (bfd) != NULL				\
2201   && elf_object_id (bfd) == AARCH64_ELF_DATA)
2202
2203static bfd_boolean
2204elfNN_aarch64_mkobject (bfd *abfd)
2205{
2206  return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2207				  AARCH64_ELF_DATA);
2208}
2209
2210#define elf_aarch64_hash_entry(ent) \
2211  ((struct elf_aarch64_link_hash_entry *)(ent))
2212
2213#define GOT_UNKNOWN    0
2214#define GOT_NORMAL     1
2215#define GOT_TLS_GD     2
2216#define GOT_TLS_IE     4
2217#define GOT_TLSDESC_GD 8
2218
2219#define GOT_TLS_GD_ANY_P(type)	((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2220
2221/* AArch64 ELF linker hash entry.  */
2222struct elf_aarch64_link_hash_entry
2223{
2224  struct elf_link_hash_entry root;
2225
2226  /* Track dynamic relocs copied for this symbol.  */
2227  struct elf_dyn_relocs *dyn_relocs;
2228
2229  /* Since PLT entries have variable size, we need to record the
2230     index into .got.plt instead of recomputing it from the PLT
2231     offset.  */
2232  bfd_signed_vma plt_got_offset;
2233
2234  /* Bit mask representing the type of GOT entry(s) if any required by
2235     this symbol.  */
2236  unsigned int got_type;
2237
2238  /* A pointer to the most recently used stub hash entry against this
2239     symbol.  */
2240  struct elf_aarch64_stub_hash_entry *stub_cache;
2241
2242  /* Offset of the GOTPLT entry reserved for the TLS descriptor.  The offset
2243     is from the end of the jump table and reserved entries within the PLTGOT.
2244
2245     The magic value (bfd_vma) -1 indicates that an offset has not
2246     be allocated.  */
2247  bfd_vma tlsdesc_got_jump_table_offset;
2248};
2249
2250static unsigned int
2251elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2252			       bfd *abfd,
2253			       unsigned long r_symndx)
2254{
2255  if (h)
2256    return elf_aarch64_hash_entry (h)->got_type;
2257
2258  if (! elf_aarch64_locals (abfd))
2259    return GOT_UNKNOWN;
2260
2261  return elf_aarch64_locals (abfd)[r_symndx].got_type;
2262}
2263
2264/* Get the AArch64 elf linker hash table from a link_info structure.  */
2265#define elf_aarch64_hash_table(info)					\
2266  ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2267
2268#define aarch64_stub_hash_lookup(table, string, create, copy)		\
2269  ((struct elf_aarch64_stub_hash_entry *)				\
2270   bfd_hash_lookup ((table), (string), (create), (copy)))
2271
2272/* AArch64 ELF linker hash table.  */
2273struct elf_aarch64_link_hash_table
2274{
2275  /* The main hash table.  */
2276  struct elf_link_hash_table root;
2277
2278  /* Nonzero to force PIC branch veneers.  */
2279  int pic_veneer;
2280
2281  /* Fix erratum 835769.  */
2282  int fix_erratum_835769;
2283
2284  /* Fix erratum 843419.  */
2285  int fix_erratum_843419;
2286
2287  /* Enable ADRP->ADR rewrite for erratum 843419 workaround.  */
2288  int fix_erratum_843419_adr;
2289
2290  /* Don't apply link-time values for dynamic relocations.  */
2291  int no_apply_dynamic_relocs;
2292
2293  /* The number of bytes in the initial entry in the PLT.  */
2294  bfd_size_type plt_header_size;
2295
2296  /* The number of bytes in the subsequent PLT etries.  */
2297  bfd_size_type plt_entry_size;
2298
2299  /* Small local sym cache.  */
2300  struct sym_cache sym_cache;
2301
2302  /* For convenience in allocate_dynrelocs.  */
2303  bfd *obfd;
2304
2305  /* The amount of space used by the reserved portion of the sgotplt
2306     section, plus whatever space is used by the jump slots.  */
2307  bfd_vma sgotplt_jump_table_size;
2308
2309  /* The stub hash table.  */
2310  struct bfd_hash_table stub_hash_table;
2311
2312  /* Linker stub bfd.  */
2313  bfd *stub_bfd;
2314
2315  /* Linker call-backs.  */
2316  asection *(*add_stub_section) (const char *, asection *);
2317  void (*layout_sections_again) (void);
2318
2319  /* Array to keep track of which stub sections have been created, and
2320     information on stub grouping.  */
2321  struct map_stub
2322  {
2323    /* This is the section to which stubs in the group will be
2324       attached.  */
2325    asection *link_sec;
2326    /* The stub section.  */
2327    asection *stub_sec;
2328  } *stub_group;
2329
2330  /* Assorted information used by elfNN_aarch64_size_stubs.  */
2331  unsigned int bfd_count;
2332  unsigned int top_index;
2333  asection **input_list;
2334
2335  /* The offset into splt of the PLT entry for the TLS descriptor
2336     resolver.  Special values are 0, if not necessary (or not found
2337     to be necessary yet), and -1 if needed but not determined
2338     yet.  */
2339  bfd_vma tlsdesc_plt;
2340
2341  /* The GOT offset for the lazy trampoline.  Communicated to the
2342     loader via DT_TLSDESC_GOT.  The magic value (bfd_vma) -1
2343     indicates an offset is not allocated.  */
2344  bfd_vma dt_tlsdesc_got;
2345
2346  /* Used by local STT_GNU_IFUNC symbols.  */
2347  htab_t loc_hash_table;
2348  void * loc_hash_memory;
2349};
2350
2351/* Create an entry in an AArch64 ELF linker hash table.  */
2352
2353static struct bfd_hash_entry *
2354elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2355				 struct bfd_hash_table *table,
2356				 const char *string)
2357{
2358  struct elf_aarch64_link_hash_entry *ret =
2359    (struct elf_aarch64_link_hash_entry *) entry;
2360
2361  /* Allocate the structure if it has not already been allocated by a
2362     subclass.  */
2363  if (ret == NULL)
2364    ret = bfd_hash_allocate (table,
2365			     sizeof (struct elf_aarch64_link_hash_entry));
2366  if (ret == NULL)
2367    return (struct bfd_hash_entry *) ret;
2368
2369  /* Call the allocation method of the superclass.  */
2370  ret = ((struct elf_aarch64_link_hash_entry *)
2371	 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2372				     table, string));
2373  if (ret != NULL)
2374    {
2375      ret->dyn_relocs = NULL;
2376      ret->got_type = GOT_UNKNOWN;
2377      ret->plt_got_offset = (bfd_vma) - 1;
2378      ret->stub_cache = NULL;
2379      ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2380    }
2381
2382  return (struct bfd_hash_entry *) ret;
2383}
2384
2385/* Initialize an entry in the stub hash table.  */
2386
2387static struct bfd_hash_entry *
2388stub_hash_newfunc (struct bfd_hash_entry *entry,
2389		   struct bfd_hash_table *table, const char *string)
2390{
2391  /* Allocate the structure if it has not already been allocated by a
2392     subclass.  */
2393  if (entry == NULL)
2394    {
2395      entry = bfd_hash_allocate (table,
2396				 sizeof (struct
2397					 elf_aarch64_stub_hash_entry));
2398      if (entry == NULL)
2399	return entry;
2400    }
2401
2402  /* Call the allocation method of the superclass.  */
2403  entry = bfd_hash_newfunc (entry, table, string);
2404  if (entry != NULL)
2405    {
2406      struct elf_aarch64_stub_hash_entry *eh;
2407
2408      /* Initialize the local fields.  */
2409      eh = (struct elf_aarch64_stub_hash_entry *) entry;
2410      eh->adrp_offset = 0;
2411      eh->stub_sec = NULL;
2412      eh->stub_offset = 0;
2413      eh->target_value = 0;
2414      eh->target_section = NULL;
2415      eh->stub_type = aarch64_stub_none;
2416      eh->h = NULL;
2417      eh->id_sec = NULL;
2418    }
2419
2420  return entry;
2421}
2422
2423/* Compute a hash of a local hash entry.  We use elf_link_hash_entry
2424  for local symbol so that we can handle local STT_GNU_IFUNC symbols
2425  as global symbol.  We reuse indx and dynstr_index for local symbol
2426  hash since they aren't used by global symbols in this backend.  */
2427
2428static hashval_t
2429elfNN_aarch64_local_htab_hash (const void *ptr)
2430{
2431  struct elf_link_hash_entry *h
2432    = (struct elf_link_hash_entry *) ptr;
2433  return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2434}
2435
2436/* Compare local hash entries.  */
2437
2438static int
2439elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2440{
2441  struct elf_link_hash_entry *h1
2442     = (struct elf_link_hash_entry *) ptr1;
2443  struct elf_link_hash_entry *h2
2444    = (struct elf_link_hash_entry *) ptr2;
2445
2446  return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2447}
2448
2449/* Find and/or create a hash entry for local symbol.  */
2450
2451static struct elf_link_hash_entry *
2452elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2453				  bfd *abfd, const Elf_Internal_Rela *rel,
2454				  bfd_boolean create)
2455{
2456  struct elf_aarch64_link_hash_entry e, *ret;
2457  asection *sec = abfd->sections;
2458  hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2459				       ELFNN_R_SYM (rel->r_info));
2460  void **slot;
2461
2462  e.root.indx = sec->id;
2463  e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2464  slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2465				   create ? INSERT : NO_INSERT);
2466
2467  if (!slot)
2468    return NULL;
2469
2470  if (*slot)
2471    {
2472      ret = (struct elf_aarch64_link_hash_entry *) *slot;
2473      return &ret->root;
2474    }
2475
2476  ret = (struct elf_aarch64_link_hash_entry *)
2477	objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2478			sizeof (struct elf_aarch64_link_hash_entry));
2479  if (ret)
2480    {
2481      memset (ret, 0, sizeof (*ret));
2482      ret->root.indx = sec->id;
2483      ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2484      ret->root.dynindx = -1;
2485      *slot = ret;
2486    }
2487  return &ret->root;
2488}
2489
2490/* Copy the extra info we tack onto an elf_link_hash_entry.  */
2491
2492static void
2493elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2494				    struct elf_link_hash_entry *dir,
2495				    struct elf_link_hash_entry *ind)
2496{
2497  struct elf_aarch64_link_hash_entry *edir, *eind;
2498
2499  edir = (struct elf_aarch64_link_hash_entry *) dir;
2500  eind = (struct elf_aarch64_link_hash_entry *) ind;
2501
2502  if (eind->dyn_relocs != NULL)
2503    {
2504      if (edir->dyn_relocs != NULL)
2505	{
2506	  struct elf_dyn_relocs **pp;
2507	  struct elf_dyn_relocs *p;
2508
2509	  /* Add reloc counts against the indirect sym to the direct sym
2510	     list.  Merge any entries against the same section.  */
2511	  for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2512	    {
2513	      struct elf_dyn_relocs *q;
2514
2515	      for (q = edir->dyn_relocs; q != NULL; q = q->next)
2516		if (q->sec == p->sec)
2517		  {
2518		    q->pc_count += p->pc_count;
2519		    q->count += p->count;
2520		    *pp = p->next;
2521		    break;
2522		  }
2523	      if (q == NULL)
2524		pp = &p->next;
2525	    }
2526	  *pp = edir->dyn_relocs;
2527	}
2528
2529      edir->dyn_relocs = eind->dyn_relocs;
2530      eind->dyn_relocs = NULL;
2531    }
2532
2533  if (ind->root.type == bfd_link_hash_indirect)
2534    {
2535      /* Copy over PLT info.  */
2536      if (dir->got.refcount <= 0)
2537	{
2538	  edir->got_type = eind->got_type;
2539	  eind->got_type = GOT_UNKNOWN;
2540	}
2541    }
2542
2543  _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2544}
2545
2546/* Destroy an AArch64 elf linker hash table.  */
2547
2548static void
2549elfNN_aarch64_link_hash_table_free (bfd *obfd)
2550{
2551  struct elf_aarch64_link_hash_table *ret
2552    = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2553
2554  if (ret->loc_hash_table)
2555    htab_delete (ret->loc_hash_table);
2556  if (ret->loc_hash_memory)
2557    objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2558
2559  bfd_hash_table_free (&ret->stub_hash_table);
2560  _bfd_elf_link_hash_table_free (obfd);
2561}
2562
2563/* Create an AArch64 elf linker hash table.  */
2564
2565static struct bfd_link_hash_table *
2566elfNN_aarch64_link_hash_table_create (bfd *abfd)
2567{
2568  struct elf_aarch64_link_hash_table *ret;
2569  bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2570
2571  ret = bfd_zmalloc (amt);
2572  if (ret == NULL)
2573    return NULL;
2574
2575  if (!_bfd_elf_link_hash_table_init
2576      (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2577       sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2578    {
2579      free (ret);
2580      return NULL;
2581    }
2582
2583  ret->plt_header_size = PLT_ENTRY_SIZE;
2584  ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2585  ret->obfd = abfd;
2586  ret->dt_tlsdesc_got = (bfd_vma) - 1;
2587
2588  if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2589			    sizeof (struct elf_aarch64_stub_hash_entry)))
2590    {
2591      _bfd_elf_link_hash_table_free (abfd);
2592      return NULL;
2593    }
2594
2595  ret->loc_hash_table = htab_try_create (1024,
2596					 elfNN_aarch64_local_htab_hash,
2597					 elfNN_aarch64_local_htab_eq,
2598					 NULL);
2599  ret->loc_hash_memory = objalloc_create ();
2600  if (!ret->loc_hash_table || !ret->loc_hash_memory)
2601    {
2602      elfNN_aarch64_link_hash_table_free (abfd);
2603      return NULL;
2604    }
2605  ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2606
2607  return &ret->root.root;
2608}
2609
2610static bfd_boolean
2611aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2612		  bfd_vma offset, bfd_vma value)
2613{
2614  reloc_howto_type *howto;
2615  bfd_vma place;
2616
2617  howto = elfNN_aarch64_howto_from_type (r_type);
2618  place = (input_section->output_section->vma + input_section->output_offset
2619	   + offset);
2620
2621  r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2622  value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2623  return _bfd_aarch64_elf_put_addend (input_bfd,
2624				      input_section->contents + offset, r_type,
2625				      howto, value);
2626}
2627
2628static enum elf_aarch64_stub_type
2629aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2630{
2631  if (aarch64_valid_for_adrp_p (value, place))
2632    return aarch64_stub_adrp_branch;
2633  return aarch64_stub_long_branch;
2634}
2635
2636/* Determine the type of stub needed, if any, for a call.  */
2637
2638static enum elf_aarch64_stub_type
2639aarch64_type_of_stub (asection *input_sec,
2640		      const Elf_Internal_Rela *rel,
2641		      asection *sym_sec,
2642		      unsigned char st_type,
2643		      bfd_vma destination)
2644{
2645  bfd_vma location;
2646  bfd_signed_vma branch_offset;
2647  unsigned int r_type;
2648  enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2649
2650  if (st_type != STT_FUNC
2651      && (sym_sec == input_sec))
2652    return stub_type;
2653
2654  /* Determine where the call point is.  */
2655  location = (input_sec->output_offset
2656	      + input_sec->output_section->vma + rel->r_offset);
2657
2658  branch_offset = (bfd_signed_vma) (destination - location);
2659
2660  r_type = ELFNN_R_TYPE (rel->r_info);
2661
2662  /* We don't want to redirect any old unconditional jump in this way,
2663     only one which is being used for a sibcall, where it is
2664     acceptable for the IP0 and IP1 registers to be clobbered.  */
2665  if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2666      && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2667	  || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2668    {
2669      stub_type = aarch64_stub_long_branch;
2670    }
2671
2672  return stub_type;
2673}
2674
2675/* Build a name for an entry in the stub hash table.  */
2676
2677static char *
2678elfNN_aarch64_stub_name (const asection *input_section,
2679			 const asection *sym_sec,
2680			 const struct elf_aarch64_link_hash_entry *hash,
2681			 const Elf_Internal_Rela *rel)
2682{
2683  char *stub_name;
2684  bfd_size_type len;
2685
2686  if (hash)
2687    {
2688      len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2689      stub_name = bfd_malloc (len);
2690      if (stub_name != NULL)
2691	snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2692		  (unsigned int) input_section->id,
2693		  hash->root.root.root.string,
2694		  rel->r_addend);
2695    }
2696  else
2697    {
2698      len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2699      stub_name = bfd_malloc (len);
2700      if (stub_name != NULL)
2701	snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2702		  (unsigned int) input_section->id,
2703		  (unsigned int) sym_sec->id,
2704		  (unsigned int) ELFNN_R_SYM (rel->r_info),
2705		  rel->r_addend);
2706    }
2707
2708  return stub_name;
2709}
2710
2711/* Look up an entry in the stub hash.  Stub entries are cached because
2712   creating the stub name takes a bit of time.  */
2713
2714static struct elf_aarch64_stub_hash_entry *
2715elfNN_aarch64_get_stub_entry (const asection *input_section,
2716			      const asection *sym_sec,
2717			      struct elf_link_hash_entry *hash,
2718			      const Elf_Internal_Rela *rel,
2719			      struct elf_aarch64_link_hash_table *htab)
2720{
2721  struct elf_aarch64_stub_hash_entry *stub_entry;
2722  struct elf_aarch64_link_hash_entry *h =
2723    (struct elf_aarch64_link_hash_entry *) hash;
2724  const asection *id_sec;
2725
2726  if ((input_section->flags & SEC_CODE) == 0)
2727    return NULL;
2728
2729  /* If this input section is part of a group of sections sharing one
2730     stub section, then use the id of the first section in the group.
2731     Stub names need to include a section id, as there may well be
2732     more than one stub used to reach say, printf, and we need to
2733     distinguish between them.  */
2734  id_sec = htab->stub_group[input_section->id].link_sec;
2735
2736  if (h != NULL && h->stub_cache != NULL
2737      && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2738    {
2739      stub_entry = h->stub_cache;
2740    }
2741  else
2742    {
2743      char *stub_name;
2744
2745      stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
2746      if (stub_name == NULL)
2747	return NULL;
2748
2749      stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2750					     stub_name, FALSE, FALSE);
2751      if (h != NULL)
2752	h->stub_cache = stub_entry;
2753
2754      free (stub_name);
2755    }
2756
2757  return stub_entry;
2758}
2759
2760
2761/* Create a stub section.  */
2762
2763static asection *
2764_bfd_aarch64_create_stub_section (asection *section,
2765				  struct elf_aarch64_link_hash_table *htab)
2766{
2767  size_t namelen;
2768  bfd_size_type len;
2769  char *s_name;
2770
2771  namelen = strlen (section->name);
2772  len = namelen + sizeof (STUB_SUFFIX);
2773  s_name = bfd_alloc (htab->stub_bfd, len);
2774  if (s_name == NULL)
2775    return NULL;
2776
2777  memcpy (s_name, section->name, namelen);
2778  memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2779  return (*htab->add_stub_section) (s_name, section);
2780}
2781
2782
2783/* Find or create a stub section for a link section.
2784
2785   Fix or create the stub section used to collect stubs attached to
2786   the specified link section.  */
2787
2788static asection *
2789_bfd_aarch64_get_stub_for_link_section (asection *link_section,
2790					struct elf_aarch64_link_hash_table *htab)
2791{
2792  if (htab->stub_group[link_section->id].stub_sec == NULL)
2793    htab->stub_group[link_section->id].stub_sec
2794      = _bfd_aarch64_create_stub_section (link_section, htab);
2795  return htab->stub_group[link_section->id].stub_sec;
2796}
2797
2798
2799/* Find or create a stub section in the stub group for an input
2800   section.  */
2801
2802static asection *
2803_bfd_aarch64_create_or_find_stub_sec (asection *section,
2804				      struct elf_aarch64_link_hash_table *htab)
2805{
2806  asection *link_sec = htab->stub_group[section->id].link_sec;
2807  return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
2808}
2809
2810
2811/* Add a new stub entry in the stub group associated with an input
2812   section to the stub hash.  Not all fields of the new stub entry are
2813   initialised.  */
2814
2815static struct elf_aarch64_stub_hash_entry *
2816_bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
2817				      asection *section,
2818				      struct elf_aarch64_link_hash_table *htab)
2819{
2820  asection *link_sec;
2821  asection *stub_sec;
2822  struct elf_aarch64_stub_hash_entry *stub_entry;
2823
2824  link_sec = htab->stub_group[section->id].link_sec;
2825  stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
2826
2827  /* Enter this entry into the linker stub hash table.  */
2828  stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2829					 TRUE, FALSE);
2830  if (stub_entry == NULL)
2831    {
2832      /* xgettext:c-format */
2833      _bfd_error_handler (_("%s: cannot create stub entry %s"),
2834			  section->owner, stub_name);
2835      return NULL;
2836    }
2837
2838  stub_entry->stub_sec = stub_sec;
2839  stub_entry->stub_offset = 0;
2840  stub_entry->id_sec = link_sec;
2841
2842  return stub_entry;
2843}
2844
2845/* Add a new stub entry in the final stub section to the stub hash.
2846   Not all fields of the new stub entry are initialised.  */
2847
2848static struct elf_aarch64_stub_hash_entry *
2849_bfd_aarch64_add_stub_entry_after (const char *stub_name,
2850				   asection *link_section,
2851				   struct elf_aarch64_link_hash_table *htab)
2852{
2853  asection *stub_sec;
2854  struct elf_aarch64_stub_hash_entry *stub_entry;
2855
2856  stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
2857  stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2858					 TRUE, FALSE);
2859  if (stub_entry == NULL)
2860    {
2861      _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
2862      return NULL;
2863    }
2864
2865  stub_entry->stub_sec = stub_sec;
2866  stub_entry->stub_offset = 0;
2867  stub_entry->id_sec = link_section;
2868
2869  return stub_entry;
2870}
2871
2872
2873static bfd_boolean
2874aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2875			void *in_arg ATTRIBUTE_UNUSED)
2876{
2877  struct elf_aarch64_stub_hash_entry *stub_entry;
2878  asection *stub_sec;
2879  bfd *stub_bfd;
2880  bfd_byte *loc;
2881  bfd_vma sym_value;
2882  bfd_vma veneered_insn_loc;
2883  bfd_vma veneer_entry_loc;
2884  bfd_signed_vma branch_offset = 0;
2885  unsigned int template_size;
2886  const uint32_t *template;
2887  unsigned int i;
2888
2889  /* Massage our args to the form they really have.  */
2890  stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2891
2892  stub_sec = stub_entry->stub_sec;
2893
2894  /* Make a note of the offset within the stubs for this entry.  */
2895  stub_entry->stub_offset = stub_sec->size;
2896  loc = stub_sec->contents + stub_entry->stub_offset;
2897
2898  stub_bfd = stub_sec->owner;
2899
2900  /* This is the address of the stub destination.  */
2901  sym_value = (stub_entry->target_value
2902	       + stub_entry->target_section->output_offset
2903	       + stub_entry->target_section->output_section->vma);
2904
2905  if (stub_entry->stub_type == aarch64_stub_long_branch)
2906    {
2907      bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2908		       + stub_sec->output_offset);
2909
2910      /* See if we can relax the stub.  */
2911      if (aarch64_valid_for_adrp_p (sym_value, place))
2912	stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2913    }
2914
2915  switch (stub_entry->stub_type)
2916    {
2917    case aarch64_stub_adrp_branch:
2918      template = aarch64_adrp_branch_stub;
2919      template_size = sizeof (aarch64_adrp_branch_stub);
2920      break;
2921    case aarch64_stub_long_branch:
2922      template = aarch64_long_branch_stub;
2923      template_size = sizeof (aarch64_long_branch_stub);
2924      break;
2925    case aarch64_stub_erratum_835769_veneer:
2926      template = aarch64_erratum_835769_stub;
2927      template_size = sizeof (aarch64_erratum_835769_stub);
2928      break;
2929    case aarch64_stub_erratum_843419_veneer:
2930      template = aarch64_erratum_843419_stub;
2931      template_size = sizeof (aarch64_erratum_843419_stub);
2932      break;
2933    default:
2934      abort ();
2935    }
2936
2937  for (i = 0; i < (template_size / sizeof template[0]); i++)
2938    {
2939      bfd_putl32 (template[i], loc);
2940      loc += 4;
2941    }
2942
2943  template_size = (template_size + 7) & ~7;
2944  stub_sec->size += template_size;
2945
2946  switch (stub_entry->stub_type)
2947    {
2948    case aarch64_stub_adrp_branch:
2949      if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
2950			    stub_entry->stub_offset, sym_value))
2951	/* The stub would not have been relaxed if the offset was out
2952	   of range.  */
2953	BFD_FAIL ();
2954
2955      if (aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
2956			    stub_entry->stub_offset + 4, sym_value))
2957	BFD_FAIL ();
2958      break;
2959
2960    case aarch64_stub_long_branch:
2961      /* We want the value relative to the address 12 bytes back from the
2962         value itself.  */
2963      if (aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
2964			    stub_entry->stub_offset + 16, sym_value + 12))
2965	BFD_FAIL ();
2966      break;
2967
2968    case aarch64_stub_erratum_835769_veneer:
2969      veneered_insn_loc = stub_entry->target_section->output_section->vma
2970			  + stub_entry->target_section->output_offset
2971			  + stub_entry->target_value;
2972      veneer_entry_loc = stub_entry->stub_sec->output_section->vma
2973			  + stub_entry->stub_sec->output_offset
2974			  + stub_entry->stub_offset;
2975      branch_offset = veneered_insn_loc - veneer_entry_loc;
2976      branch_offset >>= 2;
2977      branch_offset &= 0x3ffffff;
2978      bfd_putl32 (stub_entry->veneered_insn,
2979		  stub_sec->contents + stub_entry->stub_offset);
2980      bfd_putl32 (template[1] | branch_offset,
2981		  stub_sec->contents + stub_entry->stub_offset + 4);
2982      break;
2983
2984    case aarch64_stub_erratum_843419_veneer:
2985      if (aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
2986			    stub_entry->stub_offset + 4, sym_value + 4))
2987	BFD_FAIL ();
2988      break;
2989
2990    default:
2991      abort ();
2992    }
2993
2994  return TRUE;
2995}
2996
2997/* As above, but don't actually build the stub.  Just bump offset so
2998   we know stub section sizes.  */
2999
3000static bfd_boolean
3001aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
3002		       void *in_arg ATTRIBUTE_UNUSED)
3003{
3004  struct elf_aarch64_stub_hash_entry *stub_entry;
3005  int size;
3006
3007  /* Massage our args to the form they really have.  */
3008  stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3009
3010  switch (stub_entry->stub_type)
3011    {
3012    case aarch64_stub_adrp_branch:
3013      size = sizeof (aarch64_adrp_branch_stub);
3014      break;
3015    case aarch64_stub_long_branch:
3016      size = sizeof (aarch64_long_branch_stub);
3017      break;
3018    case aarch64_stub_erratum_835769_veneer:
3019      size = sizeof (aarch64_erratum_835769_stub);
3020      break;
3021    case aarch64_stub_erratum_843419_veneer:
3022      size = sizeof (aarch64_erratum_843419_stub);
3023      break;
3024    default:
3025      abort ();
3026    }
3027
3028  size = (size + 7) & ~7;
3029  stub_entry->stub_sec->size += size;
3030  return TRUE;
3031}
3032
3033/* External entry points for sizing and building linker stubs.  */
3034
3035/* Set up various things so that we can make a list of input sections
3036   for each output section included in the link.  Returns -1 on error,
3037   0 when no stubs will be needed, and 1 on success.  */
3038
3039int
3040elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3041				   struct bfd_link_info *info)
3042{
3043  bfd *input_bfd;
3044  unsigned int bfd_count;
3045  unsigned int top_id, top_index;
3046  asection *section;
3047  asection **input_list, **list;
3048  bfd_size_type amt;
3049  struct elf_aarch64_link_hash_table *htab =
3050    elf_aarch64_hash_table (info);
3051
3052  if (!is_elf_hash_table (htab))
3053    return 0;
3054
3055  /* Count the number of input BFDs and find the top input section id.  */
3056  for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3057       input_bfd != NULL; input_bfd = input_bfd->link.next)
3058    {
3059      bfd_count += 1;
3060      for (section = input_bfd->sections;
3061	   section != NULL; section = section->next)
3062	{
3063	  if (top_id < section->id)
3064	    top_id = section->id;
3065	}
3066    }
3067  htab->bfd_count = bfd_count;
3068
3069  amt = sizeof (struct map_stub) * (top_id + 1);
3070  htab->stub_group = bfd_zmalloc (amt);
3071  if (htab->stub_group == NULL)
3072    return -1;
3073
3074  /* We can't use output_bfd->section_count here to find the top output
3075     section index as some sections may have been removed, and
3076     _bfd_strip_section_from_output doesn't renumber the indices.  */
3077  for (section = output_bfd->sections, top_index = 0;
3078       section != NULL; section = section->next)
3079    {
3080      if (top_index < section->index)
3081	top_index = section->index;
3082    }
3083
3084  htab->top_index = top_index;
3085  amt = sizeof (asection *) * (top_index + 1);
3086  input_list = bfd_malloc (amt);
3087  htab->input_list = input_list;
3088  if (input_list == NULL)
3089    return -1;
3090
3091  /* For sections we aren't interested in, mark their entries with a
3092     value we can check later.  */
3093  list = input_list + top_index;
3094  do
3095    *list = bfd_abs_section_ptr;
3096  while (list-- != input_list);
3097
3098  for (section = output_bfd->sections;
3099       section != NULL; section = section->next)
3100    {
3101      if ((section->flags & SEC_CODE) != 0)
3102	input_list[section->index] = NULL;
3103    }
3104
3105  return 1;
3106}
3107
3108/* Used by elfNN_aarch64_next_input_section and group_sections.  */
3109#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3110
3111/* The linker repeatedly calls this function for each input section,
3112   in the order that input sections are linked into output sections.
