1/*
2 * Derived from crc32c.c version 1.1 by Mark Adler.
3 *
4 * Copyright (C) 2013 Mark Adler
5 *
6 * This software is provided 'as-is', without any express or implied warranty.
7 * In no event will the author be held liable for any damages arising from the
8 * use of this software.
9 *
10 * Permission is granted to anyone to use this software for any purpose,
11 * including commercial applications, and to alter it and redistribute it
12 * freely, subject to the following restrictions:
13 *
14 * 1. The origin of this software must not be misrepresented; you must not
15 *    claim that you wrote the original software. If you use this software
16 *    in a product, an acknowledgment in the product documentation would be
17 *    appreciated but is not required.
18 * 2. Altered source versions must be plainly marked as such, and must not be
19 *    misrepresented as being the original software.
20 * 3. This notice may not be removed or altered from any source distribution.
21 *
22 * Mark Adler
23 * madler@alumni.caltech.edu
24 */
25
26#include <sys/cdefs.h>
27/*
28 * This file is compiled in userspace in order to run ATF unit tests.
29 */
30#ifndef _KERNEL
31#include <stdint.h>
32#include <stdlib.h>
33#else
34#include <sys/param.h>
35#include <sys/kernel.h>
36#endif
37#include <sys/gsb_crc32.h>
38
39static __inline uint32_t
40_mm_crc32_u8(uint32_t x, uint8_t y)
41{
42	/*
43	 * clang (at least 3.9.[0-1]) pessimizes "rm" (y) and "m" (y)
44	 * significantly and "r" (y) a lot by copying y to a different
45	 * local variable (on the stack or in a register), so only use
46	 * the latter.  This costs a register and an instruction but
47	 * not a uop.
48	 */
49	__asm("crc32b %1,%0" : "+r" (x) : "r" (y));
50	return (x);
51}
52
53#ifdef __amd64__
54static __inline uint64_t
55_mm_crc32_u64(uint64_t x, uint64_t y)
56{
57	__asm("crc32q %1,%0" : "+r" (x) : "r" (y));
58	return (x);
59}
60#else
61static __inline uint32_t
62_mm_crc32_u32(uint32_t x, uint32_t y)
63{
64	__asm("crc32l %1,%0" : "+r" (x) : "r" (y));
65	return (x);
66}
67#endif
68
69/* CRC-32C (iSCSI) polynomial in reversed bit order. */
70#define POLY	0x82f63b78
71
72/*
73 * Block sizes for three-way parallel crc computation.  LONG and SHORT must
74 * both be powers of two.
75 */
76#define LONG	128
77#define SHORT	64
78
79/*
80 * Tables for updating a crc for LONG, 2 * LONG, SHORT and 2 * SHORT bytes
81 * of value 0 later in the input stream, in the same way that the hardware
82 * would, but in software without calculating intermediate steps.
83 */
84static uint32_t crc32c_long[4][256];
85static uint32_t crc32c_2long[4][256];
86static uint32_t crc32c_short[4][256];
87static uint32_t crc32c_2short[4][256];
88
89/*
90 * Multiply a matrix times a vector over the Galois field of two elements,
91 * GF(2).  Each element is a bit in an unsigned integer.  mat must have at
92 * least as many entries as the power of two for most significant one bit in
93 * vec.
94 */
95static inline uint32_t
96gf2_matrix_times(uint32_t *mat, uint32_t vec)
97{
98	uint32_t sum;
99
100	sum = 0;
101	while (vec) {
102		if (vec & 1)
103			sum ^= *mat;
104		vec >>= 1;
105		mat++;
106	}
107	return (sum);
108}
109
110/*
111 * Multiply a matrix by itself over GF(2).  Both mat and square must have 32
112 * rows.
113 */
114static inline void
115gf2_matrix_square(uint32_t *square, uint32_t *mat)
116{
117	int n;
118
119	for (n = 0; n < 32; n++)
120		square[n] = gf2_matrix_times(mat, mat[n]);
121}
122
123/*
124 * Construct an operator to apply len zeros to a crc.  len must be a power of
125 * two.  If len is not a power of two, then the result is the same as for the
126 * largest power of two less than len.  The result for len == 0 is the same as
127 * for len == 1.  A version of this routine could be easily written for any
128 * len, but that is not needed for this application.
