1/* Copyright (c) 2017, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15#include <openssl/aead.h>
16
17#include <assert.h>
18
19#include <openssl/cipher.h>
20#include <openssl/cpu.h>
21#include <openssl/crypto.h>
22#include <openssl/err.h>
23
24#include "../fipsmodule/cipher/internal.h"
25
26
27#define EVP_AEAD_AES_GCM_SIV_NONCE_LEN 12
28#define EVP_AEAD_AES_GCM_SIV_TAG_LEN 16
29
30#if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM)
31
32// Optimised AES-GCM-SIV
33
34struct aead_aes_gcm_siv_asm_ctx {
35  alignas(16) uint8_t key[16*15];
36  int is_128_bit;
37  // ptr contains the original pointer from |OPENSSL_malloc|, which may only be
38  // 8-byte aligned. When freeing this structure, actually call |OPENSSL_free|
39  // on this pointer.
40  void *ptr;
41};
42
43// aes128gcmsiv_aes_ks writes an AES-128 key schedule for |key| to
44// |out_expanded_key|.
45extern void aes128gcmsiv_aes_ks(
46    const uint8_t key[16], uint8_t out_expanded_key[16*15]);
47
48// aes128gcmsiv_aes_ks writes an AES-128 key schedule for |key| to
49// |out_expanded_key|.
50extern void aes256gcmsiv_aes_ks(
51    const uint8_t key[16], uint8_t out_expanded_key[16*15]);
52
53static int aead_aes_gcm_siv_asm_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
54                                     size_t key_len, size_t tag_len) {
55  const size_t key_bits = key_len * 8;
56
57  if (key_bits != 128 && key_bits != 256) {
58    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
59    return 0;  // EVP_AEAD_CTX_init should catch this.
60  }
61
62  if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
63    tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
64  }
65
66  if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
67    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
68    return 0;
69  }
70
71  char *ptr = OPENSSL_malloc(sizeof(struct aead_aes_gcm_siv_asm_ctx) + 8);
72  if (ptr == NULL) {
73    return 0;
74  }
75  assert((((uintptr_t)ptr) & 7) == 0);
76
77  // gcm_siv_ctx needs to be 16-byte aligned in a cross-platform way.
78  struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx =
79      (struct aead_aes_gcm_siv_asm_ctx *)(ptr + (((uintptr_t)ptr) & 8));
80
81  assert((((uintptr_t)gcm_siv_ctx) & 15) == 0);
82  gcm_siv_ctx->ptr = ptr;
83
84  if (key_bits == 128) {
85    aes128gcmsiv_aes_ks(key, &gcm_siv_ctx->key[0]);
86    gcm_siv_ctx->is_128_bit = 1;
87  } else {
88    aes256gcmsiv_aes_ks(key, &gcm_siv_ctx->key[0]);
89    gcm_siv_ctx->is_128_bit = 0;
90  }
91  ctx->aead_state = gcm_siv_ctx;
92  ctx->tag_len = tag_len;
93
94  return 1;
95}
96
97static void aead_aes_gcm_siv_asm_cleanup(EVP_AEAD_CTX *ctx) {
98  const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = ctx->aead_state;
99  OPENSSL_free(gcm_siv_ctx->ptr);
100}
101
102// aesgcmsiv_polyval_horner updates the POLYVAL value in |in_out_poly| to
103// include a number (|in_blocks|) of 16-byte blocks of data from |in|, given
104// the POLYVAL key in |key|.
105extern void aesgcmsiv_polyval_horner(const uint8_t in_out_poly[16],
106                                     const uint8_t key[16], const uint8_t *in,
107                                     size_t in_blocks);
108
109// aesgcmsiv_htable_init writes powers 1..8 of |auth_key| to |out_htable|.
110extern void aesgcmsiv_htable_init(uint8_t out_htable[16 * 8],
111                                  const uint8_t auth_key[16]);
112
113// aesgcmsiv_htable6_init writes powers 1..6 of |auth_key| to |out_htable|.
114extern void aesgcmsiv_htable6_init(uint8_t out_htable[16 * 6],
115                                   const uint8_t auth_key[16]);
116
117// aesgcmsiv_htable_polyval updates the POLYVAL value in |in_out_poly| to
118// include |in_len| bytes of data from |in|. (Where |in_len| must be a multiple
119// of 16.) It uses the precomputed powers of the key given in |htable|.
