1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2008-2015 Nathan Whitehorn
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30/*
31 * Manages physical address maps.
32 *
33 * Since the information managed by this module is also stored by the
34 * logical address mapping module, this module may throw away valid virtual
35 * to physical mappings at almost any time.  However, invalidations of
36 * mappings must be done as requested.
37 *
38 * In order to cope with hardware architectures which make virtual to
39 * physical map invalidates expensive, this module may delay invalidate
40 * reduced protection operations until such time as they are actually
41 * necessary.  This module is given full information as to which processors
42 * are currently using which maps, and to when physical maps must be made
43 * correct.
44 */
45
46#include "opt_kstack_pages.h"
47
48#include <sys/param.h>
49#include <sys/kernel.h>
50#include <sys/conf.h>
51#include <sys/queue.h>
52#include <sys/cpuset.h>
53#include <sys/kerneldump.h>
54#include <sys/ktr.h>
55#include <sys/lock.h>
56#include <sys/msgbuf.h>
57#include <sys/malloc.h>
58#include <sys/mman.h>
59#include <sys/mutex.h>
60#include <sys/proc.h>
61#include <sys/rwlock.h>
62#include <sys/sched.h>
63#include <sys/sysctl.h>
64#include <sys/systm.h>
65#include <sys/vmmeter.h>
66#include <sys/smp.h>
67#include <sys/reboot.h>
68
69#include <sys/kdb.h>
70
71#include <dev/ofw/openfirm.h>
72
73#include <vm/vm.h>
74#include <vm/pmap.h>
75#include <vm/vm_param.h>
76#include <vm/vm_kern.h>
77#include <vm/vm_page.h>
78#include <vm/vm_phys.h>
79#include <vm/vm_map.h>
80#include <vm/vm_object.h>
81#include <vm/vm_extern.h>
82#include <vm/vm_pageout.h>
83#include <vm/vm_dumpset.h>
84#include <vm/vm_reserv.h>
85#include <vm/uma.h>
86
87#include <machine/_inttypes.h>
88#include <machine/cpu.h>
89#include <machine/ifunc.h>
90#include <machine/platform.h>
91#include <machine/frame.h>
92#include <machine/md_var.h>
93#include <machine/psl.h>
94#include <machine/bat.h>
95#include <machine/hid.h>
96#include <machine/pte.h>
97#include <machine/sr.h>
98#include <machine/trap.h>
99#include <machine/mmuvar.h>
100
101#include "mmu_oea64.h"
102
103void moea64_release_vsid(uint64_t vsid);
104uintptr_t moea64_get_unique_vsid(void);
105
106#define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
107#define ENABLE_TRANS(msr)	mtmsr(msr)
108
109#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
110#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
111#define	VSID_HASH_MASK		0x0000007fffffffffULL
112
113/*
114 * Locking semantics:
115 *
116 * There are two locks of interest: the page locks and the pmap locks, which
117 * protect their individual PVO lists and are locked in that order. The contents
118 * of all PVO entries are protected by the locks of their respective pmaps.
119 * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
120 * into any list.
121 *
122 */
123
124#define PV_LOCK_COUNT	PA_LOCK_COUNT
125static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
126
127/*
128 * Cheap NUMA-izing of the pv locks, to reduce contention across domains.
129 * NUMA domains on POWER9 appear to be indexed as sparse memory spaces, with the
130 * index at (N << 45).
131 */
132#ifdef __powerpc64__
133#define PV_LOCK_IDX(pa)	((pa_index(pa) * (((pa) >> 45) + 1)) % PV_LOCK_COUNT)
134#else
135#define PV_LOCK_IDX(pa)	(pa_index(pa) % PV_LOCK_COUNT)
136#endif
137#define PV_LOCKPTR(pa)	((struct mtx *)(&pv_lock[PV_LOCK_IDX(pa)]))
138#define PV_LOCK(pa)		mtx_lock(PV_LOCKPTR(pa))
139#define PV_UNLOCK(pa)		mtx_unlock(PV_LOCKPTR(pa))
140#define PV_LOCKASSERT(pa) 	mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
141#define PV_PAGE_LOCK(m)		PV_LOCK(VM_PAGE_TO_PHYS(m))
142#define PV_PAGE_UNLOCK(m)	PV_UNLOCK(VM_PAGE_TO_PHYS(m))
143#define PV_PAGE_LOCKASSERT(m)	PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
144
145/* Superpage PV lock */
146
147#define	PV_LOCK_SIZE		(1<<PDRSHIFT)
148
149static __always_inline void
150moea64_sp_pv_lock(vm_paddr_t pa)
151{
152	vm_paddr_t pa_end;
153
154	/* Note: breaking when pa_end is reached to avoid overflows */
155	pa_end = pa + (HPT_SP_SIZE - PV_LOCK_SIZE);
156	for (;;) {
157		mtx_lock_flags(PV_LOCKPTR(pa), MTX_DUPOK);
158		if (pa == pa_end)
159			break;
160		pa += PV_LOCK_SIZE;
161	}
162}
163
164static __always_inline void
165moea64_sp_pv_unlock(vm_paddr_t pa)
166{
167	vm_paddr_t pa_end;
168
169	/* Note: breaking when pa_end is reached to avoid overflows */
170	pa_end = pa;
171	pa += HPT_SP_SIZE - PV_LOCK_SIZE;
172	for (;;) {
173		mtx_unlock_flags(PV_LOCKPTR(pa), MTX_DUPOK);
174		if (pa == pa_end)
175			break;
176		pa -= PV_LOCK_SIZE;
177	}
178}
179
180#define	SP_PV_LOCK_ALIGNED(pa)		moea64_sp_pv_lock(pa)
181#define	SP_PV_UNLOCK_ALIGNED(pa)	moea64_sp_pv_unlock(pa)
182#define	SP_PV_LOCK(pa)			moea64_sp_pv_lock((pa) & ~HPT_SP_MASK)
183#define	SP_PV_UNLOCK(pa)		moea64_sp_pv_unlock((pa) & ~HPT_SP_MASK)
184#define	SP_PV_PAGE_LOCK(m)		SP_PV_LOCK(VM_PAGE_TO_PHYS(m))
185#define	SP_PV_PAGE_UNLOCK(m)		SP_PV_UNLOCK(VM_PAGE_TO_PHYS(m))
186
187struct ofw_map {
188	cell_t	om_va;
189	cell_t	om_len;
190	uint64_t om_pa;
191	cell_t	om_mode;
192};
193
194extern unsigned char _etext[];
195extern unsigned char _end[];
196
197extern void *slbtrap, *slbtrapend;
198
199/*
200 * Map of physical memory regions.
201 */
202static struct	mem_region *regions;
203static struct	mem_region *pregions;
204static struct	numa_mem_region *numa_pregions;
205static u_int	phys_avail_count;
206static int	regions_sz, pregions_sz, numapregions_sz;
207
208extern void bs_remap_earlyboot(void);
209
210/*
211 * Lock for the SLB tables.
212 */
213struct mtx	moea64_slb_mutex;
214
215/*
216 * PTEG data.
217 */
218u_long		moea64_pteg_count;
219u_long		moea64_pteg_mask;
220
221/*
222 * PVO data.
223 */
224
225uma_zone_t	moea64_pvo_zone; /* zone for pvo entries */
226
227static struct	pvo_entry *moea64_bpvo_pool;
228static int	moea64_bpvo_pool_index = 0;
229static int	moea64_bpvo_pool_size = 0;
230SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
231    &moea64_bpvo_pool_index, 0, "");
232
233#define	BPVO_POOL_SIZE	327680 /* Sensible historical default value */
234#define	BPVO_POOL_EXPANSION_FACTOR	3
235#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
236#ifdef __powerpc64__
237#define	NVSIDS		(NPMAPS * 16)
238#define VSID_HASHMASK	0xffffffffUL
239#else
240#define NVSIDS		NPMAPS
241#define VSID_HASHMASK	0xfffffUL
242#endif
243static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
244
245static bool	moea64_initialized = false;
246
247#ifdef MOEA64_STATS
248/*
249 * Statistics.
250 */
251u_int	moea64_pte_valid = 0;
252u_int	moea64_pte_overflow = 0;
253u_int	moea64_pvo_entries = 0;
254u_int	moea64_pvo_enter_calls = 0;
255u_int	moea64_pvo_remove_calls = 0;
256SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
257    &moea64_pte_valid, 0, "");
258SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
259    &moea64_pte_overflow, 0, "");
260SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
261    &moea64_pvo_entries, 0, "");
262SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
263    &moea64_pvo_enter_calls, 0, "");
264SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
265    &moea64_pvo_remove_calls, 0, "");
266#endif
267
268vm_offset_t	moea64_scratchpage_va[2];
269struct pvo_entry *moea64_scratchpage_pvo[2];
270struct	mtx	moea64_scratchpage_mtx;
271
272uint64_t 	moea64_large_page_mask = 0;
273uint64_t	moea64_large_page_size = 0;
274int		moea64_large_page_shift = 0;
275bool		moea64_has_lp_4k_16m = false;
276
277/*
278 * PVO calls.
279 */
280static int	moea64_pvo_enter(struct pvo_entry *pvo,
281		    struct pvo_head *pvo_head, struct pvo_entry **oldpvo);
282static void	moea64_pvo_remove_from_pmap(struct pvo_entry *pvo);
283static void	moea64_pvo_remove_from_page(struct pvo_entry *pvo);
284static void	moea64_pvo_remove_from_page_locked(
285		    struct pvo_entry *pvo, vm_page_t m);
286static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
287
288/*
289 * Utility routines.
290 */
291static bool		moea64_query_bit(vm_page_t, uint64_t);
292static u_int		moea64_clear_bit(vm_page_t, uint64_t);
293static void		moea64_kremove(vm_offset_t);
294static void		moea64_syncicache(pmap_t pmap, vm_offset_t va,
295			    vm_paddr_t pa, vm_size_t sz);
296static void		moea64_pmap_init_qpages(void);
297static void		moea64_remove_locked(pmap_t, vm_offset_t,
298			    vm_offset_t, struct pvo_dlist *);
299
300/*
301 * Superpages data and routines.
302 */
303
304/*
305 * PVO flags (in vaddr) that must match for promotion to succeed.
306 * Note that protection bits are checked separately, as they reside in
307 * another field.
308 */
309#define	PVO_FLAGS_PROMOTE	(PVO_WIRED | PVO_MANAGED | PVO_PTEGIDX_VALID)
310
311#define	PVO_IS_SP(pvo)		(((pvo)->pvo_vaddr & PVO_LARGE) && \
312				 (pvo)->pvo_pmap != kernel_pmap)
313
314/* Get physical address from PVO. */
315#define	PVO_PADDR(pvo)		moea64_pvo_paddr(pvo)
316
317/* MD page flag indicating that the page is a superpage. */
318#define	MDPG_ATTR_SP		0x40000000
319
320SYSCTL_DECL(_vm_pmap);
321
322static SYSCTL_NODE(_vm_pmap, OID_AUTO, sp, CTLFLAG_RD, 0,
323    "SP page mapping counters");
324
325static u_long sp_demotions;
326SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, demotions, CTLFLAG_RD,
327    &sp_demotions, 0, "SP page demotions");
328
329static u_long sp_mappings;
330SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, mappings, CTLFLAG_RD,
331    &sp_mappings, 0, "SP page mappings");
332
333static u_long sp_p_failures;
334SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_failures, CTLFLAG_RD,
335    &sp_p_failures, 0, "SP page promotion failures");
336
337static u_long sp_p_fail_pa;
338SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_pa, CTLFLAG_RD,
339    &sp_p_fail_pa, 0, "SP page promotion failure: PAs don't match");
340
341static u_long sp_p_fail_flags;
342SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_flags, CTLFLAG_RD,
343    &sp_p_fail_flags, 0, "SP page promotion failure: page flags don't match");
344
345static u_long sp_p_fail_prot;
346SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_prot, CTLFLAG_RD,
347    &sp_p_fail_prot, 0,
348    "SP page promotion failure: page protections don't match");
349
350static u_long sp_p_fail_wimg;
351SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_wimg, CTLFLAG_RD,
352    &sp_p_fail_wimg, 0, "SP page promotion failure: WIMG bits don't match");
353
354static u_long sp_promotions;
355SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, promotions, CTLFLAG_RD,
356    &sp_promotions, 0, "SP page promotions");
357
358static bool moea64_ps_enabled(pmap_t);
359static void moea64_align_superpage(vm_object_t, vm_ooffset_t,
360    vm_offset_t *, vm_size_t);
361
362static int moea64_sp_enter(pmap_t pmap, vm_offset_t va,
363    vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind);
364static struct pvo_entry *moea64_sp_remove(struct pvo_entry *sp,
365    struct pvo_dlist *tofree);
366
367static void moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m);
368static void moea64_sp_demote_aligned(struct pvo_entry *sp);
369static void moea64_sp_demote(struct pvo_entry *pvo);
370
371static struct pvo_entry *moea64_sp_unwire(struct pvo_entry *sp);
372static struct pvo_entry *moea64_sp_protect(struct pvo_entry *sp,
373    vm_prot_t prot);
374
375static int64_t moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit);
376static int64_t moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m,
377    uint64_t ptebit);
378
379static __inline bool moea64_sp_pvo_in_range(struct pvo_entry *pvo,
380    vm_offset_t sva, vm_offset_t eva);
381
382/*
383 * Kernel MMU interface
384 */
385void moea64_clear_modify(vm_page_t);
386void moea64_copy_page(vm_page_t, vm_page_t);
387void moea64_copy_page_dmap(vm_page_t, vm_page_t);
388void moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
389    vm_page_t *mb, vm_offset_t b_offset, int xfersize);
390void moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset,
391    vm_page_t *mb, vm_offset_t b_offset, int xfersize);
392int moea64_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
393    u_int flags, int8_t psind);
394void moea64_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
395    vm_prot_t);
396void moea64_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
397vm_paddr_t moea64_extract(pmap_t, vm_offset_t);
398vm_page_t moea64_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
399void moea64_init(void);
400bool moea64_is_modified(vm_page_t);
401bool moea64_is_prefaultable(pmap_t, vm_offset_t);
402bool moea64_is_referenced(vm_page_t);
403int moea64_ts_referenced(vm_page_t);
404vm_offset_t moea64_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
405bool moea64_page_exists_quick(pmap_t, vm_page_t);
406void moea64_page_init(vm_page_t);
407int moea64_page_wired_mappings(vm_page_t);
408int moea64_pinit(pmap_t);
409void moea64_pinit0(pmap_t);
410void moea64_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
411void moea64_qenter(vm_offset_t, vm_page_t *, int);
412void moea64_qremove(vm_offset_t, int);
413void moea64_release(pmap_t);
414void moea64_remove(pmap_t, vm_offset_t, vm_offset_t);
415void moea64_remove_pages(pmap_t);
416void moea64_remove_all(vm_page_t);
417void moea64_remove_write(vm_page_t);
418void moea64_unwire(pmap_t, vm_offset_t, vm_offset_t);
419void moea64_zero_page(vm_page_t);
420void moea64_zero_page_dmap(vm_page_t);
421void moea64_zero_page_area(vm_page_t, int, int);
422void moea64_activate(struct thread *);
423void moea64_deactivate(struct thread *);
424void *moea64_mapdev(vm_paddr_t, vm_size_t);
425void *moea64_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
426void moea64_unmapdev(void *, vm_size_t);
427vm_paddr_t moea64_kextract(vm_offset_t);
428void moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma);
429void moea64_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
430void moea64_kenter(vm_offset_t, vm_paddr_t);
431int moea64_dev_direct_mapped(vm_paddr_t, vm_size_t);
432static void moea64_sync_icache(pmap_t, vm_offset_t, vm_size_t);
433void moea64_dumpsys_map(vm_paddr_t pa, size_t sz,
434    void **va);
435void moea64_scan_init(void);
436vm_offset_t moea64_quick_enter_page(vm_page_t m);
437vm_offset_t moea64_quick_enter_page_dmap(vm_page_t m);
438void moea64_quick_remove_page(vm_offset_t addr);
439bool moea64_page_is_mapped(vm_page_t m);
440static int moea64_map_user_ptr(pmap_t pm,
441    volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
442static int moea64_decode_kernel_ptr(vm_offset_t addr,
443    int *is_user, vm_offset_t *decoded_addr);
444static size_t moea64_scan_pmap(struct bitset *dump_bitset);
445static void *moea64_dump_pmap_init(unsigned blkpgs);
446#ifdef __powerpc64__
447static void moea64_page_array_startup(long);
448#endif
449static int moea64_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
450
451static struct pmap_funcs moea64_methods = {
452	.clear_modify = moea64_clear_modify,
453	.copy_page = moea64_copy_page,
454	.copy_pages = moea64_copy_pages,
455	.enter = moea64_enter,
456	.enter_object = moea64_enter_object,
457	.enter_quick = moea64_enter_quick,
458	.extract = moea64_extract,
459	.extract_and_hold = moea64_extract_and_hold,
460	.init = moea64_init,
461	.is_modified = moea64_is_modified,
462	.is_prefaultable = moea64_is_prefaultable,
463	.is_referenced = moea64_is_referenced,
464	.ts_referenced = moea64_ts_referenced,
465	.map =      		moea64_map,
466	.mincore = moea64_mincore,
467	.page_exists_quick = moea64_page_exists_quick,
468	.page_init = moea64_page_init,
469	.page_wired_mappings = moea64_page_wired_mappings,
470	.pinit = moea64_pinit,
471	.pinit0 = moea64_pinit0,
472	.protect = moea64_protect,
473	.qenter = moea64_qenter,
474	.qremove = moea64_qremove,
475	.release = moea64_release,
476	.remove = moea64_remove,
477	.remove_pages = moea64_remove_pages,
478	.remove_all =       	moea64_remove_all,
479	.remove_write = moea64_remove_write,
480	.sync_icache = moea64_sync_icache,
481	.unwire = moea64_unwire,
482	.zero_page =        	moea64_zero_page,
483	.zero_page_area = moea64_zero_page_area,
484	.activate = moea64_activate,
485	.deactivate =       	moea64_deactivate,
486	.page_set_memattr = moea64_page_set_memattr,
487	.quick_enter_page =  moea64_quick_enter_page,
488	.quick_remove_page =  moea64_quick_remove_page,
489	.page_is_mapped = moea64_page_is_mapped,
490#ifdef __powerpc64__
491	.page_array_startup = moea64_page_array_startup,
492#endif
493	.ps_enabled = moea64_ps_enabled,
494	.align_superpage = moea64_align_superpage,
495
496	/* Internal interfaces */
497	.mapdev = moea64_mapdev,
498	.mapdev_attr = moea64_mapdev_attr,
499	.unmapdev = moea64_unmapdev,
500	.kextract = moea64_kextract,
501	.kenter = moea64_kenter,
502	.kenter_attr = moea64_kenter_attr,
503	.dev_direct_mapped = moea64_dev_direct_mapped,
504	.dumpsys_pa_init = moea64_scan_init,
505	.dumpsys_scan_pmap = moea64_scan_pmap,
506	.dumpsys_dump_pmap_init =    moea64_dump_pmap_init,
507	.dumpsys_map_chunk = moea64_dumpsys_map,
508	.map_user_ptr = moea64_map_user_ptr,
509	.decode_kernel_ptr =  moea64_decode_kernel_ptr,
510};
511
512MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods);
513
514/*
515 * Get physical address from PVO.
