1/* Motorola 68k series support for 32-bit ELF
2   Copyright (C) 1993-2017 Free Software Foundation, Inc.
3
4   This file is part of BFD, the Binary File Descriptor library.
5
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 3 of the License, or
9   (at your option) any later version.
10
11   This program is distributed in the hope that it will be useful,
12   but WITHOUT ANY WARRANTY; without even the implied warranty of
13   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   GNU General Public License for more details.
15
16   You should have received a copy of the GNU General Public License
17   along with this program; if not, write to the Free Software
18   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19   MA 02110-1301, USA.  */
20
21#include "sysdep.h"
22#include "bfd.h"
23#include "bfdlink.h"
24#include "libbfd.h"
25#include "elf-bfd.h"
26#include "elf/m68k.h"
27#include "opcode/m68k.h"
28
29static bfd_boolean
30elf_m68k_discard_copies (struct elf_link_hash_entry *, void *);
31
32static reloc_howto_type howto_table[] =
33{
34  HOWTO(R_68K_NONE,       0, 3, 0, FALSE,0, complain_overflow_dont,     bfd_elf_generic_reloc, "R_68K_NONE",      FALSE, 0, 0x00000000,FALSE),
35  HOWTO(R_68K_32,         0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32",        FALSE, 0, 0xffffffff,FALSE),
36  HOWTO(R_68K_16,         0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16",        FALSE, 0, 0x0000ffff,FALSE),
37  HOWTO(R_68K_8,          0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8",         FALSE, 0, 0x000000ff,FALSE),
38  HOWTO(R_68K_PC32,       0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32",      FALSE, 0, 0xffffffff,TRUE),
39  HOWTO(R_68K_PC16,       0, 1,16, TRUE, 0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_PC16",      FALSE, 0, 0x0000ffff,TRUE),
40  HOWTO(R_68K_PC8,        0, 0, 8, TRUE, 0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_PC8",       FALSE, 0, 0x000000ff,TRUE),
41  HOWTO(R_68K_GOT32,      0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32",     FALSE, 0, 0xffffffff,TRUE),
42  HOWTO(R_68K_GOT16,      0, 1,16, TRUE, 0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_GOT16",     FALSE, 0, 0x0000ffff,TRUE),
43  HOWTO(R_68K_GOT8,       0, 0, 8, TRUE, 0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_GOT8",      FALSE, 0, 0x000000ff,TRUE),
44  HOWTO(R_68K_GOT32O,     0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O",    FALSE, 0, 0xffffffff,FALSE),
45  HOWTO(R_68K_GOT16O,     0, 1,16, FALSE,0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_GOT16O",    FALSE, 0, 0x0000ffff,FALSE),
46  HOWTO(R_68K_GOT8O,      0, 0, 8, FALSE,0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_GOT8O",     FALSE, 0, 0x000000ff,FALSE),
47  HOWTO(R_68K_PLT32,      0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32",     FALSE, 0, 0xffffffff,TRUE),
48  HOWTO(R_68K_PLT16,      0, 1,16, TRUE, 0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_PLT16",     FALSE, 0, 0x0000ffff,TRUE),
49  HOWTO(R_68K_PLT8,       0, 0, 8, TRUE, 0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_PLT8",      FALSE, 0, 0x000000ff,TRUE),
50  HOWTO(R_68K_PLT32O,     0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O",    FALSE, 0, 0xffffffff,FALSE),
51  HOWTO(R_68K_PLT16O,     0, 1,16, FALSE,0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_PLT16O",    FALSE, 0, 0x0000ffff,FALSE),
52  HOWTO(R_68K_PLT8O,      0, 0, 8, FALSE,0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_PLT8O",     FALSE, 0, 0x000000ff,FALSE),
53  HOWTO(R_68K_COPY,       0, 0, 0, FALSE,0, complain_overflow_dont,     bfd_elf_generic_reloc, "R_68K_COPY",      FALSE, 0, 0xffffffff,FALSE),
54  HOWTO(R_68K_GLOB_DAT,   0, 2,32, FALSE,0, complain_overflow_dont,     bfd_elf_generic_reloc, "R_68K_GLOB_DAT",  FALSE, 0, 0xffffffff,FALSE),
55  HOWTO(R_68K_JMP_SLOT,   0, 2,32, FALSE,0, complain_overflow_dont,     bfd_elf_generic_reloc, "R_68K_JMP_SLOT",  FALSE, 0, 0xffffffff,FALSE),
56  HOWTO(R_68K_RELATIVE,   0, 2,32, FALSE,0, complain_overflow_dont,     bfd_elf_generic_reloc, "R_68K_RELATIVE",  FALSE, 0, 0xffffffff,FALSE),
57  /* GNU extension to record C++ vtable hierarchy.  */
58  HOWTO (R_68K_GNU_VTINHERIT,	/* type */
59	 0,			/* rightshift */
60	 2,			/* size (0 = byte, 1 = short, 2 = long) */
61	 0,			/* bitsize */
62	 FALSE,			/* pc_relative */
63	 0,			/* bitpos */
64	 complain_overflow_dont, /* complain_on_overflow */
65	 NULL,			/* special_function */
66	 "R_68K_GNU_VTINHERIT",	/* name */
67	 FALSE,			/* partial_inplace */
68	 0,			/* src_mask */
69	 0,			/* dst_mask */
70	 FALSE),
71  /* GNU extension to record C++ vtable member usage.  */
72  HOWTO (R_68K_GNU_VTENTRY,	/* type */
73	 0,			/* rightshift */
74	 2,			/* size (0 = byte, 1 = short, 2 = long) */
75	 0,			/* bitsize */
76	 FALSE,			/* pc_relative */
77	 0,			/* bitpos */
78	 complain_overflow_dont, /* complain_on_overflow */
79	 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
80	 "R_68K_GNU_VTENTRY",	/* name */
81	 FALSE,			/* partial_inplace */
82	 0,			/* src_mask */
83	 0,			/* dst_mask */
84	 FALSE),
85
86  /* TLS general dynamic variable reference.  */
87  HOWTO (R_68K_TLS_GD32,	/* type */
88	 0,			/* rightshift */
89	 2,			/* size (0 = byte, 1 = short, 2 = long) */
90	 32,			/* bitsize */
91	 FALSE,			/* pc_relative */
92	 0,			/* bitpos */
93	 complain_overflow_bitfield, /* complain_on_overflow */
94	 bfd_elf_generic_reloc, /* special_function */
95	 "R_68K_TLS_GD32",	/* name */
96	 FALSE,			/* partial_inplace */
97	 0,			/* src_mask */
98	 0xffffffff,		/* dst_mask */
99	 FALSE),		/* pcrel_offset */
100
101  HOWTO (R_68K_TLS_GD16,	/* type */
102	 0,			/* rightshift */
103	 1,			/* size (0 = byte, 1 = short, 2 = long) */
104	 16,			/* bitsize */
105	 FALSE,			/* pc_relative */
106	 0,			/* bitpos */
107	 complain_overflow_signed, /* complain_on_overflow */
108	 bfd_elf_generic_reloc, /* special_function */
109	 "R_68K_TLS_GD16",	/* name */
110	 FALSE,			/* partial_inplace */
111	 0,			/* src_mask */
112	 0x0000ffff,		/* dst_mask */
113	 FALSE),		/* pcrel_offset */
114
115  HOWTO (R_68K_TLS_GD8,		/* type */
116	 0,			/* rightshift */
117	 0,			/* size (0 = byte, 1 = short, 2 = long) */
118	 8,			/* bitsize */
119	 FALSE,			/* pc_relative */
120	 0,			/* bitpos */
121	 complain_overflow_signed, /* complain_on_overflow */
122	 bfd_elf_generic_reloc, /* special_function */
123	 "R_68K_TLS_GD8",	/* name */
124	 FALSE,			/* partial_inplace */
125	 0,			/* src_mask */
126	 0x000000ff,		/* dst_mask */
127	 FALSE),		/* pcrel_offset */
128
129  /* TLS local dynamic variable reference.  */
130  HOWTO (R_68K_TLS_LDM32,	/* type */
131	 0,			/* rightshift */
132	 2,			/* size (0 = byte, 1 = short, 2 = long) */
133	 32,			/* bitsize */
134	 FALSE,			/* pc_relative */
135	 0,			/* bitpos */
136	 complain_overflow_bitfield, /* complain_on_overflow */
137	 bfd_elf_generic_reloc, /* special_function */
138	 "R_68K_TLS_LDM32",	/* name */
139	 FALSE,			/* partial_inplace */
140	 0,			/* src_mask */
141	 0xffffffff,		/* dst_mask */
142	 FALSE),		/* pcrel_offset */
143
144  HOWTO (R_68K_TLS_LDM16,	/* type */
145	 0,			/* rightshift */
146	 1,			/* size (0 = byte, 1 = short, 2 = long) */
147	 16,			/* bitsize */
148	 FALSE,			/* pc_relative */
149	 0,			/* bitpos */
150	 complain_overflow_signed, /* complain_on_overflow */
151	 bfd_elf_generic_reloc, /* special_function */
152	 "R_68K_TLS_LDM16",	/* name */
153	 FALSE,			/* partial_inplace */
154	 0,			/* src_mask */
155	 0x0000ffff,		/* dst_mask */
156	 FALSE),		/* pcrel_offset */
157
158  HOWTO (R_68K_TLS_LDM8,		/* type */
159	 0,			/* rightshift */
160	 0,			/* size (0 = byte, 1 = short, 2 = long) */
161	 8,			/* bitsize */
162	 FALSE,			/* pc_relative */
163	 0,			/* bitpos */
164	 complain_overflow_signed, /* complain_on_overflow */
165	 bfd_elf_generic_reloc, /* special_function */
166	 "R_68K_TLS_LDM8",	/* name */
167	 FALSE,			/* partial_inplace */
168	 0,			/* src_mask */
169	 0x000000ff,		/* dst_mask */
170	 FALSE),		/* pcrel_offset */
171
172  HOWTO (R_68K_TLS_LDO32,	/* type */
173	 0,			/* rightshift */
174	 2,			/* size (0 = byte, 1 = short, 2 = long) */
175	 32,			/* bitsize */
176	 FALSE,			/* pc_relative */
177	 0,			/* bitpos */
178	 complain_overflow_bitfield, /* complain_on_overflow */
179	 bfd_elf_generic_reloc, /* special_function */
180	 "R_68K_TLS_LDO32",	/* name */
181	 FALSE,			/* partial_inplace */
182	 0,			/* src_mask */
183	 0xffffffff,		/* dst_mask */
184	 FALSE),		/* pcrel_offset */
185
186  HOWTO (R_68K_TLS_LDO16,	/* type */
187	 0,			/* rightshift */
188	 1,			/* size (0 = byte, 1 = short, 2 = long) */
189	 16,			/* bitsize */
190	 FALSE,			/* pc_relative */
191	 0,			/* bitpos */
192	 complain_overflow_signed, /* complain_on_overflow */
193	 bfd_elf_generic_reloc, /* special_function */
194	 "R_68K_TLS_LDO16",	/* name */
195	 FALSE,			/* partial_inplace */
196	 0,			/* src_mask */
197	 0x0000ffff,		/* dst_mask */
198	 FALSE),		/* pcrel_offset */
199
200  HOWTO (R_68K_TLS_LDO8,		/* type */
201	 0,			/* rightshift */
202	 0,			/* size (0 = byte, 1 = short, 2 = long) */
203	 8,			/* bitsize */
204	 FALSE,			/* pc_relative */
205	 0,			/* bitpos */
206	 complain_overflow_signed, /* complain_on_overflow */
207	 bfd_elf_generic_reloc, /* special_function */
208	 "R_68K_TLS_LDO8",	/* name */
209	 FALSE,			/* partial_inplace */
210	 0,			/* src_mask */
211	 0x000000ff,		/* dst_mask */
212	 FALSE),		/* pcrel_offset */
213
214  /* TLS initial execution variable reference.  */
215  HOWTO (R_68K_TLS_IE32,	/* type */
216	 0,			/* rightshift */
217	 2,			/* size (0 = byte, 1 = short, 2 = long) */
218	 32,			/* bitsize */
219	 FALSE,			/* pc_relative */
220	 0,			/* bitpos */
221	 complain_overflow_bitfield, /* complain_on_overflow */
222	 bfd_elf_generic_reloc, /* special_function */
223	 "R_68K_TLS_IE32",	/* name */
224	 FALSE,			/* partial_inplace */
225	 0,			/* src_mask */
226	 0xffffffff,		/* dst_mask */
227	 FALSE),		/* pcrel_offset */
228
229  HOWTO (R_68K_TLS_IE16,	/* type */
230	 0,			/* rightshift */
231	 1,			/* size (0 = byte, 1 = short, 2 = long) */
232	 16,			/* bitsize */
233	 FALSE,			/* pc_relative */
234	 0,			/* bitpos */
235	 complain_overflow_signed, /* complain_on_overflow */
236	 bfd_elf_generic_reloc, /* special_function */
237	 "R_68K_TLS_IE16",	/* name */
238	 FALSE,			/* partial_inplace */
239	 0,			/* src_mask */
240	 0x0000ffff,		/* dst_mask */
241	 FALSE),		/* pcrel_offset */
242
243  HOWTO (R_68K_TLS_IE8,		/* type */
244	 0,			/* rightshift */
245	 0,			/* size (0 = byte, 1 = short, 2 = long) */
246	 8,			/* bitsize */
247	 FALSE,			/* pc_relative */
248	 0,			/* bitpos */
249	 complain_overflow_signed, /* complain_on_overflow */
250	 bfd_elf_generic_reloc, /* special_function */
251	 "R_68K_TLS_IE8",	/* name */
252	 FALSE,			/* partial_inplace */
253	 0,			/* src_mask */
254	 0x000000ff,		/* dst_mask */
255	 FALSE),		/* pcrel_offset */
256
257  /* TLS local execution variable reference.  */
258  HOWTO (R_68K_TLS_LE32,	/* type */
259	 0,			/* rightshift */
260	 2,			/* size (0 = byte, 1 = short, 2 = long) */
261	 32,			/* bitsize */
262	 FALSE,			/* pc_relative */
263	 0,			/* bitpos */
264	 complain_overflow_bitfield, /* complain_on_overflow */
265	 bfd_elf_generic_reloc, /* special_function */
266	 "R_68K_TLS_LE32",	/* name */
267	 FALSE,			/* partial_inplace */
268	 0,			/* src_mask */
269	 0xffffffff,		/* dst_mask */
270	 FALSE),		/* pcrel_offset */
271
272  HOWTO (R_68K_TLS_LE16,	/* type */
273	 0,			/* rightshift */
274	 1,			/* size (0 = byte, 1 = short, 2 = long) */
275	 16,			/* bitsize */
276	 FALSE,			/* pc_relative */
277	 0,			/* bitpos */
278	 complain_overflow_signed, /* complain_on_overflow */
279	 bfd_elf_generic_reloc, /* special_function */
280	 "R_68K_TLS_LE16",	/* name */
281	 FALSE,			/* partial_inplace */
282	 0,			/* src_mask */
283	 0x0000ffff,		/* dst_mask */
284	 FALSE),		/* pcrel_offset */
285
286  HOWTO (R_68K_TLS_LE8,		/* type */
287	 0,			/* rightshift */
288	 0,			/* size (0 = byte, 1 = short, 2 = long) */
289	 8,			/* bitsize */
290	 FALSE,			/* pc_relative */
291	 0,			/* bitpos */
292	 complain_overflow_signed, /* complain_on_overflow */
293	 bfd_elf_generic_reloc, /* special_function */
294	 "R_68K_TLS_LE8",	/* name */
295	 FALSE,			/* partial_inplace */
296	 0,			/* src_mask */
297	 0x000000ff,		/* dst_mask */
298	 FALSE),		/* pcrel_offset */
299
300  /* TLS GD/LD dynamic relocations.  */
301  HOWTO (R_68K_TLS_DTPMOD32,	/* type */
302	 0,			/* rightshift */
303	 2,			/* size (0 = byte, 1 = short, 2 = long) */
304	 32,			/* bitsize */
305	 FALSE,			/* pc_relative */
306	 0,			/* bitpos */
307	 complain_overflow_dont, /* complain_on_overflow */
308	 bfd_elf_generic_reloc, /* special_function */
309	 "R_68K_TLS_DTPMOD32",	/* name */
310	 FALSE,			/* partial_inplace */
311	 0,			/* src_mask */
312	 0xffffffff,		/* dst_mask */
313	 FALSE),		/* pcrel_offset */
314
315  HOWTO (R_68K_TLS_DTPREL32,	/* type */
316	 0,			/* rightshift */
317	 2,			/* size (0 = byte, 1 = short, 2 = long) */
318	 32,			/* bitsize */
319	 FALSE,			/* pc_relative */
320	 0,			/* bitpos */
321	 complain_overflow_dont, /* complain_on_overflow */
322	 bfd_elf_generic_reloc, /* special_function */
323	 "R_68K_TLS_DTPREL32",	/* name */
324	 FALSE,			/* partial_inplace */
325	 0,			/* src_mask */
326	 0xffffffff,		/* dst_mask */
327	 FALSE),		/* pcrel_offset */
328
329  HOWTO (R_68K_TLS_TPREL32,	/* type */
330	 0,			/* rightshift */
331	 2,			/* size (0 = byte, 1 = short, 2 = long) */
332	 32,			/* bitsize */
333	 FALSE,			/* pc_relative */
334	 0,			/* bitpos */
335	 complain_overflow_dont, /* complain_on_overflow */
336	 bfd_elf_generic_reloc, /* special_function */
337	 "R_68K_TLS_TPREL32",	/* name */
338	 FALSE,			/* partial_inplace */
339	 0,			/* src_mask */
340	 0xffffffff,		/* dst_mask */
341	 FALSE),		/* pcrel_offset */
342};
343
344static void
345rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
346{
347  unsigned int indx = ELF32_R_TYPE (dst->r_info);
348
349  if (indx >= (unsigned int) R_68K_max)
350    {
351      /* xgettext:c-format */
352      _bfd_error_handler (_("%B: invalid relocation type %d"),
353			  abfd, (int) indx);
354      indx = R_68K_NONE;
355    }
356  cache_ptr->howto = &howto_table[indx];
357}
358
359#define elf_info_to_howto rtype_to_howto
360
361static const struct
362{
363  bfd_reloc_code_real_type bfd_val;
364  int elf_val;
365}
366  reloc_map[] =
367{
368  { BFD_RELOC_NONE, R_68K_NONE },
369  { BFD_RELOC_32, R_68K_32 },
370  { BFD_RELOC_16, R_68K_16 },
371  { BFD_RELOC_8, R_68K_8 },
372  { BFD_RELOC_32_PCREL, R_68K_PC32 },
373  { BFD_RELOC_16_PCREL, R_68K_PC16 },
374  { BFD_RELOC_8_PCREL, R_68K_PC8 },
375  { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
376  { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
377  { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
378  { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
379  { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
380  { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
381  { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
382  { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
383  { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
384  { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
385  { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
386  { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
387  { BFD_RELOC_NONE, R_68K_COPY },
388  { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
389  { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
390  { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
391  { BFD_RELOC_CTOR, R_68K_32 },
392  { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
393  { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
394  { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
395  { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
396  { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
397  { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
398  { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
399  { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
400  { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
401  { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
402  { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
403  { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
404  { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
405  { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
406  { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
407  { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
408  { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
409};
410
411static reloc_howto_type *
412reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
413		   bfd_reloc_code_real_type code)
414{
415  unsigned int i;
416  for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
417    {
418      if (reloc_map[i].bfd_val == code)
419	return &howto_table[reloc_map[i].elf_val];
420    }
421  return 0;
422}
423
424static reloc_howto_type *
425reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
426{
427  unsigned int i;
428
429  for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
430    if (howto_table[i].name != NULL
431	&& strcasecmp (howto_table[i].name, r_name) == 0)
432      return &howto_table[i];
433
434  return NULL;
435}
436
437#define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
438#define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
439#define ELF_ARCH bfd_arch_m68k
440#define ELF_TARGET_ID M68K_ELF_DATA
441
442/* Functions for the m68k ELF linker.  */
443
444/* The name of the dynamic interpreter.  This is put in the .interp
445   section.  */
446
447#define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
448
449/* Describes one of the various PLT styles.  */
450
451struct elf_m68k_plt_info
452{
453  /* The size of each PLT entry.  */
454  bfd_vma size;
455
456  /* The template for the first PLT entry.  */
457  const bfd_byte *plt0_entry;
458
459  /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
460     The comments by each member indicate the value that the relocation
461     is against.  */
462  struct {
463    unsigned int got4; /* .got + 4 */
464    unsigned int got8; /* .got + 8 */
465  } plt0_relocs;
466
467  /* The template for a symbol's PLT entry.  */
468  const bfd_byte *symbol_entry;
469
470  /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
471     The comments by each member indicate the value that the relocation
472     is against.  */
473  struct {
474    unsigned int got; /* the symbol's .got.plt entry */
475    unsigned int plt; /* .plt */
476  } symbol_relocs;
477
478  /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
479     The stub starts with "move.l #relocoffset,%d0".  */
480  bfd_vma symbol_resolve_entry;
481};
482
483/* The size in bytes of an entry in the procedure linkage table.  */
484
485#define PLT_ENTRY_SIZE 20
486
487/* The first entry in a procedure linkage table looks like this.  See
488   the SVR4 ABI m68k supplement to see how this works.  */
489
490static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
491{
492  0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
493  0, 0, 0, 2,		  /* + (.got + 4) - . */
494  0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
495  0, 0, 0, 2,		  /* + (.got + 8) - . */
496  0, 0, 0, 0		  /* pad out to 20 bytes.  */
497};
498
499/* Subsequent entries in a procedure linkage table look like this.  */
500
501static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
502{
503  0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
504  0, 0, 0, 2,		  /* + (.got.plt entry) - . */
505  0x2f, 0x3c,		  /* move.l #offset,-(%sp) */
506  0, 0, 0, 0,		  /* + reloc index */
507  0x60, 0xff,		  /* bra.l .plt */
508  0, 0, 0, 0		  /* + .plt - . */
509};
510
511static const struct elf_m68k_plt_info elf_m68k_plt_info =
512{
513  PLT_ENTRY_SIZE,
514  elf_m68k_plt0_entry, { 4, 12 },
515  elf_m68k_plt_entry, { 4, 16 }, 8
516};
517
518#define ISAB_PLT_ENTRY_SIZE 24
519
520static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
521{
522  0x20, 0x3c,             /* move.l #offset,%d0 */
523  0, 0, 0, 0,             /* + (.got + 4) - . */
524  0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
525  0x20, 0x3c,             /* move.l #offset,%d0 */
526  0, 0, 0, 0,             /* + (.got + 8) - . */
527  0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
528  0x4e, 0xd0,             /* jmp (%a0) */
529  0x4e, 0x71		  /* nop */
530};
531
532/* Subsequent entries in a procedure linkage table look like this.  */
533
534static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
535{
536  0x20, 0x3c,             /* move.l #offset,%d0 */
537  0, 0, 0, 0,             /* + (.got.plt entry) - . */
538  0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
539  0x4e, 0xd0,             /* jmp (%a0) */
540  0x2f, 0x3c,             /* move.l #offset,-(%sp) */
541  0, 0, 0, 0,             /* + reloc index */
542  0x60, 0xff,             /* bra.l .plt */
543  0, 0, 0, 0              /* + .plt - . */
544};
545
546static const struct elf_m68k_plt_info elf_isab_plt_info =
547{
548  ISAB_PLT_ENTRY_SIZE,
549  elf_isab_plt0_entry, { 2, 12 },
550  elf_isab_plt_entry, { 2, 20 }, 12
551};
552
553#define ISAC_PLT_ENTRY_SIZE 24
554
555static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
556{
557  0x20, 0x3c,		  /* move.l #offset,%d0 */
558  0, 0, 0, 0,		  /* replaced with .got + 4 - . */
559  0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
560  0x20, 0x3c,		  /* move.l #offset,%d0 */
561  0, 0, 0, 0,		  /* replaced with .got + 8 - . */
562  0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
563  0x4e, 0xd0,		  /* jmp (%a0) */
564  0x4e, 0x71		  /* nop */
565};
566
567/* Subsequent entries in a procedure linkage table look like this.  */
568
569static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
570{
571  0x20, 0x3c,		  /* move.l #offset,%d0 */
