1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * Implementation of sleep queues used to hold queue of threads blocked on
30 * a wait channel.  Sleep queues are different from turnstiles in that wait
31 * channels are not owned by anyone, so there is no priority propagation.
32 * Sleep queues can also provide a timeout and can also be interrupted by
33 * signals.  That said, there are several similarities between the turnstile
34 * and sleep queue implementations.  (Note: turnstiles were implemented
35 * first.)  For example, both use a hash table of the same size where each
36 * bucket is referred to as a "chain" that contains both a spin lock and
37 * a linked list of queues.  An individual queue is located by using a hash
38 * to pick a chain, locking the chain, and then walking the chain searching
39 * for the queue.  This means that a wait channel object does not need to
40 * embed its queue head just as locks do not embed their turnstile queue
41 * head.  Threads also carry around a sleep queue that they lend to the
42 * wait channel when blocking.  Just as in turnstiles, the queue includes
43 * a free list of the sleep queues of other threads blocked on the same
44 * wait channel in the case of multiple waiters.
45 *
46 * Some additional functionality provided by sleep queues include the
47 * ability to set a timeout.  The timeout is managed using a per-thread
48 * callout that resumes a thread if it is asleep.  A thread may also
49 * catch signals while it is asleep (aka an interruptible sleep).  The
50 * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
51 * sleep queues also provide some extra assertions.  One is not allowed to
52 * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
53 * must consistently use the same lock to synchronize with a wait channel,
54 * though this check is currently only a warning for sleep/wakeup due to
55 * pre-existing abuse of that API.  The same lock must also be held when
56 * awakening threads, though that is currently only enforced for condition
57 * variables.
58 */
59
60#include <sys/cdefs.h>
61#include "opt_sleepqueue_profiling.h"
62#include "opt_ddb.h"
63#include "opt_sched.h"
64#include "opt_stack.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/lock.h>
69#include <sys/kernel.h>
70#include <sys/ktr.h>
71#include <sys/mutex.h>
72#include <sys/proc.h>
73#include <sys/sbuf.h>
74#include <sys/sched.h>
75#include <sys/sdt.h>
76#include <sys/signalvar.h>
77#include <sys/sleepqueue.h>
78#include <sys/stack.h>
79#include <sys/sysctl.h>
80#include <sys/time.h>
81#ifdef EPOCH_TRACE
82#include <sys/epoch.h>
83#endif
84
85#include <machine/atomic.h>
86
87#include <vm/uma.h>
88
89#ifdef DDB
90#include <ddb/ddb.h>
91#endif
92
93/*
94 * Constants for the hash table of sleep queue chains.
95 * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
96 */
97#ifndef SC_TABLESIZE
98#define	SC_TABLESIZE	256
99#endif
100CTASSERT(powerof2(SC_TABLESIZE));
101#define	SC_MASK		(SC_TABLESIZE - 1)
102#define	SC_SHIFT	8
103#define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
104			    SC_MASK)
105#define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
106#define NR_SLEEPQS      2
107/*
108 * There are two different lists of sleep queues.  Both lists are connected
109 * via the sq_hash entries.  The first list is the sleep queue chain list
110 * that a sleep queue is on when it is attached to a wait channel.  The
111 * second list is the free list hung off of a sleep queue that is attached
112 * to a wait channel.
113 *
114 * Each sleep queue also contains the wait channel it is attached to, the
115 * list of threads blocked on that wait channel, flags specific to the
116 * wait channel, and the lock used to synchronize with a wait channel.
117 * The flags are used to catch mismatches between the various consumers
118 * of the sleep queue API (e.g. sleep/wakeup and condition variables).
119 * The lock pointer is only used when invariants are enabled for various
120 * debugging checks.
121 *
122 * Locking key:
123 *  c - sleep queue chain lock
124 */
125struct sleepqueue {
126	struct threadqueue sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */
127	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
128	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
129	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
130	const void	*sq_wchan;		/* (c) Wait channel. */
131	int	sq_type;			/* (c) Queue type. */
132#ifdef INVARIANTS
133	struct lock_object *sq_lock;		/* (c) Associated lock. */
134#endif
135};
136
137struct sleepqueue_chain {
138	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
139	struct mtx sc_lock;			/* Spin lock for this chain. */
140#ifdef SLEEPQUEUE_PROFILING
141	u_int	sc_depth;			/* Length of sc_queues. */
142	u_int	sc_max_depth;			/* Max length of sc_queues. */
143#endif
144} __aligned(CACHE_LINE_SIZE);
145
146#ifdef SLEEPQUEUE_PROFILING
147static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
148    "sleepq profiling");
149static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains,
150    CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
151    "sleepq chain stats");
152static u_int sleepq_max_depth;
153SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
154    0, "maxmimum depth achieved of a single chain");
155
156static void	sleepq_profile(const char *wmesg);
157static int	prof_enabled;
158#endif
159static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
160static uma_zone_t sleepq_zone;
161
162/*
163 * Prototypes for non-exported routines.
164 */
165static int	sleepq_catch_signals(const void *wchan, int pri);
166static inline int sleepq_check_signals(void);
167static inline int sleepq_check_timeout(void);
168#ifdef INVARIANTS
169static void	sleepq_dtor(void *mem, int size, void *arg);
170#endif
171static int	sleepq_init(void *mem, int size, int flags);
172static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
173		    int pri, int srqflags);
174static void	sleepq_remove_thread(struct sleepqueue *sq, struct thread *td);
175static void	sleepq_switch(const void *wchan, int pri);
176static void	sleepq_timeout(void *arg);
177
178SDT_PROBE_DECLARE(sched, , , sleep);
179SDT_PROBE_DECLARE(sched, , , wakeup);
180
181/*
182 * Initialize SLEEPQUEUE_PROFILING specific sysctl nodes.
183 * Note that it must happen after sleepinit() has been fully executed, so
184 * it must happen after SI_SUB_KMEM SYSINIT() subsystem setup.