516 *
517 * For superpages, the lower bits are not stored on pvo_pte.pa and must be
518 * obtained from VA.
519 */
520static __always_inline vm_paddr_t
521moea64_pvo_paddr(struct pvo_entry *pvo)
522{
523	vm_paddr_t pa;
524
525	pa = (pvo)->pvo_pte.pa & LPTE_RPGN;
526
527	if (PVO_IS_SP(pvo)) {
528		pa &= ~HPT_SP_MASK; /* This is needed to clear LPTE_LP bits. */
529		pa |= PVO_VADDR(pvo) & HPT_SP_MASK;
530	}
531	return (pa);
532}
533
534static struct pvo_head *
535vm_page_to_pvoh(vm_page_t m)
536{
537
538	mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
539	return (&m->md.mdpg_pvoh);
540}
541
542static struct pvo_entry *
543alloc_pvo_entry(int bootstrap)
544{
545	struct pvo_entry *pvo;
546
547	if (!moea64_initialized || bootstrap) {
548		if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
549			panic("%s: bpvo pool exhausted, index=%d, size=%d, bytes=%zd."
550			    "Try setting machdep.moea64_bpvo_pool_size tunable",
551			    __func__, moea64_bpvo_pool_index,
552			    moea64_bpvo_pool_size,
553			    moea64_bpvo_pool_size * sizeof(struct pvo_entry));
554		}
555		pvo = &moea64_bpvo_pool[
556		    atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
557		bzero(pvo, sizeof(*pvo));
558		pvo->pvo_vaddr = PVO_BOOTSTRAP;
559	} else
560		pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT | M_ZERO);
561
562	return (pvo);
563}
564
565static void
566init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
567{
568	uint64_t vsid;
569	uint64_t hash;
570	int shift;
571
572	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
573
574	pvo->pvo_pmap = pmap;
575	va &= ~ADDR_POFF;
576	pvo->pvo_vaddr |= va;
577	vsid = va_to_vsid(pmap, va);
578	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
579	    | (vsid << 16);
580
581	if (pmap == kernel_pmap && (pvo->pvo_vaddr & PVO_LARGE) != 0)
582		shift = moea64_large_page_shift;
583	else
584		shift = ADDR_PIDX_SHFT;
585	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
586	pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
587}
588
589static void
590free_pvo_entry(struct pvo_entry *pvo)
591{
592
593	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
594		uma_zfree(moea64_pvo_zone, pvo);
595}
596
597void
598moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
599{
600
601	lpte->pte_hi = moea64_pte_vpn_from_pvo_vpn(pvo);
602	lpte->pte_hi |= LPTE_VALID;
603
604	if (pvo->pvo_vaddr & PVO_LARGE)
605		lpte->pte_hi |= LPTE_BIG;
606	if (pvo->pvo_vaddr & PVO_WIRED)
607		lpte->pte_hi |= LPTE_WIRED;
608	if (pvo->pvo_vaddr & PVO_HID)
609		lpte->pte_hi |= LPTE_HID;
610
611	lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
612	if (pvo->pvo_pte.prot & VM_PROT_WRITE)
613		lpte->pte_lo |= LPTE_BW;
614	else
615		lpte->pte_lo |= LPTE_BR;
616
617	if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
618		lpte->pte_lo |= LPTE_NOEXEC;
619}
620
621static __inline uint64_t
622moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
623{
624	uint64_t pte_lo;
625	int i;
626
627	if (ma != VM_MEMATTR_DEFAULT) {
628		switch (ma) {
629		case VM_MEMATTR_UNCACHEABLE:
630			return (LPTE_I | LPTE_G);
631		case VM_MEMATTR_CACHEABLE:
632			return (LPTE_M);
633		case VM_MEMATTR_WRITE_COMBINING:
634		case VM_MEMATTR_WRITE_BACK:
635		case VM_MEMATTR_PREFETCHABLE:
636			return (LPTE_I);
637		case VM_MEMATTR_WRITE_THROUGH:
638			return (LPTE_W | LPTE_M);
639		}
640	}
641
642	/*
643	 * Assume the page is cache inhibited and access is guarded unless
644	 * it's in our available memory array.
645	 */
646	pte_lo = LPTE_I | LPTE_G;
647	for (i = 0; i < pregions_sz; i++) {
648		if ((pa >= pregions[i].mr_start) &&
649		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
650			pte_lo &= ~(LPTE_I | LPTE_G);
651			pte_lo |= LPTE_M;
652			break;
653		}
654	}
655
656	return pte_lo;
657}
658
659/*
660 * Quick sort callout for comparing memory regions.
661 */
662static int	om_cmp(const void *a, const void *b);
663
664static int
665om_cmp(const void *a, const void *b)
666{
667	const struct	ofw_map *mapa;
668	const struct	ofw_map *mapb;
669
670	mapa = a;
671	mapb = b;
672	if (mapa->om_pa < mapb->om_pa)
673		return (-1);
674	else if (mapa->om_pa > mapb->om_pa)
675		return (1);
676	else
677		return (0);
678}
679
680static void
681moea64_add_ofw_mappings(phandle_t mmu, size_t sz)
682{
683	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
684	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
685	struct pvo_entry *pvo;
686	register_t	msr;
687	vm_offset_t	off;
688	vm_paddr_t	pa_base;
689	int		i, j;
690
691	bzero(translations, sz);
692	OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
693	    sizeof(acells));
694	if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
695		panic("moea64_bootstrap: can't get ofw translations");
696
697	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
698	sz /= sizeof(cell_t);
699	for (i = 0, j = 0; i < sz; j++) {
700		translations[j].om_va = trans_cells[i++];
701		translations[j].om_len = trans_cells[i++];
702		translations[j].om_pa = trans_cells[i++];
703		if (acells == 2) {
704			translations[j].om_pa <<= 32;
705			translations[j].om_pa |= trans_cells[i++];
706		}
707		translations[j].om_mode = trans_cells[i++];
708	}
709	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
710	    i, sz));
711
712	sz = j;
713	qsort(translations, sz, sizeof (*translations), om_cmp);
714
715	for (i = 0; i < sz; i++) {
716		pa_base = translations[i].om_pa;
717	      #ifndef __powerpc64__
718		if ((translations[i].om_pa >> 32) != 0)
719			panic("OFW translations above 32-bit boundary!");
720	      #endif
721
722		if (pa_base % PAGE_SIZE)
723			panic("OFW translation not page-aligned (phys)!");
724		if (translations[i].om_va % PAGE_SIZE)
725			panic("OFW translation not page-aligned (virt)!");
726
727		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
728		    pa_base, translations[i].om_va, translations[i].om_len);
729
730		/* Now enter the pages for this mapping */
731
732		DISABLE_TRANS(msr);
733		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
734			/* If this address is direct-mapped, skip remapping */
735			if (hw_direct_map &&
736			    translations[i].om_va == PHYS_TO_DMAP(pa_base) &&
737			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT)
738 			    == LPTE_M)
739				continue;
740
741			PMAP_LOCK(kernel_pmap);
742			pvo = moea64_pvo_find_va(kernel_pmap,
743			    translations[i].om_va + off);
744			PMAP_UNLOCK(kernel_pmap);
745			if (pvo != NULL)
746				continue;
747
748			moea64_kenter(translations[i].om_va + off,
749			    pa_base + off);
750		}
751		ENABLE_TRANS(msr);
752	}
753}
754
755#ifdef __powerpc64__
756static void
757moea64_probe_large_page(void)
758{
759	uint16_t pvr = mfpvr() >> 16;
760
761	switch (pvr) {
762	case IBM970:
763	case IBM970FX:
764	case IBM970MP:
765		powerpc_sync(); isync();
766		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
767		powerpc_sync(); isync();
768
769		/* FALLTHROUGH */
770	default:
771		if (moea64_large_page_size == 0) {
772			moea64_large_page_size = 0x1000000; /* 16 MB */
773			moea64_large_page_shift = 24;
774		}
775	}
776
777	moea64_large_page_mask = moea64_large_page_size - 1;
778}
779
780static void
781moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
782{
783	struct slb *cache;
784	struct slb entry;
785	uint64_t esid, slbe;
786	uint64_t i;
787
788	cache = PCPU_GET(aim.slb);
789	esid = va >> ADDR_SR_SHFT;
790	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
791
792	for (i = 0; i < 64; i++) {
793		if (cache[i].slbe == (slbe | i))
794			return;
795	}
796
797	entry.slbe = slbe;
798	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
799	if (large)
800		entry.slbv |= SLBV_L;
801
802	slb_insert_kernel(entry.slbe, entry.slbv);
803}
804#endif
805
806static int
807moea64_kenter_large(vm_offset_t va, vm_paddr_t pa, uint64_t attr, int bootstrap)
808{
809	struct pvo_entry *pvo;
810	uint64_t pte_lo;
811	int error;
812
813	pte_lo = LPTE_M;
814	pte_lo |= attr;
815
816	pvo = alloc_pvo_entry(bootstrap);
817	pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
818	init_pvo_entry(pvo, kernel_pmap, va);
819
820	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
821	    VM_PROT_EXECUTE;
822	pvo->pvo_pte.pa = pa | pte_lo;
823	error = moea64_pvo_enter(pvo, NULL, NULL);
824	if (error != 0)
825		panic("Error %d inserting large page\n", error);
826	return (0);
827}
828
829static void
830moea64_setup_direct_map(vm_offset_t kernelstart,
831    vm_offset_t kernelend)
832{
833	register_t msr;
834	vm_paddr_t pa, pkernelstart, pkernelend;
835	vm_offset_t size, off;
836	uint64_t pte_lo;
837	int i;
838
839	if (moea64_large_page_size == 0)
840		hw_direct_map = 0;
841
842	DISABLE_TRANS(msr);
843	if (hw_direct_map) {
844		PMAP_LOCK(kernel_pmap);
845		for (i = 0; i < pregions_sz; i++) {
846		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
847		     pregions[i].mr_size; pa += moea64_large_page_size) {
848			pte_lo = LPTE_M;
849			if (pa & moea64_large_page_mask) {
850				pa &= moea64_large_page_mask;
851				pte_lo |= LPTE_G;
852			}
853			if (pa + moea64_large_page_size >
854			    pregions[i].mr_start + pregions[i].mr_size)
855				pte_lo |= LPTE_G;
856
857			moea64_kenter_large(PHYS_TO_DMAP(pa), pa, pte_lo, 1);
858		  }
859		}
860		PMAP_UNLOCK(kernel_pmap);
861	}
862
863	/*
864	 * Make sure the kernel and BPVO pool stay mapped on systems either
865	 * without a direct map or on which the kernel is not already executing
866	 * out of the direct-mapped region.
867	 */
868	if (kernelstart < DMAP_BASE_ADDRESS) {
869		/*
870		 * For pre-dmap execution, we need to use identity mapping
871		 * because we will be operating with the mmu on but in the
872		 * wrong address configuration until we __restartkernel().
873		 */
874		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
875		    pa += PAGE_SIZE)
876			moea64_kenter(pa, pa);
877	} else if (!hw_direct_map) {
878		pkernelstart = kernelstart & ~DMAP_BASE_ADDRESS;
879		pkernelend = kernelend & ~DMAP_BASE_ADDRESS;
880		for (pa = pkernelstart & ~PAGE_MASK; pa < pkernelend;
881		    pa += PAGE_SIZE)
882			moea64_kenter(pa | DMAP_BASE_ADDRESS, pa);
883	}
884
885	if (!hw_direct_map) {
886		size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
887		off = (vm_offset_t)(moea64_bpvo_pool);
888		for (pa = off; pa < off + size; pa += PAGE_SIZE)
889			moea64_kenter(pa, pa);
890
891		/* Map exception vectors */
892		for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE)
893			moea64_kenter(pa | DMAP_BASE_ADDRESS, pa);
894	}
895	ENABLE_TRANS(msr);
896
897	/*
898	 * Allow user to override unmapped_buf_allowed for testing.
899	 * XXXKIB Only direct map implementation was tested.
900	 */
901	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
902	    &unmapped_buf_allowed))
903		unmapped_buf_allowed = hw_direct_map;
904}
905
906/* Quick sort callout for comparing physical addresses. */
907static int
908pa_cmp(const void *a, const void *b)
909{
910	const vm_paddr_t *pa = a, *pb = b;
911
912	if (*pa < *pb)
913		return (-1);
914	else if (*pa > *pb)
915		return (1);
916	else
917		return (0);
918}
919
920void
921moea64_early_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
922{
923	int		i, j;
924	vm_size_t	physsz, hwphyssz;
925	vm_paddr_t	kernelphysstart, kernelphysend;
926	int		rm_pavail;
927
928	/* Level 0 reservations consist of 4096 pages (16MB superpage). */
929	vm_level_0_order = 12;
930
931#ifndef __powerpc64__
932	/* We don't have a direct map since there is no BAT */
933	hw_direct_map = 0;
934
935	/* Make sure battable is zero, since we have no BAT */
936	for (i = 0; i < 16; i++) {
937		battable[i].batu = 0;
938		battable[i].batl = 0;
939	}
940#else
941	/* Install trap handlers for SLBs */
942	bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap);
943	bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap);
944	__syncicache((void *)EXC_DSE, 0x80);
945	__syncicache((void *)EXC_ISE, 0x80);
946#endif
947
948	kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS;
949	kernelphysend = kernelend & ~DMAP_BASE_ADDRESS;
950
951	/* Get physical memory regions from firmware */
952	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
953	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
954
955	if (PHYS_AVAIL_ENTRIES < regions_sz)
956		panic("moea64_bootstrap: phys_avail too small");
957
958	phys_avail_count = 0;
959	physsz = 0;
960	hwphyssz = 0;
961	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
962	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
963		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
964		    regions[i].mr_start, regions[i].mr_start +
965		    regions[i].mr_size, regions[i].mr_size);
966		if (hwphyssz != 0 &&
967		    (physsz + regions[i].mr_size) >= hwphyssz) {
968			if (physsz < hwphyssz) {
969				phys_avail[j] = regions[i].mr_start;
970				phys_avail[j + 1] = regions[i].mr_start +
971				    hwphyssz - physsz;
972				physsz = hwphyssz;
973				phys_avail_count++;
974				dump_avail[j] = phys_avail[j];
975				dump_avail[j + 1] = phys_avail[j + 1];
976			}
977			break;
978		}
979		phys_avail[j] = regions[i].mr_start;
980		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
981		phys_avail_count++;
982		physsz += regions[i].mr_size;
983		dump_avail[j] = phys_avail[j];
984		dump_avail[j + 1] = phys_avail[j + 1];
985	}
986
987	/* Check for overlap with the kernel and exception vectors */
988	rm_pavail = 0;
989	for (j = 0; j < 2*phys_avail_count; j+=2) {
990		if (phys_avail[j] < EXC_LAST)
991			phys_avail[j] += EXC_LAST;
992
993		if (phys_avail[j] >= kernelphysstart &&
994		    phys_avail[j+1] <= kernelphysend) {
995			phys_avail[j] = phys_avail[j+1] = ~0;
996			rm_pavail++;
997			continue;
998		}
999
1000		if (kernelphysstart >= phys_avail[j] &&
1001		    kernelphysstart < phys_avail[j+1]) {
1002			if (kernelphysend < phys_avail[j+1]) {
1003				phys_avail[2*phys_avail_count] =
1004				    (kernelphysend & ~PAGE_MASK) + PAGE_SIZE;
1005				phys_avail[2*phys_avail_count + 1] =
1006				    phys_avail[j+1];
1007				phys_avail_count++;
1008			}
1009
1010			phys_avail[j+1] = kernelphysstart & ~PAGE_MASK;
1011		}
1012
1013		if (kernelphysend >= phys_avail[j] &&
1014		    kernelphysend < phys_avail[j+1]) {
1015			if (kernelphysstart > phys_avail[j]) {
1016				phys_avail[2*phys_avail_count] = phys_avail[j];
1017				phys_avail[2*phys_avail_count + 1] =
1018				    kernelphysstart & ~PAGE_MASK;
1019				phys_avail_count++;
1020			}
1021
1022			phys_avail[j] = (kernelphysend & ~PAGE_MASK) +
1023			    PAGE_SIZE;
1024		}
1025	}
1026
1027	/* Remove physical available regions marked for removal (~0) */
1028	if (rm_pavail) {
1029		qsort(phys_avail, 2*phys_avail_count, sizeof(phys_avail[0]),
1030			pa_cmp);
1031		phys_avail_count -= rm_pavail;
1032		for (i = 2*phys_avail_count;
1033		     i < 2*(phys_avail_count + rm_pavail); i+=2)
1034			phys_avail[i] = phys_avail[i+1] = 0;
1035	}
1036
1037	physmem = btoc(physsz);
1038
1039#ifdef PTEGCOUNT
1040	moea64_pteg_count = PTEGCOUNT;
1041#else
1042	moea64_pteg_count = 0x1000;
1043
1044	while (moea64_pteg_count < physmem)
1045		moea64_pteg_count <<= 1;
1046
1047	moea64_pteg_count >>= 1;
1048#endif /* PTEGCOUNT */
1049}
1050
1051void
1052moea64_mid_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
1053{
1054	int		i;
1055
1056	/*
1057	 * Set PTEG mask
1058	 */
1059	moea64_pteg_mask = moea64_pteg_count - 1;
1060
1061	/*
1062	 * Initialize SLB table lock and page locks
1063	 */
1064	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
1065	for (i = 0; i < PV_LOCK_COUNT; i++)
1066		mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
1067
1068	/*
1069	 * Initialise the bootstrap pvo pool.