572  0, 0, 0, 0,		  /* replaced with (.got entry) - . */
573  0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
574  0x4e, 0xd0,		  /* jmp (%a0) */
575  0x2f, 0x3c,		  /* move.l #offset,-(%sp) */
576  0, 0, 0, 0,		  /* replaced with offset into relocation table */
577  0x61, 0xff,		  /* bsr.l .plt */
578  0, 0, 0, 0 		  /* replaced with .plt - . */
579};
580
581static const struct elf_m68k_plt_info elf_isac_plt_info =
582{
583  ISAC_PLT_ENTRY_SIZE,
584  elf_isac_plt0_entry, { 2, 12},
585  elf_isac_plt_entry, { 2, 20 }, 12
586};
587
588#define CPU32_PLT_ENTRY_SIZE 24
589/* Procedure linkage table entries for the cpu32 */
590static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
591{
592  0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
593  0, 0, 0, 2,             /* + (.got + 4) - . */
594  0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
595  0, 0, 0, 2,             /* + (.got + 8) - . */
596  0x4e, 0xd1,             /* jmp %a1@ */
597  0, 0, 0, 0,             /* pad out to 24 bytes.  */
598  0, 0
599};
600
601static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
602{
603  0x22, 0x7b, 0x01, 0x70,  /* moveal %pc@(0xc), %a1 */
604  0, 0, 0, 2,              /* + (.got.plt entry) - . */
605  0x4e, 0xd1,              /* jmp %a1@ */
606  0x2f, 0x3c,              /* move.l #offset,-(%sp) */
607  0, 0, 0, 0,              /* + reloc index */
608  0x60, 0xff,              /* bra.l .plt */
609  0, 0, 0, 0,              /* + .plt - . */
610  0, 0
611};
612
613static const struct elf_m68k_plt_info elf_cpu32_plt_info =
614{
615  CPU32_PLT_ENTRY_SIZE,
616  elf_cpu32_plt0_entry, { 4, 12 },
617  elf_cpu32_plt_entry, { 4, 18 }, 10
618};
619
620/* The m68k linker needs to keep track of the number of relocs that it
621   decides to copy in check_relocs for each symbol.  This is so that it
622   can discard PC relative relocs if it doesn't need them when linking
623   with -Bsymbolic.  We store the information in a field extending the
624   regular ELF linker hash table.  */
625
626/* This structure keeps track of the number of PC relative relocs we have
627   copied for a given symbol.  */
628
629struct elf_m68k_pcrel_relocs_copied
630{
631  /* Next section.  */
632  struct elf_m68k_pcrel_relocs_copied *next;
633  /* A section in dynobj.  */
634  asection *section;
635  /* Number of relocs copied in this section.  */
636  bfd_size_type count;
637};
638
639/* Forward declaration.  */
640struct elf_m68k_got_entry;
641
642/* m68k ELF linker hash entry.  */
643
644struct elf_m68k_link_hash_entry
645{
646  struct elf_link_hash_entry root;
647
648  /* Number of PC relative relocs copied for this symbol.  */
649  struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
650
651  /* Key to got_entries.  */
652  unsigned long got_entry_key;
653
654  /* List of GOT entries for this symbol.  This list is build during
655     offset finalization and is used within elf_m68k_finish_dynamic_symbol
656     to traverse all GOT entries for a particular symbol.
657
658     ??? We could've used root.got.glist field instead, but having
659     a separate field is cleaner.  */
660  struct elf_m68k_got_entry *glist;
661};
662
663#define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
664
665/* Key part of GOT entry in hashtable.  */
666struct elf_m68k_got_entry_key
667{
668  /* BFD in which this symbol was defined.  NULL for global symbols.  */
669  const bfd *bfd;
670
671  /* Symbol index.  Either local symbol index or h->got_entry_key.  */
672  unsigned long symndx;
673
674  /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
675     R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
676
677     From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
678     matters.  That is, we distinguish between, say, R_68K_GOT16O
679     and R_68K_GOT32O when allocating offsets, but they are considered to be
680     the same when searching got->entries.  */
681  enum elf_m68k_reloc_type type;
682};
683
684/* Size of the GOT offset suitable for relocation.  */
685enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
686
687/* Entry of the GOT.  */
688struct elf_m68k_got_entry
689{
690  /* GOT entries are put into a got->entries hashtable.  This is the key.  */
691  struct elf_m68k_got_entry_key key_;
692
693  /* GOT entry data.  We need s1 before offset finalization and s2 after.  */
694  union
695  {
696    struct
697    {
698      /* Number of times this entry is referenced.  It is used to
699	 filter out unnecessary GOT slots in elf_m68k_gc_sweep_hook.  */
700      bfd_vma refcount;
701    } s1;
702
703    struct
704    {
705      /* Offset from the start of .got section.  To calculate offset relative
706	 to GOT pointer one should substract got->offset from this value.  */
707      bfd_vma offset;
708
709      /* Pointer to the next GOT entry for this global symbol.
710	 Symbols have at most one entry in one GOT, but might
711	 have entries in more than one GOT.
712	 Root of this list is h->glist.
713	 NULL for local symbols.  */
714      struct elf_m68k_got_entry *next;
715    } s2;
716  } u;
717};
718
719/* Return representative type for relocation R_TYPE.
720   This is used to avoid enumerating many relocations in comparisons,
721   switches etc.  */
722
723static enum elf_m68k_reloc_type
724elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
725{
726  switch (r_type)
727    {
728      /* In most cases R_68K_GOTx relocations require the very same
729	 handling as R_68K_GOT32O relocation.  In cases when we need
730	 to distinguish between the two, we use explicitly compare against
731	 r_type.  */
732    case R_68K_GOT32:
733    case R_68K_GOT16:
734    case R_68K_GOT8:
735    case R_68K_GOT32O:
736    case R_68K_GOT16O:
737    case R_68K_GOT8O:
738      return R_68K_GOT32O;
739
740    case R_68K_TLS_GD32:
741    case R_68K_TLS_GD16:
742    case R_68K_TLS_GD8:
743      return R_68K_TLS_GD32;
744
745    case R_68K_TLS_LDM32:
746    case R_68K_TLS_LDM16:
747    case R_68K_TLS_LDM8:
748      return R_68K_TLS_LDM32;
749
750    case R_68K_TLS_IE32:
751    case R_68K_TLS_IE16:
752    case R_68K_TLS_IE8:
753      return R_68K_TLS_IE32;
754
755    default:
756      BFD_ASSERT (FALSE);
757      return 0;
758    }
759}
760
761/* Return size of the GOT entry offset for relocation R_TYPE.  */
762
763static enum elf_m68k_got_offset_size
764elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
765{
766  switch (r_type)
767    {
768    case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
769    case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
770    case R_68K_TLS_IE32:
771      return R_32;
772
773    case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
774    case R_68K_TLS_IE16:
775      return R_16;
776
777    case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
778    case R_68K_TLS_IE8:
779      return R_8;
780
781    default:
782      BFD_ASSERT (FALSE);
783      return 0;
784    }
785}
786
787/* Return number of GOT entries we need to allocate in GOT for
788   relocation R_TYPE.  */
789
790static bfd_vma
791elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
792{
793  switch (elf_m68k_reloc_got_type (r_type))
794    {
795    case R_68K_GOT32O:
796    case R_68K_TLS_IE32:
797      return 1;
798
799    case R_68K_TLS_GD32:
800    case R_68K_TLS_LDM32:
801      return 2;
802
803    default:
804      BFD_ASSERT (FALSE);
805      return 0;
806    }
807}
808
809/* Return TRUE if relocation R_TYPE is a TLS one.  */
810
811static bfd_boolean
812elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
813{
814  switch (r_type)
815    {
816    case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
817    case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
818    case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
819    case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
820    case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
821    case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
822      return TRUE;
823
824    default:
825      return FALSE;
826    }
827}
828
829/* Data structure representing a single GOT.  */
830struct elf_m68k_got
831{
832  /* Hashtable of 'struct elf_m68k_got_entry's.
833     Starting size of this table is the maximum number of
834     R_68K_GOT8O entries.  */
835  htab_t entries;
836
837  /* Number of R_x slots in this GOT.  Some (e.g., TLS) entries require
838     several GOT slots.
839
840     n_slots[R_8] is the count of R_8 slots in this GOT.
841     n_slots[R_16] is the cumulative count of R_8 and R_16 slots
842     in this GOT.
843     n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
844     in this GOT.  This is the total number of slots.  */
845  bfd_vma n_slots[R_LAST];
846
847  /* Number of local (entry->key_.h == NULL) slots in this GOT.
848     This is only used to properly calculate size of .rela.got section;
849     see elf_m68k_partition_multi_got.  */
850  bfd_vma local_n_slots;
851
852  /* Offset of this GOT relative to beginning of .got section.  */
853  bfd_vma offset;
854};
855
856/* BFD and its GOT.  This is an entry in multi_got->bfd2got hashtable.  */
857struct elf_m68k_bfd2got_entry
858{
859  /* BFD.  */
860  const bfd *bfd;
861
862  /* Assigned GOT.  Before partitioning multi-GOT each BFD has its own
863     GOT structure.  After partitioning several BFD's might [and often do]
864     share a single GOT.  */
865  struct elf_m68k_got *got;
866};
867
868/* The main data structure holding all the pieces.  */
869struct elf_m68k_multi_got
870{
871  /* Hashtable mapping each BFD to its GOT.  If a BFD doesn't have an entry
872     here, then it doesn't need a GOT (this includes the case of a BFD
873     having an empty GOT).
874
875     ??? This hashtable can be replaced by an array indexed by bfd->id.  */
876  htab_t bfd2got;
877
878  /* Next symndx to assign a global symbol.
879     h->got_entry_key is initialized from this counter.  */
880  unsigned long global_symndx;
881};
882
883/* m68k ELF linker hash table.  */
884
885struct elf_m68k_link_hash_table
886{
887  struct elf_link_hash_table root;
888
889  /* Small local sym cache.  */
890  struct sym_cache sym_cache;
891
892  /* The PLT format used by this link, or NULL if the format has not
893     yet been chosen.  */
894  const struct elf_m68k_plt_info *plt_info;
895
896  /* True, if GP is loaded within each function which uses it.
897     Set to TRUE when GOT negative offsets or multi-GOT is enabled.  */
898  bfd_boolean local_gp_p;
899
900  /* Switch controlling use of negative offsets to double the size of GOTs.  */
901  bfd_boolean use_neg_got_offsets_p;
902
903  /* Switch controlling generation of multiple GOTs.  */
904  bfd_boolean allow_multigot_p;
905
906  /* Multi-GOT data structure.  */
907  struct elf_m68k_multi_got multi_got_;
908};
909
910/* Get the m68k ELF linker hash table from a link_info structure.  */
911
912#define elf_m68k_hash_table(p) \
913  (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
914  == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL)
915
916/* Shortcut to multi-GOT data.  */
917#define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
918
919/* Create an entry in an m68k ELF linker hash table.  */
920
921static struct bfd_hash_entry *
922elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
923			    struct bfd_hash_table *table,
924			    const char *string)
925{
926  struct bfd_hash_entry *ret = entry;
927
928  /* Allocate the structure if it has not already been allocated by a
929     subclass.  */
930  if (ret == NULL)
931    ret = bfd_hash_allocate (table,
932			     sizeof (struct elf_m68k_link_hash_entry));
933  if (ret == NULL)
934    return ret;
935
936  /* Call the allocation method of the superclass.  */
937  ret = _bfd_elf_link_hash_newfunc (ret, table, string);
938  if (ret != NULL)
939    {
940      elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
941      elf_m68k_hash_entry (ret)->got_entry_key = 0;
942      elf_m68k_hash_entry (ret)->glist = NULL;
943    }
944
945  return ret;
946}
947
948/* Destroy an m68k ELF linker hash table.  */
949
950static void
951elf_m68k_link_hash_table_free (bfd *obfd)
952{
953  struct elf_m68k_link_hash_table *htab;
954
955  htab = (struct elf_m68k_link_hash_table *) obfd->link.hash;
956
957  if (htab->multi_got_.bfd2got != NULL)
958    {
959      htab_delete (htab->multi_got_.bfd2got);
960      htab->multi_got_.bfd2got = NULL;
961    }
962  _bfd_elf_link_hash_table_free (obfd);
963}
964
965/* Create an m68k ELF linker hash table.  */
966
967static struct bfd_link_hash_table *
968elf_m68k_link_hash_table_create (bfd *abfd)
969{
970  struct elf_m68k_link_hash_table *ret;
971  bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
972
973  ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt);
974  if (ret == (struct elf_m68k_link_hash_table *) NULL)
975    return NULL;
976
977  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
978				      elf_m68k_link_hash_newfunc,
979				      sizeof (struct elf_m68k_link_hash_entry),
980				      M68K_ELF_DATA))
981    {
982      free (ret);
983      return NULL;
984    }
985  ret->root.root.hash_table_free = elf_m68k_link_hash_table_free;
986
987  ret->multi_got_.global_symndx = 1;
988
989  return &ret->root.root;
990}
991
992/* Set the right machine number.  */
993
994static bfd_boolean
995elf32_m68k_object_p (bfd *abfd)
996{
997  unsigned int mach = 0;
998  unsigned features = 0;
999  flagword eflags = elf_elfheader (abfd)->e_flags;
1000
1001  if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1002    features |= m68000;
1003  else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1004    features |= cpu32;
1005  else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1006    features |= fido_a;
1007  else
1008    {
1009      switch (eflags & EF_M68K_CF_ISA_MASK)
1010	{
1011	case EF_M68K_CF_ISA_A_NODIV:
1012	  features |= mcfisa_a;
1013	  break;
1014	case EF_M68K_CF_ISA_A:
1015	  features |= mcfisa_a|mcfhwdiv;
1016	  break;
1017	case EF_M68K_CF_ISA_A_PLUS:
1018	  features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1019	  break;
1020	case EF_M68K_CF_ISA_B_NOUSP:
1021	  features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1022	  break;
1023	case EF_M68K_CF_ISA_B:
1024	  features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1025	  break;
1026	case EF_M68K_CF_ISA_C:
1027	  features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1028	  break;
1029	case EF_M68K_CF_ISA_C_NODIV:
1030	  features |= mcfisa_a|mcfisa_c|mcfusp;
1031	  break;
1032	}
1033      switch (eflags & EF_M68K_CF_MAC_MASK)
1034	{
1035	case EF_M68K_CF_MAC:
1036	  features |= mcfmac;
1037	  break;
1038	case EF_M68K_CF_EMAC:
1039	  features |= mcfemac;
1040	  break;
1041	}
1042      if (eflags & EF_M68K_CF_FLOAT)
1043	features |= cfloat;
1044    }
1045
1046  mach = bfd_m68k_features_to_mach (features);
1047  bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1048
1049  return TRUE;
1050}
1051
1052/* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1053   field based on the machine number.  */
1054
1055static void
1056elf_m68k_final_write_processing (bfd *abfd,
1057				 bfd_boolean linker ATTRIBUTE_UNUSED)
1058{
1059  int mach = bfd_get_mach (abfd);
1060  unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1061
1062  if (!e_flags)
1063    {
1064      unsigned int arch_mask;
1065
1066      arch_mask = bfd_m68k_mach_to_features (mach);
1067
1068      if (arch_mask & m68000)
1069	e_flags = EF_M68K_M68000;
1070      else if (arch_mask & cpu32)
1071	e_flags = EF_M68K_CPU32;
1072      else if (arch_mask & fido_a)
1073	e_flags = EF_M68K_FIDO;
1074      else
1075	{
1076	  switch (arch_mask
1077		  & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1078	    {
1079	    case mcfisa_a:
1080	      e_flags |= EF_M68K_CF_ISA_A_NODIV;
1081	      break;
1082	    case mcfisa_a | mcfhwdiv:
1083	      e_flags |= EF_M68K_CF_ISA_A;
1084	      break;
1085	    case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1086	      e_flags |= EF_M68K_CF_ISA_A_PLUS;
1087	      break;
1088	    case mcfisa_a | mcfisa_b | mcfhwdiv:
1089	      e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1090	      break;
1091	    case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1092	      e_flags |= EF_M68K_CF_ISA_B;
1093	      break;
1094	    case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1095	      e_flags |= EF_M68K_CF_ISA_C;
1096	      break;
1097	    case mcfisa_a | mcfisa_c | mcfusp:
1098	      e_flags |= EF_M68K_CF_ISA_C_NODIV;
1099	      break;
1100	    }
1101	  if (arch_mask & mcfmac)
1102	    e_flags |= EF_M68K_CF_MAC;
1103	  else if (arch_mask & mcfemac)
1104	    e_flags |= EF_M68K_CF_EMAC;
1105	  if (arch_mask & cfloat)
1106	    e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1107	}
1108      elf_elfheader (abfd)->e_flags = e_flags;
1109    }
1110}
1111
1112/* Keep m68k-specific flags in the ELF header.  */
1113
1114static bfd_boolean
1115elf32_m68k_set_private_flags (bfd *abfd, flagword flags)
1116{
1117  elf_elfheader (abfd)->e_flags = flags;
1118  elf_flags_init (abfd) = TRUE;
1119  return TRUE;
1120}
1121
1122/* Merge backend specific data from an object file to the output
1123   object file when linking.  */
1124static bfd_boolean
1125elf32_m68k_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
1126{
1127  bfd *obfd = info->output_bfd;
1128  flagword out_flags;
1129  flagword in_flags;
1130  flagword out_isa;
1131  flagword in_isa;
1132  const bfd_arch_info_type *arch_info;
1133
1134  if (   bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1135      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1136    return FALSE;
1137
1138  /* Get the merged machine.  This checks for incompatibility between
1139     Coldfire & non-Coldfire flags, incompability between different
1140     Coldfire ISAs, and incompability between different MAC types.  */
1141  arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
1142  if (!arch_info)
1143    return FALSE;
1144
1145  bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1146
1147  in_flags = elf_elfheader (ibfd)->e_flags;
1148  if (!elf_flags_init (obfd))
1149    {
1150      elf_flags_init (obfd) = TRUE;
1151      out_flags = in_flags;
1152    }
1153  else
1154    {
1155      out_flags = elf_elfheader (obfd)->e_flags;
1156      unsigned int variant_mask;
1157
1158      if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1159	variant_mask = 0;
1160      else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1161	variant_mask = 0;
1162      else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1163	variant_mask = 0;
1164      else
1165	variant_mask = EF_M68K_CF_ISA_MASK;
1166
1167      in_isa = (in_flags & variant_mask);
1168      out_isa = (out_flags & variant_mask);
1169      if (in_isa > out_isa)
1170	out_flags ^= in_isa ^ out_isa;
1171      if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1172	   && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1173	  || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1174	      && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1175	out_flags = EF_M68K_FIDO;
1176      else
1177      out_flags |= in_flags ^ in_isa;
1178    }
1179  elf_elfheader (obfd)->e_flags = out_flags;
1180
1181  return TRUE;
1182}
1183
1184/* Display the flags field.  */
1185
1186static bfd_boolean
1187elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1188{
1189  FILE *file = (FILE *) ptr;
1190  flagword eflags = elf_elfheader (abfd)->e_flags;
1191
1192  BFD_ASSERT (abfd != NULL && ptr != NULL);
1193
1194  /* Print normal ELF private data.  */
1195  _bfd_elf_print_private_bfd_data (abfd, ptr);
1196
1197  /* Ignore init flag - it may not be set, despite the flags field containing valid data.  */
1198
1199  /* xgettext:c-format */
1200  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1201
1202  if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1203    fprintf (file, " [m68000]");
1204  else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1205    fprintf (file, " [cpu32]");
1206  else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1207    fprintf (file, " [fido]");
1208  else
1209    {
1210      if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1211	fprintf (file, " [cfv4e]");
1212
1213      if (eflags & EF_M68K_CF_ISA_MASK)
1214	{
1215	  char const *isa = _("unknown");
1216	  char const *mac = _("unknown");
1217	  char const *additional = "";
1218
1219	  switch (eflags & EF_M68K_CF_ISA_MASK)
1220	    {
1221	    case EF_M68K_CF_ISA_A_NODIV:
1222	      isa = "A";
1223	      additional = " [nodiv]";
1224	      break;
1225	    case EF_M68K_CF_ISA_A:
1226	      isa = "A";
1227	      break;
1228	    case EF_M68K_CF_ISA_A_PLUS:
1229	      isa = "A+";
1230	      break;
1231	    case EF_M68K_CF_ISA_B_NOUSP:
1232	      isa = "B";
1233	      additional = " [nousp]";
1234	      break;
1235	    case EF_M68K_CF_ISA_B:
1236	      isa = "B";
1237	      break;
1238	    case EF_M68K_CF_ISA_C:
1239	      isa = "C";
1240	      break;
1241	    case EF_M68K_CF_ISA_C_NODIV:
1242	      isa = "C";
1243	      additional = " [nodiv]";
1244	      break;
1245	    }
1246	  fprintf (file, " [isa %s]%s", isa, additional);
1247
1248	  if (eflags & EF_M68K_CF_FLOAT)
1249	    fprintf (file, " [float]");
1250
1251	  switch (eflags & EF_M68K_CF_MAC_MASK)
1252	    {
1253	    case 0:
1254	      mac = NULL;
1255	      break;
1256	    case EF_M68K_CF_MAC:
1257	      mac = "mac";
1258	      break;
1259	    case EF_M68K_CF_EMAC:
1260	      mac = "emac";
1261	      break;
1262	    case EF_M68K_CF_EMAC_B:
1263	      mac = "emac_b";
1264	      break;
1265	    }
1266	  if (mac)
1267	    fprintf (file, " [%s]", mac);
1268	}
1269    }
1270
1271  fputc ('\n', file);
1272
1273  return TRUE;
1274}
1275
1276/* Multi-GOT support implementation design:
1277
1278   Multi-GOT starts in check_relocs hook.  There we scan all
1279   relocations of a BFD and build a local GOT (struct elf_m68k_got)
