1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2008 Poul-Henning Kamp
5 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31#include "opt_acpi.h"
32#include "opt_isa.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/bus.h>
37#include <sys/clock.h>
38#include <sys/lock.h>
39#include <sys/mutex.h>
40#include <sys/kdb.h>
41#include <sys/kernel.h>
42#include <sys/module.h>
43#include <sys/proc.h>
44#include <sys/rman.h>
45#include <sys/sysctl.h>
46#include <sys/timeet.h>
47
48#include <isa/rtc.h>
49#ifdef DEV_ISA
50#include <isa/isareg.h>
51#include <isa/isavar.h>
52#endif
53#include <machine/intr_machdep.h>
54#include "clock_if.h"
55#ifdef DEV_ACPI
56#include <contrib/dev/acpica/include/acpi.h>
57#include <contrib/dev/acpica/include/accommon.h>
58#include <dev/acpica/acpivar.h>
59#include <machine/md_var.h>
60#endif
61
62/* tunable to detect a power loss of the rtc */
63static bool atrtc_power_lost = false;
64SYSCTL_BOOL(_machdep, OID_AUTO, atrtc_power_lost, CTLFLAG_RD, &atrtc_power_lost,
65    false, "RTC lost power on last power cycle (probably caused by an empty cmos battery)");
66
67/*
68 * atrtc_lock protects low-level access to individual hardware registers.
69 * atrtc_time_lock protects the entire sequence of accessing multiple registers
70 * to read or write the date and time.
71 */
72static struct mtx atrtc_lock;
73MTX_SYSINIT(atrtc_lock_init, &atrtc_lock, "atrtc", MTX_SPIN);
74
75/* Force RTC enabled/disabled. */
76static int atrtc_enabled = -1;
77TUNABLE_INT("hw.atrtc.enabled", &atrtc_enabled);
78
79struct mtx atrtc_time_lock;
80MTX_SYSINIT(atrtc_time_lock_init, &atrtc_time_lock, "atrtc_time", MTX_DEF);
81
82int	atrtcclock_disable = 0;
83
84static	int	rtc_century = 0;
85static	int	rtc_reg = -1;
86static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
87static	u_char	rtc_statusb = RTCSB_24HR;
88
89#ifdef DEV_ACPI
90#define	_COMPONENT	ACPI_TIMER
91ACPI_MODULE_NAME("ATRTC")
92#endif
93
94/*
95 * RTC support routines
96 */
97
98static inline u_char
99rtcin_locked(int reg)
100{
101
102	if (rtc_reg != reg) {
103		inb(0x84);
104		outb(IO_RTC, reg);
105		rtc_reg = reg;
106		inb(0x84);
107	}
108	return (inb(IO_RTC + 1));
109}
110
111static inline void
112rtcout_locked(int reg, u_char val)
113{
114
115	if (rtc_reg != reg) {
116		inb(0x84);
117		outb(IO_RTC, reg);
118		rtc_reg = reg;
119		inb(0x84);
120	}
121	outb(IO_RTC + 1, val);
122	inb(0x84);
123}
124
125int
126rtcin(int reg)
127{
128	u_char val;
129
130	mtx_lock_spin(&atrtc_lock);
131	val = rtcin_locked(reg);
132	mtx_unlock_spin(&atrtc_lock);
133	return (val);
134}
135
136void
137writertc(int reg, u_char val)
138{
139
140	mtx_lock_spin(&atrtc_lock);
141	rtcout_locked(reg, val);
142	mtx_unlock_spin(&atrtc_lock);
143}
144
145static void
146atrtc_start(void)
147{
148
149	mtx_lock_spin(&atrtc_lock);
150	rtcout_locked(RTC_STATUSA, rtc_statusa);
151	rtcout_locked(RTC_STATUSB, RTCSB_24HR);
152	mtx_unlock_spin(&atrtc_lock);
153}
154
155static void
156atrtc_rate(unsigned rate)
157{
158
159	rtc_statusa = RTCSA_DIVIDER | rate;
160	writertc(RTC_STATUSA, rtc_statusa);
161}
162
163static void
164atrtc_enable_intr(void)
165{
166
167	rtc_statusb |= RTCSB_PINTR;
168	mtx_lock_spin(&atrtc_lock);
169	rtcout_locked(RTC_STATUSB, rtc_statusb);
170	rtcin_locked(RTC_INTR);
171	mtx_unlock_spin(&atrtc_lock);
172}
173
174static void
175atrtc_disable_intr(void)
176{
177
178	rtc_statusb &= ~RTCSB_PINTR;
179	mtx_lock_spin(&atrtc_lock);
180	rtcout_locked(RTC_STATUSB, rtc_statusb);
181	rtcin_locked(RTC_INTR);
182	mtx_unlock_spin(&atrtc_lock);
183}
184
185void
186atrtc_restore(void)
187{
188
