1/*	$NetBSD: mkfs.c,v 1.22 2011/10/09 22:30:13 christos Exp $	*/
2
3/*-
4 * SPDX-License-Identifier: BSD-3-Clause
5 *
6 * Copyright (c) 2002 Networks Associates Technology, Inc.
7 * All rights reserved.
8 *
9 * This software was developed for the FreeBSD Project by Marshall
10 * Kirk McKusick and Network Associates Laboratories, the Security
11 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
12 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
13 * research program
14 *
15 * Copyright (c) 1980, 1989, 1993
16 *	The Regents of the University of California.  All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 *    notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 *    notice, this list of conditions and the following disclaimer in the
25 *    documentation and/or other materials provided with the distribution.
26 * 3. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 */
42
43#include <sys/param.h>
44#include <sys/time.h>
45#include <sys/resource.h>
46
47#include <stdio.h>
48#include <stdlib.h>
49#include <string.h>
50#include <unistd.h>
51#include <errno.h>
52#include <util.h>
53
54#include "makefs.h"
55#include "ffs.h"
56
57#include <ufs/ufs/dinode.h>
58#include <ufs/ffs/fs.h>
59
60#include "ffs/ufs_bswap.h"
61#include "ffs/ufs_inode.h"
62#include "ffs/ffs_extern.h"
63#include "ffs/newfs_extern.h"
64
65#ifndef BBSIZE
66#define	BBSIZE	8192			/* size of boot area, with label */
67#endif
68
69static void initcg(uint32_t, time_t, const fsinfo_t *);
70static int ilog2(int);
71
72static int count_digits(int);
73
74/*
75 * make file system for cylinder-group style file systems
76 */
77#define	UMASK		0755
78#define	POWEROF2(num)	(((num) & ((num) - 1)) == 0)
79
80/*
81 * The definition of "struct cg" used to contain an extra field at the end
82 * to represent the variable-length data that followed the fixed structure.
83 * This had the effect of artificially limiting the number of blocks that
84 * newfs would put in a CG, since newfs thought that the fixed-size header
85 * was bigger than it really was.  When we started validating that the CG
86 * header data actually fit into one fs block, the placeholder field caused
87 * a problem because it caused struct cg to be a different size depending on
88 * platform.  The placeholder field was later removed, but this caused a
89 * backward compatibility problem with older binaries that still thought
90 * struct cg was larger, and a new file system could fail validation if
91 * viewed by the older binaries.  To avoid this compatibility problem, we
92 * now artificially reduce the amount of space that the variable-length data
93 * can use such that new file systems will pass validation by older binaries.
94 */
95#define CGSIZEFUDGE 8
96
97static union {
98	struct fs fs;
99	char pad[SBLOCKSIZE];
100} fsun;
101#define	sblock	fsun.fs
102
103static union {
104	struct cg cg;
105	char pad[FFS_MAXBSIZE];
106} cgun;
107#define	acg	cgun.cg
108
109static char *iobuf;
110static int iobufsize;
111
112static char writebuf[FFS_MAXBSIZE];
113
114static int     Oflag;	   /* format as an 4.3BSD file system */
115static int64_t fssize;	   /* file system size */
116static int     sectorsize;	   /* bytes/sector */
117static int     fsize;	   /* fragment size */
118static int     bsize;	   /* block size */
119static int     maxbsize;   /* maximum clustering */
120static int     maxblkspercg;
121static int     minfree;	   /* free space threshold */
122static int     opt;		   /* optimization preference (space or time) */
123static int     density;	   /* number of bytes per inode */
124static int     maxcontig;	   /* max contiguous blocks to allocate */
125static int     maxbpg;	   /* maximum blocks per file in a cyl group */