120extern void aesgcmsiv_htable_polyval(const uint8_t htable[16 * 8],
121                                     const uint8_t *in, size_t in_len,
122                                     uint8_t in_out_poly[16]);
123
124// aes128gcmsiv_dec decrypts |in_len| & ~15 bytes from |out| and writes them to
125// |in|. (The full value of |in_len| is still used to find the authentication
126// tag appended to the ciphertext, however, so must not be pre-masked.)
127//
128// |in| and |out| may be equal, but must not otherwise overlap.
129//
130// While decrypting, it updates the POLYVAL value found at the beginning of
131// |in_out_calculated_tag_and_scratch| and writes the updated value back before
132// return. During executation, it may use the whole of this space for other
133// purposes. In order to decrypt and update the POLYVAL value, it uses the
134// expanded key from |key| and the table of powers in |htable|.
135extern void aes128gcmsiv_dec(const uint8_t *in, uint8_t *out,
136                             uint8_t in_out_calculated_tag_and_scratch[16 * 8],
137                             const uint8_t htable[16 * 6],
138                             const struct aead_aes_gcm_siv_asm_ctx *key,
139                             size_t in_len);
140
141// aes256gcmsiv_dec acts like |aes128gcmsiv_dec|, but for AES-256.
142extern void aes256gcmsiv_dec(const uint8_t *in, uint8_t *out,
143                             uint8_t in_out_calculated_tag_and_scratch[16 * 8],
144                             const uint8_t htable[16 * 6],
145                             const struct aead_aes_gcm_siv_asm_ctx *key,
146                             size_t in_len);
147
148// aes128gcmsiv_kdf performs the AES-GCM-SIV KDF given the expanded key from
149// |key_schedule| and the nonce in |nonce|. Note that, while only 12 bytes of
150// the nonce are used, 16 bytes are read and so the value must be
151// right-padded.
152extern void aes128gcmsiv_kdf(const uint8_t nonce[16],
153                             uint64_t out_key_material[8],
154                             const uint8_t *key_schedule);
155
156// aes256gcmsiv_kdf acts like |aes128gcmsiv_kdf|, but for AES-256.
157extern void aes256gcmsiv_kdf(const uint8_t nonce[16],
158                             uint64_t out_key_material[12],
159                             const uint8_t *key_schedule);
160
161// aes128gcmsiv_aes_ks_enc_x1 performs a key expansion of the AES-128 key in
162// |key|, writes the expanded key to |out_expanded_key| and encrypts a single
163// block from |in| to |out|.
164extern void aes128gcmsiv_aes_ks_enc_x1(const uint8_t in[16], uint8_t out[16],
165                                       uint8_t out_expanded_key[16 * 15],
166                                       const uint64_t key[2]);
167
168// aes256gcmsiv_aes_ks_enc_x1 acts like |aes128gcmsiv_aes_ks_enc_x1|, but for
169// AES-256.
170extern void aes256gcmsiv_aes_ks_enc_x1(const uint8_t in[16], uint8_t out[16],
171                                       uint8_t out_expanded_key[16 * 15],
172                                       const uint64_t key[4]);
173
174// aes128gcmsiv_ecb_enc_block encrypts a single block from |in| to |out| using
175// the expanded key in |expanded_key|.
176extern void aes128gcmsiv_ecb_enc_block(
177    const uint8_t in[16], uint8_t out[16],
178    const struct aead_aes_gcm_siv_asm_ctx *expanded_key);
179
180// aes256gcmsiv_ecb_enc_block acts like |aes128gcmsiv_ecb_enc_block|, but for
181// AES-256.
182extern void aes256gcmsiv_ecb_enc_block(
183    const uint8_t in[16], uint8_t out[16],
184    const struct aead_aes_gcm_siv_asm_ctx *expanded_key);
185
186// aes128gcmsiv_enc_msg_x4 encrypts |in_len| bytes from |in| to |out| using the
187// expanded key from |key|. (The value of |in_len| must be a multiple of 16.)
188// The |in| and |out| buffers may be equal but must not otherwise overlap. The
189// initial counter is constructed from the given |tag| as required by
190// AES-GCM-SIV.
191extern void aes128gcmsiv_enc_msg_x4(const uint8_t *in, uint8_t *out,
192                                    const uint8_t *tag,
193                                    const struct aead_aes_gcm_siv_asm_ctx *key,
194                                    size_t in_len);
195
196// aes256gcmsiv_enc_msg_x4 acts like |aes128gcmsiv_enc_msg_x4|, but for
197// AES-256.
