1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1992, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36#include <sys/cdefs.h>
37/*
38 * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
39 * section 4.3.1, pp. 257--259.
40 */
41
42#include <libkern/quad.h>
43
44#define	B	(1 << HALF_BITS)	/* digit base */
45
46/* Combine two `digits' to make a single two-digit number. */
47#define	COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b))
48
49/* select a type for digits in base B: use unsigned short if they fit */
50#if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff
51typedef unsigned short digit;
52#else
53typedef u_long digit;
54#endif
55
56/*
57 * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
58 * `fall out' the left (there never will be any such anyway).
59 * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
60 */
61static void
62__shl(digit *p, int len, int sh)
63{
64	int i;
65
66	for (i = 0; i < len; i++)
67		p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));
68	p[i] = LHALF(p[i] << sh);
69}
70
71/*
72 * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
73 *
74 * We do this in base 2-sup-HALF_BITS, so that all intermediate products
75 * fit within u_long.  As a consequence, the maximum length dividend and
76 * divisor are 4 `digits' in this base (they are shorter if they have
77 * leading zeros).
78 */
79u_quad_t
80__qdivrem(u_quad_t uq, u_quad_t vq, u_quad_t *arq)
81{
82	union uu tmp;
83	digit *u, *v, *q;
84	digit v1, v2;
85	u_long qhat, rhat, t;
86	int m, n, d, j, i;
87	digit uspace[5], vspace[5], qspace[5];
88
89	/*
90	 * Take care of special cases: divide by zero, and u < v.
91	 */
92	if (__predict_false(vq == 0)) {
93		/* divide by zero. */
94		static volatile const unsigned int zero = 0;
95
96		tmp.ul[H] = tmp.ul[L] = 1 / zero;
97		if (arq)
98			*arq = uq;
99		return (tmp.q);
100	}
101	if (uq < vq) {
102		if (arq)
103			*arq = uq;
104		return (0);
105	}
106	u = &uspace[0];
107	v = &vspace[0];
108	q = &qspace[0];
109
110	/*
111	 * Break dividend and divisor into digits in base B, then
112	 * count leading zeros to determine m and n.  When done, we
113	 * will have:
114	 *	u = (u[1]u[2]...u[m+n]) sub B
115	 *	v = (v[1]v[2]...v[n]) sub B
116	 *	v[1] != 0
117	 *	1 < n <= 4 (if n = 1, we use a different division algorithm)
118	 *	m >= 0 (otherwise u < v, which we already checked)
119	 *	m + n = 4
120	 * and thus
121	 *	m = 4 - n <= 2
122	 */
123	tmp.uq = uq;
124	u[0] = 0;
125	u[1] = HHALF(tmp.ul[H]);
126	u[2] = LHALF(tmp.ul[H]);
127	u[3] = HHALF(tmp.ul[L]);
128	u[4] = LHALF(tmp.ul[L]);
129	tmp.uq = vq;
130	v[1] = HHALF(tmp.ul[H]);
131	v[2] = LHALF(tmp.ul[H]);
132	v[3] = HHALF(tmp.ul[L]);
133	v[4] = LHALF(tmp.ul[L]);
134	for (n = 4; v[1] == 0; v++) {
135		if (--n == 1) {
136			u_long rbj;	/* r*B+u[j] (not root boy jim) */
137			digit q1, q2, q3, q4;
138
139			/*
140			 * Change of plan, per exercise 16.
141			 *	r = 0;
142			 *	for j = 1..4:
143			 *		q[j] = floor((r*B + u[j]) / v),
144			 *		r = (r*B + u[j]) % v;
145			 * We unroll this completely here.