3113   Build lists of input sections to determine groupings between which
3114   we may insert linker stubs.  */
3115
3116void
3117elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3118{
3119  struct elf_aarch64_link_hash_table *htab =
3120    elf_aarch64_hash_table (info);
3121
3122  if (isec->output_section->index <= htab->top_index)
3123    {
3124      asection **list = htab->input_list + isec->output_section->index;
3125
3126      if (*list != bfd_abs_section_ptr)
3127	{
3128	  /* Steal the link_sec pointer for our list.  */
3129	  /* This happens to make the list in reverse order,
3130	     which is what we want.  */
3131	  PREV_SEC (isec) = *list;
3132	  *list = isec;
3133	}
3134    }
3135}
3136
3137/* See whether we can group stub sections together.  Grouping stub
3138   sections may result in fewer stubs.  More importantly, we need to
3139   put all .init* and .fini* stubs at the beginning of the .init or
3140   .fini output sections respectively, because glibc splits the
3141   _init and _fini functions into multiple parts.  Putting a stub in
3142   the middle of a function is not a good idea.  */
3143
3144static void
3145group_sections (struct elf_aarch64_link_hash_table *htab,
3146		bfd_size_type stub_group_size,
3147		bfd_boolean stubs_always_before_branch)
3148{
3149  asection **list = htab->input_list + htab->top_index;
3150
3151  do
3152    {
3153      asection *tail = *list;
3154
3155      if (tail == bfd_abs_section_ptr)
3156	continue;
3157
3158      while (tail != NULL)
3159	{
3160	  asection *curr;
3161	  asection *prev;
3162	  bfd_size_type total;
3163
3164	  curr = tail;
3165	  total = tail->size;
3166	  while ((prev = PREV_SEC (curr)) != NULL
3167		 && ((total += curr->output_offset - prev->output_offset)
3168		     < stub_group_size))
3169	    curr = prev;
3170
3171	  /* OK, the size from the start of CURR to the end is less
3172	     than stub_group_size and thus can be handled by one stub
3173	     section.  (Or the tail section is itself larger than
3174	     stub_group_size, in which case we may be toast.)
3175	     We should really be keeping track of the total size of
3176	     stubs added here, as stubs contribute to the final output
3177	     section size.  */
3178	  do
3179	    {
3180	      prev = PREV_SEC (tail);
3181	      /* Set up this stub group.  */
3182	      htab->stub_group[tail->id].link_sec = curr;
3183	    }
3184	  while (tail != curr && (tail = prev) != NULL);
3185
3186	  /* But wait, there's more!  Input sections up to stub_group_size
3187	     bytes before the stub section can be handled by it too.  */
3188	  if (!stubs_always_before_branch)
3189	    {
3190	      total = 0;
3191	      while (prev != NULL
3192		     && ((total += tail->output_offset - prev->output_offset)
3193			 < stub_group_size))
3194		{
3195		  tail = prev;
3196		  prev = PREV_SEC (tail);
3197		  htab->stub_group[tail->id].link_sec = curr;
3198		}
3199	    }
3200	  tail = prev;
3201	}
3202    }
3203  while (list-- != htab->input_list);
3204
3205  free (htab->input_list);
3206}
3207
3208#undef PREV_SEC
3209
3210#define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3211
3212#define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3213#define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3214#define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3215#define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3216#define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3217#define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3218
3219#define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3220#define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3221#define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3222#define AARCH64_ZR 0x1f
3223
3224/* All ld/st ops.  See C4-182 of the ARM ARM.  The encoding space for
3225   LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.  */
3226
3227#define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3228#define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3229#define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3230#define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3231#define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3232#define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3233#define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3234#define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3235#define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3236#define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3237#define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3238#define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3239#define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3240#define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3241#define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3242#define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3243#define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3244#define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3245
3246/* Classify an INSN if it is indeed a load/store.
3247
3248   Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3249
3250   For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3251   is set equal to RT.
3252
3253   For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned.
3254
3255 */
3256
3257static bfd_boolean
3258aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3259		  bfd_boolean *pair, bfd_boolean *load)
3260{
3261  uint32_t opcode;
3262  unsigned int r;
3263  uint32_t opc = 0;
3264  uint32_t v = 0;
3265  uint32_t opc_v = 0;
3266
3267  /* Bail out quickly if INSN doesn't fall into the the load-store
3268     encoding space.  */
3269  if (!AARCH64_LDST (insn))
3270    return FALSE;
3271
3272  *pair = FALSE;
3273  *load = FALSE;
3274  if (AARCH64_LDST_EX (insn))
3275    {
3276      *rt = AARCH64_RT (insn);
3277      *rt2 = *rt;
3278      if (AARCH64_BIT (insn, 21) == 1)
3279        {
3280	  *pair = TRUE;
3281	  *rt2 = AARCH64_RT2 (insn);
3282	}
3283      *load = AARCH64_LD (insn);
3284      return TRUE;
3285    }
3286  else if (AARCH64_LDST_NAP (insn)
3287	   || AARCH64_LDSTP_PI (insn)
3288	   || AARCH64_LDSTP_O (insn)
3289	   || AARCH64_LDSTP_PRE (insn))
3290    {
3291      *pair = TRUE;
3292      *rt = AARCH64_RT (insn);
3293      *rt2 = AARCH64_RT2 (insn);
3294      *load = AARCH64_LD (insn);
3295      return TRUE;
3296    }
3297  else if (AARCH64_LDST_PCREL (insn)
3298	   || AARCH64_LDST_UI (insn)
3299	   || AARCH64_LDST_PIIMM (insn)
3300	   || AARCH64_LDST_U (insn)
3301	   || AARCH64_LDST_PREIMM (insn)
3302	   || AARCH64_LDST_RO (insn)
3303	   || AARCH64_LDST_UIMM (insn))
3304   {
3305      *rt = AARCH64_RT (insn);
3306      *rt2 = *rt;
3307      if (AARCH64_LDST_PCREL (insn))
3308	*load = TRUE;
3309      opc = AARCH64_BITS (insn, 22, 2);
3310      v = AARCH64_BIT (insn, 26);
3311      opc_v = opc | (v << 2);
3312      *load =  (opc_v == 1 || opc_v == 2 || opc_v == 3
3313		|| opc_v == 5 || opc_v == 7);
3314      return TRUE;
3315   }
3316  else if (AARCH64_LDST_SIMD_M (insn)
3317	   || AARCH64_LDST_SIMD_M_PI (insn))
3318    {
3319      *rt = AARCH64_RT (insn);
3320      *load = AARCH64_BIT (insn, 22);
3321      opcode = (insn >> 12) & 0xf;
3322      switch (opcode)
3323	{
3324	case 0:
3325	case 2:
3326	  *rt2 = *rt + 3;
3327	  break;
3328
3329	case 4:
3330	case 6:
3331	  *rt2 = *rt + 2;
3332	  break;
3333
3334	case 7:
3335	  *rt2 = *rt;
3336	  break;
3337
3338	case 8:
3339	case 10:
3340	  *rt2 = *rt + 1;
3341	  break;
3342
3343	default:
3344	  return FALSE;
3345	}
3346      return TRUE;
3347    }
3348  else if (AARCH64_LDST_SIMD_S (insn)
3349	   || AARCH64_LDST_SIMD_S_PI (insn))
3350    {
3351      *rt = AARCH64_RT (insn);
3352      r = (insn >> 21) & 1;
3353      *load = AARCH64_BIT (insn, 22);
3354      opcode = (insn >> 13) & 0x7;
3355      switch (opcode)
3356	{
3357	case 0:
3358	case 2:
3359	case 4:
3360	  *rt2 = *rt + r;
3361	  break;
3362
3363	case 1:
3364	case 3:
3365	case 5:
3366	  *rt2 = *rt + (r == 0 ? 2 : 3);
3367	  break;
3368
3369	case 6:
3370	  *rt2 = *rt + r;
3371	  break;
3372
3373	case 7:
3374	  *rt2 = *rt + (r == 0 ? 2 : 3);
3375	  break;
3376
3377	default:
3378	  return FALSE;
3379	}
3380      return TRUE;
3381    }
3382
3383  return FALSE;
3384}
3385
3386/* Return TRUE if INSN is multiply-accumulate.  */
3387
3388static bfd_boolean
3389aarch64_mlxl_p (uint32_t insn)
3390{
3391  uint32_t op31 = AARCH64_OP31 (insn);
3392
3393  if (AARCH64_MAC (insn)
3394      && (op31 == 0 || op31 == 1 || op31 == 5)
3395      /* Exclude MUL instructions which are encoded as a multiple accumulate
3396	 with RA = XZR.  */
3397      && AARCH64_RA (insn) != AARCH64_ZR)
3398    return TRUE;
3399
3400  return FALSE;
3401}
3402
3403/* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3404   it is possible for a 64-bit multiply-accumulate instruction to generate an
3405   incorrect result.  The details are quite complex and hard to
3406   determine statically, since branches in the code may exist in some
3407   circumstances, but all cases end with a memory (load, store, or
3408   prefetch) instruction followed immediately by the multiply-accumulate
3409   operation.  We employ a linker patching technique, by moving the potentially
3410   affected multiply-accumulate instruction into a patch region and replacing
3411   the original instruction with a branch to the patch.  This function checks
3412   if INSN_1 is the memory operation followed by a multiply-accumulate
3413   operation (INSN_2).  Return TRUE if an erratum sequence is found, FALSE
3414   if INSN_1 and INSN_2 are safe.  */
3415
3416static bfd_boolean
3417aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3418{
3419  uint32_t rt;
3420  uint32_t rt2;
3421  uint32_t rn;
3422  uint32_t rm;
3423  uint32_t ra;
3424  bfd_boolean pair;
3425  bfd_boolean load;
3426
3427  if (aarch64_mlxl_p (insn_2)
3428      && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3429    {
3430      /* Any SIMD memory op is independent of the subsequent MLA
3431	 by definition of the erratum.  */
3432      if (AARCH64_BIT (insn_1, 26))
3433	return TRUE;
3434
3435      /* If not SIMD, check for integer memory ops and MLA relationship.  */
3436      rn = AARCH64_RN (insn_2);
3437      ra = AARCH64_RA (insn_2);
3438      rm = AARCH64_RM (insn_2);
3439
3440      /* If this is a load and there's a true(RAW) dependency, we are safe
3441	 and this is not an erratum sequence.  */
3442      if (load &&
3443	  (rt == rn || rt == rm || rt == ra
3444	   || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3445	return FALSE;
3446
3447      /* We conservatively put out stubs for all other cases (including
3448	 writebacks).  */
3449      return TRUE;
3450    }
3451
3452  return FALSE;
3453}
3454
3455/* Used to order a list of mapping symbols by address.  */
3456
3457static int
3458elf_aarch64_compare_mapping (const void *a, const void *b)
3459{
3460  const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3461  const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3462
3463  if (amap->vma > bmap->vma)
3464    return 1;
3465  else if (amap->vma < bmap->vma)
3466    return -1;
3467  else if (amap->type > bmap->type)
3468    /* Ensure results do not depend on the host qsort for objects with
3469       multiple mapping symbols at the same address by sorting on type
3470       after vma.  */
3471    return 1;
3472  else if (amap->type < bmap->type)
3473    return -1;
3474  else
3475    return 0;
3476}
3477
3478
3479static char *
3480_bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3481{
3482  char *stub_name = (char *) bfd_malloc
3483    (strlen ("__erratum_835769_veneer_") + 16);
3484  sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3485  return stub_name;
3486}
3487
3488/* Scan for Cortex-A53 erratum 835769 sequence.
3489
3490   Return TRUE else FALSE on abnormal termination.  */
3491
3492static bfd_boolean
3493_bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3494				  struct bfd_link_info *info,
3495				  unsigned int *num_fixes_p)
3496{
3497  asection *section;
3498  struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3499  unsigned int num_fixes = *num_fixes_p;
3500
3501  if (htab == NULL)
3502    return TRUE;
3503
3504  for (section = input_bfd->sections;
3505       section != NULL;
3506       section = section->next)
3507    {
3508      bfd_byte *contents = NULL;
3509      struct _aarch64_elf_section_data *sec_data;
3510      unsigned int span;
3511
3512      if (elf_section_type (section) != SHT_PROGBITS
3513	  || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3514	  || (section->flags & SEC_EXCLUDE) != 0
3515	  || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3516	  || (section->output_section == bfd_abs_section_ptr))
3517	continue;
3518
3519      if (elf_section_data (section)->this_hdr.contents != NULL)
3520	contents = elf_section_data (section)->this_hdr.contents;
3521      else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3522	return FALSE;
3523
3524      sec_data = elf_aarch64_section_data (section);
3525
3526      qsort (sec_data->map, sec_data->mapcount,
3527	     sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3528
3529      for (span = 0; span < sec_data->mapcount; span++)
3530	{
3531	  unsigned int span_start = sec_data->map[span].vma;
3532	  unsigned int span_end = ((span == sec_data->mapcount - 1)
3533				   ? sec_data->map[0].vma + section->size
3534				   : sec_data->map[span + 1].vma);
3535	  unsigned int i;
3536	  char span_type = sec_data->map[span].type;
3537
3538	  if (span_type == 'd')
3539	    continue;
3540
3541	  for (i = span_start; i + 4 < span_end; i += 4)
3542	    {
3543	      uint32_t insn_1 = bfd_getl32 (contents + i);
3544	      uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3545
3546	      if (aarch64_erratum_sequence (insn_1, insn_2))
3547		{
3548		  struct elf_aarch64_stub_hash_entry *stub_entry;
3549		  char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3550		  if (! stub_name)
3551		    return FALSE;
3552
3553		  stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3554								     section,
3555								     htab);
3556		  if (! stub_entry)
3557		    return FALSE;
3558
3559		  stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3560		  stub_entry->target_section = section;
3561		  stub_entry->target_value = i + 4;
3562		  stub_entry->veneered_insn = insn_2;
3563		  stub_entry->output_name = stub_name;
3564		  num_fixes++;
3565		}
3566	    }
3567	}
3568      if (elf_section_data (section)->this_hdr.contents == NULL)
3569	free (contents);
3570    }
3571
3572  *num_fixes_p = num_fixes;
3573
3574  return TRUE;
3575}
3576
3577
3578/* Test if instruction INSN is ADRP.  */
3579
3580static bfd_boolean
3581_bfd_aarch64_adrp_p (uint32_t insn)
3582{
3583  return ((insn & 0x9f000000) == 0x90000000);
3584}
3585
3586
3587/* Helper predicate to look for cortex-a53 erratum 843419 sequence 1.  */
3588
3589static bfd_boolean
3590_bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3591					uint32_t insn_3)
3592{
3593  uint32_t rt;
3594  uint32_t rt2;
3595  bfd_boolean pair;
3596  bfd_boolean load;
3597
3598  return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3599	  && (!pair
3600	      || (pair && !load))
3601	  && AARCH64_LDST_UIMM (insn_3)
3602	  && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3603}
3604
3605
3606/* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3607
3608   Return TRUE if section CONTENTS at offset I contains one of the
3609   erratum 843419 sequences, otherwise return FALSE.  If a sequence is
3610   seen set P_VENEER_I to the offset of the final LOAD/STORE
3611   instruction in the sequence.
3612 */
3613
3614static bfd_boolean
3615_bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3616			       bfd_vma i, bfd_vma span_end,
3617			       bfd_vma *p_veneer_i)
3618{
3619  uint32_t insn_1 = bfd_getl32 (contents + i);
3620
3621  if (!_bfd_aarch64_adrp_p (insn_1))
3622    return FALSE;
3623
3624  if (span_end < i + 12)
3625    return FALSE;
3626
3627  uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3628  uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3629
3630  if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3631    return FALSE;
3632
3633  if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3634    {
3635      *p_veneer_i = i + 8;
3636      return TRUE;
3637    }
3638
3639  if (span_end < i + 16)
3640    return FALSE;
3641
3642  uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3643
3644  if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3645    {
3646      *p_veneer_i = i + 12;
3647      return TRUE;
3648    }
3649
3650  return FALSE;
3651}
3652
3653
3654/* Resize all stub sections.  */
3655
3656static void
3657_bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3658{
3659  asection *section;
3660
3661  /* OK, we've added some stubs.  Find out the new size of the
3662     stub sections.  */
3663  for (section = htab->stub_bfd->sections;
3664       section != NULL; section = section->next)
3665    {
3666      /* Ignore non-stub sections.  */
3667      if (!strstr (section->name, STUB_SUFFIX))
3668	continue;
3669      section->size = 0;
3670    }
3671
3672  bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
3673
3674  for (section = htab->stub_bfd->sections;
3675       section != NULL; section = section->next)
3676    {
3677      if (!strstr (section->name, STUB_SUFFIX))
3678	continue;
3679
3680      if (section->size)
3681	section->size += 4;
3682
3683      /* Ensure all stub sections have a size which is a multiple of
3684	 4096.  This is important in order to ensure that the insertion
3685	 of stub sections does not in itself move existing code around
3686	 in such a way that new errata sequences are created.  */
3687      if (htab->fix_erratum_843419)
3688	if (section->size)
3689	  section->size = BFD_ALIGN (section->size, 0x1000);
3690    }
3691}
3692
3693
3694/* Construct an erratum 843419 workaround stub name.
3695 */
3696
3697static char *
3698_bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3699				       bfd_vma offset)
3700{
3701  const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3702  char *stub_name = bfd_malloc (len);
3703
3704  if (stub_name != NULL)
3705    snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3706	      input_section->owner->id,
3707	      input_section->id,
3708	      offset);
3709  return stub_name;
3710}
3711
3712/*  Build a stub_entry structure describing an 843419 fixup.
3713
3714    The stub_entry constructed is populated with the bit pattern INSN
3715    of the instruction located at OFFSET within input SECTION.
3716
3717    Returns TRUE on success.  */
3718
3719static bfd_boolean
3720_bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3721				   bfd_vma adrp_offset,
3722				   bfd_vma ldst_offset,
3723				   asection *section,
3724				   struct bfd_link_info *info)
3725{
3726  struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3727  char *stub_name;
3728  struct elf_aarch64_stub_hash_entry *stub_entry;
3729
3730  stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3731  stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3732					 FALSE, FALSE);
3733  if (stub_entry)
3734    {
3735      free (stub_name);
3736      return TRUE;
3737    }
3738
3739  /* We always place an 843419 workaround veneer in the stub section
3740     attached to the input section in which an erratum sequence has
3741     been found.  This ensures that later in the link process (in
3742     elfNN_aarch64_write_section) when we copy the veneered
3743     instruction from the input section into the stub section the
3744     copied instruction will have had any relocations applied to it.
3745     If we placed workaround veneers in any other stub section then we
3746     could not assume that all relocations have been processed on the
3747     corresponding input section at the point we output the stub
3748     section.
3749   */
3750
3751  stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
3752  if (stub_entry == NULL)
3753    {
3754      free (stub_name);
3755      return FALSE;
3756    }
3757
3758  stub_entry->adrp_offset = adrp_offset;
3759  stub_entry->target_value = ldst_offset;
3760  stub_entry->target_section = section;
3761  stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
3762  stub_entry->veneered_insn = insn;
3763  stub_entry->output_name = stub_name;
3764
3765  return TRUE;
3766}
3767
3768
3769/* Scan an input section looking for the signature of erratum 843419.
3770
3771   Scans input SECTION in INPUT_BFD looking for erratum 843419
3772   signatures, for each signature found a stub_entry is created
3773   describing the location of the erratum for subsequent fixup.
3774
3775   Return TRUE on successful scan, FALSE on failure to scan.
3776 */
3777
3778static bfd_boolean
3779_bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
3780				  struct bfd_link_info *info)
3781{
3782  struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3783
3784  if (htab == NULL)
3785    return TRUE;
3786
3787  if (elf_section_type (section) != SHT_PROGBITS
3788      || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3789      || (section->flags & SEC_EXCLUDE) != 0
3790      || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3791      || (section->output_section == bfd_abs_section_ptr))
3792    return TRUE;
3793
3794  do
3795    {
3796      bfd_byte *contents = NULL;
3797      struct _aarch64_elf_section_data *sec_data;
3798      unsigned int span;
3799
3800      if (elf_section_data (section)->this_hdr.contents != NULL)
3801	contents = elf_section_data (section)->this_hdr.contents;
3802      else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3803	return FALSE;
3804
3805      sec_data = elf_aarch64_section_data (section);
3806
3807      qsort (sec_data->map, sec_data->mapcount,
3808	     sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3809
3810      for (span = 0; span < sec_data->mapcount; span++)
3811	{
3812	  unsigned int span_start = sec_data->map[span].vma;
3813	  unsigned int span_end = ((span == sec_data->mapcount - 1)
3814				   ? sec_data->map[0].vma + section->size
3815				   : sec_data->map[span + 1].vma);
3816	  unsigned int i;
3817	  char span_type = sec_data->map[span].type;
3818
3819	  if (span_type == 'd')
3820	    continue;
3821
3822	  for (i = span_start; i + 8 < span_end; i += 4)
3823	    {
3824	      bfd_vma vma = (section->output_section->vma
3825			     + section->output_offset
3826			     + i);
3827	      bfd_vma veneer_i;
3828
3829	      if (_bfd_aarch64_erratum_843419_p
3830		  (contents, vma, i, span_end, &veneer_i))
3831		{
3832		  uint32_t insn = bfd_getl32 (contents + veneer_i);
3833
3834		  if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
3835							  section, info))
3836		    return FALSE;
3837		}
3838	    }
3839	}
3840
3841      if (elf_section_data (section)->this_hdr.contents == NULL)
3842	free (contents);
3843    }
3844  while (0);
3845
3846  return TRUE;
3847}
3848
3849
3850/* Determine and set the size of the stub section for a final link.
3851
3852   The basic idea here is to examine all the relocations looking for
3853   PC-relative calls to a target that is unreachable with a "bl"
3854   instruction.  */
3855
3856bfd_boolean
3857elfNN_aarch64_size_stubs (bfd *output_bfd,
3858			  bfd *stub_bfd,
3859			  struct bfd_link_info *info,
3860			  bfd_signed_vma group_size,
3861			  asection * (*add_stub_section) (const char *,
3862							  asection *),
3863			  void (*layout_sections_again) (void))
3864{
3865  bfd_size_type stub_group_size;
3866  bfd_boolean stubs_always_before_branch;
3867  bfd_boolean stub_changed = FALSE;
3868  struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3869  unsigned int num_erratum_835769_fixes = 0;
3870
3871  /* Propagate mach to stub bfd, because it may not have been
3872     finalized when we created stub_bfd.  */
3873  bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3874		     bfd_get_mach (output_bfd));
3875
3876  /* Stash our params away.  */
3877  htab->stub_bfd = stub_bfd;
3878  htab->add_stub_section = add_stub_section;
3879  htab->layout_sections_again = layout_sections_again;
3880  stubs_always_before_branch = group_size < 0;
3881  if (group_size < 0)
3882    stub_group_size = -group_size;
3883  else
3884    stub_group_size = group_size;
3885
3886  if (stub_group_size == 1)
3887    {
3888      /* Default values.  */
3889      /* AArch64 branch range is +-128MB. The value used is 1MB less.  */
3890      stub_group_size = 127 * 1024 * 1024;
3891    }
3892
3893  group_sections (htab, stub_group_size, stubs_always_before_branch);
3894
3895  (*htab->layout_sections_again) ();
3896
3897  if (htab->fix_erratum_835769)
3898    {
3899      bfd *input_bfd;
3900
3901      for (input_bfd = info->input_bfds;
3902	   input_bfd != NULL; input_bfd = input_bfd->link.next)
3903	if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
3904					       &num_erratum_835769_fixes))
3905	  return FALSE;
3906
3907      _bfd_aarch64_resize_stubs (htab);
3908      (*htab->layout_sections_again) ();
3909    }
3910
3911  if (htab->fix_erratum_843419)
3912    {
3913      bfd *input_bfd;
3914
3915      for (input_bfd = info->input_bfds;
3916	   input_bfd != NULL;
3917	   input_bfd = input_bfd->link.next)
3918	{
3919	  asection *section;
3920
3921	  for (section = input_bfd->sections;
3922	       section != NULL;
3923	       section = section->next)
3924	    if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
3925	      return FALSE;
3926	}
3927
3928      _bfd_aarch64_resize_stubs (htab);
3929      (*htab->layout_sections_again) ();
3930    }
3931
3932  while (1)
3933    {
3934      bfd *input_bfd;
3935
3936      for (input_bfd = info->input_bfds;
3937	   input_bfd != NULL; input_bfd = input_bfd->link.next)
3938	{
3939	  Elf_Internal_Shdr *symtab_hdr;
3940	  asection *section;
3941	  Elf_Internal_Sym *local_syms = NULL;
3942
3943	  /* We'll need the symbol table in a second.  */
3944	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3945	  if (symtab_hdr->sh_info == 0)
3946	    continue;
3947
3948	  /* Walk over each section attached to the input bfd.  */
3949	  for (section = input_bfd->sections;
3950	       section != NULL; section = section->next)
3951	    {
3952	      Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3953
3954	      /* If there aren't any relocs, then there's nothing more
3955		 to do.  */
3956	      if ((section->flags & SEC_RELOC) == 0
3957		  || section->reloc_count == 0
3958		  || (section->flags & SEC_CODE) == 0)
3959		continue;
3960
3961	      /* If this section is a link-once section that will be
3962		 discarded, then don't create any stubs.  */
3963	      if (section->output_section == NULL
3964		  || section->output_section->owner != output_bfd)
3965		continue;
3966
3967	      /* Get the relocs.  */
3968	      internal_relocs
3969		= _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3970					     NULL, info->keep_memory);
3971	      if (internal_relocs == NULL)
3972		goto error_ret_free_local;
3973
3974	      /* Now examine each relocation.  */
3975	      irela = internal_relocs;
3976	      irelaend = irela + section->reloc_count;
3977	      for (; irela < irelaend; irela++)
3978		{
3979		  unsigned int r_type, r_indx;
3980		  enum elf_aarch64_stub_type stub_type;
3981		  struct elf_aarch64_stub_hash_entry *stub_entry;
3982		  asection *sym_sec;
3983		  bfd_vma sym_value;
3984		  bfd_vma destination;
3985		  struct elf_aarch64_link_hash_entry *hash;
3986		  const char *sym_name;
3987		  char *stub_name;
3988		  const asection *id_sec;
3989		  unsigned char st_type;
3990		  bfd_size_type len;
3991
3992		  r_type = ELFNN_R_TYPE (irela->r_info);
3993		  r_indx = ELFNN_R_SYM (irela->r_info);
3994
3995		  if (r_type >= (unsigned int) R_AARCH64_end)
3996		    {
3997		      bfd_set_error (bfd_error_bad_value);
3998		    error_ret_free_internal:
3999		      if (elf_section_data (section)->relocs == NULL)
4000			free (internal_relocs);
4001		      goto error_ret_free_local;
4002		    }
4003
4004		  /* Only look for stubs on unconditional branch and
4005		     branch and link instructions.  */
4006		  if (r_type != (unsigned int) AARCH64_R (CALL26)
4007		      && r_type != (unsigned int) AARCH64_R (JUMP26))
4008		    continue;
4009
4010		  /* Now determine the call target, its name, value,
4011		     section.  */
4012		  sym_sec = NULL;
4013		  sym_value = 0;
4014		  destination = 0;
4015		  hash = NULL;
4016		  sym_name = NULL;
4017		  if (r_indx < symtab_hdr->sh_info)
4018		    {
4019		      /* It's a local symbol.  */
4020		      Elf_Internal_Sym *sym;
4021		      Elf_Internal_Shdr *hdr;
4022
4023		      if (local_syms == NULL)
4024			{
4025			  local_syms
4026			    = (Elf_Internal_Sym *) symtab_hdr->contents;
4027			  if (local_syms == NULL)
4028			    local_syms
4029			      = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4030						      symtab_hdr->sh_info, 0,
4031						      NULL, NULL, NULL);
4032			  if (local_syms == NULL)
4033			    goto error_ret_free_internal;
4034			}
4035
4036		      sym = local_syms + r_indx;
4037		      hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4038		      sym_sec = hdr->bfd_section;
4039		      if (!sym_sec)
4040			/* This is an undefined symbol.  It can never
4041			   be resolved.  */
4042			continue;
4043
4044		      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4045			sym_value = sym->st_value;
4046		      destination = (sym_value + irela->r_addend
4047				     + sym_sec->output_offset
4048				     + sym_sec->output_section->vma);
4049		      st_type = ELF_ST_TYPE (sym->st_info);
4050		      sym_name
4051			= bfd_elf_string_from_elf_section (input_bfd,
4052							   symtab_hdr->sh_link,
4053							   sym->st_name);
4054		    }
4055		  else
4056		    {
4057		      int e_indx;
4058
4059		      e_indx = r_indx - symtab_hdr->sh_info;
4060		      hash = ((struct elf_aarch64_link_hash_entry *)
4061			      elf_sym_hashes (input_bfd)[e_indx]);
4062
4063		      while (hash->root.root.type == bfd_link_hash_indirect
4064			     || hash->root.root.type == bfd_link_hash_warning)
4065			hash = ((struct elf_aarch64_link_hash_entry *)
4066				hash->root.root.u.i.link);
4067
4068		      if (hash->root.root.type == bfd_link_hash_defined
4069			  || hash->root.root.type == bfd_link_hash_defweak)
4070			{
4071			  struct elf_aarch64_link_hash_table *globals =
4072			    elf_aarch64_hash_table (info);
4073			  sym_sec = hash->root.root.u.def.section;
4074			  sym_value = hash->root.root.u.def.value;
4075			  /* For a destination in a shared library,
4076			     use the PLT stub as target address to
4077			     decide whether a branch stub is
4078			     needed.  */
4079			  if (globals->root.splt != NULL && hash != NULL
4080			      && hash->root.plt.offset != (bfd_vma) - 1)
4081			    {
4082			      sym_sec = globals->root.splt;
4083			      sym_value = hash->root.plt.offset;
4084			      if (sym_sec->output_section != NULL)
4085				destination = (sym_value
4086					       + sym_sec->output_offset
4087					       +
4088					       sym_sec->output_section->vma);
4089			    }
4090			  else if (sym_sec->output_section != NULL)
4091			    destination = (sym_value + irela->r_addend
4092					   + sym_sec->output_offset
4093					   + sym_sec->output_section->vma);
4094			}
4095		      else if (hash->root.root.type == bfd_link_hash_undefined
4096			       || (hash->root.root.type
4097				   == bfd_link_hash_undefweak))
4098			{
4099			  /* For a shared library, use the PLT stub as
4100			     target address to decide whether a long
4101			     branch stub is needed.