129 */
130static void
131crc32c_zeros_op(uint32_t *even, size_t len)
132{
133	uint32_t odd[32];       /* odd-power-of-two zeros operator */
134	uint32_t row;
135	int n;
136
137	/* put operator for one zero bit in odd */
138	odd[0] = POLY;              /* CRC-32C polynomial */
139	row = 1;
140	for (n = 1; n < 32; n++) {
141		odd[n] = row;
142		row <<= 1;
143	}
144
145	/* put operator for two zero bits in even */
146	gf2_matrix_square(even, odd);
147
148	/* put operator for four zero bits in odd */
149	gf2_matrix_square(odd, even);
150
151	/*
152	 * first square will put the operator for one zero byte (eight zero
153	 * bits), in even -- next square puts operator for two zero bytes in
154	 * odd, and so on, until len has been rotated down to zero
155	 */
156	do {
157		gf2_matrix_square(even, odd);
158		len >>= 1;
159		if (len == 0)
160			return;
161		gf2_matrix_square(odd, even);
162		len >>= 1;
163	} while (len);
164
165	/* answer ended up in odd -- copy to even */
166	for (n = 0; n < 32; n++)
167		even[n] = odd[n];
168}
169
170/*
171 * Take a length and build four lookup tables for applying the zeros operator
172 * for that length, byte-by-byte on the operand.
173 */
174static void
175crc32c_zeros(uint32_t zeros[][256], size_t len)
176{
177	uint32_t op[32];
178	uint32_t n;
179
180	crc32c_zeros_op(op, len);
181	for (n = 0; n < 256; n++) {
182		zeros[0][n] = gf2_matrix_times(op, n);
183		zeros[1][n] = gf2_matrix_times(op, n << 8);
184		zeros[2][n] = gf2_matrix_times(op, n << 16);
185		zeros[3][n] = gf2_matrix_times(op, n << 24);
186	}
187}
188
189/* Apply the zeros operator table to crc. */
190static inline uint32_t
191crc32c_shift(uint32_t zeros[][256], uint32_t crc)
192{
193
194	return (zeros[0][crc & 0xff] ^ zeros[1][(crc >> 8) & 0xff] ^
195	    zeros[2][(crc >> 16) & 0xff] ^ zeros[3][crc >> 24]);
196}
197
198/* Initialize tables for shifting crcs. */
199static void
200#ifndef _KERNEL
201__attribute__((__constructor__))
202#endif
203crc32c_init_hw(void)
204{
205	crc32c_zeros(crc32c_long, LONG);
206	crc32c_zeros(crc32c_2long, 2 * LONG);
207	crc32c_zeros(crc32c_short, SHORT);
208	crc32c_zeros(crc32c_2short, 2 * SHORT);
209}
210#ifdef _KERNEL
211SYSINIT(crc32c_sse42, SI_SUB_LOCK, SI_ORDER_ANY, crc32c_init_hw, NULL);
212#endif
213
214/* Compute CRC-32C using the Intel hardware instruction. */
215uint32_t
216sse42_crc32c(uint32_t crc, const unsigned char *buf, unsigned len)
217{
218#ifdef __amd64__
219	const size_t align = 8;
220#else
221	const size_t align = 4;
222#endif
223	const unsigned char *next, *end;
224#ifdef __amd64__
225	uint64_t crc0, crc1, crc2;
226#else
227	uint32_t crc0, crc1, crc2;
228#endif
229
230	next = buf;
231	crc0 = crc;
232
233	/* Compute the crc to bring the data pointer to an aligned boundary. */
234	while (len && ((uintptr_t)next & (align - 1)) != 0) {
235		crc0 = _mm_crc32_u8(crc0, *next);
236		next++;
237		len--;
238	}
239
240#if LONG > SHORT
241	/*
242	 * Compute the crc on sets of LONG*3 bytes, executing three independent
243	 * crc instructions, each on LONG bytes -- this is optimized for the
244	 * Nehalem, Westmere, Sandy Bridge, and Ivy Bridge architectures, which
245	 * have a throughput of one crc per cycle, but a latency of three
246	 * cycles.
247	 */
248	crc = 0;
249	while (len >= LONG * 3) {
250		crc1 = 0;
251		crc2 = 0;
252		end = next + LONG;
253		do {
254#ifdef __amd64__
255			crc0 = _mm_crc32_u64(crc0, *(const uint64_t *)next);
256			crc1 = _mm_crc32_u64(crc1,
257			    *(const uint64_t *)(next + LONG));
258			crc2 = _mm_crc32_u64(crc2,
259			    *(const uint64_t *)(next + (LONG * 2)));
260#else
261			crc0 = _mm_crc32_u32(crc0, *(const uint32_t *)next);
262			crc1 = _mm_crc32_u32(crc1,
263			    *(const uint32_t *)(next + LONG));
264			crc2 = _mm_crc32_u32(crc2,
265			    *(const uint32_t *)(next + (LONG * 2)));
266#endif
267			next += align;
268		} while (next < end);
269		/*-
270		 * Update the crc.  Try to do it in parallel with the inner
271		 * loop.  'crc' is used to accumulate crc0 and crc1
272		 * produced by the inner loop so that the next iteration
273		 * of the loop doesn't depend on anything except crc2.