198extern void aes256gcmsiv_enc_msg_x4(const uint8_t *in, uint8_t *out,
199                                    const uint8_t *tag,
200                                    const struct aead_aes_gcm_siv_asm_ctx *key,
201                                    size_t in_len);
202
203// aes128gcmsiv_enc_msg_x8 acts like |aes128gcmsiv_enc_msg_x4|, but is
204// optimised for longer messages.
205extern void aes128gcmsiv_enc_msg_x8(const uint8_t *in, uint8_t *out,
206                                    const uint8_t *tag,
207                                    const struct aead_aes_gcm_siv_asm_ctx *key,
208                                    size_t in_len);
209
210// aes256gcmsiv_enc_msg_x8 acts like |aes256gcmsiv_enc_msg_x4|, but is
211// optimised for longer messages.
212extern void aes256gcmsiv_enc_msg_x8(const uint8_t *in, uint8_t *out,
213                                    const uint8_t *tag,
214                                    const struct aead_aes_gcm_siv_asm_ctx *key,
215                                    size_t in_len);
216
217// gcm_siv_asm_polyval evaluates POLYVAL at |auth_key| on the given plaintext
218// and AD. The result is written to |out_tag|.
219static void gcm_siv_asm_polyval(uint8_t out_tag[16], const uint8_t *in,
220                                size_t in_len, const uint8_t *ad, size_t ad_len,
221                                const uint8_t auth_key[16],
222                                const uint8_t nonce[12]) {
223  OPENSSL_memset(out_tag, 0, 16);
224  const size_t ad_blocks = ad_len / 16;
225  const size_t in_blocks = in_len / 16;
226  int htable_init = 0;
227  alignas(16) uint8_t htable[16*8];
228
229  if (ad_blocks > 8 || in_blocks > 8) {
230    htable_init = 1;
231    aesgcmsiv_htable_init(htable, auth_key);
232  }
233
234  if (htable_init) {
235    aesgcmsiv_htable_polyval(htable, ad, ad_len & ~15, out_tag);
236  } else {
237    aesgcmsiv_polyval_horner(out_tag, auth_key, ad, ad_blocks);
238  }
239
240  uint8_t scratch[16];
241  if (ad_len & 15) {
242    OPENSSL_memset(scratch, 0, sizeof(scratch));
243    OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15);
244    aesgcmsiv_polyval_horner(out_tag, auth_key, scratch, 1);
245  }
246
247  if (htable_init) {
248    aesgcmsiv_htable_polyval(htable, in, in_len & ~15, out_tag);
249  } else {
250    aesgcmsiv_polyval_horner(out_tag, auth_key, in, in_blocks);
251  }
252
253  if (in_len & 15) {
254    OPENSSL_memset(scratch, 0, sizeof(scratch));
255    OPENSSL_memcpy(scratch, &in[in_len & ~15], in_len & 15);
256    aesgcmsiv_polyval_horner(out_tag, auth_key, scratch, 1);
257  }
258
259  union {
260    uint8_t c[16];
261    struct {
262      uint64_t ad;
263      uint64_t in;
264    } bitlens;
265  } length_block;
266
267  length_block.bitlens.ad = ad_len * 8;
268  length_block.bitlens.in = in_len * 8;
269  aesgcmsiv_polyval_horner(out_tag, auth_key, length_block.c, 1);
270
271  for (size_t i = 0; i < 12; i++) {
272    out_tag[i] ^= nonce[i];
273  }
274
275  out_tag[15] &= 0x7f;
276}
277
278// aead_aes_gcm_siv_asm_crypt_last_block handles the encryption/decryption
279// (same thing in CTR mode) of the final block of a plaintext/ciphertext. It
280// writes |in_len| & 15 bytes to |out| + |in_len|, based on an initial counter
281// derived from |tag|.