1070	 */
1071	TUNABLE_INT_FETCH("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
1072	if (moea64_bpvo_pool_size == 0) {
1073		if (!hw_direct_map)
1074			moea64_bpvo_pool_size = ((ptoa((uintmax_t)physmem) * sizeof(struct vm_page)) /
1075			    (PAGE_SIZE * PAGE_SIZE)) * BPVO_POOL_EXPANSION_FACTOR;
1076		else
1077			moea64_bpvo_pool_size = BPVO_POOL_SIZE;
1078	}
1079
1080	if (boothowto & RB_VERBOSE) {
1081		printf("mmu_oea64: bpvo pool entries = %d, bpvo pool size = %zu MB\n",
1082		    moea64_bpvo_pool_size,
1083		    moea64_bpvo_pool_size*sizeof(struct pvo_entry) / 1048576);
1084	}
1085
1086	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
1087		moea64_bpvo_pool_size*sizeof(struct pvo_entry), PAGE_SIZE);
1088	moea64_bpvo_pool_index = 0;
1089
1090	/* Place at address usable through the direct map */
1091	if (hw_direct_map)
1092		moea64_bpvo_pool = (struct pvo_entry *)
1093		    PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool);
1094
1095	/*
1096	 * Make sure kernel vsid is allocated as well as VSID 0.
1097	 */
1098	#ifndef __powerpc64__
1099	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
1100		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
1101	moea64_vsid_bitmap[0] |= 1;
1102	#endif
1103
1104	/*
1105	 * Initialize the kernel pmap (which is statically allocated).
1106	 */
1107	#ifdef __powerpc64__
1108	for (i = 0; i < 64; i++) {
1109		pcpup->pc_aim.slb[i].slbv = 0;
1110		pcpup->pc_aim.slb[i].slbe = 0;
1111	}
1112	#else
1113	for (i = 0; i < 16; i++)
1114		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
1115	#endif
1116
1117	kernel_pmap->pmap_phys = kernel_pmap;
1118	CPU_FILL(&kernel_pmap->pm_active);
1119	RB_INIT(&kernel_pmap->pmap_pvo);
1120
1121	PMAP_LOCK_INIT(kernel_pmap);
1122
1123	/*
1124	 * Now map in all the other buffers we allocated earlier
1125	 */
1126
1127	moea64_setup_direct_map(kernelstart, kernelend);
1128}
1129
1130void
1131moea64_late_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
1132{
1133	ihandle_t	mmui;
1134	phandle_t	chosen;
1135	phandle_t	mmu;
1136	ssize_t		sz;
1137	int		i;
1138	vm_offset_t	pa, va;
1139	void		*dpcpu;
1140
1141	/*
1142	 * Set up the Open Firmware pmap and add its mappings if not in real
1143	 * mode.
1144	 */
1145
1146	chosen = OF_finddevice("/chosen");
1147	if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
1148		mmu = OF_instance_to_package(mmui);
1149		if (mmu == -1 ||
1150		    (sz = OF_getproplen(mmu, "translations")) == -1)
1151			sz = 0;
1152		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
1153			panic("moea64_bootstrap: too many ofw translations");
1154
1155		if (sz > 0)
1156			moea64_add_ofw_mappings(mmu, sz);
1157	}
1158
1159	/*
1160	 * Calculate the last available physical address.
1161	 */
1162	Maxmem = 0;
1163	for (i = 0; phys_avail[i + 1] != 0; i += 2)
1164		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
1165
1166	/*
1167	 * Initialize MMU.
1168	 */
1169	pmap_cpu_bootstrap(0);
1170	mtmsr(mfmsr() | PSL_DR | PSL_IR);
1171	pmap_bootstrapped++;
1172
1173	/*
1174	 * Set the start and end of kva.
1175	 */
1176	virtual_avail = VM_MIN_KERNEL_ADDRESS;
1177	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
1178
1179	/*
1180	 * Map the entire KVA range into the SLB. We must not fault there.
1181	 */
1182	#ifdef __powerpc64__
1183	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
1184		moea64_bootstrap_slb_prefault(va, 0);
1185	#endif
1186
1187	/*
1188	 * Remap any early IO mappings (console framebuffer, etc.)
1189	 */
1190	bs_remap_earlyboot();
1191
1192	/*
1193	 * Figure out how far we can extend virtual_end into segment 16
1194	 * without running into existing mappings. Segment 16 is guaranteed
1195	 * to contain neither RAM nor devices (at least on Apple hardware),
1196	 * but will generally contain some OFW mappings we should not
1197	 * step on.
1198	 */
1199
1200	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
1201	PMAP_LOCK(kernel_pmap);
1202	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
1203	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
1204		virtual_end += PAGE_SIZE;
1205	PMAP_UNLOCK(kernel_pmap);
1206	#endif
1207
1208	/*
1209	 * Allocate a kernel stack with a guard page for thread0 and map it
1210	 * into the kernel page map.
1211	 */
1212	pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
1213	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1214	virtual_avail = va + kstack_pages * PAGE_SIZE;
1215	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
1216	thread0.td_kstack = va;
1217	thread0.td_kstack_pages = kstack_pages;
1218	for (i = 0; i < kstack_pages; i++) {
1219		moea64_kenter(va, pa);
1220		pa += PAGE_SIZE;
1221		va += PAGE_SIZE;
1222	}
1223
1224	/*
1225	 * Allocate virtual address space for the message buffer.
1226	 */
1227	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
1228	msgbufp = (struct msgbuf *)virtual_avail;
1229	va = virtual_avail;
1230	virtual_avail += round_page(msgbufsize);
1231	while (va < virtual_avail) {
1232		moea64_kenter(va, pa);
1233		pa += PAGE_SIZE;
1234		va += PAGE_SIZE;
1235	}
1236
1237	/*
1238	 * Allocate virtual address space for the dynamic percpu area.
1239	 */
1240	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
1241	dpcpu = (void *)virtual_avail;
1242	va = virtual_avail;
1243	virtual_avail += DPCPU_SIZE;
1244	while (va < virtual_avail) {
1245		moea64_kenter(va, pa);
1246		pa += PAGE_SIZE;
1247		va += PAGE_SIZE;
1248	}
1249	dpcpu_init(dpcpu, curcpu);
1250
1251	crashdumpmap = (caddr_t)virtual_avail;
1252	virtual_avail += MAXDUMPPGS * PAGE_SIZE;
1253
1254	/*
1255	 * Allocate some things for page zeroing. We put this directly
1256	 * in the page table and use MOEA64_PTE_REPLACE to avoid any
1257	 * of the PVO book-keeping or other parts of the VM system
1258	 * from even knowing that this hack exists.
1259	 */
1260
1261	if (!hw_direct_map) {
1262		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
1263		    MTX_DEF);
1264		for (i = 0; i < 2; i++) {
1265			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
1266			virtual_end -= PAGE_SIZE;
1267
1268			moea64_kenter(moea64_scratchpage_va[i], 0);
1269
1270			PMAP_LOCK(kernel_pmap);
1271			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
1272			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
1273			PMAP_UNLOCK(kernel_pmap);
1274		}
1275	}
1276
1277	numa_mem_regions(&numa_pregions, &numapregions_sz);
1278}
1279
1280static void
1281moea64_pmap_init_qpages(void)
1282{
1283	struct pcpu *pc;
1284	int i;
1285
1286	if (hw_direct_map)
1287		return;
1288
1289	CPU_FOREACH(i) {
1290		pc = pcpu_find(i);
1291		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1292		if (pc->pc_qmap_addr == 0)
1293			panic("pmap_init_qpages: unable to allocate KVA");
1294		PMAP_LOCK(kernel_pmap);
1295		pc->pc_aim.qmap_pvo =
1296		    moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
1297		PMAP_UNLOCK(kernel_pmap);
1298		mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF);
1299	}
1300}
1301
1302SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
1303
1304/*
1305 * Activate a user pmap.  This mostly involves setting some non-CPU
1306 * state.
1307 */
1308void
1309moea64_activate(struct thread *td)
1310{
1311	pmap_t	pm;
1312
1313	pm = &td->td_proc->p_vmspace->vm_pmap;
1314	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1315
1316	#ifdef __powerpc64__
1317	PCPU_SET(aim.userslb, pm->pm_slb);
1318	__asm __volatile("slbmte %0, %1; isync" ::
1319	    "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
1320	#else
1321	PCPU_SET(curpmap, pm->pmap_phys);
1322	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1323	#endif
1324}
1325
1326void
1327moea64_deactivate(struct thread *td)
1328{
1329	pmap_t	pm;
1330
1331	__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
1332
1333	pm = &td->td_proc->p_vmspace->vm_pmap;
1334	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1335	#ifdef __powerpc64__
1336	PCPU_SET(aim.userslb, NULL);
1337	#else
1338	PCPU_SET(curpmap, NULL);
1339	#endif
1340}
1341
1342void
1343moea64_unwire(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1344{
1345	struct	pvo_entry key, *pvo;
1346	vm_page_t m;
1347	int64_t	refchg;
1348
1349	key.pvo_vaddr = sva;
1350	PMAP_LOCK(pm);
1351	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1352	    pvo != NULL && PVO_VADDR(pvo) < eva;
1353	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1354		if (PVO_IS_SP(pvo)) {
1355			if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
1356				pvo = moea64_sp_unwire(pvo);
1357				continue;
1358			} else {
1359				CTR1(KTR_PMAP, "%s: demote before unwire",
1360				    __func__);
1361				moea64_sp_demote(pvo);
1362			}
1363		}
1364
1365		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1366			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1367			    pvo);
1368		pvo->pvo_vaddr &= ~PVO_WIRED;
1369		refchg = moea64_pte_replace(pvo, 0 /* No invalidation */);
1370		if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1371		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1372			if (refchg < 0)
1373				refchg = LPTE_CHG;
1374			m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
1375
1376			refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1377			if (refchg & LPTE_CHG)
1378				vm_page_dirty(m);
1379			if (refchg & LPTE_REF)
1380				vm_page_aflag_set(m, PGA_REFERENCED);
1381		}
1382		pm->pm_stats.wired_count--;
1383	}
1384	PMAP_UNLOCK(pm);
1385}
1386
1387static int
1388moea64_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
1389{
1390	struct pvo_entry *pvo;
1391	vm_paddr_t pa;
1392	vm_page_t m;
1393	int val;
1394	bool managed;
1395
1396	PMAP_LOCK(pmap);
1397
1398	pvo = moea64_pvo_find_va(pmap, addr);
1399	if (pvo != NULL) {
1400		pa = PVO_PADDR(pvo);
1401		m = PHYS_TO_VM_PAGE(pa);
1402		managed = (pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED;
1403		if (PVO_IS_SP(pvo))
1404			val = MINCORE_INCORE | MINCORE_PSIND(1);
1405		else
1406			val = MINCORE_INCORE;
1407	} else {
1408		PMAP_UNLOCK(pmap);
1409		return (0);
1410	}
1411
1412	PMAP_UNLOCK(pmap);
1413
1414	if (m == NULL)
1415		return (0);
1416
1417	if (managed) {
1418		if (moea64_is_modified(m))
1419			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
1420
1421		if (moea64_is_referenced(m))
1422			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
1423	}
1424
1425	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
1426	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
1427	    managed) {
1428		*pap = pa;
1429	}
1430
1431	return (val);
1432}
1433
1434/*
1435 * This goes through and sets the physical address of our
1436 * special scratch PTE to the PA we want to zero or copy. Because
1437 * of locking issues (this can get called in pvo_enter() by
1438 * the UMA allocator), we can't use most other utility functions here
1439 */
1440
1441static __inline
1442void moea64_set_scratchpage_pa(int which, vm_paddr_t pa)
1443{
1444	struct pvo_entry *pvo;
1445
1446	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1447	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1448
1449	pvo = moea64_scratchpage_pvo[which];
1450	PMAP_LOCK(pvo->pvo_pmap);
1451	pvo->pvo_pte.pa =
1452	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1453	moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
1454	PMAP_UNLOCK(pvo->pvo_pmap);
1455	isync();
1456}
1457
1458void
1459moea64_copy_page(vm_page_t msrc, vm_page_t mdst)
1460{
1461	mtx_lock(&moea64_scratchpage_mtx);
1462
1463	moea64_set_scratchpage_pa(0, VM_PAGE_TO_PHYS(msrc));
1464	moea64_set_scratchpage_pa(1, VM_PAGE_TO_PHYS(mdst));
1465
1466	bcopy((void *)moea64_scratchpage_va[0],
1467	    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1468
1469	mtx_unlock(&moea64_scratchpage_mtx);
1470}
1471
1472void
1473moea64_copy_page_dmap(vm_page_t msrc, vm_page_t mdst)
1474{
1475	vm_offset_t	dst;
1476	vm_offset_t	src;
1477
1478	dst = VM_PAGE_TO_PHYS(mdst);
1479	src = VM_PAGE_TO_PHYS(msrc);
1480
1481	bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst),
1482	    PAGE_SIZE);
1483}
1484
1485inline void
1486moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset,
1487    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1488{
1489	void *a_cp, *b_cp;
1490	vm_offset_t a_pg_offset, b_pg_offset;
1491	int cnt;
1492
1493	while (xfersize > 0) {
1494		a_pg_offset = a_offset & PAGE_MASK;
1495		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1496		a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1497		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
1498		    a_pg_offset;
1499		b_pg_offset = b_offset & PAGE_MASK;
1500		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1501		b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1502		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
1503		    b_pg_offset;
1504		bcopy(a_cp, b_cp, cnt);
1505		a_offset += cnt;
1506		b_offset += cnt;
1507		xfersize -= cnt;
1508	}
1509}
1510
1511void
1512moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
1513    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1514{
1515	void *a_cp, *b_cp;
1516	vm_offset_t a_pg_offset, b_pg_offset;
1517	int cnt;
1518
1519	mtx_lock(&moea64_scratchpage_mtx);
1520	while (xfersize > 0) {
1521		a_pg_offset = a_offset & PAGE_MASK;
1522		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1523		moea64_set_scratchpage_pa(0,
1524		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1525		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1526		b_pg_offset = b_offset & PAGE_MASK;
1527		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1528		moea64_set_scratchpage_pa(1,
1529		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1530		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1531		bcopy(a_cp, b_cp, cnt);
1532		a_offset += cnt;
1533		b_offset += cnt;
1534		xfersize -= cnt;
1535	}
1536	mtx_unlock(&moea64_scratchpage_mtx);
1537}
1538
1539void
1540moea64_zero_page_area(vm_page_t m, int off, int size)
1541{
1542	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1543
1544	if (size + off > PAGE_SIZE)
1545		panic("moea64_zero_page: size + off > PAGE_SIZE");
1546
1547	if (hw_direct_map) {
1548		bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size);
1549	} else {
1550		mtx_lock(&moea64_scratchpage_mtx);
1551		moea64_set_scratchpage_pa(0, pa);
1552		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1553		mtx_unlock(&moea64_scratchpage_mtx);
1554	}
1555}
1556
1557/*
1558 * Zero a page of physical memory by temporarily mapping it
1559 */
1560void
1561moea64_zero_page(vm_page_t m)
1562{
1563	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1564	vm_offset_t va, off;
1565
1566	mtx_lock(&moea64_scratchpage_mtx);
1567
1568	moea64_set_scratchpage_pa(0, pa);
1569	va = moea64_scratchpage_va[0];
1570
1571	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1572		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1573
1574	mtx_unlock(&moea64_scratchpage_mtx);
1575}
1576
1577void
1578moea64_zero_page_dmap(vm_page_t m)
1579{
1580	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1581	vm_offset_t va, off;
1582
1583	va = PHYS_TO_DMAP(pa);
1584	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1585		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1586}
1587
1588vm_offset_t
1589moea64_quick_enter_page(vm_page_t m)
1590{
1591	struct pvo_entry *pvo;
1592	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1593
1594	/*
1595 	 * MOEA64_PTE_REPLACE does some locking, so we can't just grab
1596	 * a critical section and access the PCPU data like on i386.
1597	 * Instead, pin the thread and grab the PCPU lock to prevent
1598	 * a preempting thread from using the same PCPU data.
1599	 */
1600	sched_pin();
1601
1602	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED);
1603	pvo = PCPU_GET(aim.qmap_pvo);
1604
1605	mtx_lock(PCPU_PTR(aim.qmap_lock));
1606	pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
1607	    (uint64_t)pa;
1608	moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
1609	isync();
1610
1611	return (PCPU_GET(qmap_addr));
1612}
1613
1614vm_offset_t
1615moea64_quick_enter_page_dmap(vm_page_t m)
1616{
1617
1618	return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
1619}
1620
1621void
1622moea64_quick_remove_page(vm_offset_t addr)
1623{
1624
1625	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED);
1626	KASSERT(PCPU_GET(qmap_addr) == addr,
1627	    ("moea64_quick_remove_page: invalid address"));
1628	mtx_unlock(PCPU_PTR(aim.qmap_lock));
1629	sched_unpin();
1630}
1631
1632bool
1633moea64_page_is_mapped(vm_page_t m)
1634{
1635	return (!LIST_EMPTY(&(m)->md.mdpg_pvoh));
1636}
1637
1638/*
1639 * Map the given physical page at the specified virtual address in the
1640 * target pmap with the protection requested.  If specified the page
1641 * will be wired down.
