1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2008 Michael J. Silbersack.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30/*
31 * IP ID generation is a fascinating topic.
32 *
33 * In order to avoid ID collisions during packet reassembly, common sense
34 * dictates that the period between reuse of IDs be as large as possible.
35 * This leads to the classic implementation of a system-wide counter, thereby
36 * ensuring that IDs repeat only once every 2^16 packets.
37 *
38 * Subsequent security researchers have pointed out that using a global
39 * counter makes ID values predictable.  This predictability allows traffic
40 * analysis, idle scanning, and even packet injection in specific cases.
41 * These results suggest that IP IDs should be as random as possible.
42 *
43 * The "searchable queues" algorithm used in this IP ID implementation was
44 * proposed by Amit Klein.  It is a compromise between the above two
45 * viewpoints that has provable behavior that can be tuned to the user's
46 * requirements.
47 *
48 * The basic concept is that we supplement a standard random number generator
49 * with a queue of the last L IDs that we have handed out to ensure that all
50 * IDs have a period of at least L.
51 *
52 * To efficiently implement this idea, we keep two data structures: a
53 * circular array of IDs of size L and a bitstring of 65536 bits.
54 *
55 * To start, we ask the RNG for a new ID.  A quick index into the bitstring
56 * is used to determine if this is a recently used value.  The process is
57 * repeated until a value is returned that is not in the bitstring.
58 *
59 * Having found a usable ID, we remove the ID stored at the current position
60 * in the queue from the bitstring and replace it with our new ID.  Our new
61 * ID is then added to the bitstring and the queue pointer is incremented.
62 *
63 * The lower limit of 512 was chosen because there doesn't seem to be much
64 * point to having a smaller value.  The upper limit of 32768 was chosen for
65 * two reasons.  First, every step above 32768 decreases the entropy.  Taken
66 * to an extreme, 65533 would offer 1 bit of entropy.  Second, the number of
67 * attempts it takes the algorithm to find an unused ID drastically
68 * increases, killing performance.  The default value of 8192 was chosen
69 * because it provides a good tradeoff between randomness and non-repetition.
70 *
71 * With L=8192, the queue will use 16K of memory.  The bitstring always
72 * uses 8K of memory.  No memory is allocated until the use of random ids is
73 * enabled.
74 */
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/counter.h>
79#include <sys/kernel.h>
80#include <sys/malloc.h>
81#include <sys/lock.h>
82#include <sys/mutex.h>
83#include <sys/random.h>
84#include <sys/smp.h>
85#include <sys/sysctl.h>
86#include <sys/bitstring.h>
87
88#include <net/vnet.h>
89
90#include <netinet/in.h>
91#include <netinet/ip.h>
92#include <netinet/ip_var.h>
93
94/*
95 * By default we generate IP ID only for non-atomic datagrams, as
96 * suggested by RFC6864.  We use per-CPU counter for that, or if
97 * user wants to, we can turn on random ID generation.
98 */
99VNET_DEFINE_STATIC(int, ip_rfc6864) = 1;
100VNET_DEFINE_STATIC(int, ip_do_randomid) = 0;
101#define	V_ip_rfc6864		VNET(ip_rfc6864)
102#define	V_ip_do_randomid	VNET(ip_do_randomid)
103
104/*
105 * Random ID state engine.
106 */
107static MALLOC_DEFINE(M_IPID, "ipid", "randomized ip id state");
108VNET_DEFINE_STATIC(uint16_t *, id_array);
109VNET_DEFINE_STATIC(bitstr_t *, id_bits);
110VNET_DEFINE_STATIC(int, array_ptr);
111VNET_DEFINE_STATIC(int, array_size);
112VNET_DEFINE_STATIC(int, random_id_collisions);
113VNET_DEFINE_STATIC(int, random_id_total);
114VNET_DEFINE_STATIC(struct mtx, ip_id_mtx);
115#define	V_id_array	VNET(id_array)
116#define	V_id_bits	VNET(id_bits)
117#define	V_array_ptr	VNET(array_ptr)
118#define	V_array_size	VNET(array_size)
119#define	V_random_id_collisions	VNET(random_id_collisions)
120#define	V_random_id_total	VNET(random_id_total)
121#define	V_ip_id_mtx	VNET(ip_id_mtx)
122
123/*
124 * Non-random ID state engine is simply a per-cpu counter.