185 */
186#ifdef SLEEPQUEUE_PROFILING
187static void
188init_sleepqueue_profiling(void)
189{
190	char chain_name[10];
191	struct sysctl_oid *chain_oid;
192	u_int i;
193
194	for (i = 0; i < SC_TABLESIZE; i++) {
195		snprintf(chain_name, sizeof(chain_name), "%u", i);
196		chain_oid = SYSCTL_ADD_NODE(NULL,
197		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
198		    chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
199		    "sleepq chain stats");
200		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
201		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
202		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
203		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
204		    NULL);
205	}
206}
207
208SYSINIT(sleepqueue_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
209    init_sleepqueue_profiling, NULL);
210#endif
211
212/*
213 * Early initialization of sleep queues that is called from the sleepinit()
214 * SYSINIT.
215 */
216void
217init_sleepqueues(void)
218{
219	int i;
220
221	for (i = 0; i < SC_TABLESIZE; i++) {
222		LIST_INIT(&sleepq_chains[i].sc_queues);
223		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
224		    MTX_SPIN);
225	}
226	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
227#ifdef INVARIANTS
228	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
229#else
230	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
231#endif
232
233	thread0.td_sleepqueue = sleepq_alloc();
234}
235
236/*
237 * Get a sleep queue for a new thread.
238 */
239struct sleepqueue *
240sleepq_alloc(void)
241{
242
243	return (uma_zalloc(sleepq_zone, M_WAITOK));
244}
245
246/*
247 * Free a sleep queue when a thread is destroyed.
248 */
249void
250sleepq_free(struct sleepqueue *sq)
251{
252
253	uma_zfree(sleepq_zone, sq);
254}
255
256/*
257 * Lock the sleep queue chain associated with the specified wait channel.
258 */
259void
260sleepq_lock(const void *wchan)
261{
262	struct sleepqueue_chain *sc;
263
264	sc = SC_LOOKUP(wchan);
265	mtx_lock_spin(&sc->sc_lock);
266}
267
268/*
269 * Look up the sleep queue associated with a given wait channel in the hash
270 * table locking the associated sleep queue chain.  If no queue is found in
271 * the table, NULL is returned.
272 */
273struct sleepqueue *
274sleepq_lookup(const void *wchan)
275{
276	struct sleepqueue_chain *sc;
277	struct sleepqueue *sq;
278
279	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
280	sc = SC_LOOKUP(wchan);
281	mtx_assert(&sc->sc_lock, MA_OWNED);
282	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
283		if (sq->sq_wchan == wchan)
284			return (sq);
285	return (NULL);
286}
287
288/*
289 * Unlock the sleep queue chain associated with a given wait channel.
290 */
291void
292sleepq_release(const void *wchan)
293{
294	struct sleepqueue_chain *sc;
295
296	sc = SC_LOOKUP(wchan);
297	mtx_unlock_spin(&sc->sc_lock);
298}
299
300/*
301 * Places the current thread on the sleep queue for the specified wait
302 * channel.  If INVARIANTS is enabled, then it associates the passed in
303 * lock with the sleepq to make sure it is held when that sleep queue is
304 * woken up.
305 */
306void
307sleepq_add(const void *wchan, struct lock_object *lock, const char *wmesg,
308    int flags, int queue)
309{
310	struct sleepqueue_chain *sc;
311	struct sleepqueue *sq;
312	struct thread *td;
313
314	td = curthread;
315	sc = SC_LOOKUP(wchan);
316	mtx_assert(&sc->sc_lock, MA_OWNED);
317	MPASS(td->td_sleepqueue != NULL);
318	MPASS(wchan != NULL);
319	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
320
321	/* If this thread is not allowed to sleep, die a horrible death. */
322	if (__predict_false(!THREAD_CAN_SLEEP())) {
323#ifdef EPOCH_TRACE
324		epoch_trace_list(curthread);
325#endif
326		KASSERT(0,
327		    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
328		    __func__, td, wchan));
329	}
330
331	/* Look up the sleep queue associated with the wait channel 'wchan'. */
332	sq = sleepq_lookup(wchan);
333
334	/*
335	 * If the wait channel does not already have a sleep queue, use
336	 * this thread's sleep queue.  Otherwise, insert the current thread
337	 * into the sleep queue already in use by this wait channel.
338	 */
339	if (sq == NULL) {
340#ifdef INVARIANTS
341		int i;
342
343		sq = td->td_sleepqueue;
344		for (i = 0; i < NR_SLEEPQS; i++) {
345			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
346			    ("thread's sleep queue %d is not empty", i));
347			KASSERT(sq->sq_blockedcnt[i] == 0,
348			    ("thread's sleep queue %d count mismatches", i));
349		}
350		KASSERT(LIST_EMPTY(&sq->sq_free),
351		    ("thread's sleep queue has a non-empty free list"));
352		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
353		sq->sq_lock = lock;
354#endif
355#ifdef SLEEPQUEUE_PROFILING
356		sc->sc_depth++;
357		if (sc->sc_depth > sc->sc_max_depth) {
358			sc->sc_max_depth = sc->sc_depth;
359			if (sc->sc_max_depth > sleepq_max_depth)
360				sleepq_max_depth = sc->sc_max_depth;
361		}
362#endif
363		sq = td->td_sleepqueue;
364		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
365		sq->sq_wchan = wchan;
366		sq->sq_type = flags & SLEEPQ_TYPE;
367	} else {
368		MPASS(wchan == sq->sq_wchan);
369		MPASS(lock == sq->sq_lock);
370		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
371		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
372	}
373	thread_lock(td);
374	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
375	sq->sq_blockedcnt[queue]++;
376	td->td_sleepqueue = NULL;
377	td->td_sqqueue = queue;
378	td->td_wchan = wchan;
379	td->td_wmesg = wmesg;
380	if (flags & SLEEPQ_INTERRUPTIBLE) {
381		td->td_intrval = 0;
382		td->td_flags |= TDF_SINTR;
383	}
384	td->td_flags &= ~TDF_TIMEOUT;
385	thread_unlock(td);
386}
387
388/*
389 * Sets a timeout that will remove the current thread from the
390 * specified sleep queue at the specified time if the thread has not
391 * already been awakened.  Flags are from C_* (callout) namespace.