4102			     For absolute code, they cannot be handled.  */
4103			  struct elf_aarch64_link_hash_table *globals =
4104			    elf_aarch64_hash_table (info);
4105
4106			  if (globals->root.splt != NULL && hash != NULL
4107			      && hash->root.plt.offset != (bfd_vma) - 1)
4108			    {
4109			      sym_sec = globals->root.splt;
4110			      sym_value = hash->root.plt.offset;
4111			      if (sym_sec->output_section != NULL)
4112				destination = (sym_value
4113					       + sym_sec->output_offset
4114					       +
4115					       sym_sec->output_section->vma);
4116			    }
4117			  else
4118			    continue;
4119			}
4120		      else
4121			{
4122			  bfd_set_error (bfd_error_bad_value);
4123			  goto error_ret_free_internal;
4124			}
4125		      st_type = ELF_ST_TYPE (hash->root.type);
4126		      sym_name = hash->root.root.root.string;
4127		    }
4128
4129		  /* Determine what (if any) linker stub is needed.  */
4130		  stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4131						    st_type, destination);
4132		  if (stub_type == aarch64_stub_none)
4133		    continue;
4134
4135		  /* Support for grouping stub sections.  */
4136		  id_sec = htab->stub_group[section->id].link_sec;
4137
4138		  /* Get the name of this stub.  */
4139		  stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4140						       irela);
4141		  if (!stub_name)
4142		    goto error_ret_free_internal;
4143
4144		  stub_entry =
4145		    aarch64_stub_hash_lookup (&htab->stub_hash_table,
4146					      stub_name, FALSE, FALSE);
4147		  if (stub_entry != NULL)
4148		    {
4149		      /* The proper stub has already been created.  */
4150		      free (stub_name);
4151		      continue;
4152		    }
4153
4154		  stub_entry = _bfd_aarch64_add_stub_entry_in_group
4155		    (stub_name, section, htab);
4156		  if (stub_entry == NULL)
4157		    {
4158		      free (stub_name);
4159		      goto error_ret_free_internal;
4160		    }
4161
4162		  stub_entry->target_value = sym_value + irela->r_addend;
4163		  stub_entry->target_section = sym_sec;
4164		  stub_entry->stub_type = stub_type;
4165		  stub_entry->h = hash;
4166		  stub_entry->st_type = st_type;
4167
4168		  if (sym_name == NULL)
4169		    sym_name = "unnamed";
4170		  len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4171		  stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4172		  if (stub_entry->output_name == NULL)
4173		    {
4174		      free (stub_name);
4175		      goto error_ret_free_internal;
4176		    }
4177
4178		  snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4179			    sym_name);
4180
4181		  stub_changed = TRUE;
4182		}
4183
4184	      /* We're done with the internal relocs, free them.  */
4185	      if (elf_section_data (section)->relocs == NULL)
4186		free (internal_relocs);
4187	    }
4188	}
4189
4190      if (!stub_changed)
4191	break;
4192
4193      _bfd_aarch64_resize_stubs (htab);
4194
4195      /* Ask the linker to do its stuff.  */
4196      (*htab->layout_sections_again) ();
4197      stub_changed = FALSE;
4198    }
4199
4200  return TRUE;
4201
4202error_ret_free_local:
4203  return FALSE;
4204}
4205
4206/* Build all the stubs associated with the current output file.  The
4207   stubs are kept in a hash table attached to the main linker hash
4208   table.  We also set up the .plt entries for statically linked PIC
4209   functions here.  This function is called via aarch64_elf_finish in the
4210   linker.  */
4211
4212bfd_boolean
4213elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4214{
4215  asection *stub_sec;
4216  struct bfd_hash_table *table;
4217  struct elf_aarch64_link_hash_table *htab;
4218
4219  htab = elf_aarch64_hash_table (info);
4220
4221  for (stub_sec = htab->stub_bfd->sections;
4222       stub_sec != NULL; stub_sec = stub_sec->next)
4223    {
4224      bfd_size_type size;
4225
4226      /* Ignore non-stub sections.  */
4227      if (!strstr (stub_sec->name, STUB_SUFFIX))
4228	continue;
4229
4230      /* Allocate memory to hold the linker stubs.  */
4231      size = stub_sec->size;
4232      stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4233      if (stub_sec->contents == NULL && size != 0)
4234	return FALSE;
4235      stub_sec->size = 0;
4236
4237      bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4238      stub_sec->size += 4;
4239    }
4240
4241  /* Build the stubs as directed by the stub hash table.  */
4242  table = &htab->stub_hash_table;
4243  bfd_hash_traverse (table, aarch64_build_one_stub, info);
4244
4245  return TRUE;
4246}
4247
4248
4249/* Add an entry to the code/data map for section SEC.  */
4250
4251static void
4252elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4253{
4254  struct _aarch64_elf_section_data *sec_data =
4255    elf_aarch64_section_data (sec);
4256  unsigned int newidx;
4257
4258  if (sec_data->map == NULL)
4259    {
4260      sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4261      sec_data->mapcount = 0;
4262      sec_data->mapsize = 1;
4263    }
4264
4265  newidx = sec_data->mapcount++;
4266
4267  if (sec_data->mapcount > sec_data->mapsize)
4268    {
4269      sec_data->mapsize *= 2;
4270      sec_data->map = bfd_realloc_or_free
4271	(sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4272    }
4273
4274  if (sec_data->map)
4275    {
4276      sec_data->map[newidx].vma = vma;
4277      sec_data->map[newidx].type = type;
4278    }
4279}
4280
4281
4282/* Initialise maps of insn/data for input BFDs.  */
4283void
4284bfd_elfNN_aarch64_init_maps (bfd *abfd)
4285{
4286  Elf_Internal_Sym *isymbuf;
4287  Elf_Internal_Shdr *hdr;
4288  unsigned int i, localsyms;
4289
4290  /* Make sure that we are dealing with an AArch64 elf binary.  */
4291  if (!is_aarch64_elf (abfd))
4292    return;
4293
4294  if ((abfd->flags & DYNAMIC) != 0)
4295   return;
4296
4297  hdr = &elf_symtab_hdr (abfd);
4298  localsyms = hdr->sh_info;
4299
4300  /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4301     should contain the number of local symbols, which should come before any
4302     global symbols.  Mapping symbols are always local.  */
4303  isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4304
4305  /* No internal symbols read?  Skip this BFD.  */
4306  if (isymbuf == NULL)
4307    return;
4308
4309  for (i = 0; i < localsyms; i++)
4310    {
4311      Elf_Internal_Sym *isym = &isymbuf[i];
4312      asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4313      const char *name;
4314
4315      if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4316	{
4317	  name = bfd_elf_string_from_elf_section (abfd,
4318						  hdr->sh_link,
4319						  isym->st_name);
4320
4321	  if (bfd_is_aarch64_special_symbol_name
4322	      (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4323	    elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4324	}
4325    }
4326}
4327
4328/* Set option values needed during linking.  */
4329void
4330bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4331			       struct bfd_link_info *link_info,
4332			       int no_enum_warn,
4333			       int no_wchar_warn, int pic_veneer,
4334			       int fix_erratum_835769,
4335			       int fix_erratum_843419,
4336			       int no_apply_dynamic_relocs)
4337{
4338  struct elf_aarch64_link_hash_table *globals;
4339
4340  globals = elf_aarch64_hash_table (link_info);
4341  globals->pic_veneer = pic_veneer;
4342  globals->fix_erratum_835769 = fix_erratum_835769;
4343  globals->fix_erratum_843419 = fix_erratum_843419;
4344  globals->fix_erratum_843419_adr = TRUE;
4345  globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4346
4347  BFD_ASSERT (is_aarch64_elf (output_bfd));
4348  elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4349  elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4350}
4351
4352static bfd_vma
4353aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4354				 struct elf_aarch64_link_hash_table
4355				 *globals, struct bfd_link_info *info,
4356				 bfd_vma value, bfd *output_bfd,
4357				 bfd_boolean *unresolved_reloc_p)
4358{
4359  bfd_vma off = (bfd_vma) - 1;
4360  asection *basegot = globals->root.sgot;
4361  bfd_boolean dyn = globals->root.dynamic_sections_created;
4362
4363  if (h != NULL)
4364    {
4365      BFD_ASSERT (basegot != NULL);
4366      off = h->got.offset;
4367      BFD_ASSERT (off != (bfd_vma) - 1);
4368      if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4369	  || (bfd_link_pic (info)
4370	      && SYMBOL_REFERENCES_LOCAL (info, h))
4371	  || (ELF_ST_VISIBILITY (h->other)
4372	      && h->root.type == bfd_link_hash_undefweak))
4373	{
4374	  /* This is actually a static link, or it is a -Bsymbolic link
4375	     and the symbol is defined locally.  We must initialize this
4376	     entry in the global offset table.  Since the offset must
4377	     always be a multiple of 8 (4 in the case of ILP32), we use
4378	     the least significant bit to record whether we have
4379	     initialized it already.
4380	     When doing a dynamic link, we create a .rel(a).got relocation
4381	     entry to initialize the value.  This is done in the
4382	     finish_dynamic_symbol routine.  */
4383	  if ((off & 1) != 0)
4384	    off &= ~1;
4385	  else
4386	    {
4387	      bfd_put_NN (output_bfd, value, basegot->contents + off);
4388	      h->got.offset |= 1;
4389	    }
4390	}
4391      else
4392	*unresolved_reloc_p = FALSE;
4393
4394      off = off + basegot->output_section->vma + basegot->output_offset;
4395    }
4396
4397  return off;
4398}
4399
4400/* Change R_TYPE to a more efficient access model where possible,
4401   return the new reloc type.  */
4402
4403static bfd_reloc_code_real_type
4404aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4405				      struct elf_link_hash_entry *h)
4406{
4407  bfd_boolean is_local = h == NULL;
4408
4409  switch (r_type)
4410    {
4411    case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4412    case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4413      return (is_local
4414	      ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4415	      : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4416
4417    case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4418      return (is_local
4419	      ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4420	      : r_type);
4421
4422    case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4423      return (is_local
4424	      ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4425	      : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4426
4427    case BFD_RELOC_AARCH64_TLSDESC_LDR:
4428      return (is_local
4429	      ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4430	      : BFD_RELOC_AARCH64_NONE);
4431
4432    case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4433      return (is_local
4434	      ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4435	      : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4436
4437    case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4438      return (is_local
4439	      ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4440	      : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4441
4442    case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4443    case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4444      return (is_local
4445	      ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4446	      : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4447
4448    case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4449      return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4450
4451    case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4452      return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4453
4454    case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4455      return r_type;
4456
4457    case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4458      return (is_local
4459	      ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4460	      : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4461
4462    case BFD_RELOC_AARCH64_TLSDESC_ADD:
4463    case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4464    case BFD_RELOC_AARCH64_TLSDESC_CALL:
4465      /* Instructions with these relocations will become NOPs.  */
4466      return BFD_RELOC_AARCH64_NONE;
4467
4468    case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4469    case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4470    case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4471      return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4472
4473#if ARCH_SIZE == 64
4474    case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4475      return is_local
4476	? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4477	: BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4478
4479    case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4480      return is_local
4481	? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4482	: BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4483#endif
4484
4485    default:
4486      break;
4487    }
4488
4489  return r_type;
4490}
4491
4492static unsigned int
4493aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4494{
4495  switch (r_type)
4496    {
4497    case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4498    case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4499    case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4500    case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4501    case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4502    case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4503    case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4504    case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4505    case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4506      return GOT_NORMAL;
4507
4508    case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4509    case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4510    case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4511    case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4512    case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4513    case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4514    case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4515    case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4516      return GOT_TLS_GD;
4517
4518    case BFD_RELOC_AARCH64_TLSDESC_ADD:
4519    case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4520    case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4521    case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4522    case BFD_RELOC_AARCH64_TLSDESC_CALL:
4523    case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4524    case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
4525    case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4526    case BFD_RELOC_AARCH64_TLSDESC_LDR:
4527    case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4528    case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4529      return GOT_TLSDESC_GD;
4530
4531    case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4532    case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4533    case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4534    case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4535    case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4536    case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
4537      return GOT_TLS_IE;
4538
4539    default:
4540      break;
4541    }
4542  return GOT_UNKNOWN;
4543}
4544
4545static bfd_boolean
4546aarch64_can_relax_tls (bfd *input_bfd,
4547		       struct bfd_link_info *info,
4548		       bfd_reloc_code_real_type r_type,
4549		       struct elf_link_hash_entry *h,
4550		       unsigned long r_symndx)
4551{
4552  unsigned int symbol_got_type;
4553  unsigned int reloc_got_type;
4554
4555  if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4556    return FALSE;
4557
4558  symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4559  reloc_got_type = aarch64_reloc_got_type (r_type);
4560
4561  if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4562    return TRUE;
4563
4564  if (bfd_link_pic (info))
4565    return FALSE;
4566
4567  if  (h && h->root.type == bfd_link_hash_undefweak)
4568    return FALSE;
4569
4570  return TRUE;
4571}
4572
4573/* Given the relocation code R_TYPE, return the relaxed bfd reloc
4574   enumerator.  */
4575
4576static bfd_reloc_code_real_type
4577aarch64_tls_transition (bfd *input_bfd,
4578			struct bfd_link_info *info,
4579			unsigned int r_type,
4580			struct elf_link_hash_entry *h,
4581			unsigned long r_symndx)
4582{
4583  bfd_reloc_code_real_type bfd_r_type
4584    = elfNN_aarch64_bfd_reloc_from_type (r_type);
4585
4586  if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4587    return bfd_r_type;
4588
4589  return aarch64_tls_transition_without_check (bfd_r_type, h);
4590}
4591
4592/* Return the base VMA address which should be subtracted from real addresses
4593   when resolving R_AARCH64_TLS_DTPREL relocation.  */
4594
4595static bfd_vma
4596dtpoff_base (struct bfd_link_info *info)
4597{
4598  /* If tls_sec is NULL, we should have signalled an error already.  */
4599  BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4600  return elf_hash_table (info)->tls_sec->vma;
4601}
4602
4603/* Return the base VMA address which should be subtracted from real addresses
4604   when resolving R_AARCH64_TLS_GOTTPREL64 relocations.  */
4605
4606static bfd_vma
4607tpoff_base (struct bfd_link_info *info)
4608{
4609  struct elf_link_hash_table *htab = elf_hash_table (info);
4610
4611  /* If tls_sec is NULL, we should have signalled an error already.  */
4612  BFD_ASSERT (htab->tls_sec != NULL);
4613
4614  bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4615			      htab->tls_sec->alignment_power);
4616  return htab->tls_sec->vma - base;
4617}
4618
4619static bfd_vma *
4620symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4621		       unsigned long r_symndx)
4622{
4623  /* Calculate the address of the GOT entry for symbol
4624     referred to in h.  */
4625  if (h != NULL)
4626    return &h->got.offset;
4627  else
4628    {
4629      /* local symbol */
4630      struct elf_aarch64_local_symbol *l;
4631
4632      l = elf_aarch64_locals (input_bfd);
4633      return &l[r_symndx].got_offset;
4634    }
4635}
4636
4637static void
4638symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4639			unsigned long r_symndx)
4640{
4641  bfd_vma *p;
4642  p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4643  *p |= 1;
4644}
4645
4646static int
4647symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4648			  unsigned long r_symndx)
4649{
4650  bfd_vma value;
4651  value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4652  return value & 1;
4653}
4654
4655static bfd_vma
4656symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4657		   unsigned long r_symndx)
4658{
4659  bfd_vma value;
4660  value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4661  value &= ~1;
4662  return value;
4663}
4664
4665static bfd_vma *
4666symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4667			       unsigned long r_symndx)
4668{
4669  /* Calculate the address of the GOT entry for symbol
4670     referred to in h.  */
4671  if (h != NULL)
4672    {
4673      struct elf_aarch64_link_hash_entry *eh;
4674      eh = (struct elf_aarch64_link_hash_entry *) h;
4675      return &eh->tlsdesc_got_jump_table_offset;
4676    }
4677  else
4678    {
4679      /* local symbol */
4680      struct elf_aarch64_local_symbol *l;
4681
4682      l = elf_aarch64_locals (input_bfd);
4683      return &l[r_symndx].tlsdesc_got_jump_table_offset;
4684    }
4685}
4686
4687static void
4688symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4689				unsigned long r_symndx)
4690{
4691  bfd_vma *p;
4692  p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4693  *p |= 1;
4694}
4695
4696static int
4697symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4698				  struct elf_link_hash_entry *h,
4699				  unsigned long r_symndx)
4700{
4701  bfd_vma value;
4702  value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4703  return value & 1;
4704}
4705
4706static bfd_vma
4707symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4708			  unsigned long r_symndx)
4709{
4710  bfd_vma value;
4711  value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4712  value &= ~1;
4713  return value;
4714}
4715
4716/* Data for make_branch_to_erratum_835769_stub().  */
4717
4718struct erratum_835769_branch_to_stub_data
4719{
4720  struct bfd_link_info *info;
4721  asection *output_section;
4722  bfd_byte *contents;
4723};
4724
4725/* Helper to insert branches to erratum 835769 stubs in the right
4726   places for a particular section.  */
4727
4728static bfd_boolean
4729make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
4730				    void *in_arg)
4731{
4732  struct elf_aarch64_stub_hash_entry *stub_entry;
4733  struct erratum_835769_branch_to_stub_data *data;
4734  bfd_byte *contents;
4735  unsigned long branch_insn = 0;
4736  bfd_vma veneered_insn_loc, veneer_entry_loc;
4737  bfd_signed_vma branch_offset;
4738  unsigned int target;
4739  bfd *abfd;
4740
4741  stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4742  data = (struct erratum_835769_branch_to_stub_data *) in_arg;
4743
4744  if (stub_entry->target_section != data->output_section
4745      || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
4746    return TRUE;
4747
4748  contents = data->contents;
4749  veneered_insn_loc = stub_entry->target_section->output_section->vma
4750		      + stub_entry->target_section->output_offset
4751		      + stub_entry->target_value;
4752  veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4753		     + stub_entry->stub_sec->output_offset
4754		     + stub_entry->stub_offset;
4755  branch_offset = veneer_entry_loc - veneered_insn_loc;
4756
4757  abfd = stub_entry->target_section->owner;
4758  if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4759    _bfd_error_handler
4760      (_("%B: error: Erratum 835769 stub out "
4761	 "of range (input file too large)"), abfd);
4762
4763  target = stub_entry->target_value;
4764  branch_insn = 0x14000000;
4765  branch_offset >>= 2;
4766  branch_offset &= 0x3ffffff;
4767  branch_insn |= branch_offset;
4768  bfd_putl32 (branch_insn, &contents[target]);
4769
4770  return TRUE;
4771}
4772
4773
4774static bfd_boolean
4775_bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
4776					    void *in_arg)
4777{
4778  struct elf_aarch64_stub_hash_entry *stub_entry
4779    = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4780  struct erratum_835769_branch_to_stub_data *data
4781    = (struct erratum_835769_branch_to_stub_data *) in_arg;
4782  struct bfd_link_info *info;
4783  struct elf_aarch64_link_hash_table *htab;
4784  bfd_byte *contents;
4785  asection *section;
4786  bfd *abfd;
4787  bfd_vma place;
4788  uint32_t insn;
4789
4790  info = data->info;
4791  contents = data->contents;
4792  section = data->output_section;
4793
4794  htab = elf_aarch64_hash_table (info);
4795
4796  if (stub_entry->target_section != section
4797      || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
4798    return TRUE;
4799
4800  insn = bfd_getl32 (contents + stub_entry->target_value);
4801  bfd_putl32 (insn,
4802	      stub_entry->stub_sec->contents + stub_entry->stub_offset);
4803
4804  place = (section->output_section->vma + section->output_offset
4805	   + stub_entry->adrp_offset);
4806  insn = bfd_getl32 (contents + stub_entry->adrp_offset);
4807
4808  if ((insn & AARCH64_ADRP_OP_MASK) !=  AARCH64_ADRP_OP)
4809    abort ();
4810
4811  bfd_signed_vma imm =
4812    (_bfd_aarch64_sign_extend
4813     ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
4814     - (place & 0xfff));
4815
4816  if (htab->fix_erratum_843419_adr
4817      && (imm >= AARCH64_MIN_ADRP_IMM  && imm <= AARCH64_MAX_ADRP_IMM))
4818    {
4819      insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
4820	      | AARCH64_RT (insn));
4821      bfd_putl32 (insn, contents + stub_entry->adrp_offset);
4822    }
4823  else
4824    {
4825      bfd_vma veneered_insn_loc;
4826      bfd_vma veneer_entry_loc;
4827      bfd_signed_vma branch_offset;
4828      uint32_t branch_insn;
4829
4830      veneered_insn_loc = stub_entry->target_section->output_section->vma
4831	+ stub_entry->target_section->output_offset
4832	+ stub_entry->target_value;
4833      veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4834	+ stub_entry->stub_sec->output_offset
4835	+ stub_entry->stub_offset;
4836      branch_offset = veneer_entry_loc - veneered_insn_loc;
4837
4838      abfd = stub_entry->target_section->owner;
4839      if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4840	_bfd_error_handler
4841	  (_("%B: error: Erratum 843419 stub out "
4842	     "of range (input file too large)"), abfd);
4843
4844      branch_insn = 0x14000000;
4845      branch_offset >>= 2;
4846      branch_offset &= 0x3ffffff;
4847      branch_insn |= branch_offset;
4848      bfd_putl32 (branch_insn, contents + stub_entry->target_value);
4849    }
4850  return TRUE;
4851}
4852
4853
4854static bfd_boolean
4855elfNN_aarch64_write_section (bfd *output_bfd  ATTRIBUTE_UNUSED,
4856			     struct bfd_link_info *link_info,
4857			     asection *sec,
4858			     bfd_byte *contents)
4859
4860{
4861  struct elf_aarch64_link_hash_table *globals =
4862    elf_aarch64_hash_table (link_info);
4863
4864  if (globals == NULL)
4865    return FALSE;
4866
4867  /* Fix code to point to erratum 835769 stubs.  */
4868  if (globals->fix_erratum_835769)
4869    {
4870      struct erratum_835769_branch_to_stub_data data;
4871
4872      data.info = link_info;
4873      data.output_section = sec;
4874      data.contents = contents;
4875      bfd_hash_traverse (&globals->stub_hash_table,
4876			 make_branch_to_erratum_835769_stub, &data);
4877    }
4878
4879  if (globals->fix_erratum_843419)
4880    {
4881      struct erratum_835769_branch_to_stub_data data;
4882
4883      data.info = link_info;
4884      data.output_section = sec;
4885      data.contents = contents;
4886      bfd_hash_traverse (&globals->stub_hash_table,
4887			 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
4888    }
4889
4890  return FALSE;
4891}
4892
4893/* Perform a relocation as part of a final link.  The input relocation type
4894   should be TLS relaxed.  */
4895
4896static bfd_reloc_status_type
4897elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
4898				   bfd *input_bfd,
4899				   bfd *output_bfd,
4900				   asection *input_section,
4901				   bfd_byte *contents,
4902				   Elf_Internal_Rela *rel,
4903				   bfd_vma value,
4904				   struct bfd_link_info *info,
4905				   asection *sym_sec,
4906				   struct elf_link_hash_entry *h,
4907				   bfd_boolean *unresolved_reloc_p,
4908				   bfd_boolean save_addend,
4909				   bfd_vma *saved_addend,
4910				   Elf_Internal_Sym *sym)
4911{
4912  Elf_Internal_Shdr *symtab_hdr;
4913  unsigned int r_type = howto->type;
4914  bfd_reloc_code_real_type bfd_r_type
4915    = elfNN_aarch64_bfd_reloc_from_howto (howto);
4916  unsigned long r_symndx;
4917  bfd_byte *hit_data = contents + rel->r_offset;
4918  bfd_vma place, off;
4919  bfd_signed_vma signed_addend;
4920  struct elf_aarch64_link_hash_table *globals;
4921  bfd_boolean weak_undef_p;
4922  asection *base_got;
4923
4924  globals = elf_aarch64_hash_table (info);
4925
4926  symtab_hdr = &elf_symtab_hdr (input_bfd);
4927
4928  BFD_ASSERT (is_aarch64_elf (input_bfd));
4929
4930  r_symndx = ELFNN_R_SYM (rel->r_info);
4931
4932  place = input_section->output_section->vma
4933    + input_section->output_offset + rel->r_offset;
4934
4935  /* Get addend, accumulating the addend for consecutive relocs
4936     which refer to the same offset.  */
4937  signed_addend = saved_addend ? *saved_addend : 0;
4938  signed_addend += rel->r_addend;
4939
4940  weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
4941		  : bfd_is_und_section (sym_sec));
4942
4943  /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
4944     it here if it is defined in a non-shared object.  */
4945  if (h != NULL
4946      && h->type == STT_GNU_IFUNC
4947      && h->def_regular)
4948    {
4949      asection *plt;
4950      const char *name;
4951      bfd_vma addend = 0;
4952
4953      if ((input_section->flags & SEC_ALLOC) == 0
4954	  || h->plt.offset == (bfd_vma) -1)
4955	abort ();
4956
4957      /* STT_GNU_IFUNC symbol must go through PLT.  */
4958      plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
4959      value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
4960
4961      switch (bfd_r_type)
4962	{
4963	default:
4964	  if (h->root.root.string)
4965	    name = h->root.root.string;
4966	  else
4967	    name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4968				     NULL);
4969	  _bfd_error_handler
4970	    /* xgettext:c-format */
4971	    (_("%B: relocation %s against STT_GNU_IFUNC "
4972	       "symbol `%s' isn't handled by %s"), input_bfd,
4973	     howto->name, name, __FUNCTION__);
4974	  bfd_set_error (bfd_error_bad_value);
4975	  return FALSE;
4976
4977	case BFD_RELOC_AARCH64_NN:
4978	  if (rel->r_addend != 0)
4979	    {
4980	      if (h->root.root.string)
4981		name = h->root.root.string;
4982	      else
4983		name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4984					 sym, NULL);
4985	      _bfd_error_handler
4986		/* xgettext:c-format */
4987		(_("%B: relocation %s against STT_GNU_IFUNC "
4988		   "symbol `%s' has non-zero addend: %d"),
4989		 input_bfd, howto->name, name, rel->r_addend);
4990	      bfd_set_error (bfd_error_bad_value);
4991	      return FALSE;
4992	    }
4993
4994	  /* Generate dynamic relocation only when there is a
4995	     non-GOT reference in a shared object.  */
4996	  if (bfd_link_pic (info) && h->non_got_ref)
4997	    {
4998	      Elf_Internal_Rela outrel;
4999	      asection *sreloc;
5000
5001	      /* Need a dynamic relocation to get the real function
5002		 address.  */
5003	      outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5004							 info,
5005							 input_section,
5006							 rel->r_offset);
5007	      if (outrel.r_offset == (bfd_vma) -1
5008		  || outrel.r_offset == (bfd_vma) -2)
5009		abort ();
5010
5011	      outrel.r_offset += (input_section->output_section->vma
5012				  + input_section->output_offset);
5013
5014	      if (h->dynindx == -1
5015		  || h->forced_local
5016		  || bfd_link_executable (info))
5017		{
5018		  /* This symbol is resolved locally.  */
5019		  outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5020		  outrel.r_addend = (h->root.u.def.value
5021				     + h->root.u.def.section->output_section->vma
5022				     + h->root.u.def.section->output_offset);
5023		}
5024	      else
5025		{
5026		  outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5027		  outrel.r_addend = 0;
5028		}
5029
5030	      sreloc = globals->root.irelifunc;
5031	      elf_append_rela (output_bfd, sreloc, &outrel);
5032
5033	      /* If this reloc is against an external symbol, we
5034		 do not want to fiddle with the addend.  Otherwise,
5035		 we need to include the symbol value so that it
5036		 becomes an addend for the dynamic reloc.  For an
5037		 internal symbol, we have updated addend.  */
5038	      return bfd_reloc_ok;
5039	    }
5040	  /* FALLTHROUGH */
5041	case BFD_RELOC_AARCH64_CALL26:
5042	case BFD_RELOC_AARCH64_JUMP26:
5043	  value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5044						       signed_addend,
5045						       weak_undef_p);
5046	  return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5047					      howto, value);
5048	case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5049	case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5050	case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5051	case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5052	case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5053	case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5054	case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5055	case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5056	case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5057	  base_got = globals->root.sgot;
5058	  off = h->got.offset;
5059
5060	  if (base_got == NULL)
5061	    abort ();
5062
5063	  if (off == (bfd_vma) -1)
5064	    {
5065	      bfd_vma plt_index;
5066
5067	      /* We can't use h->got.offset here to save state, or
5068		 even just remember the offset, as finish_dynamic_symbol
5069		 would use that as offset into .got.  */
5070
5071	      if (globals->root.splt != NULL)
5072		{
5073		  plt_index = ((h->plt.offset - globals->plt_header_size) /
5074			       globals->plt_entry_size);
5075		  off = (plt_index + 3) * GOT_ENTRY_SIZE;
5076		  base_got = globals->root.sgotplt;
5077		}
5078	      else
5079		{
5080		  plt_index = h->plt.offset / globals->plt_entry_size;
5081		  off = plt_index * GOT_ENTRY_SIZE;
5082		  base_got = globals->root.igotplt;
5083		}
5084
5085	      if (h->dynindx == -1
5086		  || h->forced_local
5087		  || info->symbolic)
5088		{
5089		  /* This references the local definition.  We must
5090		     initialize this entry in the global offset table.