1642 */
1643
1644int
1645moea64_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
1646    vm_prot_t prot, u_int flags, int8_t psind)
1647{
1648	struct		pvo_entry *pvo, *oldpvo, *tpvo;
1649	struct		pvo_head *pvo_head;
1650	uint64_t	pte_lo;
1651	int		error;
1652	vm_paddr_t	pa;
1653
1654	if ((m->oflags & VPO_UNMANAGED) == 0) {
1655		if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1656			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1657		else
1658			VM_OBJECT_ASSERT_LOCKED(m->object);
1659	}
1660
1661	if (psind > 0)
1662		return (moea64_sp_enter(pmap, va, m, prot, flags, psind));
1663
1664	pvo = alloc_pvo_entry(0);
1665	if (pvo == NULL)
1666		return (KERN_RESOURCE_SHORTAGE);
1667	pvo->pvo_pmap = NULL; /* to be filled in later */
1668	pvo->pvo_pte.prot = prot;
1669
1670	pa = VM_PAGE_TO_PHYS(m);
1671	pte_lo = moea64_calc_wimg(pa, pmap_page_get_memattr(m));
1672	pvo->pvo_pte.pa = pa | pte_lo;
1673
1674	if ((flags & PMAP_ENTER_WIRED) != 0)
1675		pvo->pvo_vaddr |= PVO_WIRED;
1676
1677	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1678		pvo_head = NULL;
1679	} else {
1680		pvo_head = &m->md.mdpg_pvoh;
1681		pvo->pvo_vaddr |= PVO_MANAGED;
1682	}
1683
1684	PV_LOCK(pa);
1685	PMAP_LOCK(pmap);
1686	if (pvo->pvo_pmap == NULL)
1687		init_pvo_entry(pvo, pmap, va);
1688
1689	if (moea64_ps_enabled(pmap) &&
1690	    (tpvo = moea64_pvo_find_va(pmap, va & ~HPT_SP_MASK)) != NULL &&
1691	    PVO_IS_SP(tpvo)) {
1692		/* Demote SP before entering a regular page */
1693		CTR2(KTR_PMAP, "%s: demote before enter: va=%#jx",
1694		    __func__, (uintmax_t)va);
1695		moea64_sp_demote_aligned(tpvo);
1696	}
1697
1698	if (prot & VM_PROT_WRITE)
1699		if (pmap_bootstrapped &&
1700		    (m->oflags & VPO_UNMANAGED) == 0)
1701			vm_page_aflag_set(m, PGA_WRITEABLE);
1702
1703	error = moea64_pvo_enter(pvo, pvo_head, &oldpvo);
1704	if (error == EEXIST) {
1705		if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1706		    oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1707		    oldpvo->pvo_pte.prot == prot) {
1708			/* Identical mapping already exists */
1709			error = 0;
1710
1711			/* If not in page table, reinsert it */
1712			if (moea64_pte_synch(oldpvo) < 0) {
1713				STAT_MOEA64(moea64_pte_overflow--);
1714				moea64_pte_insert(oldpvo);
1715			}
1716
1717			/* Then just clean up and go home */
1718			PMAP_UNLOCK(pmap);
1719			PV_UNLOCK(pa);
1720			free_pvo_entry(pvo);
1721			pvo = NULL;
1722			goto out;
1723		} else {
1724			/* Otherwise, need to kill it first */
1725			KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1726			    "mapping does not match new mapping"));
1727			moea64_pvo_remove_from_pmap(oldpvo);
1728			moea64_pvo_enter(pvo, pvo_head, NULL);
1729		}
1730	}
1731	PMAP_UNLOCK(pmap);
1732	PV_UNLOCK(pa);
1733
1734	/* Free any dead pages */
1735	if (error == EEXIST) {
1736		moea64_pvo_remove_from_page(oldpvo);
1737		free_pvo_entry(oldpvo);
1738	}
1739
1740out:
1741	/*
1742	 * Flush the page from the instruction cache if this page is
1743	 * mapped executable and cacheable.
1744	 */
1745	if (pmap != kernel_pmap && (m->a.flags & PGA_EXECUTABLE) == 0 &&
1746	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1747		vm_page_aflag_set(m, PGA_EXECUTABLE);
1748		moea64_syncicache(pmap, va, pa, PAGE_SIZE);
1749	}
1750
1751#if VM_NRESERVLEVEL > 0
1752	/*
1753	 * Try to promote pages.
1754	 *
1755	 * If the VA of the entered page is not aligned with its PA,
1756	 * don't try page promotion as it is not possible.
1757	 * This reduces the number of promotion failures dramatically.
1758	 *
1759	 * Ignore VM_PROT_NO_PROMOTE unless PMAP_ENTER_QUICK_LOCKED.
1760	 */
1761	if (moea64_ps_enabled(pmap) && pmap != kernel_pmap && pvo != NULL &&
1762	    (pvo->pvo_vaddr & PVO_MANAGED) != 0 &&
1763	    (va & HPT_SP_MASK) == (pa & HPT_SP_MASK) &&
1764	    ((prot & VM_PROT_NO_PROMOTE) == 0 ||
1765	    (flags & PMAP_ENTER_QUICK_LOCKED) == 0) &&
1766	    (m->flags & PG_FICTITIOUS) == 0 &&
1767	    vm_reserv_level_iffullpop(m) == 0)
1768		moea64_sp_promote(pmap, va, m);
1769#endif
1770
1771	return (KERN_SUCCESS);
1772}
1773
1774static void
1775moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1776    vm_size_t sz)
1777{
1778
1779	/*
1780	 * This is much trickier than on older systems because
1781	 * we can't sync the icache on physical addresses directly
1782	 * without a direct map. Instead we check a couple of cases
1783	 * where the memory is already mapped in and, failing that,
1784	 * use the same trick we use for page zeroing to create
1785	 * a temporary mapping for this physical address.
1786	 */
1787
1788	if (!pmap_bootstrapped) {
1789		/*
1790		 * If PMAP is not bootstrapped, we are likely to be
1791		 * in real mode.
1792		 */
1793		__syncicache((void *)(uintptr_t)pa, sz);
1794	} else if (pmap == kernel_pmap) {
1795		__syncicache((void *)va, sz);
1796	} else if (hw_direct_map) {
1797		__syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz);
1798	} else {
1799		/* Use the scratch page to set up a temp mapping */
1800
1801		mtx_lock(&moea64_scratchpage_mtx);
1802
1803		moea64_set_scratchpage_pa(1, pa & ~ADDR_POFF);
1804		__syncicache((void *)(moea64_scratchpage_va[1] +
1805		    (va & ADDR_POFF)), sz);
1806
1807		mtx_unlock(&moea64_scratchpage_mtx);
1808	}
1809}
1810
1811/*
1812 * Maps a sequence of resident pages belonging to the same object.
1813 * The sequence begins with the given page m_start.  This page is
1814 * mapped at the given virtual address start.  Each subsequent page is
1815 * mapped at a virtual address that is offset from start by the same
1816 * amount as the page is offset from m_start within the object.  The
1817 * last page in the sequence is the page with the largest offset from
1818 * m_start that can be mapped at a virtual address less than the given
1819 * virtual address end.  Not every virtual page between start and end
1820 * is mapped; only those for which a resident page exists with the
1821 * corresponding offset from m_start are mapped.
1822 */
1823void
1824moea64_enter_object(pmap_t pm, vm_offset_t start, vm_offset_t end,
1825    vm_page_t m_start, vm_prot_t prot)
1826{
1827	vm_page_t m;
1828	vm_pindex_t diff, psize;
1829	vm_offset_t va;
1830	int8_t psind;
1831
1832	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1833
1834	psize = atop(end - start);
1835	m = m_start;
1836	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1837		va = start + ptoa(diff);
1838		if ((va & HPT_SP_MASK) == 0 && va + HPT_SP_SIZE <= end &&
1839		    m->psind == 1 && moea64_ps_enabled(pm))
1840			psind = 1;
1841		else
1842			psind = 0;
1843		moea64_enter(pm, va, m, prot &
1844		    (VM_PROT_READ | VM_PROT_EXECUTE),
1845		    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, psind);
1846		if (psind == 1)
1847			m = &m[HPT_SP_SIZE / PAGE_SIZE - 1];
1848		m = TAILQ_NEXT(m, listq);
1849	}
1850}
1851
1852void
1853moea64_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m,
1854    vm_prot_t prot)
1855{
1856
1857	moea64_enter(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE |
1858	    VM_PROT_NO_PROMOTE), PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED,
1859	    0);
1860}
1861
1862vm_paddr_t
1863moea64_extract(pmap_t pm, vm_offset_t va)
1864{
1865	struct	pvo_entry *pvo;
1866	vm_paddr_t pa;
1867
1868	PMAP_LOCK(pm);
1869	pvo = moea64_pvo_find_va(pm, va);
1870	if (pvo == NULL)
1871		pa = 0;
1872	else
1873		pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo));
1874	PMAP_UNLOCK(pm);
1875
1876	return (pa);
1877}
1878
1879/*
1880 * Atomically extract and hold the physical page with the given
1881 * pmap and virtual address pair if that mapping permits the given
1882 * protection.
1883 */
1884vm_page_t
1885moea64_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1886{
1887	struct	pvo_entry *pvo;
1888	vm_page_t m;
1889
1890	m = NULL;
1891	PMAP_LOCK(pmap);
1892	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1893	if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1894		m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
1895		if (!vm_page_wire_mapped(m))
1896			m = NULL;
1897	}
1898	PMAP_UNLOCK(pmap);
1899	return (m);
1900}
1901
1902static void *
1903moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
1904    uint8_t *flags, int wait)
1905{
1906	struct pvo_entry *pvo;
1907        vm_offset_t va;
1908        vm_page_t m;
1909        int needed_lock;
1910
1911	/*
1912	 * This entire routine is a horrible hack to avoid bothering kmem
1913	 * for new KVA addresses. Because this can get called from inside
1914	 * kmem allocation routines, calling kmem for a new address here
1915	 * can lead to multiply locking non-recursive mutexes.
1916	 */
1917
1918	*flags = UMA_SLAB_PRIV;
1919	needed_lock = !PMAP_LOCKED(kernel_pmap);
1920
1921	m = vm_page_alloc_noobj_domain(domain, malloc2vm_flags(wait) |
1922	    VM_ALLOC_WIRED);
1923	if (m == NULL)
1924		return (NULL);
1925
1926	va = VM_PAGE_TO_PHYS(m);
1927
1928	pvo = alloc_pvo_entry(1 /* bootstrap */);
1929
1930	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1931	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1932
1933	if (needed_lock)
1934		PMAP_LOCK(kernel_pmap);
1935
1936	init_pvo_entry(pvo, kernel_pmap, va);
1937	pvo->pvo_vaddr |= PVO_WIRED;
1938
1939	moea64_pvo_enter(pvo, NULL, NULL);
1940
1941	if (needed_lock)
1942		PMAP_UNLOCK(kernel_pmap);
1943
1944	return (void *)va;
1945}
1946
1947extern int elf32_nxstack;
1948
1949void
1950moea64_init(void)
1951{
1952
1953	CTR0(KTR_PMAP, "moea64_init");
1954
1955	moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1956	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1957	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1958
1959	/*
1960	 * Are large page mappings enabled?
1961	 *
1962	 * While HPT superpages are not better tested, leave it disabled by
1963	 * default.
1964	 */
1965	superpages_enabled = 0;
1966	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
1967	if (superpages_enabled) {
1968		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1969		    ("moea64_init: can't assign to pagesizes[1]"));
1970
1971		if (moea64_large_page_size == 0) {
1972			printf("mmu_oea64: HW does not support large pages. "
1973					"Disabling superpages...\n");
1974			superpages_enabled = 0;
1975		} else if (!moea64_has_lp_4k_16m) {
1976			printf("mmu_oea64: "
1977			    "HW does not support mixed 4KB/16MB page sizes. "
1978			    "Disabling superpages...\n");
1979			superpages_enabled = 0;
1980		} else
1981			pagesizes[1] = HPT_SP_SIZE;
1982	}
1983
1984	if (!hw_direct_map) {
1985		uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc);
1986	}
1987
1988#ifdef COMPAT_FREEBSD32
1989	elf32_nxstack = 1;
1990#endif
1991
1992	moea64_initialized = true;
1993}
1994
1995bool
1996moea64_is_referenced(vm_page_t m)
1997{
1998
1999	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2000	    ("moea64_is_referenced: page %p is not managed", m));
2001
2002	return (moea64_query_bit(m, LPTE_REF));
2003}
2004
2005bool
2006moea64_is_modified(vm_page_t m)
2007{
2008
2009	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2010	    ("moea64_is_modified: page %p is not managed", m));
2011
2012	/*
2013	 * If the page is not busied then this check is racy.
2014	 */
2015	if (!pmap_page_is_write_mapped(m))
2016		return (false);
2017
2018	return (moea64_query_bit(m, LPTE_CHG));
2019}
2020
2021bool
2022moea64_is_prefaultable(pmap_t pmap, vm_offset_t va)
2023{
2024	struct pvo_entry *pvo;
2025	bool rv = true;
2026
2027	PMAP_LOCK(pmap);
2028	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
2029	if (pvo != NULL)
2030		rv = false;
2031	PMAP_UNLOCK(pmap);
2032	return (rv);
2033}
2034
2035void
2036moea64_clear_modify(vm_page_t m)
2037{
2038
2039	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2040	    ("moea64_clear_modify: page %p is not managed", m));
2041	vm_page_assert_busied(m);
2042
2043	if (!pmap_page_is_write_mapped(m))
2044		return;
2045	moea64_clear_bit(m, LPTE_CHG);
2046}
2047
2048/*
2049 * Clear the write and modified bits in each of the given page's mappings.
2050 */
2051void
2052moea64_remove_write(vm_page_t m)
2053{
2054	struct	pvo_entry *pvo;
2055	int64_t	refchg, ret;
2056	pmap_t	pmap;
2057
2058	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2059	    ("moea64_remove_write: page %p is not managed", m));
2060	vm_page_assert_busied(m);
2061
2062	if (!pmap_page_is_write_mapped(m))
2063		return;
2064
2065	powerpc_sync();
2066	PV_PAGE_LOCK(m);
2067	refchg = 0;
2068	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2069		pmap = pvo->pvo_pmap;
2070		PMAP_LOCK(pmap);
2071		if (!(pvo->pvo_vaddr & PVO_DEAD) &&
2072		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2073			if (PVO_IS_SP(pvo)) {
2074				CTR1(KTR_PMAP, "%s: demote before remwr",
2075				    __func__);
2076				moea64_sp_demote(pvo);
2077			}
2078			pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
2079			ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
2080			if (ret < 0)
2081				ret = LPTE_CHG;
2082			refchg |= ret;
2083			if (pvo->pvo_pmap == kernel_pmap)
2084				isync();
2085		}
2086		PMAP_UNLOCK(pmap);
2087	}
2088	if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
2089		vm_page_dirty(m);
2090	vm_page_aflag_clear(m, PGA_WRITEABLE);
2091	PV_PAGE_UNLOCK(m);
2092}
2093
2094/*
2095 *	moea64_ts_referenced:
2096 *
2097 *	Return a count of reference bits for a page, clearing those bits.
2098 *	It is not necessary for every reference bit to be cleared, but it
2099 *	is necessary that 0 only be returned when there are truly no
2100 *	reference bits set.
2101 *
2102 *	XXX: The exact number of bits to check and clear is a matter that
2103 *	should be tested and standardized at some point in the future for
2104 *	optimal aging of shared pages.
2105 */
2106int
2107moea64_ts_referenced(vm_page_t m)
2108{
2109
2110	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2111	    ("moea64_ts_referenced: page %p is not managed", m));
2112	return (moea64_clear_bit(m, LPTE_REF));
2113}
2114
2115/*
2116 * Modify the WIMG settings of all mappings for a page.
2117 */
2118void
2119moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma)
2120{
2121	struct	pvo_entry *pvo;
2122	int64_t	refchg;
2123	pmap_t	pmap;
2124	uint64_t lo;
2125
2126	CTR3(KTR_PMAP, "%s: pa=%#jx, ma=%#x",
2127	    __func__, (uintmax_t)VM_PAGE_TO_PHYS(m), ma);
2128
2129	if ((m->oflags & VPO_UNMANAGED) != 0) {
2130		m->md.mdpg_cache_attrs = ma;
2131		return;
2132	}
2133
2134	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
2135
2136	PV_PAGE_LOCK(m);
2137	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2138		pmap = pvo->pvo_pmap;
2139		PMAP_LOCK(pmap);
2140		if (!(pvo->pvo_vaddr & PVO_DEAD)) {
2141			if (PVO_IS_SP(pvo)) {
2142				CTR1(KTR_PMAP,
2143				    "%s: demote before set_memattr", __func__);
2144				moea64_sp_demote(pvo);
2145			}
2146			pvo->pvo_pte.pa &= ~LPTE_WIMG;
2147			pvo->pvo_pte.pa |= lo;
2148			refchg = moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
2149			if (refchg < 0)
2150				refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
2151				    LPTE_CHG : 0;
2152			if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2153			    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2154				refchg |=
2155				    atomic_readandclear_32(&m->md.mdpg_attrs);
2156				if (refchg & LPTE_CHG)
2157					vm_page_dirty(m);
2158				if (refchg & LPTE_REF)
2159					vm_page_aflag_set(m, PGA_REFERENCED);
2160			}
2161			if (pvo->pvo_pmap == kernel_pmap)
2162				isync();
2163		}
2164		PMAP_UNLOCK(pmap);
2165	}
2166	m->md.mdpg_cache_attrs = ma;
2167	PV_PAGE_UNLOCK(m);
2168}
2169
2170/*
2171 * Map a wired page into kernel virtual address space.