126static int     bbsize;	   /* boot block size */
127static int     sbsize;	   /* superblock size */
128static int     avgfilesize;	   /* expected average file size */
129static int     avgfpdir;	   /* expected number of files per directory */
130
131struct fs *
132ffs_mkfs(const char *fsys, const fsinfo_t *fsopts, time_t tstamp)
133{
134	int fragsperinode, optimalfpg, origdensity, mindensity;
135	int minfpg, lastminfpg;
136	int32_t csfrags;
137	uint32_t i, cylno;
138	long long sizepb;
139	ino_t maxinum;
140	int minfragsperinode;   /* minimum ratio of frags to inodes */
141	void *space;
142	int size;
143	int nprintcols, printcolwidth;
144	ffs_opt_t	*ffs_opts = fsopts->fs_specific;
145
146	Oflag =		ffs_opts->version;
147	fssize =        fsopts->size / fsopts->sectorsize;
148	sectorsize =    fsopts->sectorsize;
149	fsize =         ffs_opts->fsize;
150	bsize =         ffs_opts->bsize;
151	maxbsize =      ffs_opts->maxbsize;
152	maxblkspercg =  ffs_opts->maxblkspercg;
153	minfree =       ffs_opts->minfree;
154	opt =           ffs_opts->optimization;
155	density =       ffs_opts->density;
156	maxcontig =     ffs_opts->maxcontig;
157	maxbpg =        ffs_opts->maxbpg;
158	avgfilesize =   ffs_opts->avgfilesize;
159	avgfpdir =      ffs_opts->avgfpdir;
160	bbsize =        BBSIZE;
161	sbsize =        SBLOCKSIZE;
162
163	strlcpy((char *)sblock.fs_volname, ffs_opts->label,
164	    sizeof(sblock.fs_volname));
165
166	if (Oflag == 0) {
167		sblock.fs_old_inodefmt = FS_42INODEFMT;
168		sblock.fs_maxsymlinklen = 0;
169		sblock.fs_old_flags = 0;
170	} else {
171		sblock.fs_old_inodefmt = FS_44INODEFMT;
172		sblock.fs_maxsymlinklen = (Oflag == 1 ? UFS1_MAXSYMLINKLEN :
173		    UFS2_MAXSYMLINKLEN);
174		sblock.fs_old_flags = FS_FLAGS_UPDATED;
175		sblock.fs_flags = 0;
176	}
177	/*
178	 * Validate the given file system size.
179	 * Verify that its last block can actually be accessed.
180	 * Convert to file system fragment sized units.
181	 */
182	if (fssize <= 0) {
183		printf("preposterous size %lld\n", (long long)fssize);
184		exit(13);
185	}
186	ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts);
187
188	/*
189	 * collect and verify the filesystem density info
190	 */
191	sblock.fs_avgfilesize = avgfilesize;
192	sblock.fs_avgfpdir = avgfpdir;
193	if (sblock.fs_avgfilesize <= 0)
194		printf("illegal expected average file size %d\n",
195		    sblock.fs_avgfilesize), exit(14);
196	if (sblock.fs_avgfpdir <= 0)
197		printf("illegal expected number of files per directory %d\n",
198		    sblock.fs_avgfpdir), exit(15);
199	/*
200	 * collect and verify the block and fragment sizes
201	 */
202	sblock.fs_bsize = bsize;
203	sblock.fs_fsize = fsize;
204	if (!POWEROF2(sblock.fs_bsize)) {
205		printf("block size must be a power of 2, not %d\n",
206		    sblock.fs_bsize);
207		exit(16);
208	}
209	if (!POWEROF2(sblock.fs_fsize)) {
210		printf("fragment size must be a power of 2, not %d\n",
211		    sblock.fs_fsize);
212		exit(17);
213	}
214	if (sblock.fs_fsize < sectorsize) {
215		printf("fragment size %d is too small, minimum is %d\n",
216		    sblock.fs_fsize, sectorsize);
217		exit(18);
218	}
219	if (sblock.fs_bsize < MINBSIZE) {
220		printf("block size %d is too small, minimum is %d\n",
221		    sblock.fs_bsize, MINBSIZE);
222		exit(19);
223	}
224	if (sblock.fs_bsize > FFS_MAXBSIZE) {
225		printf("block size %d is too large, maximum is %d\n",
226		    sblock.fs_bsize, FFS_MAXBSIZE);
227		exit(19);
228	}
229	if (sblock.fs_bsize < sblock.fs_fsize) {
230		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
231		    sblock.fs_bsize, sblock.fs_fsize);
232		exit(20);
233	}
234
235	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
236		sblock.fs_maxbsize = sblock.fs_bsize;
237		printf("Extent size set to %d\n", sblock.fs_maxbsize);