5091		     Since the offset must always be a multiple of 8,
5092		     we use the least significant bit to record
5093		     whether we have initialized it already.
5094
5095		     When doing a dynamic link, we create a .rela.got
5096		     relocation entry to initialize the value.  This
5097		     is done in the finish_dynamic_symbol routine.	 */
5098		  if ((off & 1) != 0)
5099		    off &= ~1;
5100		  else
5101		    {
5102		      bfd_put_NN (output_bfd, value,
5103				  base_got->contents + off);
5104		      /* Note that this is harmless as -1 | 1 still is -1.  */
5105		      h->got.offset |= 1;
5106		    }
5107		}
5108	      value = (base_got->output_section->vma
5109		       + base_got->output_offset + off);
5110	    }
5111	  else
5112	    value = aarch64_calculate_got_entry_vma (h, globals, info,
5113						     value, output_bfd,
5114						     unresolved_reloc_p);
5115
5116	  switch (bfd_r_type)
5117	    {
5118	    case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5119	    case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5120	      addend = (globals->root.sgot->output_section->vma
5121			+ globals->root.sgot->output_offset);
5122	      break;
5123	    case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5124	    case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5125	    case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5126	      value = (value - globals->root.sgot->output_section->vma
5127		       - globals->root.sgot->output_offset);
5128	    default:
5129	      break;
5130	    }
5131
5132	  value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5133						       addend, weak_undef_p);
5134	  return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5135	case BFD_RELOC_AARCH64_ADD_LO12:
5136	case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5137	  break;
5138	}
5139    }
5140
5141  switch (bfd_r_type)
5142    {
5143    case BFD_RELOC_AARCH64_NONE:
5144    case BFD_RELOC_AARCH64_TLSDESC_ADD:
5145    case BFD_RELOC_AARCH64_TLSDESC_CALL:
5146    case BFD_RELOC_AARCH64_TLSDESC_LDR:
5147      *unresolved_reloc_p = FALSE;
5148      return bfd_reloc_ok;
5149
5150    case BFD_RELOC_AARCH64_NN:
5151
5152      /* When generating a shared object or relocatable executable, these
5153         relocations are copied into the output file to be resolved at
5154         run time.  */
5155      if (((bfd_link_pic (info) == TRUE)
5156	   || globals->root.is_relocatable_executable)
5157	  && (input_section->flags & SEC_ALLOC)
5158	  && (h == NULL
5159	      || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5160	      || h->root.type != bfd_link_hash_undefweak))
5161	{
5162	  Elf_Internal_Rela outrel;
5163	  bfd_byte *loc;
5164	  bfd_boolean skip, relocate;
5165	  asection *sreloc;
5166
5167	  *unresolved_reloc_p = FALSE;
5168
5169	  skip = FALSE;
5170	  relocate = FALSE;
5171
5172	  outrel.r_addend = signed_addend;
5173	  outrel.r_offset =
5174	    _bfd_elf_section_offset (output_bfd, info, input_section,
5175				     rel->r_offset);
5176	  if (outrel.r_offset == (bfd_vma) - 1)
5177	    skip = TRUE;
5178	  else if (outrel.r_offset == (bfd_vma) - 2)
5179	    {
5180	      skip = TRUE;
5181	      relocate = TRUE;
5182	    }
5183
5184	  outrel.r_offset += (input_section->output_section->vma
5185			      + input_section->output_offset);
5186
5187	  if (skip)
5188	    memset (&outrel, 0, sizeof outrel);
5189	  else if (h != NULL
5190		   && h->dynindx != -1
5191		   && (!bfd_link_pic (info)
5192		       || !(bfd_link_pie (info)
5193			    || SYMBOLIC_BIND (info, h))
5194		       || !h->def_regular))
5195	    outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5196	  else
5197	    {
5198	      int symbol;
5199
5200	      /* On SVR4-ish systems, the dynamic loader cannot
5201		 relocate the text and data segments independently,
5202		 so the symbol does not matter.  */
5203	      symbol = 0;
5204	      relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5205	      outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5206	      outrel.r_addend += value;
5207	    }
5208
5209	  sreloc = elf_section_data (input_section)->sreloc;
5210	  if (sreloc == NULL || sreloc->contents == NULL)
5211	    return bfd_reloc_notsupported;
5212
5213	  loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5214	  bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5215
5216	  if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5217	    {
5218	      /* Sanity to check that we have previously allocated
5219		 sufficient space in the relocation section for the
5220		 number of relocations we actually want to emit.  */
5221	      abort ();
5222	    }
5223
5224	  /* If this reloc is against an external symbol, we do not want to
5225	     fiddle with the addend.  Otherwise, we need to include the symbol
5226	     value so that it becomes an addend for the dynamic reloc.  */
5227	  if (!relocate)
5228	    return bfd_reloc_ok;
5229
5230	  return _bfd_final_link_relocate (howto, input_bfd, input_section,
5231					   contents, rel->r_offset, value,
5232					   signed_addend);
5233	}
5234      else
5235	value += signed_addend;
5236      break;
5237
5238    case BFD_RELOC_AARCH64_CALL26:
5239    case BFD_RELOC_AARCH64_JUMP26:
5240      {
5241	asection *splt = globals->root.splt;
5242	bfd_boolean via_plt_p =
5243	  splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5244
5245	/* A call to an undefined weak symbol is converted to a jump to
5246	   the next instruction unless a PLT entry will be created.
5247	   The jump to the next instruction is optimized as a NOP.
5248	   Do the same for local undefined symbols.  */
5249	if (weak_undef_p && ! via_plt_p)
5250	  {
5251	    bfd_putl32 (INSN_NOP, hit_data);
5252	    return bfd_reloc_ok;
5253	  }
5254
5255	/* If the call goes through a PLT entry, make sure to
5256	   check distance to the right destination address.  */
5257	if (via_plt_p)
5258	  value = (splt->output_section->vma
5259		   + splt->output_offset + h->plt.offset);
5260
5261	/* Check if a stub has to be inserted because the destination
5262	   is too far away.  */
5263	struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5264
5265	/* If the branch destination is directed to plt stub, "value" will be
5266	   the final destination, otherwise we should plus signed_addend, it may
5267	   contain non-zero value, for example call to local function symbol
5268	   which are turned into "sec_sym + sec_off", and sec_off is kept in
5269	   signed_addend.  */
5270	if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5271				      place))
5272	  /* The target is out of reach, so redirect the branch to
5273	     the local stub for this function.  */
5274	stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5275						   rel, globals);
5276	if (stub_entry != NULL)
5277	  {
5278	    value = (stub_entry->stub_offset
5279		     + stub_entry->stub_sec->output_offset
5280		     + stub_entry->stub_sec->output_section->vma);
5281
5282	    /* We have redirected the destination to stub entry address,
5283	       so ignore any addend record in the original rela entry.  */
5284	    signed_addend = 0;
5285	  }
5286      }
5287      value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5288						   signed_addend, weak_undef_p);
5289      *unresolved_reloc_p = FALSE;
5290      break;
5291
5292    case BFD_RELOC_AARCH64_16_PCREL:
5293    case BFD_RELOC_AARCH64_32_PCREL:
5294    case BFD_RELOC_AARCH64_64_PCREL:
5295    case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5296    case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5297    case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5298    case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5299      if (bfd_link_pic (info)
5300	  && (input_section->flags & SEC_ALLOC) != 0
5301	  && (input_section->flags & SEC_READONLY) != 0
5302	  && h != NULL
5303	  && !h->def_regular)
5304	{
5305	  int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5306
5307	  _bfd_error_handler
5308	    /* xgettext:c-format */
5309	    (_("%B: relocation %s against external symbol `%s' can not be used"
5310	       " when making a shared object; recompile with -fPIC"),
5311	     input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5312	     h->root.root.string);
5313	  bfd_set_error (bfd_error_bad_value);
5314	  return FALSE;
5315	}
5316      /* Fall through.  */
5317
5318    case BFD_RELOC_AARCH64_16:
5319#if ARCH_SIZE == 64
5320    case BFD_RELOC_AARCH64_32:
5321#endif
5322    case BFD_RELOC_AARCH64_ADD_LO12:
5323    case BFD_RELOC_AARCH64_BRANCH19:
5324    case BFD_RELOC_AARCH64_LDST128_LO12:
5325    case BFD_RELOC_AARCH64_LDST16_LO12:
5326    case BFD_RELOC_AARCH64_LDST32_LO12:
5327    case BFD_RELOC_AARCH64_LDST64_LO12:
5328    case BFD_RELOC_AARCH64_LDST8_LO12:
5329    case BFD_RELOC_AARCH64_MOVW_G0:
5330    case BFD_RELOC_AARCH64_MOVW_G0_NC:
5331    case BFD_RELOC_AARCH64_MOVW_G0_S:
5332    case BFD_RELOC_AARCH64_MOVW_G1:
5333    case BFD_RELOC_AARCH64_MOVW_G1_NC:
5334    case BFD_RELOC_AARCH64_MOVW_G1_S:
5335    case BFD_RELOC_AARCH64_MOVW_G2:
5336    case BFD_RELOC_AARCH64_MOVW_G2_NC:
5337    case BFD_RELOC_AARCH64_MOVW_G2_S:
5338    case BFD_RELOC_AARCH64_MOVW_G3:
5339    case BFD_RELOC_AARCH64_TSTBR14:
5340      value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5341						   signed_addend, weak_undef_p);
5342      break;
5343
5344    case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5345    case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5346    case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5347    case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5348    case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5349    case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5350      if (globals->root.sgot == NULL)
5351	BFD_ASSERT (h != NULL);
5352
5353      if (h != NULL)
5354	{
5355	  bfd_vma addend = 0;
5356	  value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5357						   output_bfd,
5358						   unresolved_reloc_p);
5359	  if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5360	      || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5361	    addend = (globals->root.sgot->output_section->vma
5362		      + globals->root.sgot->output_offset);
5363	  value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5364						       addend, weak_undef_p);
5365	}
5366      else
5367      {
5368	bfd_vma addend = 0;
5369	struct elf_aarch64_local_symbol *locals
5370	  = elf_aarch64_locals (input_bfd);
5371
5372	if (locals == NULL)
5373	  {
5374	    int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5375	    _bfd_error_handler
5376	      /* xgettext:c-format */
5377	      (_("%B: Local symbol descriptor table be NULL when applying "
5378		 "relocation %s against local symbol"),
5379	       input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5380	    abort ();
5381	  }
5382
5383	off = symbol_got_offset (input_bfd, h, r_symndx);
5384	base_got = globals->root.sgot;
5385	bfd_vma got_entry_addr = (base_got->output_section->vma
5386				  + base_got->output_offset + off);
5387
5388	if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5389	  {
5390	    bfd_put_64 (output_bfd, value, base_got->contents + off);
5391
5392	    if (bfd_link_pic (info))
5393	      {
5394		asection *s;
5395		Elf_Internal_Rela outrel;
5396
5397		/* For local symbol, we have done absolute relocation in static
5398		   linking stageh. While for share library, we need to update
5399		   the content of GOT entry according to the share objects
5400		   loading base address. So we need to generate a
5401		   R_AARCH64_RELATIVE reloc for dynamic linker.  */
5402		s = globals->root.srelgot;
5403		if (s == NULL)
5404		  abort ();
5405
5406		outrel.r_offset = got_entry_addr;
5407		outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5408		outrel.r_addend = value;
5409		elf_append_rela (output_bfd, s, &outrel);
5410	      }
5411
5412	    symbol_got_offset_mark (input_bfd, h, r_symndx);
5413	  }
5414
5415	/* Update the relocation value to GOT entry addr as we have transformed
5416	   the direct data access into indirect data access through GOT.  */
5417	value = got_entry_addr;
5418
5419	if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5420	    || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5421	  addend = base_got->output_section->vma + base_got->output_offset;
5422
5423	value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5424						     addend, weak_undef_p);
5425      }
5426
5427      break;
5428
5429    case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5430    case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5431    case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5432      if (h != NULL)
5433	  value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5434						   output_bfd,
5435						   unresolved_reloc_p);
5436      else
5437	{
5438	  struct elf_aarch64_local_symbol *locals
5439	    = elf_aarch64_locals (input_bfd);
5440
5441	  if (locals == NULL)
5442	    {
5443	      int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5444	      _bfd_error_handler
5445		/* xgettext:c-format */
5446		(_("%B: Local symbol descriptor table be NULL when applying "
5447		   "relocation %s against local symbol"),
5448		 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5449	      abort ();
5450	    }
5451
5452	  off = symbol_got_offset (input_bfd, h, r_symndx);
5453	  base_got = globals->root.sgot;
5454	  if (base_got == NULL)
5455	    abort ();
5456
5457	  bfd_vma got_entry_addr = (base_got->output_section->vma
5458				    + base_got->output_offset + off);
5459
5460	  if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5461	    {
5462	      bfd_put_64 (output_bfd, value, base_got->contents + off);
5463
5464	      if (bfd_link_pic (info))
5465		{
5466		  asection *s;
5467		  Elf_Internal_Rela outrel;
5468
5469		  /* For local symbol, we have done absolute relocation in static
5470		     linking stage.  While for share library, we need to update
5471		     the content of GOT entry according to the share objects
5472		     loading base address.  So we need to generate a
5473		     R_AARCH64_RELATIVE reloc for dynamic linker.  */
5474		  s = globals->root.srelgot;
5475		  if (s == NULL)
5476		    abort ();
5477
5478		  outrel.r_offset = got_entry_addr;
5479		  outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5480		  outrel.r_addend = value;
5481		  elf_append_rela (output_bfd, s, &outrel);
5482		}
5483
5484	      symbol_got_offset_mark (input_bfd, h, r_symndx);
5485	    }
5486	}
5487
5488      /* Update the relocation value to GOT entry addr as we have transformed
5489	 the direct data access into indirect data access through GOT.  */
5490      value = symbol_got_offset (input_bfd, h, r_symndx);
5491      value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5492						   0, weak_undef_p);
5493      *unresolved_reloc_p = FALSE;
5494      break;
5495
5496    case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5497    case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5498    case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5499    case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5500    case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5501    case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5502    case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5503    case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5504    case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5505    case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5506      if (globals->root.sgot == NULL)
5507	return bfd_reloc_notsupported;
5508
5509      value = (symbol_got_offset (input_bfd, h, r_symndx)
5510	       + globals->root.sgot->output_section->vma
5511	       + globals->root.sgot->output_offset);
5512
5513      value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5514						   0, weak_undef_p);
5515      *unresolved_reloc_p = FALSE;
5516      break;
5517
5518    case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5519    case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5520    case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5521    case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5522      if (globals->root.sgot == NULL)
5523	return bfd_reloc_notsupported;
5524
5525      value = symbol_got_offset (input_bfd, h, r_symndx);
5526      value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5527						   0, weak_undef_p);
5528      *unresolved_reloc_p = FALSE;
5529      break;
5530
5531    case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
5532    case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5533    case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5534    case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5535    case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5536    case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5537    case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5538    case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5539    case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5540    case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5541    case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
5542    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5543    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5544    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5545    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5546    case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5547      value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5548						   signed_addend - dtpoff_base (info),
5549						   weak_undef_p);
5550      break;
5551
5552    case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5553    case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5554    case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5555    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5556    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5557    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5558    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5559    case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5560      value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5561						   signed_addend - tpoff_base (info),
5562						   weak_undef_p);
5563      *unresolved_reloc_p = FALSE;
5564      break;
5565
5566    case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5567    case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5568    case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5569    case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5570    case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
5571    case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5572      if (globals->root.sgot == NULL)
5573	return bfd_reloc_notsupported;
5574      value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5575	       + globals->root.sgotplt->output_section->vma
5576	       + globals->root.sgotplt->output_offset
5577	       + globals->sgotplt_jump_table_size);
5578
5579      value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5580						   0, weak_undef_p);
5581      *unresolved_reloc_p = FALSE;
5582      break;
5583
5584    case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5585    case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5586      if (globals->root.sgot == NULL)
5587	return bfd_reloc_notsupported;
5588
5589      value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5590	       + globals->root.sgotplt->output_section->vma
5591	       + globals->root.sgotplt->output_offset
5592	       + globals->sgotplt_jump_table_size);
5593
5594      value -= (globals->root.sgot->output_section->vma
5595		+ globals->root.sgot->output_offset);
5596
5597      value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5598						   0, weak_undef_p);
5599      *unresolved_reloc_p = FALSE;
5600      break;
5601
5602    default:
5603      return bfd_reloc_notsupported;
5604    }
5605
5606  if (saved_addend)
5607    *saved_addend = value;
5608
5609  /* Only apply the final relocation in a sequence.  */
5610  if (save_addend)
5611    return bfd_reloc_continue;
5612
5613  return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5614				      howto, value);
