1/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to.  The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 *    notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 *    notice, this list of conditions and the following disclaimer in the
29 *    documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 *    must display the following acknowledgement:
32 *    "This product includes cryptographic software written by
33 *     Eric Young (eay@cryptsoft.com)"
34 *    The word 'cryptographic' can be left out if the rouines from the library
35 *    being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 *    the apps directory (application code) you must include an acknowledgement:
38 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed.  i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57#include <openssl/sha.h>
58
59#include <string.h>
60
61#include <openssl/mem.h>
62
63#include "../../internal.h"
64
65
66// IMPLEMENTATION NOTES.
67//
68// The 32-bit hash algorithms share a common byte-order neutral collector and
69// padding function implementations that operate on unaligned data,
70// ../md32_common.h. This SHA-512 implementation does not. Reasons
71// [in reverse order] are:
72//
73// - It's the only 64-bit hash algorithm for the moment of this writing,
74//   there is no need for common collector/padding implementation [yet];
75// - By supporting only a transform function that operates on *aligned* data
76//   the collector/padding function is simpler and easier to optimize.
77
78#if !defined(OPENSSL_NO_ASM) &&                         \
79    (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
80     defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
81#define SHA512_ASM
82#endif
83
84#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
85    defined(__ARM_FEATURE_UNALIGNED)
86#define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
87#endif
88
89int SHA384_Init(SHA512_CTX *sha) {
90  sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8);
91  sha->h[1] = UINT64_C(0x629a292a367cd507);
92  sha->h[2] = UINT64_C(0x9159015a3070dd17);
93  sha->h[3] = UINT64_C(0x152fecd8f70e5939);
94  sha->h[4] = UINT64_C(0x67332667ffc00b31);
95  sha->h[5] = UINT64_C(0x8eb44a8768581511);
96  sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7);
97  sha->h[7] = UINT64_C(0x47b5481dbefa4fa4);
98
99  sha->Nl = 0;
100  sha->Nh = 0;
101  sha->num = 0;
102  sha->md_len = SHA384_DIGEST_LENGTH;
103  return 1;
104}
105
106
107int SHA512_Init(SHA512_CTX *sha) {
108  sha->h[0] = UINT64_C(0x6a09e667f3bcc908);
109  sha->h[1] = UINT64_C(0xbb67ae8584caa73b);
110  sha->h[2] = UINT64_C(0x3c6ef372fe94f82b);
111  sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1);
112  sha->h[4] = UINT64_C(0x510e527fade682d1);
113  sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f);
114  sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b);
115  sha->h[7] = UINT64_C(0x5be0cd19137e2179);
116
117  sha->Nl = 0;
118  sha->Nh = 0;
119  sha->num = 0;
120  sha->md_len = SHA512_DIGEST_LENGTH;
121  return 1;
122}
123
124uint8_t *SHA384(const uint8_t *data, size_t len, uint8_t *out) {
125  SHA512_CTX ctx;
126  SHA384_Init(&ctx);
127  SHA384_Update(&ctx, data, len);
128  SHA384_Final(out, &ctx);
129  OPENSSL_cleanse(&ctx, sizeof(ctx));
130  return out;
131}
132
133uint8_t *SHA512(const uint8_t *data, size_t len, uint8_t *out) {
134  SHA512_CTX ctx;
135  SHA512_Init(&ctx);
136  SHA512_Update(&ctx, data, len);
137  SHA512_Final(out, &ctx);
138  OPENSSL_cleanse(&ctx, sizeof(ctx));
139  return out;
140}
141
142#if !defined(SHA512_ASM)
143static
144#endif
