1/*	$NetBSD: ffs_bswap.c,v 1.28 2004/05/25 14:54:59 hannken Exp $	*/
2
3/*-
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 1998 Manuel Bouyer.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 */
29
30#include <sys/param.h>
31#if defined(_KERNEL)
32#include <sys/systm.h>
33#endif
34
35#if !defined(_KERNEL)
36#include <stddef.h>
37#include <stdint.h>
38#include <stdio.h>
39#include <stdlib.h>
40#include <string.h>
41#endif
42
43#include <ufs/ufs/dinode.h>
44#include "ffs/ufs_bswap.h"
45#include <ufs/ffs/fs.h>
46#include "ffs/ffs_extern.h"
47
48#define	fs_old_postbloff	fs_spare5[0]
49#define	fs_old_rotbloff		fs_spare5[1]
50#define	fs_old_postbl_start	fs_maxbsize
51#define	fs_old_headswitch	fs_id[0]
52#define	fs_old_trkseek	fs_id[1]
53#define	fs_old_csmask	fs_spare1[0]
54#define	fs_old_csshift	fs_spare1[1]
55
56#define	FS_42POSTBLFMT		-1	/* 4.2BSD rotational table format */
57#define	FS_DYNAMICPOSTBLFMT	1	/* dynamic rotational table format */
58
59void ffs_csum_swap(struct csum *o, struct csum *n, int size);
60void ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n);
61
62void
63ffs_sb_swap(struct fs *o, struct fs *n)
64{
65	size_t i;
66	u_int32_t *o32, *n32;
67
68	/*
69	 * In order to avoid a lot of lines, as the first N fields (52)
70	 * of the superblock up to fs_fmod are u_int32_t, we just loop
71	 * here to convert them.
72	 */
73	o32 = (u_int32_t *)o;
74	n32 = (u_int32_t *)n;
75	for (i = 0; i < offsetof(struct fs, fs_fmod) / sizeof(u_int32_t); i++)
76		n32[i] = bswap32(o32[i]);
77
78	n->fs_swuid = bswap64(o->fs_swuid);
79	n->fs_cgrotor = bswap32(o->fs_cgrotor); /* Unused */
80	n->fs_old_cpc = bswap32(o->fs_old_cpc);
81
82	/* These fields overlap with a possible location for the
83	 * historic FS_DYNAMICPOSTBLFMT postbl table, and with the
84	 * first half of the historic FS_42POSTBLFMT postbl table.
85	 */
86	n->fs_maxbsize = bswap32(o->fs_maxbsize);
87	n->fs_sblockloc = bswap64(o->fs_sblockloc);
88	ffs_csumtotal_swap(&o->fs_cstotal, &n->fs_cstotal);
89	n->fs_time = bswap64(o->fs_time);
90	n->fs_size = bswap64(o->fs_size);
91	n->fs_dsize = bswap64(o->fs_dsize);
92	n->fs_csaddr = bswap64(o->fs_csaddr);
93	n->fs_pendingblocks = bswap64(o->fs_pendingblocks);
94	n->fs_pendinginodes = bswap32(o->fs_pendinginodes);
95
96	/* These fields overlap with the second half of the
97	 * historic FS_42POSTBLFMT postbl table
98	 */
99	for (i = 0; i < FSMAXSNAP; i++)
100		n->fs_snapinum[i] = bswap32(o->fs_snapinum[i]);
101	n->fs_avgfilesize = bswap32(o->fs_avgfilesize);
102	n->fs_avgfpdir = bswap32(o->fs_avgfpdir);
103	/* fs_sparecon[28] - ignore for now */
104	n->fs_flags = bswap32(o->fs_flags);
105	n->fs_contigsumsize = bswap32(o->fs_contigsumsize);
106	n->fs_maxsymlinklen = bswap32(o->fs_maxsymlinklen);
107	n->fs_old_inodefmt = bswap32(o->fs_old_inodefmt);
108	n->fs_maxfilesize = bswap64(o->fs_maxfilesize);
109	n->fs_qbmask = bswap64(o->fs_qbmask);
110	n->fs_qfmask = bswap64(o->fs_qfmask);
111	n->fs_state = bswap32(o->fs_state);
112	n->fs_old_postblformat = bswap32(o->fs_old_postblformat);
113	n->fs_old_nrpos = bswap32(o->fs_old_nrpos);
114	n->fs_old_postbloff = bswap32(o->fs_old_postbloff);
115	n->fs_old_rotbloff = bswap32(o->fs_old_rotbloff);
116
117	n->fs_magic = bswap32(o->fs_magic);
118}
119
120void
121ffs_dinode1_swap(struct ufs1_dinode *o, struct ufs1_dinode *n)
122{
123
124	n->di_mode = bswap16(o->di_mode);
125	n->di_nlink = bswap16(o->di_nlink);
126	n->di_size = bswap64(o->di_size);
127	n->di_atime = bswap32(o->di_atime);
128	n->di_atimensec = bswap32(o->di_atimensec);
129	n->di_mtime = bswap32(o->di_mtime);
130	n->di_mtimensec = bswap32(o->di_mtimensec);
131	n->di_ctime = bswap32(o->di_ctime);
132	n->di_ctimensec = bswap32(o->di_ctimensec);
133	memcpy(n->di_db, o->di_db, sizeof(n->di_db));
134	memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib));
135	n->di_flags = bswap32(o->di_flags);
136	n->di_blocks = bswap32(o->di_blocks);
137	n->di_gen = bswap32(o->di_gen);
138	n->di_uid = bswap32(o->di_uid);
139	n->di_gid = bswap32(o->di_gid);
140}
141
142void