282static void aead_aes_gcm_siv_asm_crypt_last_block(
283    int is_128_bit, uint8_t *out, const uint8_t *in, size_t in_len,
284    const uint8_t tag[16],
285    const struct aead_aes_gcm_siv_asm_ctx *enc_key_expanded) {
286  alignas(16) union {
287    uint8_t c[16];
288    uint32_t u32[4];
289  } counter;
290  OPENSSL_memcpy(&counter, tag, sizeof(counter));
291  counter.c[15] |= 0x80;
292  counter.u32[0] += in_len / 16;
293
294  if (is_128_bit) {
295    aes128gcmsiv_ecb_enc_block(&counter.c[0], &counter.c[0], enc_key_expanded);
296  } else {
297    aes256gcmsiv_ecb_enc_block(&counter.c[0], &counter.c[0], enc_key_expanded);
298  }
299
300  const size_t last_bytes_offset = in_len & ~15;
301  const size_t last_bytes_len = in_len & 15;
302  uint8_t *last_bytes_out = &out[last_bytes_offset];
303  const uint8_t *last_bytes_in = &in[last_bytes_offset];
304  for (size_t i = 0; i < last_bytes_len; i++) {
305    last_bytes_out[i] = last_bytes_in[i] ^ counter.c[i];
306  }
307}
308
309// aead_aes_gcm_siv_kdf calculates the record encryption and authentication
310// keys given the |nonce|.
311static void aead_aes_gcm_siv_kdf(
312    int is_128_bit, const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx,
313    uint64_t out_record_auth_key[2], uint64_t out_record_enc_key[4],
314    const uint8_t nonce[12]) {
315  alignas(16) uint8_t padded_nonce[16];
316  OPENSSL_memcpy(padded_nonce, nonce, 12);
317
318  alignas(16) uint64_t key_material[12];
319  if (is_128_bit) {
320    aes128gcmsiv_kdf(padded_nonce, key_material, &gcm_siv_ctx->key[0]);
321    out_record_enc_key[0] = key_material[4];
322    out_record_enc_key[1] = key_material[6];
323  } else {
324    aes256gcmsiv_kdf(padded_nonce, key_material, &gcm_siv_ctx->key[0]);
325    out_record_enc_key[0] = key_material[4];
326    out_record_enc_key[1] = key_material[6];
327    out_record_enc_key[2] = key_material[8];
328    out_record_enc_key[3] = key_material[10];
329  }
330
331  out_record_auth_key[0] = key_material[0];
332  out_record_auth_key[1] = key_material[2];
333}
334
335static int aead_aes_gcm_siv_asm_seal_scatter(
336    const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
337    size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
338    size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
339    size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
340  const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = ctx->aead_state;
341  const uint64_t in_len_64 = in_len;
342  const uint64_t ad_len_64 = ad_len;
343
344  if (in_len_64 > (UINT64_C(1) << 36) ||
345      ad_len_64 >= (UINT64_C(1) << 61)) {
346    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
347    return 0;
348  }
349
350  if (max_out_tag_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
351    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
352    return 0;
353  }
354
355  if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) {
356    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
357    return 0;
358  }
359
360  alignas(16) uint64_t record_auth_key[2];
361  alignas(16) uint64_t record_enc_key[4];
362  aead_aes_gcm_siv_kdf(gcm_siv_ctx->is_128_bit, gcm_siv_ctx, record_auth_key,
363                       record_enc_key, nonce);
364
365  alignas(16) uint8_t tag[16] = {0};
366  gcm_siv_asm_polyval(tag, in, in_len, ad, ad_len,
367                      (const uint8_t *)record_auth_key, nonce);
368
369  struct aead_aes_gcm_siv_asm_ctx enc_key_expanded;
370
371  if (gcm_siv_ctx->is_128_bit) {
372    aes128gcmsiv_aes_ks_enc_x1(tag, tag, &enc_key_expanded.key[0],
373                               record_enc_key);
374
375    if (in_len < 128) {
376      aes128gcmsiv_enc_msg_x4(in, out, tag, &enc_key_expanded, in_len & ~15);
377    } else {
378      aes128gcmsiv_enc_msg_x8(in, out, tag, &enc_key_expanded, in_len & ~15);
379    }
380  } else {
381    aes256gcmsiv_aes_ks_enc_x1(tag, tag, &enc_key_expanded.key[0],
382                               record_enc_key);
383
384    if (in_len < 128) {
385      aes256gcmsiv_enc_msg_x4(in, out, tag, &enc_key_expanded, in_len & ~15);
386    } else {
387      aes256gcmsiv_enc_msg_x8(in, out, tag, &enc_key_expanded, in_len & ~15);
388    }
389  }
390
391  if (in_len & 15) {
392    aead_aes_gcm_siv_asm_crypt_last_block(gcm_siv_ctx->is_128_bit, out, in,
393                                          in_len, tag, &enc_key_expanded);
394  }
395
396  OPENSSL_memcpy(out_tag, tag, sizeof(tag));
397  *out_tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
398
399  return 1;
400}
401
402// TODO(martinkr): Add aead_aes_gcm_siv_asm_open_gather. N.B. aes128gcmsiv_dec
403// expects ciphertext and tag in a contiguous buffer.