392 */
393void
394sleepq_set_timeout_sbt(const void *wchan, sbintime_t sbt, sbintime_t pr,
395    int flags)
396{
397	struct sleepqueue_chain *sc __unused;
398	struct thread *td;
399	sbintime_t pr1;
400
401	td = curthread;
402	sc = SC_LOOKUP(wchan);
403	mtx_assert(&sc->sc_lock, MA_OWNED);
404	MPASS(TD_ON_SLEEPQ(td));
405	MPASS(td->td_sleepqueue == NULL);
406	MPASS(wchan != NULL);
407	if (cold && td == &thread0)
408		panic("timed sleep before timers are working");
409	KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx",
410	    td->td_tid, td, (uintmax_t)td->td_sleeptimo));
411	thread_lock(td);
412	callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1);
413	thread_unlock(td);
414	callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1,
415	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC |
416	    C_DIRECT_EXEC);
417}
418
419/*
420 * Return the number of actual sleepers for the specified queue.
421 */
422u_int
423sleepq_sleepcnt(const void *wchan, int queue)
424{
425	struct sleepqueue *sq;
426
427	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
428	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
429	sq = sleepq_lookup(wchan);
430	if (sq == NULL)
431		return (0);
432	return (sq->sq_blockedcnt[queue]);
433}
434
435static int
436sleepq_check_ast_sc_locked(struct thread *td, struct sleepqueue_chain *sc)
437{
438	struct proc *p;
439	int ret;
440
441	mtx_assert(&sc->sc_lock, MA_OWNED);
442
443	if ((td->td_pflags & TDP_WAKEUP) != 0) {
444		td->td_pflags &= ~TDP_WAKEUP;
445		thread_lock(td);
446		return (EINTR);
447	}
448
449	/*
450	 * See if there are any pending signals or suspension requests for this
451	 * thread.  If not, we can switch immediately.
452	 */
453	thread_lock(td);
454	if (!td_ast_pending(td, TDA_SIG) && !td_ast_pending(td, TDA_SUSPEND))
455		return (0);
456
457	thread_unlock(td);
458	mtx_unlock_spin(&sc->sc_lock);
459
460	p = td->td_proc;
461	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
462	    (void *)td, (long)p->p_pid, td->td_name);
463	PROC_LOCK(p);
464
465	/*
466	 * Check for suspension first. Checking for signals and then
467	 * suspending could result in a missed signal, since a signal
468	 * can be delivered while this thread is suspended.
469	 */
470	ret = sig_ast_checksusp(td);
471	if (ret != 0) {
472		PROC_UNLOCK(p);
473		mtx_lock_spin(&sc->sc_lock);
474		thread_lock(td);
475		return (ret);
476	}
477
478	ret = sig_ast_needsigchk(td);
479
480	/*
481	 * Lock the per-process spinlock prior to dropping the
482	 * PROC_LOCK to avoid a signal delivery race.
483	 * PROC_LOCK, PROC_SLOCK, and thread_lock() are
484	 * currently held in tdsendsignal() and thread_single().
485	 */
486	PROC_SLOCK(p);
487	mtx_lock_spin(&sc->sc_lock);
488	PROC_UNLOCK(p);
489	thread_lock(td);
490	PROC_SUNLOCK(p);
491
492	return (ret);
493}
494
495/*
496 * Marks the pending sleep of the current thread as interruptible and
497 * makes an initial check for pending signals before putting a thread
498 * to sleep. Enters and exits with the thread lock held.  Thread lock
499 * may have transitioned from the sleepq lock to a run lock.
500 */
501static int
502sleepq_catch_signals(const void *wchan, int pri)
503{
504	struct thread *td;
505	struct sleepqueue_chain *sc;
506	struct sleepqueue *sq;
507	int ret;
508
509	sc = SC_LOOKUP(wchan);
510	mtx_assert(&sc->sc_lock, MA_OWNED);
511	MPASS(wchan != NULL);
512	td = curthread;
513
514	ret = sleepq_check_ast_sc_locked(td, sc);
515	THREAD_LOCK_ASSERT(td, MA_OWNED);
516	mtx_assert(&sc->sc_lock, MA_OWNED);
517
518	if (ret == 0) {
519		/*
520		 * No pending signals and no suspension requests found.
521		 * Switch the thread off the cpu.
522		 */
523		sleepq_switch(wchan, pri);
524	} else {
525		/*
526		 * There were pending signals and this thread is still
527		 * on the sleep queue, remove it from the sleep queue.
528		 */
529		if (TD_ON_SLEEPQ(td)) {
530			sq = sleepq_lookup(wchan);
531			sleepq_remove_thread(sq, td);
532		}
533		MPASS(td->td_lock != &sc->sc_lock);
534		mtx_unlock_spin(&sc->sc_lock);
535		thread_unlock(td);
536	}
537	return (ret);
538}
539
540/*
541 * Switches to another thread if we are still asleep on a sleep queue.
542 * Returns with thread lock.
543 */
544static void
545sleepq_switch(const void *wchan, int pri)
546{
547	struct sleepqueue_chain *sc;
548	struct sleepqueue *sq;
549	struct thread *td;
550	bool rtc_changed;
551
552	td = curthread;
553	sc = SC_LOOKUP(wchan);
554	mtx_assert(&sc->sc_lock, MA_OWNED);
555	THREAD_LOCK_ASSERT(td, MA_OWNED);
556
557	/*
558	 * If we have a sleep queue, then we've already been woken up, so
559	 * just return.
560	 */
561	if (td->td_sleepqueue != NULL) {
562		mtx_unlock_spin(&sc->sc_lock);
563		thread_unlock(td);
564		return;
565	}
566
567	/*
568	 * If TDF_TIMEOUT is set, then our sleep has been timed out
569	 * already but we are still on the sleep queue, so dequeue the
570	 * thread and return.
571	 *
572	 * Do the same if the real-time clock has been adjusted since this
573	 * thread calculated its timeout based on that clock.  This handles
574	 * the following race:
575	 * - The Ts thread needs to sleep until an absolute real-clock time.
576	 *   It copies the global rtc_generation into curthread->td_rtcgen,
577	 *   reads the RTC, and calculates a sleep duration based on that time.
578	 *   See umtxq_sleep() for an example.