143ffs_dinode2_swap(struct ufs2_dinode *o, struct ufs2_dinode *n)
144{
145	n->di_mode = bswap16(o->di_mode);
146	n->di_nlink = bswap16(o->di_nlink);
147	n->di_uid = bswap32(o->di_uid);
148	n->di_gid = bswap32(o->di_gid);
149	n->di_blksize = bswap32(o->di_blksize);
150	n->di_size = bswap64(o->di_size);
151	n->di_blocks = bswap64(o->di_blocks);
152	n->di_atime = bswap64(o->di_atime);
153	n->di_atimensec = bswap32(o->di_atimensec);
154	n->di_mtime = bswap64(o->di_mtime);
155	n->di_mtimensec = bswap32(o->di_mtimensec);
156	n->di_ctime = bswap64(o->di_ctime);
157	n->di_ctimensec = bswap32(o->di_ctimensec);
158	n->di_birthtime = bswap64(o->di_ctime);
159	n->di_birthnsec = bswap32(o->di_ctimensec);
160	n->di_gen = bswap32(o->di_gen);
161	n->di_kernflags = bswap32(o->di_kernflags);
162	n->di_flags = bswap32(o->di_flags);
163	n->di_extsize = bswap32(o->di_extsize);
164	memcpy(n->di_extb, o->di_extb, sizeof(n->di_extb));
165	memcpy(n->di_db, o->di_db, sizeof(n->di_db));
166	memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib));
167}
168
169void
170ffs_csum_swap(struct csum *o, struct csum *n, int size)
171{
172	size_t i;
173	u_int32_t *oint, *nint;
174
175	oint = (u_int32_t*)o;
176	nint = (u_int32_t*)n;
177
178	for (i = 0; i < size / sizeof(u_int32_t); i++)
179		nint[i] = bswap32(oint[i]);
180}
181
182void
183ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n)
184{
185	n->cs_ndir = bswap64(o->cs_ndir);
186	n->cs_nbfree = bswap64(o->cs_nbfree);
187	n->cs_nifree = bswap64(o->cs_nifree);
188	n->cs_nffree = bswap64(o->cs_nffree);
189}
190
191/*
192 * Note that ffs_cg_swap may be called with o == n.
193 */
194void
195ffs_cg_swap(struct cg *o, struct cg *n, struct fs *fs)
196{
197	int i;
198	u_int32_t *n32, *o32;
199	u_int16_t *n16, *o16;
200	int32_t btotoff, boff, clustersumoff;
201
202	n->cg_firstfield = bswap32(o->cg_firstfield);
203	n->cg_magic = bswap32(o->cg_magic);
204	n->cg_old_time = bswap32(o->cg_old_time);
205	n->cg_cgx = bswap32(o->cg_cgx);
206	n->cg_old_ncyl = bswap16(o->cg_old_ncyl);
207	n->cg_old_niblk = bswap16(o->cg_old_niblk);
208	n->cg_ndblk = bswap32(o->cg_ndblk);
209	n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
210	n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
211	n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
212	n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
213	n->cg_rotor = bswap32(o->cg_rotor);
214	n->cg_frotor = bswap32(o->cg_frotor);
215	n->cg_irotor = bswap32(o->cg_irotor);
216	for (i = 0; i < MAXFRAG; i++)
217		n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
218
219	n->cg_old_btotoff = bswap32(o->cg_old_btotoff);
220	n->cg_old_boff = bswap32(o->cg_old_boff);
221	n->cg_iusedoff = bswap32(o->cg_iusedoff);
222	n->cg_freeoff = bswap32(o->cg_freeoff);
223	n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
224	n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
225	n->cg_clusteroff = bswap32(o->cg_clusteroff);
226	n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
227	n->cg_niblk = bswap32(o->cg_niblk);
228	n->cg_initediblk = bswap32(o->cg_initediblk);
229	n->cg_time = bswap64(o->cg_time);
230
231	if (fs->fs_magic == FS_UFS2_MAGIC)
232		return;
233
234	if (n->cg_magic == CG_MAGIC) {
235		btotoff = n->cg_old_btotoff;
236		boff = n->cg_old_boff;
237		clustersumoff = n->cg_clustersumoff;
238	} else {
239		btotoff = bswap32(n->cg_old_btotoff);
240		boff = bswap32(n->cg_old_boff);
241		clustersumoff = bswap32(n->cg_clustersumoff);
242	}
243	n32 = (u_int32_t *)((u_int8_t *)n + btotoff);
244	o32 = (u_int32_t *)((u_int8_t *)o + btotoff);
245	n16 = (u_int16_t *)((u_int8_t *)n + boff);
246	o16 = (u_int16_t *)((u_int8_t *)o + boff);
247
248	for (i = 0; i < fs->fs_old_cpg; i++)
249		n32[i] = bswap32(o32[i]);
250
251	for (i = 0; i < fs->fs_old_cpg * fs->fs_old_nrpos; i++)
252		n16[i] = bswap16(o16[i]);
253
254	n32 = (u_int32_t *)((u_int8_t *)n + clustersumoff);
255	o32 = (u_int32_t *)((u_int8_t *)o + clustersumoff);
256	for (i = 1; i < fs->fs_contigsumsize + 1; i++)
257		n32[i] = bswap32(o32[i]);
258}
259