125 */
126VNET_DEFINE_STATIC(counter_u64_t, ip_id);
127#define	V_ip_id		VNET(ip_id)
128
129static int	sysctl_ip_randomid(SYSCTL_HANDLER_ARGS);
130static int	sysctl_ip_id_change(SYSCTL_HANDLER_ARGS);
131static void	ip_initid(int);
132static uint16_t ip_randomid(void);
133static void	ipid_sysinit(void);
134static void	ipid_sysuninit(void);
135
136SYSCTL_DECL(_net_inet_ip);
137SYSCTL_PROC(_net_inet_ip, OID_AUTO, random_id,
138    CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_MPSAFE,
139    &VNET_NAME(ip_do_randomid), 0, sysctl_ip_randomid, "IU",
140    "Assign random ip_id values");
141SYSCTL_INT(_net_inet_ip, OID_AUTO, rfc6864, CTLFLAG_VNET | CTLFLAG_RW,
142    &VNET_NAME(ip_rfc6864), 0,
143    "Use constant IP ID for atomic datagrams");
144SYSCTL_PROC(_net_inet_ip, OID_AUTO, random_id_period,
145    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_VNET | CTLFLAG_MPSAFE,
146    &VNET_NAME(array_size), 0, sysctl_ip_id_change, "IU", "IP ID Array size");
147SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id_collisions,
148    CTLFLAG_RD | CTLFLAG_VNET,
149    &VNET_NAME(random_id_collisions), 0, "Count of IP ID collisions");
150SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id_total, CTLFLAG_RD | CTLFLAG_VNET,
151    &VNET_NAME(random_id_total), 0, "Count of IP IDs created");
152
153static int
154sysctl_ip_randomid(SYSCTL_HANDLER_ARGS)
155{
156	int error, new;
157
158	new = V_ip_do_randomid;
159	error = sysctl_handle_int(oidp, &new, 0, req);
160	if (error || req->newptr == NULL)
161		return (error);
162	if (new != 0 && new != 1)
163		return (EINVAL);
164	if (new == V_ip_do_randomid)
165		return (0);
166	if (new == 1 && V_ip_do_randomid == 0)
167		ip_initid(8192);
168	/* We don't free memory when turning random ID off, due to race. */
169	V_ip_do_randomid = new;
170	return (0);
171}
172
173static int
174sysctl_ip_id_change(SYSCTL_HANDLER_ARGS)
175{
176	int error, new;
177
178	new = V_array_size;
179	error = sysctl_handle_int(oidp, &new, 0, req);
180	if (error == 0 && req->newptr) {
181		if (new >= 512 && new <= 32768)
182			ip_initid(new);
183		else
184			error = EINVAL;
185	}
186	return (error);
187}
188
189static void
190ip_initid(int new_size)
191{
192	uint16_t *new_array;
193	bitstr_t *new_bits;
194
195	new_array = malloc(new_size * sizeof(uint16_t), M_IPID,
196	    M_WAITOK | M_ZERO);
197	new_bits = malloc(bitstr_size(65536), M_IPID, M_WAITOK | M_ZERO);
198
199	mtx_lock(&V_ip_id_mtx);
200	if (V_id_array != NULL) {
201		free(V_id_array, M_IPID);
202		free(V_id_bits, M_IPID);
203	}
204	V_id_array = new_array;
205	V_id_bits = new_bits;
206	V_array_size = new_size;
207	V_array_ptr = 0;
208	V_random_id_collisions = 0;
209	V_random_id_total = 0;
210	mtx_unlock(&V_ip_id_mtx);
211}
212
213static uint16_t
214ip_randomid(void)
215{
216	uint16_t new_id;
217
218	mtx_lock(&V_ip_id_mtx);
219	/*
220	 * To avoid a conflict with the zeros that the array is initially
221	 * filled with, we never hand out an id of zero.
222	 */
223	new_id = 0;
224	do {
225		if (new_id != 0)
226			V_random_id_collisions++;
227		arc4rand(&new_id, sizeof(new_id), 0);
228	} while (bit_test(V_id_bits, new_id) || new_id == 0);
229	bit_clear(V_id_bits, V_id_array[V_array_ptr]);
230	bit_set(V_id_bits, new_id);
231	V_id_array[V_array_ptr] = new_id;
232	V_array_ptr++;
233	if (V_array_ptr == V_array_size)
234		V_array_ptr = 0;
235	V_random_id_total++;
236	mtx_unlock(&V_ip_id_mtx);
237	return (new_id);
238}
239
240void
241ip_fillid(struct ip *ip)
242{
243
244	/*
245	 * Per RFC6864 Section 4
246	 *
247	 * o  Atomic datagrams: (DF==1) && (MF==0) && (frag_offset==0)
248	 * o  Non-atomic datagrams: (DF==0) || (MF==1) || (frag_offset>0)
249	 */
250	if (V_ip_rfc6864 && (ip->ip_off & htons(IP_DF)) == htons(IP_DF))
251		ip->ip_id = 0;
252	else if (V_ip_do_randomid)
253		ip->ip_id = ip_randomid();
254	else {
255		counter_u64_add(V_ip_id, 1);
256		/*
257		 * There are two issues about this trick, to be kept in mind.
258		 * 1) We can migrate between counter_u64_add() and next
259		 *    line, and grab counter from other CPU, resulting in too
260		 *    quick ID reuse. This is tolerable in our particular case,
261		 *    since probability of such event is much lower then reuse
262		 *    of ID due to legitimate overflow, that at modern Internet
263		 *    speeds happens all the time.
264		 * 2) We are relying on the fact that counter(9) is based on
265		 *    UMA_ZONE_PCPU uma(9) zone. We also take only last
266		 *    sixteen bits of a counter, so we don't care about the
267		 *    fact that machines with 32-bit word update their counters
268		 *    not atomically.
269		 */
270		ip->ip_id = htons((*(uint64_t *)zpcpu_get(V_ip_id)) & 0xffff);
271	}
272}
273
274static void
275ipid_sysinit(void)
276{
277	int i;
278
279	mtx_init(&V_ip_id_mtx, "ip_id_mtx", NULL, MTX_DEF);
280	V_ip_id = counter_u64_alloc(M_WAITOK);
281
282	CPU_FOREACH(i)
283		arc4rand(zpcpu_get_cpu(V_ip_id, i), sizeof(uint64_t), 0);
284}
285VNET_SYSINIT(ip_id, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY, ipid_sysinit, NULL);
286
287static void
288ipid_sysuninit(void)
289{
290
291	if (V_id_array != NULL) {
292		free(V_id_array, M_IPID);
293		free(V_id_bits, M_IPID);
294	}
295	counter_u64_free(V_ip_id);
296	mtx_destroy(&V_ip_id_mtx);
297}
298VNET_SYSUNINIT(ip_id, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ipid_sysuninit, NULL);
299