579	 * - The Tc thread adjusts the RTC, bumps rtc_generation, and wakes
580	 *   threads that are sleeping until an absolute real-clock time.
581	 *   See tc_setclock() and the POSIX specification of clock_settime().
582	 * - Ts reaches the code below.  It holds the sleepqueue chain lock,
583	 *   so Tc has finished waking, so this thread must test td_rtcgen.
584	 * (The declaration of td_rtcgen refers to this comment.)
585	 */
586	rtc_changed = td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation;
587	if ((td->td_flags & TDF_TIMEOUT) || rtc_changed) {
588		if (rtc_changed) {
589			td->td_rtcgen = 0;
590		}
591		MPASS(TD_ON_SLEEPQ(td));
592		sq = sleepq_lookup(wchan);
593		sleepq_remove_thread(sq, td);
594		mtx_unlock_spin(&sc->sc_lock);
595		thread_unlock(td);
596		return;
597	}
598#ifdef SLEEPQUEUE_PROFILING
599	if (prof_enabled)
600		sleepq_profile(td->td_wmesg);
601#endif
602	MPASS(td->td_sleepqueue == NULL);
603	sched_sleep(td, pri);
604	thread_lock_set(td, &sc->sc_lock);
605	SDT_PROBE0(sched, , , sleep);
606	TD_SET_SLEEPING(td);
607	mi_switch(SW_VOL | SWT_SLEEPQ);
608	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
609	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
610	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
611}
612
613/*
614 * Check to see if we timed out.
615 */
616static inline int
617sleepq_check_timeout(void)
618{
619	struct thread *td;
620	int res;
621
622	res = 0;
623	td = curthread;
624	if (td->td_sleeptimo != 0) {
625		if (td->td_sleeptimo <= sbinuptime())
626			res = EWOULDBLOCK;
627		td->td_sleeptimo = 0;
628	}
629	return (res);
630}
631
632/*
633 * Check to see if we were awoken by a signal.
634 */
635static inline int
636sleepq_check_signals(void)
637{
638	struct thread *td;
639
640	td = curthread;
641	KASSERT((td->td_flags & TDF_SINTR) == 0,
642	    ("thread %p still in interruptible sleep?", td));
643
644	return (td->td_intrval);
645}
646
647/*
648 * Block the current thread until it is awakened from its sleep queue.
649 */
650void
651sleepq_wait(const void *wchan, int pri)
652{
653	struct thread *td;
654
655	td = curthread;
656	MPASS(!(td->td_flags & TDF_SINTR));
657	thread_lock(td);
658	sleepq_switch(wchan, pri);
659}
660
661/*
662 * Block the current thread until it is awakened from its sleep queue
663 * or it is interrupted by a signal.
664 */
665int
666sleepq_wait_sig(const void *wchan, int pri)
667{
668	int rcatch;
669
670	rcatch = sleepq_catch_signals(wchan, pri);
671	if (rcatch)
672		return (rcatch);
673	return (sleepq_check_signals());
674}
675
676/*
677 * Block the current thread until it is awakened from its sleep queue
678 * or it times out while waiting.
679 */
680int
681sleepq_timedwait(const void *wchan, int pri)
682{
683	struct thread *td;
684
685	td = curthread;
686	MPASS(!(td->td_flags & TDF_SINTR));
687
688	thread_lock(td);
689	sleepq_switch(wchan, pri);
690
691	return (sleepq_check_timeout());
692}
693
694/*
695 * Block the current thread until it is awakened from its sleep queue,
696 * it is interrupted by a signal, or it times out waiting to be awakened.
697 */
698int
699sleepq_timedwait_sig(const void *wchan, int pri)
700{
701	int rcatch, rvalt, rvals;
702
703	rcatch = sleepq_catch_signals(wchan, pri);
704	/* We must always call check_timeout() to clear sleeptimo. */
705	rvalt = sleepq_check_timeout();
706	rvals = sleepq_check_signals();
707	if (rcatch)
708		return (rcatch);
709	if (rvals)
710		return (rvals);
711	return (rvalt);
712}
713
714/*
715 * Returns the type of sleepqueue given a waitchannel.
716 */
717int
718sleepq_type(const void *wchan)
719{
720	struct sleepqueue *sq;
721	int type;
722
723	MPASS(wchan != NULL);
724
725	sq = sleepq_lookup(wchan);
726	if (sq == NULL)
727		return (-1);
728	type = sq->sq_type;
729
730	return (type);
731}
732
733/*
734 * Removes a thread from a sleep queue and makes it
735 * runnable.
736 *
737 * Requires the sc chain locked on entry.  If SRQ_HOLD is specified it will
738 * be locked on return.  Returns without the thread lock held.
739 */
740static int
741sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri,
742    int srqflags)
743{
744	struct sleepqueue_chain *sc;
745	bool drop;
746
747	MPASS(td != NULL);
748	MPASS(sq->sq_wchan != NULL);
749	MPASS(td->td_wchan == sq->sq_wchan);
750
751	sc = SC_LOOKUP(sq->sq_wchan);
752	mtx_assert(&sc->sc_lock, MA_OWNED);
753
754	/*
755	 * Avoid recursing on the chain lock.  If the locks don't match we
756	 * need to acquire the thread lock which setrunnable will drop for
757	 * us.  In this case we need to drop the chain lock afterwards.
758	 *
759	 * There is no race that will make td_lock equal to sc_lock because
760	 * we hold sc_lock.
761	 */
762	drop = false;
763	if (!TD_IS_SLEEPING(td)) {
764		thread_lock(td);
765		drop = true;
766	} else
767		thread_lock_block_wait(td);
768
769	/* Remove thread from the sleepq. */
770	sleepq_remove_thread(sq, td);
771
772	/* If we're done with the sleepqueue release it. */
773	if ((srqflags & SRQ_HOLD) == 0 && drop)
774		mtx_unlock_spin(&sc->sc_lock);
775
776	/* Adjust priority if requested. */
777	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
778	if (pri != 0 && td->td_priority > pri &&
779	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
780		sched_prio(td, pri);
781
782	/*
783	 * Note that thread td might not be sleeping if it is running
784	 * sleepq_catch_signals() on another CPU or is blocked on its
785	 * proc lock to check signals.  There's no need to mark the
786	 * thread runnable in that case.