1280   for it.  If a single BFD appears to require too many GOT slots with
1281   R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1282   to user.
1283   After check_relocs has been invoked for each input BFD, we have
1284   constructed a GOT for each input BFD.
1285
1286   To minimize total number of GOTs required for a particular output BFD
1287   (as some environments support only 1 GOT per output object) we try
1288   to merge some of the GOTs to share an offset space.  Ideally [and in most
1289   cases] we end up with a single GOT.  In cases when there are too many
1290   restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1291   several GOTs, assuming the environment can handle them.
1292
1293   Partitioning is done in elf_m68k_partition_multi_got.  We start with
1294   an empty GOT and traverse bfd2got hashtable putting got_entries from
1295   local GOTs to the new 'big' one.  We do that by constructing an
1296   intermediate GOT holding all the entries the local GOT has and the big
1297   GOT lacks.  Then we check if there is room in the big GOT to accomodate
1298   all the entries from diff.  On success we add those entries to the big
1299   GOT; on failure we start the new 'big' GOT and retry the adding of
1300   entries from the local GOT.  Note that this retry will always succeed as
1301   each local GOT doesn't overflow the limits.  After partitioning we
1302   end up with each bfd assigned one of the big GOTs.  GOT entries in the
1303   big GOTs are initialized with GOT offsets.  Note that big GOTs are
1304   positioned consequently in program space and represent a single huge GOT
1305   to the outside world.
1306
1307   After that we get to elf_m68k_relocate_section.  There we
1308   adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1309   relocations to refer to appropriate [assigned to current input_bfd]
1310   big GOT.
1311
1312   Notes:
1313
1314   GOT entry type: We have several types of GOT entries.
1315   * R_8 type is used in entries for symbols that have at least one
1316   R_68K_GOT8O or R_68K_TLS_*8 relocation.  We can have at most 0x40
1317   such entries in one GOT.
1318   * R_16 type is used in entries for symbols that have at least one
1319   R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1320   We can have at most 0x4000 such entries in one GOT.
1321   * R_32 type is used in all other cases.  We can have as many
1322   such entries in one GOT as we'd like.
1323   When counting relocations we have to include the count of the smaller
1324   ranged relocations in the counts of the larger ranged ones in order
1325   to correctly detect overflow.
1326
1327   Sorting the GOT: In each GOT starting offsets are assigned to
1328   R_8 entries, which are followed by R_16 entries, and
1329   R_32 entries go at the end.  See finalize_got_offsets for details.
1330
1331   Negative GOT offsets: To double usable offset range of GOTs we use
1332   negative offsets.  As we assign entries with GOT offsets relative to
1333   start of .got section, the offset values are positive.  They become
1334   negative only in relocate_section where got->offset value is
1335   subtracted from them.
1336
1337   3 special GOT entries: There are 3 special GOT entries used internally
1338   by loader.  These entries happen to be placed to .got.plt section,
1339   so we don't do anything about them in multi-GOT support.
1340
1341   Memory management: All data except for hashtables
1342   multi_got->bfd2got and got->entries are allocated on
1343   elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1344   to most functions), so we don't need to care to free them.  At the
1345   moment of allocation hashtables are being linked into main data
1346   structure (multi_got), all pieces of which are reachable from
1347   elf_m68k_multi_got (info).  We deallocate them in
1348   elf_m68k_link_hash_table_free.  */
1349
1350/* Initialize GOT.  */
1351
1352static void
1353elf_m68k_init_got (struct elf_m68k_got *got)
1354{
1355  got->entries = NULL;
1356  got->n_slots[R_8] = 0;
1357  got->n_slots[R_16] = 0;
1358  got->n_slots[R_32] = 0;
1359  got->local_n_slots = 0;
1360  got->offset = (bfd_vma) -1;
1361}
1362
1363/* Destruct GOT.  */
1364
1365static void
1366elf_m68k_clear_got (struct elf_m68k_got *got)
1367{
1368  if (got->entries != NULL)
1369    {
1370      htab_delete (got->entries);
1371      got->entries = NULL;
1372    }
1373}
1374
1375/* Create and empty GOT structure.  INFO is the context where memory
1376   should be allocated.  */
1377
1378static struct elf_m68k_got *
1379elf_m68k_create_empty_got (struct bfd_link_info *info)
1380{
1381  struct elf_m68k_got *got;
1382
1383  got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1384  if (got == NULL)
1385    return NULL;
1386
1387  elf_m68k_init_got (got);
1388
1389  return got;
1390}
1391
1392/* Initialize KEY.  */
1393
1394static void
1395elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1396			     struct elf_link_hash_entry *h,
1397			     const bfd *abfd, unsigned long symndx,
1398			     enum elf_m68k_reloc_type reloc_type)
1399{
1400  if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1401    /* All TLS_LDM relocations share a single GOT entry.  */
1402    {
1403      key->bfd = NULL;
1404      key->symndx = 0;
1405    }
1406  else if (h != NULL)
1407    /* Global symbols are identified with their got_entry_key.  */
1408    {
1409      key->bfd = NULL;
1410      key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1411      BFD_ASSERT (key->symndx != 0);
1412    }
1413  else
1414    /* Local symbols are identified by BFD they appear in and symndx.  */
1415    {
1416      key->bfd = abfd;
1417      key->symndx = symndx;
1418    }
1419
1420  key->type = reloc_type;
1421}
1422
1423/* Calculate hash of got_entry.
1424   ??? Is it good?  */
1425
1426static hashval_t
1427elf_m68k_got_entry_hash (const void *_entry)
1428{
1429  const struct elf_m68k_got_entry_key *key;
1430
1431  key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1432
1433  return (key->symndx
1434	  + (key->bfd != NULL ? (int) key->bfd->id : -1)
1435	  + elf_m68k_reloc_got_type (key->type));
1436}
1437
1438/* Check if two got entries are equal.  */
1439
1440static int
1441elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1442{
1443  const struct elf_m68k_got_entry_key *key1;
1444  const struct elf_m68k_got_entry_key *key2;
1445
1446  key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1447  key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1448
1449  return (key1->bfd == key2->bfd
1450	  && key1->symndx == key2->symndx
1451	  && (elf_m68k_reloc_got_type (key1->type)
1452	      == elf_m68k_reloc_got_type (key2->type)));
1453}
1454
1455/* When using negative offsets, we allocate one extra R_8, one extra R_16
1456   and one extra R_32 slots to simplify handling of 2-slot entries during
1457   offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots.  */
1458
1459/* Maximal number of R_8 slots in a single GOT.  */
1460#define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO)		\
1461  (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p		\
1462   ? (0x40 - 1)							\
1463   : 0x20)
1464
1465/* Maximal number of R_8 and R_16 slots in a single GOT.  */
1466#define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO)		\
1467  (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p		\
1468   ? (0x4000 - 2)						\
1469   : 0x2000)
1470
1471/* SEARCH - simply search the hashtable, don't insert new entries or fail when
1472   the entry cannot be found.
1473   FIND_OR_CREATE - search for an existing entry, but create new if there's
1474   no such.
1475   MUST_FIND - search for an existing entry and assert that it exist.
1476   MUST_CREATE - assert that there's no such entry and create new one.  */
1477enum elf_m68k_get_entry_howto
1478  {
1479    SEARCH,
1480    FIND_OR_CREATE,
1481    MUST_FIND,
1482    MUST_CREATE
1483  };
1484
1485/* Get or create (depending on HOWTO) entry with KEY in GOT.
1486   INFO is context in which memory should be allocated (can be NULL if
1487   HOWTO is SEARCH or MUST_FIND).  */
1488
1489static struct elf_m68k_got_entry *
1490elf_m68k_get_got_entry (struct elf_m68k_got *got,
1491			const struct elf_m68k_got_entry_key *key,
1492			enum elf_m68k_get_entry_howto howto,
1493			struct bfd_link_info *info)
1494{
1495  struct elf_m68k_got_entry entry_;
1496  struct elf_m68k_got_entry *entry;
1497  void **ptr;
1498
1499  BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1500
1501  if (got->entries == NULL)
1502    /* This is the first entry in ABFD.  Initialize hashtable.  */
1503    {
1504      if (howto == SEARCH)
1505	return NULL;
1506
1507      got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1508				      (info),
1509				      elf_m68k_got_entry_hash,
1510				      elf_m68k_got_entry_eq, NULL);
1511      if (got->entries == NULL)
1512	{
1513	  bfd_set_error (bfd_error_no_memory);
1514	  return NULL;
1515	}
1516    }
1517
1518  entry_.key_ = *key;
1519  ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH
1520						? INSERT : NO_INSERT));
1521  if (ptr == NULL)
1522    {
1523      if (howto == SEARCH)
1524	/* Entry not found.  */
1525	return NULL;
1526
1527      /* We're out of memory.  */
1528      bfd_set_error (bfd_error_no_memory);
1529      return NULL;
1530    }
1531
1532  if (*ptr == NULL)
1533    /* We didn't find the entry and we're asked to create a new one.  */
1534    {
1535      BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1536
1537      entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1538      if (entry == NULL)
1539	return NULL;
1540
1541      /* Initialize new entry.  */
1542      entry->key_ = *key;
1543
1544      entry->u.s1.refcount = 0;
1545
1546      /* Mark the entry as not initialized.  */
1547      entry->key_.type = R_68K_max;
1548
1549      *ptr = entry;
1550    }
1551  else
1552    /* We found the entry.  */
1553    {
1554      BFD_ASSERT (howto != MUST_CREATE);
1555
1556      entry = *ptr;
1557    }
1558
1559  return entry;
1560}
1561
1562/* Update GOT counters when merging entry of WAS type with entry of NEW type.
1563   Return the value to which ENTRY's type should be set.  */
1564
1565static enum elf_m68k_reloc_type
1566elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1567				enum elf_m68k_reloc_type was,
1568				enum elf_m68k_reloc_type new_reloc)
1569{
1570  enum elf_m68k_got_offset_size was_size;
1571  enum elf_m68k_got_offset_size new_size;
1572  bfd_vma n_slots;
1573
1574  if (was == R_68K_max)
1575    /* The type of the entry is not initialized yet.  */
1576    {
1577      /* Update all got->n_slots counters, including n_slots[R_32].  */
1578      was_size = R_LAST;
1579
1580      was = new_reloc;
1581    }
1582  else
1583    {
1584      /* !!! We, probably, should emit an error rather then fail on assert
1585	 in such a case.  */
1586      BFD_ASSERT (elf_m68k_reloc_got_type (was)
1587		  == elf_m68k_reloc_got_type (new_reloc));
1588
1589      was_size = elf_m68k_reloc_got_offset_size (was);
1590    }
1591
1592  new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1593  n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
1594
1595  while (was_size > new_size)
1596    {
1597      --was_size;
1598      got->n_slots[was_size] += n_slots;
1599    }
1600
1601  if (new_reloc > was)
1602    /* Relocations are ordered from bigger got offset size to lesser,
1603       so choose the relocation type with lesser offset size.  */
1604    was = new_reloc;
1605
1606  return was;
1607}
1608
1609/* Update GOT counters when removing an entry of type TYPE.  */
1610
1611static void
1612elf_m68k_remove_got_entry_type (struct elf_m68k_got *got,
1613				enum elf_m68k_reloc_type type)
1614{
1615  enum elf_m68k_got_offset_size os;
1616  bfd_vma n_slots;
1617
1618  n_slots = elf_m68k_reloc_got_n_slots (type);
1619
1620  /* Decrese counter of slots with offset size corresponding to TYPE
1621     and all greater offset sizes.  */
1622  for (os = elf_m68k_reloc_got_offset_size (type); os <= R_32; ++os)
1623    {
1624      BFD_ASSERT (got->n_slots[os] >= n_slots);
1625
1626      got->n_slots[os] -= n_slots;
1627    }
1628}
1629
1630/* Add new or update existing entry to GOT.
