1178825Sdfr/*-
2178825Sdfr * SPDX-License-Identifier: BSD-2-Clause
3178825Sdfr *
4178825Sdfr * Copyright (c) 2014-2019 Netflix Inc.
5178825Sdfr *
6178825Sdfr * Redistribution and use in source and binary forms, with or without
7178825Sdfr * modification, are permitted provided that the following conditions
8178825Sdfr * are met:
9178825Sdfr * 1. Redistributions of source code must retain the above copyright
10178825Sdfr *    notice, this list of conditions and the following disclaimer.
11178825Sdfr * 2. Redistributions in binary form must reproduce the above copyright
12178825Sdfr *    notice, this list of conditions and the following disclaimer in the
13178825Sdfr *    documentation and/or other materials provided with the distribution.
14178825Sdfr *
15178825Sdfr * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16178825Sdfr * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17178825Sdfr * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18178825Sdfr * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
19178825Sdfr * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20178825Sdfr * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21178825Sdfr * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22178825Sdfr * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23178825Sdfr * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24178825Sdfr * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25178825Sdfr * SUCH DAMAGE.
26178825Sdfr */
27178825Sdfr
28178825Sdfr#include <sys/cdefs.h>
29178825Sdfr#include "opt_inet.h"
30178825Sdfr#include "opt_inet6.h"
31178825Sdfr#include "opt_kern_tls.h"
32178825Sdfr#include "opt_ratelimit.h"
33178825Sdfr#include "opt_rss.h"
34178825Sdfr
35178825Sdfr#include <sys/param.h>
36178825Sdfr#include <sys/kernel.h>
37178825Sdfr#include <sys/domainset.h>
38178825Sdfr#include <sys/endian.h>
39178825Sdfr#include <sys/ktls.h>
40178825Sdfr#include <sys/lock.h>
41178825Sdfr#include <sys/mbuf.h>
42178825Sdfr#include <sys/mutex.h>
43178825Sdfr#include <sys/rmlock.h>
44178825Sdfr#include <sys/proc.h>
45178825Sdfr#include <sys/protosw.h>
46178825Sdfr#include <sys/refcount.h>
47178825Sdfr#include <sys/smp.h>
48178825Sdfr#include <sys/socket.h>
49178825Sdfr#include <sys/socketvar.h>
50178825Sdfr#include <sys/sysctl.h>
51178825Sdfr#include <sys/taskqueue.h>
52178825Sdfr#include <sys/kthread.h>
53178825Sdfr#include <sys/uio.h>
54178825Sdfr#include <sys/vmmeter.h>
55178825Sdfr#if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
56178825Sdfr#include <machine/pcb.h>
57178825Sdfr#endif
58178825Sdfr#include <machine/vmparam.h>
59178825Sdfr#include <net/if.h>
60178825Sdfr#include <net/if_var.h>
61178825Sdfr#ifdef RSS
62178825Sdfr#include <net/netisr.h>
63178825Sdfr#include <net/rss_config.h>
64178825Sdfr#endif
65178825Sdfr#include <net/route.h>
66178825Sdfr#include <net/route/nhop.h>
67178825Sdfr#include <netinet/in.h>
68178825Sdfr#include <netinet/in_pcb.h>
69178825Sdfr#include <netinet/tcp_var.h>
70178825Sdfr#ifdef TCP_OFFLOAD
71178825Sdfr#include <netinet/tcp_offload.h>
72178825Sdfr#endif
73178825Sdfr#include <opencrypto/cryptodev.h>
74178825Sdfr#include <opencrypto/ktls.h>
75178825Sdfr#include <vm/vm.h>
76178825Sdfr#include <vm/vm_pageout.h>
77178825Sdfr#include <vm/vm_page.h>
78178825Sdfr#include <vm/vm_pagequeue.h>
79178825Sdfr
80178825Sdfrstruct ktls_wq {
81178825Sdfr	struct mtx	mtx;
82178825Sdfr	STAILQ_HEAD(, mbuf) m_head;
83178825Sdfr	STAILQ_HEAD(, socket) so_head;
84178825Sdfr	bool		running;
85178825Sdfr	int		lastallocfail;
86178825Sdfr} __aligned(CACHE_LINE_SIZE);
87178825Sdfr
88178825Sdfrstruct ktls_reclaim_thread {
89178825Sdfr	uint64_t wakeups;
90178825Sdfr	uint64_t reclaims;
91178825Sdfr	struct thread *td;
92178825Sdfr	int running;
93178825Sdfr};
94178825Sdfr
95178825Sdfrstruct ktls_domain_info {
96178825Sdfr	int count;
97178825Sdfr	int cpu[MAXCPU];
98178825Sdfr	struct ktls_reclaim_thread reclaim_td;
99178825Sdfr};
100178825Sdfr
101178825Sdfrstruct ktls_domain_info ktls_domains[MAXMEMDOM];
102178825Sdfrstatic struct ktls_wq *ktls_wq;
103178825Sdfrstatic struct proc *ktls_proc;
104178825Sdfrstatic uma_zone_t ktls_session_zone;
105178825Sdfrstatic uma_zone_t ktls_buffer_zone;
106178825Sdfrstatic uint16_t ktls_cpuid_lookup[MAXCPU];
107178825Sdfrstatic int ktls_init_state;
108178825Sdfrstatic struct sx ktls_init_lock;
109178825SdfrSX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init");
110178825Sdfr
111178825SdfrSYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
112178825Sdfr    "Kernel TLS offload");
113178825SdfrSYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
114178825Sdfr    "Kernel TLS offload stats");
115178825Sdfr
116178825Sdfr#ifdef RSS
117178825Sdfrstatic int ktls_bind_threads = 1;
118178825Sdfr#else
119178825Sdfrstatic int ktls_bind_threads;
120178825Sdfr#endif
121178825SdfrSYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN,
122178825Sdfr    &ktls_bind_threads, 0,
123178825Sdfr    "Bind crypto threads to cores (1) or cores and domains (2) at boot");
124178825Sdfr
125178825Sdfrstatic u_int ktls_maxlen = 16384;
126178825SdfrSYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN,
127178825Sdfr    &ktls_maxlen, 0, "Maximum TLS record size");
128178825Sdfr
129178825Sdfrstatic int ktls_number_threads;
130178825SdfrSYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD,
131178825Sdfr    &ktls_number_threads, 0,
132178825Sdfr    "Number of TLS threads in thread-pool");
133178825Sdfr
134178825Sdfrunsigned int ktls_ifnet_max_rexmit_pct = 2;
135178825SdfrSYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN,
136178825Sdfr    &ktls_ifnet_max_rexmit_pct, 2,
137178825Sdfr    "Max percent bytes retransmitted before ifnet TLS is disabled");
138178825Sdfr
139178825Sdfrstatic bool ktls_offload_enable;
140178825SdfrSYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN,
141178825Sdfr    &ktls_offload_enable, 0,
142178825Sdfr    "Enable support for kernel TLS offload");
143178825Sdfr
144178825Sdfrstatic bool ktls_cbc_enable = true;
145178825SdfrSYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN,
146178825Sdfr    &ktls_cbc_enable, 1,
147178825Sdfr    "Enable support of AES-CBC crypto for kernel TLS");
148178825Sdfr
149178825Sdfrstatic bool ktls_sw_buffer_cache = true;
150178825SdfrSYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN,
151178825Sdfr    &ktls_sw_buffer_cache, 1,
152178825Sdfr    "Enable caching of output buffers for SW encryption");
153178825Sdfr
154178825Sdfrstatic int ktls_max_reclaim = 1024;
155178825SdfrSYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_reclaim, CTLFLAG_RWTUN,
156178825Sdfr    &ktls_max_reclaim, 128,
157178825Sdfr    "Max number of 16k buffers to reclaim in thread context");
158178825Sdfr
159178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_tasks_active);
160178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD,
161178825Sdfr    &ktls_tasks_active, "Number of active tasks");
162178825Sdfr
163178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending);
164178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD,
165178825Sdfr    &ktls_cnt_tx_pending,
166178825Sdfr    "Number of TLS 1.0 records waiting for earlier TLS records");
167178825Sdfr
168178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued);
169178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD,
170178825Sdfr    &ktls_cnt_tx_queued,
171178825Sdfr    "Number of TLS records in queue to tasks for SW encryption");
172178825Sdfr
173178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued);
174178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD,
175178825Sdfr    &ktls_cnt_rx_queued,
176178825Sdfr    "Number of TLS sockets in queue to tasks for SW decryption");
177178825Sdfr
178178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_offload_total);
179178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total,
180178825Sdfr    CTLFLAG_RD, &ktls_offload_total,
181178825Sdfr    "Total successful TLS setups (parameters set)");
182178825Sdfr
183178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls);
184178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls,
185178825Sdfr    CTLFLAG_RD, &ktls_offload_enable_calls,
186178825Sdfr    "Total number of TLS enable calls made");
187178825Sdfr
188178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_offload_active);
189178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD,
190178825Sdfr    &ktls_offload_active, "Total Active TLS sessions");
191178825Sdfr
192178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records);
193178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD,
194178825Sdfr    &ktls_offload_corrupted_records, "Total corrupted TLS records received");
195178825Sdfr
196178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto);
197178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD,
198178825Sdfr    &ktls_offload_failed_crypto, "Total TLS crypto failures");
199178825Sdfr
200178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet);
201178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD,
202178825Sdfr    &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet");
203178825Sdfr
204178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw);
205178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD,
206178825Sdfr    &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW");
207178825Sdfr
208178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_switch_failed);
209178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD,
210178825Sdfr    &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet");
211178825Sdfr
212178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail);
213178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD,
214178825Sdfr    &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet");
215178825Sdfr
216178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok);
217178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD,
218178825Sdfr    &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet");
219178825Sdfr
220178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_destroy_task);
221178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, destroy_task, CTLFLAG_RD,
222178825Sdfr    &ktls_destroy_task,
223178825Sdfr    "Number of times ktls session was destroyed via taskqueue");
224178825Sdfr
225178825SdfrSYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
226178825Sdfr    "Software TLS session stats");
227178825SdfrSYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
228178825Sdfr    "Hardware (ifnet) TLS session stats");
229178825Sdfr#ifdef TCP_OFFLOAD
230178825SdfrSYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
231178825Sdfr    "TOE TLS session stats");
232178825Sdfr#endif
233178825Sdfr
234178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc);
235178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc,
236178825Sdfr    "Active number of software TLS sessions using AES-CBC");
237178825Sdfr
238178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm);
239178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm,
240178825Sdfr    "Active number of software TLS sessions using AES-GCM");
241178825Sdfr
242178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20);
243178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD,
244178825Sdfr    &ktls_sw_chacha20,
245178825Sdfr    "Active number of software TLS sessions using Chacha20-Poly1305");
246178825Sdfr
247178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc);
248178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD,
249178825Sdfr    &ktls_ifnet_cbc,
250178825Sdfr    "Active number of ifnet TLS sessions using AES-CBC");
251178825Sdfr
252178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm);
253178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD,
254178825Sdfr    &ktls_ifnet_gcm,
255178825Sdfr    "Active number of ifnet TLS sessions using AES-GCM");
256178825Sdfr
257178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20);
258178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD,
259178825Sdfr    &ktls_ifnet_chacha20,
260178825Sdfr    "Active number of ifnet TLS sessions using Chacha20-Poly1305");
261178825Sdfr
262178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset);
263178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD,
264178825Sdfr    &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag");
265178825Sdfr
266178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped);
267178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD,
268178825Sdfr    &ktls_ifnet_reset_dropped,
269178825Sdfr    "TLS sessions dropped after failing to update ifnet send tag");
270178825Sdfr
271178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed);
272178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD,
273178825Sdfr    &ktls_ifnet_reset_failed,
274178825Sdfr    "TLS sessions that failed to allocate a new ifnet send tag");
275178825Sdfr
276178825Sdfrstatic int ktls_ifnet_permitted;
277178825SdfrSYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN,
278178825Sdfr    &ktls_ifnet_permitted, 1,
279178825Sdfr    "Whether to permit hardware (ifnet) TLS sessions");
280178825Sdfr
281178825Sdfr#ifdef TCP_OFFLOAD
282178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc);
283178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD,
284178825Sdfr    &ktls_toe_cbc,
285178825Sdfr    "Active number of TOE TLS sessions using AES-CBC");
286178825Sdfr
287178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm);
288178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD,
289178825Sdfr    &ktls_toe_gcm,
290178825Sdfr    "Active number of TOE TLS sessions using AES-GCM");
291178825Sdfr
292178825Sdfrstatic COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20);
293178825SdfrSYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD,
294178825Sdfr    &ktls_toe_chacha20,
295178825Sdfr    "Active number of TOE TLS sessions using Chacha20-Poly1305");
296178825Sdfr#endif
297178825Sdfr
298178825Sdfrstatic MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS");
299178825Sdfr
300178825Sdfrstatic void ktls_reclaim_thread(void *ctx);
301178825Sdfrstatic void ktls_reset_receive_tag(void *context, int pending);
302178825Sdfrstatic void ktls_reset_send_tag(void *context, int pending);
303178825Sdfrstatic void ktls_work_thread(void *ctx);
304178825Sdfr
305178825Sdfrint
306178825Sdfrktls_copyin_tls_enable(struct sockopt *sopt, struct tls_enable *tls)
307178825Sdfr{
308178825Sdfr	struct tls_enable_v0 tls_v0;
309178825Sdfr	int error;
310178825Sdfr	uint8_t *cipher_key = NULL, *iv = NULL, *auth_key = NULL;
311178825Sdfr
312178825Sdfr	if (sopt->sopt_valsize == sizeof(tls_v0)) {
313178825Sdfr		error = sooptcopyin(sopt, &tls_v0, sizeof(tls_v0), sizeof(tls_v0));
314178825Sdfr		if (error != 0)
315178825Sdfr			goto done;
316178825Sdfr		memset(tls, 0, sizeof(*tls));
317178825Sdfr		tls->cipher_key = tls_v0.cipher_key;
318178825Sdfr		tls->iv = tls_v0.iv;
319178825Sdfr		tls->auth_key = tls_v0.auth_key;
320178825Sdfr		tls->cipher_algorithm = tls_v0.cipher_algorithm;
321178825Sdfr		tls->cipher_key_len = tls_v0.cipher_key_len;
322178825Sdfr		tls->iv_len = tls_v0.iv_len;
323178825Sdfr		tls->auth_algorithm = tls_v0.auth_algorithm;
324178825Sdfr		tls->auth_key_len = tls_v0.auth_key_len;
325178825Sdfr		tls->flags = tls_v0.flags;
326178825Sdfr		tls->tls_vmajor = tls_v0.tls_vmajor;
327178825Sdfr		tls->tls_vminor = tls_v0.tls_vminor;
328178825Sdfr	} else
329178825Sdfr		error = sooptcopyin(sopt, tls, sizeof(*tls), sizeof(*tls));
330178825Sdfr
331178825Sdfr	if (error != 0)
332178825Sdfr		return (error);
333178825Sdfr
334178825Sdfr	if (tls->cipher_key_len < 0 || tls->cipher_key_len > TLS_MAX_PARAM_SIZE)
335178825Sdfr		return (EINVAL);
336178825Sdfr	if (tls->iv_len < 0 || tls->iv_len > sizeof(((struct ktls_session *)NULL)->params.iv))
337178825Sdfr		return (EINVAL);
338178825Sdfr	if (tls->auth_key_len < 0 || tls->auth_key_len > TLS_MAX_PARAM_SIZE)
339178825Sdfr		return (EINVAL);
340178825Sdfr
341178825Sdfr	/* All supported algorithms require a cipher key. */
342178825Sdfr	if (tls->cipher_key_len == 0)
343178825Sdfr		return (EINVAL);
344178825Sdfr
345178825Sdfr	/*
346178825Sdfr	 * Now do a deep copy of the variable-length arrays in the struct, so that
347178825Sdfr	 * subsequent consumers of it can reliably assume kernel memory. This
348178825Sdfr	 * requires doing our own allocations, which we will free in the
349178825Sdfr	 * error paths so that our caller need only worry about outstanding
350178825Sdfr	 * allocations existing on successful return.