189	/* Restore all of the RTC's "status" (actually, control) registers. */
190	mtx_lock_spin(&atrtc_lock);
191	rtcin_locked(RTC_STATUSA);	/* dummy to get rtc_reg set */
192	rtcout_locked(RTC_STATUSB, RTCSB_24HR);
193	rtcout_locked(RTC_STATUSA, rtc_statusa);
194	rtcout_locked(RTC_STATUSB, rtc_statusb);
195	rtcin_locked(RTC_INTR);
196	mtx_unlock_spin(&atrtc_lock);
197}
198
199/**********************************************************************
200 * RTC driver for subr_rtc
201 */
202
203struct atrtc_softc {
204	int port_rid, intr_rid;
205	struct resource *port_res;
206	struct resource *intr_res;
207	void *intr_handler;
208	struct eventtimer et;
209#ifdef DEV_ACPI
210	ACPI_HANDLE acpi_handle;
211#endif
212};
213
214static int
215rtc_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
216{
217
218	atrtc_rate(max(fls(period + (period >> 1)) - 17, 1));
219	atrtc_enable_intr();
220	return (0);
221}
222
223static int
224rtc_stop(struct eventtimer *et)
225{
226
227	atrtc_disable_intr();
228	return (0);
229}
230
231/*
232 * This routine receives statistical clock interrupts from the RTC.
233 * As explained above, these occur at 128 interrupts per second.
234 * When profiling, we receive interrupts at a rate of 1024 Hz.
235 *
236 * This does not actually add as much overhead as it sounds, because
237 * when the statistical clock is active, the hardclock driver no longer
238 * needs to keep (inaccurate) statistics on its own.  This decouples
239 * statistics gathering from scheduling interrupts.
240 *
241 * The RTC chip requires that we read status register C (RTC_INTR)
242 * to acknowledge an interrupt, before it will generate the next one.
243 * Under high interrupt load, rtcintr() can be indefinitely delayed and
244 * the clock can tick immediately after the read from RTC_INTR.  In this
245 * case, the mc146818A interrupt signal will not drop for long enough
246 * to register with the 8259 PIC.  If an interrupt is missed, the stat
247 * clock will halt, considerably degrading system performance.  This is
248 * why we use 'while' rather than a more straightforward 'if' below.
249 * Stat clock ticks can still be lost, causing minor loss of accuracy
250 * in the statistics, but the stat clock will no longer stop.
251 */
252static int
253rtc_intr(void *arg)
254{
255	struct atrtc_softc *sc = (struct atrtc_softc *)arg;
256	int flag = 0;
257
258	while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
259		flag = 1;
260		if (sc->et.et_active)
261			sc->et.et_event_cb(&sc->et, sc->et.et_arg);
262	}
263	return(flag ? FILTER_HANDLED : FILTER_STRAY);
264}
265
266#ifdef DEV_ACPI
267/*
268 *  ACPI RTC CMOS address space handler
269 */
270#define	ATRTC_LAST_REG	0x40
271
272static void
273rtcin_region(int reg, void *buf, int len)
274{
275	u_char *ptr = buf;
276
277	/* Drop lock after each IO as intr and settime have greater priority */
278	while (len-- > 0)
279		*ptr++ = rtcin(reg++) & 0xff;
280}
281
282static void
283rtcout_region(int reg, const void *buf, int len)
284{
285	const u_char *ptr = buf;
286
287	while (len-- > 0)
288		writertc(reg++, *ptr++);
289}
290
291static bool
292atrtc_check_cmos_access(bool is_read, ACPI_PHYSICAL_ADDRESS addr, UINT32 len)
293{
294
295	/* Block address space wrapping on out-of-bound access */
296	if (addr >= ATRTC_LAST_REG || addr + len > ATRTC_LAST_REG)
297		return (false);
298
299	if (is_read) {
300		/* Reading 0x0C will muck with interrupts */
301		if (addr <= RTC_INTR && addr + len > RTC_INTR)
302			return (false);
303	} else {
304		/*
305		 * Allow single-byte writes to alarm registers and
306		 * multi-byte writes to addr >= 0x30, else deny.