787	 */
788	if (TD_IS_SLEEPING(td)) {
789		MPASS(!drop);
790		TD_CLR_SLEEPING(td);
791		return (setrunnable(td, srqflags));
792	}
793	MPASS(drop);
794	thread_unlock(td);
795
796	return (0);
797}
798
799static void
800sleepq_remove_thread(struct sleepqueue *sq, struct thread *td)
801{
802	struct sleepqueue_chain *sc __unused;
803
804	MPASS(td != NULL);
805	MPASS(sq->sq_wchan != NULL);
806	MPASS(td->td_wchan == sq->sq_wchan);
807	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
808	THREAD_LOCK_ASSERT(td, MA_OWNED);
809	sc = SC_LOOKUP(sq->sq_wchan);
810	mtx_assert(&sc->sc_lock, MA_OWNED);
811
812	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
813
814	/* Remove the thread from the queue. */
815	sq->sq_blockedcnt[td->td_sqqueue]--;
816	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
817
818	/*
819	 * Get a sleep queue for this thread.  If this is the last waiter,
820	 * use the queue itself and take it out of the chain, otherwise,
821	 * remove a queue from the free list.
822	 */
823	if (LIST_EMPTY(&sq->sq_free)) {
824		td->td_sleepqueue = sq;
825#ifdef INVARIANTS
826		sq->sq_wchan = NULL;
827#endif
828#ifdef SLEEPQUEUE_PROFILING
829		sc->sc_depth--;
830#endif
831	} else
832		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
833	LIST_REMOVE(td->td_sleepqueue, sq_hash);
834
835	if ((td->td_flags & TDF_TIMEOUT) == 0 && td->td_sleeptimo != 0 &&
836	    td->td_lock == &sc->sc_lock) {
837		/*
838		 * We ignore the situation where timeout subsystem was
839		 * unable to stop our callout.  The struct thread is
840		 * type-stable, the callout will use the correct
841		 * memory when running.  The checks of the
842		 * td_sleeptimo value in this function and in
843		 * sleepq_timeout() ensure that the thread does not
844		 * get spurious wakeups, even if the callout was reset
845		 * or thread reused.
846		 *
847		 * We also cannot safely stop the callout if a scheduler
848		 * lock is held since softclock_thread() forces a lock
849		 * order of callout lock -> scheduler lock.  The thread
850		 * lock will be a scheduler lock only if the thread is
851		 * preparing to go to sleep, so this is hopefully a rare
852		 * scenario.
853		 */
854		callout_stop(&td->td_slpcallout);
855	}
856
857	td->td_wmesg = NULL;
858	td->td_wchan = NULL;
859	td->td_flags &= ~(TDF_SINTR | TDF_TIMEOUT);
860
861	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
862	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
863}
864
865void
866sleepq_remove_nested(struct thread *td)
867{
868	struct sleepqueue_chain *sc;
869	struct sleepqueue *sq;
870	const void *wchan;
871
872	MPASS(TD_ON_SLEEPQ(td));
873
874	wchan = td->td_wchan;
875	sc = SC_LOOKUP(wchan);
876	mtx_lock_spin(&sc->sc_lock);
877	sq = sleepq_lookup(wchan);
878	MPASS(sq != NULL);
879	thread_lock(td);
880	sleepq_remove_thread(sq, td);
881	mtx_unlock_spin(&sc->sc_lock);
882	/* Returns with the thread lock owned. */
883}
884
885#ifdef INVARIANTS
886/*
887 * UMA zone item deallocator.
888 */
889static void
890sleepq_dtor(void *mem, int size, void *arg)
891{
892	struct sleepqueue *sq;
893	int i;
894
895	sq = mem;
896	for (i = 0; i < NR_SLEEPQS; i++) {
897		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
898		MPASS(sq->sq_blockedcnt[i] == 0);
899	}
900}
901#endif
902
903/*
904 * UMA zone item initializer.
905 */
906static int
907sleepq_init(void *mem, int size, int flags)
908{
909	struct sleepqueue *sq;
910	int i;
911
912	bzero(mem, size);
913	sq = mem;
914	for (i = 0; i < NR_SLEEPQS; i++) {
915		TAILQ_INIT(&sq->sq_blocked[i]);
916		sq->sq_blockedcnt[i] = 0;
917	}
918	LIST_INIT(&sq->sq_free);
919	return (0);
920}
921
922/*
923 * Find thread sleeping on a wait channel and resume it.
924 */
925int
926sleepq_signal(const void *wchan, int flags, int pri, int queue)
927{
928	struct sleepqueue_chain *sc;
929	struct sleepqueue *sq;
930	struct threadqueue *head;
931	struct thread *td, *besttd;
932	int wakeup_swapper;
933
934	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
935	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
936	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
937	sq = sleepq_lookup(wchan);
938	if (sq == NULL) {
939		if (flags & SLEEPQ_DROP)
940			sleepq_release(wchan);
941		return (0);
942	}
943	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
944	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
945
946	head = &sq->sq_blocked[queue];
947	if (flags & SLEEPQ_UNFAIR) {
948		/*
949		 * Find the most recently sleeping thread, but try to
950		 * skip threads still in process of context switch to
951		 * avoid spinning on the thread lock.
952		 */
953		sc = SC_LOOKUP(wchan);
954		besttd = TAILQ_LAST_FAST(head, thread, td_slpq);
955		while (besttd->td_lock != &sc->sc_lock) {
956			td = TAILQ_PREV_FAST(besttd, head, thread, td_slpq);
957			if (td == NULL)
958				break;
959			besttd = td;
960		}
961	} else {
962		/*
963		 * Find the highest priority thread on the queue.  If there
964		 * is a tie, use the thread that first appears in the queue
965		 * as it has been sleeping the longest since threads are
966		 * always added to the tail of sleep queues.