351178825Sdfr	 */
352178825Sdfr	if (tls->cipher_key_len != 0) {
353178825Sdfr		cipher_key = malloc(tls->cipher_key_len, M_KTLS, M_WAITOK);
354178825Sdfr		if (sopt->sopt_td != NULL) {
355178825Sdfr			error = copyin(tls->cipher_key, cipher_key, tls->cipher_key_len);
356178825Sdfr			if (error != 0)
357178825Sdfr				goto done;
358178825Sdfr		} else {
359178825Sdfr			bcopy(tls->cipher_key, cipher_key, tls->cipher_key_len);
360178825Sdfr		}
361178825Sdfr	}
362178825Sdfr	if (tls->iv_len != 0) {
363178825Sdfr		iv = malloc(tls->iv_len, M_KTLS, M_WAITOK);
364178825Sdfr		if (sopt->sopt_td != NULL) {
365178825Sdfr			error = copyin(tls->iv, iv, tls->iv_len);
366178825Sdfr			if (error != 0)
367178825Sdfr				goto done;
368178825Sdfr		} else {
369178825Sdfr			bcopy(tls->iv, iv, tls->iv_len);
370178825Sdfr		}
371178825Sdfr	}
372178825Sdfr	if (tls->auth_key_len != 0) {
373178825Sdfr		auth_key = malloc(tls->auth_key_len, M_KTLS, M_WAITOK);
374178825Sdfr		if (sopt->sopt_td != NULL) {
375178825Sdfr			error = copyin(tls->auth_key, auth_key, tls->auth_key_len);
376178825Sdfr			if (error != 0)
377178825Sdfr				goto done;
378178825Sdfr		} else {
379178825Sdfr			bcopy(tls->auth_key, auth_key, tls->auth_key_len);
380178825Sdfr		}
381178825Sdfr	}
382178825Sdfr	tls->cipher_key = cipher_key;
383178825Sdfr	tls->iv = iv;
384178825Sdfr	tls->auth_key = auth_key;
385178825Sdfr
386178825Sdfrdone:
387178825Sdfr	if (error != 0) {
388178825Sdfr		zfree(cipher_key, M_KTLS);
389178825Sdfr		zfree(iv, M_KTLS);
390178825Sdfr		zfree(auth_key, M_KTLS);
391178825Sdfr	}
392178825Sdfr
393178825Sdfr	return (error);
394178825Sdfr}
395178825Sdfr
396178825Sdfrvoid
397178825Sdfrktls_cleanup_tls_enable(struct tls_enable *tls)
398178825Sdfr{
399178825Sdfr	zfree(__DECONST(void *, tls->cipher_key), M_KTLS);
400178825Sdfr	zfree(__DECONST(void *, tls->iv), M_KTLS);
401178825Sdfr	zfree(__DECONST(void *, tls->auth_key), M_KTLS);
402178825Sdfr}
403178825Sdfr
404178825Sdfrstatic u_int
405178825Sdfrktls_get_cpu(struct socket *so)
406178825Sdfr{
407178825Sdfr	struct inpcb *inp;
408178825Sdfr#ifdef NUMA
409178825Sdfr	struct ktls_domain_info *di;
410178825Sdfr#endif
411178825Sdfr	u_int cpuid;
412178825Sdfr
413178825Sdfr	inp = sotoinpcb(so);
414178825Sdfr#ifdef RSS
415178825Sdfr	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
416178825Sdfr	if (cpuid != NETISR_CPUID_NONE)
417178825Sdfr		return (cpuid);
418178825Sdfr#endif
419178825Sdfr	/*
420178825Sdfr	 * Just use the flowid to shard connections in a repeatable
421178825Sdfr	 * fashion.  Note that TLS 1.0 sessions rely on the
422178825Sdfr	 * serialization provided by having the same connection use
423178825Sdfr	 * the same queue.
424178825Sdfr	 */
425178825Sdfr#ifdef NUMA
426178825Sdfr	if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) {
427178825Sdfr		di = &ktls_domains[inp->inp_numa_domain];
428178825Sdfr		cpuid = di->cpu[inp->inp_flowid % di->count];
429178825Sdfr	} else
430178825Sdfr#endif
431178825Sdfr		cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads];
432178825Sdfr	return (cpuid);
433178825Sdfr}
434178825Sdfr
435178825Sdfrstatic int
436178825Sdfrktls_buffer_import(void *arg, void **store, int count, int domain, int flags)
437178825Sdfr{
438178825Sdfr	vm_page_t m;
439178825Sdfr	int i, req;
440178825Sdfr
441178825Sdfr	KASSERT((ktls_maxlen & PAGE_MASK) == 0,
442178825Sdfr	    ("%s: ktls max length %d is not page size-aligned",
443178825Sdfr	    __func__, ktls_maxlen));
444178825Sdfr
445178825Sdfr	req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags);
446178825Sdfr	for (i = 0; i < count; i++) {
447178825Sdfr		m = vm_page_alloc_noobj_contig_domain(domain, req,
448178825Sdfr		    atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0,
449178825Sdfr		    VM_MEMATTR_DEFAULT);
450178825Sdfr		if (m == NULL)
451178825Sdfr			break;
452178825Sdfr		store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
453178825Sdfr	}
454178825Sdfr	return (i);
455178825Sdfr}
456178825Sdfr
457178825Sdfrstatic void
458178825Sdfrktls_buffer_release(void *arg __unused, void **store, int count)
459178825Sdfr{
460178825Sdfr	vm_page_t m;
461178825Sdfr	int i, j;
462178825Sdfr
463178825Sdfr	for (i = 0; i < count; i++) {
464178825Sdfr		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
465178825Sdfr		for (j = 0; j < atop(ktls_maxlen); j++) {
466178825Sdfr			(void)vm_page_unwire_noq(m + j);
467178825Sdfr			vm_page_free(m + j);
468178825Sdfr		}
469178825Sdfr	}
470178825Sdfr}
471178825Sdfr
472178825Sdfrstatic void
473178825Sdfrktls_free_mext_contig(struct mbuf *m)
474178825Sdfr{
475178825Sdfr	M_ASSERTEXTPG(m);
476178825Sdfr	uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0]));
477178825Sdfr}
478178825Sdfr
479178825Sdfrstatic int
480178825Sdfrktls_init(void)
481178825Sdfr{
482178825Sdfr	struct thread *td;
483178825Sdfr	struct pcpu *pc;
484178825Sdfr	int count, domain, error, i;
485178825Sdfr
486178825Sdfr	ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS,
487178825Sdfr	    M_WAITOK | M_ZERO);
488178825Sdfr
489178825Sdfr	ktls_session_zone = uma_zcreate("ktls_session",
490178825Sdfr	    sizeof(struct ktls_session),
491178825Sdfr	    NULL, NULL, NULL, NULL,
492178825Sdfr	    UMA_ALIGN_CACHE, 0);
493178825Sdfr
494178825Sdfr	if (ktls_sw_buffer_cache) {
495178825Sdfr		ktls_buffer_zone = uma_zcache_create("ktls_buffers",
496178825Sdfr		    roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL,
497178825Sdfr		    ktls_buffer_import, ktls_buffer_release, NULL,
498178825Sdfr		    UMA_ZONE_FIRSTTOUCH);
499178825Sdfr	}
500178825Sdfr
501178825Sdfr	/*
502178825Sdfr	 * Initialize the workqueues to run the TLS work.  We create a
503178825Sdfr	 * work queue for each CPU.
504178825Sdfr	 */
505178825Sdfr	CPU_FOREACH(i) {
506178825Sdfr		STAILQ_INIT(&ktls_wq[i].m_head);
507178825Sdfr		STAILQ_INIT(&ktls_wq[i].so_head);
508178825Sdfr		mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF);
509178825Sdfr		if (ktls_bind_threads > 1) {
510178825Sdfr			pc = pcpu_find(i);
511178825Sdfr			domain = pc->pc_domain;
512178825Sdfr			count = ktls_domains[domain].count;
513178825Sdfr			ktls_domains[domain].cpu[count] = i;
514178825Sdfr			ktls_domains[domain].count++;
515178825Sdfr		}
516178825Sdfr		ktls_cpuid_lookup[ktls_number_threads] = i;
517178825Sdfr		ktls_number_threads++;
518178825Sdfr	}
519178825Sdfr
520178825Sdfr	/*
521178825Sdfr	 * If we somehow have an empty domain, fall back to choosing
522178825Sdfr	 * among all KTLS threads.
523178825Sdfr	 */
524178825Sdfr	if (ktls_bind_threads > 1) {
525178825Sdfr		for (i = 0; i < vm_ndomains; i++) {
526178825Sdfr			if (ktls_domains[i].count == 0) {
527178825Sdfr				ktls_bind_threads = 1;
528178825Sdfr				break;
529178825Sdfr			}
530178825Sdfr		}
531178825Sdfr	}
532178825Sdfr
533178825Sdfr	/* Start kthreads for each workqueue. */
534178825Sdfr	CPU_FOREACH(i) {
535178825Sdfr		error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i],
536178825Sdfr		    &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i);
537178825Sdfr		if (error) {
538178825Sdfr			printf("Can't add KTLS thread %d error %d\n", i, error);
539178825Sdfr			return (error);
540178825Sdfr		}
541178825Sdfr	}
542178825Sdfr
543178825Sdfr	/*
544178825Sdfr	 * Start an allocation thread per-domain to perform blocking allocations
545178825Sdfr	 * of 16k physically contiguous TLS crypto destination buffers.
546178825Sdfr	 */
547178825Sdfr	if (ktls_sw_buffer_cache) {
548178825Sdfr		for (domain = 0; domain < vm_ndomains; domain++) {
549178825Sdfr			if (VM_DOMAIN_EMPTY(domain))
550178825Sdfr				continue;
551178825Sdfr			if (CPU_EMPTY(&cpuset_domain[domain]))
552178825Sdfr				continue;
553178825Sdfr			error = kproc_kthread_add(ktls_reclaim_thread,
554178825Sdfr			    &ktls_domains[domain], &ktls_proc,
555178825Sdfr			    &ktls_domains[domain].reclaim_td.td,
556178825Sdfr			    0, 0, "KTLS", "reclaim_%d", domain);
557178825Sdfr			if (error) {
558178825Sdfr				printf("Can't add KTLS reclaim thread %d error %d\n",
559178825Sdfr				    domain, error);
560178825Sdfr				return (error);
561178825Sdfr			}
562178825Sdfr		}
563178825Sdfr	}
564178825Sdfr
565178825Sdfr	if (bootverbose)
566178825Sdfr		printf("KTLS: Initialized %d threads\n", ktls_number_threads);
567178825Sdfr	return (0);
568178825Sdfr}
569178825Sdfr
570178825Sdfrstatic int
571178825Sdfrktls_start_kthreads(void)
572178825Sdfr{
573178825Sdfr	int error, state;
574178825Sdfr
575178825Sdfrstart:
576178825Sdfr	state = atomic_load_acq_int(&ktls_init_state);
577178825Sdfr	if (__predict_true(state > 0))
578178825Sdfr		return (0);
579178825Sdfr	if (state < 0)
580178825Sdfr		return (ENXIO);
581178825Sdfr
582178825Sdfr	sx_xlock(&ktls_init_lock);
583178825Sdfr	if (ktls_init_state != 0) {
584178825Sdfr		sx_xunlock(&ktls_init_lock);
585178825Sdfr		goto start;
586178825Sdfr	}
587178825Sdfr
588178825Sdfr	error = ktls_init();
589178825Sdfr	if (error == 0)
590178825Sdfr		state = 1;
591178825Sdfr	else
592178825Sdfr		state = -1;
593178825Sdfr	atomic_store_rel_int(&ktls_init_state, state);
594178825Sdfr	sx_xunlock(&ktls_init_lock);
595178825Sdfr	return (error);
596178825Sdfr}
597178825Sdfr
598178825Sdfrstatic int
599178825Sdfrktls_create_session(struct socket *so, struct tls_enable *en,
600178825Sdfr    struct ktls_session **tlsp, int direction)
601178825Sdfr{
602178825Sdfr	struct ktls_session *tls;
603178825Sdfr	int error;
604178825Sdfr
605178825Sdfr	/* Only TLS 1.0 - 1.3 are supported. */
606178825Sdfr	if (en->tls_vmajor != TLS_MAJOR_VER_ONE)
607178825Sdfr		return (EINVAL);
608178825Sdfr	if (en->tls_vminor < TLS_MINOR_VER_ZERO ||
609178825Sdfr	    en->tls_vminor > TLS_MINOR_VER_THREE)
610178825Sdfr		return (EINVAL);
611178825Sdfr
612178825Sdfr
613178825Sdfr	/* No flags are currently supported. */
614178825Sdfr	if (en->flags != 0)
615178825Sdfr		return (EINVAL);
616178825Sdfr
617178825Sdfr	/* Common checks for supported algorithms. */
618178825Sdfr	switch (en->cipher_algorithm) {
619178825Sdfr	case CRYPTO_AES_NIST_GCM_16:
620178825Sdfr		/*
621178825Sdfr		 * auth_algorithm isn't used, but permit GMAC values
622178825Sdfr		 * for compatibility.
623178825Sdfr		 */
624178825Sdfr		switch (en->auth_algorithm) {
625178825Sdfr		case 0:
626178825Sdfr#ifdef COMPAT_FREEBSD12
627178825Sdfr		/* XXX: Really 13.0-current COMPAT. */
628178825Sdfr		case CRYPTO_AES_128_NIST_GMAC:
629178825Sdfr		case CRYPTO_AES_192_NIST_GMAC:
630178825Sdfr		case CRYPTO_AES_256_NIST_GMAC:
631178825Sdfr#endif
632178825Sdfr			break;
633178825Sdfr		default:
634178825Sdfr			return (EINVAL);
635178825Sdfr		}
636178825Sdfr		if (en->auth_key_len != 0)
637178825Sdfr			return (EINVAL);
638178825Sdfr		switch (en->tls_vminor) {
639178825Sdfr		case TLS_MINOR_VER_TWO:
640178825Sdfr			if (en->iv_len != TLS_AEAD_GCM_LEN)
641178825Sdfr				return (EINVAL);
642178825Sdfr			break;
643178825Sdfr		case TLS_MINOR_VER_THREE:
644178825Sdfr			if (en->iv_len != TLS_1_3_GCM_IV_LEN)
645178825Sdfr				return (EINVAL);
646178825Sdfr			break;
647178825Sdfr		default:
648178825Sdfr			return (EINVAL);
649178825Sdfr		}
650178825Sdfr		break;
651178825Sdfr	case CRYPTO_AES_CBC:
652178825Sdfr		switch (en->auth_algorithm) {
653178825Sdfr		case CRYPTO_SHA1_HMAC:
654178825Sdfr			break;
655178825Sdfr		case CRYPTO_SHA2_256_HMAC:
656178825Sdfr		case CRYPTO_SHA2_384_HMAC:
657178825Sdfr			if (en->tls_vminor != TLS_MINOR_VER_TWO)
658178825Sdfr				return (EINVAL);
659178825Sdfr			break;
660178825Sdfr		default:
661178825Sdfr			return (EINVAL);
662178825Sdfr		}
663178825Sdfr		if (en->auth_key_len == 0)
664178825Sdfr			return (EINVAL);
665178825Sdfr
666178825Sdfr		/*
667178825Sdfr		 * TLS 1.0 requires an implicit IV.  TLS 1.1 and 1.2
668178825Sdfr		 * use explicit IVs.
669178825Sdfr		 */
670178825Sdfr		switch (en->tls_vminor) {
671178825Sdfr		case TLS_MINOR_VER_ZERO:
672178825Sdfr			if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN)
673178825Sdfr				return (EINVAL);
674178825Sdfr			break;
675178825Sdfr		case TLS_MINOR_VER_ONE:
676178825Sdfr		case TLS_MINOR_VER_TWO:
677178825Sdfr			/* Ignore any supplied IV. */
678178825Sdfr			en->iv_len = 0;
679178825Sdfr			break;
680178825Sdfr		default:
681178825Sdfr			return (EINVAL);
682178825Sdfr		}
683178825Sdfr		break;
684178825Sdfr	case CRYPTO_CHACHA20_POLY1305:
685178825Sdfr		if (en->auth_algorithm != 0 || en->auth_key_len != 0)
686178825Sdfr			return (EINVAL);
687178825Sdfr		if (en->tls_vminor != TLS_MINOR_VER_TWO &&
688178825Sdfr		    en->tls_vminor != TLS_MINOR_VER_THREE)
689178825Sdfr			return (EINVAL);
690178825Sdfr		if (en->iv_len != TLS_CHACHA20_IV_LEN)
691178825Sdfr			return (EINVAL);
692178825Sdfr		break;
693178825Sdfr	default:
694178825Sdfr		return (EINVAL);
695178825Sdfr	}
696178825Sdfr
697178825Sdfr	error = ktls_start_kthreads();
698178825Sdfr	if (error != 0)
699178825Sdfr		return (error);
700178825Sdfr
701178825Sdfr	tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
702178825Sdfr
703178825Sdfr	counter_u64_add(ktls_offload_active, 1);
704178825Sdfr
705178825Sdfr	refcount_init(&tls->refcount, 1);
706178825Sdfr	if (direction == KTLS_RX) {
707178825Sdfr		TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls);
708178825Sdfr	} else {
709178825Sdfr		TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls);
710178825Sdfr		tls->inp = so->so_pcb;
711178825Sdfr		in_pcbref(tls->inp);
712178825Sdfr		tls->tx = true;
713178825Sdfr	}
714178825Sdfr
715178825Sdfr	tls->wq_index = ktls_get_cpu(so);
716178825Sdfr
717178825Sdfr	tls->params.cipher_algorithm = en->cipher_algorithm;
718178825Sdfr	tls->params.auth_algorithm = en->auth_algorithm;
719178825Sdfr	tls->params.tls_vmajor = en->tls_vmajor;
720178825Sdfr	tls->params.tls_vminor = en->tls_vminor;
721178825Sdfr	tls->params.flags = en->flags;
722178825Sdfr	tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen);
723178825Sdfr
724178825Sdfr	/* Set the header and trailer lengths. */
725178825Sdfr	tls->params.tls_hlen = sizeof(struct tls_record_layer);
726178825Sdfr	switch (en->cipher_algorithm) {
727178825Sdfr	case CRYPTO_AES_NIST_GCM_16:
728178825Sdfr		/*
729178825Sdfr		 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte
730178825Sdfr		 * nonce.  TLS 1.3 uses a 12 byte implicit IV.
731178825Sdfr		 */
732178825Sdfr		if (en->tls_vminor < TLS_MINOR_VER_THREE)
733178825Sdfr			tls->params.tls_hlen += sizeof(uint64_t);
734178825Sdfr		tls->params.tls_tlen = AES_GMAC_HASH_LEN;
735178825Sdfr		tls->params.tls_bs = 1;
736178825Sdfr		break;
737178825Sdfr	case CRYPTO_AES_CBC:
738178825Sdfr		switch (en->auth_algorithm) {
739178825Sdfr		case CRYPTO_SHA1_HMAC:
740178825Sdfr			if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
741178825Sdfr				/* Implicit IV, no nonce. */
742178825Sdfr				tls->sequential_records = true;
743178825Sdfr				tls->next_seqno = be64dec(en->rec_seq);
744178825Sdfr				STAILQ_INIT(&tls->pending_records);
745178825Sdfr			} else {
746178825Sdfr				tls->params.tls_hlen += AES_BLOCK_LEN;
747178825Sdfr			}
748178825Sdfr			tls->params.tls_tlen = AES_BLOCK_LEN +
749178825Sdfr			    SHA1_HASH_LEN;
750178825Sdfr			break;
751178825Sdfr		case CRYPTO_SHA2_256_HMAC:
752178825Sdfr			tls->params.tls_hlen += AES_BLOCK_LEN;
753178825Sdfr			tls->params.tls_tlen = AES_BLOCK_LEN +
754178825Sdfr			    SHA2_256_HASH_LEN;
755178825Sdfr			break;
756178825Sdfr		case CRYPTO_SHA2_384_HMAC:
757178825Sdfr			tls->params.tls_hlen += AES_BLOCK_LEN;
758178825Sdfr			tls->params.tls_tlen = AES_BLOCK_LEN +
759178825Sdfr			    SHA2_384_HASH_LEN;
760178825Sdfr			break;
761178825Sdfr		default:
762178825Sdfr			panic("invalid hmac");
763178825Sdfr		}
764178825Sdfr		tls->params.tls_bs = AES_BLOCK_LEN;
765178825Sdfr		break;
766178825Sdfr	case CRYPTO_CHACHA20_POLY1305:
767178825Sdfr		/*
768178825Sdfr		 * Chacha20 uses a 12 byte implicit IV.