238	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
239		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
240		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
241	} else {
242		sblock.fs_maxbsize = maxbsize;
243	}
244	sblock.fs_maxcontig = maxcontig;
245	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
246		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
247		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
248	}
249
250	if (sblock.fs_maxcontig > 1)
251		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
252
253	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
254	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
255	sblock.fs_qbmask = ~sblock.fs_bmask;
256	sblock.fs_qfmask = ~sblock.fs_fmask;
257	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
258		sblock.fs_bshift++;
259	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
260		sblock.fs_fshift++;
261	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
262	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
263		sblock.fs_fragshift++;
264	if (sblock.fs_frag > MAXFRAG) {
265		printf("fragment size %d is too small, "
266			"minimum with block size %d is %d\n",
267		    sblock.fs_fsize, sblock.fs_bsize,
268		    sblock.fs_bsize / MAXFRAG);
269		exit(21);
270	}
271	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
272	sblock.fs_size = sblock.fs_providersize = fssize =
273	    dbtofsb(&sblock, fssize);
274
275	if (Oflag <= 1) {
276		sblock.fs_magic = FS_UFS1_MAGIC;
277		sblock.fs_sblockloc = SBLOCK_UFS1;
278		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
279		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
280		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
281		    sizeof (ufs1_daddr_t));
282		sblock.fs_old_inodefmt = FS_44INODEFMT;
283		sblock.fs_old_cgoffset = 0;
284		sblock.fs_old_cgmask = 0xffffffff;
285		sblock.fs_old_size = sblock.fs_size;
286		sblock.fs_old_rotdelay = 0;
287		sblock.fs_old_rps = 60;
288		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
289		sblock.fs_old_cpg = 1;
290		sblock.fs_old_interleave = 1;
291		sblock.fs_old_trackskew = 0;
292		sblock.fs_old_cpc = 0;
293		sblock.fs_old_postblformat = 1;
294		sblock.fs_old_nrpos = 1;
295	} else {
296		sblock.fs_magic = FS_UFS2_MAGIC;
297		sblock.fs_sblockloc = SBLOCK_UFS2;
298		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
299		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
300		sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
301		    sizeof (ufs2_daddr_t));
302		if (ffs_opts->softupdates == 1)
303			sblock.fs_flags |= FS_DOSOFTDEP;
304	}
305
306	sblock.fs_sblkno =
307	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
308		sblock.fs_frag);
309	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
310	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag));
311	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
312	sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1;
313	for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) {
314		sizepb *= NINDIR(&sblock);
315		sblock.fs_maxfilesize += sizepb;
316	}
317
318	/*
319	 * Calculate the number of blocks to put into each cylinder group.
320	 *
321	 * This algorithm selects the number of blocks per cylinder
322	 * group. The first goal is to have at least enough data blocks
323	 * in each cylinder group to meet the density requirement. Once
324	 * this goal is achieved we try to expand to have at least
325	 * 1 cylinder group. Once this goal is achieved, we pack as
326	 * many blocks into each cylinder group map as will fit.
327	 *
328	 * We start by calculating the smallest number of blocks that we
329	 * can put into each cylinder group. If this is too big, we reduce
330	 * the density until it fits.