967		 */
968		besttd = td = TAILQ_FIRST(head);
969		while ((td = TAILQ_NEXT(td, td_slpq)) != NULL) {
970			if (td->td_priority < besttd->td_priority)
971				besttd = td;
972		}
973	}
974	MPASS(besttd != NULL);
975	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri,
976	    (flags & SLEEPQ_DROP) ? 0 : SRQ_HOLD);
977	return (wakeup_swapper);
978}
979
980static bool
981match_any(struct thread *td __unused)
982{
983
984	return (true);
985}
986
987/*
988 * Resume all threads sleeping on a specified wait channel.
989 */
990int
991sleepq_broadcast(const void *wchan, int flags, int pri, int queue)
992{
993	struct sleepqueue *sq;
994
995	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
996	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
997	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
998	sq = sleepq_lookup(wchan);
999	if (sq == NULL)
1000		return (0);
1001	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
1002	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
1003
1004	return (sleepq_remove_matching(sq, queue, match_any, pri));
1005}
1006
1007/*
1008 * Resume threads on the sleep queue that match the given predicate.
1009 */
1010int
1011sleepq_remove_matching(struct sleepqueue *sq, int queue,
1012    bool (*matches)(struct thread *), int pri)
1013{
1014	struct thread *td, *tdn;
1015	int wakeup_swapper;
1016
1017	/*
1018	 * The last thread will be given ownership of sq and may
1019	 * re-enqueue itself before sleepq_resume_thread() returns,
1020	 * so we must cache the "next" queue item at the beginning
1021	 * of the final iteration.
1022	 */
1023	wakeup_swapper = 0;
1024	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
1025		if (matches(td))
1026			wakeup_swapper |= sleepq_resume_thread(sq, td, pri,
1027			    SRQ_HOLD);
1028	}
1029
1030	return (wakeup_swapper);
1031}
1032
1033/*
1034 * Time sleeping threads out.  When the timeout expires, the thread is
1035 * removed from the sleep queue and made runnable if it is still asleep.
1036 */
1037static void
1038sleepq_timeout(void *arg)
1039{
1040	struct sleepqueue_chain *sc __unused;
1041	struct sleepqueue *sq;
1042	struct thread *td;
1043	const void *wchan;
1044	int wakeup_swapper;
1045
1046	td = arg;
1047	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
1048	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1049
1050	thread_lock(td);
1051	if (td->td_sleeptimo == 0 ||
1052	    td->td_sleeptimo > td->td_slpcallout.c_time) {
1053		/*
1054		 * The thread does not want a timeout (yet).
1055		 */
1056	} else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
1057		/*
1058		 * See if the thread is asleep and get the wait
1059		 * channel if it is.
1060		 */
1061		wchan = td->td_wchan;
1062		sc = SC_LOOKUP(wchan);
1063		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
1064		sq = sleepq_lookup(wchan);
1065		MPASS(sq != NULL);
1066		td->td_flags |= TDF_TIMEOUT;
1067		wakeup_swapper = sleepq_resume_thread(sq, td, 0, 0);
1068		if (wakeup_swapper)
1069			kick_proc0();
1070		return;
1071	} else if (TD_ON_SLEEPQ(td)) {
1072		/*
1073		 * If the thread is on the SLEEPQ but isn't sleeping
1074		 * yet, it can either be on another CPU in between
1075		 * sleepq_add() and one of the sleepq_*wait*()
1076		 * routines or it can be in sleepq_catch_signals().
1077		 */
1078		td->td_flags |= TDF_TIMEOUT;
1079	}
1080	thread_unlock(td);
1081}
1082
1083/*
1084 * Resumes a specific thread from the sleep queue associated with a specific
1085 * wait channel if it is on that queue.
1086 */
1087void
1088sleepq_remove(struct thread *td, const void *wchan)
1089{
1090	struct sleepqueue_chain *sc;
1091	struct sleepqueue *sq;
1092	int wakeup_swapper;
1093
1094	/*
1095	 * Look up the sleep queue for this wait channel, then re-check
1096	 * that the thread is asleep on that channel, if it is not, then
1097	 * bail.
1098	 */
1099	MPASS(wchan != NULL);
1100	sc = SC_LOOKUP(wchan);
1101	mtx_lock_spin(&sc->sc_lock);
1102	/*
1103	 * We can not lock the thread here as it may be sleeping on a
1104	 * different sleepq.  However, holding the sleepq lock for this
1105	 * wchan can guarantee that we do not miss a wakeup for this
1106	 * channel.  The asserts below will catch any false positives.
1107	 */
1108	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
1109		mtx_unlock_spin(&sc->sc_lock);
1110		return;
1111	}
1112
1113	/* Thread is asleep on sleep queue sq, so wake it up. */
1114	sq = sleepq_lookup(wchan);
1115	MPASS(sq != NULL);
1116	MPASS(td->td_wchan == wchan);
1117	wakeup_swapper = sleepq_resume_thread(sq, td, 0, 0);
1118	if (wakeup_swapper)
1119		kick_proc0();
1120}
1121
1122/*
1123 * Abort a thread as if an interrupt had occurred.  Only abort
1124 * interruptible waits (unfortunately it isn't safe to abort others).
1125 *
1126 * Requires thread lock on entry, releases on return.
1127 */
1128int
1129sleepq_abort(struct thread *td, int intrval)
1130{
1131	struct sleepqueue *sq;
1132	const void *wchan;
1133
1134	THREAD_LOCK_ASSERT(td, MA_OWNED);
1135	MPASS(TD_ON_SLEEPQ(td));
1136	MPASS(td->td_flags & TDF_SINTR);
1137	MPASS((intrval == 0 && (td->td_flags & TDF_SIGWAIT) != 0) ||
1138	    intrval == EINTR || intrval == ERESTART);
1139
1140	/*
1141	 * If the TDF_TIMEOUT flag is set, just leave. A
1142	 * timeout is scheduled anyhow.
1143	 */
1144	if (td->td_flags & TDF_TIMEOUT) {
1145		thread_unlock(td);
1146		return (0);
1147	}
1148
1149	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1150	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1151	td->td_intrval = intrval;
1152
1153	/*
1154	 * If the thread has not slept yet it will find the signal in
1155	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1156	 * we have to do it here.