2172 */
2173void
2174moea64_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
2175{
2176	int		error;
2177	struct pvo_entry *pvo, *oldpvo;
2178
2179	do {
2180		pvo = alloc_pvo_entry(0);
2181		if (pvo == NULL)
2182			vm_wait(NULL);
2183	} while (pvo == NULL);
2184	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
2185	pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
2186	pvo->pvo_vaddr |= PVO_WIRED;
2187
2188	PMAP_LOCK(kernel_pmap);
2189	oldpvo = moea64_pvo_find_va(kernel_pmap, va);
2190	if (oldpvo != NULL)
2191		moea64_pvo_remove_from_pmap(oldpvo);
2192	init_pvo_entry(pvo, kernel_pmap, va);
2193	error = moea64_pvo_enter(pvo, NULL, NULL);
2194	PMAP_UNLOCK(kernel_pmap);
2195
2196	/* Free any dead pages */
2197	if (oldpvo != NULL) {
2198		moea64_pvo_remove_from_page(oldpvo);
2199		free_pvo_entry(oldpvo);
2200	}
2201
2202	if (error != 0)
2203		panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va,
2204		    (uintmax_t)pa, error);
2205}
2206
2207void
2208moea64_kenter(vm_offset_t va, vm_paddr_t pa)
2209{
2210
2211	moea64_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
2212}
2213
2214/*
2215 * Extract the physical page address associated with the given kernel virtual
2216 * address.
2217 */
2218vm_paddr_t
2219moea64_kextract(vm_offset_t va)
2220{
2221	struct		pvo_entry *pvo;
2222	vm_paddr_t pa;
2223
2224	/*
2225	 * Shortcut the direct-mapped case when applicable.  We never put
2226	 * anything but 1:1 (or 62-bit aliased) mappings below
2227	 * VM_MIN_KERNEL_ADDRESS.
2228	 */
2229	if (va < VM_MIN_KERNEL_ADDRESS)
2230		return (va & ~DMAP_BASE_ADDRESS);
2231
2232	PMAP_LOCK(kernel_pmap);
2233	pvo = moea64_pvo_find_va(kernel_pmap, va);
2234	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
2235	    va));
2236	pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo));
2237	PMAP_UNLOCK(kernel_pmap);
2238	return (pa);
2239}
2240
2241/*
2242 * Remove a wired page from kernel virtual address space.
2243 */
2244void
2245moea64_kremove(vm_offset_t va)
2246{
2247	moea64_remove(kernel_pmap, va, va + PAGE_SIZE);
2248}
2249
2250/*
2251 * Provide a kernel pointer corresponding to a given userland pointer.
2252 * The returned pointer is valid until the next time this function is
2253 * called in this thread. This is used internally in copyin/copyout.
2254 */
2255static int
2256moea64_map_user_ptr(pmap_t pm, volatile const void *uaddr,
2257    void **kaddr, size_t ulen, size_t *klen)
2258{
2259	size_t l;
2260#ifdef __powerpc64__
2261	struct slb *slb;
2262#endif
2263	register_t slbv;
2264
2265	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
2266	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
2267	if (l > ulen)
2268		l = ulen;
2269	if (klen)
2270		*klen = l;
2271	else if (l != ulen)
2272		return (EFAULT);
2273
2274#ifdef __powerpc64__
2275	/* Try lockless look-up first */
2276	slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr);
2277
2278	if (slb == NULL) {
2279		/* If it isn't there, we need to pre-fault the VSID */
2280		PMAP_LOCK(pm);
2281		slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT;
2282		PMAP_UNLOCK(pm);
2283	} else {
2284		slbv = slb->slbv;
2285	}
2286
2287	/* Mark segment no-execute */
2288	slbv |= SLBV_N;
2289#else
2290	slbv = va_to_vsid(pm, (vm_offset_t)uaddr);
2291
2292	/* Mark segment no-execute */
2293	slbv |= SR_N;
2294#endif
2295
2296	/* If we have already set this VSID, we can just return */
2297	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv)
2298		return (0);
2299
2300	__asm __volatile("isync");
2301	curthread->td_pcb->pcb_cpu.aim.usr_segm =
2302	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
2303	curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv;
2304#ifdef __powerpc64__
2305	__asm __volatile ("slbie %0; slbmte %1, %2; isync" ::
2306	    "r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE));
2307#else
2308	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv));
2309#endif
2310
2311	return (0);
2312}
2313
2314/*
2315 * Figure out where a given kernel pointer (usually in a fault) points
2316 * to from the VM's perspective, potentially remapping into userland's
2317 * address space.
2318 */
2319static int
2320moea64_decode_kernel_ptr(vm_offset_t addr, int *is_user,
2321    vm_offset_t *decoded_addr)
2322{
2323	vm_offset_t user_sr;
2324
2325	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
2326		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
2327		addr &= ADDR_PIDX | ADDR_POFF;
2328		addr |= user_sr << ADDR_SR_SHFT;
2329		*decoded_addr = addr;
2330		*is_user = 1;
2331	} else {
2332		*decoded_addr = addr;
2333		*is_user = 0;
2334	}
2335
2336	return (0);
2337}
2338
2339/*
2340 * Map a range of physical addresses into kernel virtual address space.
2341 *
2342 * The value passed in *virt is a suggested virtual address for the mapping.
2343 * Architectures which can support a direct-mapped physical to virtual region
2344 * can return the appropriate address within that region, leaving '*virt'
2345 * unchanged.  Other architectures should map the pages starting at '*virt' and
2346 * update '*virt' with the first usable address after the mapped region.
2347 */
2348vm_offset_t
2349moea64_map(vm_offset_t *virt, vm_paddr_t pa_start,
2350    vm_paddr_t pa_end, int prot)
2351{
2352	vm_offset_t	sva, va;
2353
2354	if (hw_direct_map) {
2355		/*
2356		 * Check if every page in the region is covered by the direct
2357		 * map. The direct map covers all of physical memory. Use
2358		 * moea64_calc_wimg() as a shortcut to see if the page is in
2359		 * physical memory as a way to see if the direct map covers it.
2360		 */
2361		for (va = pa_start; va < pa_end; va += PAGE_SIZE)
2362			if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
2363				break;
2364		if (va == pa_end)
2365			return (PHYS_TO_DMAP(pa_start));
2366	}
2367	sva = *virt;
2368	va = sva;
2369	/* XXX respect prot argument */
2370	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
2371		moea64_kenter(va, pa_start);
2372	*virt = va;
2373
2374	return (sva);
2375}
2376
2377/*
2378 * Returns true if the pmap's pv is one of the first
2379 * 16 pvs linked to from this page.  This count may
2380 * be changed upwards or downwards in the future; it
2381 * is only necessary that true be returned for a small
2382 * subset of pmaps for proper page aging.
2383 */
2384bool
2385moea64_page_exists_quick(pmap_t pmap, vm_page_t m)
2386{
2387        int loops;
2388	struct pvo_entry *pvo;
2389	bool rv;
2390
2391	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2392	    ("moea64_page_exists_quick: page %p is not managed", m));
2393	loops = 0;
2394	rv = false;
2395	PV_PAGE_LOCK(m);
2396	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2397		if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
2398			rv = true;
2399			break;
2400		}
2401		if (++loops >= 16)
2402			break;
2403	}
2404	PV_PAGE_UNLOCK(m);
2405	return (rv);
2406}
2407
2408void
2409moea64_page_init(vm_page_t m)
2410{
2411
2412	m->md.mdpg_attrs = 0;
2413	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
2414	LIST_INIT(&m->md.mdpg_pvoh);
2415}
2416
2417/*
2418 * Return the number of managed mappings to the given physical page
2419 * that are wired.
2420 */
2421int
2422moea64_page_wired_mappings(vm_page_t m)
2423{
2424	struct pvo_entry *pvo;
2425	int count;
2426
2427	count = 0;
2428	if ((m->oflags & VPO_UNMANAGED) != 0)
2429		return (count);
2430	PV_PAGE_LOCK(m);
2431	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2432		if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
2433			count++;
2434	PV_PAGE_UNLOCK(m);
2435	return (count);
2436}
2437
2438static uintptr_t	moea64_vsidcontext;
2439
2440uintptr_t
2441moea64_get_unique_vsid(void) {
2442	u_int entropy;
2443	register_t hash;
2444	uint32_t mask;
2445	int i;
2446
2447	entropy = 0;
2448	__asm __volatile("mftb %0" : "=r"(entropy));
2449
2450	mtx_lock(&moea64_slb_mutex);
2451	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2452		u_int	n;
2453
2454		/*
2455		 * Create a new value by multiplying by a prime and adding in
2456		 * entropy from the timebase register.  This is to make the
2457		 * VSID more random so that the PT hash function collides
2458		 * less often.  (Note that the prime casues gcc to do shifts
2459		 * instead of a multiply.)
2460		 */
2461		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2462		hash = moea64_vsidcontext & (NVSIDS - 1);
2463		if (hash == 0)		/* 0 is special, avoid it */
2464			continue;
2465		n = hash >> 5;
2466		mask = 1 << (hash & (VSID_NBPW - 1));
2467		hash = (moea64_vsidcontext & VSID_HASHMASK);
2468		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
2469			/* anything free in this bucket? */
2470			if (moea64_vsid_bitmap[n] == 0xffffffff) {
2471				entropy = (moea64_vsidcontext >> 20);
2472				continue;
2473			}
2474			i = ffs(~moea64_vsid_bitmap[n]) - 1;
2475			mask = 1 << i;
2476			hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
2477			hash |= i;
2478		}
2479		if (hash == VSID_VRMA)	/* also special, avoid this too */
2480			continue;
2481		KASSERT(!(moea64_vsid_bitmap[n] & mask),
2482		    ("Allocating in-use VSID %#zx\n", hash));
2483		moea64_vsid_bitmap[n] |= mask;
2484		mtx_unlock(&moea64_slb_mutex);
2485		return (hash);
2486	}
2487
2488	mtx_unlock(&moea64_slb_mutex);
2489	panic("%s: out of segments",__func__);
2490}
2491
2492#ifdef __powerpc64__
2493int
2494moea64_pinit(pmap_t pmap)
2495{
2496
2497	RB_INIT(&pmap->pmap_pvo);
2498
2499	pmap->pm_slb_tree_root = slb_alloc_tree();
2500	pmap->pm_slb = slb_alloc_user_cache();
2501	pmap->pm_slb_len = 0;
2502
2503	return (1);
2504}
2505#else
2506int
2507moea64_pinit(pmap_t pmap)
2508{
2509	int	i;
2510	uint32_t hash;
2511
2512	RB_INIT(&pmap->pmap_pvo);
2513
2514	if (pmap_bootstrapped)
2515		pmap->pmap_phys = (pmap_t)moea64_kextract((vm_offset_t)pmap);
2516	else
2517		pmap->pmap_phys = pmap;
2518
2519	/*
2520	 * Allocate some segment registers for this pmap.
2521	 */
2522	hash = moea64_get_unique_vsid();
2523
2524	for (i = 0; i < 16; i++)
2525		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2526
2527	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2528
2529	return (1);
2530}
2531#endif
2532
2533/*
2534 * Initialize the pmap associated with process 0.
2535 */
2536void
2537moea64_pinit0(pmap_t pm)
2538{
2539
2540	PMAP_LOCK_INIT(pm);
2541	moea64_pinit(pm);
2542	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2543}
2544
2545/*
2546 * Set the physical protection on the specified range of this map as requested.
2547 */
2548static void
2549moea64_pvo_protect( pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
2550{
2551	struct vm_page *pg;
2552	vm_prot_t oldprot;
2553	int32_t refchg;
2554
2555	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2556
2557	/*
2558	 * Change the protection of the page.
2559	 */
2560	oldprot = pvo->pvo_pte.prot;
2561	pvo->pvo_pte.prot = prot;
2562	pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
2563
2564	/*
2565	 * If the PVO is in the page table, update mapping
2566	 */
2567	refchg = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
2568	if (refchg < 0)
2569		refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
2570
2571	if (pm != kernel_pmap && pg != NULL &&
2572	    (pg->a.flags & PGA_EXECUTABLE) == 0 &&
2573	    (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2574		if ((pg->oflags & VPO_UNMANAGED) == 0)
2575			vm_page_aflag_set(pg, PGA_EXECUTABLE);
2576		moea64_syncicache(pm, PVO_VADDR(pvo),
2577		    PVO_PADDR(pvo), PAGE_SIZE);
2578	}
2579
2580	/*
2581	 * Update vm about the REF/CHG bits if the page is managed and we have
2582	 * removed write access.
2583	 */
2584	if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
2585	    (oldprot & VM_PROT_WRITE)) {
2586		refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2587		if (refchg & LPTE_CHG)
2588			vm_page_dirty(pg);
2589		if (refchg & LPTE_REF)
2590			vm_page_aflag_set(pg, PGA_REFERENCED);
2591	}
2592}
2593
2594void
2595moea64_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2596    vm_prot_t prot)
2597{
2598	struct	pvo_entry *pvo, key;
2599
2600	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2601	    sva, eva, prot);
2602
2603	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2604	    ("moea64_protect: non current pmap"));
2605
2606	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2607		moea64_remove(pm, sva, eva);
2608		return;
2609	}
2610
2611	PMAP_LOCK(pm);
2612	key.pvo_vaddr = sva;
2613	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2614	    pvo != NULL && PVO_VADDR(pvo) < eva;
2615	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
2616		if (PVO_IS_SP(pvo)) {
2617			if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
2618				pvo = moea64_sp_protect(pvo, prot);
2619				continue;
2620			} else {
2621				CTR1(KTR_PMAP, "%s: demote before protect",
2622				    __func__);
2623				moea64_sp_demote(pvo);
2624			}
2625		}
2626		moea64_pvo_protect(pm, pvo, prot);
2627	}
2628	PMAP_UNLOCK(pm);
2629}
2630
2631/*
2632 * Map a list of wired pages into kernel virtual address space.  This is
2633 * intended for temporary mappings which do not need page modification or
2634 * references recorded.  Existing mappings in the region are overwritten.
2635 */
2636void
2637moea64_qenter(vm_offset_t va, vm_page_t *m, int count)
2638{
2639	while (count-- > 0) {
2640		moea64_kenter(va, VM_PAGE_TO_PHYS(*m));
2641		va += PAGE_SIZE;
2642		m++;
2643	}
2644}
2645
2646/*
2647 * Remove page mappings from kernel virtual address space.  Intended for
2648 * temporary mappings entered by moea64_qenter.
2649 */
2650void
2651moea64_qremove(vm_offset_t va, int count)
2652{
2653	while (count-- > 0) {
2654		moea64_kremove(va);
2655		va += PAGE_SIZE;
2656	}
2657}
2658
2659void
2660moea64_release_vsid(uint64_t vsid)
2661{
2662	int idx, mask;
2663
2664	mtx_lock(&moea64_slb_mutex);
2665	idx = vsid & (NVSIDS-1);
2666	mask = 1 << (idx % VSID_NBPW);
2667	idx /= VSID_NBPW;
2668	KASSERT(moea64_vsid_bitmap[idx] & mask,
2669	    ("Freeing unallocated VSID %#jx", vsid));
2670	moea64_vsid_bitmap[idx] &= ~mask;
2671	mtx_unlock(&moea64_slb_mutex);
2672}
2673
2674void
2675moea64_release(pmap_t pmap)
2676{
2677
2678	/*
2679	 * Free segment registers' VSIDs
2680	 */
2681    #ifdef __powerpc64__
2682	slb_free_tree(pmap);
2683	slb_free_user_cache(pmap->pm_slb);
2684    #else
2685	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2686
2687	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2688    #endif
2689}
2690
2691/*
2692 * Remove all pages mapped by the specified pmap
2693 */
2694void
2695moea64_remove_pages(pmap_t pm)
2696{
2697	struct pvo_entry *pvo, *tpvo;
2698	struct pvo_dlist tofree;
2699
2700	SLIST_INIT(&tofree);
2701
2702	PMAP_LOCK(pm);
2703	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2704		if (pvo->pvo_vaddr & PVO_WIRED)
2705			continue;
2706
2707		/*
2708		 * For locking reasons, remove this from the page table and
2709		 * pmap, but save delinking from the vm_page for a second
2710		 * pass
2711		 */
2712		moea64_pvo_remove_from_pmap(pvo);
2713		SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
2714	}
2715	PMAP_UNLOCK(pm);
2716
2717	while (!SLIST_EMPTY(&tofree)) {
2718		pvo = SLIST_FIRST(&tofree);
2719		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2720		moea64_pvo_remove_from_page(pvo);
2721		free_pvo_entry(pvo);
2722	}
2723}
2724
2725static void
2726moea64_remove_locked(pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2727    struct pvo_dlist *tofree)
2728{
2729	struct pvo_entry *pvo, *tpvo, key;
2730
2731	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2732
2733	key.pvo_vaddr = sva;
2734	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2735	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2736		if (PVO_IS_SP(pvo)) {
2737			if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
2738				tpvo = moea64_sp_remove(pvo, tofree);
2739				continue;
2740			} else {
2741				CTR1(KTR_PMAP, "%s: demote before remove",
2742				    __func__);
2743				moea64_sp_demote(pvo);
2744			}
2745		}
2746		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2747
2748		/*
2749		 * For locking reasons, remove this from the page table and
2750		 * pmap, but save delinking from the vm_page for a second
2751		 * pass
2752		 */
2753		moea64_pvo_remove_from_pmap(pvo);
2754		SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink);
2755	}
2756}
2757
2758/*
2759 * Remove the given range of addresses from the specified map.
2760 */
2761void
2762moea64_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2763{
2764	struct pvo_entry *pvo;
2765	struct pvo_dlist tofree;
2766
2767	/*
2768	 * Perform an unsynchronized read.  This is, however, safe.
2769	 */
2770	if (pm->pm_stats.resident_count == 0)
2771		return;
2772
2773	SLIST_INIT(&tofree);
2774	PMAP_LOCK(pm);
2775	moea64_remove_locked(pm, sva, eva, &tofree);
2776	PMAP_UNLOCK(pm);
2777
2778	while (!SLIST_EMPTY(&tofree)) {
2779		pvo = SLIST_FIRST(&tofree);
2780		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2781		moea64_pvo_remove_from_page(pvo);
2782		free_pvo_entry(pvo);
2783	}
2784}
2785
2786/*
2787 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2788 * will reflect changes in pte's back to the vm_page.