769178825Sdfr		 */
770178825Sdfr		tls->params.tls_tlen = POLY1305_HASH_LEN;
771178825Sdfr		tls->params.tls_bs = 1;
772178825Sdfr		break;
773178825Sdfr	default:
774178825Sdfr		panic("invalid cipher");
775178825Sdfr	}
776178825Sdfr
777178825Sdfr	/*
778178825Sdfr	 * TLS 1.3 includes optional padding which we do not support,
779178825Sdfr	 * and also puts the "real" record type at the end of the
780178825Sdfr	 * encrypted data.
781178825Sdfr	 */
782178825Sdfr	if (en->tls_vminor == TLS_MINOR_VER_THREE)
783178825Sdfr		tls->params.tls_tlen += sizeof(uint8_t);
784178825Sdfr
785178825Sdfr	KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN,
786178825Sdfr	    ("TLS header length too long: %d", tls->params.tls_hlen));
787178825Sdfr	KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN,
788178825Sdfr	    ("TLS trailer length too long: %d", tls->params.tls_tlen));
789178825Sdfr
790178825Sdfr	if (en->auth_key_len != 0) {
791178825Sdfr		tls->params.auth_key_len = en->auth_key_len;
792178825Sdfr		tls->params.auth_key = malloc(en->auth_key_len, M_KTLS,
793178825Sdfr		    M_WAITOK);
794178825Sdfr		bcopy(en->auth_key, tls->params.auth_key, en->auth_key_len);
795178825Sdfr	}
796178825Sdfr
797178825Sdfr	tls->params.cipher_key_len = en->cipher_key_len;
798178825Sdfr	tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK);
799178825Sdfr	bcopy(en->cipher_key, tls->params.cipher_key, en->cipher_key_len);
800178825Sdfr
801178825Sdfr	/*
802178825Sdfr	 * This holds the implicit portion of the nonce for AEAD
803178825Sdfr	 * ciphers and the initial implicit IV for TLS 1.0.  The
804178825Sdfr	 * explicit portions of the IV are generated in ktls_frame().
805178825Sdfr	 */
806178825Sdfr	if (en->iv_len != 0) {
807178825Sdfr		tls->params.iv_len = en->iv_len;
808178825Sdfr		bcopy(en->iv, tls->params.iv, en->iv_len);
809178825Sdfr
810178825Sdfr		/*
811178825Sdfr		 * For TLS 1.2 with GCM, generate an 8-byte nonce as a
812178825Sdfr		 * counter to generate unique explicit IVs.
813178825Sdfr		 *
814178825Sdfr		 * Store this counter in the last 8 bytes of the IV
815178825Sdfr		 * array so that it is 8-byte aligned.
816178825Sdfr		 */
817178825Sdfr		if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
818178825Sdfr		    en->tls_vminor == TLS_MINOR_VER_TWO)
819178825Sdfr			arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0);
820178825Sdfr	}
821178825Sdfr
822178825Sdfr	*tlsp = tls;
823178825Sdfr	return (0);
824178825Sdfr}
825178825Sdfr
826178825Sdfrstatic struct ktls_session *
827178825Sdfrktls_clone_session(struct ktls_session *tls, int direction)
828178825Sdfr{
829178825Sdfr	struct ktls_session *tls_new;
830178825Sdfr
831178825Sdfr	tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
832178825Sdfr
833178825Sdfr	counter_u64_add(ktls_offload_active, 1);
834178825Sdfr
835178825Sdfr	refcount_init(&tls_new->refcount, 1);
836178825Sdfr	if (direction == KTLS_RX) {
837178825Sdfr		TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag,
838178825Sdfr		    tls_new);
839178825Sdfr	} else {
840178825Sdfr		TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag,
841178825Sdfr		    tls_new);
842178825Sdfr		tls_new->inp = tls->inp;
843178825Sdfr		tls_new->tx = true;
844178825Sdfr		in_pcbref(tls_new->inp);
845178825Sdfr	}
846178825Sdfr
847178825Sdfr	/* Copy fields from existing session. */
848178825Sdfr	tls_new->params = tls->params;
849178825Sdfr	tls_new->wq_index = tls->wq_index;
850178825Sdfr
851178825Sdfr	/* Deep copy keys. */
852178825Sdfr	if (tls_new->params.auth_key != NULL) {
853178825Sdfr		tls_new->params.auth_key = malloc(tls->params.auth_key_len,
854178825Sdfr		    M_KTLS, M_WAITOK);
855178825Sdfr		memcpy(tls_new->params.auth_key, tls->params.auth_key,
856178825Sdfr		    tls->params.auth_key_len);
857178825Sdfr	}
858178825Sdfr
859178825Sdfr	tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS,
860178825Sdfr	    M_WAITOK);
861178825Sdfr	memcpy(tls_new->params.cipher_key, tls->params.cipher_key,
862178825Sdfr	    tls->params.cipher_key_len);
863178825Sdfr
864178825Sdfr	return (tls_new);
865178825Sdfr}
866178825Sdfr
867178825Sdfr#ifdef TCP_OFFLOAD
868178825Sdfrstatic int
869178825Sdfrktls_try_toe(struct socket *so, struct ktls_session *tls, int direction)
870178825Sdfr{
871178825Sdfr	struct inpcb *inp;
872178825Sdfr	struct tcpcb *tp;
873178825Sdfr	int error;
874178825Sdfr
875178825Sdfr	inp = so->so_pcb;
876178825Sdfr	INP_WLOCK(inp);
877178825Sdfr	if (inp->inp_flags & INP_DROPPED) {
878178825Sdfr		INP_WUNLOCK(inp);
879178825Sdfr		return (ECONNRESET);
880178825Sdfr	}
881178825Sdfr	if (inp->inp_socket == NULL) {
882178825Sdfr		INP_WUNLOCK(inp);
883178825Sdfr		return (ECONNRESET);
884178825Sdfr	}
885178825Sdfr	tp = intotcpcb(inp);
886178825Sdfr	if (!(tp->t_flags & TF_TOE)) {
887178825Sdfr		INP_WUNLOCK(inp);
888178825Sdfr		return (EOPNOTSUPP);
889178825Sdfr	}
890178825Sdfr
891178825Sdfr	error = tcp_offload_alloc_tls_session(tp, tls, direction);
892178825Sdfr	INP_WUNLOCK(inp);
893178825Sdfr	if (error == 0) {
894178825Sdfr		tls->mode = TCP_TLS_MODE_TOE;
895178825Sdfr		switch (tls->params.cipher_algorithm) {
896178825Sdfr		case CRYPTO_AES_CBC:
897178825Sdfr			counter_u64_add(ktls_toe_cbc, 1);
898178825Sdfr			break;
899178825Sdfr		case CRYPTO_AES_NIST_GCM_16:
900178825Sdfr			counter_u64_add(ktls_toe_gcm, 1);
901178825Sdfr			break;
902178825Sdfr		case CRYPTO_CHACHA20_POLY1305:
903178825Sdfr			counter_u64_add(ktls_toe_chacha20, 1);
904178825Sdfr			break;
905178825Sdfr		}
906178825Sdfr	}
907178825Sdfr	return (error);
908178825Sdfr}
909178825Sdfr#endif
910178825Sdfr
911178825Sdfr/*
912178825Sdfr * Common code used when first enabling ifnet TLS on a connection or
913178825Sdfr * when allocating a new ifnet TLS session due to a routing change.
914178825Sdfr * This function allocates a new TLS send tag on whatever interface
915178825Sdfr * the connection is currently routed over.
916178825Sdfr */
917178825Sdfrstatic int
918178825Sdfrktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force,
919178825Sdfr    struct m_snd_tag **mstp)
920178825Sdfr{
921178825Sdfr	union if_snd_tag_alloc_params params;
922178825Sdfr	struct ifnet *ifp;
923178825Sdfr	struct nhop_object *nh;
924178825Sdfr	struct tcpcb *tp;
925178825Sdfr	int error;
926178825Sdfr
927178825Sdfr	INP_RLOCK(inp);
928178825Sdfr	if (inp->inp_flags & INP_DROPPED) {
929178825Sdfr		INP_RUNLOCK(inp);
930178825Sdfr		return (ECONNRESET);
931178825Sdfr	}
932178825Sdfr	if (inp->inp_socket == NULL) {
933178825Sdfr		INP_RUNLOCK(inp);
934178825Sdfr		return (ECONNRESET);
935178825Sdfr	}
936178825Sdfr	tp = intotcpcb(inp);
937178825Sdfr
938178825Sdfr	/*
939178825Sdfr	 * Check administrative controls on ifnet TLS to determine if
940178825Sdfr	 * ifnet TLS should be denied.
941178825Sdfr	 *
942178825Sdfr	 * - Always permit 'force' requests.
943178825Sdfr	 * - ktls_ifnet_permitted == 0: always deny.
944178825Sdfr	 */
945178825Sdfr	if (!force && ktls_ifnet_permitted == 0) {
946178825Sdfr		INP_RUNLOCK(inp);
947178825Sdfr		return (ENXIO);
948178825Sdfr	}
949178825Sdfr
950178825Sdfr	/*
951178825Sdfr	 * XXX: Use the cached route in the inpcb to find the
952178825Sdfr	 * interface.  This should perhaps instead use
953178825Sdfr	 * rtalloc1_fib(dst, 0, 0, fibnum).  Since KTLS is only
954178825Sdfr	 * enabled after a connection has completed key negotiation in
955178825Sdfr	 * userland, the cached route will be present in practice.
956178825Sdfr	 */
957178825Sdfr	nh = inp->inp_route.ro_nh;
958178825Sdfr	if (nh == NULL) {
959178825Sdfr		INP_RUNLOCK(inp);
960178825Sdfr		return (ENXIO);
961178825Sdfr	}
962178825Sdfr	ifp = nh->nh_ifp;
963178825Sdfr	if_ref(ifp);
964178825Sdfr
965178825Sdfr	/*
966178825Sdfr	 * Allocate a TLS + ratelimit tag if the connection has an
967178825Sdfr	 * existing pacing rate.
968178825Sdfr	 */
969178825Sdfr	if (tp->t_pacing_rate != -1 &&
970178825Sdfr	    (if_getcapenable(ifp) & IFCAP_TXTLS_RTLMT) != 0) {
971178825Sdfr		params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT;
972178825Sdfr		params.tls_rate_limit.inp = inp;
973178825Sdfr		params.tls_rate_limit.tls = tls;
974178825Sdfr		params.tls_rate_limit.max_rate = tp->t_pacing_rate;
975178825Sdfr	} else {
976178825Sdfr		params.hdr.type = IF_SND_TAG_TYPE_TLS;
977178825Sdfr		params.tls.inp = inp;
978178825Sdfr		params.tls.tls = tls;
979178825Sdfr	}
980178825Sdfr	params.hdr.flowid = inp->inp_flowid;
981178825Sdfr	params.hdr.flowtype = inp->inp_flowtype;
982178825Sdfr	params.hdr.numa_domain = inp->inp_numa_domain;
983178825Sdfr	INP_RUNLOCK(inp);
984178825Sdfr
985178825Sdfr	if ((if_getcapenable(ifp) & IFCAP_MEXTPG) == 0) {
986178825Sdfr		error = EOPNOTSUPP;
987178825Sdfr		goto out;
988178825Sdfr	}
989178825Sdfr	if (inp->inp_vflag & INP_IPV6) {
990178825Sdfr		if ((if_getcapenable(ifp) & IFCAP_TXTLS6) == 0) {
991178825Sdfr			error = EOPNOTSUPP;
992178825Sdfr			goto out;
993178825Sdfr		}
994178825Sdfr	} else {
995178825Sdfr		if ((if_getcapenable(ifp) & IFCAP_TXTLS4) == 0) {
996178825Sdfr			error = EOPNOTSUPP;
997178825Sdfr			goto out;
998178825Sdfr		}
999178825Sdfr	}
1000178825Sdfr	error = m_snd_tag_alloc(ifp, &params, mstp);
1001178825Sdfrout:
1002178825Sdfr	if_rele(ifp);
1003178825Sdfr	return (error);
1004178825Sdfr}
1005178825Sdfr
1006178825Sdfr/*
1007178825Sdfr * Allocate an initial TLS receive tag for doing HW decryption of TLS
1008178825Sdfr * data.
1009178825Sdfr *
1010178825Sdfr * This function allocates a new TLS receive tag on whatever interface
1011178825Sdfr * the connection is currently routed over.  If the connection ends up
1012178825Sdfr * using a different interface for receive this will get fixed up via
1013178825Sdfr * ktls_input_ifp_mismatch as future packets arrive.
1014178825Sdfr */
1015178825Sdfrstatic int
1016178825Sdfrktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls,
1017178825Sdfr    struct m_snd_tag **mstp)
1018178825Sdfr{
1019178825Sdfr	union if_snd_tag_alloc_params params;
1020178825Sdfr	struct ifnet *ifp;
1021178825Sdfr	struct nhop_object *nh;
1022178825Sdfr	int error;
1023178825Sdfr
1024178825Sdfr	if (!ktls_ocf_recrypt_supported(tls))
1025178825Sdfr		return (ENXIO);
1026178825Sdfr
1027178825Sdfr	INP_RLOCK(inp);
1028178825Sdfr	if (inp->inp_flags & INP_DROPPED) {
1029178825Sdfr		INP_RUNLOCK(inp);
1030178825Sdfr		return (ECONNRESET);
1031178825Sdfr	}
1032178825Sdfr	if (inp->inp_socket == NULL) {
1033178825Sdfr		INP_RUNLOCK(inp);
1034178825Sdfr		return (ECONNRESET);
1035178825Sdfr	}
1036178825Sdfr
1037178825Sdfr	/*
1038178825Sdfr	 * Check administrative controls on ifnet TLS to determine if
1039178825Sdfr	 * ifnet TLS should be denied.
1040178825Sdfr	 */
1041178825Sdfr	if (ktls_ifnet_permitted == 0) {
1042178825Sdfr		INP_RUNLOCK(inp);
1043178825Sdfr		return (ENXIO);
1044178825Sdfr	}
1045178825Sdfr
1046178825Sdfr	/*
1047178825Sdfr	 * XXX: As with ktls_alloc_snd_tag, use the cached route in
1048178825Sdfr	 * the inpcb to find the interface.
1049178825Sdfr	 */
1050178825Sdfr	nh = inp->inp_route.ro_nh;
1051178825Sdfr	if (nh == NULL) {
1052178825Sdfr		INP_RUNLOCK(inp);
1053178825Sdfr		return (ENXIO);
1054178825Sdfr	}
1055178825Sdfr	ifp = nh->nh_ifp;
1056178825Sdfr	if_ref(ifp);
1057178825Sdfr	tls->rx_ifp = ifp;
1058178825Sdfr
1059178825Sdfr	params.hdr.type = IF_SND_TAG_TYPE_TLS_RX;
1060178825Sdfr	params.hdr.flowid = inp->inp_flowid;
1061178825Sdfr	params.hdr.flowtype = inp->inp_flowtype;
1062178825Sdfr	params.hdr.numa_domain = inp->inp_numa_domain;
1063178825Sdfr	params.tls_rx.inp = inp;
1064178825Sdfr	params.tls_rx.tls = tls;
1065178825Sdfr	params.tls_rx.vlan_id = 0;
1066178825Sdfr
1067178825Sdfr	INP_RUNLOCK(inp);
1068178825Sdfr
1069178825Sdfr	if (inp->inp_vflag & INP_IPV6) {
1070178825Sdfr		if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS6)) == 0) {
1071178825Sdfr			error = EOPNOTSUPP;
1072178825Sdfr			goto out;
1073178825Sdfr		}
1074178825Sdfr	} else {
1075178825Sdfr		if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS4)) == 0) {
1076178825Sdfr			error = EOPNOTSUPP;
1077178825Sdfr			goto out;
1078178825Sdfr		}
1079178825Sdfr	}
1080178825Sdfr	error = m_snd_tag_alloc(ifp, &params, mstp);
1081178825Sdfr
1082178825Sdfr	/*
1083178825Sdfr	 * If this connection is over a vlan, vlan_snd_tag_alloc
1084178825Sdfr	 * rewrites vlan_id with the saved interface.  Save the VLAN
1085178825Sdfr	 * ID for use in ktls_reset_receive_tag which allocates new
1086178825Sdfr	 * receive tags directly from the leaf interface bypassing
1087178825Sdfr	 * if_vlan.