5615}
5616
5617/* Handle TLS relaxations.  Relaxing is possible for symbols that use
5618   R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5619   link.
5620
5621   Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5622   is to then call final_link_relocate.  Return other values in the
5623   case of error.  */
5624
5625static bfd_reloc_status_type
5626elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
5627			 bfd *input_bfd, bfd_byte *contents,
5628			 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
5629{
5630  bfd_boolean is_local = h == NULL;
5631  unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
5632  unsigned long insn;
5633
5634  BFD_ASSERT (globals && input_bfd && contents && rel);
5635
5636  switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
5637    {
5638    case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5639    case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5640      if (is_local)
5641	{
5642	  /* GD->LE relaxation:
5643	     adrp x0, :tlsgd:var     =>   movz x0, :tprel_g1:var
5644	     or
5645	     adrp x0, :tlsdesc:var   =>   movz x0, :tprel_g1:var
5646	   */
5647	  bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5648	  return bfd_reloc_continue;
5649	}
5650      else
5651	{
5652	  /* GD->IE relaxation:
5653	     adrp x0, :tlsgd:var     =>   adrp x0, :gottprel:var
5654	     or
5655	     adrp x0, :tlsdesc:var   =>   adrp x0, :gottprel:var
5656	   */
5657	  return bfd_reloc_continue;
5658	}
5659
5660    case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5661      BFD_ASSERT (0);
5662      break;
5663
5664    case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5665      if (is_local)
5666	{
5667	  /* Tiny TLSDESC->LE relaxation:
5668	     ldr   x1, :tlsdesc:var      =>  movz  x0, #:tprel_g1:var
5669	     adr   x0, :tlsdesc:var      =>  movk  x0, #:tprel_g0_nc:var
5670	     .tlsdesccall var
5671	     blr   x1                    =>  nop
5672	   */
5673	  BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5674	  BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5675
5676	  rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5677					AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5678	  rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5679
5680	  bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5681	  bfd_putl32 (0xf2800000, contents + rel->r_offset + 4);
5682	  bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5683	  return bfd_reloc_continue;
5684	}
5685      else
5686	{
5687	  /* Tiny TLSDESC->IE relaxation:
5688	     ldr   x1, :tlsdesc:var      =>  ldr   x0, :gottprel:var
5689	     adr   x0, :tlsdesc:var      =>  nop
5690	     .tlsdesccall var
5691	     blr   x1                    =>  nop
5692	   */
5693	  BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5694	  BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5695
5696	  rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5697	  rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5698
5699	  bfd_putl32 (0x58000000, contents + rel->r_offset);
5700	  bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
5701	  bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5702	  return bfd_reloc_continue;
5703	}
5704
5705    case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5706      if (is_local)
5707	{
5708	  /* Tiny GD->LE relaxation:
5709	     adr x0, :tlsgd:var      =>   mrs  x1, tpidr_el0
5710             bl   __tls_get_addr     =>   add  x0, x1, #:tprel_hi12:x, lsl #12
5711             nop                     =>   add  x0, x0, #:tprel_lo12_nc:x
5712	   */
5713
5714	  /* First kill the tls_get_addr reloc on the bl instruction.  */
5715	  BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5716
5717	  bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
5718	  bfd_putl32 (0x91400020, contents + rel->r_offset + 4);
5719	  bfd_putl32 (0x91000000, contents + rel->r_offset + 8);
5720
5721	  rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5722					AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
5723	  rel[1].r_offset = rel->r_offset + 8;
5724
5725	  /* Move the current relocation to the second instruction in
5726	     the sequence.  */
5727	  rel->r_offset += 4;
5728	  rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5729				      AARCH64_R (TLSLE_ADD_TPREL_HI12));
5730	  return bfd_reloc_continue;
5731	}
5732      else
5733	{
5734	  /* Tiny GD->IE relaxation:
5735	     adr x0, :tlsgd:var	     =>   ldr  x0, :gottprel:var
5736	     bl   __tls_get_addr     =>   mrs  x1, tpidr_el0
5737	     nop                     =>   add  x0, x0, x1
5738	   */
5739
5740	  /* First kill the tls_get_addr reloc on the bl instruction.  */
5741	  BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5742	  rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5743
5744	  bfd_putl32 (0x58000000, contents + rel->r_offset);
5745	  bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5746	  bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5747	  return bfd_reloc_continue;
5748	}
5749
5750#if ARCH_SIZE == 64
5751    case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5752      BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
5753      BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
5754      BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
5755
5756      if (is_local)
5757	{
5758	  /* Large GD->LE relaxation:
5759	     movz x0, #:tlsgd_g1:var    => movz x0, #:tprel_g2:var, lsl #32
5760	     movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
5761	     add x0, gp, x0             => movk x0, #:tprel_g0_nc:var
5762	     bl __tls_get_addr          => mrs x1, tpidr_el0
5763	     nop                        => add x0, x0, x1
5764	   */
5765	  rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5766					AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5767	  rel[2].r_offset = rel->r_offset + 8;
5768
5769	  bfd_putl32 (0xd2c00000, contents + rel->r_offset + 0);
5770	  bfd_putl32 (0xf2a00000, contents + rel->r_offset + 4);
5771	  bfd_putl32 (0xf2800000, contents + rel->r_offset + 8);
5772	  bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
5773	  bfd_putl32 (0x8b000020, contents + rel->r_offset + 16);
5774	}
5775      else
5776	{
5777	  /* Large GD->IE relaxation:
5778	     movz x0, #:tlsgd_g1:var    => movz x0, #:gottprel_g1:var, lsl #16
5779	     movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
5780	     add x0, gp, x0             => ldr x0, [gp, x0]
5781	     bl __tls_get_addr          => mrs x1, tpidr_el0
5782	     nop                        => add x0, x0, x1
5783	   */
5784	  rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5785	  bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
5786	  bfd_putl32 (0x58000000, contents + rel->r_offset + 8);
5787	  bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
5788	  bfd_putl32 (0x8b000020, contents + rel->r_offset + 16);
5789	}
5790      return bfd_reloc_continue;
5791
5792    case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5793      return bfd_reloc_continue;
5794#endif
5795
5796    case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5797      return bfd_reloc_continue;
5798
5799    case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
5800      if (is_local)
5801	{
5802	  /* GD->LE relaxation:
5803	     ldr xd, [x0, #:tlsdesc_lo12:var]   =>   movk x0, :tprel_g0_nc:var
5804	   */
5805	  bfd_putl32 (0xf2800000, contents + rel->r_offset);
5806	  return bfd_reloc_continue;
5807	}
5808      else
5809	{
5810	  /* GD->IE relaxation:
5811	     ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
5812	   */
5813	  insn = bfd_getl32 (contents + rel->r_offset);
5814	  insn &= 0xffffffe0;
5815	  bfd_putl32 (insn, contents + rel->r_offset);
5816	  return bfd_reloc_continue;
5817	}
5818
5819    case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5820      if (is_local)
5821	{
5822	  /* GD->LE relaxation
5823	     add  x0, #:tlsgd_lo12:var  => movk x0, :tprel_g0_nc:var
5824	     bl   __tls_get_addr        => mrs  x1, tpidr_el0
5825	     nop                        => add  x0, x1, x0
5826	   */
5827
5828	  /* First kill the tls_get_addr reloc on the bl instruction.  */
5829	  BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5830	  rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5831
5832	  bfd_putl32 (0xf2800000, contents + rel->r_offset);
5833	  bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5834	  bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5835	  return bfd_reloc_continue;
5836	}
5837      else
5838	{
5839	  /* GD->IE relaxation
5840	     ADD  x0, #:tlsgd_lo12:var  => ldr  R0, [x0, #:gottprel_lo12:var]
5841	     BL   __tls_get_addr        => mrs  x1, tpidr_el0
5842	       R_AARCH64_CALL26
5843	     NOP                        => add  R0, R1, R0
5844
5845	     Where R is x for lp64 mode, and w for ilp32 mode.  */
5846
5847	  BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5848
5849	  /* Remove the relocation on the BL instruction.  */
5850	  rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5851
5852	  /* We choose to fixup the BL and NOP instructions using the
5853	     offset from the second relocation to allow flexibility in
5854	     scheduling instructions between the ADD and BL.  */
5855#if ARCH_SIZE == 32
5856	  bfd_putl32 (0xb9400000, contents + rel->r_offset);
5857	  bfd_putl32 (0x0b000020, contents + rel[1].r_offset + 4);
5858#else
5859	  bfd_putl32 (0xf9400000, contents + rel->r_offset);
5860	  bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
5861#endif
5862	  bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
5863	  return bfd_reloc_continue;
5864	}
5865
5866    case BFD_RELOC_AARCH64_TLSDESC_ADD:
5867    case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5868    case BFD_RELOC_AARCH64_TLSDESC_CALL:
5869      /* GD->IE/LE relaxation:
5870         add x0, x0, #:tlsdesc_lo12:var   =>   nop
5871         blr xd                           =>   nop
5872       */
5873      bfd_putl32 (INSN_NOP, contents + rel->r_offset);
5874      return bfd_reloc_ok;
5875
5876    case BFD_RELOC_AARCH64_TLSDESC_LDR:
5877      if (is_local)
5878	{
5879	  /* GD->LE relaxation:
5880	     ldr xd, [gp, xn]   =>   movk x0, #:tprel_g0_nc:var
5881	   */
5882	  bfd_putl32 (0xf2800000, contents + rel->r_offset);
5883	  return bfd_reloc_continue;
5884	}
5885      else
5886	{
5887	  /* GD->IE relaxation:
5888	     ldr xd, [gp, xn]   =>   ldr x0, [gp, xn]
5889	   */
5890	  insn = bfd_getl32 (contents + rel->r_offset);
5891	  insn &= 0xffffffe0;
5892	  bfd_putl32 (insn, contents + rel->r_offset);
5893	  return bfd_reloc_ok;
5894	}
5895
5896    case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5897      /* GD->LE relaxation:
5898	 movk xd, #:tlsdesc_off_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
5899	 GD->IE relaxation:
5900	 movk xd, #:tlsdesc_off_g0_nc:var => movk xd, #:gottprel_g0_nc:var
5901      */
5902      if (is_local)
5903	bfd_putl32 (0xf2a00000, contents + rel->r_offset);
5904      return bfd_reloc_continue;
5905
5906    case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5907      if (is_local)
5908	{
5909	  /* GD->LE relaxation:
5910	     movz xd, #:tlsdesc_off_g1:var => movz x0, #:tprel_g2:var, lsl #32
5911	  */
5912	  bfd_putl32 (0xd2c00000, contents + rel->r_offset);
5913	  return bfd_reloc_continue;
5914	}
5915      else
5916	{
5917	  /*  GD->IE relaxation:
5918	      movz xd, #:tlsdesc_off_g1:var => movz xd, #:gottprel_g1:var, lsl #16
5919	  */
5920	  insn = bfd_getl32 (contents + rel->r_offset);
5921	  bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
5922	  return bfd_reloc_continue;
5923	}
5924
5925    case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5926      /* IE->LE relaxation:
5927         adrp xd, :gottprel:var   =>   movz xd, :tprel_g1:var
5928       */
5929      if (is_local)
5930	{
5931	  insn = bfd_getl32 (contents + rel->r_offset);
5932	  bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
5933	}
5934      return bfd_reloc_continue;
5935
5936    case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
5937      /* IE->LE relaxation:
5938         ldr  xd, [xm, #:gottprel_lo12:var]   =>   movk xd, :tprel_g0_nc:var
5939       */
5940      if (is_local)
5941	{
5942	  insn = bfd_getl32 (contents + rel->r_offset);
5943	  bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
5944	}
5945      return bfd_reloc_continue;
5946
5947    case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5948      /* LD->LE relaxation (tiny):
5949	 adr  x0, :tlsldm:x  => mrs x0, tpidr_el0
5950	 bl   __tls_get_addr => add R0, R0, TCB_SIZE
5951
5952	 Where R is x for lp64 mode, and w for ilp32 mode.  */
5953      if (is_local)
5954	{
5955	  BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5956	  BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5957	  /* No need of CALL26 relocation for tls_get_addr.  */
5958	  rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5959	  bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
5960#if ARCH_SIZE == 64
5961	  bfd_putl32 (0x91004000, contents + rel->r_offset + 4);
5962#else
5963	  bfd_putl32 (0x11002000, contents + rel->r_offset + 4);
5964#endif
5965	  return bfd_reloc_ok;
5966	}
5967      return bfd_reloc_continue;
5968
5969    case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5970      /* LD->LE relaxation (small):
5971	 adrp  x0, :tlsldm:x       => mrs x0, tpidr_el0
5972       */
5973      if (is_local)
5974	{
5975	  bfd_putl32 (0xd53bd040, contents + rel->r_offset);
5976	  return bfd_reloc_ok;
5977	}
5978      return bfd_reloc_continue;
5979
5980    case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5981      /* LD->LE relaxation (small):
5982	 add   x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
5983	 bl   __tls_get_addr       => nop
5984
5985	 Where R is x for lp64 mode, and w for ilp32 mode.  */
5986      if (is_local)
5987	{
5988	  BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5989	  BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5990	  /* No need of CALL26 relocation for tls_get_addr.  */
5991	  rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5992#if ARCH_SIZE == 64
5993	  bfd_putl32 (0x91004000, contents + rel->r_offset + 0);
5994#else
5995	  bfd_putl32 (0x11002000, contents + rel->r_offset + 0);
5996#endif
5997	  bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
5998	  return bfd_reloc_ok;
5999	}
6000      return bfd_reloc_continue;
6001
6002    default:
6003      return bfd_reloc_continue;
6004    }
6005
6006  return bfd_reloc_ok;
6007}
6008
6009/* Relocate an AArch64 ELF section.  */
6010
6011static bfd_boolean
6012elfNN_aarch64_relocate_section (bfd *output_bfd,
6013				struct bfd_link_info *info,
6014				bfd *input_bfd,
6015				asection *input_section,
6016				bfd_byte *contents,
6017				Elf_Internal_Rela *relocs,
6018				Elf_Internal_Sym *local_syms,
6019				asection **local_sections)
6020{
6021  Elf_Internal_Shdr *symtab_hdr;
6022  struct elf_link_hash_entry **sym_hashes;
6023  Elf_Internal_Rela *rel;
6024  Elf_Internal_Rela *relend;
6025  const char *name;
6026  struct elf_aarch64_link_hash_table *globals;
6027  bfd_boolean save_addend = FALSE;
6028  bfd_vma addend = 0;
6029
6030  globals = elf_aarch64_hash_table (info);
6031
6032  symtab_hdr = &elf_symtab_hdr (input_bfd);
6033  sym_hashes = elf_sym_hashes (input_bfd);
6034
6035  rel = relocs;
6036  relend = relocs + input_section->reloc_count;
6037  for (; rel < relend; rel++)
6038    {
6039      unsigned int r_type;
6040      bfd_reloc_code_real_type bfd_r_type;
6041      bfd_reloc_code_real_type relaxed_bfd_r_type;
6042      reloc_howto_type *howto;
6043      unsigned long r_symndx;
6044      Elf_Internal_Sym *sym;
6045      asection *sec;
6046      struct elf_link_hash_entry *h;
6047      bfd_vma relocation;
6048      bfd_reloc_status_type r;
6049      arelent bfd_reloc;
6050      char sym_type;
6051      bfd_boolean unresolved_reloc = FALSE;
6052      char *error_message = NULL;
6053
6054      r_symndx = ELFNN_R_SYM (rel->r_info);
6055      r_type = ELFNN_R_TYPE (rel->r_info);
6056
6057      bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
6058      howto = bfd_reloc.howto;
6059
6060      if (howto == NULL)
6061	{
6062	  /* xgettext:c-format */
6063	  _bfd_error_handler
6064	    (_("%B: unrecognized relocation (0x%x) in section `%A'"),
6065	     input_bfd, input_section, r_type);
6066	  return FALSE;
6067	}
6068      bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6069
6070      h = NULL;
6071      sym = NULL;
6072      sec = NULL;
6073
6074      if (r_symndx < symtab_hdr->sh_info)
6075	{
6076	  sym = local_syms + r_symndx;
6077	  sym_type = ELFNN_ST_TYPE (sym->st_info);
6078	  sec = local_sections[r_symndx];
6079
6080	  /* An object file might have a reference to a local
6081	     undefined symbol.  This is a daft object file, but we
6082	     should at least do something about it.  */
6083	  if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6084	      && bfd_is_und_section (sec)
6085	      && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6086	    (*info->callbacks->undefined_symbol)
6087	      (info, bfd_elf_string_from_elf_section
6088	       (input_bfd, symtab_hdr->sh_link, sym->st_name),
6089	       input_bfd, input_section, rel->r_offset, TRUE);
6090
6091	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6092
6093	  /* Relocate against local STT_GNU_IFUNC symbol.  */
6094	  if (!bfd_link_relocatable (info)
6095	      && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6096	    {
6097	      h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6098						    rel, FALSE);
6099	      if (h == NULL)
6100		abort ();
6101
6102	      /* Set STT_GNU_IFUNC symbol value.  */
6103	      h->root.u.def.value = sym->st_value;
6104	      h->root.u.def.section = sec;
6105	    }
6106	}
6107      else
6108	{
6109	  bfd_boolean warned, ignored;
6110
6111	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6112				   r_symndx, symtab_hdr, sym_hashes,
6113				   h, sec, relocation,
6114				   unresolved_reloc, warned, ignored);
6115
6116	  sym_type = h->type;
6117	}
6118
6119      if (sec != NULL && discarded_section (sec))
6120	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6121					 rel, 1, relend, howto, 0, contents);
6122
6123      if (bfd_link_relocatable (info))
6124	continue;
6125
6126      if (h != NULL)
6127	name = h->root.root.string;
6128      else
6129	{
6130	  name = (bfd_elf_string_from_elf_section
6131		  (input_bfd, symtab_hdr->sh_link, sym->st_name));
6132	  if (name == NULL || *name == '\0')
6133	    name = bfd_section_name (input_bfd, sec);
6134	}
6135
6136      if (r_symndx != 0
6137	  && r_type != R_AARCH64_NONE
6138	  && r_type != R_AARCH64_NULL
6139	  && (h == NULL
6140	      || h->root.type == bfd_link_hash_defined
6141	      || h->root.type == bfd_link_hash_defweak)
6142	  && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6143	{
6144	  _bfd_error_handler
6145	    ((sym_type == STT_TLS
6146	      /* xgettext:c-format */
6147	      ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
6148	      /* xgettext:c-format */
6149	      : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
6150	     input_bfd,
6151	     input_section, (long) rel->r_offset, howto->name, name);
6152	}
6153
6154      /* We relax only if we can see that there can be a valid transition
6155         from a reloc type to another.
6156         We call elfNN_aarch64_final_link_relocate unless we're completely
6157         done, i.e., the relaxation produced the final output we want.  */
6158
6159      relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6160						   h, r_symndx);
6161      if (relaxed_bfd_r_type != bfd_r_type)
6162	{
6163	  bfd_r_type = relaxed_bfd_r_type;
6164	  howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6165	  BFD_ASSERT (howto != NULL);
6166	  r_type = howto->type;
6167	  r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
6168	  unresolved_reloc = 0;
6169	}
6170      else
6171	r = bfd_reloc_continue;
6172
6173      /* There may be multiple consecutive relocations for the
6174         same offset.  In that case we are supposed to treat the
6175         output of each relocation as the addend for the next.  */
6176      if (rel + 1 < relend
6177	  && rel->r_offset == rel[1].r_offset
6178	  && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6179	  && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6180	save_addend = TRUE;
6181      else
6182	save_addend = FALSE;
6183
6184      if (r == bfd_reloc_continue)
6185	r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6186					       input_section, contents, rel,
6187					       relocation, info, sec,
6188					       h, &unresolved_reloc,
6189					       save_addend, &addend, sym);
6190
6191      switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
6192	{
6193	case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6194	case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6195	case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6196	case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6197	case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6198	case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6199	case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6200	case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6201	  if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6202	    {
6203	      bfd_boolean need_relocs = FALSE;
6204	      bfd_byte *loc;
6205	      int indx;
6206	      bfd_vma off;
6207
6208	      off = symbol_got_offset (input_bfd, h, r_symndx);
6209	      indx = h && h->dynindx != -1 ? h->dynindx : 0;
6210
6211	      need_relocs =
6212		(bfd_link_pic (info) || indx != 0) &&
6213		(h == NULL
6214		 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6215		 || h->root.type != bfd_link_hash_undefweak);
6216
6217	      BFD_ASSERT (globals->root.srelgot != NULL);
6218
6219	      if (need_relocs)
6220		{
6221		  Elf_Internal_Rela rela;
6222		  rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6223		  rela.r_addend = 0;
6224		  rela.r_offset = globals->root.sgot->output_section->vma +
6225		    globals->root.sgot->output_offset + off;
6226
6227
6228		  loc = globals->root.srelgot->contents;
6229		  loc += globals->root.srelgot->reloc_count++
6230		    * RELOC_SIZE (htab);
6231		  bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6232
6233		  bfd_reloc_code_real_type real_type =
6234		    elfNN_aarch64_bfd_reloc_from_type (r_type);
6235
6236		  if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6237		      || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6238		      || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6239		    {
6240		      /* For local dynamic, don't generate DTPREL in any case.
6241			 Initialize the DTPREL slot into zero, so we get module
6242			 base address when invoke runtime TLS resolver.  */
6243		      bfd_put_NN (output_bfd, 0,
6244				  globals->root.sgot->contents + off
6245				  + GOT_ENTRY_SIZE);
6246		    }
6247		  else if (indx == 0)
6248		    {
6249		      bfd_put_NN (output_bfd,
6250				  relocation - dtpoff_base (info),
6251				  globals->root.sgot->contents + off
6252				  + GOT_ENTRY_SIZE);
6253		    }
6254		  else
6255		    {
6256		      /* This TLS symbol is global. We emit a
6257			 relocation to fixup the tls offset at load
6258			 time.  */
6259		      rela.r_info =
6260			ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6261		      rela.r_addend = 0;
6262		      rela.r_offset =
6263			(globals->root.sgot->output_section->vma
6264			 + globals->root.sgot->output_offset + off
6265			 + GOT_ENTRY_SIZE);
6266
6267		      loc = globals->root.srelgot->contents;
6268		      loc += globals->root.srelgot->reloc_count++
6269			* RELOC_SIZE (globals);
6270		      bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6271		      bfd_put_NN (output_bfd, (bfd_vma) 0,
6272				  globals->root.sgot->contents + off
6273				  + GOT_ENTRY_SIZE);
6274		    }
6275		}
6276	      else
6277		{
6278		  bfd_put_NN (output_bfd, (bfd_vma) 1,
6279			      globals->root.sgot->contents + off);
6280		  bfd_put_NN (output_bfd,
6281			      relocation - dtpoff_base (info),
6282			      globals->root.sgot->contents + off
6283			      + GOT_ENTRY_SIZE);
6284		}
6285
6286	      symbol_got_offset_mark (input_bfd, h, r_symndx);
6287	    }
6288	  break;
6289
6290	case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6291	case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6292	case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6293	case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6294	case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6295	  if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6296	    {
6297	      bfd_boolean need_relocs = FALSE;
6298	      bfd_byte *loc;
6299	      int indx;
6300	      bfd_vma off;
6301
6302	      off = symbol_got_offset (input_bfd, h, r_symndx);
6303
6304	      indx = h && h->dynindx != -1 ? h->dynindx : 0;
6305
6306	      need_relocs =
6307		(bfd_link_pic (info) || indx != 0) &&
6308		(h == NULL
6309		 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6310		 || h->root.type != bfd_link_hash_undefweak);
6311
6312	      BFD_ASSERT (globals->root.srelgot != NULL);
6313
6314	      if (need_relocs)
6315		{
6316		  Elf_Internal_Rela rela;
6317
6318		  if (indx == 0)
6319		    rela.r_addend = relocation - dtpoff_base (info);
6320		  else
6321		    rela.r_addend = 0;
6322
6323		  rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6324		  rela.r_offset = globals->root.sgot->output_section->vma +
6325		    globals->root.sgot->output_offset + off;
6326
6327		  loc = globals->root.srelgot->contents;
6328		  loc += globals->root.srelgot->reloc_count++
6329		    * RELOC_SIZE (htab);
6330
6331		  bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6332
6333		  bfd_put_NN (output_bfd, rela.r_addend,
6334			      globals->root.sgot->contents + off);
6335		}
6336	      else
6337		bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6338			    globals->root.sgot->contents + off);
6339
6340	      symbol_got_offset_mark (input_bfd, h, r_symndx);
6341	    }
6342	  break;
6343
6344	case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6345	case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6346	case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6347	case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6348	case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6349	case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6350	case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6351	  if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6352	    {
6353	      bfd_boolean need_relocs = FALSE;
6354	      int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6355	      bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6356
6357	      need_relocs = (h == NULL
6358			     || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6359			     || h->root.type != bfd_link_hash_undefweak);
6360
6361	      BFD_ASSERT (globals->root.srelgot != NULL);
6362	      BFD_ASSERT (globals->root.sgot != NULL);
6363
6364	      if (need_relocs)
6365		{
6366		  bfd_byte *loc;
6367		  Elf_Internal_Rela rela;
6368		  rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6369
6370		  rela.r_addend = 0;
6371		  rela.r_offset = (globals->root.sgotplt->output_section->vma
6372				   + globals->root.sgotplt->output_offset
6373				   + off + globals->sgotplt_jump_table_size);
6374
6375		  if (indx == 0)
6376		    rela.r_addend = relocation - dtpoff_base (info);
6377
6378		  /* Allocate the next available slot in the PLT reloc
6379		     section to hold our R_AARCH64_TLSDESC, the next
6380		     available slot is determined from reloc_count,
6381		     which we step. But note, reloc_count was
6382		     artifically moved down while allocating slots for
6383		     real PLT relocs such that all of the PLT relocs
6384		     will fit above the initial reloc_count and the
6385		     extra stuff will fit below.  */
6386		  loc = globals->root.srelplt->contents;
6387		  loc += globals->root.srelplt->reloc_count++
6388		    * RELOC_SIZE (globals);
6389
6390		  bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6391
6392		  bfd_put_NN (output_bfd, (bfd_vma) 0,
6393			      globals->root.sgotplt->contents + off +
6394			      globals->sgotplt_jump_table_size);
6395		  bfd_put_NN (output_bfd, (bfd_vma) 0,
6396			      globals->root.sgotplt->contents + off +
6397			      globals->sgotplt_jump_table_size +
6398			      GOT_ENTRY_SIZE);
6399		}
6400
6401	      symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6402	    }
6403	  break;
6404	default:
6405	  break;
6406	}
6407
6408      /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6409         because such sections are not SEC_ALLOC and thus ld.so will
6410         not process them.  */
6411      if (unresolved_reloc
6412	  && !((input_section->flags & SEC_DEBUGGING) != 0
6413	       && h->def_dynamic)
6414	  && _bfd_elf_section_offset (output_bfd, info, input_section,
6415				      +rel->r_offset) != (bfd_vma) - 1)
6416	{
6417	  _bfd_error_handler
6418	    /* xgettext:c-format */
6419	    (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
6420	     input_bfd, input_section, (long) rel->r_offset, howto->name,
6421	     h->root.root.string);
6422	  return FALSE;
6423	}
6424
6425      if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6426	{
6427	  bfd_reloc_code_real_type real_r_type
6428	    = elfNN_aarch64_bfd_reloc_from_type (r_type);
6429
6430	  switch (r)
6431	    {
6432	    case bfd_reloc_overflow:
6433	      (*info->callbacks->reloc_overflow)
6434		(info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6435		 input_bfd, input_section, rel->r_offset);
6436	      if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6437		  || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6438		{
6439		  (*info->callbacks->warning)
6440		    (info,
6441		     _("Too many GOT entries for -fpic, "
6442		       "please recompile with -fPIC"),
6443		     name, input_bfd, input_section, rel->r_offset);
6444		  return FALSE;
6445		}
6446	      /* Overflow can occur when a variable is referenced with a type
6447		 that has a larger alignment than the type with which it was
6448		 declared. eg:
6449		   file1.c: extern int foo; int a (void) { return foo; }
6450		   file2.c: char bar, foo, baz;
6451		 If the variable is placed into a data section at an offset
6452		 that is incompatible with the larger alignment requirement
6453		 overflow will occur.  (Strictly speaking this is not overflow
6454		 but rather an alignment problem, but the bfd_reloc_ error
6455		 enum does not have a value to cover that situation).
6456
6457		 Try to catch this situation here and provide a more helpful
6458		 error message to the user.  */
6459	      if (addend & ((1 << howto->rightshift) - 1)
6460		  /* FIXME: Are we testing all of the appropriate reloc
6461		     types here ?  */
6462		  && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
6463		      || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
6464		      || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
6465		      || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
6466		      || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
6467		{
6468		  info->callbacks->warning
6469		    (info, _("One possible cause of this error is that the \
6470symbol is being referenced in the indicated code as if it had a larger \
6471alignment than was declared where it was defined."),
6472		     name, input_bfd, input_section, rel->r_offset);
6473		}
6474	      break;
6475
6476	    case bfd_reloc_undefined:
6477	      (*info->callbacks->undefined_symbol)
6478		(info, name, input_bfd, input_section, rel->r_offset, TRUE);
6479	      break;
6480
6481	    case bfd_reloc_outofrange:
6482	      error_message = _("out of range");
6483	      goto common_error;
6484
6485	    case bfd_reloc_notsupported:
6486	      error_message = _("unsupported relocation");
6487	      goto common_error;
6488
6489	    case bfd_reloc_dangerous:
6490	      /* error_message should already be set.  */
6491	      goto common_error;
6492
6493	    default:
6494	      error_message = _("unknown error");
6495	      /* Fall through.  */
6496
6497	    common_error:
6498	      BFD_ASSERT (error_message != NULL);
6499	      (*info->callbacks->reloc_dangerous)
6500		(info, error_message, input_bfd, input_section, rel->r_offset);
6501	      break;
6502	    }
6503	}
6504
6505      if (!save_addend)
6506	addend = 0;
6507    }
6508
6509  return TRUE;
6510}
6511
6512/* Set the right machine number.  */
6513
6514static bfd_boolean
6515elfNN_aarch64_object_p (bfd *abfd)
6516{
6517#if ARCH_SIZE == 32
6518  bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6519#else
6520  bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
6521#endif
6522  return TRUE;
6523}
6524
6525/* Function to keep AArch64 specific flags in the ELF header.  */
6526
6527static bfd_boolean
6528elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
6529{
6530  if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6531    {
6532    }
6533  else
6534    {
6535      elf_elfheader (abfd)->e_flags = flags;
6536      elf_flags_init (abfd) = TRUE;
6537    }
6538
6539  return TRUE;
6540}
6541
6542/* Merge backend specific data from an object file to the output
6543   object file when linking.  */
6544
6545static bfd_boolean
6546elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
6547{
6548  bfd *obfd = info->output_bfd;
6549  flagword out_flags;
6550  flagword in_flags;
6551  bfd_boolean flags_compatible = TRUE;
6552  asection *sec;
6553
6554  /* Check if we have the same endianess.  */
6555  if (!_bfd_generic_verify_endian_match (ibfd, info))
6556    return FALSE;
6557
6558  if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6559    return TRUE;
6560
6561  /* The input BFD must have had its flags initialised.  */
6562  /* The following seems bogus to me -- The flags are initialized in
6563     the assembler but I don't think an elf_flags_init field is
6564     written into the object.  */
6565  /* BFD_ASSERT (elf_flags_init (ibfd)); */
6566
6567  in_flags = elf_elfheader (ibfd)->e_flags;
6568  out_flags = elf_elfheader (obfd)->e_flags;
6569
6570  if (!elf_flags_init (obfd))
6571    {
6572      /* If the input is the default architecture and had the default
6573         flags then do not bother setting the flags for the output
6574         architecture, instead allow future merges to do this.  If no
6575         future merges ever set these flags then they will retain their
6576         uninitialised values, which surprise surprise, correspond
6577         to the default values.  */
6578      if (bfd_get_arch_info (ibfd)->the_default
6579	  && elf_elfheader (ibfd)->e_flags == 0)
6580	return TRUE;
6581
6582      elf_flags_init (obfd) = TRUE;
6583      elf_elfheader (obfd)->e_flags = in_flags;
6584
6585      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6586	  && bfd_get_arch_info (obfd)->the_default)
6587	return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6588				  bfd_get_mach (ibfd));
6589
6590      return TRUE;
6591    }
6592
6593  /* Identical flags must be compatible.  */
6594  if (in_flags == out_flags)
6595    return TRUE;
6596
6597  /* Check to see if the input BFD actually contains any sections.  If
6598     not, its flags may not have been initialised either, but it
6599     cannot actually cause any incompatiblity.  Do not short-circuit
6600     dynamic objects; their section list may be emptied by
6601     elf_link_add_object_symbols.
6602
6603     Also check to see if there are no code sections in the input.
6604     In this case there is no need to check for code specific flags.
6605     XXX - do we need to worry about floating-point format compatability
6606     in data sections ?  */
6607  if (!(ibfd->flags & DYNAMIC))
6608    {
6609      bfd_boolean null_input_bfd = TRUE;
6610      bfd_boolean only_data_sections = TRUE;
6611
6612      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6613	{
6614	  if ((bfd_get_section_flags (ibfd, sec)
6615	       & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6616	      == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6617	    only_data_sections = FALSE;
6618
6619	  null_input_bfd = FALSE;
6620	  break;
6621	}
6622
6623      if (null_input_bfd || only_data_sections)
6624	return TRUE;
6625    }
6626
6627  return flags_compatible;
6628}
6629
6630/* Display the flags field.  */
6631
6632static bfd_boolean
6633elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
6634{
6635  FILE *file = (FILE *) ptr;
6636  unsigned long flags;
6637
6638  BFD_ASSERT (abfd != NULL && ptr != NULL);
6639
6640  /* Print normal ELF private data.  */
6641  _bfd_elf_print_private_bfd_data (abfd, ptr);
6642
6643  flags = elf_elfheader (abfd)->e_flags;
6644  /* Ignore init flag - it may not be set, despite the flags field
6645     containing valid data.  */
6646
6647  /* xgettext:c-format */
6648  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
6649
6650  if (flags)
6651    fprintf (file, _("<Unrecognised flag bits set>"));
6652
6653  fputc ('\n', file);
6654
6655  return TRUE;
6656}
6657
6658/* Update the got entry reference counts for the section being removed.  */
6659
6660static bfd_boolean
6661elfNN_aarch64_gc_sweep_hook (bfd *abfd,
6662			     struct bfd_link_info *info,
6663			     asection *sec,
6664			     const Elf_Internal_Rela * relocs)
6665{
6666  struct elf_aarch64_link_hash_table *htab;
6667  Elf_Internal_Shdr *symtab_hdr;
6668  struct elf_link_hash_entry **sym_hashes;
6669  struct elf_aarch64_local_symbol *locals;
6670  const Elf_Internal_Rela *rel, *relend;
6671
6672  if (bfd_link_relocatable (info))
6673    return TRUE;
6674
6675  htab = elf_aarch64_hash_table (info);
6676
6677  if (htab == NULL)
6678    return FALSE;
6679
6680  elf_section_data (sec)->local_dynrel = NULL;
6681
6682  symtab_hdr = &elf_symtab_hdr (abfd);
6683  sym_hashes = elf_sym_hashes (abfd);
6684
6685  locals = elf_aarch64_locals (abfd);
6686
6687  relend = relocs + sec->reloc_count;
6688  for (rel = relocs; rel < relend; rel++)
6689    {
6690      unsigned long r_symndx;
6691      unsigned int r_type;
6692      struct elf_link_hash_entry *h = NULL;
6693
6694      r_symndx = ELFNN_R_SYM (rel->r_info);
6695
6696      if (r_symndx >= symtab_hdr->sh_info)
6697	{
6698
6699	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6700	  while (h->root.type == bfd_link_hash_indirect
6701		 || h->root.type == bfd_link_hash_warning)
6702	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
6703        }
6704      else
6705	{
6706	  Elf_Internal_Sym *isym;
6707
6708	  /* A local symbol.  */
6709	  isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6710					abfd, r_symndx);
6711
6712	  /* Check relocation against local STT_GNU_IFUNC symbol.  */
6713	  if (isym != NULL
6714	      && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6715	    {
6716	      h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
6717	      if (h == NULL)
6718		abort ();
6719	    }
6720	}
6721
6722      if (h)
6723	{
6724	  struct elf_aarch64_link_hash_entry *eh;
6725	  struct elf_dyn_relocs **pp;
6726	  struct elf_dyn_relocs *p;
6727
6728	  eh = (struct elf_aarch64_link_hash_entry *) h;
6729
6730	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6731	    if (p->sec == sec)
6732	      {
6733		/* Everything must go for SEC.  */
6734		*pp = p->next;
6735		break;
6736	      }
6737	}
6738
6739      r_type = ELFNN_R_TYPE (rel->r_info);
6740      switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
6741	{
6742	case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6743	case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6744	case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6745	case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6746	case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
6747	case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6748	case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6749	case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
6750	case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
6751	case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6752	case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6753	case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6754	case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6755	case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
6756	case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6757	case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6758	case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6759	case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6760	case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6761	case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6762	case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6763	case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6764	case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6765	case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6766	case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6767	case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6768	case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6769	case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6770	case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6771	case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6772	case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6773	  if (h != NULL)
6774	    {
6775	      if (h->got.refcount > 0)
6776		h->got.refcount -= 1;
6777
6778	      if (h->type == STT_GNU_IFUNC)
6779		{
6780		  if (h->plt.refcount > 0)
6781		    h->plt.refcount -= 1;
6782		}
6783	    }
6784	  else if (locals != NULL)
6785	    {
6786	      if (locals[r_symndx].got_refcount > 0)
6787		locals[r_symndx].got_refcount -= 1;
6788	    }
6789	  break;
6790
6791	case BFD_RELOC_AARCH64_CALL26:
6792	case BFD_RELOC_AARCH64_JUMP26:
6793	  /* If this is a local symbol then we resolve it
6794	     directly without creating a PLT entry.  */
6795	  if (h == NULL)
6796	    continue;
6797
6798	  if (h->plt.refcount > 0)
6799	    h->plt.refcount -= 1;
6800	  break;
6801
6802	case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6803	case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6804	case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
6805	case BFD_RELOC_AARCH64_MOVW_G0_NC:
6806	case BFD_RELOC_AARCH64_MOVW_G1_NC:
6807	case BFD_RELOC_AARCH64_MOVW_G2_NC:
6808	case BFD_RELOC_AARCH64_MOVW_G3:
6809	case BFD_RELOC_AARCH64_NN:
6810	  if (h != NULL && bfd_link_executable (info))
6811	    {
6812	      if (h->plt.refcount > 0)
6813		h->plt.refcount -= 1;
6814	    }
6815	  break;
6816
6817	default:
6818	  break;
6819	}
6820    }
6821
6822  return TRUE;
6823}
6824
6825/* Adjust a symbol defined by a dynamic object and referenced by a
6826   regular object.  The current definition is in some section of the
6827   dynamic object, but we're not including those sections.  We have to
6828   change the definition to something the rest of the link can
6829   understand.	*/
6830
6831static bfd_boolean
6832elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
6833				     struct elf_link_hash_entry *h)
6834{
6835  struct elf_aarch64_link_hash_table *htab;
6836  asection *s, *srel;
6837
6838  /* If this is a function, put it in the procedure linkage table.  We
6839     will fill in the contents of the procedure linkage table later,
6840     when we know the address of the .got section.  */
6841  if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
6842    {
6843      if (h->plt.refcount <= 0
6844	  || (h->type != STT_GNU_IFUNC
6845	      && (SYMBOL_CALLS_LOCAL (info, h)
6846		  || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6847		      && h->root.type == bfd_link_hash_undefweak))))
6848	{
6849	  /* This case can occur if we saw a CALL26 reloc in
6850	     an input file, but the symbol wasn't referred to
6851	     by a dynamic object or all references were
6852	     garbage collected. In which case we can end up
6853	     resolving.  */
6854	  h->plt.offset = (bfd_vma) - 1;
6855	  h->needs_plt = 0;
6856	}
6857
6858      return TRUE;
6859    }
6860  else
6861    /* Otherwise, reset to -1.  */
6862    h->plt.offset = (bfd_vma) - 1;
6863
6864
6865  /* If this is a weak symbol, and there is a real definition, the
6866     processor independent code will have arranged for us to see the
6867     real definition first, and we can just use the same value.  */
6868  if (h->u.weakdef != NULL)
6869    {
6870      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6871		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
6872      h->root.u.def.section = h->u.weakdef->root.u.def.section;
6873      h->root.u.def.value = h->u.weakdef->root.u.def.value;
6874      if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
6875	h->non_got_ref = h->u.weakdef->non_got_ref;
6876      return TRUE;
6877    }
6878
6879  /* If we are creating a shared library, we must presume that the
6880     only references to the symbol are via the global offset table.