145void sha512_block_data_order(uint64_t *state, const uint64_t *W, size_t num);
146
147
148int SHA384_Final(uint8_t *md, SHA512_CTX *sha) {
149  return SHA512_Final(md, sha);
150}
151
152int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) {
153  return SHA512_Update(sha, data, len);
154}
155
156void SHA512_Transform(SHA512_CTX *c, const uint8_t *block) {
157#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
158  if ((size_t)block % sizeof(c->u.d[0]) != 0) {
159    OPENSSL_memcpy(c->u.p, block, sizeof(c->u.p));
160    block = c->u.p;
161  }
162#endif
163  sha512_block_data_order(c->h, (uint64_t *)block, 1);
164}
165
166int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
167  uint64_t l;
168  uint8_t *p = c->u.p;
169  const uint8_t *data = (const uint8_t *)in_data;
170
171  if (len == 0) {
172    return 1;
173  }
174
175  l = (c->Nl + (((uint64_t)len) << 3)) & UINT64_C(0xffffffffffffffff);
176  if (l < c->Nl) {
177    c->Nh++;
178  }
179  if (sizeof(len) >= 8) {
180    c->Nh += (((uint64_t)len) >> 61);
181  }
182  c->Nl = l;
183
184  if (c->num != 0) {
185    size_t n = sizeof(c->u) - c->num;
186
187    if (len < n) {
188      OPENSSL_memcpy(p + c->num, data, len);
189      c->num += (unsigned int)len;
190      return 1;
191    } else {
192      OPENSSL_memcpy(p + c->num, data, n), c->num = 0;
193      len -= n;
194      data += n;
195      sha512_block_data_order(c->h, (uint64_t *)p, 1);
196    }
197  }
198
199  if (len >= sizeof(c->u)) {
200#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
201    if ((size_t)data % sizeof(c->u.d[0]) != 0) {
202      while (len >= sizeof(c->u)) {
203        OPENSSL_memcpy(p, data, sizeof(c->u));
204        sha512_block_data_order(c->h, (uint64_t *)p, 1);
205        len -= sizeof(c->u);
206        data += sizeof(c->u);
207      }
208    } else
209#endif
210    {
211      sha512_block_data_order(c->h, (uint64_t *)data, len / sizeof(c->u));
212      data += len;
213      len %= sizeof(c->u);
214      data -= len;
215    }
216  }
217
218  if (len != 0) {
219    OPENSSL_memcpy(p, data, len);
220    c->num = (int)len;
221  }
222
223  return 1;
224}
225
226int SHA512_Final(uint8_t *md, SHA512_CTX *sha) {
227  uint8_t *p = (uint8_t *)sha->u.p;
228  size_t n = sha->num;
229
230  p[n] = 0x80;  // There always is a room for one
231  n++;
232  if (n > (sizeof(sha->u) - 16)) {
233    OPENSSL_memset(p + n, 0, sizeof(sha->u) - n);
234    n = 0;
235    sha512_block_data_order(sha->h, (uint64_t *)p, 1);
236  }
237
238  OPENSSL_memset(p + n, 0, sizeof(sha->u) - 16 - n);
239  p[sizeof(sha->u) - 1] = (uint8_t)(sha->Nl);
240  p[sizeof(sha->u) - 2] = (uint8_t)(sha->Nl >> 8);
241  p[sizeof(sha->u) - 3] = (uint8_t)(sha->Nl >> 16);
242  p[sizeof(sha->u) - 4] = (uint8_t)(sha->Nl >> 24);
243  p[sizeof(sha->u) - 5] = (uint8_t)(sha->Nl >> 32);
244  p[sizeof(sha->u) - 6] = (uint8_t)(sha->Nl >> 40);
245  p[sizeof(sha->u) - 7] = (uint8_t)(sha->Nl >> 48);
246  p[sizeof(sha->u) - 8] = (uint8_t)(sha->Nl >> 56);
247  p[sizeof(sha->u) - 9] = (uint8_t)(sha->Nh);
248  p[sizeof(sha->u) - 10] = (uint8_t)(sha->Nh >> 8);
249  p[sizeof(sha->u) - 11] = (uint8_t)(sha->Nh >> 16);
250  p[sizeof(sha->u) - 12] = (uint8_t)(sha->Nh >> 24);
251  p[sizeof(sha->u) - 13] = (uint8_t)(sha->Nh >> 32);
252  p[sizeof(sha->u) - 14] = (uint8_t)(sha->Nh >> 40);
253  p[sizeof(sha->u) - 15] = (uint8_t)(sha->Nh >> 48);
254  p[sizeof(sha->u) - 16] = (uint8_t)(sha->Nh >> 56);
255
256  sha512_block_data_order(sha->h, (uint64_t *)p, 1);
257
258  if (md == NULL) {
259    // TODO(davidben): This NULL check is absent in other low-level hash 'final'
260    // functions and is one of the few places one can fail.