2789 */
2790void
2791moea64_remove_all(vm_page_t m)
2792{
2793	struct	pvo_entry *pvo, *next_pvo;
2794	struct	pvo_head freequeue;
2795	int	wasdead;
2796	pmap_t	pmap;
2797
2798	LIST_INIT(&freequeue);
2799
2800	PV_PAGE_LOCK(m);
2801	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2802		pmap = pvo->pvo_pmap;
2803		PMAP_LOCK(pmap);
2804		wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2805		if (!wasdead) {
2806			if (PVO_IS_SP(pvo)) {
2807				CTR1(KTR_PMAP, "%s: demote before remove_all",
2808				    __func__);
2809				moea64_sp_demote(pvo);
2810			}
2811			moea64_pvo_remove_from_pmap(pvo);
2812		}
2813		moea64_pvo_remove_from_page_locked(pvo, m);
2814		if (!wasdead)
2815			LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2816		PMAP_UNLOCK(pmap);
2817
2818	}
2819	KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2820	KASSERT((m->a.flags & PGA_WRITEABLE) == 0, ("Page still writable"));
2821	PV_PAGE_UNLOCK(m);
2822
2823	/* Clean up UMA allocations */
2824	LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2825		free_pvo_entry(pvo);
2826}
2827
2828/*
2829 * Allocate a physical page of memory directly from the phys_avail map.
2830 * Can only be called from moea64_bootstrap before avail start and end are
2831 * calculated.
2832 */
2833vm_offset_t
2834moea64_bootstrap_alloc(vm_size_t size, vm_size_t align)
2835{
2836	vm_offset_t	s, e;
2837	int		i, j;
2838
2839	size = round_page(size);
2840	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2841		if (align != 0)
2842			s = roundup2(phys_avail[i], align);
2843		else
2844			s = phys_avail[i];
2845		e = s + size;
2846
2847		if (s < phys_avail[i] || e > phys_avail[i + 1])
2848			continue;
2849
2850		if (s + size > platform_real_maxaddr())
2851			continue;
2852
2853		if (s == phys_avail[i]) {
2854			phys_avail[i] += size;
2855		} else if (e == phys_avail[i + 1]) {
2856			phys_avail[i + 1] -= size;
2857		} else {
2858			for (j = phys_avail_count * 2; j > i; j -= 2) {
2859				phys_avail[j] = phys_avail[j - 2];
2860				phys_avail[j + 1] = phys_avail[j - 1];
2861			}
2862
2863			phys_avail[i + 3] = phys_avail[i + 1];
2864			phys_avail[i + 1] = s;
2865			phys_avail[i + 2] = e;
2866			phys_avail_count++;
2867		}
2868
2869		return (s);
2870	}
2871	panic("moea64_bootstrap_alloc: could not allocate memory");
2872}
2873
2874static int
2875moea64_pvo_enter(struct pvo_entry *pvo, struct pvo_head *pvo_head,
2876    struct pvo_entry **oldpvop)
2877{
2878	struct pvo_entry *old_pvo;
2879	int err;
2880
2881	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2882
2883	STAT_MOEA64(moea64_pvo_enter_calls++);
2884
2885	/*
2886	 * Add to pmap list
2887	 */
2888	old_pvo = RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2889
2890	if (old_pvo != NULL) {
2891		if (oldpvop != NULL)
2892			*oldpvop = old_pvo;
2893		return (EEXIST);
2894	}
2895
2896	if (pvo_head != NULL) {
2897		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2898	}
2899
2900	if (pvo->pvo_vaddr & PVO_WIRED)
2901		pvo->pvo_pmap->pm_stats.wired_count++;
2902	pvo->pvo_pmap->pm_stats.resident_count++;
2903
2904	/*
2905	 * Insert it into the hardware page table
2906	 */
2907	err = moea64_pte_insert(pvo);
2908	if (err != 0) {
2909		panic("moea64_pvo_enter: overflow");
2910	}
2911
2912	STAT_MOEA64(moea64_pvo_entries++);
2913
2914	if (pvo->pvo_pmap == kernel_pmap)
2915		isync();
2916
2917#ifdef __powerpc64__
2918	/*
2919	 * Make sure all our bootstrap mappings are in the SLB as soon
2920	 * as virtual memory is switched on.
2921	 */
2922	if (!pmap_bootstrapped)
2923		moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2924		    pvo->pvo_vaddr & PVO_LARGE);
2925#endif
2926
2927	return (0);
2928}
2929
2930static void
2931moea64_pvo_remove_from_pmap(struct pvo_entry *pvo)
2932{
2933	struct	vm_page *pg;
2934	int32_t refchg;
2935
2936	KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2937	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2938	KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2939
2940	/*
2941	 * If there is an active pte entry, we need to deactivate it
2942	 */
2943	refchg = moea64_pte_unset(pvo);
2944	if (refchg < 0) {
2945		/*
2946		 * If it was evicted from the page table, be pessimistic and
2947		 * dirty the page.
2948		 */
2949		if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2950			refchg = LPTE_CHG;
2951		else
2952			refchg = 0;
2953	}
2954
2955	/*
2956	 * Update our statistics.
2957	 */
2958	pvo->pvo_pmap->pm_stats.resident_count--;
2959	if (pvo->pvo_vaddr & PVO_WIRED)
2960		pvo->pvo_pmap->pm_stats.wired_count--;
2961
2962	/*
2963	 * Remove this PVO from the pmap list.
2964	 */
2965	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2966
2967	/*
2968	 * Mark this for the next sweep
2969	 */
2970	pvo->pvo_vaddr |= PVO_DEAD;
2971
2972	/* Send RC bits to VM */
2973	if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2974	    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2975		pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
2976		if (pg != NULL) {
2977			refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2978			if (refchg & LPTE_CHG)
2979				vm_page_dirty(pg);
2980			if (refchg & LPTE_REF)
2981				vm_page_aflag_set(pg, PGA_REFERENCED);
2982		}
2983	}
2984}
2985
2986static inline void
2987moea64_pvo_remove_from_page_locked(struct pvo_entry *pvo,
2988    vm_page_t m)
2989{
2990
2991	KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
2992
2993	/* Use NULL pmaps as a sentinel for races in page deletion */
2994	if (pvo->pvo_pmap == NULL)
2995		return;
2996	pvo->pvo_pmap = NULL;
2997
2998	/*
2999	 * Update vm about page writeability/executability if managed
3000	 */
3001	PV_LOCKASSERT(PVO_PADDR(pvo));
3002	if (pvo->pvo_vaddr & PVO_MANAGED) {
3003		if (m != NULL) {
3004			LIST_REMOVE(pvo, pvo_vlink);
3005			if (LIST_EMPTY(vm_page_to_pvoh(m)))
3006				vm_page_aflag_clear(m,
3007				    PGA_WRITEABLE | PGA_EXECUTABLE);
3008		}
3009	}
3010
3011	STAT_MOEA64(moea64_pvo_entries--);
3012	STAT_MOEA64(moea64_pvo_remove_calls++);
3013}
3014
3015static void
3016moea64_pvo_remove_from_page(struct pvo_entry *pvo)
3017{
3018	vm_page_t pg = NULL;
3019
3020	if (pvo->pvo_vaddr & PVO_MANAGED)
3021		pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
3022
3023	PV_LOCK(PVO_PADDR(pvo));
3024	moea64_pvo_remove_from_page_locked(pvo, pg);
3025	PV_UNLOCK(PVO_PADDR(pvo));
3026}
3027
3028static struct pvo_entry *
3029moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
3030{
3031	struct pvo_entry key;
3032
3033	PMAP_LOCK_ASSERT(pm, MA_OWNED);
3034
3035	key.pvo_vaddr = va & ~ADDR_POFF;
3036	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
3037}
3038
3039static bool
3040moea64_query_bit(vm_page_t m, uint64_t ptebit)
3041{
3042	struct	pvo_entry *pvo;
3043	int64_t ret;
3044	bool rv;
3045	vm_page_t sp;
3046
3047	/*
3048	 * See if this bit is stored in the page already.
3049	 *
3050	 * For superpages, the bit is stored in the first vm page.
3051	 */
3052	if ((m->md.mdpg_attrs & ptebit) != 0 ||
3053	    ((sp = PHYS_TO_VM_PAGE(VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK)) != NULL &&
3054	     (sp->md.mdpg_attrs & (ptebit | MDPG_ATTR_SP)) ==
3055	     (ptebit | MDPG_ATTR_SP)))
3056		return (true);
3057
3058	/*
3059	 * Examine each PTE.  Sync so that any pending REF/CHG bits are
3060	 * flushed to the PTEs.
3061	 */
3062	rv = false;
3063	powerpc_sync();
3064	PV_PAGE_LOCK(m);
3065	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
3066		if (PVO_IS_SP(pvo)) {
3067			ret = moea64_sp_query(pvo, ptebit);
3068			/*
3069			 * If SP was not demoted, check its REF/CHG bits here.
3070			 */
3071			if (ret != -1) {
3072				if ((ret & ptebit) != 0) {
3073					rv = true;
3074					break;
3075				}
3076				continue;
3077			}
3078			/* else, fallthrough */
3079		}
3080
3081		ret = 0;
3082
3083		/*
3084		 * See if this pvo has a valid PTE.  if so, fetch the
3085		 * REF/CHG bits from the valid PTE.  If the appropriate
3086		 * ptebit is set, return success.
3087		 */
3088		PMAP_LOCK(pvo->pvo_pmap);
3089		if (!(pvo->pvo_vaddr & PVO_DEAD))
3090			ret = moea64_pte_synch(pvo);
3091		PMAP_UNLOCK(pvo->pvo_pmap);
3092
3093		if (ret > 0) {
3094			atomic_set_32(&m->md.mdpg_attrs,
3095			    ret & (LPTE_CHG | LPTE_REF));
3096			if (ret & ptebit) {
3097				rv = true;
3098				break;
3099			}
3100		}
3101	}
3102	PV_PAGE_UNLOCK(m);
3103
3104	return (rv);
3105}
3106
3107static u_int
3108moea64_clear_bit(vm_page_t m, u_int64_t ptebit)
3109{
3110	u_int	count;
3111	struct	pvo_entry *pvo;
3112	int64_t ret;
3113
3114	/*
3115	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
3116	 * we can reset the right ones).
3117	 */
3118	powerpc_sync();
3119
3120	/*
3121	 * For each pvo entry, clear the pte's ptebit.
3122	 */
3123	count = 0;
3124	PV_PAGE_LOCK(m);
3125	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
3126		if (PVO_IS_SP(pvo)) {
3127			if ((ret = moea64_sp_clear(pvo, m, ptebit)) != -1) {
3128				count += ret;
3129				continue;
3130			}
3131		}
3132		ret = 0;
3133
3134		PMAP_LOCK(pvo->pvo_pmap);
3135		if (!(pvo->pvo_vaddr & PVO_DEAD))
3136			ret = moea64_pte_clear(pvo, ptebit);
3137		PMAP_UNLOCK(pvo->pvo_pmap);
3138
3139		if (ret > 0 && (ret & ptebit))
3140			count++;
3141	}
3142	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
3143	PV_PAGE_UNLOCK(m);
3144
3145	return (count);
3146}
3147
3148int
3149moea64_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
3150{
3151	struct pvo_entry *pvo, key;
3152	vm_offset_t ppa;
3153	int error = 0;
3154
3155	if (hw_direct_map && mem_valid(pa, size) == 0)
3156		return (0);
3157
3158	PMAP_LOCK(kernel_pmap);
3159	ppa = pa & ~ADDR_POFF;
3160	key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa;
3161	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
3162	    ppa < pa + size; ppa += PAGE_SIZE,
3163	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
3164		if (pvo == NULL || PVO_PADDR(pvo) != ppa) {
3165			error = EFAULT;
3166			break;
3167		}
3168	}
3169	PMAP_UNLOCK(kernel_pmap);
3170
3171	return (error);
3172}
3173
3174/*
3175 * Map a set of physical memory pages into the kernel virtual
3176 * address space. Return a pointer to where it is mapped. This
3177 * routine is intended to be used for mapping device memory,
3178 * NOT real memory.
3179 */
3180void *
3181moea64_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
3182{
3183	vm_offset_t va, tmpva, ppa, offset;
3184
3185	ppa = trunc_page(pa);
3186	offset = pa & PAGE_MASK;
3187	size = roundup2(offset + size, PAGE_SIZE);
3188
3189	va = kva_alloc(size);
3190
3191	if (!va)
3192		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
3193
3194	for (tmpva = va; size > 0;) {
3195		moea64_kenter_attr(tmpva, ppa, ma);
3196		size -= PAGE_SIZE;
3197		tmpva += PAGE_SIZE;
3198		ppa += PAGE_SIZE;
3199	}
3200
3201	return ((void *)(va + offset));
3202}
3203
3204void *
3205moea64_mapdev(vm_paddr_t pa, vm_size_t size)
3206{
3207
3208	return moea64_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT);
3209}
3210
3211void
3212moea64_unmapdev(void *p, vm_size_t size)
3213{
3214	vm_offset_t base, offset, va;
3215
3216	va = (vm_offset_t)p;
3217	base = trunc_page(va);
3218	offset = va & PAGE_MASK;
3219	size = roundup2(offset + size, PAGE_SIZE);
3220
3221	moea64_qremove(base, atop(size));
3222	kva_free(base, size);
3223}
3224
3225void
3226moea64_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
3227{
3228	struct pvo_entry *pvo;
3229	vm_offset_t lim;
3230	vm_paddr_t pa;
3231	vm_size_t len;
3232
3233	if (__predict_false(pm == NULL))
3234		pm = &curthread->td_proc->p_vmspace->vm_pmap;
3235
3236	PMAP_LOCK(pm);
3237	while (sz > 0) {
3238		lim = round_page(va+1);
3239		len = MIN(lim - va, sz);
3240		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
3241		if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
3242			pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
3243			moea64_syncicache(pm, va, pa, len);
3244		}
3245		va += len;
3246		sz -= len;
3247	}
3248	PMAP_UNLOCK(pm);
3249}
3250
3251void
3252moea64_dumpsys_map(vm_paddr_t pa, size_t sz, void **va)
3253{
3254
3255	*va = (void *)(uintptr_t)pa;
3256}
3257
3258extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
3259
3260void
3261moea64_scan_init(void)
3262{
3263	struct pvo_entry *pvo;
3264	vm_offset_t va;
3265	int i;
3266
3267	if (!do_minidump) {
3268		/* Initialize phys. segments for dumpsys(). */
3269		memset(&dump_map, 0, sizeof(dump_map));
3270		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
3271		for (i = 0; i < pregions_sz; i++) {
3272			dump_map[i].pa_start = pregions[i].mr_start;
3273			dump_map[i].pa_size = pregions[i].mr_size;
3274		}
3275		return;
3276	}
3277
3278	/* Virtual segments for minidumps: */
3279	memset(&dump_map, 0, sizeof(dump_map));
3280
3281	/* 1st: kernel .data and .bss. */
3282	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
3283	dump_map[0].pa_size = round_page((uintptr_t)_end) -
3284	    dump_map[0].pa_start;
3285
3286	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
3287	dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr;
3288	dump_map[1].pa_size = round_page(msgbufp->msg_size);
3289
3290	/* 3rd: kernel VM. */
3291	va = dump_map[1].pa_start + dump_map[1].pa_size;
3292	/* Find start of next chunk (from va). */
3293	while (va < virtual_end) {
3294		/* Don't dump the buffer cache. */
3295		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
3296			va = kmi.buffer_eva;
3297			continue;
3298		}
3299		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
3300		if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
3301			break;
3302		va += PAGE_SIZE;
3303	}
3304	if (va < virtual_end) {
3305		dump_map[2].pa_start = va;
3306		va += PAGE_SIZE;
3307		/* Find last page in chunk. */
3308		while (va < virtual_end) {
3309			/* Don't run into the buffer cache. */
3310			if (va == kmi.buffer_sva)
3311				break;
3312			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
3313			if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD))
3314				break;
3315			va += PAGE_SIZE;
3316		}
3317		dump_map[2].pa_size = va - dump_map[2].pa_start;
3318	}
3319}
3320
3321#ifdef __powerpc64__
3322
3323static size_t
3324moea64_scan_pmap(struct bitset *dump_bitset)
3325{
3326	struct pvo_entry *pvo;
3327	vm_paddr_t pa, pa_end;
3328	vm_offset_t va, pgva, kstart, kend, kstart_lp, kend_lp;
3329	uint64_t lpsize;
3330
3331	lpsize = moea64_large_page_size;
3332	kstart = trunc_page((vm_offset_t)_etext);
3333	kend = round_page((vm_offset_t)_end);
3334	kstart_lp = kstart & ~moea64_large_page_mask;
3335	kend_lp = (kend + moea64_large_page_mask) & ~moea64_large_page_mask;
3336
3337	CTR4(KTR_PMAP, "moea64_scan_pmap: kstart=0x%016lx, kend=0x%016lx, "
3338	    "kstart_lp=0x%016lx, kend_lp=0x%016lx",
3339	    kstart, kend, kstart_lp, kend_lp);
3340
3341	PMAP_LOCK(kernel_pmap);
3342	RB_FOREACH(pvo, pvo_tree, &kernel_pmap->pmap_pvo) {
3343		va = pvo->pvo_vaddr;
3344
3345		if (va & PVO_DEAD)
3346			continue;
3347
3348		/* Skip DMAP (except kernel area) */
3349		if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS) {
3350			if (va & PVO_LARGE) {
3351				pgva = va & ~moea64_large_page_mask;
3352				if (pgva < kstart_lp || pgva >= kend_lp)
3353					continue;
3354			} else {
3355				pgva = trunc_page(va);
3356				if (pgva < kstart || pgva >= kend)
3357					continue;
3358			}
3359		}
3360
3361		pa = PVO_PADDR(pvo);
3362
3363		if (va & PVO_LARGE) {
3364			pa_end = pa + lpsize;
3365			for (; pa < pa_end; pa += PAGE_SIZE) {
3366				if (vm_phys_is_dumpable(pa))
3367					vm_page_dump_add(dump_bitset, pa);
3368			}
3369		} else {
3370			if (vm_phys_is_dumpable(pa))
3371				vm_page_dump_add(dump_bitset, pa);
3372		}
3373	}
3374	PMAP_UNLOCK(kernel_pmap);
3375
3376	return (sizeof(struct lpte) * moea64_pteg_count * 8);
3377}
3378
3379static struct dump_context dump_ctx;
3380
3381static void *
3382moea64_dump_pmap_init(unsigned blkpgs)
3383{
3384	dump_ctx.ptex = 0;
3385	dump_ctx.ptex_end = moea64_pteg_count * 8;
3386	dump_ctx.blksz = blkpgs * PAGE_SIZE;
3387	return (&dump_ctx);
3388}
3389
3390#else
3391
3392static size_t
3393moea64_scan_pmap(struct bitset *dump_bitset __unused)
3394{
3395	return (0);
3396}
3397
3398static void *
3399moea64_dump_pmap_init(unsigned blkpgs)
3400{
3401	return (NULL);
3402}
3403
3404#endif
3405
3406#ifdef __powerpc64__
3407static void
3408moea64_map_range(vm_offset_t va, vm_paddr_t pa, vm_size_t npages)
3409{
3410
3411	for (; npages > 0; --npages) {
3412		if (moea64_large_page_size != 0 &&
3413		    (pa & moea64_large_page_mask) == 0 &&
3414		    (va & moea64_large_page_mask) == 0 &&
3415		    npages >= (moea64_large_page_size >> PAGE_SHIFT)) {
3416			PMAP_LOCK(kernel_pmap);
3417			moea64_kenter_large(va, pa, 0, 0);
3418			PMAP_UNLOCK(kernel_pmap);
3419			pa += moea64_large_page_size;
3420			va += moea64_large_page_size;
3421			npages -= (moea64_large_page_size >> PAGE_SHIFT) - 1;
3422		} else {
3423			moea64_kenter(va, pa);
3424			pa += PAGE_SIZE;
3425			va += PAGE_SIZE;
3426		}
3427	}
3428}
3429
3430static void
3431moea64_page_array_startup(long pages)
3432{
3433	long dom_pages[MAXMEMDOM];
3434	vm_paddr_t pa;
3435	vm_offset_t va, vm_page_base;
3436	vm_size_t needed, size;
3437	int domain;
3438	int i;
3439
3440	vm_page_base = 0xd000000000000000ULL;
3441
3442	/* Short-circuit single-domain systems. */
3443	if (vm_ndomains == 1) {
3444		size = round_page(pages * sizeof(struct vm_page));
3445		pa = vm_phys_early_alloc(0, size);
3446		vm_page_base = moea64_map(&vm_page_base,
3447		    pa, pa + size, VM_PROT_READ | VM_PROT_WRITE);
3448		vm_page_array_size = pages;
3449		vm_page_array = (vm_page_t)vm_page_base;
3450		return;
3451	}
3452
3453	for (i = 0; i < MAXMEMDOM; i++)
3454		dom_pages[i] = 0;
3455
3456	/* Now get the number of pages required per domain. */
3457	for (i = 0; i < vm_phys_nsegs; i++) {
3458		domain = vm_phys_segs[i].domain;
3459		KASSERT(domain < MAXMEMDOM,
3460		    ("Invalid vm_phys_segs NUMA domain %d!\n", domain));
3461		/* Get size of vm_page_array needed for this segment. */
3462		size = btoc(vm_phys_segs[i].end - vm_phys_segs[i].start);
3463		dom_pages[domain] += size;
3464	}
3465
3466	for (i = 0; phys_avail[i + 1] != 0; i+= 2) {
3467		domain = vm_phys_domain(phys_avail[i]);
3468		KASSERT(domain < MAXMEMDOM,
3469		    ("Invalid phys_avail NUMA domain %d!\n", domain));
3470		size = btoc(phys_avail[i + 1] - phys_avail[i]);
3471		dom_pages[domain] += size;
3472	}
3473
3474	/*
3475	 * Map in chunks that can get us all 16MB pages.  There will be some
3476	 * overlap between domains, but that's acceptable for now.