307		 */
308		if (!((len == 1 && (addr == RTC_SECALRM ||
309				    addr == RTC_MINALRM ||
310				    addr == RTC_HRSALRM)) ||
311		      addr >= 0x30))
312			return (false);
313	}
314	return (true);
315}
316
317static ACPI_STATUS
318atrtc_acpi_cmos_handler(UINT32 func, ACPI_PHYSICAL_ADDRESS addr,
319    UINT32 bitwidth, UINT64 *value, void *context, void *region_context)
320{
321	device_t dev = context;
322	UINT32 bytewidth = howmany(bitwidth, 8);
323	bool is_read = func == ACPI_READ;
324
325	/* ACPICA is very verbose on CMOS handler failures, so we, too */
326#define	CMOS_HANDLER_ERR(fmt, ...) \
327	device_printf(dev, "ACPI [SystemCMOS] handler: " fmt, ##__VA_ARGS__)
328
329	ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
330
331	if (value == NULL) {
332		CMOS_HANDLER_ERR("NULL parameter\n");
333		return (AE_BAD_PARAMETER);
334	}
335	if (bitwidth == 0 || (bitwidth & 0x07) != 0) {
336		CMOS_HANDLER_ERR("Invalid bitwidth: %u\n", bitwidth);
337		return (AE_BAD_PARAMETER);
338	}
339	if (!atrtc_check_cmos_access(is_read, addr, bytewidth)) {
340		CMOS_HANDLER_ERR("%s access rejected: addr=%#04jx, len=%u\n",
341		    is_read ? "Read" : "Write", (uintmax_t)addr, bytewidth);
342		return (AE_BAD_PARAMETER);
343	}
344
345	switch (func) {
346	case ACPI_READ:
347		rtcin_region(addr, value, bytewidth);
348		break;
349	case ACPI_WRITE:
350		rtcout_region(addr, value, bytewidth);
351		break;
352	default:
353		CMOS_HANDLER_ERR("Invalid function: %u\n", func);
354		return (AE_BAD_PARAMETER);
355	}
356
357	ACPI_VPRINT(dev, acpi_device_get_parent_softc(dev),
358	    "ACPI RTC CMOS %s access: addr=%#04x, len=%u, val=%*D\n",
359	    is_read ? "read" : "write", (unsigned)addr, bytewidth,
360	    bytewidth, value, " ");
361
362	return (AE_OK);
363}
364
365static int
366atrtc_reg_acpi_cmos_handler(device_t dev)
367{
368	struct atrtc_softc *sc = device_get_softc(dev);
369
370	ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
371
372	/* Don't handle address space events if driver is disabled. */
373	if (acpi_disabled("atrtc"))
374		return (ENXIO);
375
376	if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sc->acpi_handle))) {
377		return (ENXIO);
378	}
379
380	if (sc->acpi_handle == NULL ||
381	    ACPI_FAILURE(AcpiInstallAddressSpaceHandler(sc->acpi_handle,
382	      ACPI_ADR_SPACE_CMOS, atrtc_acpi_cmos_handler, NULL, dev))) {
383		sc->acpi_handle = NULL;
384		device_printf(dev,
385		    "Can't register ACPI CMOS address space handler\n");
386		return (ENXIO);
387        }
388
389        return (0);
390}
391
392static int
393atrtc_unreg_acpi_cmos_handler(device_t dev)
394{
395	struct atrtc_softc *sc = device_get_softc(dev);
396
397	ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
398
399	if (sc->acpi_handle != NULL)
400		AcpiRemoveAddressSpaceHandler(sc->acpi_handle,
401		    ACPI_ADR_SPACE_CMOS, atrtc_acpi_cmos_handler);
402
403	return (0);
404}
405#endif	/* DEV_ACPI */
406
407/*
408 * Attach to the ISA PnP descriptors for the timer and realtime clock.