1631   H, ABFD, TYPE and SYMNDX is data for the entry.
1632   INFO is a context where memory should be allocated.  */
1633
1634static struct elf_m68k_got_entry *
1635elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1636			   struct elf_link_hash_entry *h,
1637			   const bfd *abfd,
1638			   enum elf_m68k_reloc_type reloc_type,
1639			   unsigned long symndx,
1640			   struct bfd_link_info *info)
1641{
1642  struct elf_m68k_got_entry_key key_;
1643  struct elf_m68k_got_entry *entry;
1644
1645  if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1646    elf_m68k_hash_entry (h)->got_entry_key
1647      = elf_m68k_multi_got (info)->global_symndx++;
1648
1649  elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1650
1651  entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1652  if (entry == NULL)
1653    return NULL;
1654
1655  /* Determine entry's type and update got->n_slots counters.  */
1656  entry->key_.type = elf_m68k_update_got_entry_type (got,
1657						     entry->key_.type,
1658						     reloc_type);
1659
1660  /* Update refcount.  */
1661  ++entry->u.s1.refcount;
1662
1663  if (entry->u.s1.refcount == 1)
1664    /* We see this entry for the first time.  */
1665    {
1666      if (entry->key_.bfd != NULL)
1667	got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1668    }
1669
1670  BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1671
1672  if ((got->n_slots[R_8]
1673       > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1674      || (got->n_slots[R_16]
1675	  > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1676    /* This BFD has too many relocation.  */
1677    {
1678      if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1679	/* xgettext:c-format */
1680	_bfd_error_handler (_("%B: GOT overflow: "
1681			      "Number of relocations with 8-bit "
1682			      "offset > %d"),
1683			    abfd,
1684			    ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1685      else
1686	/* xgettext:c-format */
1687	_bfd_error_handler (_("%B: GOT overflow: "
1688			      "Number of relocations with 8- or 16-bit "
1689			      "offset > %d"),
1690			    abfd,
1691			    ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1692
1693      return NULL;
1694    }
1695
1696  return entry;
1697}
1698
1699/* Compute the hash value of the bfd in a bfd2got hash entry.  */
1700
1701static hashval_t
1702elf_m68k_bfd2got_entry_hash (const void *entry)
1703{
1704  const struct elf_m68k_bfd2got_entry *e;
1705
1706  e = (const struct elf_m68k_bfd2got_entry *) entry;
1707
1708  return e->bfd->id;
1709}
1710
1711/* Check whether two hash entries have the same bfd.  */
1712
1713static int
1714elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1715{
1716  const struct elf_m68k_bfd2got_entry *e1;
1717  const struct elf_m68k_bfd2got_entry *e2;
1718
1719  e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1720  e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1721
1722  return e1->bfd == e2->bfd;
1723}
1724
1725/* Destruct a bfd2got entry.  */
1726
1727static void
1728elf_m68k_bfd2got_entry_del (void *_entry)
1729{
1730  struct elf_m68k_bfd2got_entry *entry;
1731
1732  entry = (struct elf_m68k_bfd2got_entry *) _entry;
1733
1734  BFD_ASSERT (entry->got != NULL);
1735  elf_m68k_clear_got (entry->got);
1736}
1737
1738/* Find existing or create new (depending on HOWTO) bfd2got entry in
1739   MULTI_GOT.  ABFD is the bfd we need a GOT for.  INFO is a context where
1740   memory should be allocated.  */
1741
1742static struct elf_m68k_bfd2got_entry *
1743elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1744			    const bfd *abfd,
1745			    enum elf_m68k_get_entry_howto howto,
1746			    struct bfd_link_info *info)
1747{
1748  struct elf_m68k_bfd2got_entry entry_;
1749  void **ptr;
1750  struct elf_m68k_bfd2got_entry *entry;
1751
1752  BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1753
1754  if (multi_got->bfd2got == NULL)
1755    /* This is the first GOT.  Initialize bfd2got.  */
1756    {
1757      if (howto == SEARCH)
1758	return NULL;
1759
1760      multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1761					    elf_m68k_bfd2got_entry_eq,
1762					    elf_m68k_bfd2got_entry_del);
1763      if (multi_got->bfd2got == NULL)
1764	{
1765	  bfd_set_error (bfd_error_no_memory);
1766	  return NULL;
1767	}
1768    }
1769
1770  entry_.bfd = abfd;
1771  ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH
1772						      ? INSERT : NO_INSERT));
1773  if (ptr == NULL)
1774    {
1775      if (howto == SEARCH)
1776	/* Entry not found.  */
1777	return NULL;
1778
1779      /* We're out of memory.  */
1780      bfd_set_error (bfd_error_no_memory);
1781      return NULL;
1782    }
1783
1784  if (*ptr == NULL)
1785    /* Entry was not found.  Create new one.  */
1786    {
1787      BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1788
1789      entry = ((struct elf_m68k_bfd2got_entry *)
1790	       bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1791      if (entry == NULL)
1792	return NULL;
1793
1794      entry->bfd = abfd;
1795
1796      entry->got = elf_m68k_create_empty_got (info);
1797      if (entry->got == NULL)
1798	return NULL;
1799
1800      *ptr = entry;
1801    }
1802  else
1803    {
1804      BFD_ASSERT (howto != MUST_CREATE);
1805
1806      /* Return existing entry.  */
1807      entry = *ptr;
1808    }
1809
1810  return entry;
1811}
1812
1813struct elf_m68k_can_merge_gots_arg
1814{
1815  /* A current_got that we constructing a DIFF against.  */
1816  struct elf_m68k_got *big;
1817
1818  /* GOT holding entries not present or that should be changed in
1819     BIG.  */
1820  struct elf_m68k_got *diff;
1821
1822  /* Context where to allocate memory.  */
1823  struct bfd_link_info *info;
1824
1825  /* Error flag.  */
1826  bfd_boolean error_p;
1827};
1828
1829/* Process a single entry from the small GOT to see if it should be added
1830   or updated in the big GOT.  */
1831
1832static int
1833elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1834{
1835  const struct elf_m68k_got_entry *entry1;
1836  struct elf_m68k_can_merge_gots_arg *arg;
1837  const struct elf_m68k_got_entry *entry2;
1838  enum elf_m68k_reloc_type type;
1839
1840  entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1841  arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1842
1843  entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1844
1845  if (entry2 != NULL)
1846    /* We found an existing entry.  Check if we should update it.  */
1847    {
1848      type = elf_m68k_update_got_entry_type (arg->diff,
1849					     entry2->key_.type,
1850					     entry1->key_.type);
1851
1852      if (type == entry2->key_.type)
1853	/* ENTRY1 doesn't update data in ENTRY2.  Skip it.
1854	   To skip creation of difference entry we use the type,
1855	   which we won't see in GOT entries for sure.  */
1856	type = R_68K_max;
1857    }
1858  else
1859    /* We didn't find the entry.  Add entry1 to DIFF.  */
1860    {
1861      BFD_ASSERT (entry1->key_.type != R_68K_max);
1862
1863      type = elf_m68k_update_got_entry_type (arg->diff,
1864					     R_68K_max, entry1->key_.type);
1865
1866      if (entry1->key_.bfd != NULL)
1867	arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1868    }
1869
1870  if (type != R_68K_max)
1871    /* Create an entry in DIFF.  */
1872    {
1873      struct elf_m68k_got_entry *entry;
1874
1875      entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1876				      arg->info);
1877      if (entry == NULL)
1878	{
1879	  arg->error_p = TRUE;
1880	  return 0;
1881	}
1882
1883      entry->key_.type = type;
1884    }
1885
1886  return 1;
1887}
1888
1889/* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1890   Construct DIFF GOT holding the entries which should be added or updated
1891   in BIG GOT to accumulate information from SMALL.
1892   INFO is the context where memory should be allocated.  */
1893
1894static bfd_boolean
1895elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1896			 const struct elf_m68k_got *small,
1897			 struct bfd_link_info *info,
1898			 struct elf_m68k_got *diff)
1899{
1900  struct elf_m68k_can_merge_gots_arg arg_;
1901
1902  BFD_ASSERT (small->offset == (bfd_vma) -1);
1903
1904  arg_.big = big;
1905  arg_.diff = diff;
1906  arg_.info = info;
1907  arg_.error_p = FALSE;
1908  htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1909  if (arg_.error_p)
1910    {
1911      diff->offset = 0;
1912      return FALSE;
1913    }
1914
1915  /* Check for overflow.  */
1916  if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1917       > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1918      || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1919	  > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1920    return FALSE;
1921
1922  return TRUE;
1923}
1924
1925struct elf_m68k_merge_gots_arg
1926{
1927  /* The BIG got.  */
1928  struct elf_m68k_got *big;
1929
1930  /* Context where memory should be allocated.  */
1931  struct bfd_link_info *info;
1932
1933  /* Error flag.  */
1934  bfd_boolean error_p;
1935};
1936
1937/* Process a single entry from DIFF got.  Add or update corresponding
1938   entry in the BIG got.  */
1939
1940static int
1941elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1942{
1943  const struct elf_m68k_got_entry *from;
1944  struct elf_m68k_merge_gots_arg *arg;
1945  struct elf_m68k_got_entry *to;
1946
1947  from = (const struct elf_m68k_got_entry *) *entry_ptr;
1948  arg = (struct elf_m68k_merge_gots_arg *) _arg;
1949
1950  to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
1951			       arg->info);
1952  if (to == NULL)
1953    {
1954      arg->error_p = TRUE;
1955      return 0;
1956    }
1957
1958  BFD_ASSERT (to->u.s1.refcount == 0);
1959  /* All we need to merge is TYPE.  */
1960  to->key_.type = from->key_.type;
1961
1962  return 1;
1963}
1964
1965/* Merge data from DIFF to BIG.  INFO is context where memory should be
1966   allocated.  */
1967
1968static bfd_boolean
1969elf_m68k_merge_gots (struct elf_m68k_got *big,
1970		     struct elf_m68k_got *diff,
1971		     struct bfd_link_info *info)
1972{
1973  if (diff->entries != NULL)
1974    /* DIFF is not empty.  Merge it into BIG GOT.  */
1975    {
1976      struct elf_m68k_merge_gots_arg arg_;
1977
1978      /* Merge entries.  */
1979      arg_.big = big;
1980      arg_.info = info;
1981      arg_.error_p = FALSE;
1982      htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
1983      if (arg_.error_p)
1984	return FALSE;
1985
1986      /* Merge counters.  */
1987      big->n_slots[R_8] += diff->n_slots[R_8];
1988      big->n_slots[R_16] += diff->n_slots[R_16];
1989      big->n_slots[R_32] += diff->n_slots[R_32];
1990      big->local_n_slots += diff->local_n_slots;
1991    }
1992  else
1993    /* DIFF is empty.  */
1994    {
1995      BFD_ASSERT (diff->n_slots[R_8] == 0);
1996      BFD_ASSERT (diff->n_slots[R_16] == 0);
1997      BFD_ASSERT (diff->n_slots[R_32] == 0);
1998      BFD_ASSERT (diff->local_n_slots == 0);
1999    }
2000
2001  BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
2002	      || ((big->n_slots[R_8]
2003		   <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
2004		  && (big->n_slots[R_16]
2005		      <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
2006
2007  return TRUE;
2008}
2009
2010struct elf_m68k_finalize_got_offsets_arg
2011{
2012  /* Ranges of the offsets for GOT entries.
2013     R_x entries receive offsets between offset1[R_x] and offset2[R_x].
2014     R_x is R_8, R_16 and R_32.  */
2015  bfd_vma *offset1;
2016  bfd_vma *offset2;
2017
2018  /* Mapping from global symndx to global symbols.
2019     This is used to build lists of got entries for global symbols.  */
2020  struct elf_m68k_link_hash_entry **symndx2h;
2021
2022  bfd_vma n_ldm_entries;
2023};
2024
2025/* Assign ENTRY an offset.  Build list of GOT entries for global symbols
2026   along the way.  */
2027
2028static int
2029elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2030{
2031  struct elf_m68k_got_entry *entry;
2032  struct elf_m68k_finalize_got_offsets_arg *arg;
2033
2034  enum elf_m68k_got_offset_size got_offset_size;
2035  bfd_vma entry_size;
2036
2037  entry = (struct elf_m68k_got_entry *) *entry_ptr;
2038  arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2039
2040  /* This should be a fresh entry created in elf_m68k_can_merge_gots.  */
2041  BFD_ASSERT (entry->u.s1.refcount == 0);
2042
2043  /* Get GOT offset size for the entry .  */
2044  got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2045
2046  /* Calculate entry size in bytes.  */
2047  entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2048
2049  /* Check if we should switch to negative range of the offsets. */
2050  if (arg->offset1[got_offset_size] + entry_size
2051      > arg->offset2[got_offset_size])
2052    {
2053      /* Verify that this is the only switch to negative range for
2054	 got_offset_size.  If this assertion fails, then we've miscalculated
2055	 range for got_offset_size entries in
2056	 elf_m68k_finalize_got_offsets.  */
2057      BFD_ASSERT (arg->offset2[got_offset_size]
2058		  != arg->offset2[-(int) got_offset_size - 1]);
2059
2060      /* Switch.  */
2061      arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2062      arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2063
2064      /* Verify that now we have enough room for the entry.  */
2065      BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2066		  <= arg->offset2[got_offset_size]);
2067    }
2068
2069  /* Assign offset to entry.  */
2070  entry->u.s2.offset = arg->offset1[got_offset_size];
2071  arg->offset1[got_offset_size] += entry_size;
2072
2073  if (entry->key_.bfd == NULL)
2074    /* Hook up this entry into the list of got_entries of H.  */
2075    {
2076      struct elf_m68k_link_hash_entry *h;
2077
2078      h = arg->symndx2h[entry->key_.symndx];
2079      if (h != NULL)
2080	{
2081	  entry->u.s2.next = h->glist;
2082	  h->glist = entry;
2083	}
2084      else
2085	/* This should be the entry for TLS_LDM relocation then.  */
2086	{
2087	  BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2088		       == R_68K_TLS_LDM32)
2089		      && entry->key_.symndx == 0);
2090
2091	  ++arg->n_ldm_entries;
2092	}
2093    }
2094  else
2095    /* This entry is for local symbol.  */
2096    entry->u.s2.next = NULL;
2097
2098  return 1;
2099}
2100
2101/* Assign offsets within GOT.  USE_NEG_GOT_OFFSETS_P indicates if we
2102   should use negative offsets.
2103   Build list of GOT entries for global symbols along the way.
2104   SYMNDX2H is mapping from global symbol indices to actual
2105   global symbols.
2106   Return offset at which next GOT should start.  */
2107
2108static void
2109elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2110			       bfd_boolean use_neg_got_offsets_p,
2111			       struct elf_m68k_link_hash_entry **symndx2h,
2112			       bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2113{
2114  struct elf_m68k_finalize_got_offsets_arg arg_;
2115  bfd_vma offset1_[2 * R_LAST];
2116  bfd_vma offset2_[2 * R_LAST];
2117  int i;
2118  bfd_vma start_offset;
2119
2120  BFD_ASSERT (got->offset != (bfd_vma) -1);
2121
2122  /* We set entry offsets relative to the .got section (and not the
2123     start of a particular GOT), so that we can use them in
2124     finish_dynamic_symbol without needing to know the GOT which they come
2125     from.  */
2126
2127  /* Put offset1 in the middle of offset1_, same for offset2.  */
2128  arg_.offset1 = offset1_ + R_LAST;
2129  arg_.offset2 = offset2_ + R_LAST;
2130
2131  start_offset = got->offset;
2132
2133  if (use_neg_got_offsets_p)
2134    /* Setup both negative and positive ranges for R_8, R_16 and R_32.  */
2135    i = -(int) R_32 - 1;
2136  else
2137    /* Setup positives ranges for R_8, R_16 and R_32.  */
2138    i = (int) R_8;
2139
2140  for (; i <= (int) R_32; ++i)
2141    {
2142      int j;
2143      size_t n;
2144
2145      /* Set beginning of the range of offsets I.  */
2146      arg_.offset1[i] = start_offset;
2147
2148      /* Calculate number of slots that require I offsets.  */
2149      j = (i >= 0) ? i : -i - 1;
2150      n = (j >= 1) ? got->n_slots[j - 1] : 0;
2151      n = got->n_slots[j] - n;
2152
2153      if (use_neg_got_offsets_p && n != 0)
2154	{
2155	  if (i < 0)
2156	    /* We first fill the positive side of the range, so we might
2157	       end up with one empty slot at that side when we can't fit
2158	       whole 2-slot entry.  Account for that at negative side of
2159	       the interval with one additional entry.  */
2160	    n = n / 2 + 1;
2161	  else
2162	    /* When the number of slots is odd, make positive side of the
2163	       range one entry bigger.  */
2164	    n = (n + 1) / 2;
2165	}
2166
2167      /* N is the number of slots that require I offsets.
2168	 Calculate length of the range for I offsets.  */
2169      n = 4 * n;
2170
2171      /* Set end of the range.  */
2172      arg_.offset2[i] = start_offset + n;
2173
2174      start_offset = arg_.offset2[i];
2175    }
2176
2177  if (!use_neg_got_offsets_p)
2178    /* Make sure that if we try to switch to negative offsets in
2179       elf_m68k_finalize_got_offsets_1, the assert therein will catch
2180       the bug.  */
2181    for (i = R_8; i <= R_32; ++i)
2182      arg_.offset2[-i - 1] = arg_.offset2[i];
2183
2184  /* Setup got->offset.  offset1[R_8] is either in the middle or at the
2185     beginning of GOT depending on use_neg_got_offsets_p.  */
2186  got->offset = arg_.offset1[R_8];
2187
2188  arg_.symndx2h = symndx2h;
2189  arg_.n_ldm_entries = 0;
2190
2191  /* Assign offsets.  */
2192  htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2193
2194  /* Check offset ranges we have actually assigned.  */
2195  for (i = (int) R_8; i <= (int) R_32; ++i)
2196    BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2197
2198  *final_offset = start_offset;
2199  *n_ldm_entries = arg_.n_ldm_entries;
2200}
2201
2202struct elf_m68k_partition_multi_got_arg
2203{
2204  /* The GOT we are adding entries to.  Aka big got.  */
2205  struct elf_m68k_got *current_got;
2206
2207  /* Offset to assign the next CURRENT_GOT.  */
2208  bfd_vma offset;
2209
2210  /* Context where memory should be allocated.  */
2211  struct bfd_link_info *info;
2212
2213  /* Total number of slots in the .got section.
2214     This is used to calculate size of the .got and .rela.got sections.  */
2215  bfd_vma n_slots;
2216
2217  /* Difference in numbers of allocated slots in the .got section
2218     and necessary relocations in the .rela.got section.
2219     This is used to calculate size of the .rela.got section.  */
2220  bfd_vma slots_relas_diff;
2221
2222  /* Error flag.  */
2223  bfd_boolean error_p;
2224
2225  /* Mapping from global symndx to global symbols.
2226     This is used to build lists of got entries for global symbols.  */
2227  struct elf_m68k_link_hash_entry **symndx2h;
2228};
2229
2230static void
2231elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2232{
2233  bfd_vma n_ldm_entries;
2234
2235  elf_m68k_finalize_got_offsets (arg->current_got,
2236				 (elf_m68k_hash_table (arg->info)
2237				  ->use_neg_got_offsets_p),
2238				 arg->symndx2h,
2239				 &arg->offset, &n_ldm_entries);
2240
2241  arg->n_slots += arg->current_got->n_slots[R_32];
2242
2243  if (!bfd_link_pic (arg->info))
2244    /* If we are generating a shared object, we need to
2245       output a R_68K_RELATIVE reloc so that the dynamic
2246       linker can adjust this GOT entry.  Overwise we
2247       don't need space in .rela.got for local symbols.  */
2248    arg->slots_relas_diff += arg->current_got->local_n_slots;
2249
2250  /* @LDM relocations require a 2-slot GOT entry, but only
2251     one relocation.  Account for that.  */
2252  arg->slots_relas_diff += n_ldm_entries;
2253
2254  BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2255}
2256
2257
2258/* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2259   or start a new CURRENT_GOT.  */
2260
2261static int
2262elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2263{
2264  struct elf_m68k_bfd2got_entry *entry;
2265  struct elf_m68k_partition_multi_got_arg *arg;
2266  struct elf_m68k_got *got;
2267  struct elf_m68k_got diff_;
2268  struct elf_m68k_got *diff;
2269
2270  entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2271  arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2272
2273  got = entry->got;
2274  BFD_ASSERT (got != NULL);
2275  BFD_ASSERT (got->offset == (bfd_vma) -1);
2276
2277  diff = NULL;
2278
2279  if (arg->current_got != NULL)
2280    /* Construct diff.  */
2281    {
2282      diff = &diff_;
2283      elf_m68k_init_got (diff);
2284
2285      if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2286	{
2287	  if (diff->offset == 0)
2288	    /* Offset set to 0 in the diff_ indicates an error.  */
2289	    {
2290	      arg->error_p = TRUE;
2291	      goto final_return;
2292	    }
2293
2294	  if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2295	    {
2296	      elf_m68k_clear_got (diff);
2297	      /* Schedule to finish up current_got and start new one.  */
2298	      diff = NULL;
2299	    }
2300	  /* else
2301	     Merge GOTs no matter what.  If big GOT overflows,
2302	     we'll fail in relocate_section due to truncated relocations.
2303
2304	     ??? May be fail earlier?  E.g., in can_merge_gots.  */
2305	}
2306    }
2307  else
2308    /* Diff of got against empty current_got is got itself.  */
2309    {
2310      /* Create empty current_got to put subsequent GOTs to.  */
2311      arg->current_got = elf_m68k_create_empty_got (arg->info);
2312      if (arg->current_got == NULL)
2313	{
2314	  arg->error_p = TRUE;
2315	  goto final_return;
2316	}
2317
2318      arg->current_got->offset = arg->offset;
2319
2320      diff = got;
2321    }
2322
2323  if (diff != NULL)
2324    {
2325      if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2326	{
2327	  arg->error_p = TRUE;
2328	  goto final_return;
2329	}
2330
2331      /* Now we can free GOT.  */
2332      elf_m68k_clear_got (got);
2333
2334      entry->got = arg->current_got;
2335    }
2336  else
2337    {
2338      /* Finish up current_got.  */
2339      elf_m68k_partition_multi_got_2 (arg);
2340
2341      /* Schedule to start a new current_got.  */
2342      arg->current_got = NULL;
2343
2344      /* Retry.  */
2345      if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2346	{
2347	  BFD_ASSERT (arg->error_p);
2348	  goto final_return;
2349	}
2350    }
2351
2352 final_return:
2353  if (diff != NULL)
2354    elf_m68k_clear_got (diff);
2355
2356  return arg->error_p == FALSE ? 1 : 0;
2357}
2358
2359/* Helper function to build symndx2h mapping.  */
2360
2361static bfd_boolean
2362elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2363			  void *_arg)
2364{
2365  struct elf_m68k_link_hash_entry *h;
2366
2367  h = elf_m68k_hash_entry (_h);
2368
2369  if (h->got_entry_key != 0)
2370    /* H has at least one entry in the GOT.  */
2371    {
2372      struct elf_m68k_partition_multi_got_arg *arg;
2373
2374      arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2375
2376      BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2377      arg->symndx2h[h->got_entry_key] = h;
2378    }
2379
2380  return TRUE;
2381}
2382
2383/* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2384   lists of GOT entries for global symbols.