1088178825Sdfr	 */
1089178825Sdfr	if (error == 0)
1090178825Sdfr		tls->rx_vlan_id = params.tls_rx.vlan_id;
1091178825Sdfrout:
1092178825Sdfr	return (error);
1093178825Sdfr}
1094178825Sdfr
1095178825Sdfrstatic int
1096178825Sdfrktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction,
1097178825Sdfr    bool force)
1098178825Sdfr{
1099178825Sdfr	struct m_snd_tag *mst;
1100178825Sdfr	int error;
1101178825Sdfr
1102178825Sdfr	switch (direction) {
1103178825Sdfr	case KTLS_TX:
1104178825Sdfr		error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst);
1105178825Sdfr		if (__predict_false(error != 0))
1106178825Sdfr			goto done;
1107178825Sdfr		break;
1108178825Sdfr	case KTLS_RX:
1109178825Sdfr		KASSERT(!force, ("%s: forced receive tag", __func__));
1110178825Sdfr		error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst);
1111178825Sdfr		if (__predict_false(error != 0))
1112178825Sdfr			goto done;
1113178825Sdfr		break;
1114178825Sdfr	default:
1115178825Sdfr		__assert_unreachable();
1116178825Sdfr	}
1117178825Sdfr
1118178825Sdfr	tls->mode = TCP_TLS_MODE_IFNET;
1119178825Sdfr	tls->snd_tag = mst;
1120178825Sdfr
1121178825Sdfr	switch (tls->params.cipher_algorithm) {
1122178825Sdfr	case CRYPTO_AES_CBC:
1123178825Sdfr		counter_u64_add(ktls_ifnet_cbc, 1);
1124178825Sdfr		break;
1125178825Sdfr	case CRYPTO_AES_NIST_GCM_16:
1126178825Sdfr		counter_u64_add(ktls_ifnet_gcm, 1);
1127178825Sdfr		break;
1128178825Sdfr	case CRYPTO_CHACHA20_POLY1305:
1129178825Sdfr		counter_u64_add(ktls_ifnet_chacha20, 1);
1130178825Sdfr		break;
1131178825Sdfr	default:
1132178825Sdfr		break;
1133178825Sdfr	}
1134178825Sdfrdone:
1135178825Sdfr	return (error);
1136178825Sdfr}
1137178825Sdfr
1138178825Sdfrstatic void
1139178825Sdfrktls_use_sw(struct ktls_session *tls)
1140178825Sdfr{
1141178825Sdfr	tls->mode = TCP_TLS_MODE_SW;
1142178825Sdfr	switch (tls->params.cipher_algorithm) {
1143178825Sdfr	case CRYPTO_AES_CBC:
1144178825Sdfr		counter_u64_add(ktls_sw_cbc, 1);
1145178825Sdfr		break;
1146178825Sdfr	case CRYPTO_AES_NIST_GCM_16:
1147178825Sdfr		counter_u64_add(ktls_sw_gcm, 1);
1148178825Sdfr		break;
1149178825Sdfr	case CRYPTO_CHACHA20_POLY1305:
1150178825Sdfr		counter_u64_add(ktls_sw_chacha20, 1);
1151178825Sdfr		break;
1152178825Sdfr	}
1153178825Sdfr}
1154178825Sdfr
1155178825Sdfrstatic int
1156178825Sdfrktls_try_sw(struct socket *so, struct ktls_session *tls, int direction)
1157178825Sdfr{
1158178825Sdfr	int error;
1159178825Sdfr
1160178825Sdfr	error = ktls_ocf_try(so, tls, direction);
1161178825Sdfr	if (error)
1162178825Sdfr		return (error);
1163178825Sdfr	ktls_use_sw(tls);
1164178825Sdfr	return (0);
1165178825Sdfr}
1166178825Sdfr
1167178825Sdfr/*
1168178825Sdfr * KTLS RX stores data in the socket buffer as a list of TLS records,
1169178825Sdfr * where each record is stored as a control message containg the TLS
1170178825Sdfr * header followed by data mbufs containing the decrypted data.  This
1171178825Sdfr * is different from KTLS TX which always uses an mb_ext_pgs mbuf for
1172178825Sdfr * both encrypted and decrypted data.  TLS records decrypted by a NIC
1173178825Sdfr * should be queued to the socket buffer as records, but encrypted
1174178825Sdfr * data which needs to be decrypted by software arrives as a stream of
1175178825Sdfr * regular mbufs which need to be converted.  In addition, there may
1176178825Sdfr * already be pending encrypted data in the socket buffer when KTLS RX
1177178825Sdfr * is enabled.
1178178825Sdfr *
1179178825Sdfr * To manage not-yet-decrypted data for KTLS RX, the following scheme
1180178825Sdfr * is used:
1181178825Sdfr *
1182178825Sdfr * - A single chain of NOTREADY mbufs is hung off of sb_mtls.
1183178825Sdfr *
1184178825Sdfr * - ktls_check_rx checks this chain of mbufs reading the TLS header
1185178825Sdfr *   from the first mbuf.  Once all of the data for that TLS record is
1186178825Sdfr *   queued, the socket is queued to a worker thread.
1187178825Sdfr *
1188178825Sdfr * - The worker thread calls ktls_decrypt to decrypt TLS records in
1189178825Sdfr *   the TLS chain.  Each TLS record is detached from the TLS chain,
1190178825Sdfr *   decrypted, and inserted into the regular socket buffer chain as
1191178825Sdfr *   record starting with a control message holding the TLS header and
1192178825Sdfr *   a chain of mbufs holding the encrypted data.
1193178825Sdfr */
1194178825Sdfr
1195178825Sdfrstatic void
1196178825Sdfrsb_mark_notready(struct sockbuf *sb)
1197178825Sdfr{
1198178825Sdfr	struct mbuf *m;
1199178825Sdfr
1200178825Sdfr	m = sb->sb_mb;
1201178825Sdfr	sb->sb_mtls = m;
1202178825Sdfr	sb->sb_mb = NULL;
1203178825Sdfr	sb->sb_mbtail = NULL;
1204178825Sdfr	sb->sb_lastrecord = NULL;
1205178825Sdfr	for (; m != NULL; m = m->m_next) {
1206178825Sdfr		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL",
1207178825Sdfr		    __func__));
1208178825Sdfr		KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail",
1209178825Sdfr		    __func__));
1210178825Sdfr		KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len",
1211178825Sdfr		    __func__));
1212178825Sdfr		m->m_flags |= M_NOTREADY;
1213178825Sdfr		sb->sb_acc -= m->m_len;
1214178825Sdfr		sb->sb_tlscc += m->m_len;
1215178825Sdfr		sb->sb_mtlstail = m;
1216178825Sdfr	}
1217178825Sdfr	KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc,
1218178825Sdfr	    ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc,
1219178825Sdfr	    sb->sb_ccc));
1220178825Sdfr}
1221178825Sdfr
1222178825Sdfr/*
1223178825Sdfr * Return information about the pending TLS data in a socket
1224178825Sdfr * buffer.  On return, 'seqno' is set to the sequence number
1225178825Sdfr * of the next TLS record to be received, 'resid' is set to
1226178825Sdfr * the amount of bytes still needed for the last pending
1227178825Sdfr * record.  The function returns 'false' if the last pending
1228178825Sdfr * record contains a partial TLS header.  In that case, 'resid'
1229178825Sdfr * is the number of bytes needed to complete the TLS header.
1230178825Sdfr */
1231178825Sdfrbool
1232178825Sdfrktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp)
1233178825Sdfr{
1234178825Sdfr	struct tls_record_layer hdr;
1235178825Sdfr	struct mbuf *m;
1236178825Sdfr	uint64_t seqno;
1237178825Sdfr	size_t resid;
1238178825Sdfr	u_int offset, record_len;
1239178825Sdfr
1240178825Sdfr	SOCKBUF_LOCK_ASSERT(sb);
1241178825Sdfr	MPASS(sb->sb_flags & SB_TLS_RX);
1242178825Sdfr	seqno = sb->sb_tls_seqno;
1243178825Sdfr	resid = sb->sb_tlscc;
1244178825Sdfr	m = sb->sb_mtls;
1245178825Sdfr	offset = 0;
1246178825Sdfr
1247178825Sdfr	if (resid == 0) {
1248178825Sdfr		*seqnop = seqno;
1249178825Sdfr		*residp = 0;
1250178825Sdfr		return (true);
1251178825Sdfr	}
1252178825Sdfr
1253178825Sdfr	for (;;) {
1254178825Sdfr		seqno++;
1255178825Sdfr
1256178825Sdfr		if (resid < sizeof(hdr)) {
1257178825Sdfr			*seqnop = seqno;
1258178825Sdfr			*residp = sizeof(hdr) - resid;
1259178825Sdfr			return (false);
1260178825Sdfr		}
1261178825Sdfr
1262178825Sdfr		m_copydata(m, offset, sizeof(hdr), (void *)&hdr);
1263178825Sdfr
1264178825Sdfr		record_len = sizeof(hdr) + ntohs(hdr.tls_length);
1265178825Sdfr		if (resid <= record_len) {
1266178825Sdfr			*seqnop = seqno;
1267178825Sdfr			*residp = record_len - resid;
1268178825Sdfr			return (true);
1269178825Sdfr		}
1270178825Sdfr		resid -= record_len;
1271178825Sdfr
1272178825Sdfr		while (record_len != 0) {
1273178825Sdfr			if (m->m_len - offset > record_len) {
1274178825Sdfr				offset += record_len;
1275178825Sdfr				break;
1276178825Sdfr			}
1277178825Sdfr
1278178825Sdfr			record_len -= (m->m_len - offset);
1279178825Sdfr			offset = 0;
1280178825Sdfr			m = m->m_next;
1281178825Sdfr		}
1282178825Sdfr	}
1283178825Sdfr}
1284178825Sdfr
1285178825Sdfrint
1286178825Sdfrktls_enable_rx(struct socket *so, struct tls_enable *en)
1287178825Sdfr{
1288178825Sdfr	struct ktls_session *tls;
1289178825Sdfr	int error;
1290178825Sdfr
1291178825Sdfr	if (!ktls_offload_enable)
1292178825Sdfr		return (ENOTSUP);
1293178825Sdfr
1294178825Sdfr	counter_u64_add(ktls_offload_enable_calls, 1);
1295178825Sdfr
1296178825Sdfr	/*
1297178825Sdfr	 * This should always be true since only the TCP socket option
1298178825Sdfr	 * invokes this function.
1299178825Sdfr	 */
1300178825Sdfr	if (so->so_proto->pr_protocol != IPPROTO_TCP)
1301178825Sdfr		return (EINVAL);
1302178825Sdfr
1303178825Sdfr	/*
1304178825Sdfr	 * XXX: Don't overwrite existing sessions.  We should permit
1305178825Sdfr	 * this to support rekeying in the future.
1306178825Sdfr	 */
1307178825Sdfr	if (so->so_rcv.sb_tls_info != NULL)
1308178825Sdfr		return (EALREADY);
1309178825Sdfr
1310178825Sdfr	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1311178825Sdfr		return (ENOTSUP);
1312178825Sdfr
1313178825Sdfr	error = ktls_create_session(so, en, &tls, KTLS_RX);
1314178825Sdfr	if (error)
1315178825Sdfr		return (error);
1316178825Sdfr
1317178825Sdfr	error = ktls_ocf_try(so, tls, KTLS_RX);
1318178825Sdfr	if (error) {
1319178825Sdfr		ktls_free(tls);
1320178825Sdfr		return (error);
1321178825Sdfr	}
1322178825Sdfr
1323178825Sdfr	/* Mark the socket as using TLS offload. */
1324178825Sdfr	SOCK_RECVBUF_LOCK(so);
1325178825Sdfr	if (SOLISTENING(so)) {
1326178825Sdfr		SOCK_RECVBUF_UNLOCK(so);
1327178825Sdfr		ktls_free(tls);
1328178825Sdfr		return (EINVAL);
1329178825Sdfr	}
1330178825Sdfr	so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq);
1331178825Sdfr	so->so_rcv.sb_tls_info = tls;
1332178825Sdfr	so->so_rcv.sb_flags |= SB_TLS_RX;
1333178825Sdfr
1334178825Sdfr	/* Mark existing data as not ready until it can be decrypted. */
1335178825Sdfr	sb_mark_notready(&so->so_rcv);
1336178825Sdfr	ktls_check_rx(&so->so_rcv);
1337178825Sdfr	SOCK_RECVBUF_UNLOCK(so);
1338178825Sdfr
1339178825Sdfr	/* Prefer TOE -> ifnet TLS -> software TLS. */
1340178825Sdfr#ifdef TCP_OFFLOAD
1341178825Sdfr	error = ktls_try_toe(so, tls, KTLS_RX);
1342178825Sdfr	if (error)
1343178825Sdfr#endif
1344178825Sdfr		error = ktls_try_ifnet(so, tls, KTLS_RX, false);
1345178825Sdfr	if (error)
1346178825Sdfr		ktls_use_sw(tls);
1347178825Sdfr
1348178825Sdfr	counter_u64_add(ktls_offload_total, 1);
1349178825Sdfr
1350178825Sdfr	return (0);
1351178825Sdfr}
1352178825Sdfr
1353178825Sdfrint
1354178825Sdfrktls_enable_tx(struct socket *so, struct tls_enable *en)
1355178825Sdfr{
1356178825Sdfr	struct ktls_session *tls;
1357178825Sdfr	struct inpcb *inp;
1358178825Sdfr	struct tcpcb *tp;
1359178825Sdfr	int error;
1360178825Sdfr
1361178825Sdfr	if (!ktls_offload_enable)
1362178825Sdfr		return (ENOTSUP);
1363178825Sdfr
1364178825Sdfr	counter_u64_add(ktls_offload_enable_calls, 1);
1365178825Sdfr
1366178825Sdfr	/*
1367178825Sdfr	 * This should always be true since only the TCP socket option
1368178825Sdfr	 * invokes this function.
1369178825Sdfr	 */
1370178825Sdfr	if (so->so_proto->pr_protocol != IPPROTO_TCP)
1371178825Sdfr		return (EINVAL);
1372178825Sdfr
1373178825Sdfr	/*
1374178825Sdfr	 * XXX: Don't overwrite existing sessions.  We should permit
1375178825Sdfr	 * this to support rekeying in the future.
1376178825Sdfr	 */
1377178825Sdfr	if (so->so_snd.sb_tls_info != NULL)
1378178825Sdfr		return (EALREADY);
1379178825Sdfr
1380178825Sdfr	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1381178825Sdfr		return (ENOTSUP);
1382178825Sdfr
1383178825Sdfr	/* TLS requires ext pgs */
1384178825Sdfr	if (mb_use_ext_pgs == 0)
1385178825Sdfr		return (ENXIO);
1386178825Sdfr
1387178825Sdfr	error = ktls_create_session(so, en, &tls, KTLS_TX);
1388178825Sdfr	if (error)
1389178825Sdfr		return (error);
1390178825Sdfr
1391178825Sdfr	/* Prefer TOE -> ifnet TLS -> software TLS. */
1392178825Sdfr#ifdef TCP_OFFLOAD
1393178825Sdfr	error = ktls_try_toe(so, tls, KTLS_TX);
1394178825Sdfr	if (error)
1395178825Sdfr#endif
1396178825Sdfr		error = ktls_try_ifnet(so, tls, KTLS_TX, false);
1397178825Sdfr	if (error)
1398178825Sdfr		error = ktls_try_sw(so, tls, KTLS_TX);
1399178825Sdfr
1400178825Sdfr	if (error) {
1401178825Sdfr		ktls_free(tls);
1402178825Sdfr		return (error);
1403178825Sdfr	}
1404178825Sdfr
1405178825Sdfr	/*
1406178825Sdfr	 * Serialize with sosend_generic() and make sure that we're not
1407178825Sdfr	 * operating on a listening socket.
1408178825Sdfr	 */
1409178825Sdfr	error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
1410178825Sdfr	if (error) {
1411178825Sdfr		ktls_free(tls);
1412178825Sdfr		return (error);
1413178825Sdfr	}
1414178825Sdfr
1415178825Sdfr	/*
1416178825Sdfr	 * Write lock the INP when setting sb_tls_info so that
1417178825Sdfr	 * routines in tcp_ratelimit.c can read sb_tls_info while
1418178825Sdfr	 * holding the INP lock.
1419178825Sdfr	 */
1420178825Sdfr	inp = so->so_pcb;
1421178825Sdfr	INP_WLOCK(inp);
1422178825Sdfr	SOCK_SENDBUF_LOCK(so);
1423178825Sdfr	so->so_snd.sb_tls_seqno = be64dec(en->rec_seq);
1424178825Sdfr	so->so_snd.sb_tls_info = tls;
1425178825Sdfr	if (tls->mode != TCP_TLS_MODE_SW) {
1426178825Sdfr		tp = intotcpcb(inp);
1427178825Sdfr		MPASS(tp->t_nic_ktls_xmit == 0);
1428178825Sdfr		tp->t_nic_ktls_xmit = 1;
1429178825Sdfr		if (tp->t_fb->tfb_hwtls_change != NULL)
1430178825Sdfr			(*tp->t_fb->tfb_hwtls_change)(tp, 1);
1431178825Sdfr	}
1432178825Sdfr	SOCK_SENDBUF_UNLOCK(so);
1433178825Sdfr	INP_WUNLOCK(inp);
1434178825Sdfr	SOCK_IO_SEND_UNLOCK(so);
1435178825Sdfr
1436178825Sdfr	counter_u64_add(ktls_offload_total, 1);
1437178825Sdfr
1438178825Sdfr	return (0);
1439178825Sdfr}
1440178825Sdfr
1441178825Sdfrint
1442178825Sdfrktls_get_rx_mode(struct socket *so, int *modep)
1443178825Sdfr{
1444178825Sdfr	struct ktls_session *tls;
1445178825Sdfr	struct inpcb *inp __diagused;
1446178825Sdfr
1447178825Sdfr	if (SOLISTENING(so))
1448178825Sdfr		return (EINVAL);
1449178825Sdfr	inp = so->so_pcb;
1450178825Sdfr	INP_WLOCK_ASSERT(inp);
1451178825Sdfr	SOCK_RECVBUF_LOCK(so);
1452178825Sdfr	tls = so->so_rcv.sb_tls_info;
1453178825Sdfr	if (tls == NULL)
1454178825Sdfr		*modep = TCP_TLS_MODE_NONE;
1455178825Sdfr	else
1456178825Sdfr		*modep = tls->mode;
1457178825Sdfr	SOCK_RECVBUF_UNLOCK(so);
1458178825Sdfr	return (0);
1459178825Sdfr}
1460178825Sdfr
1461178825Sdfr/*
1462178825Sdfr * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number.