331	 */
332	maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
333	minfragsperinode = 1 + fssize / maxinum;
334	mindensity = minfragsperinode * fsize;
335	if (density == 0)
336		density = MAX(2, minfragsperinode) * fsize;
337	if (density < mindensity) {
338		origdensity = density;
339		density = mindensity;
340		fprintf(stderr, "density increased from %d to %d\n",
341		    origdensity, density);
342	}
343	origdensity = density;
344	if (!ffs_opts->min_inodes)
345		density = MIN(density, MAX(2, minfragsperinode) * fsize);
346	for (;;) {
347		fragsperinode = MAX(numfrags(&sblock, density), 1);
348		minfpg = fragsperinode * INOPB(&sblock);
349		if (minfpg > sblock.fs_size)
350			minfpg = sblock.fs_size;
351		sblock.fs_ipg = INOPB(&sblock);
352		sblock.fs_fpg = roundup(sblock.fs_iblkno +
353		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
354		if (sblock.fs_fpg < minfpg)
355			sblock.fs_fpg = minfpg;
356		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
357		    INOPB(&sblock));
358		sblock.fs_fpg = roundup(sblock.fs_iblkno +
359		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
360		if (sblock.fs_fpg < minfpg)
361			sblock.fs_fpg = minfpg;
362		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
363		    INOPB(&sblock));
364		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize -
365		    CGSIZEFUDGE)
366			break;
367		density -= sblock.fs_fsize;
368	}
369	if (density != origdensity)
370		printf("density reduced from %d to %d\n", origdensity, density);
371
372	if (maxblkspercg <= 0 || maxblkspercg >= fssize)
373		maxblkspercg = fssize - 1;
374	/*
375	 * Start packing more blocks into the cylinder group until
376	 * it cannot grow any larger, the number of cylinder groups
377	 * drops below 1, or we reach the size requested.
378	 */
379	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
380		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
381		    INOPB(&sblock));
382		if (sblock.fs_size / sblock.fs_fpg < 1)
383			break;
384		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize -
385		    CGSIZEFUDGE)
386			continue;
387		if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize -
388		    CGSIZEFUDGE)
389			break;
390		sblock.fs_fpg -= sblock.fs_frag;
391		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
392		    INOPB(&sblock));
393		break;
394	}
395	/*
396	 * Check to be sure that the last cylinder group has enough blocks
397	 * to be viable. If it is too small, reduce the number of blocks
398	 * per cylinder group which will have the effect of moving more
399	 * blocks into the last cylinder group.
400	 */
401	optimalfpg = sblock.fs_fpg;
402	for (;;) {
403		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
404		lastminfpg = roundup(sblock.fs_iblkno +
405		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
406		if (sblock.fs_size < lastminfpg) {
407			printf("Filesystem size %lld < minimum size of %d\n",
408			    (long long)sblock.fs_size, lastminfpg);
409			exit(28);
410		}
411		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
412		    sblock.fs_size % sblock.fs_fpg == 0)
413			break;
414		sblock.fs_fpg -= sblock.fs_frag;
415		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
416		    INOPB(&sblock));
417	}
418	if (optimalfpg != sblock.fs_fpg)
419		printf("Reduced frags per cylinder group from %d to %d %s\n",
420		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
421	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
422	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
423	if (Oflag <= 1) {
424		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
425		sblock.fs_old_nsect = sblock.fs_old_spc;
426		sblock.fs_old_npsect = sblock.fs_old_spc;
427		sblock.fs_old_ncyl = sblock.fs_ncg;
428	}
429
430	/*
431	 * fill in remaining fields of the super block
432	 */
433	sblock.fs_csaddr = cgdmin(&sblock, 0);
434	sblock.fs_cssize =
435	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
436
437	/*
438	 * Setup memory for temporary in-core cylgroup summaries.
439	 * Cribbed from ffs_mountfs().