2385   Calculate sizes of .got and .rela.got sections.  */
2386
2387static bfd_boolean
2388elf_m68k_partition_multi_got (struct bfd_link_info *info)
2389{
2390  struct elf_m68k_multi_got *multi_got;
2391  struct elf_m68k_partition_multi_got_arg arg_;
2392
2393  multi_got = elf_m68k_multi_got (info);
2394
2395  arg_.current_got = NULL;
2396  arg_.offset = 0;
2397  arg_.info = info;
2398  arg_.n_slots = 0;
2399  arg_.slots_relas_diff = 0;
2400  arg_.error_p = FALSE;
2401
2402  if (multi_got->bfd2got != NULL)
2403    {
2404      /* Initialize symndx2h mapping.  */
2405      {
2406	arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2407				     * sizeof (*arg_.symndx2h));
2408	if (arg_.symndx2h == NULL)
2409	  return FALSE;
2410
2411	elf_link_hash_traverse (elf_hash_table (info),
2412				elf_m68k_init_symndx2h_1, &arg_);
2413      }
2414
2415      /* Partition.  */
2416      htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2417		     &arg_);
2418      if (arg_.error_p)
2419	{
2420	  free (arg_.symndx2h);
2421	  arg_.symndx2h = NULL;
2422
2423	  return FALSE;
2424	}
2425
2426      /* Finish up last current_got.  */
2427      elf_m68k_partition_multi_got_2 (&arg_);
2428
2429      free (arg_.symndx2h);
2430    }
2431
2432  if (elf_hash_table (info)->dynobj != NULL)
2433    /* Set sizes of .got and .rela.got sections.  */
2434    {
2435      asection *s;
2436
2437      s = elf_hash_table (info)->sgot;
2438      if (s != NULL)
2439	s->size = arg_.offset;
2440      else
2441	BFD_ASSERT (arg_.offset == 0);
2442
2443      BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2444      arg_.n_slots -= arg_.slots_relas_diff;
2445
2446      s = elf_hash_table (info)->srelgot;
2447      if (s != NULL)
2448	s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2449      else
2450	BFD_ASSERT (arg_.n_slots == 0);
2451    }
2452  else
2453    BFD_ASSERT (multi_got->bfd2got == NULL);
2454
2455  return TRUE;
2456}
2457
2458/* Specialized version of elf_m68k_get_got_entry that returns pointer
2459   to hashtable slot, thus allowing removal of entry via
2460   elf_m68k_remove_got_entry.  */
2461
2462static struct elf_m68k_got_entry **
2463elf_m68k_find_got_entry_ptr (struct elf_m68k_got *got,
2464			     struct elf_m68k_got_entry_key *key)
2465{
2466  void **ptr;
2467  struct elf_m68k_got_entry entry_;
2468  struct elf_m68k_got_entry **entry_ptr;
2469
2470  entry_.key_ = *key;
2471  ptr = htab_find_slot (got->entries, &entry_, NO_INSERT);
2472  BFD_ASSERT (ptr != NULL);
2473
2474  entry_ptr = (struct elf_m68k_got_entry **) ptr;
2475
2476  return entry_ptr;
2477}
2478
2479/* Remove entry pointed to by ENTRY_PTR from GOT.  */
2480
2481static void
2482elf_m68k_remove_got_entry (struct elf_m68k_got *got,
2483			   struct elf_m68k_got_entry **entry_ptr)
2484{
2485  struct elf_m68k_got_entry *entry;
2486
2487  entry = *entry_ptr;
2488
2489  /* Check that offsets have not been finalized yet.  */
2490  BFD_ASSERT (got->offset == (bfd_vma) -1);
2491  /* Check that this entry is indeed unused.  */
2492  BFD_ASSERT (entry->u.s1.refcount == 0);
2493
2494  elf_m68k_remove_got_entry_type (got, entry->key_.type);
2495
2496  if (entry->key_.bfd != NULL)
2497    got->local_n_slots -= elf_m68k_reloc_got_n_slots (entry->key_.type);
2498
2499  BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
2500
2501  htab_clear_slot (got->entries, (void **) entry_ptr);
2502}
2503
2504/* Copy any information related to dynamic linking from a pre-existing
2505   symbol to a newly created symbol.  Also called to copy flags and
2506   other back-end info to a weakdef, in which case the symbol is not
2507   newly created and plt/got refcounts and dynamic indices should not
2508   be copied.  */
2509
2510static void
2511elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2512			       struct elf_link_hash_entry *_dir,
2513			       struct elf_link_hash_entry *_ind)
2514{
2515  struct elf_m68k_link_hash_entry *dir;
2516  struct elf_m68k_link_hash_entry *ind;
2517
2518  _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2519
2520  if (_ind->root.type != bfd_link_hash_indirect)
2521    return;
2522
2523  dir = elf_m68k_hash_entry (_dir);
2524  ind = elf_m68k_hash_entry (_ind);
2525
2526  /* Any absolute non-dynamic relocations against an indirect or weak
2527     definition will be against the target symbol.  */
2528  _dir->non_got_ref |= _ind->non_got_ref;
2529
2530  /* We might have a direct symbol already having entries in the GOTs.
2531     Update its key only in case indirect symbol has GOT entries and
2532     assert that both indirect and direct symbols don't have GOT entries
2533     at the same time.  */
2534  if (ind->got_entry_key != 0)
2535    {
2536      BFD_ASSERT (dir->got_entry_key == 0);
2537      /* Assert that GOTs aren't partioned yet.  */
2538      BFD_ASSERT (ind->glist == NULL);
2539
2540      dir->got_entry_key = ind->got_entry_key;
2541      ind->got_entry_key = 0;
2542    }
2543}
2544
2545/* Look through the relocs for a section during the first phase, and
2546   allocate space in the global offset table or procedure linkage
2547   table.  */
2548
2549static bfd_boolean
2550elf_m68k_check_relocs (bfd *abfd,
2551		       struct bfd_link_info *info,
2552		       asection *sec,
2553		       const Elf_Internal_Rela *relocs)
2554{
2555  bfd *dynobj;
2556  Elf_Internal_Shdr *symtab_hdr;
2557  struct elf_link_hash_entry **sym_hashes;
2558  const Elf_Internal_Rela *rel;
2559  const Elf_Internal_Rela *rel_end;
2560  asection *sreloc;
2561  struct elf_m68k_got *got;
2562
2563  if (bfd_link_relocatable (info))
2564    return TRUE;
2565
2566  dynobj = elf_hash_table (info)->dynobj;
2567  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2568  sym_hashes = elf_sym_hashes (abfd);
2569
2570  sreloc = NULL;
2571
2572  got = NULL;
2573
2574  rel_end = relocs + sec->reloc_count;
2575  for (rel = relocs; rel < rel_end; rel++)
2576    {
2577      unsigned long r_symndx;
2578      struct elf_link_hash_entry *h;
2579
2580      r_symndx = ELF32_R_SYM (rel->r_info);
2581
2582      if (r_symndx < symtab_hdr->sh_info)
2583	h = NULL;
2584      else
2585	{
2586	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2587	  while (h->root.type == bfd_link_hash_indirect
2588		 || h->root.type == bfd_link_hash_warning)
2589	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2590
2591	  /* PR15323, ref flags aren't set for references in the same
2592	     object.  */
2593	  h->root.non_ir_ref = 1;
2594	}
2595
2596      switch (ELF32_R_TYPE (rel->r_info))
2597	{
2598	case R_68K_GOT8:
2599	case R_68K_GOT16:
2600	case R_68K_GOT32:
2601	  if (h != NULL
2602	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2603	    break;
2604	  /* Fall through.  */
2605
2606	  /* Relative GOT relocations.  */
2607	case R_68K_GOT8O:
2608	case R_68K_GOT16O:
2609	case R_68K_GOT32O:
2610	  /* Fall through.  */
2611
2612	  /* TLS relocations.  */
2613	case R_68K_TLS_GD8:
2614	case R_68K_TLS_GD16:
2615	case R_68K_TLS_GD32:
2616	case R_68K_TLS_LDM8:
2617	case R_68K_TLS_LDM16:
2618	case R_68K_TLS_LDM32:
2619	case R_68K_TLS_IE8:
2620	case R_68K_TLS_IE16:
2621	case R_68K_TLS_IE32:
2622
2623	case R_68K_TLS_TPREL32:
2624	case R_68K_TLS_DTPREL32:
2625
2626	  if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
2627	      && bfd_link_pic (info))
2628	    /* Do the special chorus for libraries with static TLS.  */
2629	    info->flags |= DF_STATIC_TLS;
2630
2631	  /* This symbol requires a global offset table entry.  */
2632
2633	  if (dynobj == NULL)
2634	    {
2635	      /* Create the .got section.  */
2636	      elf_hash_table (info)->dynobj = dynobj = abfd;
2637	      if (!_bfd_elf_create_got_section (dynobj, info))
2638		return FALSE;
2639	    }
2640
2641	  if (got == NULL)
2642	    {
2643	      struct elf_m68k_bfd2got_entry *bfd2got_entry;
2644
2645	      bfd2got_entry
2646		= elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2647					      abfd, FIND_OR_CREATE, info);
2648	      if (bfd2got_entry == NULL)
2649		return FALSE;
2650
2651	      got = bfd2got_entry->got;
2652	      BFD_ASSERT (got != NULL);
2653	    }
2654
2655	  {
2656	    struct elf_m68k_got_entry *got_entry;
2657
2658	    /* Add entry to got.  */
2659	    got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2660						   ELF32_R_TYPE (rel->r_info),
2661						   r_symndx, info);
2662	    if (got_entry == NULL)
2663	      return FALSE;
2664
2665	    if (got_entry->u.s1.refcount == 1)
2666	      {
2667		/* Make sure this symbol is output as a dynamic symbol.  */
2668		if (h != NULL
2669		    && h->dynindx == -1
2670		    && !h->forced_local)
2671		  {
2672		    if (!bfd_elf_link_record_dynamic_symbol (info, h))
2673		      return FALSE;
2674		  }
2675	      }
2676	  }
2677
2678	  break;
2679
2680	case R_68K_PLT8:
2681	case R_68K_PLT16:
2682	case R_68K_PLT32:
2683	  /* This symbol requires a procedure linkage table entry.  We
2684	     actually build the entry in adjust_dynamic_symbol,
2685             because this might be a case of linking PIC code which is
2686             never referenced by a dynamic object, in which case we
2687             don't need to generate a procedure linkage table entry
2688             after all.  */
2689
2690	  /* If this is a local symbol, we resolve it directly without
2691	     creating a procedure linkage table entry.  */
2692	  if (h == NULL)
2693	    continue;
2694
2695	  h->needs_plt = 1;
2696	  h->plt.refcount++;
2697	  break;
2698
2699	case R_68K_PLT8O:
2700	case R_68K_PLT16O:
2701	case R_68K_PLT32O:
2702	  /* This symbol requires a procedure linkage table entry.  */
2703
2704	  if (h == NULL)
2705	    {
2706	      /* It does not make sense to have this relocation for a
2707		 local symbol.  FIXME: does it?  How to handle it if
2708		 it does make sense?  */
2709	      bfd_set_error (bfd_error_bad_value);
2710	      return FALSE;
2711	    }
2712
2713	  /* Make sure this symbol is output as a dynamic symbol.  */
2714	  if (h->dynindx == -1
2715	      && !h->forced_local)
2716	    {
2717	      if (!bfd_elf_link_record_dynamic_symbol (info, h))
2718		return FALSE;
2719	    }
2720
2721	  h->needs_plt = 1;
2722	  h->plt.refcount++;
2723	  break;
2724
2725	case R_68K_PC8:
2726	case R_68K_PC16:
2727	case R_68K_PC32:
2728	  /* If we are creating a shared library and this is not a local
2729	     symbol, we need to copy the reloc into the shared library.
2730	     However when linking with -Bsymbolic and this is a global
2731	     symbol which is defined in an object we are including in the
2732	     link (i.e., DEF_REGULAR is set), then we can resolve the
2733	     reloc directly.  At this point we have not seen all the input
2734	     files, so it is possible that DEF_REGULAR is not set now but
2735	     will be set later (it is never cleared).  We account for that
2736	     possibility below by storing information in the
2737	     pcrel_relocs_copied field of the hash table entry.  */
2738	  if (!(bfd_link_pic (info)
2739		&& (sec->flags & SEC_ALLOC) != 0
2740		&& h != NULL
2741		&& (!SYMBOLIC_BIND (info, h)
2742		    || h->root.type == bfd_link_hash_defweak
2743		    || !h->def_regular)))
2744	    {
2745	      if (h != NULL)
2746		{
2747		  /* Make sure a plt entry is created for this symbol if
2748		     it turns out to be a function defined by a dynamic
2749		     object.  */
2750		  h->plt.refcount++;
2751		}
2752	      break;
2753	    }
2754	  /* Fall through.  */
2755	case R_68K_8:
2756	case R_68K_16:
2757	case R_68K_32:
2758	  /* We don't need to handle relocs into sections not going into
2759	     the "real" output.  */
2760	  if ((sec->flags & SEC_ALLOC) == 0)
2761	      break;
2762
2763	  if (h != NULL)
2764	    {
2765	      /* Make sure a plt entry is created for this symbol if it
2766		 turns out to be a function defined by a dynamic object.  */
2767	      h->plt.refcount++;
2768
2769	      if (bfd_link_executable (info))
2770		/* This symbol needs a non-GOT reference.  */
2771		h->non_got_ref = 1;
2772	    }
2773
2774	  /* If we are creating a shared library, we need to copy the
2775	     reloc into the shared library.  */
2776	  if (bfd_link_pic (info))
2777	    {
2778	      /* When creating a shared object, we must copy these
2779		 reloc types into the output file.  We create a reloc
2780		 section in dynobj and make room for this reloc.  */
2781	      if (sreloc == NULL)
2782		{
2783		  sreloc = _bfd_elf_make_dynamic_reloc_section
2784		    (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
2785
2786		  if (sreloc == NULL)
2787		    return FALSE;
2788		}
2789
2790	      if (sec->flags & SEC_READONLY
2791		  /* Don't set DF_TEXTREL yet for PC relative
2792		     relocations, they might be discarded later.  */
2793		  && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2794		       || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2795		       || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2796		    info->flags |= DF_TEXTREL;
2797
2798	      sreloc->size += sizeof (Elf32_External_Rela);
2799
2800	      /* We count the number of PC relative relocations we have
2801		 entered for this symbol, so that we can discard them
2802		 again if, in the -Bsymbolic case, the symbol is later
2803		 defined by a regular object, or, in the normal shared
2804		 case, the symbol is forced to be local.  Note that this
2805		 function is only called if we are using an m68kelf linker
2806		 hash table, which means that h is really a pointer to an
2807		 elf_m68k_link_hash_entry.  */
2808	      if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2809		  || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2810		  || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2811		{
2812		  struct elf_m68k_pcrel_relocs_copied *p;
2813		  struct elf_m68k_pcrel_relocs_copied **head;
2814
2815		  if (h != NULL)
2816		    {
2817		      struct elf_m68k_link_hash_entry *eh
2818			= elf_m68k_hash_entry (h);
2819		      head = &eh->pcrel_relocs_copied;
2820		    }
2821		  else
2822		    {
2823		      asection *s;
2824		      void *vpp;
2825		      Elf_Internal_Sym *isym;
2826
2827		      isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache,
2828						    abfd, r_symndx);
2829		      if (isym == NULL)
2830			return FALSE;
2831
2832		      s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2833		      if (s == NULL)
2834			s = sec;
2835
2836		      vpp = &elf_section_data (s)->local_dynrel;
2837		      head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2838		    }
2839
2840		  for (p = *head; p != NULL; p = p->next)
2841		    if (p->section == sreloc)
2842		      break;
2843
2844		  if (p == NULL)
2845		    {
2846		      p = ((struct elf_m68k_pcrel_relocs_copied *)
2847			   bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2848		      if (p == NULL)
2849			return FALSE;
2850		      p->next = *head;
2851		      *head = p;
2852		      p->section = sreloc;
2853		      p->count = 0;
2854		    }
2855
2856		  ++p->count;
2857		}
2858	    }
2859
2860	  break;
2861
2862	  /* This relocation describes the C++ object vtable hierarchy.
2863	     Reconstruct it for later use during GC.  */
2864	case R_68K_GNU_VTINHERIT:
2865	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2866	    return FALSE;
2867	  break;
2868
2869	  /* This relocation describes which C++ vtable entries are actually
2870	     used.  Record for later use during GC.  */
2871	case R_68K_GNU_VTENTRY:
2872	  BFD_ASSERT (h != NULL);
2873	  if (h != NULL
2874	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2875	    return FALSE;
2876	  break;
2877
2878	default:
2879	  break;
2880	}
2881    }
2882
2883  return TRUE;
2884}
2885
2886/* Return the section that should be marked against GC for a given
2887   relocation.  */
2888
2889static asection *
2890elf_m68k_gc_mark_hook (asection *sec,
2891		       struct bfd_link_info *info,
2892		       Elf_Internal_Rela *rel,
2893		       struct elf_link_hash_entry *h,
2894		       Elf_Internal_Sym *sym)
2895{
2896  if (h != NULL)
2897    switch (ELF32_R_TYPE (rel->r_info))
2898      {
2899      case R_68K_GNU_VTINHERIT:
2900      case R_68K_GNU_VTENTRY:
2901	return NULL;
2902      }
2903
2904  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2905}
2906
2907/* Update the got entry reference counts for the section being removed.  */
2908
2909static bfd_boolean
2910elf_m68k_gc_sweep_hook (bfd *abfd,
2911			struct bfd_link_info *info,
2912			asection *sec,
2913			const Elf_Internal_Rela *relocs)
2914{
2915  Elf_Internal_Shdr *symtab_hdr;
2916  struct elf_link_hash_entry **sym_hashes;
2917  const Elf_Internal_Rela *rel, *relend;
2918  bfd *dynobj;
2919  struct elf_m68k_got *got;
2920
2921  if (bfd_link_relocatable (info))
2922    return TRUE;
2923
2924  dynobj = elf_hash_table (info)->dynobj;
2925  if (dynobj == NULL)
2926    return TRUE;
2927
2928  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2929  sym_hashes = elf_sym_hashes (abfd);
2930  got = NULL;
2931
2932  relend = relocs + sec->reloc_count;
2933  for (rel = relocs; rel < relend; rel++)
2934    {
2935      unsigned long r_symndx;
2936      struct elf_link_hash_entry *h = NULL;
2937
2938      r_symndx = ELF32_R_SYM (rel->r_info);
2939      if (r_symndx >= symtab_hdr->sh_info)
2940	{
2941	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2942	  while (h->root.type == bfd_link_hash_indirect
2943		 || h->root.type == bfd_link_hash_warning)
2944	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2945	}
2946
2947      switch (ELF32_R_TYPE (rel->r_info))
2948	{
2949	case R_68K_GOT8:
2950	case R_68K_GOT16:
2951	case R_68K_GOT32:
2952	  if (h != NULL
2953	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2954	    break;
2955
2956	  /* FALLTHRU */
2957	case R_68K_GOT8O:
2958	case R_68K_GOT16O:
2959	case R_68K_GOT32O:
2960	  /* Fall through.  */
2961
2962	  /* TLS relocations.  */
2963	case R_68K_TLS_GD8:
2964	case R_68K_TLS_GD16:
2965	case R_68K_TLS_GD32:
2966	case R_68K_TLS_LDM8:
2967	case R_68K_TLS_LDM16:
2968	case R_68K_TLS_LDM32:
2969	case R_68K_TLS_IE8:
2970	case R_68K_TLS_IE16:
2971	case R_68K_TLS_IE32:
2972
2973	case R_68K_TLS_TPREL32:
2974	case R_68K_TLS_DTPREL32:
2975
2976	  if (got == NULL)
2977	    {
2978	      got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2979						abfd, MUST_FIND, NULL)->got;
2980	      BFD_ASSERT (got != NULL);
2981	    }
2982
2983	  {
2984	    struct elf_m68k_got_entry_key key_;
2985	    struct elf_m68k_got_entry **got_entry_ptr;
2986	    struct elf_m68k_got_entry *got_entry;
2987
2988	    elf_m68k_init_got_entry_key (&key_, h, abfd, r_symndx,
2989					 ELF32_R_TYPE (rel->r_info));
2990	    got_entry_ptr = elf_m68k_find_got_entry_ptr (got, &key_);
2991
2992	    got_entry = *got_entry_ptr;
2993
2994	    if (got_entry->u.s1.refcount > 0)
2995	      {
2996		--got_entry->u.s1.refcount;
2997
2998		if (got_entry->u.s1.refcount == 0)
2999		  /* We don't need the .got entry any more.  */
3000		  elf_m68k_remove_got_entry (got, got_entry_ptr);
3001	      }
3002	  }
3003	  break;
3004
3005	case R_68K_PLT8:
3006	case R_68K_PLT16:
3007	case R_68K_PLT32:
3008	case R_68K_PLT8O:
3009	case R_68K_PLT16O:
3010	case R_68K_PLT32O:
3011	case R_68K_PC8:
3012	case R_68K_PC16:
3013	case R_68K_PC32:
3014	case R_68K_8:
3015	case R_68K_16:
3016	case R_68K_32:
3017	  if (h != NULL)
3018	    {
3019	      if (h->plt.refcount > 0)
3020		--h->plt.refcount;
3021	    }
3022	  break;
3023
3024	default:
3025	  break;
3026	}
3027    }
3028
3029  return TRUE;
3030}
3031
3032/* Return the type of PLT associated with OUTPUT_BFD.  */
3033
3034static const struct elf_m68k_plt_info *
3035elf_m68k_get_plt_info (bfd *output_bfd)
3036{
3037  unsigned int features;
3038
3039  features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
3040  if (features & cpu32)
3041    return &elf_cpu32_plt_info;
3042  if (features & mcfisa_b)
3043    return &elf_isab_plt_info;
3044  if (features & mcfisa_c)
3045    return &elf_isac_plt_info;
3046  return &elf_m68k_plt_info;
3047}
3048
3049/* This function is called after all the input files have been read,
3050   and the input sections have been assigned to output sections.