1463178825Sdfr *
1464178825Sdfr * This function gets information about the next TCP- and TLS-
1465178825Sdfr * sequence number to be processed by the TLS receive worker
1466178825Sdfr * thread. The information is extracted from the given "inpcb"
1467178825Sdfr * structure. The values are stored in host endian format at the two
1468178825Sdfr * given output pointer locations. The TCP sequence number points to
1469178825Sdfr * the beginning of the TLS header.
1470178825Sdfr *
1471178825Sdfr * This function returns zero on success, else a non-zero error code
1472178825Sdfr * is returned.
1473178825Sdfr */
1474178825Sdfrint
1475178825Sdfrktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq)
1476178825Sdfr{
1477178825Sdfr	struct socket *so;
1478178825Sdfr	struct tcpcb *tp;
1479178825Sdfr
1480178825Sdfr	INP_RLOCK(inp);
1481178825Sdfr	so = inp->inp_socket;
1482178825Sdfr	if (__predict_false(so == NULL)) {
1483178825Sdfr		INP_RUNLOCK(inp);
1484178825Sdfr		return (EINVAL);
1485178825Sdfr	}
1486178825Sdfr	if (inp->inp_flags & INP_DROPPED) {
1487178825Sdfr		INP_RUNLOCK(inp);
1488178825Sdfr		return (ECONNRESET);
1489178825Sdfr	}
1490178825Sdfr
1491178825Sdfr	tp = intotcpcb(inp);
1492178825Sdfr	MPASS(tp != NULL);
1493178825Sdfr
1494178825Sdfr	SOCKBUF_LOCK(&so->so_rcv);
1495178825Sdfr	*tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc;
1496178825Sdfr	*tlsseq = so->so_rcv.sb_tls_seqno;
1497178825Sdfr	SOCKBUF_UNLOCK(&so->so_rcv);
1498178825Sdfr
1499178825Sdfr	INP_RUNLOCK(inp);
1500178825Sdfr
1501178825Sdfr	return (0);
1502178825Sdfr}
1503178825Sdfr
1504178825Sdfrint
1505178825Sdfrktls_get_tx_mode(struct socket *so, int *modep)
1506178825Sdfr{
1507178825Sdfr	struct ktls_session *tls;
1508178825Sdfr	struct inpcb *inp __diagused;
1509178825Sdfr
1510178825Sdfr	if (SOLISTENING(so))
1511178825Sdfr		return (EINVAL);
1512178825Sdfr	inp = so->so_pcb;
1513178825Sdfr	INP_WLOCK_ASSERT(inp);
1514178825Sdfr	SOCK_SENDBUF_LOCK(so);
1515178825Sdfr	tls = so->so_snd.sb_tls_info;
1516178825Sdfr	if (tls == NULL)
1517178825Sdfr		*modep = TCP_TLS_MODE_NONE;
1518178825Sdfr	else
1519178825Sdfr		*modep = tls->mode;
1520178825Sdfr	SOCK_SENDBUF_UNLOCK(so);
1521178825Sdfr	return (0);
1522178825Sdfr}
1523178825Sdfr
1524178825Sdfr/*
1525178825Sdfr * Switch between SW and ifnet TLS sessions as requested.
1526178825Sdfr */
1527178825Sdfrint
1528178825Sdfrktls_set_tx_mode(struct socket *so, int mode)
1529178825Sdfr{
1530178825Sdfr	struct ktls_session *tls, *tls_new;
1531178825Sdfr	struct inpcb *inp;
1532178825Sdfr	struct tcpcb *tp;
1533178825Sdfr	int error;
1534178825Sdfr
1535178825Sdfr	if (SOLISTENING(so))
1536178825Sdfr		return (EINVAL);
1537178825Sdfr	switch (mode) {
1538178825Sdfr	case TCP_TLS_MODE_SW:
1539178825Sdfr	case TCP_TLS_MODE_IFNET:
1540178825Sdfr		break;
1541178825Sdfr	default:
1542178825Sdfr		return (EINVAL);
1543178825Sdfr	}
1544178825Sdfr
1545178825Sdfr	inp = so->so_pcb;
1546178825Sdfr	INP_WLOCK_ASSERT(inp);
1547178825Sdfr	tp = intotcpcb(inp);
1548178825Sdfr
1549178825Sdfr	if (mode == TCP_TLS_MODE_IFNET) {
1550178825Sdfr		/* Don't allow enabling ifnet ktls multiple times */
1551178825Sdfr		if (tp->t_nic_ktls_xmit)
1552178825Sdfr			return (EALREADY);
1553178825Sdfr
1554178825Sdfr		/*
1555178825Sdfr		 * Don't enable ifnet ktls if we disabled it due to an
1556178825Sdfr		 * excessive retransmission rate
1557178825Sdfr		 */
1558178825Sdfr		if (tp->t_nic_ktls_xmit_dis)
1559178825Sdfr			return (ENXIO);
1560178825Sdfr	}
1561178825Sdfr
1562178825Sdfr	SOCKBUF_LOCK(&so->so_snd);
1563178825Sdfr	tls = so->so_snd.sb_tls_info;
1564178825Sdfr	if (tls == NULL) {
1565178825Sdfr		SOCKBUF_UNLOCK(&so->so_snd);
1566178825Sdfr		return (0);
1567178825Sdfr	}
1568178825Sdfr
1569178825Sdfr	if (tls->mode == mode) {
1570178825Sdfr		SOCKBUF_UNLOCK(&so->so_snd);
1571178825Sdfr		return (0);
1572178825Sdfr	}
1573178825Sdfr
1574178825Sdfr	tls = ktls_hold(tls);
1575178825Sdfr	SOCKBUF_UNLOCK(&so->so_snd);
1576178825Sdfr	INP_WUNLOCK(inp);
1577178825Sdfr
1578178825Sdfr	tls_new = ktls_clone_session(tls, KTLS_TX);
1579178825Sdfr
1580178825Sdfr	if (mode == TCP_TLS_MODE_IFNET)
1581178825Sdfr		error = ktls_try_ifnet(so, tls_new, KTLS_TX, true);
1582178825Sdfr	else
1583178825Sdfr		error = ktls_try_sw(so, tls_new, KTLS_TX);
1584178825Sdfr	if (error) {
1585178825Sdfr		counter_u64_add(ktls_switch_failed, 1);
1586178825Sdfr		ktls_free(tls_new);
1587178825Sdfr		ktls_free(tls);
1588178825Sdfr		INP_WLOCK(inp);
1589178825Sdfr		return (error);
1590178825Sdfr	}
1591178825Sdfr
1592178825Sdfr	error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
1593178825Sdfr	if (error) {
1594178825Sdfr		counter_u64_add(ktls_switch_failed, 1);
1595178825Sdfr		ktls_free(tls_new);
1596178825Sdfr		ktls_free(tls);
1597178825Sdfr		INP_WLOCK(inp);
1598178825Sdfr		return (error);
1599178825Sdfr	}
1600178825Sdfr
1601178825Sdfr	/*
1602178825Sdfr	 * If we raced with another session change, keep the existing
1603178825Sdfr	 * session.
1604178825Sdfr	 */
1605178825Sdfr	if (tls != so->so_snd.sb_tls_info) {
1606178825Sdfr		counter_u64_add(ktls_switch_failed, 1);
1607178825Sdfr		SOCK_IO_SEND_UNLOCK(so);
1608178825Sdfr		ktls_free(tls_new);
1609178825Sdfr		ktls_free(tls);
1610178825Sdfr		INP_WLOCK(inp);
1611178825Sdfr		return (EBUSY);
1612178825Sdfr	}
1613178825Sdfr
1614178825Sdfr	INP_WLOCK(inp);
1615178825Sdfr	SOCKBUF_LOCK(&so->so_snd);
1616178825Sdfr	so->so_snd.sb_tls_info = tls_new;
1617178825Sdfr	if (tls_new->mode != TCP_TLS_MODE_SW) {
1618178825Sdfr		MPASS(tp->t_nic_ktls_xmit == 0);
1619178825Sdfr		tp->t_nic_ktls_xmit = 1;
1620178825Sdfr		if (tp->t_fb->tfb_hwtls_change != NULL)
1621178825Sdfr			(*tp->t_fb->tfb_hwtls_change)(tp, 1);
1622178825Sdfr	}
1623178825Sdfr	SOCKBUF_UNLOCK(&so->so_snd);
1624178825Sdfr	SOCK_IO_SEND_UNLOCK(so);
1625178825Sdfr
1626178825Sdfr	/*
1627178825Sdfr	 * Drop two references on 'tls'.  The first is for the
1628178825Sdfr	 * ktls_hold() above.  The second drops the reference from the
1629178825Sdfr	 * socket buffer.
1630178825Sdfr	 */
1631178825Sdfr	KASSERT(tls->refcount >= 2, ("too few references on old session"));
1632178825Sdfr	ktls_free(tls);
1633178825Sdfr	ktls_free(tls);
1634178825Sdfr
1635178825Sdfr	if (mode == TCP_TLS_MODE_IFNET)
1636178825Sdfr		counter_u64_add(ktls_switch_to_ifnet, 1);
1637178825Sdfr	else
1638178825Sdfr		counter_u64_add(ktls_switch_to_sw, 1);
1639178825Sdfr
1640178825Sdfr	return (0);
1641178825Sdfr}
1642178825Sdfr
1643178825Sdfr/*
1644178825Sdfr * Try to allocate a new TLS receive tag.  This task is scheduled when
1645178825Sdfr * sbappend_ktls_rx detects an input path change.  If a new tag is
1646178825Sdfr * allocated, replace the tag in the TLS session.  If a new tag cannot
1647178825Sdfr * be allocated, let the session fall back to software decryption.
1648178825Sdfr */
1649178825Sdfrstatic void
1650178825Sdfrktls_reset_receive_tag(void *context, int pending)
1651178825Sdfr{
1652178825Sdfr	union if_snd_tag_alloc_params params;
1653178825Sdfr	struct ktls_session *tls;
1654178825Sdfr	struct m_snd_tag *mst;
1655178825Sdfr	struct inpcb *inp;
1656178825Sdfr	struct ifnet *ifp;
1657178825Sdfr	struct socket *so;
1658178825Sdfr	int error;
1659178825Sdfr
1660178825Sdfr	MPASS(pending == 1);
1661178825Sdfr
1662178825Sdfr	tls = context;
1663178825Sdfr	so = tls->so;
1664178825Sdfr	inp = so->so_pcb;
1665178825Sdfr	ifp = NULL;
1666178825Sdfr
1667178825Sdfr	INP_RLOCK(inp);
1668178825Sdfr	if (inp->inp_flags & INP_DROPPED) {
1669178825Sdfr		INP_RUNLOCK(inp);
1670178825Sdfr		goto out;
1671178825Sdfr	}
1672178825Sdfr
1673178825Sdfr	SOCKBUF_LOCK(&so->so_rcv);
1674	mst = tls->snd_tag;
1675	tls->snd_tag = NULL;
1676	if (mst != NULL)
1677		m_snd_tag_rele(mst);
1678
1679	ifp = tls->rx_ifp;
1680	if_ref(ifp);
1681	SOCKBUF_UNLOCK(&so->so_rcv);
1682
1683	params.hdr.type = IF_SND_TAG_TYPE_TLS_RX;
1684	params.hdr.flowid = inp->inp_flowid;
1685	params.hdr.flowtype = inp->inp_flowtype;
1686	params.hdr.numa_domain = inp->inp_numa_domain;
1687	params.tls_rx.inp = inp;
1688	params.tls_rx.tls = tls;
1689	params.tls_rx.vlan_id = tls->rx_vlan_id;
1690	INP_RUNLOCK(inp);
1691
1692	if (inp->inp_vflag & INP_IPV6) {
1693		if ((if_getcapenable2(ifp) & IFCAP2_RXTLS6) == 0)
1694			goto out;
1695	} else {
1696		if ((if_getcapenable2(ifp) & IFCAP2_RXTLS4) == 0)
1697			goto out;
1698	}
1699
1700	error = m_snd_tag_alloc(ifp, &params, &mst);
1701	if (error == 0) {
1702		SOCKBUF_LOCK(&so->so_rcv);
1703		tls->snd_tag = mst;
1704		SOCKBUF_UNLOCK(&so->so_rcv);
1705
1706		counter_u64_add(ktls_ifnet_reset, 1);
1707	} else {
1708		/*
1709		 * Just fall back to software decryption if a tag
1710		 * cannot be allocated leaving the connection intact.
1711		 * If a future input path change switches to another
1712		 * interface this connection will resume ifnet TLS.
1713		 */
1714		counter_u64_add(ktls_ifnet_reset_failed, 1);
1715	}
1716
1717out:
1718	mtx_pool_lock(mtxpool_sleep, tls);
1719	tls->reset_pending = false;
1720	mtx_pool_unlock(mtxpool_sleep, tls);
1721
1722	if (ifp != NULL)
1723		if_rele(ifp);
1724	CURVNET_SET(so->so_vnet);
1725	sorele(so);
1726	CURVNET_RESTORE();
1727	ktls_free(tls);
1728}
1729
1730/*
1731 * Try to allocate a new TLS send tag.  This task is scheduled when
1732 * ip_output detects a route change while trying to transmit a packet
1733 * holding a TLS record.  If a new tag is allocated, replace the tag
1734 * in the TLS session.  Subsequent packets on the connection will use
1735 * the new tag.  If a new tag cannot be allocated, drop the
1736 * connection.
1737 */
1738static void
1739ktls_reset_send_tag(void *context, int pending)
1740{
1741	struct epoch_tracker et;
1742	struct ktls_session *tls;
1743	struct m_snd_tag *old, *new;
1744	struct inpcb *inp;
1745	struct tcpcb *tp;
1746	int error;
1747
1748	MPASS(pending == 1);
1749
1750	tls = context;
1751	inp = tls->inp;
1752
1753	/*
1754	 * Free the old tag first before allocating a new one.
1755	 * ip[6]_output_send() will treat a NULL send tag the same as
1756	 * an ifp mismatch and drop packets until a new tag is
1757	 * allocated.
1758	 *
1759	 * Write-lock the INP when changing tls->snd_tag since
1760	 * ip[6]_output_send() holds a read-lock when reading the
1761	 * pointer.
1762	 */
1763	INP_WLOCK(inp);
1764	old = tls->snd_tag;
1765	tls->snd_tag = NULL;
1766	INP_WUNLOCK(inp);
1767	if (old != NULL)
1768		m_snd_tag_rele(old);
1769
1770	error = ktls_alloc_snd_tag(inp, tls, true, &new);
1771
1772	if (error == 0) {
1773		INP_WLOCK(inp);
1774		tls->snd_tag = new;
1775		mtx_pool_lock(mtxpool_sleep, tls);
1776		tls->reset_pending = false;
1777		mtx_pool_unlock(mtxpool_sleep, tls);
1778		INP_WUNLOCK(inp);
1779
1780		counter_u64_add(ktls_ifnet_reset, 1);
1781
1782		/*
1783		 * XXX: Should we kick tcp_output explicitly now that
1784		 * the send tag is fixed or just rely on timers?
1785		 */
1786	} else {
1787		NET_EPOCH_ENTER(et);
1788		INP_WLOCK(inp);
1789		if (!(inp->inp_flags & INP_DROPPED)) {
1790			tp = intotcpcb(inp);
1791			CURVNET_SET(inp->inp_vnet);
1792			tp = tcp_drop(tp, ECONNABORTED);
1793			CURVNET_RESTORE();
1794			if (tp != NULL) {
1795				counter_u64_add(ktls_ifnet_reset_dropped, 1);
1796				INP_WUNLOCK(inp);
1797			}
1798		} else
1799			INP_WUNLOCK(inp);
1800		NET_EPOCH_EXIT(et);
1801
1802		counter_u64_add(ktls_ifnet_reset_failed, 1);
1803
1804		/*
1805		 * Leave reset_pending true to avoid future tasks while
1806		 * the socket goes away.
1807		 */
1808	}
1809
1810	ktls_free(tls);
1811}
1812
1813void
1814ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp)
1815{
1816	struct ktls_session *tls;
1817	struct socket *so;
1818
1819	SOCKBUF_LOCK_ASSERT(sb);
1820	KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
1821	    __func__, sb));
1822	so = __containerof(sb, struct socket, so_rcv);
1823
1824	tls = sb->sb_tls_info;
1825	if_rele(tls->rx_ifp);
1826	if_ref(ifp);
1827	tls->rx_ifp = ifp;
1828
1829	/*
1830	 * See if we should schedule a task to update the receive tag for
1831	 * this session.
1832	 */
1833	mtx_pool_lock(mtxpool_sleep, tls);
1834	if (!tls->reset_pending) {
1835		(void) ktls_hold(tls);
1836		soref(so);
1837		tls->so = so;
1838		tls->reset_pending = true;
1839		taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
1840	}
1841	mtx_pool_unlock(mtxpool_sleep, tls);
1842}
1843
1844int
1845ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls)
1846{
1847
1848	if (inp == NULL)
1849		return (ENOBUFS);
1850
1851	INP_LOCK_ASSERT(inp);
1852
1853	/*
1854	 * See if we should schedule a task to update the send tag for
1855	 * this session.
1856	 */
1857	mtx_pool_lock(mtxpool_sleep, tls);
1858	if (!tls->reset_pending) {
1859		(void) ktls_hold(tls);
1860		tls->reset_pending = true;
1861		taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
1862	}
1863	mtx_pool_unlock(mtxpool_sleep, tls);
1864	return (ENOBUFS);
1865}
1866
1867#ifdef RATELIMIT
1868int
1869ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate)
1870{
1871	union if_snd_tag_modify_params params = {
1872		.rate_limit.max_rate = max_pacing_rate,
1873		.rate_limit.flags = M_NOWAIT,
1874	};
1875	struct m_snd_tag *mst;
1876
1877	/* Can't get to the inp, but it should be locked. */
1878	/* INP_LOCK_ASSERT(inp); */
1879
1880	MPASS(tls->mode == TCP_TLS_MODE_IFNET);
1881
1882	if (tls->snd_tag == NULL) {
1883		/*
1884		 * Resetting send tag, ignore this change.  The
1885		 * pending reset may or may not see this updated rate
1886		 * in the tcpcb.  If it doesn't, we will just lose
1887		 * this rate change.