404
405static int aead_aes_gcm_siv_asm_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
406                                     size_t *out_len, size_t max_out_len,
407                                     const uint8_t *nonce, size_t nonce_len,
408                                     const uint8_t *in, size_t in_len,
409                                     const uint8_t *ad, size_t ad_len) {
410  const uint64_t ad_len_64 = ad_len;
411  if (ad_len_64 >= (UINT64_C(1) << 61)) {
412    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
413    return 0;
414  }
415
416  const uint64_t in_len_64 = in_len;
417  if (in_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN ||
418      in_len_64 > (UINT64_C(1) << 36) + AES_BLOCK_SIZE) {
419    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
420    return 0;
421  }
422
423  const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = ctx->aead_state;
424  const size_t plaintext_len = in_len - EVP_AEAD_AES_GCM_SIV_TAG_LEN;
425  const uint8_t *const given_tag = in + plaintext_len;
426
427  if (max_out_len < plaintext_len) {
428    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
429    return 0;
430  }
431
432  alignas(16) uint64_t record_auth_key[2];
433  alignas(16) uint64_t record_enc_key[4];
434  aead_aes_gcm_siv_kdf(gcm_siv_ctx->is_128_bit, gcm_siv_ctx, record_auth_key,
435                       record_enc_key, nonce);
436
437  struct aead_aes_gcm_siv_asm_ctx expanded_key;
438  if (gcm_siv_ctx->is_128_bit) {
439    aes128gcmsiv_aes_ks((const uint8_t *) record_enc_key, &expanded_key.key[0]);
440  } else {
441    aes256gcmsiv_aes_ks((const uint8_t *) record_enc_key, &expanded_key.key[0]);
442  }
443  // calculated_tag is 16*8 bytes, rather than 16 bytes, because
444  // aes[128|256]gcmsiv_dec uses the extra as scratch space.
445  alignas(16) uint8_t calculated_tag[16 * 8] = {0};
446
447  OPENSSL_memset(calculated_tag, 0, EVP_AEAD_AES_GCM_SIV_TAG_LEN);
448  const size_t ad_blocks = ad_len / 16;
449  aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key, ad,
450                           ad_blocks);
451
452  uint8_t scratch[16];
453  if (ad_len & 15) {
454    OPENSSL_memset(scratch, 0, sizeof(scratch));
455    OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15);
456    aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key,
457                             scratch, 1);
458  }
459
460  alignas(16) uint8_t htable[16 * 6];
461  aesgcmsiv_htable6_init(htable, (const uint8_t *)record_auth_key);
462
463  if (gcm_siv_ctx->is_128_bit) {
464    aes128gcmsiv_dec(in, out, calculated_tag, htable, &expanded_key,
465                     plaintext_len);
466  } else {
467    aes256gcmsiv_dec(in, out, calculated_tag, htable, &expanded_key,
468                     plaintext_len);
469  }
470
471  if (plaintext_len & 15) {
472    aead_aes_gcm_siv_asm_crypt_last_block(gcm_siv_ctx->is_128_bit, out, in,
473                                          plaintext_len, given_tag,
474                                          &expanded_key);
475    OPENSSL_memset(scratch, 0, sizeof(scratch));
476    OPENSSL_memcpy(scratch, out + (plaintext_len & ~15), plaintext_len & 15);
477    aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key,
478                             scratch, 1);
479  }
480
481  union {
482    uint8_t c[16];
483    struct {
484      uint64_t ad;
485      uint64_t in;
486    } bitlens;
487  } length_block;
488
489  length_block.bitlens.ad = ad_len * 8;
490  length_block.bitlens.in = plaintext_len * 8;
491  aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key,
492                           length_block.c, 1);
493
494  for (size_t i = 0; i < 12; i++) {
495    calculated_tag[i] ^= nonce[i];
496  }
497
498  calculated_tag[15] &= 0x7f;
499
500  if (gcm_siv_ctx->is_128_bit) {
501    aes128gcmsiv_ecb_enc_block(calculated_tag, calculated_tag, &expanded_key);
502  } else {
503    aes256gcmsiv_ecb_enc_block(calculated_tag, calculated_tag, &expanded_key);
504  }
505
506  if (CRYPTO_memcmp(calculated_tag, given_tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN) !=
507      0) {
508    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
509    return 0;
510  }
511
512  *out_len = in_len - EVP_AEAD_AES_GCM_SIV_TAG_LEN;