440	 */
441	size = sblock.fs_cssize;
442	if (sblock.fs_contigsumsize > 0)
443		size += sblock.fs_ncg * sizeof(int32_t);
444	space = ecalloc(1, size);
445	sblock.fs_si = ecalloc(1, sizeof(struct fs_summary_info));
446	sblock.fs_csp = space;
447	space = (char *)space + sblock.fs_cssize;
448	if (sblock.fs_contigsumsize > 0) {
449		int32_t *lp;
450
451		sblock.fs_maxcluster = lp = space;
452		for (i = 0; i < sblock.fs_ncg; i++)
453		*lp++ = sblock.fs_contigsumsize;
454	}
455
456	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
457	if (sblock.fs_sbsize > SBLOCKSIZE)
458		sblock.fs_sbsize = SBLOCKSIZE;
459	sblock.fs_minfree = minfree;
460	sblock.fs_maxcontig = maxcontig;
461	sblock.fs_maxbpg = maxbpg;
462	sblock.fs_optim = opt;
463	sblock.fs_cgrotor = 0;
464	sblock.fs_pendingblocks = 0;
465	sblock.fs_pendinginodes = 0;
466	sblock.fs_cstotal.cs_ndir = 0;
467	sblock.fs_cstotal.cs_nbfree = 0;
468	sblock.fs_cstotal.cs_nifree = 0;
469	sblock.fs_cstotal.cs_nffree = 0;
470	sblock.fs_fmod = 0;
471	sblock.fs_ronly = 0;
472	sblock.fs_state = 0;
473	sblock.fs_clean = FS_ISCLEAN;
474	sblock.fs_ronly = 0;
475	sblock.fs_id[0] = tstamp;
476	sblock.fs_id[1] = random();
477	sblock.fs_fsmnt[0] = '\0';
478	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
479	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
480	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
481	sblock.fs_cstotal.cs_nbfree =
482	    fragstoblks(&sblock, sblock.fs_dsize) -
483	    howmany(csfrags, sblock.fs_frag);
484	sblock.fs_cstotal.cs_nffree =
485	    fragnum(&sblock, sblock.fs_size) +
486	    (fragnum(&sblock, csfrags) > 0 ?
487	    sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
488	sblock.fs_cstotal.cs_nifree =
489	    sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO;
490	sblock.fs_cstotal.cs_ndir = 0;
491	sblock.fs_dsize -= csfrags;
492	sblock.fs_time = tstamp;
493	if (Oflag <= 1) {
494		sblock.fs_old_time = tstamp;
495		sblock.fs_old_dsize = sblock.fs_dsize;
496		sblock.fs_old_csaddr = sblock.fs_csaddr;
497		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
498		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
499		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
500		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
501	}
502	/*
503	 * Dump out summary information about file system.
504	 */
505#define	B2MBFACTOR (1 / (1024.0 * 1024.0))
506	printf("%s: %.1fMB (%lld sectors) block size %d, "
507	       "fragment size %d\n",
508	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
509	    (long long)fsbtodb(&sblock, sblock.fs_size),
510	    sblock.fs_bsize, sblock.fs_fsize);
511	printf("\tusing %d cylinder groups of %.2fMB, %d blks, "
512	       "%d inodes.\n",
513	    sblock.fs_ncg,
514	    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
515	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
516#undef B2MBFACTOR
517	/*
518	 * Now determine how wide each column will be, and calculate how
519	 * many columns will fit in a 76 char line. 76 is the width of the
520	 * subwindows in sysinst.
521	 */
522	printcolwidth = count_digits(
523			fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
524	nprintcols = 76 / (printcolwidth + 2);
525
526	/*
527	 * allocate space for superblock, cylinder group map, and
528	 * two sets of inode blocks.
529	 */
530	if (sblock.fs_bsize < SBLOCKSIZE)
531		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
532	else
533		iobufsize = 4 * sblock.fs_bsize;
534	iobuf = ecalloc(1, iobufsize);
535	/*
536	 * Make a copy of the superblock into the buffer that we will be
537	 * writing out in each cylinder group.