6881     For such cases we need not do anything here; the relocations will
6882     be handled correctly by relocate_section.  */
6883  if (bfd_link_pic (info))
6884    return TRUE;
6885
6886  /* If there are no references to this symbol that do not use the
6887     GOT, we don't need to generate a copy reloc.  */
6888  if (!h->non_got_ref)
6889    return TRUE;
6890
6891  /* If -z nocopyreloc was given, we won't generate them either.  */
6892  if (info->nocopyreloc)
6893    {
6894      h->non_got_ref = 0;
6895      return TRUE;
6896    }
6897
6898  /* We must allocate the symbol in our .dynbss section, which will
6899     become part of the .bss section of the executable.  There will be
6900     an entry for this symbol in the .dynsym section.  The dynamic
6901     object will contain position independent code, so all references
6902     from the dynamic object to this symbol will go through the global
6903     offset table.  The dynamic linker will use the .dynsym entry to
6904     determine the address it must put in the global offset table, so
6905     both the dynamic object and the regular object will refer to the
6906     same memory location for the variable.  */
6907
6908  htab = elf_aarch64_hash_table (info);
6909
6910  /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
6911     to copy the initial value out of the dynamic object and into the
6912     runtime process image.  */
6913  if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
6914    {
6915      s = htab->root.sdynrelro;
6916      srel = htab->root.sreldynrelro;
6917    }
6918  else
6919    {
6920      s = htab->root.sdynbss;
6921      srel = htab->root.srelbss;
6922    }
6923  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6924    {
6925      srel->size += RELOC_SIZE (htab);
6926      h->needs_copy = 1;
6927    }
6928
6929  return _bfd_elf_adjust_dynamic_copy (info, h, s);
6930
6931}
6932
6933static bfd_boolean
6934elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
6935{
6936  struct elf_aarch64_local_symbol *locals;
6937  locals = elf_aarch64_locals (abfd);
6938  if (locals == NULL)
6939    {
6940      locals = (struct elf_aarch64_local_symbol *)
6941	bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
6942      if (locals == NULL)
6943	return FALSE;
6944      elf_aarch64_locals (abfd) = locals;
6945    }
6946  return TRUE;
6947}
6948
6949/* Create the .got section to hold the global offset table.  */
6950
6951static bfd_boolean
6952aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
6953{
6954  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6955  flagword flags;
6956  asection *s;
6957  struct elf_link_hash_entry *h;
6958  struct elf_link_hash_table *htab = elf_hash_table (info);
6959
6960  /* This function may be called more than once.  */
6961  if (htab->sgot != NULL)
6962    return TRUE;
6963
6964  flags = bed->dynamic_sec_flags;
6965
6966  s = bfd_make_section_anyway_with_flags (abfd,
6967					  (bed->rela_plts_and_copies_p
6968					   ? ".rela.got" : ".rel.got"),
6969					  (bed->dynamic_sec_flags
6970					   | SEC_READONLY));
6971  if (s == NULL
6972      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6973    return FALSE;
6974  htab->srelgot = s;
6975
6976  s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
6977  if (s == NULL
6978      || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6979    return FALSE;
6980  htab->sgot = s;
6981  htab->sgot->size += GOT_ENTRY_SIZE;
6982
6983  if (bed->want_got_sym)
6984    {
6985      /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
6986	 (or .got.plt) section.  We don't do this in the linker script
6987	 because we don't want to define the symbol if we are not creating
6988	 a global offset table.  */
6989      h = _bfd_elf_define_linkage_sym (abfd, info, s,
6990				       "_GLOBAL_OFFSET_TABLE_");
6991      elf_hash_table (info)->hgot = h;
6992      if (h == NULL)
6993	return FALSE;
6994    }
6995
6996  if (bed->want_got_plt)
6997    {
6998      s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
6999      if (s == NULL
7000	  || !bfd_set_section_alignment (abfd, s,
7001					 bed->s->log_file_align))
7002	return FALSE;
7003      htab->sgotplt = s;
7004    }
7005
7006  /* The first bit of the global offset table is the header.  */
7007  s->size += bed->got_header_size;
7008
7009  return TRUE;
7010}
7011
7012/* Look through the relocs for a section during the first phase.  */
7013
7014static bfd_boolean
7015elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7016			    asection *sec, const Elf_Internal_Rela *relocs)
7017{
7018  Elf_Internal_Shdr *symtab_hdr;
7019  struct elf_link_hash_entry **sym_hashes;
7020  const Elf_Internal_Rela *rel;
7021  const Elf_Internal_Rela *rel_end;
7022  asection *sreloc;
7023
7024  struct elf_aarch64_link_hash_table *htab;
7025
7026  if (bfd_link_relocatable (info))
7027    return TRUE;
7028
7029  BFD_ASSERT (is_aarch64_elf (abfd));
7030
7031  htab = elf_aarch64_hash_table (info);
7032  sreloc = NULL;
7033
7034  symtab_hdr = &elf_symtab_hdr (abfd);
7035  sym_hashes = elf_sym_hashes (abfd);
7036
7037  rel_end = relocs + sec->reloc_count;
7038  for (rel = relocs; rel < rel_end; rel++)
7039    {
7040      struct elf_link_hash_entry *h;
7041      unsigned long r_symndx;
7042      unsigned int r_type;
7043      bfd_reloc_code_real_type bfd_r_type;
7044      Elf_Internal_Sym *isym;
7045
7046      r_symndx = ELFNN_R_SYM (rel->r_info);
7047      r_type = ELFNN_R_TYPE (rel->r_info);
7048
7049      if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7050	{
7051	  /* xgettext:c-format */
7052	  _bfd_error_handler (_("%B: bad symbol index: %d"), abfd, r_symndx);
7053	  return FALSE;
7054	}
7055
7056      if (r_symndx < symtab_hdr->sh_info)
7057	{
7058	  /* A local symbol.  */
7059	  isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7060					abfd, r_symndx);
7061	  if (isym == NULL)
7062	    return FALSE;
7063
7064	  /* Check relocation against local STT_GNU_IFUNC symbol.  */
7065	  if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7066	    {
7067	      h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7068						    TRUE);
7069	      if (h == NULL)
7070		return FALSE;
7071
7072	      /* Fake a STT_GNU_IFUNC symbol.  */
7073	      h->type = STT_GNU_IFUNC;
7074	      h->def_regular = 1;
7075	      h->ref_regular = 1;
7076	      h->forced_local = 1;
7077	      h->root.type = bfd_link_hash_defined;
7078	    }
7079	  else
7080	    h = NULL;
7081	}
7082      else
7083	{
7084	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7085	  while (h->root.type == bfd_link_hash_indirect
7086		 || h->root.type == bfd_link_hash_warning)
7087	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
7088
7089	  /* PR15323, ref flags aren't set for references in the same
7090	     object.  */
7091	  h->root.non_ir_ref = 1;
7092	}
7093
7094      /* Could be done earlier, if h were already available.  */
7095      bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7096
7097      if (h != NULL)
7098	{
7099	  /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7100	     This shows up in particular in an R_AARCH64_PREL64 in large model
7101	     when calculating the pc-relative address to .got section which is
7102	     used to initialize the gp register.  */
7103	  if (h->root.root.string
7104	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7105	    {
7106	      if (htab->root.dynobj == NULL)
7107		htab->root.dynobj = abfd;
7108
7109	      if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7110		return FALSE;
7111
7112	      BFD_ASSERT (h == htab->root.hgot);
7113	    }
7114
7115	  /* Create the ifunc sections for static executables.  If we
7116	     never see an indirect function symbol nor we are building
7117	     a static executable, those sections will be empty and
7118	     won't appear in output.  */
7119	  switch (bfd_r_type)
7120	    {
7121	    default:
7122	      break;
7123
7124	    case BFD_RELOC_AARCH64_ADD_LO12:
7125	    case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7126	    case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7127	    case BFD_RELOC_AARCH64_CALL26:
7128	    case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7129	    case BFD_RELOC_AARCH64_JUMP26:
7130	    case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7131	    case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7132	    case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7133	    case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7134	    case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7135	    case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7136	    case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7137	    case BFD_RELOC_AARCH64_NN:
7138	      if (htab->root.dynobj == NULL)
7139		htab->root.dynobj = abfd;
7140	      if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7141		return FALSE;
7142	      break;
7143	    }
7144
7145	  /* It is referenced by a non-shared object. */
7146	  h->ref_regular = 1;
7147	  h->root.non_ir_ref = 1;
7148	}
7149
7150      switch (bfd_r_type)
7151	{
7152	case BFD_RELOC_AARCH64_NN:
7153
7154	  /* We don't need to handle relocs into sections not going into
7155	     the "real" output.  */
7156	  if ((sec->flags & SEC_ALLOC) == 0)
7157	    break;
7158
7159	  if (h != NULL)
7160	    {
7161	      if (!bfd_link_pic (info))
7162		h->non_got_ref = 1;
7163
7164	      h->plt.refcount += 1;
7165	      h->pointer_equality_needed = 1;
7166	    }
7167
7168	  /* No need to do anything if we're not creating a shared
7169	     object.  */
7170	  if (! bfd_link_pic (info))
7171	    break;
7172
7173	  {
7174	    struct elf_dyn_relocs *p;
7175	    struct elf_dyn_relocs **head;
7176
7177	    /* We must copy these reloc types into the output file.
7178	       Create a reloc section in dynobj and make room for
7179	       this reloc.  */
7180	    if (sreloc == NULL)
7181	      {
7182		if (htab->root.dynobj == NULL)
7183		  htab->root.dynobj = abfd;
7184
7185		sreloc = _bfd_elf_make_dynamic_reloc_section
7186		  (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7187
7188		if (sreloc == NULL)
7189		  return FALSE;
7190	      }
7191
7192	    /* If this is a global symbol, we count the number of
7193	       relocations we need for this symbol.  */
7194	    if (h != NULL)
7195	      {
7196		struct elf_aarch64_link_hash_entry *eh;
7197		eh = (struct elf_aarch64_link_hash_entry *) h;
7198		head = &eh->dyn_relocs;
7199	      }
7200	    else
7201	      {
7202		/* Track dynamic relocs needed for local syms too.
7203		   We really need local syms available to do this
7204		   easily.  Oh well.  */
7205
7206		asection *s;
7207		void **vpp;
7208
7209		isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7210					      abfd, r_symndx);
7211		if (isym == NULL)
7212		  return FALSE;
7213
7214		s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7215		if (s == NULL)
7216		  s = sec;
7217
7218		/* Beware of type punned pointers vs strict aliasing
7219		   rules.  */
7220		vpp = &(elf_section_data (s)->local_dynrel);
7221		head = (struct elf_dyn_relocs **) vpp;
7222	      }
7223
7224	    p = *head;
7225	    if (p == NULL || p->sec != sec)
7226	      {
7227		bfd_size_type amt = sizeof *p;
7228		p = ((struct elf_dyn_relocs *)
7229		     bfd_zalloc (htab->root.dynobj, amt));
7230		if (p == NULL)
7231		  return FALSE;
7232		p->next = *head;
7233		*head = p;
7234		p->sec = sec;
7235	      }
7236
7237	    p->count += 1;
7238
7239	  }
7240	  break;
7241
7242	  /* RR: We probably want to keep a consistency check that
7243	     there are no dangling GOT_PAGE relocs.  */
7244	case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7245	case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7246	case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7247	case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7248	case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7249	case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7250	case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7251	case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7252	case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7253	case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7254	case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7255	case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7256	case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7257	case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
7258	case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7259	case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7260	case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7261	case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7262	case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7263	case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7264	case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7265	case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7266	case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7267	case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7268	case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7269	case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7270	case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7271	case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7272	case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7273	case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7274	case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7275	case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7276	case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7277	case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7278	  {
7279	    unsigned got_type;
7280	    unsigned old_got_type;
7281
7282	    got_type = aarch64_reloc_got_type (bfd_r_type);
7283
7284	    if (h)
7285	      {
7286		h->got.refcount += 1;
7287		old_got_type = elf_aarch64_hash_entry (h)->got_type;
7288	      }
7289	    else
7290	      {
7291		struct elf_aarch64_local_symbol *locals;
7292
7293		if (!elfNN_aarch64_allocate_local_symbols
7294		    (abfd, symtab_hdr->sh_info))
7295		  return FALSE;
7296
7297		locals = elf_aarch64_locals (abfd);
7298		BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7299		locals[r_symndx].got_refcount += 1;
7300		old_got_type = locals[r_symndx].got_type;
7301	      }
7302
7303	    /* If a variable is accessed with both general dynamic TLS
7304	       methods, two slots may be created.  */
7305	    if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7306	      got_type |= old_got_type;
7307
7308	    /* We will already have issued an error message if there
7309	       is a TLS/non-TLS mismatch, based on the symbol type.
7310	       So just combine any TLS types needed.  */
7311	    if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7312		&& got_type != GOT_NORMAL)
7313	      got_type |= old_got_type;
7314
7315	    /* If the symbol is accessed by both IE and GD methods, we
7316	       are able to relax.  Turn off the GD flag, without
7317	       messing up with any other kind of TLS types that may be
7318	       involved.  */
7319	    if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7320	      got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7321
7322	    if (old_got_type != got_type)
7323	      {
7324		if (h != NULL)
7325		  elf_aarch64_hash_entry (h)->got_type = got_type;
7326		else
7327		  {
7328		    struct elf_aarch64_local_symbol *locals;
7329		    locals = elf_aarch64_locals (abfd);
7330		    BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7331		    locals[r_symndx].got_type = got_type;
7332		  }
7333	      }
7334
7335	    if (htab->root.dynobj == NULL)
7336	      htab->root.dynobj = abfd;
7337	    if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7338	      return FALSE;
7339	    break;
7340	  }
7341
7342	case BFD_RELOC_AARCH64_MOVW_G0_NC:
7343	case BFD_RELOC_AARCH64_MOVW_G1_NC:
7344	case BFD_RELOC_AARCH64_MOVW_G2_NC:
7345	case BFD_RELOC_AARCH64_MOVW_G3:
7346	  if (bfd_link_pic (info))
7347	    {
7348	      int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7349	      _bfd_error_handler
7350		/* xgettext:c-format */
7351		(_("%B: relocation %s against `%s' can not be used when making "
7352		   "a shared object; recompile with -fPIC"),
7353		 abfd, elfNN_aarch64_howto_table[howto_index].name,
7354		 (h) ? h->root.root.string : "a local symbol");
7355	      bfd_set_error (bfd_error_bad_value);
7356	      return FALSE;
7357	    }
7358	  /* Fall through.  */
7359
7360	case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7361	case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7362	case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7363	  if (h != NULL && bfd_link_executable (info))
7364	    {
7365	      /* If this reloc is in a read-only section, we might
7366		 need a copy reloc.  We can't check reliably at this
7367		 stage whether the section is read-only, as input
7368		 sections have not yet been mapped to output sections.
7369		 Tentatively set the flag for now, and correct in
7370		 adjust_dynamic_symbol.  */
7371	      h->non_got_ref = 1;
7372	      h->plt.refcount += 1;
7373	      h->pointer_equality_needed = 1;
7374	    }
7375	  /* FIXME:: RR need to handle these in shared libraries
7376	     and essentially bomb out as these being non-PIC
7377	     relocations in shared libraries.  */
7378	  break;
7379
7380	case BFD_RELOC_AARCH64_CALL26:
7381	case BFD_RELOC_AARCH64_JUMP26:
7382	  /* If this is a local symbol then we resolve it
7383	     directly without creating a PLT entry.  */
7384	  if (h == NULL)
7385	    continue;
7386
7387	  h->needs_plt = 1;
7388	  if (h->plt.refcount <= 0)
7389	    h->plt.refcount = 1;
7390	  else
7391	    h->plt.refcount += 1;
7392	  break;
7393
7394	default:
7395	  break;
7396	}
7397    }
7398
7399  return TRUE;
7400}
7401
7402/* Treat mapping symbols as special target symbols.  */
7403
7404static bfd_boolean
7405elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7406					asymbol *sym)
7407{
7408  return bfd_is_aarch64_special_symbol_name (sym->name,
7409					     BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7410}
7411
7412/* This is a copy of elf_find_function () from elf.c except that
7413   AArch64 mapping symbols are ignored when looking for function names.  */
7414
7415static bfd_boolean
7416aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7417			   asymbol **symbols,
7418			   asection *section,
7419			   bfd_vma offset,
7420			   const char **filename_ptr,
7421			   const char **functionname_ptr)
7422{
7423  const char *filename = NULL;
7424  asymbol *func = NULL;
7425  bfd_vma low_func = 0;
7426  asymbol **p;
7427
7428  for (p = symbols; *p != NULL; p++)
7429    {
7430      elf_symbol_type *q;
7431
7432      q = (elf_symbol_type *) * p;
7433
7434      switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7435	{
7436	default:
7437	  break;
7438	case STT_FILE:
7439	  filename = bfd_asymbol_name (&q->symbol);
7440	  break;
7441	case STT_FUNC:
7442	case STT_NOTYPE:
7443	  /* Skip mapping symbols.  */
7444	  if ((q->symbol.flags & BSF_LOCAL)
7445	      && (bfd_is_aarch64_special_symbol_name
7446		  (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7447	    continue;
7448	  /* Fall through.  */
7449	  if (bfd_get_section (&q->symbol) == section
7450	      && q->symbol.value >= low_func && q->symbol.value <= offset)
7451	    {
7452	      func = (asymbol *) q;
7453	      low_func = q->symbol.value;
7454	    }
7455	  break;
7456	}
7457    }
7458
7459  if (func == NULL)
7460    return FALSE;
7461
7462  if (filename_ptr)
7463    *filename_ptr = filename;
7464  if (functionname_ptr)
7465    *functionname_ptr = bfd_asymbol_name (func);
7466
7467  return TRUE;
7468}
7469
7470
7471/* Find the nearest line to a particular section and offset, for error
7472   reporting.   This code is a duplicate of the code in elf.c, except
7473   that it uses aarch64_elf_find_function.  */
7474
7475static bfd_boolean
7476elfNN_aarch64_find_nearest_line (bfd *abfd,
7477				 asymbol **symbols,
7478				 asection *section,
7479				 bfd_vma offset,
7480				 const char **filename_ptr,
7481				 const char **functionname_ptr,
7482				 unsigned int *line_ptr,
7483				 unsigned int *discriminator_ptr)
7484{
7485  bfd_boolean found = FALSE;
7486
7487  if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7488				     filename_ptr, functionname_ptr,
7489				     line_ptr, discriminator_ptr,
7490				     dwarf_debug_sections, 0,
7491				     &elf_tdata (abfd)->dwarf2_find_line_info))
7492    {
7493      if (!*functionname_ptr)
7494	aarch64_elf_find_function (abfd, symbols, section, offset,
7495				   *filename_ptr ? NULL : filename_ptr,
7496				   functionname_ptr);
7497
7498      return TRUE;
7499    }
7500
7501  /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7502     toolchain uses DWARF1.  */
7503
7504  if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7505					    &found, filename_ptr,
7506					    functionname_ptr, line_ptr,
7507					    &elf_tdata (abfd)->line_info))
7508    return FALSE;
7509
7510  if (found && (*functionname_ptr || *line_ptr))
7511    return TRUE;
7512
7513  if (symbols == NULL)
7514    return FALSE;
7515
7516  if (!aarch64_elf_find_function (abfd, symbols, section, offset,
7517				  filename_ptr, functionname_ptr))
7518    return FALSE;
7519
7520  *line_ptr = 0;
7521  return TRUE;
7522}
7523
7524static bfd_boolean
7525elfNN_aarch64_find_inliner_info (bfd *abfd,
7526				 const char **filename_ptr,
7527				 const char **functionname_ptr,
7528				 unsigned int *line_ptr)
7529{
7530  bfd_boolean found;
7531  found = _bfd_dwarf2_find_inliner_info
7532    (abfd, filename_ptr,
7533     functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7534  return found;
7535}
7536
7537
7538static void
7539elfNN_aarch64_post_process_headers (bfd *abfd,
7540				    struct bfd_link_info *link_info)
7541{
7542  Elf_Internal_Ehdr *i_ehdrp;	/* ELF file header, internal form.  */
7543
7544  i_ehdrp = elf_elfheader (abfd);
7545  i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
7546
7547  _bfd_elf_post_process_headers (abfd, link_info);
7548}
7549
7550static enum elf_reloc_type_class
7551elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7552				const asection *rel_sec ATTRIBUTE_UNUSED,
7553				const Elf_Internal_Rela *rela)
7554{
7555  switch ((int) ELFNN_R_TYPE (rela->r_info))
7556    {
7557    case AARCH64_R (RELATIVE):
7558      return reloc_class_relative;
7559    case AARCH64_R (JUMP_SLOT):
7560      return reloc_class_plt;
7561    case AARCH64_R (COPY):
7562      return reloc_class_copy;
7563    default:
7564      return reloc_class_normal;
7565    }
7566}
7567
7568/* Handle an AArch64 specific section when reading an object file.  This is
7569   called when bfd_section_from_shdr finds a section with an unknown
7570   type.  */
7571
7572static bfd_boolean
7573elfNN_aarch64_section_from_shdr (bfd *abfd,
7574				 Elf_Internal_Shdr *hdr,
7575				 const char *name, int shindex)
7576{
7577  /* There ought to be a place to keep ELF backend specific flags, but
7578     at the moment there isn't one.  We just keep track of the
7579     sections by their name, instead.  Fortunately, the ABI gives
7580     names for all the AArch64 specific sections, so we will probably get
7581     away with this.  */
7582  switch (hdr->sh_type)
7583    {
7584    case SHT_AARCH64_ATTRIBUTES:
7585      break;
7586
7587    default:
7588      return FALSE;
7589    }
7590
7591  if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7592    return FALSE;
7593
7594  return TRUE;
7595}
7596
7597/* A structure used to record a list of sections, independently
7598   of the next and prev fields in the asection structure.  */
7599typedef struct section_list
7600{
7601  asection *sec;
7602  struct section_list *next;
7603  struct section_list *prev;
7604}
7605section_list;
7606
7607/* Unfortunately we need to keep a list of sections for which
7608   an _aarch64_elf_section_data structure has been allocated.  This
7609   is because it is possible for functions like elfNN_aarch64_write_section
7610   to be called on a section which has had an elf_data_structure
7611   allocated for it (and so the used_by_bfd field is valid) but
7612   for which the AArch64 extended version of this structure - the
7613   _aarch64_elf_section_data structure - has not been allocated.  */
7614static section_list *sections_with_aarch64_elf_section_data = NULL;
7615
7616static void
7617record_section_with_aarch64_elf_section_data (asection *sec)
7618{
7619  struct section_list *entry;
7620
7621  entry = bfd_malloc (sizeof (*entry));
7622  if (entry == NULL)
7623    return;
7624  entry->sec = sec;
7625  entry->next = sections_with_aarch64_elf_section_data;
7626  entry->prev = NULL;
7627  if (entry->next != NULL)
7628    entry->next->prev = entry;
7629  sections_with_aarch64_elf_section_data = entry;
7630}
7631
7632static struct section_list *
7633find_aarch64_elf_section_entry (asection *sec)
7634{
7635  struct section_list *entry;
7636  static struct section_list *last_entry = NULL;
7637
7638  /* This is a short cut for the typical case where the sections are added
7639     to the sections_with_aarch64_elf_section_data list in forward order and
7640     then looked up here in backwards order.  This makes a real difference
7641     to the ld-srec/sec64k.exp linker test.  */
7642  entry = sections_with_aarch64_elf_section_data;
7643  if (last_entry != NULL)
7644    {
7645      if (last_entry->sec == sec)
7646	entry = last_entry;
7647      else if (last_entry->next != NULL && last_entry->next->sec == sec)
7648	entry = last_entry->next;
7649    }
7650
7651  for (; entry; entry = entry->next)
7652    if (entry->sec == sec)
7653      break;
7654
7655  if (entry)
7656    /* Record the entry prior to this one - it is the entry we are
7657       most likely to want to locate next time.  Also this way if we
7658       have been called from
7659       unrecord_section_with_aarch64_elf_section_data () we will not
7660       be caching a pointer that is about to be freed.  */
7661    last_entry = entry->prev;
7662
7663  return entry;
7664}
7665
7666static void
7667unrecord_section_with_aarch64_elf_section_data (asection *sec)
7668{
7669  struct section_list *entry;
7670
7671  entry = find_aarch64_elf_section_entry (sec);
7672
7673  if (entry)
7674    {
7675      if (entry->prev != NULL)
7676	entry->prev->next = entry->next;
7677      if (entry->next != NULL)
7678	entry->next->prev = entry->prev;
7679      if (entry == sections_with_aarch64_elf_section_data)
7680	sections_with_aarch64_elf_section_data = entry->next;
7681      free (entry);
7682    }
7683}
7684
7685
7686typedef struct
7687{
7688  void *finfo;
7689  struct bfd_link_info *info;
7690  asection *sec;
7691  int sec_shndx;
7692  int (*func) (void *, const char *, Elf_Internal_Sym *,
7693	       asection *, struct elf_link_hash_entry *);
7694} output_arch_syminfo;
7695
7696enum map_symbol_type
7697{
7698  AARCH64_MAP_INSN,
7699  AARCH64_MAP_DATA
7700};
7701
7702
7703/* Output a single mapping symbol.  */
7704
7705static bfd_boolean
7706elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
7707			      enum map_symbol_type type, bfd_vma offset)
7708{
7709  static const char *names[2] = { "$x", "$d" };
7710  Elf_Internal_Sym sym;
7711
7712  sym.st_value = (osi->sec->output_section->vma
7713		  + osi->sec->output_offset + offset);
7714  sym.st_size = 0;
7715  sym.st_other = 0;
7716  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7717  sym.st_shndx = osi->sec_shndx;
7718  return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
7719}
7720
7721/* Output a single local symbol for a generated stub.  */
7722
7723static bfd_boolean
7724elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
7725			       bfd_vma offset, bfd_vma size)
7726{
7727  Elf_Internal_Sym sym;
7728
7729  sym.st_value = (osi->sec->output_section->vma
7730		  + osi->sec->output_offset + offset);
7731  sym.st_size = size;
7732  sym.st_other = 0;
7733  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7734  sym.st_shndx = osi->sec_shndx;
7735  return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7736}
7737
7738static bfd_boolean
7739aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7740{
7741  struct elf_aarch64_stub_hash_entry *stub_entry;
7742  asection *stub_sec;
7743  bfd_vma addr;
7744  char *stub_name;
7745  output_arch_syminfo *osi;
7746
7747  /* Massage our args to the form they really have.  */
7748  stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
7749  osi = (output_arch_syminfo *) in_arg;
7750
7751  stub_sec = stub_entry->stub_sec;
7752
7753  /* Ensure this stub is attached to the current section being
7754     processed.  */
7755  if (stub_sec != osi->sec)
7756    return TRUE;
7757
7758  addr = (bfd_vma) stub_entry->stub_offset;
7759
7760  stub_name = stub_entry->output_name;
7761
7762  switch (stub_entry->stub_type)
7763    {
7764    case aarch64_stub_adrp_branch:
7765      if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7766					  sizeof (aarch64_adrp_branch_stub)))
7767	return FALSE;
7768      if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7769	return FALSE;
7770      break;
7771    case aarch64_stub_long_branch:
7772      if (!elfNN_aarch64_output_stub_sym
7773	  (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
7774	return FALSE;
7775      if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7776	return FALSE;
7777      if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
7778	return FALSE;
7779      break;
7780    case aarch64_stub_erratum_835769_veneer:
7781      if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7782					  sizeof (aarch64_erratum_835769_stub)))
7783	return FALSE;
7784      if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7785	return FALSE;
7786      break;
7787    case aarch64_stub_erratum_843419_veneer:
7788      if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7789					  sizeof (aarch64_erratum_843419_stub)))
7790	return FALSE;
7791      if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7792	return FALSE;
7793      break;
7794
7795    default:
7796      abort ();
7797    }
7798
7799  return TRUE;
7800}
7801
7802/* Output mapping symbols for linker generated sections.  */
7803
7804static bfd_boolean
7805elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
7806				      struct bfd_link_info *info,
7807				      void *finfo,
7808				      int (*func) (void *, const char *,
7809						   Elf_Internal_Sym *,
7810						   asection *,
7811						   struct elf_link_hash_entry
7812						   *))
7813{
7814  output_arch_syminfo osi;
7815  struct elf_aarch64_link_hash_table *htab;
7816
7817  htab = elf_aarch64_hash_table (info);
7818
7819  osi.finfo = finfo;
7820  osi.info = info;
7821  osi.func = func;
7822
7823  /* Long calls stubs.  */
7824  if (htab->stub_bfd && htab->stub_bfd->sections)
7825    {
7826      asection *stub_sec;
7827
7828      for (stub_sec = htab->stub_bfd->sections;
7829	   stub_sec != NULL; stub_sec = stub_sec->next)
7830	{
7831	  /* Ignore non-stub sections.  */
7832	  if (!strstr (stub_sec->name, STUB_SUFFIX))
7833	    continue;
7834
7835	  osi.sec = stub_sec;
7836
7837	  osi.sec_shndx = _bfd_elf_section_from_bfd_section
7838	    (output_bfd, osi.sec->output_section);
7839
7840	  /* The first instruction in a stub is always a branch.  */
7841	  if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
7842	    return FALSE;
7843
7844	  bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
7845			     &osi);
7846	}
7847    }
7848
7849  /* Finally, output mapping symbols for the PLT.  */
7850  if (!htab->root.splt || htab->root.splt->size == 0)
7851    return TRUE;
7852
7853  osi.sec_shndx = _bfd_elf_section_from_bfd_section
7854    (output_bfd, htab->root.splt->output_section);
7855  osi.sec = htab->root.splt;
7856
7857  elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
7858
7859  return TRUE;
7860
7861}
7862
7863/* Allocate target specific section data.  */
7864
7865static bfd_boolean
7866elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
7867{
7868  if (!sec->used_by_bfd)
7869    {
7870      _aarch64_elf_section_data *sdata;
7871      bfd_size_type amt = sizeof (*sdata);
7872
7873      sdata = bfd_zalloc (abfd, amt);
7874      if (sdata == NULL)
7875	return FALSE;
7876      sec->used_by_bfd = sdata;
7877    }
7878
7879  record_section_with_aarch64_elf_section_data (sec);
7880
7881  return _bfd_elf_new_section_hook (abfd, sec);
7882}
7883
7884
7885static void
7886unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
7887					asection *sec,
7888					void *ignore ATTRIBUTE_UNUSED)
7889{
7890  unrecord_section_with_aarch64_elf_section_data (sec);
7891}
7892
7893static bfd_boolean
7894elfNN_aarch64_close_and_cleanup (bfd *abfd)
7895{
7896  if (abfd->sections)
7897    bfd_map_over_sections (abfd,
7898			   unrecord_section_via_map_over_sections, NULL);
7899
7900  return _bfd_elf_close_and_cleanup (abfd);
7901}
7902
7903static bfd_boolean
7904elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
7905{
7906  if (abfd->sections)
7907    bfd_map_over_sections (abfd,
7908			   unrecord_section_via_map_over_sections, NULL);
7909
7910  return _bfd_free_cached_info (abfd);
7911}
7912
7913/* Create dynamic sections. This is different from the ARM backend in that
7914   the got, plt, gotplt and their relocation sections are all created in the
7915   standard part of the bfd elf backend.  */
7916
7917static bfd_boolean
7918elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
7919				       struct bfd_link_info *info)
7920{
7921  /* We need to create .got section.  */
7922  if (!aarch64_elf_create_got_section (dynobj, info))
7923    return FALSE;
7924
7925  return _bfd_elf_create_dynamic_sections (dynobj, info);
7926}
7927
7928
7929/* Allocate space in .plt, .got and associated reloc sections for
7930   dynamic relocs.  */
7931
7932static bfd_boolean
7933elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7934{
7935  struct bfd_link_info *info;
7936  struct elf_aarch64_link_hash_table *htab;
7937  struct elf_aarch64_link_hash_entry *eh;
7938  struct elf_dyn_relocs *p;
7939
7940  /* An example of a bfd_link_hash_indirect symbol is versioned
7941     symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
7942     -> __gxx_personality_v0(bfd_link_hash_defined)
7943
7944     There is no need to process bfd_link_hash_indirect symbols here
7945     because we will also be presented with the concrete instance of
7946     the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
7947     called to copy all relevant data from the generic to the concrete
7948     symbol instance.