274		 *
275		 * The full expression for the update is:
276		 *     crc = S*S*S*crc + S*S*crc0 + S*crc1
277		 * where the terms are polynomials modulo the CRC polynomial.
278		 * We regroup this subtly as:
279		 *     crc = S*S * (S*crc + crc0) + S*crc1.
280		 * This has an extra dependency which reduces possible
281		 * parallelism for the expression, but it turns out to be
282		 * best to intentionally delay evaluation of this expression
283		 * so that it competes less with the inner loop.
284		 *
285		 * We also intentionally reduce parallelism by feedng back
286		 * crc2 to the inner loop as crc0 instead of accumulating
287		 * it in crc.  This synchronizes the loop with crc update.
288		 * CPU and/or compiler schedulers produced bad order without
289		 * this.
290		 *
291		 * Shifts take about 12 cycles each, so 3 here with 2
292		 * parallelizable take about 24 cycles and the crc update
293		 * takes slightly longer.  8 dependent crc32 instructions
294		 * can run in 24 cycles, so the 3-way blocking is worse
295		 * than useless for sizes less than 8 * <word size> = 64
296		 * on amd64.  In practice, SHORT = 32 confirms these
297		 * timing calculations by giving a small improvement
298		 * starting at size 96.  Then the inner loop takes about
299		 * 12 cycles and the crc update about 24, but these are
300		 * partly in parallel so the total time is less than the
301		 * 36 cycles that 12 dependent crc32 instructions would
302		 * take.
303		 *
304		 * To have a chance of completely hiding the overhead for
305		 * the crc update, the inner loop must take considerably
306		 * longer than 24 cycles.  LONG = 64 makes the inner loop
307		 * take about 24 cycles, so is not quite large enough.
308		 * LONG = 128 works OK.  Unhideable overheads are about
309		 * 12 cycles per inner loop.  All assuming timing like
310		 * Haswell.
311		 */
312		crc = crc32c_shift(crc32c_long, crc) ^ crc0;
313		crc1 = crc32c_shift(crc32c_long, crc1);
314		crc = crc32c_shift(crc32c_2long, crc) ^ crc1;
315		crc0 = crc2;
316		next += LONG * 2;
317		len -= LONG * 3;
318	}
319	crc0 ^= crc;
320#endif /* LONG > SHORT */
321
322	/*
323	 * Do the same thing, but now on SHORT*3 blocks for the remaining data
324	 * less than a LONG*3 block
325	 */
326	crc = 0;
327	while (len >= SHORT * 3) {
328		crc1 = 0;
329		crc2 = 0;
330		end = next + SHORT;
331		do {
332#ifdef __amd64__
333			crc0 = _mm_crc32_u64(crc0, *(const uint64_t *)next);
334			crc1 = _mm_crc32_u64(crc1,
335			    *(const uint64_t *)(next + SHORT));
336			crc2 = _mm_crc32_u64(crc2,
337			    *(const uint64_t *)(next + (SHORT * 2)));
338#else
339			crc0 = _mm_crc32_u32(crc0, *(const uint32_t *)next);
340			crc1 = _mm_crc32_u32(crc1,
341			    *(const uint32_t *)(next + SHORT));
342			crc2 = _mm_crc32_u32(crc2,
343			    *(const uint32_t *)(next + (SHORT * 2)));
344#endif
345			next += align;
346		} while (next < end);
347		crc = crc32c_shift(crc32c_short, crc) ^ crc0;
348		crc1 = crc32c_shift(crc32c_short, crc1);
349		crc = crc32c_shift(crc32c_2short, crc) ^ crc1;
350		crc0 = crc2;
351		next += SHORT * 2;
352		len -= SHORT * 3;
353	}
354	crc0 ^= crc;
355
356	/* Compute the crc on the remaining bytes at native word size. */
357	end = next + (len - (len & (align - 1)));
358	while (next < end) {
359#ifdef __amd64__
360		crc0 = _mm_crc32_u64(crc0, *(const uint64_t *)next);
361#else
362		crc0 = _mm_crc32_u32(crc0, *(const uint32_t *)next);
363#endif
364		next += align;
365	}
366	len &= (align - 1);
367
368	/* Compute the crc for any trailing bytes. */
369	while (len) {
370		crc0 = _mm_crc32_u8(crc0, *next);
371		next++;
372		len--;
373	}
374
375	return ((uint32_t)crc0);
376}
377