513  return 1;
514}
515
516static const EVP_AEAD aead_aes_128_gcm_siv_asm = {
517    16,                              // key length
518    EVP_AEAD_AES_GCM_SIV_NONCE_LEN,  // nonce length
519    EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // overhead
520    EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // max tag length
521    0,                               // seal_scatter_supports_extra_in
522
523    aead_aes_gcm_siv_asm_init,
524    NULL /* init_with_direction */,
525    aead_aes_gcm_siv_asm_cleanup,
526    aead_aes_gcm_siv_asm_open,
527    aead_aes_gcm_siv_asm_seal_scatter,
528    NULL /* open_gather */,
529    NULL /* get_iv */,
530    NULL /* tag_len */,
531};
532
533static const EVP_AEAD aead_aes_256_gcm_siv_asm = {
534    32,                              // key length
535    EVP_AEAD_AES_GCM_SIV_NONCE_LEN,  // nonce length
536    EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // overhead
537    EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // max tag length
538    0,                               // seal_scatter_supports_extra_in
539
540    aead_aes_gcm_siv_asm_init,
541    NULL /* init_with_direction */,
542    aead_aes_gcm_siv_asm_cleanup,
543    aead_aes_gcm_siv_asm_open,
544    aead_aes_gcm_siv_asm_seal_scatter,
545    NULL /* open_gather */,
546    NULL /* get_iv */,
547    NULL /* tag_len */,
548};
549
550#endif  // X86_64 && !NO_ASM
551
552struct aead_aes_gcm_siv_ctx {
553  union {
554    double align;
555    AES_KEY ks;
556  } ks;
557  block128_f kgk_block;
558  unsigned is_256:1;
559};
560
561static int aead_aes_gcm_siv_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
562                                 size_t key_len, size_t tag_len) {
563  const size_t key_bits = key_len * 8;
564
565  if (key_bits != 128 && key_bits != 256) {
566    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
567    return 0;  // EVP_AEAD_CTX_init should catch this.
568  }
569
570  if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
571    tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
572  }
573  if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
574    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
575    return 0;
576  }
577
578  struct aead_aes_gcm_siv_ctx *gcm_siv_ctx =
579      OPENSSL_malloc(sizeof(struct aead_aes_gcm_siv_ctx));
580  if (gcm_siv_ctx == NULL) {
581    return 0;
582  }
583  OPENSSL_memset(gcm_siv_ctx, 0, sizeof(struct aead_aes_gcm_siv_ctx));
584
585  aes_ctr_set_key(&gcm_siv_ctx->ks.ks, NULL, &gcm_siv_ctx->kgk_block, key,
586                  key_len);
587  gcm_siv_ctx->is_256 = (key_len == 32);
588  ctx->aead_state = gcm_siv_ctx;
589  ctx->tag_len = tag_len;
590
591  return 1;
592}
593
594static void aead_aes_gcm_siv_cleanup(EVP_AEAD_CTX *ctx) {
595  OPENSSL_free(ctx->aead_state);
596}
597
598// gcm_siv_crypt encrypts (or decrypts���it's the same thing) |in_len| bytes from
599// |in| to |out|, using the block function |enc_block| with |key| in counter
600// mode, starting at |initial_counter|. This differs from the traditional
601// counter mode code in that the counter is handled little-endian, only the
602// first four bytes are used and the GCM-SIV tweak to the final byte is
603// applied. The |in| and |out| pointers may be equal but otherwise must not
604// alias.
605static void gcm_siv_crypt(uint8_t *out, const uint8_t *in, size_t in_len,
606                          const uint8_t initial_counter[AES_BLOCK_SIZE],
607                          block128_f enc_block, const AES_KEY *key) {
608  union {
609    uint32_t w[4];
610    uint8_t c[16];
611  } counter;
612
613  OPENSSL_memcpy(counter.c, initial_counter, AES_BLOCK_SIZE);
614  counter.c[15] |= 0x80;
615
616  for (size_t done = 0; done < in_len;) {
617    uint8_t keystream[AES_BLOCK_SIZE];
618    enc_block(counter.c, keystream, key);
619    counter.w[0]++;
620
621    size_t todo = AES_BLOCK_SIZE;
622    if (in_len - done < todo) {
623      todo = in_len - done;
624    }
625
626    for (size_t i = 0; i < todo; i++) {
627      out[done + i] = keystream[i] ^ in[done + i];
628    }
629
630    done += todo;
631  }
632}
633
634// gcm_siv_polyval evaluates POLYVAL at |auth_key| on the given plaintext and
635// AD. The result is written to |out_tag|.