7949   */
7950  if (h->root.type == bfd_link_hash_indirect)
7951    return TRUE;
7952
7953  if (h->root.type == bfd_link_hash_warning)
7954    h = (struct elf_link_hash_entry *) h->root.u.i.link;
7955
7956  info = (struct bfd_link_info *) inf;
7957  htab = elf_aarch64_hash_table (info);
7958
7959  /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
7960     here if it is defined and referenced in a non-shared object.  */
7961  if (h->type == STT_GNU_IFUNC
7962      && h->def_regular)
7963    return TRUE;
7964  else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
7965    {
7966      /* Make sure this symbol is output as a dynamic symbol.
7967         Undefined weak syms won't yet be marked as dynamic.  */
7968      if (h->dynindx == -1 && !h->forced_local)
7969	{
7970	  if (!bfd_elf_link_record_dynamic_symbol (info, h))
7971	    return FALSE;
7972	}
7973
7974      if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
7975	{
7976	  asection *s = htab->root.splt;
7977
7978	  /* If this is the first .plt entry, make room for the special
7979	     first entry.  */
7980	  if (s->size == 0)
7981	    s->size += htab->plt_header_size;
7982
7983	  h->plt.offset = s->size;
7984
7985	  /* If this symbol is not defined in a regular file, and we are
7986	     not generating a shared library, then set the symbol to this
7987	     location in the .plt.  This is required to make function
7988	     pointers compare as equal between the normal executable and
7989	     the shared library.  */
7990	  if (!bfd_link_pic (info) && !h->def_regular)
7991	    {
7992	      h->root.u.def.section = s;
7993	      h->root.u.def.value = h->plt.offset;
7994	    }
7995
7996	  /* Make room for this entry. For now we only create the
7997	     small model PLT entries. We later need to find a way
7998	     of relaxing into these from the large model PLT entries.  */
7999	  s->size += PLT_SMALL_ENTRY_SIZE;
8000
8001	  /* We also need to make an entry in the .got.plt section, which
8002	     will be placed in the .got section by the linker script.  */
8003	  htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8004
8005	  /* We also need to make an entry in the .rela.plt section.  */
8006	  htab->root.srelplt->size += RELOC_SIZE (htab);
8007
8008	  /* We need to ensure that all GOT entries that serve the PLT
8009	     are consecutive with the special GOT slots [0] [1] and
8010	     [2]. Any addtional relocations, such as
8011	     R_AARCH64_TLSDESC, must be placed after the PLT related
8012	     entries.  We abuse the reloc_count such that during
8013	     sizing we adjust reloc_count to indicate the number of
8014	     PLT related reserved entries.  In subsequent phases when
8015	     filling in the contents of the reloc entries, PLT related
8016	     entries are placed by computing their PLT index (0
8017	     .. reloc_count). While other none PLT relocs are placed
8018	     at the slot indicated by reloc_count and reloc_count is
8019	     updated.  */
8020
8021	  htab->root.srelplt->reloc_count++;
8022	}
8023      else
8024	{
8025	  h->plt.offset = (bfd_vma) - 1;
8026	  h->needs_plt = 0;
8027	}
8028    }
8029  else
8030    {
8031      h->plt.offset = (bfd_vma) - 1;
8032      h->needs_plt = 0;
8033    }
8034
8035  eh = (struct elf_aarch64_link_hash_entry *) h;
8036  eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8037
8038  if (h->got.refcount > 0)
8039    {
8040      bfd_boolean dyn;
8041      unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8042
8043      h->got.offset = (bfd_vma) - 1;
8044
8045      dyn = htab->root.dynamic_sections_created;
8046
8047      /* Make sure this symbol is output as a dynamic symbol.
8048         Undefined weak syms won't yet be marked as dynamic.  */
8049      if (dyn && h->dynindx == -1 && !h->forced_local)
8050	{
8051	  if (!bfd_elf_link_record_dynamic_symbol (info, h))
8052	    return FALSE;
8053	}
8054
8055      if (got_type == GOT_UNKNOWN)
8056	{
8057	}
8058      else if (got_type == GOT_NORMAL)
8059	{
8060	  h->got.offset = htab->root.sgot->size;
8061	  htab->root.sgot->size += GOT_ENTRY_SIZE;
8062	  if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8063	       || h->root.type != bfd_link_hash_undefweak)
8064	      && (bfd_link_pic (info)
8065		  || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8066	    {
8067	      htab->root.srelgot->size += RELOC_SIZE (htab);
8068	    }
8069	}
8070      else
8071	{
8072	  int indx;
8073	  if (got_type & GOT_TLSDESC_GD)
8074	    {
8075	      eh->tlsdesc_got_jump_table_offset =
8076		(htab->root.sgotplt->size
8077		 - aarch64_compute_jump_table_size (htab));
8078	      htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8079	      h->got.offset = (bfd_vma) - 2;
8080	    }
8081
8082	  if (got_type & GOT_TLS_GD)
8083	    {
8084	      h->got.offset = htab->root.sgot->size;
8085	      htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8086	    }
8087
8088	  if (got_type & GOT_TLS_IE)
8089	    {
8090	      h->got.offset = htab->root.sgot->size;
8091	      htab->root.sgot->size += GOT_ENTRY_SIZE;
8092	    }
8093
8094	  indx = h && h->dynindx != -1 ? h->dynindx : 0;
8095	  if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8096	       || h->root.type != bfd_link_hash_undefweak)
8097	      && (bfd_link_pic (info)
8098		  || indx != 0
8099		  || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8100	    {
8101	      if (got_type & GOT_TLSDESC_GD)
8102		{
8103		  htab->root.srelplt->size += RELOC_SIZE (htab);
8104		  /* Note reloc_count not incremented here!  We have
8105		     already adjusted reloc_count for this relocation
8106		     type.  */
8107
8108		  /* TLSDESC PLT is now needed, but not yet determined.  */
8109		  htab->tlsdesc_plt = (bfd_vma) - 1;
8110		}
8111
8112	      if (got_type & GOT_TLS_GD)
8113		htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8114
8115	      if (got_type & GOT_TLS_IE)
8116		htab->root.srelgot->size += RELOC_SIZE (htab);
8117	    }
8118	}
8119    }
8120  else
8121    {
8122      h->got.offset = (bfd_vma) - 1;
8123    }
8124
8125  if (eh->dyn_relocs == NULL)
8126    return TRUE;
8127
8128  /* In the shared -Bsymbolic case, discard space allocated for
8129     dynamic pc-relative relocs against symbols which turn out to be
8130     defined in regular objects.  For the normal shared case, discard
8131     space for pc-relative relocs that have become local due to symbol
8132     visibility changes.  */
8133
8134  if (bfd_link_pic (info))
8135    {
8136      /* Relocs that use pc_count are those that appear on a call
8137         insn, or certain REL relocs that can generated via assembly.
8138         We want calls to protected symbols to resolve directly to the
8139         function rather than going via the plt.  If people want
8140         function pointer comparisons to work as expected then they
8141         should avoid writing weird assembly.  */
8142      if (SYMBOL_CALLS_LOCAL (info, h))
8143	{
8144	  struct elf_dyn_relocs **pp;
8145
8146	  for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8147	    {
8148	      p->count -= p->pc_count;
8149	      p->pc_count = 0;
8150	      if (p->count == 0)
8151		*pp = p->next;
8152	      else
8153		pp = &p->next;
8154	    }
8155	}
8156
8157      /* Also discard relocs on undefined weak syms with non-default
8158         visibility.  */
8159      if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8160	{
8161	  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8162	    eh->dyn_relocs = NULL;
8163
8164	  /* Make sure undefined weak symbols are output as a dynamic
8165	     symbol in PIEs.  */
8166	  else if (h->dynindx == -1
8167		   && !h->forced_local
8168		   && !bfd_elf_link_record_dynamic_symbol (info, h))
8169	    return FALSE;
8170	}
8171
8172    }
8173  else if (ELIMINATE_COPY_RELOCS)
8174    {
8175      /* For the non-shared case, discard space for relocs against
8176         symbols which turn out to need copy relocs or are not
8177         dynamic.  */
8178
8179      if (!h->non_got_ref
8180	  && ((h->def_dynamic
8181	       && !h->def_regular)
8182	      || (htab->root.dynamic_sections_created
8183		  && (h->root.type == bfd_link_hash_undefweak
8184		      || h->root.type == bfd_link_hash_undefined))))
8185	{
8186	  /* Make sure this symbol is output as a dynamic symbol.
8187	     Undefined weak syms won't yet be marked as dynamic.  */
8188	  if (h->dynindx == -1
8189	      && !h->forced_local
8190	      && !bfd_elf_link_record_dynamic_symbol (info, h))
8191	    return FALSE;
8192
8193	  /* If that succeeded, we know we'll be keeping all the
8194	     relocs.  */
8195	  if (h->dynindx != -1)
8196	    goto keep;
8197	}
8198
8199      eh->dyn_relocs = NULL;
8200
8201    keep:;
8202    }
8203
8204  /* Finally, allocate space.  */
8205  for (p = eh->dyn_relocs; p != NULL; p = p->next)
8206    {
8207      asection *sreloc;
8208
8209      sreloc = elf_section_data (p->sec)->sreloc;
8210
8211      BFD_ASSERT (sreloc != NULL);
8212
8213      sreloc->size += p->count * RELOC_SIZE (htab);
8214    }
8215
8216  return TRUE;
8217}
8218
8219/* Allocate space in .plt, .got and associated reloc sections for
8220   ifunc dynamic relocs.  */
8221
8222static bfd_boolean
8223elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8224					void *inf)
8225{
8226  struct bfd_link_info *info;
8227  struct elf_aarch64_link_hash_table *htab;
8228  struct elf_aarch64_link_hash_entry *eh;
8229
8230  /* An example of a bfd_link_hash_indirect symbol is versioned
8231     symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8232     -> __gxx_personality_v0(bfd_link_hash_defined)
8233
8234     There is no need to process bfd_link_hash_indirect symbols here
8235     because we will also be presented with the concrete instance of
8236     the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8237     called to copy all relevant data from the generic to the concrete
8238     symbol instance.
8239   */
8240  if (h->root.type == bfd_link_hash_indirect)
8241    return TRUE;
8242
8243  if (h->root.type == bfd_link_hash_warning)
8244    h = (struct elf_link_hash_entry *) h->root.u.i.link;
8245
8246  info = (struct bfd_link_info *) inf;
8247  htab = elf_aarch64_hash_table (info);
8248
8249  eh = (struct elf_aarch64_link_hash_entry *) h;
8250
8251  /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8252     here if it is defined and referenced in a non-shared object.  */
8253  if (h->type == STT_GNU_IFUNC
8254      && h->def_regular)
8255    return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8256					       &eh->dyn_relocs,
8257					       NULL,
8258					       htab->plt_entry_size,
8259					       htab->plt_header_size,
8260					       GOT_ENTRY_SIZE,
8261					       FALSE);
8262  return TRUE;
8263}
8264
8265/* Allocate space in .plt, .got and associated reloc sections for
8266   local dynamic relocs.  */
8267
8268static bfd_boolean
8269elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
8270{
8271  struct elf_link_hash_entry *h
8272    = (struct elf_link_hash_entry *) *slot;
8273
8274  if (h->type != STT_GNU_IFUNC
8275      || !h->def_regular
8276      || !h->ref_regular
8277      || !h->forced_local
8278      || h->root.type != bfd_link_hash_defined)
8279    abort ();
8280
8281  return elfNN_aarch64_allocate_dynrelocs (h, inf);
8282}
8283
8284/* Allocate space in .plt, .got and associated reloc sections for
8285   local ifunc dynamic relocs.  */
8286
8287static bfd_boolean
8288elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8289{
8290  struct elf_link_hash_entry *h
8291    = (struct elf_link_hash_entry *) *slot;
8292
8293  if (h->type != STT_GNU_IFUNC
8294      || !h->def_regular
8295      || !h->ref_regular
8296      || !h->forced_local
8297      || h->root.type != bfd_link_hash_defined)
8298    abort ();
8299
8300  return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8301}
8302
8303/* Find any dynamic relocs that apply to read-only sections.  */
8304
8305static bfd_boolean
8306aarch64_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
8307{
8308  struct elf_aarch64_link_hash_entry * eh;
8309  struct elf_dyn_relocs * p;
8310
8311  eh = (struct elf_aarch64_link_hash_entry *) h;
8312  for (p = eh->dyn_relocs; p != NULL; p = p->next)
8313    {
8314      asection *s = p->sec;
8315
8316      if (s != NULL && (s->flags & SEC_READONLY) != 0)
8317	{
8318	  struct bfd_link_info *info = (struct bfd_link_info *) inf;
8319
8320	  info->flags |= DF_TEXTREL;
8321
8322	  /* Not an error, just cut short the traversal.  */
8323	  return FALSE;
8324	}
8325    }
8326  return TRUE;
8327}
8328
8329/* This is the most important function of all . Innocuosly named
8330   though !  */
8331static bfd_boolean
8332elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8333				     struct bfd_link_info *info)
8334{
8335  struct elf_aarch64_link_hash_table *htab;
8336  bfd *dynobj;
8337  asection *s;
8338  bfd_boolean relocs;
8339  bfd *ibfd;
8340
8341  htab = elf_aarch64_hash_table ((info));
8342  dynobj = htab->root.dynobj;
8343
8344  BFD_ASSERT (dynobj != NULL);
8345
8346  if (htab->root.dynamic_sections_created)
8347    {
8348      if (bfd_link_executable (info) && !info->nointerp)
8349	{
8350	  s = bfd_get_linker_section (dynobj, ".interp");
8351	  if (s == NULL)
8352	    abort ();
8353	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8354	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8355	}
8356    }
8357
8358  /* Set up .got offsets for local syms, and space for local dynamic
8359     relocs.  */
8360  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8361    {
8362      struct elf_aarch64_local_symbol *locals = NULL;
8363      Elf_Internal_Shdr *symtab_hdr;
8364      asection *srel;
8365      unsigned int i;
8366
8367      if (!is_aarch64_elf (ibfd))
8368	continue;
8369
8370      for (s = ibfd->sections; s != NULL; s = s->next)
8371	{
8372	  struct elf_dyn_relocs *p;
8373
8374	  for (p = (struct elf_dyn_relocs *)
8375	       (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8376	    {
8377	      if (!bfd_is_abs_section (p->sec)
8378		  && bfd_is_abs_section (p->sec->output_section))
8379		{
8380		  /* Input section has been discarded, either because
8381		     it is a copy of a linkonce section or due to
8382		     linker script /DISCARD/, so we'll be discarding
8383		     the relocs too.  */
8384		}
8385	      else if (p->count != 0)
8386		{
8387		  srel = elf_section_data (p->sec)->sreloc;
8388		  srel->size += p->count * RELOC_SIZE (htab);
8389		  if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8390		    info->flags |= DF_TEXTREL;
8391		}
8392	    }
8393	}
8394
8395      locals = elf_aarch64_locals (ibfd);
8396      if (!locals)
8397	continue;
8398
8399      symtab_hdr = &elf_symtab_hdr (ibfd);
8400      srel = htab->root.srelgot;
8401      for (i = 0; i < symtab_hdr->sh_info; i++)
8402	{
8403	  locals[i].got_offset = (bfd_vma) - 1;
8404	  locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8405	  if (locals[i].got_refcount > 0)
8406	    {
8407	      unsigned got_type = locals[i].got_type;
8408	      if (got_type & GOT_TLSDESC_GD)
8409		{
8410		  locals[i].tlsdesc_got_jump_table_offset =
8411		    (htab->root.sgotplt->size
8412		     - aarch64_compute_jump_table_size (htab));
8413		  htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8414		  locals[i].got_offset = (bfd_vma) - 2;
8415		}
8416
8417	      if (got_type & GOT_TLS_GD)
8418		{
8419		  locals[i].got_offset = htab->root.sgot->size;
8420		  htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8421		}
8422
8423	      if (got_type & GOT_TLS_IE
8424		  || got_type & GOT_NORMAL)
8425		{
8426		  locals[i].got_offset = htab->root.sgot->size;
8427		  htab->root.sgot->size += GOT_ENTRY_SIZE;
8428		}
8429
8430	      if (got_type == GOT_UNKNOWN)
8431		{
8432		}
8433
8434	      if (bfd_link_pic (info))
8435		{
8436		  if (got_type & GOT_TLSDESC_GD)
8437		    {
8438		      htab->root.srelplt->size += RELOC_SIZE (htab);
8439		      /* Note RELOC_COUNT not incremented here! */
8440		      htab->tlsdesc_plt = (bfd_vma) - 1;
8441		    }
8442
8443		  if (got_type & GOT_TLS_GD)
8444		    htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8445
8446		  if (got_type & GOT_TLS_IE
8447		      || got_type & GOT_NORMAL)
8448		    htab->root.srelgot->size += RELOC_SIZE (htab);
8449		}
8450	    }
8451	  else
8452	    {
8453	      locals[i].got_refcount = (bfd_vma) - 1;
8454	    }
8455	}
8456    }
8457
8458
8459  /* Allocate global sym .plt and .got entries, and space for global
8460     sym dynamic relocs.  */
8461  elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8462			  info);
8463
8464  /* Allocate global ifunc sym .plt and .got entries, and space for global
8465     ifunc sym dynamic relocs.  */
8466  elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8467			  info);
8468
8469  /* Allocate .plt and .got entries, and space for local symbols.  */
8470  htab_traverse (htab->loc_hash_table,
8471		 elfNN_aarch64_allocate_local_dynrelocs,
8472		 info);
8473
8474  /* Allocate .plt and .got entries, and space for local ifunc symbols.  */
8475  htab_traverse (htab->loc_hash_table,
8476		 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8477		 info);
8478
8479  /* For every jump slot reserved in the sgotplt, reloc_count is
8480     incremented.  However, when we reserve space for TLS descriptors,
8481     it's not incremented, so in order to compute the space reserved
8482     for them, it suffices to multiply the reloc count by the jump
8483     slot size.  */
8484
8485  if (htab->root.srelplt)
8486    htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
8487
8488  if (htab->tlsdesc_plt)
8489    {
8490      if (htab->root.splt->size == 0)
8491	htab->root.splt->size += PLT_ENTRY_SIZE;
8492
8493      htab->tlsdesc_plt = htab->root.splt->size;
8494      htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8495
8496      /* If we're not using lazy TLS relocations, don't generate the
8497         GOT entry required.  */
8498      if (!(info->flags & DF_BIND_NOW))
8499	{
8500	  htab->dt_tlsdesc_got = htab->root.sgot->size;
8501	  htab->root.sgot->size += GOT_ENTRY_SIZE;
8502	}
8503    }
8504
8505  /* Init mapping symbols information to use later to distingush between
8506     code and data while scanning for errata.  */
8507  if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
8508    for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8509      {
8510	if (!is_aarch64_elf (ibfd))
8511	  continue;
8512	bfd_elfNN_aarch64_init_maps (ibfd);
8513      }
8514
8515  /* We now have determined the sizes of the various dynamic sections.
8516     Allocate memory for them.  */
8517  relocs = FALSE;
8518  for (s = dynobj->sections; s != NULL; s = s->next)
8519    {
8520      if ((s->flags & SEC_LINKER_CREATED) == 0)
8521	continue;
8522
8523      if (s == htab->root.splt
8524	  || s == htab->root.sgot
8525	  || s == htab->root.sgotplt
8526	  || s == htab->root.iplt
8527	  || s == htab->root.igotplt
8528	  || s == htab->root.sdynbss
8529	  || s == htab->root.sdynrelro)
8530	{
8531	  /* Strip this section if we don't need it; see the
8532	     comment below.  */
8533	}
8534      else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8535	{
8536	  if (s->size != 0 && s != htab->root.srelplt)
8537	    relocs = TRUE;
8538
8539	  /* We use the reloc_count field as a counter if we need
8540	     to copy relocs into the output file.  */
8541	  if (s != htab->root.srelplt)
8542	    s->reloc_count = 0;
8543	}
8544      else
8545	{
8546	  /* It's not one of our sections, so don't allocate space.  */
8547	  continue;
8548	}
8549
8550      if (s->size == 0)
8551	{
8552	  /* If we don't need this section, strip it from the
8553	     output file.  This is mostly to handle .rela.bss and
8554	     .rela.plt.  We must create both sections in
8555	     create_dynamic_sections, because they must be created
8556	     before the linker maps input sections to output
8557	     sections.  The linker does that before
8558	     adjust_dynamic_symbol is called, and it is that
8559	     function which decides whether anything needs to go
8560	     into these sections.  */
8561
8562	  s->flags |= SEC_EXCLUDE;
8563	  continue;
8564	}
8565
8566      if ((s->flags & SEC_HAS_CONTENTS) == 0)
8567	continue;
8568
8569      /* Allocate memory for the section contents.  We use bfd_zalloc
8570         here in case unused entries are not reclaimed before the
8571         section's contents are written out.  This should not happen,
8572         but this way if it does, we get a R_AARCH64_NONE reloc instead
8573         of garbage.  */
8574      s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8575      if (s->contents == NULL)
8576	return FALSE;
8577    }
8578
8579  if (htab->root.dynamic_sections_created)
8580    {
8581      /* Add some entries to the .dynamic section.  We fill in the
8582         values later, in elfNN_aarch64_finish_dynamic_sections, but we
8583         must add the entries now so that we get the correct size for
8584         the .dynamic section.  The DT_DEBUG entry is filled in by the
8585         dynamic linker and used by the debugger.  */
8586#define add_dynamic_entry(TAG, VAL)			\
8587      _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8588
8589      if (bfd_link_executable (info))
8590	{
8591	  if (!add_dynamic_entry (DT_DEBUG, 0))
8592	    return FALSE;
8593	}
8594
8595      if (htab->root.splt->size != 0)
8596	{
8597	  if (!add_dynamic_entry (DT_PLTGOT, 0)
8598	      || !add_dynamic_entry (DT_PLTRELSZ, 0)
8599	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8600	      || !add_dynamic_entry (DT_JMPREL, 0))
8601	    return FALSE;
8602
8603	  if (htab->tlsdesc_plt
8604	      && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8605		  || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8606	    return FALSE;
8607	}
8608
8609      if (relocs)
8610	{
8611	  if (!add_dynamic_entry (DT_RELA, 0)
8612	      || !add_dynamic_entry (DT_RELASZ, 0)
8613	      || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8614	    return FALSE;
8615
8616	  /* If any dynamic relocs apply to a read-only section,
8617	     then we need a DT_TEXTREL entry.  */
8618	  if ((info->flags & DF_TEXTREL) == 0)
8619	    elf_link_hash_traverse (& htab->root, aarch64_readonly_dynrelocs,
8620				    info);
8621
8622	  if ((info->flags & DF_TEXTREL) != 0)
8623	    {
8624	      if (!add_dynamic_entry (DT_TEXTREL, 0))
8625		return FALSE;
8626	    }
8627	}
8628    }
8629#undef add_dynamic_entry
8630
8631  return TRUE;
8632}
8633
8634static inline void
8635elf_aarch64_update_plt_entry (bfd *output_bfd,
8636			      bfd_reloc_code_real_type r_type,
8637			      bfd_byte *plt_entry, bfd_vma value)
8638{
8639  reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8640
8641  _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
8642}
8643
8644static void
8645elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
8646				       struct elf_aarch64_link_hash_table
8647				       *htab, bfd *output_bfd,
8648				       struct bfd_link_info *info)
8649{
8650  bfd_byte *plt_entry;
8651  bfd_vma plt_index;
8652  bfd_vma got_offset;
8653  bfd_vma gotplt_entry_address;
8654  bfd_vma plt_entry_address;
8655  Elf_Internal_Rela rela;
8656  bfd_byte *loc;
8657  asection *plt, *gotplt, *relplt;
8658
8659  /* When building a static executable, use .iplt, .igot.plt and
8660     .rela.iplt sections for STT_GNU_IFUNC symbols.  */
8661  if (htab->root.splt != NULL)
8662    {
8663      plt = htab->root.splt;
8664      gotplt = htab->root.sgotplt;
8665      relplt = htab->root.srelplt;
8666    }
8667  else
8668    {
8669      plt = htab->root.iplt;
8670      gotplt = htab->root.igotplt;
8671      relplt = htab->root.irelplt;
8672    }
8673
8674  /* Get the index in the procedure linkage table which
8675     corresponds to this symbol.  This is the index of this symbol
8676     in all the symbols for which we are making plt entries.  The
8677     first entry in the procedure linkage table is reserved.