261    return 0;
262  }
263
264  switch (sha->md_len) {
265    // Let compiler decide if it's appropriate to unroll...
266    case SHA384_DIGEST_LENGTH:
267      for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
268        uint64_t t = sha->h[n];
269
270        *(md++) = (uint8_t)(t >> 56);
271        *(md++) = (uint8_t)(t >> 48);
272        *(md++) = (uint8_t)(t >> 40);
273        *(md++) = (uint8_t)(t >> 32);
274        *(md++) = (uint8_t)(t >> 24);
275        *(md++) = (uint8_t)(t >> 16);
276        *(md++) = (uint8_t)(t >> 8);
277        *(md++) = (uint8_t)(t);
278      }
279      break;
280    case SHA512_DIGEST_LENGTH:
281      for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
282        uint64_t t = sha->h[n];
283
284        *(md++) = (uint8_t)(t >> 56);
285        *(md++) = (uint8_t)(t >> 48);
286        *(md++) = (uint8_t)(t >> 40);
287        *(md++) = (uint8_t)(t >> 32);
288        *(md++) = (uint8_t)(t >> 24);
289        *(md++) = (uint8_t)(t >> 16);
290        *(md++) = (uint8_t)(t >> 8);
291        *(md++) = (uint8_t)(t);
292      }
293      break;
294    // ... as well as make sure md_len is not abused.
295    default:
296      // TODO(davidben): This bad |md_len| case is one of the few places a
297      // low-level hash 'final' function can fail. This should never happen.
298      return 0;
299  }
300
301  return 1;
302}
303
304#ifndef SHA512_ASM
305static const uint64_t K512[80] = {
306    UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
307    UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
308    UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
309    UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
310    UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
311    UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
312    UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
313    UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
314    UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
315    UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
316    UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
317    UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
318    UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
319    UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
320    UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
321    UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
322    UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
323    UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
324    UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
325    UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
326    UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
327    UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
328    UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
329    UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
330    UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
331    UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
332    UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
333    UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
334    UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
335    UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
336    UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
337    UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
338    UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
339    UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
340    UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
341    UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
342    UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
343    UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
344    UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
345    UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817),
346};
347
348#if defined(__GNUC__) && __GNUC__ >= 2 && !defined(OPENSSL_NO_ASM)
349#if defined(__x86_64) || defined(__x86_64__)
350#define ROTR(a, n)                                              \
351  ({                                                            \
352    uint64_t ret;                                               \
353    __asm__("rorq %1, %0" : "=r"(ret) : "J"(n), "0"(a) : "cc"); \
354    ret;                                                        \
355  })
356#define PULL64(x)                                \
357  ({                                             \