636static void gcm_siv_polyval(
637    uint8_t out_tag[16], const uint8_t *in, size_t in_len, const uint8_t *ad,
638    size_t ad_len, const uint8_t auth_key[16],
639    const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) {
640  struct polyval_ctx polyval_ctx;
641  CRYPTO_POLYVAL_init(&polyval_ctx, auth_key);
642
643  CRYPTO_POLYVAL_update_blocks(&polyval_ctx, ad, ad_len & ~15);
644
645  uint8_t scratch[16];
646  if (ad_len & 15) {
647    OPENSSL_memset(scratch, 0, sizeof(scratch));
648    OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15);
649    CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch));
650  }
651
652  CRYPTO_POLYVAL_update_blocks(&polyval_ctx, in, in_len & ~15);
653  if (in_len & 15) {
654    OPENSSL_memset(scratch, 0, sizeof(scratch));
655    OPENSSL_memcpy(scratch, &in[in_len & ~15], in_len & 15);
656    CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch));
657  }
658
659  union {
660    uint8_t c[16];
661    struct {
662      uint64_t ad;
663      uint64_t in;
664    } bitlens;
665  } length_block;
666
667  length_block.bitlens.ad = ad_len * 8;
668  length_block.bitlens.in = in_len * 8;
669  CRYPTO_POLYVAL_update_blocks(&polyval_ctx, length_block.c,
670                               sizeof(length_block));
671
672  CRYPTO_POLYVAL_finish(&polyval_ctx, out_tag);
673  for (size_t i = 0; i < EVP_AEAD_AES_GCM_SIV_NONCE_LEN; i++) {
674    out_tag[i] ^= nonce[i];
675  }
676  out_tag[15] &= 0x7f;
677}
678
679// gcm_siv_record_keys contains the keys used for a specific GCM-SIV record.
680struct gcm_siv_record_keys {
681  uint8_t auth_key[16];
682  union {
683    double align;
684    AES_KEY ks;
685  } enc_key;
686  block128_f enc_block;
687};
688
689// gcm_siv_keys calculates the keys for a specific GCM-SIV record with the
690// given nonce and writes them to |*out_keys|.
691static void gcm_siv_keys(
692    const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx,
693    struct gcm_siv_record_keys *out_keys,
694    const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) {
695  const AES_KEY *const key = &gcm_siv_ctx->ks.ks;
696  uint8_t key_material[(128 /* POLYVAL key */ + 256 /* max AES key */) / 8];
697  const size_t blocks_needed = gcm_siv_ctx->is_256 ? 6 : 4;
698
699  uint8_t counter[AES_BLOCK_SIZE];
700  OPENSSL_memset(counter, 0, AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN);
701  OPENSSL_memcpy(counter + AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN,
702                 nonce, EVP_AEAD_AES_GCM_SIV_NONCE_LEN);
703  for (size_t i = 0; i < blocks_needed; i++) {
704    counter[0] = i;
705
706    uint8_t ciphertext[AES_BLOCK_SIZE];
707    gcm_siv_ctx->kgk_block(counter, ciphertext, key);
708    OPENSSL_memcpy(&key_material[i * 8], ciphertext, 8);
709  }
710
711  OPENSSL_memcpy(out_keys->auth_key, key_material, 16);
712  aes_ctr_set_key(&out_keys->enc_key.ks, NULL, &out_keys->enc_block,
713                  key_material + 16, gcm_siv_ctx->is_256 ? 32 : 16);
714}
715
716static int aead_aes_gcm_siv_seal_scatter(
717    const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
718    size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
719    size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
720    size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
721  const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = ctx->aead_state;
722  const uint64_t in_len_64 = in_len;
723  const uint64_t ad_len_64 = ad_len;
724
725  if (in_len + EVP_AEAD_AES_GCM_SIV_TAG_LEN < in_len ||
726      in_len_64 > (UINT64_C(1) << 36) ||
727      ad_len_64 >= (UINT64_C(1) << 61)) {
728    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
729    return 0;
730  }
731
732  if (max_out_tag_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
733    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
734    return 0;
735  }
736
737  if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) {
738    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
739    return 0;
740  }
741
742  struct gcm_siv_record_keys keys;
743  gcm_siv_keys(gcm_siv_ctx, &keys, nonce);
744
745  uint8_t tag[16];
746  gcm_siv_polyval(tag, in, in_len, ad, ad_len, keys.auth_key, nonce);