3051   It's a convenient place to determine the PLT style.  */
3052
3053static bfd_boolean
3054elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
3055{
3056  /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
3057     sections.  */
3058  if (!elf_m68k_partition_multi_got (info))
3059    return FALSE;
3060
3061  elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
3062  return TRUE;
3063}
3064
3065/* Adjust a symbol defined by a dynamic object and referenced by a
3066   regular object.  The current definition is in some section of the
3067   dynamic object, but we're not including those sections.  We have to
3068   change the definition to something the rest of the link can
3069   understand.  */
3070
3071static bfd_boolean
3072elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info,
3073				struct elf_link_hash_entry *h)
3074{
3075  struct elf_m68k_link_hash_table *htab;
3076  bfd *dynobj;
3077  asection *s;
3078
3079  htab = elf_m68k_hash_table (info);
3080  dynobj = htab->root.dynobj;
3081
3082  /* Make sure we know what is going on here.  */
3083  BFD_ASSERT (dynobj != NULL
3084	      && (h->needs_plt
3085		  || h->u.weakdef != NULL
3086		  || (h->def_dynamic
3087		      && h->ref_regular
3088		      && !h->def_regular)));
3089
3090  /* If this is a function, put it in the procedure linkage table.  We
3091     will fill in the contents of the procedure linkage table later,
3092     when we know the address of the .got section.  */
3093  if (h->type == STT_FUNC
3094      || h->needs_plt)
3095    {
3096      if ((h->plt.refcount <= 0
3097           || SYMBOL_CALLS_LOCAL (info, h)
3098	   || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3099	       && h->root.type == bfd_link_hash_undefweak))
3100	  /* We must always create the plt entry if it was referenced
3101	     by a PLTxxO relocation.  In this case we already recorded
3102	     it as a dynamic symbol.  */
3103	  && h->dynindx == -1)
3104	{
3105	  /* This case can occur if we saw a PLTxx reloc in an input
3106	     file, but the symbol was never referred to by a dynamic
3107	     object, or if all references were garbage collected.  In
3108	     such a case, we don't actually need to build a procedure
3109	     linkage table, and we can just do a PCxx reloc instead.  */
3110	  h->plt.offset = (bfd_vma) -1;
3111	  h->needs_plt = 0;
3112	  return TRUE;
3113	}
3114
3115      /* Make sure this symbol is output as a dynamic symbol.  */
3116      if (h->dynindx == -1
3117	  && !h->forced_local)
3118	{
3119	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
3120	    return FALSE;
3121	}
3122
3123      s = htab->root.splt;
3124      BFD_ASSERT (s != NULL);
3125
3126      /* If this is the first .plt entry, make room for the special
3127	 first entry.  */
3128      if (s->size == 0)
3129	s->size = htab->plt_info->size;
3130
3131      /* If this symbol is not defined in a regular file, and we are
3132	 not generating a shared library, then set the symbol to this
3133	 location in the .plt.  This is required to make function
3134	 pointers compare as equal between the normal executable and
3135	 the shared library.  */
3136      if (!bfd_link_pic (info)
3137	  && !h->def_regular)
3138	{
3139	  h->root.u.def.section = s;
3140	  h->root.u.def.value = s->size;
3141	}
3142
3143      h->plt.offset = s->size;
3144
3145      /* Make room for this entry.  */
3146      s->size += htab->plt_info->size;
3147
3148      /* We also need to make an entry in the .got.plt section, which
3149	 will be placed in the .got section by the linker script.  */
3150      s = htab->root.sgotplt;
3151      BFD_ASSERT (s != NULL);
3152      s->size += 4;
3153
3154      /* We also need to make an entry in the .rela.plt section.  */
3155      s = htab->root.srelplt;
3156      BFD_ASSERT (s != NULL);
3157      s->size += sizeof (Elf32_External_Rela);
3158
3159      return TRUE;
3160    }
3161
3162  /* Reinitialize the plt offset now that it is not used as a reference
3163     count any more.  */
3164  h->plt.offset = (bfd_vma) -1;
3165
3166  /* If this is a weak symbol, and there is a real definition, the
3167     processor independent code will have arranged for us to see the
3168     real definition first, and we can just use the same value.  */
3169  if (h->u.weakdef != NULL)
3170    {
3171      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3172		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
3173      h->root.u.def.section = h->u.weakdef->root.u.def.section;
3174      h->root.u.def.value = h->u.weakdef->root.u.def.value;
3175      return TRUE;
3176    }
3177
3178  /* This is a reference to a symbol defined by a dynamic object which
3179     is not a function.  */
3180
3181  /* If we are creating a shared library, we must presume that the
3182     only references to the symbol are via the global offset table.
3183     For such cases we need not do anything here; the relocations will
3184     be handled correctly by relocate_section.  */
3185  if (bfd_link_pic (info))
3186    return TRUE;
3187
3188  /* If there are no references to this symbol that do not use the
3189     GOT, we don't need to generate a copy reloc.  */
3190  if (!h->non_got_ref)
3191    return TRUE;
3192
3193  /* We must allocate the symbol in our .dynbss section, which will
3194     become part of the .bss section of the executable.  There will be
3195     an entry for this symbol in the .dynsym section.  The dynamic
3196     object will contain position independent code, so all references
3197     from the dynamic object to this symbol will go through the global
3198     offset table.  The dynamic linker will use the .dynsym entry to
3199     determine the address it must put in the global offset table, so
3200     both the dynamic object and the regular object will refer to the
3201     same memory location for the variable.  */
3202
3203  s = bfd_get_linker_section (dynobj, ".dynbss");
3204  BFD_ASSERT (s != NULL);
3205
3206  /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3207     copy the initial value out of the dynamic object and into the
3208     runtime process image.  We need to remember the offset into the
3209     .rela.bss section we are going to use.  */
3210  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
3211    {
3212      asection *srel;
3213
3214      srel = bfd_get_linker_section (dynobj, ".rela.bss");
3215      BFD_ASSERT (srel != NULL);
3216      srel->size += sizeof (Elf32_External_Rela);
3217      h->needs_copy = 1;
3218    }
3219
3220  return _bfd_elf_adjust_dynamic_copy (info, h, s);
3221}
3222
3223/* Set the sizes of the dynamic sections.  */
3224
3225static bfd_boolean
3226elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3227				struct bfd_link_info *info)
3228{
3229  bfd *dynobj;
3230  asection *s;
3231  bfd_boolean plt;
3232  bfd_boolean relocs;
3233
3234  dynobj = elf_hash_table (info)->dynobj;
3235  BFD_ASSERT (dynobj != NULL);
3236
3237  if (elf_hash_table (info)->dynamic_sections_created)
3238    {
3239      /* Set the contents of the .interp section to the interpreter.  */
3240      if (bfd_link_executable (info) && !info->nointerp)
3241	{
3242	  s = bfd_get_linker_section (dynobj, ".interp");
3243	  BFD_ASSERT (s != NULL);
3244	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3245	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3246	}
3247    }
3248  else
3249    {
3250      /* We may have created entries in the .rela.got section.
3251	 However, if we are not creating the dynamic sections, we will
3252	 not actually use these entries.  Reset the size of .rela.got,
3253	 which will cause it to get stripped from the output file
3254	 below.  */
3255      s = elf_hash_table (info)->srelgot;
3256      if (s != NULL)
3257	s->size = 0;
3258    }
3259
3260  /* If this is a -Bsymbolic shared link, then we need to discard all
3261     PC relative relocs against symbols defined in a regular object.
3262     For the normal shared case we discard the PC relative relocs
3263     against symbols that have become local due to visibility changes.
3264     We allocated space for them in the check_relocs routine, but we
3265     will not fill them in in the relocate_section routine.  */
3266  if (bfd_link_pic (info))
3267    elf_link_hash_traverse (elf_hash_table (info),
3268			    elf_m68k_discard_copies,
3269			    info);
3270
3271  /* The check_relocs and adjust_dynamic_symbol entry points have
3272     determined the sizes of the various dynamic sections.  Allocate
3273     memory for them.  */
3274  plt = FALSE;
3275  relocs = FALSE;
3276  for (s = dynobj->sections; s != NULL; s = s->next)
3277    {
3278      const char *name;
3279
3280      if ((s->flags & SEC_LINKER_CREATED) == 0)
3281	continue;
3282
3283      /* It's OK to base decisions on the section name, because none
3284	 of the dynobj section names depend upon the input files.  */
3285      name = bfd_get_section_name (dynobj, s);
3286
3287      if (strcmp (name, ".plt") == 0)
3288	{
3289	  /* Remember whether there is a PLT.  */
3290	  plt = s->size != 0;
3291	}
3292      else if (CONST_STRNEQ (name, ".rela"))
3293	{
3294	  if (s->size != 0)
3295	    {
3296	      relocs = TRUE;
3297
3298	      /* We use the reloc_count field as a counter if we need
3299		 to copy relocs into the output file.  */
3300	      s->reloc_count = 0;
3301	    }
3302	}
3303      else if (! CONST_STRNEQ (name, ".got")
3304	       && strcmp (name, ".dynbss") != 0)
3305	{
3306	  /* It's not one of our sections, so don't allocate space.  */
3307	  continue;
3308	}
3309
3310      if (s->size == 0)
3311	{
3312	  /* If we don't need this section, strip it from the
3313	     output file.  This is mostly to handle .rela.bss and
3314	     .rela.plt.  We must create both sections in
3315	     create_dynamic_sections, because they must be created
3316	     before the linker maps input sections to output
3317	     sections.  The linker does that before
3318	     adjust_dynamic_symbol is called, and it is that
3319	     function which decides whether anything needs to go
3320	     into these sections.  */
3321	  s->flags |= SEC_EXCLUDE;
3322	  continue;
3323	}
3324
3325      if ((s->flags & SEC_HAS_CONTENTS) == 0)
3326	continue;
3327
3328      /* Allocate memory for the section contents.  */
3329      /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3330	 Unused entries should be reclaimed before the section's contents
3331	 are written out, but at the moment this does not happen.  Thus in
3332	 order to prevent writing out garbage, we initialise the section's
3333	 contents to zero.  */
3334      s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3335      if (s->contents == NULL)
3336	return FALSE;
3337    }
3338
3339  if (elf_hash_table (info)->dynamic_sections_created)
3340    {
3341      /* Add some entries to the .dynamic section.  We fill in the
3342	 values later, in elf_m68k_finish_dynamic_sections, but we
3343	 must add the entries now so that we get the correct size for
3344	 the .dynamic section.  The DT_DEBUG entry is filled in by the
3345	 dynamic linker and used by the debugger.  */
3346#define add_dynamic_entry(TAG, VAL) \
3347  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3348
3349      if (bfd_link_executable (info))
3350	{
3351	  if (!add_dynamic_entry (DT_DEBUG, 0))
3352	    return FALSE;
3353	}
3354
3355      if (plt)
3356	{
3357	  if (!add_dynamic_entry (DT_PLTGOT, 0)
3358	      || !add_dynamic_entry (DT_PLTRELSZ, 0)
3359	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3360	      || !add_dynamic_entry (DT_JMPREL, 0))
3361	    return FALSE;
3362	}
3363
3364      if (relocs)
3365	{
3366	  if (!add_dynamic_entry (DT_RELA, 0)
3367	      || !add_dynamic_entry (DT_RELASZ, 0)
3368	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
3369	    return FALSE;
3370	}
3371
3372      if ((info->flags & DF_TEXTREL) != 0)
3373	{
3374	  if (!add_dynamic_entry (DT_TEXTREL, 0))
3375	    return FALSE;
3376	}
3377    }
3378#undef add_dynamic_entry
3379
3380  return TRUE;
3381}
3382
3383/* This function is called via elf_link_hash_traverse if we are
3384   creating a shared object.  In the -Bsymbolic case it discards the
3385   space allocated to copy PC relative relocs against symbols which
3386   are defined in regular objects.  For the normal shared case, it
3387   discards space for pc-relative relocs that have become local due to
3388   symbol visibility changes.  We allocated space for them in the
3389   check_relocs routine, but we won't fill them in in the
3390   relocate_section routine.
3391
3392   We also check whether any of the remaining relocations apply
3393   against a readonly section, and set the DF_TEXTREL flag in this
3394   case.  */
3395
3396static bfd_boolean
3397elf_m68k_discard_copies (struct elf_link_hash_entry *h,
3398			 void * inf)
3399{
3400  struct bfd_link_info *info = (struct bfd_link_info *) inf;
3401  struct elf_m68k_pcrel_relocs_copied *s;
3402
3403  if (!SYMBOL_CALLS_LOCAL (info, h))
3404    {
3405      if ((info->flags & DF_TEXTREL) == 0)
3406	{
3407	  /* Look for relocations against read-only sections.  */
3408	  for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3409	       s != NULL;
3410	       s = s->next)
3411	    if ((s->section->flags & SEC_READONLY) != 0)
3412	      {
3413		info->flags |= DF_TEXTREL;
3414		break;
3415	      }
3416	}
3417
3418      /* Make sure undefined weak symbols are output as a dynamic symbol
3419	 in PIEs.  */
3420      if (h->non_got_ref
3421	  && h->root.type == bfd_link_hash_undefweak
3422	  && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3423	  && h->dynindx == -1
3424	  && !h->forced_local)
3425	{
3426	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
3427	    return FALSE;
3428	}
3429
3430      return TRUE;
3431    }
3432
3433  for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3434       s != NULL;
3435       s = s->next)
3436    s->section->size -= s->count * sizeof (Elf32_External_Rela);
3437
3438  return TRUE;
3439}
3440
3441
3442/* Install relocation RELA.  */
3443
3444static void
3445elf_m68k_install_rela (bfd *output_bfd,
3446		       asection *srela,
3447		       Elf_Internal_Rela *rela)
3448{
3449  bfd_byte *loc;
3450
3451  loc = srela->contents;
3452  loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3453  bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3454}
3455
3456/* Find the base offsets for thread-local storage in this object,
3457   for GD/LD and IE/LE respectively.  */
3458
3459#define DTP_OFFSET 0x8000
3460#define TP_OFFSET  0x7000
3461
3462static bfd_vma
3463dtpoff_base (struct bfd_link_info *info)
3464{
3465  /* If tls_sec is NULL, we should have signalled an error already.  */
3466  if (elf_hash_table (info)->tls_sec == NULL)
3467    return 0;
3468  return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
3469}
3470
3471static bfd_vma
3472tpoff_base (struct bfd_link_info *info)
3473{
3474  /* If tls_sec is NULL, we should have signalled an error already.  */
3475  if (elf_hash_table (info)->tls_sec == NULL)
3476    return 0;
3477  return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3478}
3479
3480/* Output necessary relocation to handle a symbol during static link.
3481   This function is called from elf_m68k_relocate_section.  */
3482
3483static void
3484elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3485				bfd *output_bfd,
3486				enum elf_m68k_reloc_type r_type,
3487				asection *sgot,
3488				bfd_vma got_entry_offset,
3489				bfd_vma relocation)
3490{
3491  switch (elf_m68k_reloc_got_type (r_type))
3492    {
3493    case R_68K_GOT32O:
3494      bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3495      break;
3496
3497    case R_68K_TLS_GD32:
3498      /* We know the offset within the module,
3499	 put it into the second GOT slot.  */
3500      bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3501		  sgot->contents + got_entry_offset + 4);
3502      /* FALLTHRU */
3503
3504    case R_68K_TLS_LDM32:
3505      /* Mark it as belonging to module 1, the executable.  */
3506      bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3507      break;
3508
3509    case R_68K_TLS_IE32:
3510      bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3511		  sgot->contents + got_entry_offset);
3512      break;
3513
3514    default:
3515      BFD_ASSERT (FALSE);
3516    }
3517}
3518
3519/* Output necessary relocation to handle a local symbol
3520   during dynamic link.