1888		 */
1889		return (0);
1890	}
1891
1892	mst = tls->snd_tag;
1893
1894	MPASS(mst != NULL);
1895	MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT);
1896
1897	return (mst->sw->snd_tag_modify(mst, &params));
1898}
1899#endif
1900
1901static void
1902ktls_destroy_help(void *context, int pending __unused)
1903{
1904	ktls_destroy(context);
1905}
1906
1907void
1908ktls_destroy(struct ktls_session *tls)
1909{
1910	struct inpcb *inp;
1911	struct tcpcb *tp;
1912	bool wlocked;
1913
1914	MPASS(tls->refcount == 0);
1915
1916	inp = tls->inp;
1917	if (tls->tx) {
1918		wlocked = INP_WLOCKED(inp);
1919		if (!wlocked && !INP_TRY_WLOCK(inp)) {
1920			/*
1921			 * rwlocks read locks are anonymous, and there
1922			 * is no way to know if our current thread
1923			 * holds an rlock on the inp.  As a rough
1924			 * estimate, check to see if the thread holds
1925			 * *any* rlocks at all.  If it does not, then we
1926			 * know that we don't hold the inp rlock, and
1927			 * can safely take the wlock
1928			 */
1929			if (curthread->td_rw_rlocks == 0) {
1930				INP_WLOCK(inp);
1931			} else {
1932				/*
1933				 * We might hold the rlock, so let's
1934				 * do the destroy in a taskqueue
1935				 * context to avoid a potential
1936				 * deadlock.  This should be very
1937				 * rare.
1938				 */
1939				counter_u64_add(ktls_destroy_task, 1);
1940				TASK_INIT(&tls->destroy_task, 0,
1941				    ktls_destroy_help, tls);
1942				(void)taskqueue_enqueue(taskqueue_thread,
1943				    &tls->destroy_task);
1944				return;
1945			}
1946		}
1947	}
1948
1949	if (tls->sequential_records) {
1950		struct mbuf *m, *n;
1951		int page_count;
1952
1953		STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) {
1954			page_count = m->m_epg_enc_cnt;
1955			while (page_count > 0) {
1956				KASSERT(page_count >= m->m_epg_nrdy,
1957				    ("%s: too few pages", __func__));
1958				page_count -= m->m_epg_nrdy;
1959				m = m_free(m);
1960			}
1961		}
1962	}
1963
1964	counter_u64_add(ktls_offload_active, -1);
1965	switch (tls->mode) {
1966	case TCP_TLS_MODE_SW:
1967		switch (tls->params.cipher_algorithm) {
1968		case CRYPTO_AES_CBC:
1969			counter_u64_add(ktls_sw_cbc, -1);
1970			break;
1971		case CRYPTO_AES_NIST_GCM_16:
1972			counter_u64_add(ktls_sw_gcm, -1);
1973			break;
1974		case CRYPTO_CHACHA20_POLY1305:
1975			counter_u64_add(ktls_sw_chacha20, -1);
1976			break;
1977		}
1978		break;
1979	case TCP_TLS_MODE_IFNET:
1980		switch (tls->params.cipher_algorithm) {
1981		case CRYPTO_AES_CBC:
1982			counter_u64_add(ktls_ifnet_cbc, -1);
1983			break;
1984		case CRYPTO_AES_NIST_GCM_16:
1985			counter_u64_add(ktls_ifnet_gcm, -1);
1986			break;
1987		case CRYPTO_CHACHA20_POLY1305:
1988			counter_u64_add(ktls_ifnet_chacha20, -1);
1989			break;
1990		}
1991		if (tls->snd_tag != NULL)
1992			m_snd_tag_rele(tls->snd_tag);
1993		if (tls->rx_ifp != NULL)
1994			if_rele(tls->rx_ifp);
1995		if (tls->tx) {
1996			INP_WLOCK_ASSERT(inp);
1997			tp = intotcpcb(inp);
1998			MPASS(tp->t_nic_ktls_xmit == 1);
1999			tp->t_nic_ktls_xmit = 0;
2000		}
2001		break;
2002#ifdef TCP_OFFLOAD
2003	case TCP_TLS_MODE_TOE:
2004		switch (tls->params.cipher_algorithm) {
2005		case CRYPTO_AES_CBC:
2006			counter_u64_add(ktls_toe_cbc, -1);
2007			break;
2008		case CRYPTO_AES_NIST_GCM_16:
2009			counter_u64_add(ktls_toe_gcm, -1);
2010			break;
2011		case CRYPTO_CHACHA20_POLY1305:
2012			counter_u64_add(ktls_toe_chacha20, -1);
2013			break;
2014		}
2015		break;
2016#endif
2017	}
2018	if (tls->ocf_session != NULL)
2019		ktls_ocf_free(tls);
2020	if (tls->params.auth_key != NULL) {
2021		zfree(tls->params.auth_key, M_KTLS);
2022		tls->params.auth_key = NULL;
2023		tls->params.auth_key_len = 0;
2024	}
2025	if (tls->params.cipher_key != NULL) {
2026		zfree(tls->params.cipher_key, M_KTLS);
2027		tls->params.cipher_key = NULL;
2028		tls->params.cipher_key_len = 0;
2029	}
2030	if (tls->tx) {
2031		INP_WLOCK_ASSERT(inp);
2032		if (!in_pcbrele_wlocked(inp) && !wlocked)
2033			INP_WUNLOCK(inp);
2034	}
2035	explicit_bzero(tls->params.iv, sizeof(tls->params.iv));
2036
2037	uma_zfree(ktls_session_zone, tls);
2038}
2039
2040void
2041ktls_seq(struct sockbuf *sb, struct mbuf *m)
2042{
2043
2044	for (; m != NULL; m = m->m_next) {
2045		KASSERT((m->m_flags & M_EXTPG) != 0,
2046		    ("ktls_seq: mapped mbuf %p", m));
2047
2048		m->m_epg_seqno = sb->sb_tls_seqno;
2049		sb->sb_tls_seqno++;
2050	}
2051}
2052
2053/*
2054 * Add TLS framing (headers and trailers) to a chain of mbufs.  Each
2055 * mbuf in the chain must be an unmapped mbuf.  The payload of the
2056 * mbuf must be populated with the payload of each TLS record.
2057 *
2058 * The record_type argument specifies the TLS record type used when
2059 * populating the TLS header.
2060 *
2061 * The enq_count argument on return is set to the number of pages of
2062 * payload data for this entire chain that need to be encrypted via SW
2063 * encryption.  The returned value should be passed to ktls_enqueue
2064 * when scheduling encryption of this chain of mbufs.  To handle the
2065 * special case of empty fragments for TLS 1.0 sessions, an empty
2066 * fragment counts as one page.
2067 */
2068void
2069ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt,
2070    uint8_t record_type)
2071{
2072	struct tls_record_layer *tlshdr;
2073	struct mbuf *m;
2074	uint64_t *noncep;
2075	uint16_t tls_len;
2076	int maxlen __diagused;
2077
2078	maxlen = tls->params.max_frame_len;
2079	*enq_cnt = 0;
2080	for (m = top; m != NULL; m = m->m_next) {
2081		/*
2082		 * All mbufs in the chain should be TLS records whose
2083		 * payload does not exceed the maximum frame length.
2084		 *
2085		 * Empty TLS 1.0 records are permitted when using CBC.
2086		 */
2087		KASSERT(m->m_len <= maxlen && m->m_len >= 0 &&
2088		    (m->m_len > 0 || ktls_permit_empty_frames(tls)),
2089		    ("ktls_frame: m %p len %d", m, m->m_len));
2090
2091		/*
2092		 * TLS frames require unmapped mbufs to store session
2093		 * info.
2094		 */
2095		KASSERT((m->m_flags & M_EXTPG) != 0,
2096		    ("ktls_frame: mapped mbuf %p (top = %p)", m, top));
2097
2098		tls_len = m->m_len;
2099
2100		/* Save a reference to the session. */
2101		m->m_epg_tls = ktls_hold(tls);
2102
2103		m->m_epg_hdrlen = tls->params.tls_hlen;
2104		m->m_epg_trllen = tls->params.tls_tlen;
2105		if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) {
2106			int bs, delta;
2107
2108			/*
2109			 * AES-CBC pads messages to a multiple of the
2110			 * block size.  Note that the padding is
2111			 * applied after the digest and the encryption
2112			 * is done on the "plaintext || mac || padding".
2113			 * At least one byte of padding is always
2114			 * present.
2115			 *
2116			 * Compute the final trailer length assuming
2117			 * at most one block of padding.
2118			 * tls->params.tls_tlen is the maximum
2119			 * possible trailer length (padding + digest).
2120			 * delta holds the number of excess padding
2121			 * bytes if the maximum were used.  Those
2122			 * extra bytes are removed.
2123			 */
2124			bs = tls->params.tls_bs;
2125			delta = (tls_len + tls->params.tls_tlen) & (bs - 1);
2126			m->m_epg_trllen -= delta;
2127		}
2128		m->m_len += m->m_epg_hdrlen + m->m_epg_trllen;
2129
2130		/* Populate the TLS header. */
2131		tlshdr = (void *)m->m_epg_hdr;
2132		tlshdr->tls_vmajor = tls->params.tls_vmajor;
2133
2134		/*
2135		 * TLS 1.3 masquarades as TLS 1.2 with a record type
2136		 * of TLS_RLTYPE_APP.
2137		 */
2138		if (tls->params.tls_vminor == TLS_MINOR_VER_THREE &&
2139		    tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) {
2140			tlshdr->tls_vminor = TLS_MINOR_VER_TWO;
2141			tlshdr->tls_type = TLS_RLTYPE_APP;
2142			/* save the real record type for later */
2143			m->m_epg_record_type = record_type;
2144			m->m_epg_trail[0] = record_type;
2145		} else {
2146			tlshdr->tls_vminor = tls->params.tls_vminor;
2147			tlshdr->tls_type = record_type;
2148		}
2149		tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr));
2150
2151		/*
2152		 * Store nonces / explicit IVs after the end of the
2153		 * TLS header.
2154		 *
2155		 * For GCM with TLS 1.2, an 8 byte nonce is copied
2156		 * from the end of the IV.  The nonce is then
2157		 * incremented for use by the next record.
2158		 *
2159		 * For CBC, a random nonce is inserted for TLS 1.1+.
2160		 */
2161		if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
2162		    tls->params.tls_vminor == TLS_MINOR_VER_TWO) {
2163			noncep = (uint64_t *)(tls->params.iv + 8);
2164			be64enc(tlshdr + 1, *noncep);
2165			(*noncep)++;
2166		} else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
2167		    tls->params.tls_vminor >= TLS_MINOR_VER_ONE)
2168			arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0);
2169
2170		/*
2171		 * When using SW encryption, mark the mbuf not ready.
2172		 * It will be marked ready via sbready() after the
2173		 * record has been encrypted.
2174		 *
2175		 * When using ifnet TLS, unencrypted TLS records are
2176		 * sent down the stack to the NIC.
2177		 */
2178		if (tls->mode == TCP_TLS_MODE_SW) {
2179			m->m_flags |= M_NOTREADY;
2180			if (__predict_false(tls_len == 0)) {
2181				/* TLS 1.0 empty fragment. */
2182				m->m_epg_nrdy = 1;
2183			} else
2184				m->m_epg_nrdy = m->m_epg_npgs;
2185			*enq_cnt += m->m_epg_nrdy;
2186		}
2187	}
2188}
2189
2190bool
2191ktls_permit_empty_frames(struct ktls_session *tls)
2192{
2193	return (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
2194	    tls->params.tls_vminor == TLS_MINOR_VER_ZERO);
2195}
2196
2197void
2198ktls_check_rx(struct sockbuf *sb)
2199{
2200	struct tls_record_layer hdr;
2201	struct ktls_wq *wq;
2202	struct socket *so;
2203	bool running;
2204
2205	SOCKBUF_LOCK_ASSERT(sb);
2206	KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
2207	    __func__, sb));
2208	so = __containerof(sb, struct socket, so_rcv);
2209
2210	if (sb->sb_flags & SB_TLS_RX_RUNNING)
2211		return;
2212
2213	/* Is there enough queued for a TLS header? */
2214	if (sb->sb_tlscc < sizeof(hdr)) {
2215		if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0)
2216			so->so_error = EMSGSIZE;
2217		return;
2218	}
2219
2220	m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr);
2221
2222	/* Is the entire record queued? */
2223	if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) {
2224		if ((sb->sb_state & SBS_CANTRCVMORE) != 0)
2225			so->so_error = EMSGSIZE;
2226		return;
2227	}
2228
2229	sb->sb_flags |= SB_TLS_RX_RUNNING;
2230
2231	soref(so);
2232	wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index];
2233	mtx_lock(&wq->mtx);
2234	STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list);
2235	running = wq->running;
2236	mtx_unlock(&wq->mtx);
2237	if (!running)
2238		wakeup(wq);
2239	counter_u64_add(ktls_cnt_rx_queued, 1);
2240}
2241
2242static struct mbuf *
2243ktls_detach_record(struct sockbuf *sb, int len)
2244{
2245	struct mbuf *m, *n, *top;
2246	int remain;
2247
2248	SOCKBUF_LOCK_ASSERT(sb);
2249	MPASS(len <= sb->sb_tlscc);
2250
2251	/*
2252	 * If TLS chain is the exact size of the record,
2253	 * just grab the whole record.
2254	 */
2255	top = sb->sb_mtls;
2256	if (sb->sb_tlscc == len) {
2257		sb->sb_mtls = NULL;
2258		sb->sb_mtlstail = NULL;
2259		goto out;
2260	}
2261
2262	/*
2263	 * While it would be nice to use m_split() here, we need
2264	 * to know exactly what m_split() allocates to update the
2265	 * accounting, so do it inline instead.
2266	 */
2267	remain = len;
2268	for (m = top; remain > m->m_len; m = m->m_next)
2269		remain -= m->m_len;
2270
2271	/* Easy case: don't have to split 'm'. */
2272	if (remain == m->m_len) {
2273		sb->sb_mtls = m->m_next;
2274		if (sb->sb_mtls == NULL)
2275			sb->sb_mtlstail = NULL;
2276		m->m_next = NULL;
2277		goto out;
2278	}
2279
2280	/*
2281	 * Need to allocate an mbuf to hold the remainder of 'm'.  Try
2282	 * with M_NOWAIT first.
2283	 */
2284	n = m_get(M_NOWAIT, MT_DATA);
2285	if (n == NULL) {
2286		/*
2287		 * Use M_WAITOK with socket buffer unlocked.  If
2288		 * 'sb_mtls' changes while the lock is dropped, return
2289		 * NULL to force the caller to retry.
2290		 */
2291		SOCKBUF_UNLOCK(sb);
2292
2293		n = m_get(M_WAITOK, MT_DATA);
2294
2295		SOCKBUF_LOCK(sb);
2296		if (sb->sb_mtls != top) {
2297			m_free(n);
2298			return (NULL);
2299		}
2300	}
2301	n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED));
2302
2303	/* Store remainder in 'n'. */
2304	n->m_len = m->m_len - remain;
2305	if (m->m_flags & M_EXT) {
2306		n->m_data = m->m_data + remain;
2307		mb_dupcl(n, m);
2308	} else {
2309		bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len);
2310	}
2311
2312	/* Trim 'm' and update accounting. */
2313	m->m_len -= n->m_len;
2314	sb->sb_tlscc -= n->m_len;
2315	sb->sb_ccc -= n->m_len;
2316
2317	/* Account for 'n'. */
2318	sballoc_ktls_rx(sb, n);
2319
2320	/* Insert 'n' into the TLS chain. */
2321	sb->sb_mtls = n;
2322	n->m_next = m->m_next;
2323	if (sb->sb_mtlstail == m)
2324		sb->sb_mtlstail = n;
2325
2326	/* Detach the record from the TLS chain. */
2327	m->m_next = NULL;
2328
2329out:
2330	MPASS(m_length(top, NULL) == len);
2331	for (m = top; m != NULL; m = m->m_next)
2332		sbfree_ktls_rx(sb, m);
2333	sb->sb_tlsdcc = len;
2334	sb->sb_ccc += len;
2335	SBCHECK(sb);
2336	return (top);
2337}
2338
2339/*
2340 * Determine the length of the trailing zero padding and find the real
2341 * record type in the byte before the padding.
2342 *
2343 * Walking the mbuf chain backwards is clumsy, so another option would
2344 * be to scan forwards remembering the last non-zero byte before the
2345 * trailer.  However, it would be expensive to scan the entire record.
2346 * Instead, find the last non-zero byte of each mbuf in the chain
2347 * keeping track of the relative offset of that nonzero byte.
2348 *
2349 * trail_len is the size of the MAC/tag on input and is set to the
2350 * size of the full trailer including padding and the record type on
2351 * return.
2352 */
2353static int
2354tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len,
2355    int *trailer_len, uint8_t *record_typep)
2356{
2357	char *cp;
2358	u_int digest_start, last_offset, m_len, offset;
2359	uint8_t record_type;
2360
2361	digest_start = tls_len - *trailer_len;
2362	last_offset = 0;
2363	offset = 0;
2364	for (; m != NULL && offset < digest_start;
2365	     offset += m->m_len, m = m->m_next) {
2366		/* Don't look for padding in the tag. */
2367		m_len = min(digest_start - offset, m->m_len);
2368		cp = mtod(m, char *);
2369
2370		/* Find last non-zero byte in this mbuf. */
2371		while (m_len > 0 && cp[m_len - 1] == 0)
2372			m_len--;
2373		if (m_len > 0) {
2374			record_type = cp[m_len - 1];
2375			last_offset = offset + m_len;
2376		}
2377	}
2378	if (last_offset < tls->params.tls_hlen)
2379		return (EBADMSG);
2380
2381	*record_typep = record_type;
2382	*trailer_len = tls_len - last_offset + 1;
2383	return (0);
2384}
2385
2386/*
2387 * Check if a mbuf chain is fully decrypted at the given offset and
2388 * length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is
2389 * decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted
2390 * and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data
2391 * is encrypted.