409 */
410static struct isa_pnp_id atrtc_ids[] = {
411	{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
412	{ 0 }
413};
414
415static bool
416atrtc_acpi_disabled(void)
417{
418#ifdef DEV_ACPI
419	uint16_t flags;
420
421	if (!acpi_get_fadt_bootflags(&flags))
422		return (false);
423	return ((flags & ACPI_FADT_NO_CMOS_RTC) != 0);
424#else
425	return (false);
426#endif
427}
428
429static int
430rtc_acpi_century_get(void)
431{
432#ifdef DEV_ACPI
433	ACPI_TABLE_FADT *fadt;
434	vm_paddr_t physaddr;
435	int century;
436
437	physaddr = acpi_find_table(ACPI_SIG_FADT);
438	if (physaddr == 0)
439		return (0);
440
441	fadt = acpi_map_table(physaddr, ACPI_SIG_FADT);
442	if (fadt == NULL)
443		return (0);
444
445	century = fadt->Century;
446	acpi_unmap_table(fadt);
447
448	return (century);
449#else
450	return (0);
451#endif
452}
453
454static int
455atrtc_probe(device_t dev)
456{
457	int result;
458
459	if ((atrtc_enabled == -1 && atrtc_acpi_disabled()) ||
460	    (atrtc_enabled == 0))
461		return (ENXIO);
462
463	result = ISA_PNP_PROBE(device_get_parent(dev), dev, atrtc_ids);
464	/* ENOENT means no PnP-ID, device is hinted. */
465	if (result == ENOENT) {
466		device_set_desc(dev, "AT realtime clock");
467		return (BUS_PROBE_LOW_PRIORITY);
468	}
469	rtc_century = rtc_acpi_century_get();
470	return (result);
471}
472
473static int
474atrtc_attach(device_t dev)
475{
476	struct atrtc_softc *sc;
477	rman_res_t s;
478	int i;
479
480	sc = device_get_softc(dev);
481	sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid,
482	    IO_RTC, IO_RTC + 1, 2, RF_ACTIVE);
483	if (sc->port_res == NULL)
484		device_printf(dev, "Warning: Couldn't map I/O.\n");
485	atrtc_start();
486	clock_register(dev, 1000000);
487	bzero(&sc->et, sizeof(struct eventtimer));
488	if (!atrtcclock_disable &&
489	    (resource_int_value(device_get_name(dev), device_get_unit(dev),
490	     "clock", &i) != 0 || i != 0)) {
491		sc->intr_rid = 0;
492		while (bus_get_resource(dev, SYS_RES_IRQ, sc->intr_rid,
493		    &s, NULL) == 0 && s != 8)
494			sc->intr_rid++;
495		sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
496		    &sc->intr_rid, 8, 8, 1, RF_ACTIVE);
497		if (sc->intr_res == NULL) {
498			device_printf(dev, "Can't map interrupt.\n");
499			return (0);
500		} else if ((bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK,
501		    rtc_intr, NULL, sc, &sc->intr_handler))) {
502			device_printf(dev, "Can't setup interrupt.\n");
503			return (0);
504		} else {
505			/* Bind IRQ to BSP to avoid live migration. */
506			bus_bind_intr(dev, sc->intr_res, 0);
507		}
508		sc->et.et_name = "RTC";
509		sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_POW2DIV;
510		sc->et.et_quality = 0;
511		sc->et.et_frequency = 32768;
512		sc->et.et_min_period = 0x00080000;
513		sc->et.et_max_period = 0x80000000;
514		sc->et.et_start = rtc_start;
515		sc->et.et_stop = rtc_stop;
516		sc->et.et_priv = dev;
517		et_register(&sc->et);
518	}
519	return(0);
520}
521
522static int
523atrtc_isa_attach(device_t dev)
524{
525
526	return (atrtc_attach(dev));
527}
528
529#ifdef DEV_ACPI
530static int
531atrtc_acpi_attach(device_t dev)
532{
533	int ret;
534
535	ret = atrtc_attach(dev);
536	if (ret)
537		return (ret);
538
539	(void)atrtc_reg_acpi_cmos_handler(dev);
540
541	return (0);
542}
543
544static int
545atrtc_acpi_detach(device_t dev)
546{
547
548	(void)atrtc_unreg_acpi_cmos_handler(dev);
549	return (0);
550}
551#endif	/* DEV_ACPI */
552
553static int
554atrtc_resume(device_t dev)
555{
556
557	atrtc_restore();
558	return(0);
559}
560
561static int
562atrtc_settime(device_t dev __unused, struct timespec *ts)
563{
564	struct bcd_clocktime bct;
565
566	clock_ts_to_bcd(ts, &bct, false);
567	clock_dbgprint_bcd(dev, CLOCK_DBG_WRITE, &bct);
568
569	mtx_lock(&atrtc_time_lock);
570	mtx_lock_spin(&atrtc_lock);
571
572	/* Disable RTC updates and interrupts.  */
573	rtcout_locked(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
574
575	/* Write all the time registers. */
576	rtcout_locked(RTC_SEC,   bct.sec);
577	rtcout_locked(RTC_MIN,   bct.min);
578	rtcout_locked(RTC_HRS,   bct.hour);
579	rtcout_locked(RTC_WDAY,  bct.dow + 1);
580	rtcout_locked(RTC_DAY,   bct.day);
581	rtcout_locked(RTC_MONTH, bct.mon);
582	rtcout_locked(RTC_YEAR,  bct.year & 0xff);
583	if (rtc_century)
584		rtcout_locked(rtc_century, bct.year >> 8);
585
586	/*
587	 * Re-enable RTC updates and interrupts.