3521   This function is called either from elf_m68k_relocate_section
3522   or from elf_m68k_finish_dynamic_symbol.  */
3523
3524static void
3525elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3526				      bfd *output_bfd,
3527				      enum elf_m68k_reloc_type r_type,
3528				      asection *sgot,
3529				      bfd_vma got_entry_offset,
3530				      bfd_vma relocation,
3531				      asection *srela)
3532{
3533  Elf_Internal_Rela outrel;
3534
3535  switch (elf_m68k_reloc_got_type (r_type))
3536    {
3537    case R_68K_GOT32O:
3538      /* Emit RELATIVE relocation to initialize GOT slot
3539	 at run-time.  */
3540      outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3541      outrel.r_addend = relocation;
3542      break;
3543
3544    case R_68K_TLS_GD32:
3545      /* We know the offset within the module,
3546	 put it into the second GOT slot.  */
3547      bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3548		  sgot->contents + got_entry_offset + 4);
3549      /* FALLTHRU */
3550
3551    case R_68K_TLS_LDM32:
3552      /* We don't know the module number,
3553	 create a relocation for it.  */
3554      outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3555      outrel.r_addend = 0;
3556      break;
3557
3558    case R_68K_TLS_IE32:
3559      /* Emit TPREL relocation to initialize GOT slot
3560	 at run-time.  */
3561      outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3562      outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3563      break;
3564
3565    default:
3566      BFD_ASSERT (FALSE);
3567    }
3568
3569  /* Offset of the GOT entry.  */
3570  outrel.r_offset = (sgot->output_section->vma
3571		     + sgot->output_offset
3572		     + got_entry_offset);
3573
3574  /* Install one of the above relocations.  */
3575  elf_m68k_install_rela (output_bfd, srela, &outrel);
3576
3577  bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
3578}
3579
3580/* Relocate an M68K ELF section.  */
3581
3582static bfd_boolean
3583elf_m68k_relocate_section (bfd *output_bfd,
3584			   struct bfd_link_info *info,
3585			   bfd *input_bfd,
3586			   asection *input_section,
3587			   bfd_byte *contents,
3588			   Elf_Internal_Rela *relocs,
3589			   Elf_Internal_Sym *local_syms,
3590			   asection **local_sections)
3591{
3592  Elf_Internal_Shdr *symtab_hdr;
3593  struct elf_link_hash_entry **sym_hashes;
3594  asection *sgot;
3595  asection *splt;
3596  asection *sreloc;
3597  asection *srela;
3598  struct elf_m68k_got *got;
3599  Elf_Internal_Rela *rel;
3600  Elf_Internal_Rela *relend;
3601
3602  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3603  sym_hashes = elf_sym_hashes (input_bfd);
3604
3605  sgot = NULL;
3606  splt = NULL;
3607  sreloc = NULL;
3608  srela = NULL;
3609
3610  got = NULL;
3611
3612  rel = relocs;
3613  relend = relocs + input_section->reloc_count;
3614  for (; rel < relend; rel++)
3615    {
3616      int r_type;
3617      reloc_howto_type *howto;
3618      unsigned long r_symndx;
3619      struct elf_link_hash_entry *h;
3620      Elf_Internal_Sym *sym;
3621      asection *sec;
3622      bfd_vma relocation;
3623      bfd_boolean unresolved_reloc;
3624      bfd_reloc_status_type r;
3625
3626      r_type = ELF32_R_TYPE (rel->r_info);
3627      if (r_type < 0 || r_type >= (int) R_68K_max)
3628	{
3629	  bfd_set_error (bfd_error_bad_value);
3630	  return FALSE;
3631	}
3632      howto = howto_table + r_type;
3633
3634      r_symndx = ELF32_R_SYM (rel->r_info);
3635
3636      h = NULL;
3637      sym = NULL;
3638      sec = NULL;
3639      unresolved_reloc = FALSE;
3640
3641      if (r_symndx < symtab_hdr->sh_info)
3642	{
3643	  sym = local_syms + r_symndx;
3644	  sec = local_sections[r_symndx];
3645	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3646	}
3647      else
3648	{
3649	  bfd_boolean warned, ignored;
3650
3651	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3652				   r_symndx, symtab_hdr, sym_hashes,
3653				   h, sec, relocation,
3654				   unresolved_reloc, warned, ignored);
3655	}
3656
3657      if (sec != NULL && discarded_section (sec))
3658	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3659					 rel, 1, relend, howto, 0, contents);
3660
3661      if (bfd_link_relocatable (info))
3662	continue;
3663
3664      switch (r_type)
3665	{
3666	case R_68K_GOT8:
3667	case R_68K_GOT16:
3668	case R_68K_GOT32:
3669	  /* Relocation is to the address of the entry for this symbol
3670	     in the global offset table.  */
3671	  if (h != NULL
3672	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3673	    {
3674	      if (elf_m68k_hash_table (info)->local_gp_p)
3675		{
3676		  bfd_vma sgot_output_offset;
3677		  bfd_vma got_offset;
3678
3679		  sgot = elf_hash_table (info)->sgot;
3680
3681		  if (sgot != NULL)
3682		    sgot_output_offset = sgot->output_offset;
3683		  else
3684		    /* In this case we have a reference to
3685		       _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3686		       empty.
3687		       ??? Issue a warning?  */
3688		    sgot_output_offset = 0;
3689
3690		  if (got == NULL)
3691		    {
3692		      struct elf_m68k_bfd2got_entry *bfd2got_entry;
3693
3694		      bfd2got_entry
3695			= elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3696						      input_bfd, SEARCH, NULL);
3697
3698		      if (bfd2got_entry != NULL)
3699			{
3700			  got = bfd2got_entry->got;
3701			  BFD_ASSERT (got != NULL);
3702
3703			  got_offset = got->offset;
3704			}
3705		      else
3706			/* In this case we have a reference to
3707			   _GLOBAL_OFFSET_TABLE_, but no other references
3708			   accessing any GOT entries.
3709			   ??? Issue a warning?  */
3710			got_offset = 0;
3711		    }
3712		  else
3713		    got_offset = got->offset;
3714
3715		  /* Adjust GOT pointer to point to the GOT
3716		     assigned to input_bfd.  */
3717		  rel->r_addend += sgot_output_offset + got_offset;
3718		}
3719	      else
3720		BFD_ASSERT (got == NULL || got->offset == 0);
3721
3722	      break;
3723	    }
3724	  /* Fall through.  */
3725	case R_68K_GOT8O:
3726	case R_68K_GOT16O:
3727	case R_68K_GOT32O:
3728
3729	case R_68K_TLS_LDM32:
3730	case R_68K_TLS_LDM16:
3731	case R_68K_TLS_LDM8:
3732
3733	case R_68K_TLS_GD8:
3734	case R_68K_TLS_GD16:
3735	case R_68K_TLS_GD32:
3736
3737	case R_68K_TLS_IE8:
3738	case R_68K_TLS_IE16:
3739	case R_68K_TLS_IE32:
3740
3741	  /* Relocation is the offset of the entry for this symbol in
3742	     the global offset table.  */
3743
3744	  {
3745	    struct elf_m68k_got_entry_key key_;
3746	    bfd_vma *off_ptr;
3747	    bfd_vma off;
3748
3749	    sgot = elf_hash_table (info)->sgot;
3750	    BFD_ASSERT (sgot != NULL);
3751
3752	    if (got == NULL)
3753	      {
3754		got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3755						  input_bfd, MUST_FIND,
3756						  NULL)->got;
3757		BFD_ASSERT (got != NULL);
3758	      }
3759
3760	    /* Get GOT offset for this symbol.  */
3761	    elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3762					 r_type);
3763	    off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3764					       NULL)->u.s2.offset;
3765	    off = *off_ptr;
3766
3767	    /* The offset must always be a multiple of 4.  We use
3768	       the least significant bit to record whether we have
3769	       already generated the necessary reloc.  */
3770	    if ((off & 1) != 0)
3771	      off &= ~1;
3772	    else
3773	      {
3774		if (h != NULL
3775		    /* @TLSLDM relocations are bounded to the module, in
3776		       which the symbol is defined -- not to the symbol
3777		       itself.  */
3778		    && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
3779		  {
3780		    bfd_boolean dyn;
3781
3782		    dyn = elf_hash_table (info)->dynamic_sections_created;
3783		    if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3784							  bfd_link_pic (info),
3785							  h)
3786			|| (bfd_link_pic (info)
3787			    && SYMBOL_REFERENCES_LOCAL (info, h))
3788			|| (ELF_ST_VISIBILITY (h->other)
3789			    && h->root.type == bfd_link_hash_undefweak))
3790		      {
3791			/* This is actually a static link, or it is a
3792			   -Bsymbolic link and the symbol is defined
3793			   locally, or the symbol was forced to be local
3794			   because of a version file.  We must initialize
3795			   this entry in the global offset table.  Since
3796			   the offset must always be a multiple of 4, we
3797			   use the least significant bit to record whether
3798			   we have initialized it already.
3799
3800			   When doing a dynamic link, we create a .rela.got
3801			   relocation entry to initialize the value.  This
3802			   is done in the finish_dynamic_symbol routine.  */
3803
3804			elf_m68k_init_got_entry_static (info,
3805							output_bfd,
3806							r_type,
3807							sgot,
3808							off,
3809							relocation);
3810
3811			*off_ptr |= 1;
3812		      }
3813		    else
3814		      unresolved_reloc = FALSE;
3815		  }
3816		else if (bfd_link_pic (info)) /* && h == NULL */
3817		  /* Process local symbol during dynamic link.  */
3818		  {
3819		    srela = elf_hash_table (info)->srelgot;
3820		    BFD_ASSERT (srela != NULL);
3821
3822		    elf_m68k_init_got_entry_local_shared (info,
3823							  output_bfd,
3824							  r_type,
3825							  sgot,
3826							  off,
3827							  relocation,
3828							  srela);
3829
3830		    *off_ptr |= 1;
3831		  }
3832		else /* h == NULL && !bfd_link_pic (info) */
3833		  {
3834		    elf_m68k_init_got_entry_static (info,
3835						    output_bfd,
3836						    r_type,
3837						    sgot,
3838						    off,
3839						    relocation);
3840
3841		    *off_ptr |= 1;
3842		  }
3843	      }
3844
3845	    /* We don't use elf_m68k_reloc_got_type in the condition below
3846	       because this is the only place where difference between
3847	       R_68K_GOTx and R_68K_GOTxO relocations matters.  */
3848	    if (r_type == R_68K_GOT32O
3849		|| r_type == R_68K_GOT16O
3850		|| r_type == R_68K_GOT8O
3851		|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3852		|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3853		|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
3854	      {
3855		/* GOT pointer is adjusted to point to the start/middle
3856		   of local GOT.  Adjust the offset accordingly.  */
3857		BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3858			    || off >= got->offset);
3859
3860		if (elf_m68k_hash_table (info)->local_gp_p)
3861		  relocation = off - got->offset;
3862		else
3863		  {
3864		    BFD_ASSERT (got->offset == 0);
3865		    relocation = sgot->output_offset + off;
3866		  }
3867
3868		/* This relocation does not use the addend.  */
3869		rel->r_addend = 0;
3870	      }
3871	    else
3872	      relocation = (sgot->output_section->vma + sgot->output_offset
3873			    + off);
3874	  }
3875	  break;
3876
3877	case R_68K_TLS_LDO32:
3878	case R_68K_TLS_LDO16:
3879	case R_68K_TLS_LDO8:
3880	  relocation -= dtpoff_base (info);
3881	  break;
3882
3883	case R_68K_TLS_LE32:
3884	case R_68K_TLS_LE16:
3885	case R_68K_TLS_LE8:
3886	  if (bfd_link_dll (info))
3887	    {
3888	      _bfd_error_handler
3889		/* xgettext:c-format */
3890		(_("%B(%A+0x%lx): R_68K_TLS_LE32 relocation not permitted "
3891		   "in shared object"),
3892		 input_bfd, input_section, (long) rel->r_offset, howto->name);
3893
3894	      return FALSE;
3895	    }
3896	  else
3897	    relocation -= tpoff_base (info);
3898
3899	  break;
3900
3901	case R_68K_PLT8:
3902	case R_68K_PLT16:
3903	case R_68K_PLT32:
3904	  /* Relocation is to the entry for this symbol in the
3905	     procedure linkage table.  */
3906
3907	  /* Resolve a PLTxx reloc against a local symbol directly,
3908	     without using the procedure linkage table.  */
3909	  if (h == NULL)
3910	    break;
3911
3912	  if (h->plt.offset == (bfd_vma) -1
3913	      || !elf_hash_table (info)->dynamic_sections_created)
3914	    {
3915	      /* We didn't make a PLT entry for this symbol.  This
3916		 happens when statically linking PIC code, or when
3917		 using -Bsymbolic.  */
3918	      break;
3919	    }
3920
3921	  splt = elf_hash_table (info)->splt;
3922	  BFD_ASSERT (splt != NULL);
3923
3924	  relocation = (splt->output_section->vma
3925			+ splt->output_offset
3926			+ h->plt.offset);
3927	  unresolved_reloc = FALSE;
3928	  break;
3929
3930	case R_68K_PLT8O:
3931	case R_68K_PLT16O:
3932	case R_68K_PLT32O:
3933	  /* Relocation is the offset of the entry for this symbol in
3934	     the procedure linkage table.  */
3935	  BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3936
3937	  splt = elf_hash_table (info)->splt;
3938	  BFD_ASSERT (splt != NULL);
3939
3940	  relocation = h->plt.offset;
3941	  unresolved_reloc = FALSE;
3942
3943	  /* This relocation does not use the addend.  */
3944	  rel->r_addend = 0;
3945
3946	  break;
3947
3948	case R_68K_8:
3949	case R_68K_16:
3950	case R_68K_32:
3951	case R_68K_PC8:
3952	case R_68K_PC16:
3953	case R_68K_PC32:
3954	  if (bfd_link_pic (info)
3955	      && r_symndx != STN_UNDEF
3956	      && (input_section->flags & SEC_ALLOC) != 0
3957	      && (h == NULL
3958		  || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3959		  || h->root.type != bfd_link_hash_undefweak)
3960	      && ((r_type != R_68K_PC8
3961		   && r_type != R_68K_PC16
3962		   && r_type != R_68K_PC32)
3963		  || !SYMBOL_CALLS_LOCAL (info, h)))
3964	    {
3965	      Elf_Internal_Rela outrel;
3966	      bfd_byte *loc;
3967	      bfd_boolean skip, relocate;
3968
3969	      /* When generating a shared object, these relocations
3970		 are copied into the output file to be resolved at run
3971		 time.  */
3972
3973	      skip = FALSE;
3974	      relocate = FALSE;
3975
3976	      outrel.r_offset =
3977		_bfd_elf_section_offset (output_bfd, info, input_section,
3978					 rel->r_offset);
3979	      if (outrel.r_offset == (bfd_vma) -1)
3980		skip = TRUE;
3981	      else if (outrel.r_offset == (bfd_vma) -2)
3982		skip = TRUE, relocate = TRUE;
3983	      outrel.r_offset += (input_section->output_section->vma
3984				  + input_section->output_offset);
3985
3986	      if (skip)
3987		memset (&outrel, 0, sizeof outrel);
3988	      else if (h != NULL
3989		       && h->dynindx != -1
3990		       && (r_type == R_68K_PC8
3991			   || r_type == R_68K_PC16
3992			   || r_type == R_68K_PC32
3993			   || !bfd_link_pic (info)
3994			   || !SYMBOLIC_BIND (info, h)
3995			   || !h->def_regular))
3996		{
3997		  outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
3998		  outrel.r_addend = rel->r_addend;
3999		}
4000	      else
4001		{
4002		  /* This symbol is local, or marked to become local.  */
4003		  outrel.r_addend = relocation + rel->r_addend;
4004
4005		  if (r_type == R_68K_32)
4006		    {
4007		      relocate = TRUE;
4008		      outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
4009		    }
4010		  else
4011		    {
4012		      long indx;
4013
4014		      if (bfd_is_abs_section (sec))
4015			indx = 0;
4016		      else if (sec == NULL || sec->owner == NULL)
4017			{
4018			  bfd_set_error (bfd_error_bad_value);
4019			  return FALSE;
4020			}
4021		      else
4022			{
4023			  asection *osec;
4024
4025			  /* We are turning this relocation into one
4026			     against a section symbol.  It would be
4027			     proper to subtract the symbol's value,
4028			     osec->vma, from the emitted reloc addend,
4029			     but ld.so expects buggy relocs.  */
4030			  osec = sec->output_section;
4031			  indx = elf_section_data (osec)->dynindx;
4032			  if (indx == 0)
4033			    {
4034			      struct elf_link_hash_table *htab;
4035			      htab = elf_hash_table (info);
4036			      osec = htab->text_index_section;
4037			      indx = elf_section_data (osec)->dynindx;
4038			    }
4039			  BFD_ASSERT (indx != 0);
4040			}
4041
4042		      outrel.r_info = ELF32_R_INFO (indx, r_type);
4043		    }
4044		}
4045
4046	      sreloc = elf_section_data (input_section)->sreloc;
4047	      if (sreloc == NULL)
4048		abort ();
4049
4050	      loc = sreloc->contents;
4051	      loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4052	      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4053
4054	      /* This reloc will be computed at runtime, so there's no
4055                 need to do anything now, except for R_68K_32
4056                 relocations that have been turned into
4057                 R_68K_RELATIVE.  */
4058	      if (!relocate)
4059		continue;
4060	    }
4061
4062	  break;
4063
4064	case R_68K_GNU_VTINHERIT:
4065	case R_68K_GNU_VTENTRY:
4066	  /* These are no-ops in the end.  */
4067	  continue;
4068
4069	default:
4070	  break;
4071	}
4072
4073      /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4074	 because such sections are not SEC_ALLOC and thus ld.so will
4075	 not process them.  */
4076      if (unresolved_reloc
4077	  && !((input_section->flags & SEC_DEBUGGING) != 0
4078	       && h->def_dynamic)
4079	  && _bfd_elf_section_offset (output_bfd, info, input_section,
4080				      rel->r_offset) != (bfd_vma) -1)
4081	{
4082	  _bfd_error_handler
4083	    /* xgettext:c-format */
4084	    (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4085	     input_bfd,
4086	     input_section,
4087	     (long) rel->r_offset,
4088	     howto->name,
4089	     h->root.root.string);
4090	  return FALSE;
4091	}
4092
4093      if (r_symndx != STN_UNDEF
4094	  && r_type != R_68K_NONE
4095	  && (h == NULL
4096	      || h->root.type == bfd_link_hash_defined
4097	      || h->root.type == bfd_link_hash_defweak))
4098	{
4099	  char sym_type;
4100
4101	  sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
4102
4103	  if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
4104	    {
4105	      const char *name;
4106
4107	      if (h != NULL)
4108		name = h->root.root.string;
4109	      else
4110		{
4111		  name = (bfd_elf_string_from_elf_section
4112			  (input_bfd, symtab_hdr->sh_link, sym->st_name));
4113		  if (name == NULL || *name == '\0')
4114		    name = bfd_section_name (input_bfd, sec);
4115		}
4116
4117	      _bfd_error_handler
4118		((sym_type == STT_TLS
4119		  /* xgettext:c-format */
4120		  ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
4121		  /* xgettext:c-format */
4122		  : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
4123		 input_bfd,
4124		 input_section,
4125		 (long) rel->r_offset,
4126		 howto->name,
4127		 name);
4128	    }
4129	}
4130
4131      r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4132				    contents, rel->r_offset,
4133				    relocation, rel->r_addend);
4134
4135      if (r != bfd_reloc_ok)
4136	{
4137	  const char *name;
4138
4139	  if (h != NULL)
4140	    name = h->root.root.string;
4141	  else
4142	    {
4143	      name = bfd_elf_string_from_elf_section (input_bfd,
4144						      symtab_hdr->sh_link,
4145						      sym->st_name);
4146	      if (name == NULL)
4147		return FALSE;
4148	      if (*name == '\0')
4149		name = bfd_section_name (input_bfd, sec);
4150	    }
4151
4152	  if (r == bfd_reloc_overflow)
4153	    (*info->callbacks->reloc_overflow)
4154	      (info, (h ? &h->root : NULL), name, howto->name,
4155	       (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
4156	  else
4157	    {
4158	      _bfd_error_handler
4159		/* xgettext:c-format */
4160		(_("%B(%A+0x%lx): reloc against `%s': error %d"),
4161		 input_bfd, input_section,
4162		 (long) rel->r_offset, name, (int) r);
4163	      return FALSE;
4164	    }
4165	}
4166    }
4167
4168  return TRUE;
4169}
4170
4171/* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
4172   into section SEC.  */
4173
4174static void
4175elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
4176{
4177  /* Make VALUE PC-relative.  */
4178  value -= sec->output_section->vma + offset;
4179
4180  /* Apply any in-place addend.  */
4181  value += bfd_get_32 (sec->owner, sec->contents + offset);
4182
4183  bfd_put_32 (sec->owner, value, sec->contents + offset);
4184}
4185
4186/* Finish up dynamic symbol handling.  We set the contents of various
4187   dynamic sections here.  */
4188
4189static bfd_boolean
4190elf_m68k_finish_dynamic_symbol (bfd *output_bfd,
4191				struct bfd_link_info *info,
4192				struct elf_link_hash_entry *h,
4193				Elf_Internal_Sym *sym)
4194{
4195  bfd *dynobj;
4196
4197  dynobj = elf_hash_table (info)->dynobj;
4198
4199  if (h->plt.offset != (bfd_vma) -1)
4200    {
4201      const struct elf_m68k_plt_info *plt_info;
4202      asection *splt;
4203      asection *sgot;
4204      asection *srela;
4205      bfd_vma plt_index;
4206      bfd_vma got_offset;
4207      Elf_Internal_Rela rela;
4208      bfd_byte *loc;
4209
4210      /* This symbol has an entry in the procedure linkage table.  Set
4211	 it up.  */
4212
4213      BFD_ASSERT (h->dynindx != -1);
4214
4215      plt_info = elf_m68k_hash_table (info)->plt_info;
4216      splt = elf_hash_table (info)->splt;
4217      sgot = elf_hash_table (info)->sgotplt;
4218      srela = elf_hash_table (info)->srelplt;
4219      BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4220
4221      /* Get the index in the procedure linkage table which
4222	 corresponds to this symbol.  This is the index of this symbol
4223	 in all the symbols for which we are making plt entries.  The
4224	 first entry in the procedure linkage table is reserved.  */
4225      plt_index = (h->plt.offset / plt_info->size) - 1;
4226
4227      /* Get the offset into the .got table of the entry that
4228	 corresponds to this function.  Each .got entry is 4 bytes.