8678
8679     Get the offset into the .got table of the entry that
8680     corresponds to this function.	Each .got entry is GOT_ENTRY_SIZE
8681     bytes. The first three are reserved for the dynamic linker.
8682
8683     For static executables, we don't reserve anything.  */
8684
8685  if (plt == htab->root.splt)
8686    {
8687      plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
8688      got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
8689    }
8690  else
8691    {
8692      plt_index = h->plt.offset / htab->plt_entry_size;
8693      got_offset = plt_index * GOT_ENTRY_SIZE;
8694    }
8695
8696  plt_entry = plt->contents + h->plt.offset;
8697  plt_entry_address = plt->output_section->vma
8698    + plt->output_offset + h->plt.offset;
8699  gotplt_entry_address = gotplt->output_section->vma +
8700    gotplt->output_offset + got_offset;
8701
8702  /* Copy in the boiler-plate for the PLTn entry.  */
8703  memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
8704
8705  /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8706     ADRP:   ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8707  elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8708				plt_entry,
8709				PG (gotplt_entry_address) -
8710				PG (plt_entry_address));
8711
8712  /* Fill in the lo12 bits for the load from the pltgot.  */
8713  elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8714				plt_entry + 4,
8715				PG_OFFSET (gotplt_entry_address));
8716
8717  /* Fill in the lo12 bits for the add from the pltgot entry.  */
8718  elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8719				plt_entry + 8,
8720				PG_OFFSET (gotplt_entry_address));
8721
8722  /* All the GOTPLT Entries are essentially initialized to PLT0.  */
8723  bfd_put_NN (output_bfd,
8724	      plt->output_section->vma + plt->output_offset,
8725	      gotplt->contents + got_offset);
8726
8727  rela.r_offset = gotplt_entry_address;
8728
8729  if (h->dynindx == -1
8730      || ((bfd_link_executable (info)
8731	   || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8732	  && h->def_regular
8733	  && h->type == STT_GNU_IFUNC))
8734    {
8735      /* If an STT_GNU_IFUNC symbol is locally defined, generate
8736	 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT.  */
8737      rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
8738      rela.r_addend = (h->root.u.def.value
8739		       + h->root.u.def.section->output_section->vma
8740		       + h->root.u.def.section->output_offset);
8741    }
8742  else
8743    {
8744      /* Fill in the entry in the .rela.plt section.  */
8745      rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
8746      rela.r_addend = 0;
8747    }
8748
8749  /* Compute the relocation entry to used based on PLT index and do
8750     not adjust reloc_count. The reloc_count has already been adjusted
8751     to account for this entry.  */
8752  loc = relplt->contents + plt_index * RELOC_SIZE (htab);
8753  bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8754}
8755
8756/* Size sections even though they're not dynamic.  We use it to setup
8757   _TLS_MODULE_BASE_, if needed.  */
8758
8759static bfd_boolean
8760elfNN_aarch64_always_size_sections (bfd *output_bfd,
8761				    struct bfd_link_info *info)
8762{
8763  asection *tls_sec;
8764
8765  if (bfd_link_relocatable (info))
8766    return TRUE;
8767
8768  tls_sec = elf_hash_table (info)->tls_sec;
8769
8770  if (tls_sec)
8771    {
8772      struct elf_link_hash_entry *tlsbase;
8773
8774      tlsbase = elf_link_hash_lookup (elf_hash_table (info),
8775				      "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
8776
8777      if (tlsbase)
8778	{
8779	  struct bfd_link_hash_entry *h = NULL;
8780	  const struct elf_backend_data *bed =
8781	    get_elf_backend_data (output_bfd);
8782
8783	  if (!(_bfd_generic_link_add_one_symbol
8784		(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
8785		 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
8786	    return FALSE;
8787
8788	  tlsbase->type = STT_TLS;
8789	  tlsbase = (struct elf_link_hash_entry *) h;
8790	  tlsbase->def_regular = 1;
8791	  tlsbase->other = STV_HIDDEN;
8792	  (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
8793	}
8794    }
8795
8796  return TRUE;
8797}
8798
8799/* Finish up dynamic symbol handling.  We set the contents of various
8800   dynamic sections here.  */
8801static bfd_boolean
8802elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
8803				     struct bfd_link_info *info,
8804				     struct elf_link_hash_entry *h,
8805				     Elf_Internal_Sym *sym)
8806{
8807  struct elf_aarch64_link_hash_table *htab;
8808  htab = elf_aarch64_hash_table (info);
8809
8810  if (h->plt.offset != (bfd_vma) - 1)
8811    {
8812      asection *plt, *gotplt, *relplt;
8813
8814      /* This symbol has an entry in the procedure linkage table.  Set
8815         it up.  */
8816
8817      /* When building a static executable, use .iplt, .igot.plt and
8818	 .rela.iplt sections for STT_GNU_IFUNC symbols.  */
8819      if (htab->root.splt != NULL)
8820	{
8821	  plt = htab->root.splt;
8822	  gotplt = htab->root.sgotplt;
8823	  relplt = htab->root.srelplt;
8824	}
8825      else
8826	{
8827	  plt = htab->root.iplt;
8828	  gotplt = htab->root.igotplt;
8829	  relplt = htab->root.irelplt;
8830	}
8831
8832      /* This symbol has an entry in the procedure linkage table.  Set
8833	 it up.	 */
8834      if ((h->dynindx == -1
8835	   && !((h->forced_local || bfd_link_executable (info))
8836		&& h->def_regular
8837		&& h->type == STT_GNU_IFUNC))
8838	  || plt == NULL
8839	  || gotplt == NULL
8840	  || relplt == NULL)
8841	abort ();
8842
8843      elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
8844      if (!h->def_regular)
8845	{
8846	  /* Mark the symbol as undefined, rather than as defined in
8847	     the .plt section.  */
8848	  sym->st_shndx = SHN_UNDEF;
8849	  /* If the symbol is weak we need to clear the value.
8850	     Otherwise, the PLT entry would provide a definition for
8851	     the symbol even if the symbol wasn't defined anywhere,
8852	     and so the symbol would never be NULL.  Leave the value if
8853	     there were any relocations where pointer equality matters
8854	     (this is a clue for the dynamic linker, to make function
8855	     pointer comparisons work between an application and shared
8856	     library).  */
8857	  if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
8858	    sym->st_value = 0;
8859	}
8860    }
8861
8862  if (h->got.offset != (bfd_vma) - 1
8863      && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
8864    {
8865      Elf_Internal_Rela rela;
8866      bfd_byte *loc;
8867
8868      /* This symbol has an entry in the global offset table.  Set it
8869         up.  */
8870      if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
8871	abort ();
8872
8873      rela.r_offset = (htab->root.sgot->output_section->vma
8874		       + htab->root.sgot->output_offset
8875		       + (h->got.offset & ~(bfd_vma) 1));
8876
8877      if (h->def_regular
8878	  && h->type == STT_GNU_IFUNC)
8879	{
8880	  if (bfd_link_pic (info))
8881	    {
8882	      /* Generate R_AARCH64_GLOB_DAT.  */
8883	      goto do_glob_dat;
8884	    }
8885	  else
8886	    {
8887	      asection *plt;
8888
8889	      if (!h->pointer_equality_needed)
8890		abort ();
8891
8892	      /* For non-shared object, we can't use .got.plt, which
8893		 contains the real function address if we need pointer
8894		 equality.  We load the GOT entry with the PLT entry.  */
8895	      plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
8896	      bfd_put_NN (output_bfd, (plt->output_section->vma
8897				       + plt->output_offset
8898				       + h->plt.offset),
8899			  htab->root.sgot->contents
8900			  + (h->got.offset & ~(bfd_vma) 1));
8901	      return TRUE;
8902	    }
8903	}
8904      else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
8905	{
8906	  if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
8907	    return FALSE;
8908
8909	  BFD_ASSERT ((h->got.offset & 1) != 0);
8910	  rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
8911	  rela.r_addend = (h->root.u.def.value
8912			   + h->root.u.def.section->output_section->vma
8913			   + h->root.u.def.section->output_offset);
8914	}
8915      else
8916	{
8917do_glob_dat:
8918	  BFD_ASSERT ((h->got.offset & 1) == 0);
8919	  bfd_put_NN (output_bfd, (bfd_vma) 0,
8920		      htab->root.sgot->contents + h->got.offset);
8921	  rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
8922	  rela.r_addend = 0;
8923	}
8924
8925      loc = htab->root.srelgot->contents;
8926      loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
8927      bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8928    }
8929
8930  if (h->needs_copy)
8931    {
8932      Elf_Internal_Rela rela;
8933      asection *s;
8934      bfd_byte *loc;
8935
8936      /* This symbol needs a copy reloc.  Set it up.  */
8937
8938      if (h->dynindx == -1
8939	  || (h->root.type != bfd_link_hash_defined
8940	      && h->root.type != bfd_link_hash_defweak)
8941	  || htab->root.srelbss == NULL)
8942	abort ();
8943
8944      rela.r_offset = (h->root.u.def.value
8945		       + h->root.u.def.section->output_section->vma
8946		       + h->root.u.def.section->output_offset);
8947      rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
8948      rela.r_addend = 0;
8949      if (h->root.u.def.section == htab->root.sdynrelro)
8950	s = htab->root.sreldynrelro;
8951      else
8952	s = htab->root.srelbss;
8953      loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
8954      bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8955    }
8956
8957  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  SYM may
8958     be NULL for local symbols.  */
8959  if (sym != NULL
8960      && (h == elf_hash_table (info)->hdynamic
8961	  || h == elf_hash_table (info)->hgot))
8962    sym->st_shndx = SHN_ABS;
8963
8964  return TRUE;
8965}
8966
8967/* Finish up local dynamic symbol handling.  We set the contents of
8968   various dynamic sections here.  */
8969
8970static bfd_boolean
8971elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
8972{
8973  struct elf_link_hash_entry *h
8974    = (struct elf_link_hash_entry *) *slot;
8975  struct bfd_link_info *info
8976    = (struct bfd_link_info *) inf;
8977
8978  return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
8979					      info, h, NULL);
8980}
8981
8982static void
8983elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
8984				     struct elf_aarch64_link_hash_table
8985				     *htab)
8986{
8987  /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
8988     small and large plts and at the minute just generates
8989     the small PLT.  */
8990
8991  /* PLT0 of the small PLT looks like this in ELF64 -
8992     stp x16, x30, [sp, #-16]!		// Save the reloc and lr on stack.
8993     adrp x16, PLT_GOT + 16		// Get the page base of the GOTPLT
8994     ldr  x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
8995					// symbol resolver
8996     add  x16, x16, #:lo12:PLT_GOT+16   // Load the lo12 bits of the
8997					// GOTPLT entry for this.
8998     br   x17
8999     PLT0 will be slightly different in ELF32 due to different got entry
9000     size.
9001   */
9002  bfd_vma plt_got_2nd_ent;	/* Address of GOT[2].  */
9003  bfd_vma plt_base;
9004
9005
9006  memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
9007	  PLT_ENTRY_SIZE);
9008  elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9009    PLT_ENTRY_SIZE;
9010
9011  plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9012		  + htab->root.sgotplt->output_offset
9013		  + GOT_ENTRY_SIZE * 2);
9014
9015  plt_base = htab->root.splt->output_section->vma +
9016    htab->root.splt->output_offset;
9017
9018  /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9019     ADRP:   ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9020  elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9021				htab->root.splt->contents + 4,
9022				PG (plt_got_2nd_ent) - PG (plt_base + 4));
9023
9024  elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9025				htab->root.splt->contents + 8,
9026				PG_OFFSET (plt_got_2nd_ent));
9027
9028  elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9029				htab->root.splt->contents + 12,
9030				PG_OFFSET (plt_got_2nd_ent));
9031}
9032
9033static bfd_boolean
9034elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9035				       struct bfd_link_info *info)
9036{
9037  struct elf_aarch64_link_hash_table *htab;
9038  bfd *dynobj;
9039  asection *sdyn;
9040
9041  htab = elf_aarch64_hash_table (info);
9042  dynobj = htab->root.dynobj;
9043  sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9044
9045  if (htab->root.dynamic_sections_created)
9046    {
9047      ElfNN_External_Dyn *dyncon, *dynconend;
9048
9049      if (sdyn == NULL || htab->root.sgot == NULL)
9050	abort ();
9051
9052      dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9053      dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9054      for (; dyncon < dynconend; dyncon++)
9055	{
9056	  Elf_Internal_Dyn dyn;
9057	  asection *s;
9058
9059	  bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9060
9061	  switch (dyn.d_tag)
9062	    {
9063	    default:
9064	      continue;
9065
9066	    case DT_PLTGOT:
9067	      s = htab->root.sgotplt;
9068	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9069	      break;
9070
9071	    case DT_JMPREL:
9072	      s = htab->root.srelplt;
9073	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9074	      break;
9075
9076	    case DT_PLTRELSZ:
9077	      s = htab->root.srelplt;
9078	      dyn.d_un.d_val = s->size;
9079	      break;
9080
9081	    case DT_TLSDESC_PLT:
9082	      s = htab->root.splt;
9083	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9084		+ htab->tlsdesc_plt;
9085	      break;
9086
9087	    case DT_TLSDESC_GOT:
9088	      s = htab->root.sgot;
9089	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9090		+ htab->dt_tlsdesc_got;
9091	      break;
9092	    }
9093
9094	  bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9095	}
9096
9097    }
9098
9099  /* Fill in the special first entry in the procedure linkage table.  */
9100  if (htab->root.splt && htab->root.splt->size > 0)
9101    {
9102      elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9103
9104      elf_section_data (htab->root.splt->output_section)->
9105	this_hdr.sh_entsize = htab->plt_entry_size;
9106
9107
9108      if (htab->tlsdesc_plt)
9109	{
9110	  bfd_put_NN (output_bfd, (bfd_vma) 0,
9111		      htab->root.sgot->contents + htab->dt_tlsdesc_got);
9112
9113	  memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9114		  elfNN_aarch64_tlsdesc_small_plt_entry,
9115		  sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
9116
9117	  {
9118	    bfd_vma adrp1_addr =
9119	      htab->root.splt->output_section->vma
9120	      + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9121
9122	    bfd_vma adrp2_addr = adrp1_addr + 4;
9123
9124	    bfd_vma got_addr =
9125	      htab->root.sgot->output_section->vma
9126	      + htab->root.sgot->output_offset;
9127
9128	    bfd_vma pltgot_addr =
9129	      htab->root.sgotplt->output_section->vma
9130	      + htab->root.sgotplt->output_offset;
9131
9132	    bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9133
9134	    bfd_byte *plt_entry =
9135	      htab->root.splt->contents + htab->tlsdesc_plt;
9136
9137	    /* adrp x2, DT_TLSDESC_GOT */
9138	    elf_aarch64_update_plt_entry (output_bfd,
9139					  BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9140					  plt_entry + 4,
9141					  (PG (dt_tlsdesc_got)
9142					   - PG (adrp1_addr)));
9143
9144	    /* adrp x3, 0 */
9145	    elf_aarch64_update_plt_entry (output_bfd,
9146					  BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9147					  plt_entry + 8,
9148					  (PG (pltgot_addr)
9149					   - PG (adrp2_addr)));
9150
9151	    /* ldr x2, [x2, #0] */
9152	    elf_aarch64_update_plt_entry (output_bfd,
9153					  BFD_RELOC_AARCH64_LDSTNN_LO12,
9154					  plt_entry + 12,
9155					  PG_OFFSET (dt_tlsdesc_got));
9156
9157	    /* add x3, x3, 0 */
9158	    elf_aarch64_update_plt_entry (output_bfd,
9159					  BFD_RELOC_AARCH64_ADD_LO12,
9160					  plt_entry + 16,
9161					  PG_OFFSET (pltgot_addr));
9162	  }
9163	}
9164    }
9165
9166  if (htab->root.sgotplt)
9167    {
9168      if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9169	{
9170	  _bfd_error_handler
9171	    (_("discarded output section: `%A'"), htab->root.sgotplt);
9172	  return FALSE;
9173	}
9174
9175      /* Fill in the first three entries in the global offset table.  */
9176      if (htab->root.sgotplt->size > 0)
9177	{
9178	  bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9179
9180	  /* Write GOT[1] and GOT[2], needed for the dynamic linker.  */
9181	  bfd_put_NN (output_bfd,
9182		      (bfd_vma) 0,
9183		      htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9184	  bfd_put_NN (output_bfd,
9185		      (bfd_vma) 0,
9186		      htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9187	}
9188
9189      if (htab->root.sgot)
9190	{
9191	  if (htab->root.sgot->size > 0)
9192	    {
9193	      bfd_vma addr =
9194		sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9195	      bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9196	    }
9197	}
9198
9199      elf_section_data (htab->root.sgotplt->output_section)->
9200	this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9201    }
9202
9203  if (htab->root.sgot && htab->root.sgot->size > 0)
9204    elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9205      = GOT_ENTRY_SIZE;
9206
9207  /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols.  */
9208  htab_traverse (htab->loc_hash_table,
9209		 elfNN_aarch64_finish_local_dynamic_symbol,
9210		 info);
9211
9212  return TRUE;
9213}
9214
9215/* Return address for Ith PLT stub in section PLT, for relocation REL
9216   or (bfd_vma) -1 if it should not be included.  */
9217
9218static bfd_vma
9219elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9220			   const arelent *rel ATTRIBUTE_UNUSED)
9221{
9222  return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
9223}
9224
9225/* Returns TRUE if NAME is an AArch64 mapping symbol.
9226   The ARM ELF standard defines $x (for A64 code) and $d (for data).
9227   It also allows a period initiated suffix to be added to the symbol, ie:
9228   "$[adtx]\.[:sym_char]+".  */
9229
9230static bfd_boolean
9231is_aarch64_mapping_symbol (const char * name)
9232{
9233  return name != NULL /* Paranoia.  */
9234    && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9235			 the mapping symbols could have acquired a prefix.
9236			 We do not support this here, since such symbols no
9237			 longer conform to the ARM ELF ABI.  */
9238    && (name[1] == 'd' || name[1] == 'x')
9239    && (name[2] == 0 || name[2] == '.');
9240  /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9241     any characters that follow the period are legal characters for the body
9242     of a symbol's name.  For now we just assume that this is the case.  */
9243}
9244
9245/* Make sure that mapping symbols in object files are not removed via the
9246   "strip --strip-unneeded" tool.  These symbols might needed in order to
9247   correctly generate linked files.  Once an object file has been linked,
9248   it should be safe to remove them.  */
9249
9250static void
9251elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9252{
9253  if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9254      && sym->section != bfd_abs_section_ptr
9255      && is_aarch64_mapping_symbol (sym->name))
9256    sym->flags |= BSF_KEEP;
9257}
9258
9259
9260/* We use this so we can override certain functions
9261   (though currently we don't).  */
9262
9263const struct elf_size_info elfNN_aarch64_size_info =
9264{
9265  sizeof (ElfNN_External_Ehdr),
9266  sizeof (ElfNN_External_Phdr),
9267  sizeof (ElfNN_External_Shdr),
9268  sizeof (ElfNN_External_Rel),
9269  sizeof (ElfNN_External_Rela),
9270  sizeof (ElfNN_External_Sym),
9271  sizeof (ElfNN_External_Dyn),
9272  sizeof (Elf_External_Note),
9273  4,				/* Hash table entry size.  */
9274  1,				/* Internal relocs per external relocs.  */
9275  ARCH_SIZE,			/* Arch size.  */
9276  LOG_FILE_ALIGN,		/* Log_file_align.  */
9277  ELFCLASSNN, EV_CURRENT,
9278  bfd_elfNN_write_out_phdrs,
9279  bfd_elfNN_write_shdrs_and_ehdr,
9280  bfd_elfNN_checksum_contents,
9281  bfd_elfNN_write_relocs,
9282  bfd_elfNN_swap_symbol_in,
9283  bfd_elfNN_swap_symbol_out,
9284  bfd_elfNN_slurp_reloc_table,
9285  bfd_elfNN_slurp_symbol_table,
9286  bfd_elfNN_swap_dyn_in,
9287  bfd_elfNN_swap_dyn_out,
9288  bfd_elfNN_swap_reloc_in,
9289  bfd_elfNN_swap_reloc_out,
9290  bfd_elfNN_swap_reloca_in,
9291  bfd_elfNN_swap_reloca_out
9292};
9293
9294#define ELF_ARCH			bfd_arch_aarch64
9295#define ELF_MACHINE_CODE		EM_AARCH64
9296#define ELF_MAXPAGESIZE			0x10000
9297#define ELF_MINPAGESIZE			0x1000
9298#define ELF_COMMONPAGESIZE		0x1000
9299
9300#define bfd_elfNN_close_and_cleanup             \
9301  elfNN_aarch64_close_and_cleanup
9302
9303#define bfd_elfNN_bfd_free_cached_info          \
9304  elfNN_aarch64_bfd_free_cached_info
9305
9306#define bfd_elfNN_bfd_is_target_special_symbol	\
9307  elfNN_aarch64_is_target_special_symbol
9308
9309#define bfd_elfNN_bfd_link_hash_table_create    \
9310  elfNN_aarch64_link_hash_table_create
9311
9312#define bfd_elfNN_bfd_merge_private_bfd_data	\
9313  elfNN_aarch64_merge_private_bfd_data
9314
9315#define bfd_elfNN_bfd_print_private_bfd_data	\
9316  elfNN_aarch64_print_private_bfd_data
9317
9318#define bfd_elfNN_bfd_reloc_type_lookup		\
9319  elfNN_aarch64_reloc_type_lookup
9320
9321#define bfd_elfNN_bfd_reloc_name_lookup		\
9322  elfNN_aarch64_reloc_name_lookup
9323
9324#define bfd_elfNN_bfd_set_private_flags		\
9325  elfNN_aarch64_set_private_flags
9326
9327#define bfd_elfNN_find_inliner_info		\
9328  elfNN_aarch64_find_inliner_info
9329
9330#define bfd_elfNN_find_nearest_line		\
9331  elfNN_aarch64_find_nearest_line
9332
9333#define bfd_elfNN_mkobject			\
9334  elfNN_aarch64_mkobject
9335
9336#define bfd_elfNN_new_section_hook		\
9337  elfNN_aarch64_new_section_hook
9338
9339#define elf_backend_adjust_dynamic_symbol	\
9340  elfNN_aarch64_adjust_dynamic_symbol
9341
9342#define elf_backend_always_size_sections	\
9343  elfNN_aarch64_always_size_sections
9344
9345#define elf_backend_check_relocs		\
9346  elfNN_aarch64_check_relocs
9347
9348#define elf_backend_copy_indirect_symbol	\
9349  elfNN_aarch64_copy_indirect_symbol
9350
9351/* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9352   to them in our hash.  */
9353#define elf_backend_create_dynamic_sections	\
9354  elfNN_aarch64_create_dynamic_sections
9355
9356#define elf_backend_init_index_section		\
9357  _bfd_elf_init_2_index_sections
9358
9359#define elf_backend_finish_dynamic_sections	\
9360  elfNN_aarch64_finish_dynamic_sections
9361
9362#define elf_backend_finish_dynamic_symbol	\
9363  elfNN_aarch64_finish_dynamic_symbol
9364
9365#define elf_backend_gc_sweep_hook		\
9366  elfNN_aarch64_gc_sweep_hook
9367
9368#define elf_backend_object_p			\
9369  elfNN_aarch64_object_p
9370
9371#define elf_backend_output_arch_local_syms      \
9372  elfNN_aarch64_output_arch_local_syms
9373
9374#define elf_backend_plt_sym_val			\
9375  elfNN_aarch64_plt_sym_val
9376
9377#define elf_backend_post_process_headers	\
9378  elfNN_aarch64_post_process_headers
9379
9380#define elf_backend_relocate_section		\
9381  elfNN_aarch64_relocate_section
9382
9383#define elf_backend_reloc_type_class		\
9384  elfNN_aarch64_reloc_type_class
9385
9386#define elf_backend_section_from_shdr		\
9387  elfNN_aarch64_section_from_shdr
9388
9389#define elf_backend_size_dynamic_sections	\
9390  elfNN_aarch64_size_dynamic_sections
9391
9392#define elf_backend_size_info			\
9393  elfNN_aarch64_size_info
9394
9395#define elf_backend_write_section		\
9396  elfNN_aarch64_write_section
9397
9398#define elf_backend_symbol_processing		\
9399  elfNN_aarch64_backend_symbol_processing
9400
9401#define elf_backend_can_refcount       1
9402#define elf_backend_can_gc_sections    1
9403#define elf_backend_plt_readonly       1
9404#define elf_backend_want_got_plt       1
9405#define elf_backend_want_plt_sym       0
9406#define elf_backend_want_dynrelro      1
9407#define elf_backend_may_use_rel_p      0
9408#define elf_backend_may_use_rela_p     1
9409#define elf_backend_default_use_rela_p 1
9410#define elf_backend_rela_normal        1
9411#define elf_backend_dtrel_excludes_plt 1
9412#define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
9413#define elf_backend_default_execstack  0
9414#define elf_backend_extern_protected_data 1
9415
9416#undef  elf_backend_obj_attrs_section
9417#define elf_backend_obj_attrs_section		".ARM.attributes"
9418
9419#include "elfNN-target.h"
9420
9421/* CloudABI support.  */
9422
9423#undef	TARGET_LITTLE_SYM
9424#define	TARGET_LITTLE_SYM	aarch64_elfNN_le_cloudabi_vec
9425#undef	TARGET_LITTLE_NAME
9426#define	TARGET_LITTLE_NAME	"elfNN-littleaarch64-cloudabi"
9427#undef	TARGET_BIG_SYM
9428#define	TARGET_BIG_SYM		aarch64_elfNN_be_cloudabi_vec
9429#undef	TARGET_BIG_NAME
9430#define	TARGET_BIG_NAME		"elfNN-bigaarch64-cloudabi"
9431
9432#undef	ELF_OSABI
9433#define	ELF_OSABI		ELFOSABI_CLOUDABI
9434
9435#undef	elfNN_bed
9436#define	elfNN_bed		elfNN_aarch64_cloudabi_bed
9437
9438#include "elfNN-target.h"
9439