2392 */
2393ktls_mbuf_crypto_st_t
2394ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len)
2395{
2396	int m_flags_ored = 0;
2397	int m_flags_anded = -1;
2398
2399	for (; mb != NULL; mb = mb->m_next) {
2400		if (offset < mb->m_len)
2401			break;
2402		offset -= mb->m_len;
2403	}
2404	offset += len;
2405
2406	for (; mb != NULL; mb = mb->m_next) {
2407		m_flags_ored |= mb->m_flags;
2408		m_flags_anded &= mb->m_flags;
2409
2410		if (offset <= mb->m_len)
2411			break;
2412		offset -= mb->m_len;
2413	}
2414	MPASS(mb != NULL || offset == 0);
2415
2416	if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED)
2417		return (KTLS_MBUF_CRYPTO_ST_MIXED);
2418	else
2419		return ((m_flags_ored & M_DECRYPTED) ?
2420		    KTLS_MBUF_CRYPTO_ST_DECRYPTED :
2421		    KTLS_MBUF_CRYPTO_ST_ENCRYPTED);
2422}
2423
2424/*
2425 * ktls_resync_ifnet - get HW TLS RX back on track after packet loss
2426 */
2427static int
2428ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num)
2429{
2430	union if_snd_tag_modify_params params;
2431	struct m_snd_tag *mst;
2432	struct inpcb *inp;
2433	struct tcpcb *tp;
2434
2435	mst = so->so_rcv.sb_tls_info->snd_tag;
2436	if (__predict_false(mst == NULL))
2437		return (EINVAL);
2438
2439	inp = sotoinpcb(so);
2440	if (__predict_false(inp == NULL))
2441		return (EINVAL);
2442
2443	INP_RLOCK(inp);
2444	if (inp->inp_flags & INP_DROPPED) {
2445		INP_RUNLOCK(inp);
2446		return (ECONNRESET);
2447	}
2448
2449	tp = intotcpcb(inp);
2450	MPASS(tp != NULL);
2451
2452	/* Get the TCP sequence number of the next valid TLS header. */
2453	SOCKBUF_LOCK(&so->so_rcv);
2454	params.tls_rx.tls_hdr_tcp_sn =
2455	    tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len;
2456	params.tls_rx.tls_rec_length = tls_len;
2457	params.tls_rx.tls_seq_number = tls_rcd_num;
2458	SOCKBUF_UNLOCK(&so->so_rcv);
2459
2460	INP_RUNLOCK(inp);
2461
2462	MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX);
2463	return (mst->sw->snd_tag_modify(mst, &params));
2464}
2465
2466static void
2467ktls_drop(struct socket *so, int error)
2468{
2469	struct epoch_tracker et;
2470	struct inpcb *inp = sotoinpcb(so);
2471	struct tcpcb *tp;
2472
2473	NET_EPOCH_ENTER(et);
2474	INP_WLOCK(inp);
2475	if (!(inp->inp_flags & INP_DROPPED)) {
2476		tp = intotcpcb(inp);
2477		CURVNET_SET(inp->inp_vnet);
2478		tp = tcp_drop(tp, error);
2479		CURVNET_RESTORE();
2480		if (tp != NULL)
2481			INP_WUNLOCK(inp);
2482	} else {
2483		so->so_error = error;
2484		SOCK_RECVBUF_LOCK(so);
2485		sorwakeup_locked(so);
2486		INP_WUNLOCK(inp);
2487	}
2488	NET_EPOCH_EXIT(et);
2489}
2490
2491static void
2492ktls_decrypt(struct socket *so)
2493{
2494	char tls_header[MBUF_PEXT_HDR_LEN];
2495	struct ktls_session *tls;
2496	struct sockbuf *sb;
2497	struct tls_record_layer *hdr;
2498	struct tls_get_record tgr;
2499	struct mbuf *control, *data, *m;
2500	ktls_mbuf_crypto_st_t state;
2501	uint64_t seqno;
2502	int error, remain, tls_len, trail_len;
2503	bool tls13;
2504	uint8_t vminor, record_type;
2505
2506	hdr = (struct tls_record_layer *)tls_header;
2507	sb = &so->so_rcv;
2508	SOCKBUF_LOCK(sb);
2509	KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING,
2510	    ("%s: socket %p not running", __func__, so));
2511
2512	tls = sb->sb_tls_info;
2513	MPASS(tls != NULL);
2514
2515	tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE);
2516	if (tls13)
2517		vminor = TLS_MINOR_VER_TWO;
2518	else
2519		vminor = tls->params.tls_vminor;
2520	for (;;) {
2521		/* Is there enough queued for a TLS header? */
2522		if (sb->sb_tlscc < tls->params.tls_hlen)
2523			break;
2524
2525		m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header);
2526		tls_len = sizeof(*hdr) + ntohs(hdr->tls_length);
2527
2528		if (hdr->tls_vmajor != tls->params.tls_vmajor ||
2529		    hdr->tls_vminor != vminor)
2530			error = EINVAL;
2531		else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP)
2532			error = EINVAL;
2533		else if (tls_len < tls->params.tls_hlen || tls_len >
2534		    tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 +
2535		    tls->params.tls_tlen)
2536			error = EMSGSIZE;
2537		else
2538			error = 0;
2539		if (__predict_false(error != 0)) {
2540			/*
2541			 * We have a corrupted record and are likely
2542			 * out of sync.  The connection isn't
2543			 * recoverable at this point, so abort it.
2544			 */
2545			SOCKBUF_UNLOCK(sb);
2546			counter_u64_add(ktls_offload_corrupted_records, 1);
2547
2548			ktls_drop(so, error);
2549			goto deref;
2550		}
2551
2552		/* Is the entire record queued? */
2553		if (sb->sb_tlscc < tls_len)
2554			break;
2555
2556		/*
2557		 * Split out the portion of the mbuf chain containing
2558		 * this TLS record.
2559		 */
2560		data = ktls_detach_record(sb, tls_len);
2561		if (data == NULL)
2562			continue;
2563		MPASS(sb->sb_tlsdcc == tls_len);
2564
2565		seqno = sb->sb_tls_seqno;
2566		sb->sb_tls_seqno++;
2567		SBCHECK(sb);
2568		SOCKBUF_UNLOCK(sb);
2569
2570		/* get crypto state for this TLS record */
2571		state = ktls_mbuf_crypto_state(data, 0, tls_len);
2572
2573		switch (state) {
2574		case KTLS_MBUF_CRYPTO_ST_MIXED:
2575			error = ktls_ocf_recrypt(tls, hdr, data, seqno);
2576			if (error)
2577				break;
2578			/* FALLTHROUGH */
2579		case KTLS_MBUF_CRYPTO_ST_ENCRYPTED:
2580			error = ktls_ocf_decrypt(tls, hdr, data, seqno,
2581			    &trail_len);
2582			if (__predict_true(error == 0)) {
2583				if (tls13) {
2584					error = tls13_find_record_type(tls, data,
2585					    tls_len, &trail_len, &record_type);
2586				} else {
2587					record_type = hdr->tls_type;
2588				}
2589			}
2590			break;
2591		case KTLS_MBUF_CRYPTO_ST_DECRYPTED:
2592			/*
2593			 * NIC TLS is only supported for AEAD
2594			 * ciphersuites which used a fixed sized
2595			 * trailer.
2596			 */
2597			if (tls13) {
2598				trail_len = tls->params.tls_tlen - 1;
2599				error = tls13_find_record_type(tls, data,
2600				    tls_len, &trail_len, &record_type);
2601			} else {
2602				trail_len = tls->params.tls_tlen;
2603				error = 0;
2604				record_type = hdr->tls_type;
2605			}
2606			break;
2607		default:
2608			error = EINVAL;
2609			break;
2610		}
2611		if (error) {
2612			counter_u64_add(ktls_offload_failed_crypto, 1);
2613
2614			SOCKBUF_LOCK(sb);
2615			if (sb->sb_tlsdcc == 0) {
2616				/*
2617				 * sbcut/drop/flush discarded these
2618				 * mbufs.
2619				 */
2620				m_freem(data);
2621				break;
2622			}
2623
2624			/*
2625			 * Drop this TLS record's data, but keep
2626			 * decrypting subsequent records.
2627			 */
2628			sb->sb_ccc -= tls_len;
2629			sb->sb_tlsdcc = 0;
2630
2631			if (error != EMSGSIZE)
2632				error = EBADMSG;
2633			CURVNET_SET(so->so_vnet);
2634			so->so_error = error;
2635			sorwakeup_locked(so);
2636			CURVNET_RESTORE();
2637
2638			m_freem(data);
2639
2640			SOCKBUF_LOCK(sb);
2641			continue;
2642		}
2643
2644		/* Allocate the control mbuf. */
2645		memset(&tgr, 0, sizeof(tgr));
2646		tgr.tls_type = record_type;
2647		tgr.tls_vmajor = hdr->tls_vmajor;
2648		tgr.tls_vminor = hdr->tls_vminor;
2649		tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen -
2650		    trail_len);
2651		control = sbcreatecontrol(&tgr, sizeof(tgr),
2652		    TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK);
2653
2654		SOCKBUF_LOCK(sb);
2655		if (sb->sb_tlsdcc == 0) {
2656			/* sbcut/drop/flush discarded these mbufs. */
2657			MPASS(sb->sb_tlscc == 0);
2658			m_freem(data);
2659			m_freem(control);
2660			break;
2661		}
2662
2663		/*
2664		 * Clear the 'dcc' accounting in preparation for
2665		 * adding the decrypted record.
2666		 */
2667		sb->sb_ccc -= tls_len;
2668		sb->sb_tlsdcc = 0;
2669		SBCHECK(sb);
2670
2671		/* If there is no payload, drop all of the data. */
2672		if (tgr.tls_length == htobe16(0)) {
2673			m_freem(data);
2674			data = NULL;
2675		} else {
2676			/* Trim header. */
2677			remain = tls->params.tls_hlen;
2678			while (remain > 0) {
2679				if (data->m_len > remain) {
2680					data->m_data += remain;
2681					data->m_len -= remain;
2682					break;
2683				}
2684				remain -= data->m_len;
2685				data = m_free(data);
2686			}
2687
2688			/* Trim trailer and clear M_NOTREADY. */
2689			remain = be16toh(tgr.tls_length);
2690			m = data;
2691			for (m = data; remain > m->m_len; m = m->m_next) {
2692				m->m_flags &= ~(M_NOTREADY | M_DECRYPTED);
2693				remain -= m->m_len;
2694			}
2695			m->m_len = remain;
2696			m_freem(m->m_next);
2697			m->m_next = NULL;
2698			m->m_flags &= ~(M_NOTREADY | M_DECRYPTED);
2699
2700			/* Set EOR on the final mbuf. */
2701			m->m_flags |= M_EOR;
2702		}
2703
2704		sbappendcontrol_locked(sb, data, control, 0);
2705
2706		if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) {
2707			sb->sb_flags |= SB_TLS_RX_RESYNC;
2708			SOCKBUF_UNLOCK(sb);
2709			ktls_resync_ifnet(so, tls_len, seqno);
2710			SOCKBUF_LOCK(sb);
2711		} else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) {
2712			sb->sb_flags &= ~SB_TLS_RX_RESYNC;
2713			SOCKBUF_UNLOCK(sb);
2714			ktls_resync_ifnet(so, 0, seqno);
2715			SOCKBUF_LOCK(sb);
2716		}
2717	}
2718
2719	sb->sb_flags &= ~SB_TLS_RX_RUNNING;
2720
2721	if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0)
2722		so->so_error = EMSGSIZE;
2723
2724	sorwakeup_locked(so);
2725
2726deref:
2727	SOCKBUF_UNLOCK_ASSERT(sb);
2728
2729	CURVNET_SET(so->so_vnet);
2730	sorele(so);
2731	CURVNET_RESTORE();
2732}
2733
2734void
2735ktls_enqueue_to_free(struct mbuf *m)
2736{
2737	struct ktls_wq *wq;
2738	bool running;
2739
2740	/* Mark it for freeing. */
2741	m->m_epg_flags |= EPG_FLAG_2FREE;
2742	wq = &ktls_wq[m->m_epg_tls->wq_index];
2743	mtx_lock(&wq->mtx);
2744	STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2745	running = wq->running;
2746	mtx_unlock(&wq->mtx);
2747	if (!running)
2748		wakeup(wq);
2749}
2750
2751static void *
2752ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m)
2753{
2754	void *buf;
2755	int domain, running;
2756
2757	if (m->m_epg_npgs <= 2)
2758		return (NULL);
2759	if (ktls_buffer_zone == NULL)
2760		return (NULL);
2761	if ((u_int)(ticks - wq->lastallocfail) < hz) {
2762		/*
2763		 * Rate-limit allocation attempts after a failure.
2764		 * ktls_buffer_import() will acquire a per-domain mutex to check
2765		 * the free page queues and may fail consistently if memory is
2766		 * fragmented.
2767		 */
2768		return (NULL);
2769	}
2770	buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM);
2771	if (buf == NULL) {
2772		domain = PCPU_GET(domain);
2773		wq->lastallocfail = ticks;
2774
2775		/*
2776		 * Note that this check is "racy", but the races are
2777		 * harmless, and are either a spurious wakeup if
2778		 * multiple threads fail allocations before the alloc
2779		 * thread wakes, or waiting an extra second in case we
2780		 * see an old value of running == true.
2781		 */
2782		if (!VM_DOMAIN_EMPTY(domain)) {
2783			running = atomic_load_int(&ktls_domains[domain].reclaim_td.running);
2784			if (!running)
2785				wakeup(&ktls_domains[domain].reclaim_td);
2786		}
2787	}
2788	return (buf);
2789}
2790
2791static int
2792ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m,
2793    struct ktls_session *tls, struct ktls_ocf_encrypt_state *state)
2794{
2795	vm_page_t pg;
2796	int error, i, len, off;
2797
2798	KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY),
2799	    ("%p not unready & nomap mbuf\n", m));
2800	KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen,
2801	    ("page count %d larger than maximum frame length %d", m->m_epg_npgs,
2802	    ktls_maxlen));
2803
2804	/* Anonymous mbufs are encrypted in place. */
2805	if ((m->m_epg_flags & EPG_FLAG_ANON) != 0)
2806		return (ktls_ocf_encrypt(state, tls, m, NULL, 0));
2807
2808	/*
2809	 * For file-backed mbufs (from sendfile), anonymous wired
2810	 * pages are allocated and used as the encryption destination.
2811	 */
2812	if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) {
2813		len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len -
2814		    m->m_epg_1st_off;
2815		state->dst_iov[0].iov_base = (char *)state->cbuf +
2816		    m->m_epg_1st_off;
2817		state->dst_iov[0].iov_len = len;
2818		state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf);
2819		i = 1;
2820	} else {
2821		off = m->m_epg_1st_off;
2822		for (i = 0; i < m->m_epg_npgs; i++, off = 0) {
2823			pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP |
2824			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
2825			len = m_epg_pagelen(m, i, off);
2826			state->parray[i] = VM_PAGE_TO_PHYS(pg);
2827			state->dst_iov[i].iov_base =
2828			    (char *)PHYS_TO_DMAP(state->parray[i]) + off;
2829			state->dst_iov[i].iov_len = len;
2830		}
2831	}
2832	KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small"));
2833	state->dst_iov[i].iov_base = m->m_epg_trail;
2834	state->dst_iov[i].iov_len = m->m_epg_trllen;
2835
2836	error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1);
2837
2838	if (__predict_false(error != 0)) {
2839		/* Free the anonymous pages. */
2840		if (state->cbuf != NULL)
2841			uma_zfree(ktls_buffer_zone, state->cbuf);
2842		else {
2843			for (i = 0; i < m->m_epg_npgs; i++) {
2844				pg = PHYS_TO_VM_PAGE(state->parray[i]);
2845				(void)vm_page_unwire_noq(pg);
2846				vm_page_free(pg);
2847			}
2848		}
2849	}
2850	return (error);
2851}
2852
2853/* Number of TLS records in a batch passed to ktls_enqueue(). */
2854static u_int
2855ktls_batched_records(struct mbuf *m)
2856{
2857	int page_count, records;
2858
2859	records = 0;
2860	page_count = m->m_epg_enc_cnt;
2861	while (page_count > 0) {
2862		records++;
2863		page_count -= m->m_epg_nrdy;
2864		m = m->m_next;
2865	}
2866	KASSERT(page_count == 0, ("%s: mismatched page count", __func__));
2867	return (records);
2868}
2869
2870void
2871ktls_enqueue(struct mbuf *m, struct socket *so, int page_count)
2872{
2873	struct ktls_session *tls;
2874	struct ktls_wq *wq;
2875	int queued;
2876	bool running;
2877
2878	KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
2879	    (M_EXTPG | M_NOTREADY)),
2880	    ("ktls_enqueue: %p not unready & nomap mbuf\n", m));
2881	KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count"));
2882
2883	KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf"));
2884
2885	m->m_epg_enc_cnt = page_count;
2886
2887	/*
2888	 * Save a pointer to the socket.  The caller is responsible
2889	 * for taking an additional reference via soref().