4229	 The first three are reserved.  */
4230      got_offset = (plt_index + 3) * 4;
4231
4232      memcpy (splt->contents + h->plt.offset,
4233	      plt_info->symbol_entry,
4234	      plt_info->size);
4235
4236      elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4237			     (sgot->output_section->vma
4238			      + sgot->output_offset
4239			      + got_offset));
4240
4241      bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
4242		  splt->contents
4243		  + h->plt.offset
4244		  + plt_info->symbol_resolve_entry + 2);
4245
4246      elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4247			     splt->output_section->vma);
4248
4249      /* Fill in the entry in the global offset table.  */
4250      bfd_put_32 (output_bfd,
4251		  (splt->output_section->vma
4252		   + splt->output_offset
4253		   + h->plt.offset
4254		   + plt_info->symbol_resolve_entry),
4255		  sgot->contents + got_offset);
4256
4257      /* Fill in the entry in the .rela.plt section.  */
4258      rela.r_offset = (sgot->output_section->vma
4259		       + sgot->output_offset
4260		       + got_offset);
4261      rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4262      rela.r_addend = 0;
4263      loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4264      bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4265
4266      if (!h->def_regular)
4267	{
4268	  /* Mark the symbol as undefined, rather than as defined in
4269	     the .plt section.  Leave the value alone.  */
4270	  sym->st_shndx = SHN_UNDEF;
4271	}
4272    }
4273
4274  if (elf_m68k_hash_entry (h)->glist != NULL)
4275    {
4276      asection *sgot;
4277      asection *srela;
4278      struct elf_m68k_got_entry *got_entry;
4279
4280      /* This symbol has an entry in the global offset table.  Set it
4281	 up.  */
4282
4283      sgot = elf_hash_table (info)->sgot;
4284      srela = elf_hash_table (info)->srelgot;
4285      BFD_ASSERT (sgot != NULL && srela != NULL);
4286
4287      got_entry = elf_m68k_hash_entry (h)->glist;
4288
4289      while (got_entry != NULL)
4290	{
4291	  enum elf_m68k_reloc_type r_type;
4292	  bfd_vma got_entry_offset;
4293
4294	  r_type = got_entry->key_.type;
4295	  got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
4296
4297	  /* If this is a -Bsymbolic link, and the symbol is defined
4298	     locally, we just want to emit a RELATIVE reloc.  Likewise if
4299	     the symbol was forced to be local because of a version file.
4300	     The entry in the global offset table already have been
4301	     initialized in the relocate_section function.  */
4302	  if (bfd_link_pic (info)
4303	      && SYMBOL_REFERENCES_LOCAL (info, h))
4304	    {
4305	      bfd_vma relocation;
4306
4307	      relocation = bfd_get_signed_32 (output_bfd,
4308					      (sgot->contents
4309					       + got_entry_offset));
4310
4311	      /* Undo TP bias.  */
4312	      switch (elf_m68k_reloc_got_type (r_type))
4313		{
4314		case R_68K_GOT32O:
4315		case R_68K_TLS_LDM32:
4316		  break;
4317
4318		case R_68K_TLS_GD32:
4319		  /* The value for this relocation is actually put in
4320		     the second GOT slot.  */
4321		  relocation = bfd_get_signed_32 (output_bfd,
4322						  (sgot->contents
4323						   + got_entry_offset + 4));
4324		  relocation += dtpoff_base (info);
4325		  break;
4326
4327		case R_68K_TLS_IE32:
4328		  relocation += tpoff_base (info);
4329		  break;
4330
4331		default:
4332		  BFD_ASSERT (FALSE);
4333		}
4334
4335	      elf_m68k_init_got_entry_local_shared (info,
4336						    output_bfd,
4337						    r_type,
4338						    sgot,
4339						    got_entry_offset,
4340						    relocation,
4341						    srela);
4342	    }
4343	  else
4344	    {
4345	      Elf_Internal_Rela rela;
4346
4347	      /* Put zeros to GOT slots that will be initialized
4348		 at run-time.  */
4349	      {
4350		bfd_vma n_slots;
4351
4352		n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4353		while (n_slots--)
4354		  bfd_put_32 (output_bfd, (bfd_vma) 0,
4355			      (sgot->contents + got_entry_offset
4356			       + 4 * n_slots));
4357	      }
4358
4359	      rela.r_addend = 0;
4360	      rela.r_offset = (sgot->output_section->vma
4361			       + sgot->output_offset
4362			       + got_entry_offset);
4363
4364	      switch (elf_m68k_reloc_got_type (r_type))
4365		{
4366		case R_68K_GOT32O:
4367		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4368		  elf_m68k_install_rela (output_bfd, srela, &rela);
4369		  break;
4370
4371		case R_68K_TLS_GD32:
4372		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4373		  elf_m68k_install_rela (output_bfd, srela, &rela);
4374
4375		  rela.r_offset += 4;
4376		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4377		  elf_m68k_install_rela (output_bfd, srela, &rela);
4378		  break;
4379
4380		case R_68K_TLS_IE32:
4381		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4382		  elf_m68k_install_rela (output_bfd, srela, &rela);
4383		  break;
4384
4385		default:
4386		  BFD_ASSERT (FALSE);
4387		  break;
4388		}
4389	    }
4390
4391	  got_entry = got_entry->u.s2.next;
4392	}
4393    }
4394
4395  if (h->needs_copy)
4396    {
4397      asection *s;
4398      Elf_Internal_Rela rela;
4399      bfd_byte *loc;
4400
4401      /* This symbol needs a copy reloc.  Set it up.  */
4402
4403      BFD_ASSERT (h->dynindx != -1
4404		  && (h->root.type == bfd_link_hash_defined
4405		      || h->root.type == bfd_link_hash_defweak));
4406
4407      s = bfd_get_linker_section (dynobj, ".rela.bss");
4408      BFD_ASSERT (s != NULL);
4409
4410      rela.r_offset = (h->root.u.def.value
4411		       + h->root.u.def.section->output_section->vma
4412		       + h->root.u.def.section->output_offset);
4413      rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4414      rela.r_addend = 0;
4415      loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4416      bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4417    }
4418
4419  return TRUE;
4420}
4421
4422/* Finish up the dynamic sections.  */
4423
4424static bfd_boolean
4425elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4426{
4427  bfd *dynobj;
4428  asection *sgot;
4429  asection *sdyn;
4430
4431  dynobj = elf_hash_table (info)->dynobj;
4432
4433  sgot = elf_hash_table (info)->sgotplt;
4434  BFD_ASSERT (sgot != NULL);
4435  sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4436
4437  if (elf_hash_table (info)->dynamic_sections_created)
4438    {
4439      asection *splt;
4440      Elf32_External_Dyn *dyncon, *dynconend;
4441
4442      splt = elf_hash_table (info)->splt;
4443      BFD_ASSERT (splt != NULL && sdyn != NULL);
4444
4445      dyncon = (Elf32_External_Dyn *) sdyn->contents;
4446      dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4447      for (; dyncon < dynconend; dyncon++)
4448	{
4449	  Elf_Internal_Dyn dyn;
4450	  asection *s;
4451
4452	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4453
4454	  switch (dyn.d_tag)
4455	    {
4456	    default:
4457	      break;
4458
4459	    case DT_PLTGOT:
4460	      s = elf_hash_table (info)->sgotplt;
4461	      goto get_vma;
4462	    case DT_JMPREL:
4463	      s = elf_hash_table (info)->srelplt;
4464	    get_vma:
4465	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4466	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4467	      break;
4468
4469	    case DT_PLTRELSZ:
4470	      s = elf_hash_table (info)->srelplt;
4471	      dyn.d_un.d_val = s->size;
4472	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4473	      break;
4474	    }
4475	}
4476
4477      /* Fill in the first entry in the procedure linkage table.  */
4478      if (splt->size > 0)
4479	{
4480	  const struct elf_m68k_plt_info *plt_info;
4481
4482	  plt_info = elf_m68k_hash_table (info)->plt_info;
4483	  memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4484
4485	  elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4486				 (sgot->output_section->vma
4487				  + sgot->output_offset
4488				  + 4));
4489
4490	  elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4491				 (sgot->output_section->vma
4492				  + sgot->output_offset
4493				  + 8));
4494
4495	  elf_section_data (splt->output_section)->this_hdr.sh_entsize
4496	    = plt_info->size;
4497	}
4498    }
4499
4500  /* Fill in the first three entries in the global offset table.  */
4501  if (sgot->size > 0)
4502    {
4503      if (sdyn == NULL)
4504	bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4505      else
4506	bfd_put_32 (output_bfd,
4507		    sdyn->output_section->vma + sdyn->output_offset,
4508		    sgot->contents);
4509      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4510      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4511    }
4512
4513  elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4514
4515  return TRUE;
4516}
4517
4518/* Given a .data section and a .emreloc in-memory section, store
4519   relocation information into the .emreloc section which can be
4520   used at runtime to relocate the section.  This is called by the
4521   linker when the --embedded-relocs switch is used.  This is called
4522   after the add_symbols entry point has been called for all the
4523   objects, and before the final_link entry point is called.  */
4524
4525bfd_boolean
4526bfd_m68k_elf32_create_embedded_relocs (bfd *abfd, struct bfd_link_info *info,
4527				       asection *datasec, asection *relsec,
4528				       char **errmsg)
4529{
4530  Elf_Internal_Shdr *symtab_hdr;
4531  Elf_Internal_Sym *isymbuf = NULL;
4532  Elf_Internal_Rela *internal_relocs = NULL;
4533  Elf_Internal_Rela *irel, *irelend;
4534  bfd_byte *p;
4535  bfd_size_type amt;
4536
4537  BFD_ASSERT (! bfd_link_relocatable (info));
4538
4539  *errmsg = NULL;
4540
4541  if (datasec->reloc_count == 0)
4542    return TRUE;
4543
4544  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4545
4546  /* Get a copy of the native relocations.  */
4547  internal_relocs = (_bfd_elf_link_read_relocs
4548		     (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL,
4549		      info->keep_memory));
4550  if (internal_relocs == NULL)
4551    goto error_return;
4552
4553  amt = (bfd_size_type) datasec->reloc_count * 12;
4554  relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
4555  if (relsec->contents == NULL)
4556    goto error_return;
4557
4558  p = relsec->contents;
4559
4560  irelend = internal_relocs + datasec->reloc_count;
4561  for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4562    {
4563      asection *targetsec;
4564
4565      /* We are going to write a four byte longword into the runtime
4566       reloc section.  The longword will be the address in the data
4567       section which must be relocated.  It is followed by the name
4568       of the target section NUL-padded or truncated to 8
4569       characters.  */
4570
4571      /* We can only relocate absolute longword relocs at run time.  */
4572      if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4573	{
4574	  *errmsg = _("unsupported reloc type");
4575	  bfd_set_error (bfd_error_bad_value);
4576	  goto error_return;
4577	}
4578
4579      /* Get the target section referred to by the reloc.  */
4580      if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4581	{
4582	  /* A local symbol.  */
4583	  Elf_Internal_Sym *isym;
4584
4585	  /* Read this BFD's local symbols if we haven't done so already.  */
4586	  if (isymbuf == NULL)
4587	    {
4588	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4589	      if (isymbuf == NULL)
4590		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4591						symtab_hdr->sh_info, 0,
4592						NULL, NULL, NULL);
4593	      if (isymbuf == NULL)
4594		goto error_return;
4595	    }
4596
4597	  isym = isymbuf + ELF32_R_SYM (irel->r_info);
4598	  targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4599	}
4600      else
4601	{
4602	  unsigned long indx;
4603	  struct elf_link_hash_entry *h;
4604
4605	  /* An external symbol.  */
4606	  indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4607	  h = elf_sym_hashes (abfd)[indx];
4608	  BFD_ASSERT (h != NULL);
4609	  if (h->root.type == bfd_link_hash_defined
4610	      || h->root.type == bfd_link_hash_defweak)
4611	    targetsec = h->root.u.def.section;
4612	  else
4613	    targetsec = NULL;
4614	}
4615
4616      bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4617      memset (p + 4, 0, 8);
4618      if (targetsec != NULL)
4619	strncpy ((char *) p + 4, targetsec->output_section->name, 8);
4620    }
4621
4622  if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4623    free (isymbuf);
4624  if (internal_relocs != NULL
4625      && elf_section_data (datasec)->relocs != internal_relocs)
4626    free (internal_relocs);
4627  return TRUE;
4628
4629error_return:
4630  if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4631    free (isymbuf);
4632  if (internal_relocs != NULL
4633      && elf_section_data (datasec)->relocs != internal_relocs)
4634    free (internal_relocs);
4635  return FALSE;
4636}
4637
4638/* Set target options.  */
4639
4640void
4641bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4642{
4643  struct elf_m68k_link_hash_table *htab;
4644  bfd_boolean use_neg_got_offsets_p;
4645  bfd_boolean allow_multigot_p;
4646  bfd_boolean local_gp_p;
4647
4648  switch (got_handling)
4649    {
4650    case 0:
4651      /* --got=single.  */
4652      local_gp_p = FALSE;
4653      use_neg_got_offsets_p = FALSE;
4654      allow_multigot_p = FALSE;
4655      break;
4656
4657    case 1:
4658      /* --got=negative.  */
4659      local_gp_p = TRUE;
4660      use_neg_got_offsets_p = TRUE;
4661      allow_multigot_p = FALSE;
4662      break;
4663
4664    case 2:
4665      /* --got=multigot.  */
4666      local_gp_p = TRUE;
4667      use_neg_got_offsets_p = TRUE;
4668      allow_multigot_p = TRUE;
4669      break;
4670
4671    default:
4672      BFD_ASSERT (FALSE);
4673      return;
4674    }
4675
4676  htab = elf_m68k_hash_table (info);
4677  if (htab != NULL)
4678    {
4679      htab->local_gp_p = local_gp_p;
4680      htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
4681      htab->allow_multigot_p = allow_multigot_p;
4682    }
4683}
4684
4685static enum elf_reloc_type_class
4686elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4687			     const asection *rel_sec ATTRIBUTE_UNUSED,
4688			     const Elf_Internal_Rela *rela)
4689{
4690  switch ((int) ELF32_R_TYPE (rela->r_info))
4691    {
4692    case R_68K_RELATIVE:
4693      return reloc_class_relative;
4694    case R_68K_JMP_SLOT:
4695      return reloc_class_plt;
4696    case R_68K_COPY:
4697      return reloc_class_copy;
4698    default:
4699      return reloc_class_normal;
4700    }
4701}
4702
4703/* Return address for Ith PLT stub in section PLT, for relocation REL
4704   or (bfd_vma) -1 if it should not be included.  */
4705
4706static bfd_vma
4707elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4708		      const arelent *rel ATTRIBUTE_UNUSED)
4709{
4710  return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4711}
4712
4713/* Support for core dump NOTE sections.  */
4714
4715static bfd_boolean
4716elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4717{
4718  int offset;
4719  size_t size;
4720
4721  switch (note->descsz)
4722    {
4723    default:
4724      return FALSE;
4725
4726    case 154:		/* Linux/m68k */
4727      /* pr_cursig */
4728      elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
4729
4730      /* pr_pid */
4731      elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22);
4732
4733      /* pr_reg */
4734      offset = 70;
4735      size = 80;
4736
4737      break;
4738    }
4739
4740  /* Make a ".reg/999" section.  */
4741  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
4742					  size, note->descpos + offset);
4743}
4744
4745static bfd_boolean
4746elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4747{
4748  switch (note->descsz)
4749    {
4750    default:
4751      return FALSE;
4752
4753    case 124:		/* Linux/m68k elf_prpsinfo.  */
4754      elf_tdata (abfd)->core->pid
4755	= bfd_get_32 (abfd, note->descdata + 12);
4756      elf_tdata (abfd)->core->program
4757	= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
4758      elf_tdata (abfd)->core->command
4759	= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
4760    }
4761
4762  /* Note that for some reason, a spurious space is tacked
4763     onto the end of the args in some (at least one anyway)
4764     implementations, so strip it off if it exists.  */
4765  {
4766    char *command = elf_tdata (abfd)->core->command;
4767    int n = strlen (command);
4768
4769    if (n > 0 && command[n - 1] == ' ')
4770      command[n - 1] = '\0';
4771  }
4772
4773  return TRUE;
4774}
4775
4776/* Hook called by the linker routine which adds symbols from an object
4777   file.  */
4778
4779static bfd_boolean
4780elf_m68k_add_symbol_hook (bfd *abfd,
4781			  struct bfd_link_info *info,
4782			  Elf_Internal_Sym *sym,
4783			  const char **namep ATTRIBUTE_UNUSED,
4784			  flagword *flagsp ATTRIBUTE_UNUSED,
4785			  asection **secp ATTRIBUTE_UNUSED,
4786			  bfd_vma *valp ATTRIBUTE_UNUSED)
4787{
4788  if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4789      && (abfd->flags & DYNAMIC) == 0
4790      && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4791    elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
4792
4793  return TRUE;
4794}
4795
4796#define TARGET_BIG_SYM			m68k_elf32_vec
4797#define TARGET_BIG_NAME			"elf32-m68k"
4798#define ELF_MACHINE_CODE		EM_68K
4799#define ELF_MAXPAGESIZE			0x2000
4800#define elf_backend_create_dynamic_sections \
4801					_bfd_elf_create_dynamic_sections
4802#define bfd_elf32_bfd_link_hash_table_create \
4803					elf_m68k_link_hash_table_create
4804#define bfd_elf32_bfd_final_link	bfd_elf_final_link
4805
4806#define elf_backend_check_relocs	elf_m68k_check_relocs
4807#define elf_backend_always_size_sections \
4808					elf_m68k_always_size_sections
4809#define elf_backend_adjust_dynamic_symbol \
4810					elf_m68k_adjust_dynamic_symbol
4811#define elf_backend_size_dynamic_sections \
4812					elf_m68k_size_dynamic_sections
4813#define elf_backend_final_write_processing	elf_m68k_final_write_processing
4814#define elf_backend_init_index_section	_bfd_elf_init_1_index_section
4815#define elf_backend_relocate_section	elf_m68k_relocate_section
4816#define elf_backend_finish_dynamic_symbol \
4817					elf_m68k_finish_dynamic_symbol
4818#define elf_backend_finish_dynamic_sections \
4819					elf_m68k_finish_dynamic_sections
4820#define elf_backend_gc_mark_hook	elf_m68k_gc_mark_hook
4821#define elf_backend_gc_sweep_hook	elf_m68k_gc_sweep_hook
4822#define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4823#define bfd_elf32_bfd_merge_private_bfd_data \
4824                                        elf32_m68k_merge_private_bfd_data
4825#define bfd_elf32_bfd_set_private_flags \
4826                                        elf32_m68k_set_private_flags
4827#define bfd_elf32_bfd_print_private_bfd_data \
4828                                        elf32_m68k_print_private_bfd_data
4829#define elf_backend_reloc_type_class	elf32_m68k_reloc_type_class
4830#define elf_backend_plt_sym_val		elf_m68k_plt_sym_val
4831#define elf_backend_object_p		elf32_m68k_object_p
4832#define elf_backend_grok_prstatus	elf_m68k_grok_prstatus
4833#define elf_backend_grok_psinfo		elf_m68k_grok_psinfo
4834#define elf_backend_add_symbol_hook	elf_m68k_add_symbol_hook
4835
4836#define elf_backend_can_gc_sections 1
4837#define elf_backend_can_refcount 1
4838#define elf_backend_want_got_plt 1
4839#define elf_backend_plt_readonly 1
4840#define elf_backend_want_plt_sym 0
4841#define elf_backend_got_header_size	12
4842#define elf_backend_rela_normal		1
4843#define elf_backend_dtrel_excludes_plt	1
4844
4845#include "elf32-target.h"
4846