747  keys.enc_block(tag, tag, &keys.enc_key.ks);
748
749  gcm_siv_crypt(out, in, in_len, tag, keys.enc_block, &keys.enc_key.ks);
750
751  OPENSSL_memcpy(out_tag, tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN);
752  *out_tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
753
754  return 1;
755}
756
757static int aead_aes_gcm_siv_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out,
758                                        const uint8_t *nonce, size_t nonce_len,
759                                        const uint8_t *in, size_t in_len,
760                                        const uint8_t *in_tag,
761                                        size_t in_tag_len, const uint8_t *ad,
762                                        size_t ad_len) {
763  const uint64_t ad_len_64 = ad_len;
764  if (ad_len_64 >= (UINT64_C(1) << 61)) {
765    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
766    return 0;
767  }
768
769  const uint64_t in_len_64 = in_len;
770  if (in_tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN ||
771      in_len_64 > (UINT64_C(1) << 36) + AES_BLOCK_SIZE) {
772    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
773    return 0;
774  }
775
776  if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) {
777    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
778    return 0;
779  }
780
781  const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = ctx->aead_state;
782
783  struct gcm_siv_record_keys keys;
784  gcm_siv_keys(gcm_siv_ctx, &keys, nonce);
785
786  gcm_siv_crypt(out, in, in_len, in_tag, keys.enc_block, &keys.enc_key.ks);
787
788  uint8_t expected_tag[EVP_AEAD_AES_GCM_SIV_TAG_LEN];
789  gcm_siv_polyval(expected_tag, out, in_len, ad, ad_len, keys.auth_key, nonce);
790  keys.enc_block(expected_tag, expected_tag, &keys.enc_key.ks);
791
792  if (CRYPTO_memcmp(expected_tag, in_tag, sizeof(expected_tag)) != 0) {
793    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
794    return 0;
795  }
796
797  return 1;
798}
799
800static const EVP_AEAD aead_aes_128_gcm_siv = {
801    16,                              // key length
802    EVP_AEAD_AES_GCM_SIV_NONCE_LEN,  // nonce length
803    EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // overhead
804    EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // max tag length
805    0,                               // seal_scatter_supports_extra_in
806
807    aead_aes_gcm_siv_init,
808    NULL /* init_with_direction */,
809    aead_aes_gcm_siv_cleanup,
810    NULL /* open */,
811    aead_aes_gcm_siv_seal_scatter,
812    aead_aes_gcm_siv_open_gather,
813    NULL /* get_iv */,
814    NULL /* tag_len */,
815};
816
817static const EVP_AEAD aead_aes_256_gcm_siv = {
818    32,                              // key length
819    EVP_AEAD_AES_GCM_SIV_NONCE_LEN,  // nonce length
820    EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // overhead
821    EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // max tag length
822    0,                               // seal_scatter_supports_extra_in
823
824    aead_aes_gcm_siv_init,
825    NULL /* init_with_direction */,
826    aead_aes_gcm_siv_cleanup,
827    NULL /* open */,
828    aead_aes_gcm_siv_seal_scatter,
829    aead_aes_gcm_siv_open_gather,
830    NULL /* get_iv */,
831    NULL /* tag_len */,
832};
833
834#if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM)
835
836static char avx_aesni_capable(void) {
837  const uint32_t ecx = OPENSSL_ia32cap_P[1];
838
839  return (ecx & (1 << (57 - 32))) != 0 /* AESNI */ &&
840         (ecx & (1 << 28)) != 0 /* AVX */;
841}
842
843const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) {
844  if (avx_aesni_capable()) {
845    return &aead_aes_128_gcm_siv_asm;
846  }
847  return &aead_aes_128_gcm_siv;
848}
849
850const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) {
851  if (avx_aesni_capable()) {
852    return &aead_aes_256_gcm_siv_asm;
853  }
854  return &aead_aes_256_gcm_siv;
855}
856
857#else
858
859const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) {
860  return &aead_aes_128_gcm_siv;
861}
862
863const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) {
864  return &aead_aes_256_gcm_siv;
865}
866
867#endif  // X86_64 && !NO_ASM
868