3477	 */
3478	vm_page_array_size = 0;
3479	va = vm_page_base;
3480	for (i = 0; i < MAXMEMDOM && vm_page_array_size < pages; i++) {
3481		if (dom_pages[i] == 0)
3482			continue;
3483		size = ulmin(pages - vm_page_array_size, dom_pages[i]);
3484		size = round_page(size * sizeof(struct vm_page));
3485		needed = size;
3486		size = roundup2(size, moea64_large_page_size);
3487		pa = vm_phys_early_alloc(i, size);
3488		vm_page_array_size += size / sizeof(struct vm_page);
3489		moea64_map_range(va, pa, size >> PAGE_SHIFT);
3490		/* Scoot up domain 0, to reduce the domain page overlap. */
3491		if (i == 0)
3492			vm_page_base += size - needed;
3493		va += size;
3494	}
3495	vm_page_array = (vm_page_t)vm_page_base;
3496	vm_page_array_size = pages;
3497}
3498#endif
3499
3500static int64_t
3501moea64_null_method(void)
3502{
3503	return (0);
3504}
3505
3506static int64_t moea64_pte_replace_default(struct pvo_entry *pvo, int flags)
3507{
3508	int64_t refchg;
3509
3510	refchg = moea64_pte_unset(pvo);
3511	moea64_pte_insert(pvo);
3512
3513	return (refchg);
3514}
3515
3516struct moea64_funcs *moea64_ops;
3517
3518#define DEFINE_OEA64_IFUNC(ret, func, args, def)		\
3519	DEFINE_IFUNC(, ret, moea64_##func, args) {		\
3520		moea64_##func##_t f;				\
3521		if (moea64_ops == NULL)				\
3522			return ((moea64_##func##_t)def);	\
3523		f = moea64_ops->func;				\
3524		return (f != NULL ? f : (moea64_##func##_t)def);\
3525	}
3526
3527void
3528moea64_install(void)
3529{
3530#ifdef __powerpc64__
3531	if (hw_direct_map == -1) {
3532		moea64_probe_large_page();
3533
3534		/* Use a direct map if we have large page support */
3535		if (moea64_large_page_size > 0)
3536			hw_direct_map = 1;
3537		else
3538			hw_direct_map = 0;
3539	}
3540#endif
3541
3542	/*
3543	 * Default to non-DMAP, and switch over to DMAP functions once we know
3544	 * we have DMAP.
3545	 */
3546	if (hw_direct_map) {
3547		moea64_methods.quick_enter_page = moea64_quick_enter_page_dmap;
3548		moea64_methods.quick_remove_page = NULL;
3549		moea64_methods.copy_page = moea64_copy_page_dmap;
3550		moea64_methods.zero_page = moea64_zero_page_dmap;
3551		moea64_methods.copy_pages = moea64_copy_pages_dmap;
3552	}
3553}
3554
3555DEFINE_OEA64_IFUNC(int64_t, pte_replace, (struct pvo_entry *, int),
3556    moea64_pte_replace_default)
3557DEFINE_OEA64_IFUNC(int64_t, pte_insert, (struct pvo_entry *), moea64_null_method)
3558DEFINE_OEA64_IFUNC(int64_t, pte_unset, (struct pvo_entry *), moea64_null_method)
3559DEFINE_OEA64_IFUNC(int64_t, pte_clear, (struct pvo_entry *, uint64_t),
3560    moea64_null_method)
3561DEFINE_OEA64_IFUNC(int64_t, pte_synch, (struct pvo_entry *), moea64_null_method)
3562DEFINE_OEA64_IFUNC(int64_t, pte_insert_sp, (struct pvo_entry *), moea64_null_method)
3563DEFINE_OEA64_IFUNC(int64_t, pte_unset_sp, (struct pvo_entry *), moea64_null_method)
3564DEFINE_OEA64_IFUNC(int64_t, pte_replace_sp, (struct pvo_entry *), moea64_null_method)
3565
3566/* Superpage functions */
3567
3568/* MMU interface */
3569
3570static bool
3571moea64_ps_enabled(pmap_t pmap)
3572{
3573	return (superpages_enabled);
3574}
3575
3576static void
3577moea64_align_superpage(vm_object_t object, vm_ooffset_t offset,
3578    vm_offset_t *addr, vm_size_t size)
3579{
3580	vm_offset_t sp_offset;
3581
3582	if (size < HPT_SP_SIZE)
3583		return;
3584
3585	CTR4(KTR_PMAP, "%s: offs=%#jx, addr=%p, size=%#jx",
3586	    __func__, (uintmax_t)offset, addr, (uintmax_t)size);
3587
3588	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
3589		offset += ptoa(object->pg_color);
3590	sp_offset = offset & HPT_SP_MASK;
3591	if (size - ((HPT_SP_SIZE - sp_offset) & HPT_SP_MASK) < HPT_SP_SIZE ||
3592	    (*addr & HPT_SP_MASK) == sp_offset)
3593		return;
3594	if ((*addr & HPT_SP_MASK) < sp_offset)
3595		*addr = (*addr & ~HPT_SP_MASK) + sp_offset;
3596	else
3597		*addr = ((*addr + HPT_SP_MASK) & ~HPT_SP_MASK) + sp_offset;
3598}
3599
3600/* Helpers */
3601
3602static __inline void
3603moea64_pvo_cleanup(struct pvo_dlist *tofree)
3604{
3605	struct pvo_entry *pvo;
3606
3607	/* clean up */
3608	while (!SLIST_EMPTY(tofree)) {
3609		pvo = SLIST_FIRST(tofree);
3610		SLIST_REMOVE_HEAD(tofree, pvo_dlink);
3611		if (pvo->pvo_vaddr & PVO_DEAD)
3612			moea64_pvo_remove_from_page(pvo);
3613		free_pvo_entry(pvo);
3614	}
3615}
3616
3617static __inline uint16_t
3618pvo_to_vmpage_flags(struct pvo_entry *pvo)
3619{
3620	uint16_t flags;
3621
3622	flags = 0;
3623	if ((pvo->pvo_pte.prot & VM_PROT_WRITE) != 0)
3624		flags |= PGA_WRITEABLE;
3625	if ((pvo->pvo_pte.prot & VM_PROT_EXECUTE) != 0)
3626		flags |= PGA_EXECUTABLE;
3627
3628	return (flags);
3629}
3630
3631/*
3632 * Check if the given pvo and its superpage are in sva-eva range.
3633 */
3634static __inline bool
3635moea64_sp_pvo_in_range(struct pvo_entry *pvo, vm_offset_t sva, vm_offset_t eva)
3636{
3637	vm_offset_t spva;
3638
3639	spva = PVO_VADDR(pvo) & ~HPT_SP_MASK;
3640	if (spva >= sva && spva + HPT_SP_SIZE <= eva) {
3641		/*
3642		 * Because this function is intended to be called from loops
3643		 * that iterate over ordered pvo entries, if the condition
3644		 * above is true then the pvo must be the first of its
3645		 * superpage.
3646		 */
3647		KASSERT(PVO_VADDR(pvo) == spva,
3648		    ("%s: unexpected unaligned superpage pvo", __func__));
3649		return (true);
3650	}
3651	return (false);
3652}
3653
3654/*
3655 * Update vm about the REF/CHG bits if the superpage is managed and
3656 * has (or had) write access.
3657 */
3658static void
3659moea64_sp_refchg_process(struct pvo_entry *sp, vm_page_t m,
3660    int64_t sp_refchg, vm_prot_t prot)
3661{
3662	vm_page_t m_end;
3663	int64_t refchg;
3664
3665	if ((sp->pvo_vaddr & PVO_MANAGED) != 0 && (prot & VM_PROT_WRITE) != 0) {
3666		for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++) {
3667			refchg = sp_refchg |
3668			    atomic_readandclear_32(&m->md.mdpg_attrs);
3669			if (refchg & LPTE_CHG)
3670				vm_page_dirty(m);
3671			if (refchg & LPTE_REF)
3672				vm_page_aflag_set(m, PGA_REFERENCED);
3673		}
3674	}
3675}
3676
3677/* Superpage ops */
3678
3679static int
3680moea64_sp_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
3681    vm_prot_t prot, u_int flags, int8_t psind)
3682{
3683	struct pvo_entry *pvo, **pvos;
3684	struct pvo_head *pvo_head;
3685	vm_offset_t sva;
3686	vm_page_t sm;
3687	vm_paddr_t pa, spa;
3688	bool sync;
3689	struct pvo_dlist tofree;
3690	int error __diagused, i;
3691	uint16_t aflags;
3692
3693	KASSERT((va & HPT_SP_MASK) == 0, ("%s: va %#jx unaligned",
3694	    __func__, (uintmax_t)va));
3695	KASSERT(psind == 1, ("%s: invalid psind: %d", __func__, psind));
3696	KASSERT(m->psind == 1, ("%s: invalid m->psind: %d",
3697	    __func__, m->psind));
3698	KASSERT(pmap != kernel_pmap,
3699	    ("%s: function called with kernel pmap", __func__));
3700
3701	CTR5(KTR_PMAP, "%s: va=%#jx, pa=%#jx, prot=%#x, flags=%#x, psind=1",
3702	    __func__, (uintmax_t)va, (uintmax_t)VM_PAGE_TO_PHYS(m),
3703	    prot, flags);
3704
3705	SLIST_INIT(&tofree);
3706
3707	sva = va;
3708	sm = m;
3709	spa = pa = VM_PAGE_TO_PHYS(sm);
3710
3711	/* Try to allocate all PVOs first, to make failure handling easier. */
3712	pvos = malloc(HPT_SP_PAGES * sizeof(struct pvo_entry *), M_TEMP,
3713	    M_NOWAIT);
3714	if (pvos == NULL) {
3715		CTR1(KTR_PMAP, "%s: failed to alloc pvo array", __func__);
3716		return (KERN_RESOURCE_SHORTAGE);
3717	}
3718
3719	for (i = 0; i < HPT_SP_PAGES; i++) {
3720		pvos[i] = alloc_pvo_entry(0);
3721		if (pvos[i] == NULL) {
3722			CTR1(KTR_PMAP, "%s: failed to alloc pvo", __func__);
3723			for (i = i - 1; i >= 0; i--)
3724				free_pvo_entry(pvos[i]);
3725			free(pvos, M_TEMP);
3726			return (KERN_RESOURCE_SHORTAGE);
3727		}
3728	}
3729
3730	SP_PV_LOCK_ALIGNED(spa);
3731	PMAP_LOCK(pmap);
3732
3733	/* Note: moea64_remove_locked() also clears cached REF/CHG bits. */
3734	moea64_remove_locked(pmap, va, va + HPT_SP_SIZE, &tofree);
3735
3736	/* Enter pages */
3737	for (i = 0; i < HPT_SP_PAGES;
3738	    i++, va += PAGE_SIZE, pa += PAGE_SIZE, m++) {
3739		pvo = pvos[i];
3740
3741		pvo->pvo_pte.prot = prot;
3742		pvo->pvo_pte.pa = (pa & ~HPT_SP_MASK) | LPTE_LP_4K_16M |
3743		    moea64_calc_wimg(pa, pmap_page_get_memattr(m));
3744
3745		if ((flags & PMAP_ENTER_WIRED) != 0)
3746			pvo->pvo_vaddr |= PVO_WIRED;
3747		pvo->pvo_vaddr |= PVO_LARGE;
3748
3749		if ((m->oflags & VPO_UNMANAGED) != 0)
3750			pvo_head = NULL;
3751		else {
3752			pvo_head = &m->md.mdpg_pvoh;
3753			pvo->pvo_vaddr |= PVO_MANAGED;
3754		}
3755
3756		init_pvo_entry(pvo, pmap, va);
3757
3758		error = moea64_pvo_enter(pvo, pvo_head, NULL);
3759		/*
3760		 * All superpage PVOs were previously removed, so no errors
3761		 * should occur while inserting the new ones.
3762		 */
3763		KASSERT(error == 0, ("%s: unexpected error "
3764			    "when inserting superpage PVO: %d",
3765			    __func__, error));
3766	}
3767
3768	PMAP_UNLOCK(pmap);
3769	SP_PV_UNLOCK_ALIGNED(spa);
3770
3771	sync = (sm->a.flags & PGA_EXECUTABLE) == 0;
3772	/* Note: moea64_pvo_cleanup() also clears page prot. flags. */
3773	moea64_pvo_cleanup(&tofree);
3774	pvo = pvos[0];
3775
3776	/* Set vm page flags */
3777	aflags = pvo_to_vmpage_flags(pvo);
3778	if (aflags != 0)
3779		for (m = sm; m < &sm[HPT_SP_PAGES]; m++)
3780			vm_page_aflag_set(m, aflags);
3781
3782	/*
3783	 * Flush the page from the instruction cache if this page is
3784	 * mapped executable and cacheable.
3785	 */
3786	if (sync && (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0)
3787		moea64_syncicache(pmap, sva, spa, HPT_SP_SIZE);
3788
3789	atomic_add_long(&sp_mappings, 1);
3790	CTR3(KTR_PMAP, "%s: SP success for va %#jx in pmap %p",
3791	    __func__, (uintmax_t)sva, pmap);
3792
3793	free(pvos, M_TEMP);
3794	return (KERN_SUCCESS);
3795}
3796
3797static void
3798moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m)
3799{
3800	struct pvo_entry *first, *pvo;
3801	vm_paddr_t pa, pa_end;
3802	vm_offset_t sva, va_end;
3803	int64_t sp_refchg;
3804
3805	/* This CTR may generate a lot of output. */
3806	/* CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)va); */
3807
3808	va &= ~HPT_SP_MASK;
3809	sva = va;
3810	/* Get superpage */
3811	pa = VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK;
3812	m = PHYS_TO_VM_PAGE(pa);
3813
3814	PMAP_LOCK(pmap);
3815
3816	/*
3817	 * Check if all pages meet promotion criteria.
3818	 *
3819	 * XXX In some cases the loop below may be executed for each or most
3820	 * of the entered pages of a superpage, which can be expensive
3821	 * (although it was not profiled) and need some optimization.
3822	 *
3823	 * Some cases where this seems to happen are:
3824	 * - When a superpage is first entered read-only and later becomes
3825	 *   read-write.
3826	 * - When some of the superpage's virtual addresses map to previously
3827	 *   wired/cached pages while others map to pages allocated from a
3828	 *   different physical address range. A common scenario where this
3829	 *   happens is when mmap'ing a file that is already present in FS
3830	 *   block cache and doesn't fill a superpage.