1157	 */
1158	if (!TD_IS_SLEEPING(td)) {
1159		thread_unlock(td);
1160		return (0);
1161	}
1162	wchan = td->td_wchan;
1163	MPASS(wchan != NULL);
1164	sq = sleepq_lookup(wchan);
1165	MPASS(sq != NULL);
1166
1167	/* Thread is asleep on sleep queue sq, so wake it up. */
1168	return (sleepq_resume_thread(sq, td, 0, 0));
1169}
1170
1171void
1172sleepq_chains_remove_matching(bool (*matches)(struct thread *))
1173{
1174	struct sleepqueue_chain *sc;
1175	struct sleepqueue *sq, *sq1;
1176	int i, wakeup_swapper;
1177
1178	wakeup_swapper = 0;
1179	for (sc = &sleepq_chains[0]; sc < sleepq_chains + SC_TABLESIZE; ++sc) {
1180		if (LIST_EMPTY(&sc->sc_queues)) {
1181			continue;
1182		}
1183		mtx_lock_spin(&sc->sc_lock);
1184		LIST_FOREACH_SAFE(sq, &sc->sc_queues, sq_hash, sq1) {
1185			for (i = 0; i < NR_SLEEPQS; ++i) {
1186				wakeup_swapper |= sleepq_remove_matching(sq, i,
1187				    matches, 0);
1188			}
1189		}
1190		mtx_unlock_spin(&sc->sc_lock);
1191	}
1192	if (wakeup_swapper) {
1193		kick_proc0();
1194	}
1195}
1196
1197/*
1198 * Prints the stacks of all threads presently sleeping on wchan/queue to
1199 * the sbuf sb.  Sets count_stacks_printed to the number of stacks actually
1200 * printed.  Typically, this will equal the number of threads sleeping on the
1201 * queue, but may be less if sb overflowed before all stacks were printed.
1202 */
1203#ifdef STACK
1204int
1205sleepq_sbuf_print_stacks(struct sbuf *sb, const void *wchan, int queue,
1206    int *count_stacks_printed)
1207{
1208	struct thread *td, *td_next;
1209	struct sleepqueue *sq;
1210	struct stack **st;
1211	struct sbuf **td_infos;
1212	int i, stack_idx, error, stacks_to_allocate;
1213	bool finished;
1214
1215	error = 0;
1216	finished = false;
1217
1218	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
1219	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
1220
1221	stacks_to_allocate = 10;
1222	for (i = 0; i < 3 && !finished ; i++) {
1223		/* We cannot malloc while holding the queue's spinlock, so
1224		 * we do our mallocs now, and hope it is enough.  If it
1225		 * isn't, we will free these, drop the lock, malloc more,
1226		 * and try again, up to a point.  After that point we will
1227		 * give up and report ENOMEM. We also cannot write to sb
1228		 * during this time since the client may have set the
1229		 * SBUF_AUTOEXTEND flag on their sbuf, which could cause a
1230		 * malloc as we print to it.  So we defer actually printing
1231		 * to sb until after we drop the spinlock.
1232		 */
1233
1234		/* Where we will store the stacks. */
1235		st = malloc(sizeof(struct stack *) * stacks_to_allocate,
1236		    M_TEMP, M_WAITOK);
1237		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1238		    stack_idx++)
1239			st[stack_idx] = stack_create(M_WAITOK);
1240
1241		/* Where we will store the td name, tid, etc. */
1242		td_infos = malloc(sizeof(struct sbuf *) * stacks_to_allocate,
1243		    M_TEMP, M_WAITOK);
1244		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1245		    stack_idx++)
1246			td_infos[stack_idx] = sbuf_new(NULL, NULL,
1247			    MAXCOMLEN + sizeof(struct thread *) * 2 + 40,
1248			    SBUF_FIXEDLEN);
1249
1250		sleepq_lock(wchan);
1251		sq = sleepq_lookup(wchan);
1252		if (sq == NULL) {
1253			/* This sleepq does not exist; exit and return ENOENT. */
1254			error = ENOENT;
1255			finished = true;
1256			sleepq_release(wchan);
1257			goto loop_end;
1258		}
1259
1260		stack_idx = 0;
1261		/* Save thread info */
1262		TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq,
1263		    td_next) {
1264			if (stack_idx >= stacks_to_allocate)
1265				goto loop_end;
1266
1267			/* Note the td_lock is equal to the sleepq_lock here. */
1268			(void)stack_save_td(st[stack_idx], td);
1269
1270			sbuf_printf(td_infos[stack_idx], "%d: %s %p",
1271			    td->td_tid, td->td_name, td);
1272
1273			++stack_idx;
1274		}
1275
1276		finished = true;
1277		sleepq_release(wchan);
1278
1279		/* Print the stacks */
1280		for (i = 0; i < stack_idx; i++) {
1281			sbuf_finish(td_infos[i]);
1282			sbuf_printf(sb, "--- thread %s: ---\n", sbuf_data(td_infos[i]));
1283			stack_sbuf_print(sb, st[i]);
1284			sbuf_putc(sb, '\n');
1285
1286			error = sbuf_error(sb);
1287			if (error == 0)
1288				*count_stacks_printed = stack_idx;
1289		}
1290
1291loop_end:
1292		if (!finished)
1293			sleepq_release(wchan);
1294		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1295		    stack_idx++)
1296			stack_destroy(st[stack_idx]);
1297		for (stack_idx = 0; stack_idx < stacks_to_allocate;
1298		    stack_idx++)
1299			sbuf_delete(td_infos[stack_idx]);
1300		free(st, M_TEMP);
1301		free(td_infos, M_TEMP);
1302		stacks_to_allocate *= 10;
1303	}
1304
1305	if (!finished && error == 0)
1306		error = ENOMEM;
1307
1308	return (error);
1309}
1310#endif
1311
1312#ifdef SLEEPQUEUE_PROFILING
1313#define	SLEEPQ_PROF_LOCATIONS	1024
1314#define	SLEEPQ_SBUFSIZE		512
1315struct sleepq_prof {
1316	LIST_ENTRY(sleepq_prof) sp_link;
1317	const char	*sp_wmesg;
1318	long		sp_count;
1319};
1320
1321LIST_HEAD(sqphead, sleepq_prof);
1322
1323struct sqphead sleepq_prof_free;
1324struct sqphead sleepq_hash[SC_TABLESIZE];
1325static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1326static struct mtx sleepq_prof_lock;
1327MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1328
1329static void
1330sleepq_profile(const char *wmesg)
1331{
1332	struct sleepq_prof *sp;