358    uint64_t ret = *((const uint64_t *)(&(x)));  \
359    __asm__("bswapq %0" : "=r"(ret) : "0"(ret)); \
360    ret;                                         \
361  })
362#elif(defined(__i386) || defined(__i386__))
363#define PULL64(x)                                                             \
364  ({                                                                          \
365    const unsigned int *p = (const unsigned int *)(&(x));                     \
366    unsigned int hi = p[0], lo = p[1];                                        \
367    __asm__("bswapl %0; bswapl %1;" : "=r"(lo), "=r"(hi) : "0"(lo), "1"(hi)); \
368    ((uint64_t)hi) << 32 | lo;                                                \
369  })
370#elif(defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
371#define ROTR(a, n)                                             \
372  ({                                                           \
373    uint64_t ret;                                              \
374    __asm__("rotrdi %0, %1, %2" : "=r"(ret) : "r"(a), "K"(n)); \
375    ret;                                                       \
376  })
377#elif defined(__aarch64__)
378#define ROTR(a, n)                                          \
379  ({                                                        \
380    uint64_t ret;                                           \
381    __asm__("ror %0, %1, %2" : "=r"(ret) : "r"(a), "I"(n)); \
382    ret;                                                    \
383  })
384#if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
385    __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
386#define PULL64(x)                                                         \
387  ({                                                                      \
388    uint64_t ret;                                                         \
389    __asm__("rev %0, %1" : "=r"(ret) : "r"(*((const uint64_t *)(&(x))))); \
390    ret;                                                                  \
391  })
392#endif
393#endif
394#elif defined(_MSC_VER)
395#if defined(_WIN64)  // applies to both IA-64 and AMD64
396#pragma intrinsic(_rotr64)
397#define ROTR(a, n) _rotr64((a), n)
398#endif
399#if defined(_M_IX86) && !defined(OPENSSL_NO_ASM)
400static uint64_t __fastcall __pull64be(const void *x) {
401  _asm mov edx, [ecx + 0]
402  _asm mov eax, [ecx + 4]
403  _asm bswap edx
404  _asm bswap eax
405}
406#define PULL64(x) __pull64be(&(x))
407#if _MSC_VER <= 1200
408#pragma inline_depth(0)
409#endif
410#endif
411#endif
412
413#ifndef PULL64
414#define B(x, j) \
415  (((uint64_t)(*(((const uint8_t *)(&x)) + j))) << ((7 - j) * 8))
416#define PULL64(x)                                                        \
417  (B(x, 0) | B(x, 1) | B(x, 2) | B(x, 3) | B(x, 4) | B(x, 5) | B(x, 6) | \
418   B(x, 7))
419#endif
420
421#ifndef ROTR
422#define ROTR(x, s) (((x) >> s) | (x) << (64 - s))
423#endif
424
425#define Sigma0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
426#define Sigma1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
427#define sigma0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7))
428#define sigma1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ ((x) >> 6))
429
430#define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
431#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
432
433
434#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
435// This code should give better results on 32-bit CPU with less than
436// ~24 registers, both size and performance wise...
437static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
438                                    size_t num) {
439  uint64_t A, E, T;
440  uint64_t X[9 + 80], *F;
441  int i;
442
443  while (num--) {
444    F = X + 80;
445    A = state[0];
446    F[1] = state[1];
447    F[2] = state[2];
448    F[3] = state[3];
449    E = state[4];
450    F[5] = state[5];
451    F[6] = state[6];
452    F[7] = state[7];
453
454    for (i = 0; i < 16; i++, F--) {
455      T = PULL64(W[i]);
456      F[0] = A;
457      F[4] = E;
458      F[8] = T;
459      T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
460      E = F[3] + T;
461      A = T + Sigma0(A) + Maj(A, F[1], F[2]);
462    }
463
464    for (; i < 80; i++, F--) {
465      T = sigma0(F[8 + 16 - 1]);
466      T += sigma1(F[8 + 16 - 14]);
467      T += F[8 + 16] + F[8 + 16 - 9];
468
469      F[0] = A;
470      F[4] = E;
471      F[8] = T;