538	 */
539	memcpy(writebuf, &sblock, sbsize);
540	if (fsopts->needswap)
541		ffs_sb_swap(&sblock, (struct fs*)writebuf);
542	memcpy(iobuf, writebuf, SBLOCKSIZE);
543
544	printf("super-block backups (for fsck -b #) at:");
545	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
546		initcg(cylno, tstamp, fsopts);
547		if (cylno % nprintcols == 0)
548			printf("\n");
549		printf(" %*lld%s", printcolwidth,
550		    (long long)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
551		    cylno == sblock.fs_ncg - 1 ? "" : ",");
552		fflush(stdout);
553	}
554	printf("\n");
555
556	/*
557	 * Now construct the initial file system,
558	 * then write out the super-block.
559	 */
560	sblock.fs_time = tstamp;
561	if (Oflag <= 1) {
562		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
563		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
564		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
565		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
566	}
567	if (fsopts->needswap)
568		sblock.fs_flags |= FS_SWAPPED;
569	ffs_write_superblock(&sblock, fsopts);
570	return (&sblock);
571}
572
573/*
574 * Write out the superblock and its duplicates,
575 * and the cylinder group summaries
576 */
577void
578ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts)
579{
580	int size, blks, i, saveflag;
581	uint32_t cylno;
582	void *space;
583	char *wrbuf;
584
585	saveflag = fs->fs_flags & FS_INTERNAL;
586	fs->fs_flags &= ~FS_INTERNAL;
587
588        memcpy(writebuf, &sblock, sbsize);
589	if (fsopts->needswap)
590		ffs_sb_swap(fs, (struct fs*)writebuf);
591	ffs_wtfs(fs->fs_sblockloc / sectorsize, sbsize, writebuf, fsopts);
592
593	/* Write out the duplicate super blocks */
594	for (cylno = 0; cylno < fs->fs_ncg; cylno++)
595		ffs_wtfs(fsbtodb(fs, cgsblock(fs, cylno)),
596		    sbsize, writebuf, fsopts);
597
598	/* Write out the cylinder group summaries */
599	size = fs->fs_cssize;
600	blks = howmany(size, fs->fs_fsize);
601	space = (void *)fs->fs_csp;
602	wrbuf = emalloc(size);
603	for (i = 0; i < blks; i+= fs->fs_frag) {
604		size = fs->fs_bsize;
605		if (i + fs->fs_frag > blks)
606			size = (blks - i) * fs->fs_fsize;
607		if (fsopts->needswap)
608			ffs_csum_swap((struct csum *)space,
609			    (struct csum *)wrbuf, size);
610		else
611			memcpy(wrbuf, space, (u_int)size);
612		ffs_wtfs(fsbtodb(fs, fs->fs_csaddr + i), size, wrbuf, fsopts);
613		space = (char *)space + size;
614	}
615	free(wrbuf);
616	fs->fs_flags |= saveflag;
617}
618
619/*
620 * Initialize a cylinder group.
621 */
622static void
623initcg(uint32_t cylno, time_t utime, const fsinfo_t *fsopts)
624{
625	daddr_t cbase, dmax;
626	int32_t blkno;
627	uint32_t i, j, d, dlower, dupper;
628	struct ufs1_dinode *dp1;
629	struct ufs2_dinode *dp2;
630	int start;
631
632	/*
633	 * Determine block bounds for cylinder group.
634	 * Allow space for super block summary information in first
635	 * cylinder group.