1333
1334	mtx_lock_spin(&sleepq_prof_lock);
1335	if (prof_enabled == 0)
1336		goto unlock;
1337	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1338		if (sp->sp_wmesg == wmesg)
1339			goto done;
1340	sp = LIST_FIRST(&sleepq_prof_free);
1341	if (sp == NULL)
1342		goto unlock;
1343	sp->sp_wmesg = wmesg;
1344	LIST_REMOVE(sp, sp_link);
1345	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1346done:
1347	sp->sp_count++;
1348unlock:
1349	mtx_unlock_spin(&sleepq_prof_lock);
1350	return;
1351}
1352
1353static void
1354sleepq_prof_reset(void)
1355{
1356	struct sleepq_prof *sp;
1357	int enabled;
1358	int i;
1359
1360	mtx_lock_spin(&sleepq_prof_lock);
1361	enabled = prof_enabled;
1362	prof_enabled = 0;
1363	for (i = 0; i < SC_TABLESIZE; i++)
1364		LIST_INIT(&sleepq_hash[i]);
1365	LIST_INIT(&sleepq_prof_free);
1366	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1367		sp = &sleepq_profent[i];
1368		sp->sp_wmesg = NULL;
1369		sp->sp_count = 0;
1370		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1371	}
1372	prof_enabled = enabled;
1373	mtx_unlock_spin(&sleepq_prof_lock);
1374}
1375
1376static int
1377enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1378{
1379	int error, v;
1380
1381	v = prof_enabled;
1382	error = sysctl_handle_int(oidp, &v, v, req);
1383	if (error)
1384		return (error);
1385	if (req->newptr == NULL)
1386		return (error);
1387	if (v == prof_enabled)
1388		return (0);
1389	if (v == 1)
1390		sleepq_prof_reset();
1391	mtx_lock_spin(&sleepq_prof_lock);
1392	prof_enabled = !!v;
1393	mtx_unlock_spin(&sleepq_prof_lock);
1394
1395	return (0);
1396}
1397
1398static int
1399reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1400{
1401	int error, v;
1402
1403	v = 0;
1404	error = sysctl_handle_int(oidp, &v, 0, req);
1405	if (error)
1406		return (error);
1407	if (req->newptr == NULL)
1408		return (error);
1409	if (v == 0)
1410		return (0);
1411	sleepq_prof_reset();
1412
1413	return (0);
1414}
1415
1416static int
1417dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1418{
1419	struct sleepq_prof *sp;
1420	struct sbuf *sb;
1421	int enabled;
1422	int error;
1423	int i;
1424
1425	error = sysctl_wire_old_buffer(req, 0);
1426	if (error != 0)
1427		return (error);
1428	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1429	sbuf_cat(sb, "\nwmesg\tcount\n");
1430	enabled = prof_enabled;
1431	mtx_lock_spin(&sleepq_prof_lock);
1432	prof_enabled = 0;
1433	mtx_unlock_spin(&sleepq_prof_lock);
1434	for (i = 0; i < SC_TABLESIZE; i++) {
1435		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1436			sbuf_printf(sb, "%s\t%ld\n",
1437			    sp->sp_wmesg, sp->sp_count);
1438		}
1439	}
1440	mtx_lock_spin(&sleepq_prof_lock);
1441	prof_enabled = enabled;
1442	mtx_unlock_spin(&sleepq_prof_lock);
1443
1444	error = sbuf_finish(sb);
1445	sbuf_delete(sb);
1446	return (error);
1447}
1448
1449SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats,
1450    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0,
1451    dump_sleepq_prof_stats, "A",
1452    "Sleepqueue profiling statistics");
1453SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset,
1454    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
1455    reset_sleepq_prof_stats, "I",
1456    "Reset sleepqueue profiling statistics");
1457SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable,
1458    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
1459    enable_sleepq_prof, "I",
1460    "Enable sleepqueue profiling");
1461#endif
1462
1463#ifdef DDB
1464DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1465{
1466	struct sleepqueue_chain *sc;
1467	struct sleepqueue *sq;
1468#ifdef INVARIANTS
1469	struct lock_object *lock;
1470#endif
1471	struct thread *td;
1472	void *wchan;
1473	int i;
1474
1475	if (!have_addr)
1476		return;
1477
1478	/*
1479	 * First, see if there is an active sleep queue for the wait channel
1480	 * indicated by the address.
1481	 */
1482	wchan = (void *)addr;
1483	sc = SC_LOOKUP(wchan);
1484	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1485		if (sq->sq_wchan == wchan)
1486			goto found;
1487
1488	/*
1489	 * Second, see if there is an active sleep queue at the address
1490	 * indicated.
1491	 */
1492	for (i = 0; i < SC_TABLESIZE; i++)
1493		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1494			if (sq == (struct sleepqueue *)addr)
1495				goto found;
1496		}
1497
1498	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1499	return;
1500found:
1501	db_printf("Wait channel: %p\n", sq->sq_wchan);
1502	db_printf("Queue type: %d\n", sq->sq_type);
1503#ifdef INVARIANTS
1504	if (sq->sq_lock) {
1505		lock = sq->sq_lock;
1506		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1507		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1508	}
1509#endif
1510	db_printf("Blocked threads:\n");
1511	for (i = 0; i < NR_SLEEPQS; i++) {
1512		db_printf("\nQueue[%d]:\n", i);
1513		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1514			db_printf("\tempty\n");
1515		else
1516			TAILQ_FOREACH(td, &sq->sq_blocked[i],
1517				      td_slpq) {
1518				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1519					  td->td_tid, td->td_proc->p_pid,
1520					  td->td_name);
1521			}
1522		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1523	}
1524}
1525
1526/* Alias 'show sleepqueue' to 'show sleepq'. */
1527DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1528#endif
1529