588	 */
589	rtcout_locked(RTC_STATUSB, rtc_statusb);
590	rtcin_locked(RTC_INTR);
591
592	mtx_unlock_spin(&atrtc_lock);
593	mtx_unlock(&atrtc_time_lock);
594
595	return (0);
596}
597
598static int
599atrtc_gettime(device_t dev, struct timespec *ts)
600{
601	struct bcd_clocktime bct;
602
603	/* Look if we have a RTC present and the time is valid */
604	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR)) {
605		atrtc_power_lost = true;
606		device_printf(dev, "WARNING: Battery failure indication\n");
607		return (EINVAL);
608	}
609
610	/*
611	 * wait for time update to complete
612	 * If RTCSA_TUP is zero, we have at least 244us before next update.
613	 * This is fast enough on most hardware, but a refinement would be
614	 * to make sure that no more than 240us pass after we start reading,
615	 * and try again if so.
616	 */
617	mtx_lock(&atrtc_time_lock);
618	while (rtcin(RTC_STATUSA) & RTCSA_TUP)
619		continue;
620	mtx_lock_spin(&atrtc_lock);
621	bct.sec  = rtcin_locked(RTC_SEC);
622	bct.min  = rtcin_locked(RTC_MIN);
623	bct.hour = rtcin_locked(RTC_HRS);
624	bct.day  = rtcin_locked(RTC_DAY);
625	bct.mon  = rtcin_locked(RTC_MONTH);
626	bct.year = rtcin_locked(RTC_YEAR);
627	if (rtc_century)
628		bct.year |= rtcin_locked(rtc_century) << 8;
629	mtx_unlock_spin(&atrtc_lock);
630	mtx_unlock(&atrtc_time_lock);
631	/* dow is unused in timespec conversion and we have no nsec info. */
632	bct.dow  = 0;
633	bct.nsec = 0;
634	clock_dbgprint_bcd(dev, CLOCK_DBG_READ, &bct);
635	return (clock_bcd_to_ts(&bct, ts, false));
636}
637
638static device_method_t atrtc_isa_methods[] = {
639	/* Device interface */
640	DEVMETHOD(device_probe,		atrtc_probe),
641	DEVMETHOD(device_attach,	atrtc_isa_attach),
642	DEVMETHOD(device_detach,	bus_generic_detach),
643	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
644	DEVMETHOD(device_suspend,	bus_generic_suspend),
645		/* XXX stop statclock? */
646	DEVMETHOD(device_resume,	atrtc_resume),
647
648	/* clock interface */
649	DEVMETHOD(clock_gettime,	atrtc_gettime),
650	DEVMETHOD(clock_settime,	atrtc_settime),
651	{ 0, 0 }
652};
653
654static driver_t atrtc_isa_driver = {
655	"atrtc",
656	atrtc_isa_methods,
657	sizeof(struct atrtc_softc),
658};
659
660#ifdef DEV_ACPI
661static device_method_t atrtc_acpi_methods[] = {
662	/* Device interface */
663	DEVMETHOD(device_probe,		atrtc_probe),
664	DEVMETHOD(device_attach,	atrtc_acpi_attach),
665	DEVMETHOD(device_detach,	atrtc_acpi_detach),
666		/* XXX stop statclock? */
667	DEVMETHOD(device_resume,	atrtc_resume),
668
669	/* clock interface */
670	DEVMETHOD(clock_gettime,	atrtc_gettime),
671	DEVMETHOD(clock_settime,	atrtc_settime),
672	{ 0, 0 }
673};
674
675static driver_t atrtc_acpi_driver = {
676	"atrtc",
677	atrtc_acpi_methods,
678	sizeof(struct atrtc_softc),
679};
680#endif	/* DEV_ACPI */
681
682DRIVER_MODULE(atrtc, isa, atrtc_isa_driver, 0, 0);
683#ifdef DEV_ACPI
684DRIVER_MODULE(atrtc, acpi, atrtc_acpi_driver, 0, 0);
685#endif
686ISA_PNP_INFO(atrtc_ids);
687