636	 */
637	cbase = cgbase(&sblock, cylno);
638	dmax = cbase + sblock.fs_fpg;
639	if (dmax > sblock.fs_size)
640		dmax = sblock.fs_size;
641	dlower = cgsblock(&sblock, cylno) - cbase;
642	dupper = cgdmin(&sblock, cylno) - cbase;
643	if (cylno == 0)
644		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
645	memset(&acg, 0, sblock.fs_cgsize);
646	acg.cg_time = utime;
647	acg.cg_magic = CG_MAGIC;
648	acg.cg_cgx = cylno;
649	acg.cg_niblk = sblock.fs_ipg;
650	acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock));
651	acg.cg_ndblk = dmax - cbase;
652	if (sblock.fs_contigsumsize > 0)
653		acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
654	start = sizeof(acg);
655	if (Oflag == 2) {
656		acg.cg_iusedoff = start;
657	} else {
658		if (cylno == sblock.fs_ncg - 1)
659			acg.cg_old_ncyl = howmany(acg.cg_ndblk,
660			    sblock.fs_fpg / sblock.fs_old_cpg);
661		else
662			acg.cg_old_ncyl = sblock.fs_old_cpg;
663		acg.cg_old_time = acg.cg_time;
664		acg.cg_time = 0;
665		acg.cg_old_niblk = acg.cg_niblk;
666		acg.cg_niblk = 0;
667		acg.cg_initediblk = 0;
668		acg.cg_old_btotoff = start;
669		acg.cg_old_boff = acg.cg_old_btotoff +
670		    sblock.fs_old_cpg * sizeof(int32_t);
671		acg.cg_iusedoff = acg.cg_old_boff +
672		    sblock.fs_old_cpg * sizeof(u_int16_t);
673	}
674	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
675	if (sblock.fs_contigsumsize <= 0) {
676		acg.cg_nextfreeoff = acg.cg_freeoff +
677		   howmany(sblock.fs_fpg, CHAR_BIT);
678	} else {
679		acg.cg_clustersumoff = acg.cg_freeoff +
680		    howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t);
681		acg.cg_clustersumoff =
682		    roundup(acg.cg_clustersumoff, sizeof(int32_t));
683		acg.cg_clusteroff = acg.cg_clustersumoff +
684		    (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
685		acg.cg_nextfreeoff = acg.cg_clusteroff +
686		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
687	}
688	if (acg.cg_nextfreeoff > (uint32_t)sblock.fs_cgsize) {
689		printf("Panic: cylinder group too big\n");
690		exit(37);
691	}
692	acg.cg_cs.cs_nifree += sblock.fs_ipg;
693	if (cylno == 0)
694		for (i = 0; i < UFS_ROOTINO; i++) {
695			setbit(cg_inosused_swap(&acg, 0), i);
696			acg.cg_cs.cs_nifree--;
697		}
698	if (cylno > 0) {
699		/*
700		 * In cylno 0, beginning space is reserved
701		 * for boot and super blocks.
702		 */
703		for (d = 0, blkno = 0; d < dlower;) {
704			ffs_setblock(&sblock, cg_blksfree_swap(&acg, 0), blkno);
705			if (sblock.fs_contigsumsize > 0)
706				setbit(cg_clustersfree_swap(&acg, 0), blkno);
707			acg.cg_cs.cs_nbfree++;
708			d += sblock.fs_frag;
709			blkno++;
710		}
711	}
712	if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
713		acg.cg_frsum[sblock.fs_frag - i]++;
714		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
715			setbit(cg_blksfree_swap(&acg, 0), dupper);
716			acg.cg_cs.cs_nffree++;
717		}
718	}
719	for (d = dupper, blkno = dupper >> sblock.fs_fragshift;
720	     d + sblock.fs_frag <= acg.cg_ndblk; ) {
721		ffs_setblock(&sblock, cg_blksfree_swap(&acg, 0), blkno);
722		if (sblock.fs_contigsumsize > 0)
723			setbit(cg_clustersfree_swap(&acg, 0), blkno);
724		acg.cg_cs.cs_nbfree++;
725		d += sblock.fs_frag;
726		blkno++;
727	}
728	if (d < acg.cg_ndblk) {
729		acg.cg_frsum[acg.cg_ndblk - d]++;
730		for (; d < acg.cg_ndblk; d++) {
731			setbit(cg_blksfree_swap(&acg, 0), d);
732			acg.cg_cs.cs_nffree++;
733		}
734	}
735	if (sblock.fs_contigsumsize > 0) {
736		int32_t *sump = cg_clustersum_swap(&acg, 0);
737		u_char *mapp = cg_clustersfree_swap(&acg, 0);
738		int map = *mapp++;
739		int bit = 1;
740		int run = 0;
741
742		for (i = 0; i < acg.cg_nclusterblks; i++) {
743			if ((map & bit) != 0) {
744				run++;
745			} else if (run != 0) {
746				if (run > sblock.fs_contigsumsize)
747					run = sblock.fs_contigsumsize;
748				sump[run]++;
749				run = 0;
750			}
751			if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) {
752				bit <<= 1;
753			} else {
754				map = *mapp++;
755				bit = 1;
756			}
757		}
758		if (run != 0) {
759			if (run > sblock.fs_contigsumsize)
760				run = sblock.fs_contigsumsize;
761			sump[run]++;
762		}
763	}
764	sblock.fs_cs(&sblock, cylno) = acg.cg_cs;
765	/*
766	 * Write out the duplicate super block, the cylinder group map
767	 * and two blocks worth of inodes in a single write.