2890	 */
2891	m->m_epg_so = so;
2892
2893	queued = 1;
2894	tls = m->m_epg_tls;
2895	wq = &ktls_wq[tls->wq_index];
2896	mtx_lock(&wq->mtx);
2897	if (__predict_false(tls->sequential_records)) {
2898		/*
2899		 * For TLS 1.0, records must be encrypted
2900		 * sequentially.  For a given connection, all records
2901		 * queued to the associated work queue are processed
2902		 * sequentially.  However, sendfile(2) might complete
2903		 * I/O requests spanning multiple TLS records out of
2904		 * order.  Here we ensure TLS records are enqueued to
2905		 * the work queue in FIFO order.
2906		 *
2907		 * tls->next_seqno holds the sequence number of the
2908		 * next TLS record that should be enqueued to the work
2909		 * queue.  If this next record is not tls->next_seqno,
2910		 * it must be a future record, so insert it, sorted by
2911		 * TLS sequence number, into tls->pending_records and
2912		 * return.
2913		 *
2914		 * If this TLS record matches tls->next_seqno, place
2915		 * it in the work queue and then check
2916		 * tls->pending_records to see if any
2917		 * previously-queued records are now ready for
2918		 * encryption.
2919		 */
2920		if (m->m_epg_seqno != tls->next_seqno) {
2921			struct mbuf *n, *p;
2922
2923			p = NULL;
2924			STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) {
2925				if (n->m_epg_seqno > m->m_epg_seqno)
2926					break;
2927				p = n;
2928			}
2929			if (n == NULL)
2930				STAILQ_INSERT_TAIL(&tls->pending_records, m,
2931				    m_epg_stailq);
2932			else if (p == NULL)
2933				STAILQ_INSERT_HEAD(&tls->pending_records, m,
2934				    m_epg_stailq);
2935			else
2936				STAILQ_INSERT_AFTER(&tls->pending_records, p, m,
2937				    m_epg_stailq);
2938			mtx_unlock(&wq->mtx);
2939			counter_u64_add(ktls_cnt_tx_pending, 1);
2940			return;
2941		}
2942
2943		tls->next_seqno += ktls_batched_records(m);
2944		STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2945
2946		while (!STAILQ_EMPTY(&tls->pending_records)) {
2947			struct mbuf *n;
2948
2949			n = STAILQ_FIRST(&tls->pending_records);
2950			if (n->m_epg_seqno != tls->next_seqno)
2951				break;
2952
2953			queued++;
2954			STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq);
2955			tls->next_seqno += ktls_batched_records(n);
2956			STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq);
2957		}
2958		counter_u64_add(ktls_cnt_tx_pending, -(queued - 1));
2959	} else
2960		STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2961
2962	running = wq->running;
2963	mtx_unlock(&wq->mtx);
2964	if (!running)
2965		wakeup(wq);
2966	counter_u64_add(ktls_cnt_tx_queued, queued);
2967}
2968
2969/*
2970 * Once a file-backed mbuf (from sendfile) has been encrypted, free
2971 * the pages from the file and replace them with the anonymous pages
2972 * allocated in ktls_encrypt_record().
2973 */
2974static void
2975ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state)
2976{
2977	int i;
2978
2979	MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0);
2980
2981	/* Free the old pages. */
2982	m->m_ext.ext_free(m);
2983
2984	/* Replace them with the new pages. */
2985	if (state->cbuf != NULL) {
2986		for (i = 0; i < m->m_epg_npgs; i++)
2987			m->m_epg_pa[i] = state->parray[0] + ptoa(i);
2988
2989		/* Contig pages should go back to the cache. */
2990		m->m_ext.ext_free = ktls_free_mext_contig;
2991	} else {
2992		for (i = 0; i < m->m_epg_npgs; i++)
2993			m->m_epg_pa[i] = state->parray[i];
2994
2995		/* Use the basic free routine. */
2996		m->m_ext.ext_free = mb_free_mext_pgs;
2997	}
2998
2999	/* Pages are now writable. */
3000	m->m_epg_flags |= EPG_FLAG_ANON;
3001}
3002
3003static __noinline void
3004ktls_encrypt(struct ktls_wq *wq, struct mbuf *top)
3005{
3006	struct ktls_ocf_encrypt_state state;
3007	struct ktls_session *tls;
3008	struct socket *so;
3009	struct mbuf *m;
3010	int error, npages, total_pages;
3011
3012	so = top->m_epg_so;
3013	tls = top->m_epg_tls;
3014	KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
3015	KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
3016#ifdef INVARIANTS
3017	top->m_epg_so = NULL;
3018#endif
3019	total_pages = top->m_epg_enc_cnt;
3020	npages = 0;
3021
3022	/*
3023	 * Encrypt the TLS records in the chain of mbufs starting with
3024	 * 'top'.  'total_pages' gives us a total count of pages and is
3025	 * used to know when we have finished encrypting the TLS
3026	 * records originally queued with 'top'.
3027	 *
3028	 * NB: These mbufs are queued in the socket buffer and
3029	 * 'm_next' is traversing the mbufs in the socket buffer.  The
3030	 * socket buffer lock is not held while traversing this chain.
3031	 * Since the mbufs are all marked M_NOTREADY their 'm_next'
3032	 * pointers should be stable.  However, the 'm_next' of the
3033	 * last mbuf encrypted is not necessarily NULL.  It can point
3034	 * to other mbufs appended while 'top' was on the TLS work
3035	 * queue.
3036	 *
3037	 * Each mbuf holds an entire TLS record.
3038	 */
3039	error = 0;
3040	for (m = top; npages != total_pages; m = m->m_next) {
3041		KASSERT(m->m_epg_tls == tls,
3042		    ("different TLS sessions in a single mbuf chain: %p vs %p",
3043		    tls, m->m_epg_tls));
3044		KASSERT(npages + m->m_epg_npgs <= total_pages,
3045		    ("page count mismatch: top %p, total_pages %d, m %p", top,
3046		    total_pages, m));
3047
3048		error = ktls_encrypt_record(wq, m, tls, &state);
3049		if (error) {
3050			counter_u64_add(ktls_offload_failed_crypto, 1);
3051			break;
3052		}
3053
3054		if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
3055			ktls_finish_nonanon(m, &state);
3056
3057		npages += m->m_epg_nrdy;
3058
3059		/*
3060		 * Drop a reference to the session now that it is no
3061		 * longer needed.  Existing code depends on encrypted
3062		 * records having no associated session vs
3063		 * yet-to-be-encrypted records having an associated
3064		 * session.
3065		 */
3066		m->m_epg_tls = NULL;
3067		ktls_free(tls);
3068	}
3069
3070	CURVNET_SET(so->so_vnet);
3071	if (error == 0) {
3072		(void)so->so_proto->pr_ready(so, top, npages);
3073	} else {
3074		ktls_drop(so, EIO);
3075		mb_free_notready(top, total_pages);
3076	}
3077
3078	sorele(so);
3079	CURVNET_RESTORE();
3080}
3081
3082void
3083ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error)
3084{
3085	struct ktls_session *tls;
3086	struct socket *so;
3087	struct mbuf *m;
3088	int npages;
3089
3090	m = state->m;
3091
3092	if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
3093		ktls_finish_nonanon(m, state);
3094
3095	so = state->so;
3096	free(state, M_KTLS);
3097
3098	/*
3099	 * Drop a reference to the session now that it is no longer
3100	 * needed.  Existing code depends on encrypted records having
3101	 * no associated session vs yet-to-be-encrypted records having
3102	 * an associated session.
3103	 */
3104	tls = m->m_epg_tls;
3105	m->m_epg_tls = NULL;
3106	ktls_free(tls);
3107
3108	if (error != 0)
3109		counter_u64_add(ktls_offload_failed_crypto, 1);
3110
3111	CURVNET_SET(so->so_vnet);
3112	npages = m->m_epg_nrdy;
3113
3114	if (error == 0) {
3115		(void)so->so_proto->pr_ready(so, m, npages);
3116	} else {
3117		ktls_drop(so, EIO);
3118		mb_free_notready(m, npages);
3119	}
3120
3121	sorele(so);
3122	CURVNET_RESTORE();
3123}
3124
3125/*
3126 * Similar to ktls_encrypt, but used with asynchronous OCF backends
3127 * (coprocessors) where encryption does not use host CPU resources and
3128 * it can be beneficial to queue more requests than CPUs.
3129 */
3130static __noinline void
3131ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top)
3132{
3133	struct ktls_ocf_encrypt_state *state;
3134	struct ktls_session *tls;
3135	struct socket *so;
3136	struct mbuf *m, *n;
3137	int error, mpages, npages, total_pages;
3138
3139	so = top->m_epg_so;
3140	tls = top->m_epg_tls;
3141	KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
3142	KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
3143#ifdef INVARIANTS
3144	top->m_epg_so = NULL;
3145#endif
3146	total_pages = top->m_epg_enc_cnt;
3147	npages = 0;
3148
3149	error = 0;
3150	for (m = top; npages != total_pages; m = n) {
3151		KASSERT(m->m_epg_tls == tls,
3152		    ("different TLS sessions in a single mbuf chain: %p vs %p",
3153		    tls, m->m_epg_tls));
3154		KASSERT(npages + m->m_epg_npgs <= total_pages,
3155		    ("page count mismatch: top %p, total_pages %d, m %p", top,
3156		    total_pages, m));
3157
3158		state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO);
3159		soref(so);
3160		state->so = so;
3161		state->m = m;
3162
3163		mpages = m->m_epg_nrdy;
3164		n = m->m_next;
3165
3166		error = ktls_encrypt_record(wq, m, tls, state);
3167		if (error) {
3168			counter_u64_add(ktls_offload_failed_crypto, 1);
3169			free(state, M_KTLS);
3170			CURVNET_SET(so->so_vnet);
3171			sorele(so);
3172			CURVNET_RESTORE();
3173			break;
3174		}
3175
3176		npages += mpages;
3177	}
3178
3179	CURVNET_SET(so->so_vnet);
3180	if (error != 0) {
3181		ktls_drop(so, EIO);
3182		mb_free_notready(m, total_pages - npages);
3183	}
3184
3185	sorele(so);
3186	CURVNET_RESTORE();
3187}
3188
3189static int
3190ktls_bind_domain(int domain)
3191{
3192	int error;
3193
3194	error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]);
3195	if (error != 0)
3196		return (error);
3197	curthread->td_domain.dr_policy = DOMAINSET_PREF(domain);
3198	return (0);
3199}
3200
3201static void
3202ktls_reclaim_thread(void *ctx)
3203{
3204	struct ktls_domain_info *ktls_domain = ctx;
3205	struct ktls_reclaim_thread *sc = &ktls_domain->reclaim_td;
3206	struct sysctl_oid *oid;
3207	char name[80];
3208	int error, domain;
3209
3210	domain = ktls_domain - ktls_domains;
3211	if (bootverbose)
3212		printf("Starting KTLS reclaim thread for domain %d\n", domain);
3213	error = ktls_bind_domain(domain);
3214	if (error)
3215		printf("Unable to bind KTLS reclaim thread for domain %d: error %d\n",
3216		    domain, error);
3217	snprintf(name, sizeof(name), "domain%d", domain);
3218	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO,
3219	    name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
3220	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "reclaims",
3221	    CTLFLAG_RD,  &sc->reclaims, 0, "buffers reclaimed");
3222	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups",
3223	    CTLFLAG_RD,  &sc->wakeups, 0, "thread wakeups");
3224	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running",
3225	    CTLFLAG_RD,  &sc->running, 0, "thread running");
3226
3227	for (;;) {
3228		atomic_store_int(&sc->running, 0);
3229		tsleep(sc, PZERO | PNOLOCK, "-",  0);
3230		atomic_store_int(&sc->running, 1);
3231		sc->wakeups++;
3232		/*
3233		 * Below we attempt to reclaim ktls_max_reclaim
3234		 * buffers using vm_page_reclaim_contig_domain_ext().
3235		 * We do this here, as this function can take several
3236		 * seconds to scan all of memory and it does not
3237		 * matter if this thread pauses for a while.  If we
3238		 * block a ktls worker thread, we risk developing
3239		 * backlogs of buffers to be encrypted, leading to
3240		 * surges of traffic and potential NIC output drops.
3241		 */
3242		if (vm_page_reclaim_contig_domain_ext(domain, VM_ALLOC_NORMAL,
3243		    atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0,
3244		    ktls_max_reclaim) != 0) {
3245			vm_wait_domain(domain);
3246		} else {
3247			sc->reclaims += ktls_max_reclaim;
3248		}
3249	}
3250}
3251
3252static void
3253ktls_work_thread(void *ctx)
3254{
3255	struct ktls_wq *wq = ctx;
3256	struct mbuf *m, *n;
3257	struct socket *so, *son;
3258	STAILQ_HEAD(, mbuf) local_m_head;
3259	STAILQ_HEAD(, socket) local_so_head;
3260	int cpu;
3261
3262	cpu = wq - ktls_wq;
3263	if (bootverbose)
3264		printf("Starting KTLS worker thread for CPU %d\n", cpu);
3265
3266	/*
3267	 * Bind to a core.  If ktls_bind_threads is > 1, then
3268	 * we bind to the NUMA domain instead.
3269	 */
3270	if (ktls_bind_threads) {
3271		int error;
3272
3273		if (ktls_bind_threads > 1) {
3274			struct pcpu *pc = pcpu_find(cpu);
3275
3276			error = ktls_bind_domain(pc->pc_domain);
3277		} else {
3278			cpuset_t mask;
3279
3280			CPU_SETOF(cpu, &mask);
3281			error = cpuset_setthread(curthread->td_tid, &mask);
3282		}
3283		if (error)
3284			printf("Unable to bind KTLS worker thread for CPU %d: error %d\n",
3285				cpu, error);
3286	}
3287#if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
3288	fpu_kern_thread(0);
3289#endif
3290	for (;;) {
3291		mtx_lock(&wq->mtx);
3292		while (STAILQ_EMPTY(&wq->m_head) &&
3293		    STAILQ_EMPTY(&wq->so_head)) {
3294			wq->running = false;
3295			mtx_sleep(wq, &wq->mtx, 0, "-", 0);
3296			wq->running = true;
3297		}
3298
3299		STAILQ_INIT(&local_m_head);
3300		STAILQ_CONCAT(&local_m_head, &wq->m_head);
3301		STAILQ_INIT(&local_so_head);
3302		STAILQ_CONCAT(&local_so_head, &wq->so_head);
3303		mtx_unlock(&wq->mtx);
3304
3305		STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) {
3306			if (m->m_epg_flags & EPG_FLAG_2FREE) {
3307				ktls_free(m->m_epg_tls);
3308				m_free_raw(m);
3309			} else {
3310				if (m->m_epg_tls->sync_dispatch)
3311					ktls_encrypt(wq, m);
3312				else
3313					ktls_encrypt_async(wq, m);
3314				counter_u64_add(ktls_cnt_tx_queued, -1);
3315			}
3316		}
3317
3318		STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) {
3319			ktls_decrypt(so);
3320			counter_u64_add(ktls_cnt_rx_queued, -1);
3321		}
3322	}
3323}
3324
3325static void
3326ktls_disable_ifnet_help(void *context, int pending __unused)
3327{
3328	struct ktls_session *tls;
3329	struct inpcb *inp;
3330	struct tcpcb *tp;
3331	struct socket *so;
3332	int err;
3333
3334	tls = context;
3335	inp = tls->inp;
3336	if (inp == NULL)
3337		return;
3338	INP_WLOCK(inp);
3339	so = inp->inp_socket;
3340	MPASS(so != NULL);
3341	if (inp->inp_flags & INP_DROPPED) {
3342		goto out;
3343	}
3344
3345	if (so->so_snd.sb_tls_info != NULL)
3346		err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW);
3347	else
3348		err = ENXIO;
3349	if (err == 0) {
3350		counter_u64_add(ktls_ifnet_disable_ok, 1);
3351		/* ktls_set_tx_mode() drops inp wlock, so recheck flags */
3352		if ((inp->inp_flags & INP_DROPPED) == 0 &&
3353		    (tp = intotcpcb(inp)) != NULL &&
3354		    tp->t_fb->tfb_hwtls_change != NULL)
3355			(*tp->t_fb->tfb_hwtls_change)(tp, 0);
3356	} else {
3357		counter_u64_add(ktls_ifnet_disable_fail, 1);
3358	}
3359
3360out:
3361	CURVNET_SET(so->so_vnet);
3362	sorele(so);
3363	CURVNET_RESTORE();
3364	INP_WUNLOCK(inp);
3365	ktls_free(tls);
3366}
3367
3368/*
3369 * Called when re-transmits are becoming a substantial portion of the
3370 * sends on this connection.  When this happens, we transition the
3371 * connection to software TLS.  This is needed because most inline TLS
3372 * NICs keep crypto state only for in-order transmits.  This means
3373 * that to handle a TCP rexmit (which is out-of-order), the NIC must
3374 * re-DMA the entire TLS record up to and including the current
3375 * segment.  This means that when re-transmitting the last ~1448 byte
3376 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order
3377 * of magnitude more data than we are sending.  This can cause the
3378 * PCIe link to saturate well before the network, which can cause
3379 * output drops, and a general loss of capacity.
3380 */
3381void
3382ktls_disable_ifnet(void *arg)
3383{
3384	struct tcpcb *tp;
3385	struct inpcb *inp;
3386	struct socket *so;
3387	struct ktls_session *tls;
3388
3389	tp = arg;
3390	inp = tptoinpcb(tp);
3391	INP_WLOCK_ASSERT(inp);
3392	so = inp->inp_socket;
3393	SOCK_LOCK(so);
3394	tls = so->so_snd.sb_tls_info;
3395	if (tp->t_nic_ktls_xmit_dis == 1) {
3396		SOCK_UNLOCK(so);
3397		return;
3398	}
3399
3400	/*
3401	 * note that t_nic_ktls_xmit_dis is never cleared; disabling
3402	 * ifnet can only be done once per connection, so we never want
3403	 * to do it again
3404	 */
3405
3406	(void)ktls_hold(tls);
3407	soref(so);
3408	tp->t_nic_ktls_xmit_dis = 1;
3409	SOCK_UNLOCK(so);
3410	TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls);
3411	(void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task);
3412}
3413