3831	 */
3832	first = pvo = moea64_pvo_find_va(pmap, sva);
3833	for (pa_end = pa + HPT_SP_SIZE;
3834	    pa < pa_end; pa += PAGE_SIZE, va += PAGE_SIZE) {
3835		if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
3836			CTR3(KTR_PMAP,
3837			    "%s: NULL or dead PVO: pmap=%p, va=%#jx",
3838			    __func__, pmap, (uintmax_t)va);
3839			goto error;
3840		}
3841		if (PVO_PADDR(pvo) != pa) {
3842			CTR5(KTR_PMAP, "%s: PAs don't match: "
3843			    "pmap=%p, va=%#jx, pvo_pa=%#jx, exp_pa=%#jx",
3844			    __func__, pmap, (uintmax_t)va,
3845			    (uintmax_t)PVO_PADDR(pvo), (uintmax_t)pa);
3846			atomic_add_long(&sp_p_fail_pa, 1);
3847			goto error;
3848		}
3849		if ((first->pvo_vaddr & PVO_FLAGS_PROMOTE) !=
3850		    (pvo->pvo_vaddr & PVO_FLAGS_PROMOTE)) {
3851			CTR5(KTR_PMAP, "%s: PVO flags don't match: "
3852			    "pmap=%p, va=%#jx, pvo_flags=%#jx, exp_flags=%#jx",
3853			    __func__, pmap, (uintmax_t)va,
3854			    (uintmax_t)(pvo->pvo_vaddr & PVO_FLAGS_PROMOTE),
3855			    (uintmax_t)(first->pvo_vaddr & PVO_FLAGS_PROMOTE));
3856			atomic_add_long(&sp_p_fail_flags, 1);
3857			goto error;
3858		}
3859		if (first->pvo_pte.prot != pvo->pvo_pte.prot) {
3860			CTR5(KTR_PMAP, "%s: PVO protections don't match: "
3861			    "pmap=%p, va=%#jx, pvo_prot=%#x, exp_prot=%#x",
3862			    __func__, pmap, (uintmax_t)va,
3863			    pvo->pvo_pte.prot, first->pvo_pte.prot);
3864			atomic_add_long(&sp_p_fail_prot, 1);
3865			goto error;
3866		}
3867		if ((first->pvo_pte.pa & LPTE_WIMG) !=
3868		    (pvo->pvo_pte.pa & LPTE_WIMG)) {
3869			CTR5(KTR_PMAP, "%s: WIMG bits don't match: "
3870			    "pmap=%p, va=%#jx, pvo_wimg=%#jx, exp_wimg=%#jx",
3871			    __func__, pmap, (uintmax_t)va,
3872			    (uintmax_t)(pvo->pvo_pte.pa & LPTE_WIMG),
3873			    (uintmax_t)(first->pvo_pte.pa & LPTE_WIMG));
3874			atomic_add_long(&sp_p_fail_wimg, 1);
3875			goto error;
3876		}
3877
3878		pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo);
3879	}
3880
3881	/* All OK, promote. */
3882
3883	/*
3884	 * Handle superpage REF/CHG bits. If REF or CHG is set in
3885	 * any page, then it must be set in the superpage.
3886	 *
3887	 * Instead of querying each page, we take advantage of two facts:
3888	 * 1- If a page is being promoted, it was referenced.
3889	 * 2- If promoted pages are writable, they were modified.
3890	 */
3891	sp_refchg = LPTE_REF |
3892	    ((first->pvo_pte.prot & VM_PROT_WRITE) != 0 ? LPTE_CHG : 0);
3893
3894	/* Promote pages */
3895
3896	for (pvo = first, va_end = PVO_VADDR(pvo) + HPT_SP_SIZE;
3897	    pvo != NULL && PVO_VADDR(pvo) < va_end;
3898	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
3899		pvo->pvo_pte.pa &= ADDR_POFF | ~HPT_SP_MASK;
3900		pvo->pvo_pte.pa |= LPTE_LP_4K_16M;
3901		pvo->pvo_vaddr |= PVO_LARGE;
3902	}
3903	moea64_pte_replace_sp(first);
3904
3905	/* Send REF/CHG bits to VM */
3906	moea64_sp_refchg_process(first, m, sp_refchg, first->pvo_pte.prot);
3907
3908	/* Use first page to cache REF/CHG bits */
3909	atomic_set_32(&m->md.mdpg_attrs, sp_refchg | MDPG_ATTR_SP);
3910
3911	PMAP_UNLOCK(pmap);
3912
3913	atomic_add_long(&sp_mappings, 1);
3914	atomic_add_long(&sp_promotions, 1);
3915	CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p",
3916	    __func__, (uintmax_t)sva, pmap);
3917	return;
3918
3919error:
3920	atomic_add_long(&sp_p_failures, 1);
3921	PMAP_UNLOCK(pmap);
3922}
3923
3924static void
3925moea64_sp_demote_aligned(struct pvo_entry *sp)
3926{
3927	struct pvo_entry *pvo;
3928	vm_offset_t va, va_end;
3929	vm_paddr_t pa;
3930	vm_page_t m;
3931	pmap_t pmap __diagused;
3932	int64_t refchg;
3933
3934	CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
3935
3936	pmap = sp->pvo_pmap;
3937	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3938
3939	pvo = sp;
3940
3941	/* Demote pages */
3942
3943	va = PVO_VADDR(pvo);
3944	pa = PVO_PADDR(pvo);
3945	m = PHYS_TO_VM_PAGE(pa);
3946
3947	for (pvo = sp, va_end = va + HPT_SP_SIZE;
3948	    pvo != NULL && PVO_VADDR(pvo) < va_end;
3949	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo),
3950	    va += PAGE_SIZE, pa += PAGE_SIZE) {
3951		KASSERT(pvo && PVO_VADDR(pvo) == va,
3952		    ("%s: missing PVO for va %#jx", __func__, (uintmax_t)va));
3953
3954		pvo->pvo_vaddr &= ~PVO_LARGE;
3955		pvo->pvo_pte.pa &= ~LPTE_RPGN;
3956		pvo->pvo_pte.pa |= pa;
3957
3958	}
3959	refchg = moea64_pte_replace_sp(sp);
3960
3961	/*
3962	 * Clear SP flag
3963	 *
3964	 * XXX It is possible that another pmap has this page mapped as
3965	 *     part of a superpage, but as the SP flag is used only for
3966	 *     caching SP REF/CHG bits, that will be queried if not set
3967	 *     in cache, it should be ok to clear it here.
3968	 */
3969	atomic_clear_32(&m->md.mdpg_attrs, MDPG_ATTR_SP);
3970
3971	/*
3972	 * Handle superpage REF/CHG bits. A bit set in the superpage
3973	 * means all pages should consider it set.
3974	 */
3975	moea64_sp_refchg_process(sp, m, refchg, sp->pvo_pte.prot);
3976
3977	atomic_add_long(&sp_demotions, 1);
3978	CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p",
3979	    __func__, (uintmax_t)PVO_VADDR(sp), pmap);
3980}
3981
3982static void
3983moea64_sp_demote(struct pvo_entry *pvo)
3984{
3985	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
3986
3987	if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
3988		pvo = moea64_pvo_find_va(pvo->pvo_pmap,
3989		    PVO_VADDR(pvo) & ~HPT_SP_MASK);
3990		KASSERT(pvo != NULL, ("%s: missing PVO for va %#jx",
3991		     __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
3992	}
3993	moea64_sp_demote_aligned(pvo);
3994}
3995
3996static struct pvo_entry *
3997moea64_sp_unwire(struct pvo_entry *sp)
3998{
3999	struct pvo_entry *pvo, *prev;
4000	vm_offset_t eva;
4001	pmap_t pm;
4002	int64_t ret, refchg;
4003
4004	CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
4005
4006	pm = sp->pvo_pmap;
4007	PMAP_LOCK_ASSERT(pm, MA_OWNED);
4008
4009	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4010	refchg = 0;
4011	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4012	    prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
4013		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
4014			panic("%s: pvo %p is missing PVO_WIRED",
4015			    __func__, pvo);
4016		pvo->pvo_vaddr &= ~PVO_WIRED;
4017
4018		ret = moea64_pte_replace(pvo, 0 /* No invalidation */);
4019		if (ret < 0)
4020			refchg |= LPTE_CHG;
4021		else
4022			refchg |= ret;
4023
4024		pm->pm_stats.wired_count--;
4025	}
4026
4027	/* Send REF/CHG bits to VM */
4028	moea64_sp_refchg_process(sp, PHYS_TO_VM_PAGE(PVO_PADDR(sp)),
4029	    refchg, sp->pvo_pte.prot);
4030
4031	return (prev);
4032}
4033
4034static struct pvo_entry *
4035moea64_sp_protect(struct pvo_entry *sp, vm_prot_t prot)
4036{
4037	struct pvo_entry *pvo, *prev;
4038	vm_offset_t eva;
4039	pmap_t pm;
4040	vm_page_t m, m_end;
4041	int64_t ret, refchg;
4042	vm_prot_t oldprot;
4043
4044	CTR3(KTR_PMAP, "%s: va=%#jx, prot=%x",
4045	    __func__, (uintmax_t)PVO_VADDR(sp), prot);
4046
4047	pm = sp->pvo_pmap;
4048	PMAP_LOCK_ASSERT(pm, MA_OWNED);
4049
4050	oldprot = sp->pvo_pte.prot;
4051	m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
4052	KASSERT(m != NULL, ("%s: missing vm page for pa %#jx",
4053	    __func__, (uintmax_t)PVO_PADDR(sp)));
4054	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4055	refchg = 0;
4056
4057	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4058	    prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
4059		pvo->pvo_pte.prot = prot;
4060		/*
4061		 * If the PVO is in the page table, update mapping
4062		 */
4063		ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
4064		if (ret < 0)
4065			refchg |= LPTE_CHG;
4066		else
4067			refchg |= ret;
4068	}
4069
4070	/* Send REF/CHG bits to VM */
4071	moea64_sp_refchg_process(sp, m, refchg, oldprot);
4072
4073	/* Handle pages that became executable */
4074	if ((m->a.flags & PGA_EXECUTABLE) == 0 &&
4075	    (sp->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
4076		if ((m->oflags & VPO_UNMANAGED) == 0)
4077			for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++)
4078				vm_page_aflag_set(m, PGA_EXECUTABLE);
4079		moea64_syncicache(pm, PVO_VADDR(sp), PVO_PADDR(sp),
4080		    HPT_SP_SIZE);
4081	}
4082
4083	return (prev);
4084}
4085
4086static struct pvo_entry *
4087moea64_sp_remove(struct pvo_entry *sp, struct pvo_dlist *tofree)
4088{
4089	struct pvo_entry *pvo, *tpvo;
4090	vm_offset_t eva;
4091	pmap_t pm __diagused;
4092
4093	CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
4094
4095	pm = sp->pvo_pmap;
4096	PMAP_LOCK_ASSERT(pm, MA_OWNED);
4097
4098	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4099	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
4100		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
4101
4102		/*
4103		 * For locking reasons, remove this from the page table and
4104		 * pmap, but save delinking from the vm_page for a second
4105		 * pass
4106		 */
4107		moea64_pvo_remove_from_pmap(pvo);
4108		SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink);
4109	}
4110
4111	/*
4112	 * Clear SP bit
4113	 *
4114	 * XXX See comment in moea64_sp_demote_aligned() for why it's
4115	 *     ok to always clear the SP bit on remove/demote.
4116	 */
4117	atomic_clear_32(&PHYS_TO_VM_PAGE(PVO_PADDR(sp))->md.mdpg_attrs,
4118	    MDPG_ATTR_SP);
4119
4120	return (tpvo);
4121}
4122
4123static int64_t
4124moea64_sp_query_locked(struct pvo_entry *pvo, uint64_t ptebit)
4125{
4126	int64_t refchg, ret;
4127	vm_offset_t eva;
4128	vm_page_t m;
4129	pmap_t pmap;
4130	struct pvo_entry *sp;
4131
4132	pmap = pvo->pvo_pmap;
4133	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4134
4135	/* Get first SP PVO */
4136	if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
4137		sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK);
4138		KASSERT(sp != NULL, ("%s: missing PVO for va %#jx",
4139		     __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
4140	} else
4141		sp = pvo;
4142	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4143
4144	refchg = 0;
4145	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4146	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
4147		ret = moea64_pte_synch(pvo);
4148		if (ret > 0) {
4149			refchg |= ret & (LPTE_CHG | LPTE_REF);
4150			if ((refchg & ptebit) != 0)
4151				break;
4152		}
4153	}
4154
4155	/* Save results */
4156	if (refchg != 0) {
4157		m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
4158		atomic_set_32(&m->md.mdpg_attrs, refchg | MDPG_ATTR_SP);
4159	}
4160
4161	return (refchg);
4162}
4163
4164static int64_t
4165moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit)
4166{
4167	int64_t refchg;
4168	pmap_t pmap;
4169
4170	pmap = pvo->pvo_pmap;
4171	PMAP_LOCK(pmap);
4172
4173	/*
4174	 * Check if SP was demoted/removed before pmap lock was acquired.
4175	 */
4176	if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
4177		CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
4178		    __func__, (uintmax_t)PVO_PADDR(pvo));
4179		PMAP_UNLOCK(pmap);
4180		return (-1);
4181	}
4182
4183	refchg = moea64_sp_query_locked(pvo, ptebit);
4184	PMAP_UNLOCK(pmap);
4185
4186	CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx",
4187	    __func__, (uintmax_t)PVO_VADDR(pvo),
4188	    (uintmax_t)PVO_PADDR(pvo), (uintmax_t)refchg);
4189
4190	return (refchg);
4191}
4192
4193static int64_t
4194moea64_sp_pvo_clear(struct pvo_entry *pvo, uint64_t ptebit)
4195{
4196	int64_t refchg, ret;
4197	pmap_t pmap;
4198	struct pvo_entry *sp;
4199	vm_offset_t eva;
4200	vm_page_t m;
4201
4202	pmap = pvo->pvo_pmap;
4203	PMAP_LOCK(pmap);
4204
4205	/*
4206	 * Check if SP was demoted/removed before pmap lock was acquired.
4207	 */
4208	if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
4209		CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
4210		    __func__, (uintmax_t)PVO_PADDR(pvo));
4211		PMAP_UNLOCK(pmap);
4212		return (-1);
4213	}
4214
4215	/* Get first SP PVO */
4216	if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
4217		sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK);
4218		KASSERT(sp != NULL, ("%s: missing PVO for va %#jx",
4219		     __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
4220	} else
4221		sp = pvo;
4222	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4223
4224	refchg = 0;
4225	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4226	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
4227		ret = moea64_pte_clear(pvo, ptebit);
4228		if (ret > 0)
4229			refchg |= ret & (LPTE_CHG | LPTE_REF);
4230	}
4231
4232	m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
4233	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
4234	PMAP_UNLOCK(pmap);
4235
4236	CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx",
4237	    __func__, (uintmax_t)PVO_VADDR(sp),
4238	    (uintmax_t)PVO_PADDR(sp), (uintmax_t)refchg);
4239
4240	return (refchg);
4241}
4242
4243static int64_t
4244moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m, uint64_t ptebit)
4245{
4246	int64_t count, ret;
4247	pmap_t pmap;
4248
4249	count = 0;
4250	pmap = pvo->pvo_pmap;
4251
4252	/*
4253	 * Since this reference bit is shared by 4096 4KB pages, it
4254	 * should not be cleared every time it is tested. Apply a
4255	 * simple "hash" function on the physical page number, the
4256	 * virtual superpage number, and the pmap address to select
4257	 * one 4KB page out of the 4096 on which testing the
4258	 * reference bit will result in clearing that reference bit.
4259	 * This function is designed to avoid the selection of the
4260	 * same 4KB page for every 16MB page mapping.
4261	 *
4262	 * Always leave the reference bit of a wired mapping set, as
4263	 * the current state of its reference bit won't affect page
4264	 * replacement.
4265	 */
4266	if (ptebit == LPTE_REF && (((VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) ^
4267	    (PVO_VADDR(pvo) >> HPT_SP_SHIFT) ^ (uintptr_t)pmap) &
4268	    (HPT_SP_PAGES - 1)) == 0 && (pvo->pvo_vaddr & PVO_WIRED) == 0) {
4269		if ((ret = moea64_sp_pvo_clear(pvo, ptebit)) == -1)
4270			return (-1);
4271
4272		if ((ret & ptebit) != 0)
4273			count++;
4274
4275	/*
4276	 * If this page was not selected by the hash function, then assume
4277	 * its REF bit was set.
4278	 */
4279	} else if (ptebit == LPTE_REF) {
4280		count++;
4281
4282	/*
4283	 * To clear the CHG bit of a single SP page, first it must be demoted.
4284	 * But if no CHG bit is set, no bit clear and thus no SP demotion is
4285	 * needed.
4286	 */
4287	} else {
4288		CTR4(KTR_PMAP, "%s: ptebit=%#jx, va=%#jx, pa=%#jx",
4289		    __func__, (uintmax_t)ptebit, (uintmax_t)PVO_VADDR(pvo),
4290		    (uintmax_t)PVO_PADDR(pvo));
4291
4292		PMAP_LOCK(pmap);
4293
4294		/*
4295		 * Make sure SP wasn't demoted/removed before pmap lock
4296		 * was acquired.
4297		 */
4298		if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
4299			CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
4300			    __func__, (uintmax_t)PVO_PADDR(pvo));
4301			PMAP_UNLOCK(pmap);
4302			return (-1);
4303		}
4304
4305		ret = moea64_sp_query_locked(pvo, ptebit);
4306		if ((ret & ptebit) != 0)
4307			count++;
4308		else {
4309			PMAP_UNLOCK(pmap);
4310			return (0);
4311		}
4312
4313		moea64_sp_demote(pvo);
4314		moea64_pte_clear(pvo, ptebit);
4315
4316		/*
4317		 * Write protect the mapping to a single page so that a
4318		 * subsequent write access may repromote.
4319		 */
4320		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
4321			moea64_pvo_protect(pmap, pvo,
4322			    pvo->pvo_pte.prot & ~VM_PROT_WRITE);
4323
4324		PMAP_UNLOCK(pmap);
4325	}
4326
4327	return (count);
4328}
4329