768	 */
769	start = MAX(sblock.fs_bsize, SBLOCKSIZE);
770	memcpy(&iobuf[start], &acg, sblock.fs_cgsize);
771	if (fsopts->needswap)
772		ffs_cg_swap(&acg, (struct cg*)&iobuf[start], &sblock);
773	start += sblock.fs_bsize;
774	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
775	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
776	for (i = 0; i < acg.cg_initediblk; i++) {
777		if (sblock.fs_magic == FS_UFS1_MAGIC) {
778			/* No need to swap, it'll stay random */
779			dp1->di_gen = random();
780			dp1++;
781		} else {
782			dp2->di_gen = random();
783			dp2++;
784		}
785	}
786	ffs_wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf,
787	    fsopts);
788	/*
789	 * For the old file system, we have to initialize all the inodes.
790	 */
791	if (Oflag <= 1) {
792		for (i = 2 * sblock.fs_frag;
793		     i < sblock.fs_ipg / INOPF(&sblock);
794		     i += sblock.fs_frag) {
795			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
796			for (j = 0; j < INOPB(&sblock); j++) {
797				dp1->di_gen = random();
798				dp1++;
799			}
800			ffs_wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
801			    sblock.fs_bsize, &iobuf[start], fsopts);
802		}
803	}
804}
805
806/*
807 * read a block from the file system
808 */
809void
810ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
811{
812	int n;
813	off_t offset;
814
815	offset = (off_t)bno * fsopts->sectorsize + fsopts->offset;
816	if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
817		err(1, "%s: seek error for sector %lld", __func__,
818		    (long long)bno);
819	n = read(fsopts->fd, bf, size);
820	if (n == -1) {
821		abort();
822		err(1, "%s: read error bno %lld size %d", __func__,
823		    (long long)bno, size);
824	}
825	else if (n != size)
826		errx(1, "%s: read error for sector %lld", __func__,
827		    (long long)bno);
828}
829
830/*
831 * write a block to the file system
832 */
833void
834ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
835{
836	int n;
837	off_t offset;
838
839	offset = (off_t)bno * fsopts->sectorsize + fsopts->offset;
840	if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
841		err(1, "%s: seek error for sector %lld", __func__,
842		    (long long)bno);
843	n = write(fsopts->fd, bf, size);
844	if (n == -1)
845		err(1, "%s: write error for sector %lld", __func__,
846		    (long long)bno);
847	else if (n != size)
848		errx(1, "%s: write error for sector %lld", __func__,
849		    (long long)bno);
850}
851
852
853/* Determine how many digits are needed to print a given integer */
854static int
855count_digits(int num)
856{
857	int ndig;
858
859	for(ndig = 1; num > 9; num /=10, ndig++);
860
861	return (ndig);
862}
863
864static int
865ilog2(int val)
866{
867	u_int n;
868
869	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
870		if (1 << n == val)
871			return (n);
872	errx(1, "%s: %d is not a power of 2", __func__, val);
873}
874