472      T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
473      E = F[3] + T;
474      A = T + Sigma0(A) + Maj(A, F[1], F[2]);
475    }
476
477    state[0] += A;
478    state[1] += F[1];
479    state[2] += F[2];
480    state[3] += F[3];
481    state[4] += E;
482    state[5] += F[5];
483    state[6] += F[6];
484    state[7] += F[7];
485
486    W += 16;
487  }
488}
489
490#else
491
492#define ROUND_00_15(i, a, b, c, d, e, f, g, h)   \
493  do {                                           \
494    T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
495    h = Sigma0(a) + Maj(a, b, c);                \
496    d += T1;                                     \
497    h += T1;                                     \
498  } while (0)
499
500#define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X)   \
501  do {                                                 \
502    s0 = X[(j + 1) & 0x0f];                            \
503    s0 = sigma0(s0);                                   \
504    s1 = X[(j + 14) & 0x0f];                           \
505    s1 = sigma1(s1);                                   \
506    T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
507    ROUND_00_15(i + j, a, b, c, d, e, f, g, h);        \
508  } while (0)
509
510static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
511                                    size_t num) {
512  uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
513  uint64_t X[16];
514  int i;
515
516  while (num--) {
517
518    a = state[0];
519    b = state[1];
520    c = state[2];
521    d = state[3];
522    e = state[4];
523    f = state[5];
524    g = state[6];
525    h = state[7];
526
527    T1 = X[0] = PULL64(W[0]);
528    ROUND_00_15(0, a, b, c, d, e, f, g, h);
529    T1 = X[1] = PULL64(W[1]);
530    ROUND_00_15(1, h, a, b, c, d, e, f, g);
531    T1 = X[2] = PULL64(W[2]);
532    ROUND_00_15(2, g, h, a, b, c, d, e, f);
533    T1 = X[3] = PULL64(W[3]);
534    ROUND_00_15(3, f, g, h, a, b, c, d, e);
535    T1 = X[4] = PULL64(W[4]);
536    ROUND_00_15(4, e, f, g, h, a, b, c, d);
537    T1 = X[5] = PULL64(W[5]);
538    ROUND_00_15(5, d, e, f, g, h, a, b, c);
539    T1 = X[6] = PULL64(W[6]);
540    ROUND_00_15(6, c, d, e, f, g, h, a, b);
541    T1 = X[7] = PULL64(W[7]);
542    ROUND_00_15(7, b, c, d, e, f, g, h, a);
543    T1 = X[8] = PULL64(W[8]);
544    ROUND_00_15(8, a, b, c, d, e, f, g, h);
545    T1 = X[9] = PULL64(W[9]);
546    ROUND_00_15(9, h, a, b, c, d, e, f, g);
547    T1 = X[10] = PULL64(W[10]);
548    ROUND_00_15(10, g, h, a, b, c, d, e, f);
549    T1 = X[11] = PULL64(W[11]);
550    ROUND_00_15(11, f, g, h, a, b, c, d, e);
551    T1 = X[12] = PULL64(W[12]);
552    ROUND_00_15(12, e, f, g, h, a, b, c, d);
553    T1 = X[13] = PULL64(W[13]);
554    ROUND_00_15(13, d, e, f, g, h, a, b, c);
555    T1 = X[14] = PULL64(W[14]);
556    ROUND_00_15(14, c, d, e, f, g, h, a, b);
557    T1 = X[15] = PULL64(W[15]);
558    ROUND_00_15(15, b, c, d, e, f, g, h, a);
559
560    for (i = 16; i < 80; i += 16) {
561      ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
562      ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
563      ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
564      ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
565      ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
566      ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
567      ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
568      ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
569      ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
570      ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
571      ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
572      ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
573      ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
574      ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
575      ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
576      ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
577    }
578
579    state[0] += a;
580    state[1] += b;
581    state[2] += c;
582    state[3] += d;
583    state[4] += e;
584    state[5] += f;
585    state[6] += g;
586    state[7] += h;
587
588    W += 16;
589  }
590}
591
592#endif
593
594#endif  // !SHA512_ASM
595
596#undef ROTR
597#undef PULL64
598#undef B
599#undef Sigma0
600#undef Sigma1
601#undef sigma0
602#undef sigma1
603#undef Ch
604#undef Maj
605#undef ROUND_00_15
606#undef ROUND_16_80
607#undef HOST_c2l
608#undef HOST_l2c
609