146			 */
147			t = v[2];	/* nonzero, by definition */
148			q1 = u[1] / t;
149			rbj = COMBINE(u[1] % t, u[2]);
150			q2 = rbj / t;
151			rbj = COMBINE(rbj % t, u[3]);
152			q3 = rbj / t;
153			rbj = COMBINE(rbj % t, u[4]);
154			q4 = rbj / t;
155			if (arq)
156				*arq = rbj % t;
157			tmp.ul[H] = COMBINE(q1, q2);
158			tmp.ul[L] = COMBINE(q3, q4);
159			return (tmp.q);
160		}
161	}
162
163	/*
164	 * By adjusting q once we determine m, we can guarantee that
165	 * there is a complete four-digit quotient at &qspace[1] when
166	 * we finally stop.
167	 */
168	for (m = 4 - n; u[1] == 0; u++)
169		m--;
170	for (i = 4 - m; --i >= 0;)
171		q[i] = 0;
172	q += 4 - m;
173
174	/*
175	 * Here we run Program D, translated from MIX to C and acquiring
176	 * a few minor changes.
177	 *
178	 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
179	 */
180	d = 0;
181	for (t = v[1]; t < B / 2; t <<= 1)
182		d++;
183	if (d > 0) {
184		__shl(&u[0], m + n, d);		/* u <<= d */
185		__shl(&v[1], n - 1, d);		/* v <<= d */
186	}
187	/*
188	 * D2: j = 0.
189	 */
190	j = 0;
191	v1 = v[1];	/* for D3 -- note that v[1..n] are constant */
192	v2 = v[2];	/* for D3 */
193	do {
194		digit uj0, uj1, uj2;
195
196		/*
197		 * D3: Calculate qhat (\^q, in TeX notation).
198		 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
199		 * let rhat = (u[j]*B + u[j+1]) mod v[1].
200		 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
201		 * decrement qhat and increase rhat correspondingly.
202		 * Note that if rhat >= B, v[2]*qhat < rhat*B.
203		 */
204		uj0 = u[j + 0];	/* for D3 only -- note that u[j+...] change */
205		uj1 = u[j + 1];	/* for D3 only */
206		uj2 = u[j + 2];	/* for D3 only */
207		if (uj0 == v1) {
208			qhat = B;
209			rhat = uj1;
210			goto qhat_too_big;
211		} else {
212			u_long nn = COMBINE(uj0, uj1);
213			qhat = nn / v1;
214			rhat = nn % v1;
215		}
216		while (v2 * qhat > COMBINE(rhat, uj2)) {
217	qhat_too_big:
218			qhat--;
219			if ((rhat += v1) >= B)
220				break;
221		}
222		/*
223		 * D4: Multiply and subtract.
224		 * The variable `t' holds any borrows across the loop.
225		 * We split this up so that we do not require v[0] = 0,
226		 * and to eliminate a final special case.
227		 */
228		for (t = 0, i = n; i > 0; i--) {
229			t = u[i + j] - v[i] * qhat - t;
230			u[i + j] = LHALF(t);
231			t = (B - HHALF(t)) & (B - 1);
232		}
233		t = u[j] - t;
234		u[j] = LHALF(t);
235		/*
236		 * D5: test remainder.
237		 * There is a borrow if and only if HHALF(t) is nonzero;
238		 * in that (rare) case, qhat was too large (by exactly 1).
239		 * Fix it by adding v[1..n] to u[j..j+n].
240		 */
241		if (HHALF(t)) {
242			qhat--;
243			for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
244				t += u[i + j] + v[i];
245				u[i + j] = LHALF(t);
246				t = HHALF(t);
247			}
248			u[j] = LHALF(u[j] + t);
249		}
250		q[j] = qhat;
251	} while (++j <= m);		/* D7: loop on j. */
252
253	/*
254	 * If caller wants the remainder, we have to calculate it as
255	 * u[m..m+n] >> d (this is at most n digits and thus fits in
256	 * u[m+1..m+n], but we may need more source digits).
257	 */
258	if (arq) {
259		if (d) {
260			for (i = m + n; i > m; --i)
261				u[i] = (u[i] >> d) |
262				    LHALF(u[i - 1] << (HALF_BITS - d));
263			u[i] = 0;
264		}
265		tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
266		tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
267		*arq = tmp.q;
268	}
269
270	tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
271	tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
272	return (tmp.q);
273}
274