1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2013 EMC Corp.
5 * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
6 * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32/*
33 * Path-compressed radix trie implementation.
34 *
35 * The implementation takes into account the following rationale:
36 * - Size of the nodes should be as small as possible but still big enough
37 *   to avoid a large maximum depth for the trie.  This is a balance
38 *   between the necessity to not wire too much physical memory for the nodes
39 *   and the necessity to avoid too much cache pollution during the trie
40 *   operations.
41 * - There is not a huge bias toward the number of lookup operations over
42 *   the number of insert and remove operations.  This basically implies
43 *   that optimizations supposedly helping one operation but hurting the
44 *   other might be carefully evaluated.
45 * - On average not many nodes are expected to be fully populated, hence
46 *   level compression may just complicate things.
47 */
48
49#include <sys/cdefs.h>
50#include "opt_ddb.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/kernel.h>
55#include <sys/libkern.h>
56#include <sys/pctrie.h>
57#include <sys/proc.h>	/* smr.h depends on struct thread. */
58#include <sys/smr.h>
59#include <sys/smr_types.h>
60
61#ifdef DDB
62#include <ddb/ddb.h>
63#endif
64
65#define	PCTRIE_MASK	(PCTRIE_COUNT - 1)
66#define	PCTRIE_LIMIT	(howmany(sizeof(uint64_t) * NBBY, PCTRIE_WIDTH) - 1)
67
68#if PCTRIE_WIDTH == 3
69typedef uint8_t pn_popmap_t;
70#elif PCTRIE_WIDTH == 4
71typedef uint16_t pn_popmap_t;
72#elif PCTRIE_WIDTH == 5
73typedef uint32_t pn_popmap_t;
74#else
75#error Unsupported width
76#endif
77_Static_assert(sizeof(pn_popmap_t) <= sizeof(int),
78    "pn_popmap_t too wide");
79
80struct pctrie_node;
81typedef SMR_POINTER(struct pctrie_node *) smr_pctnode_t;
82
83struct pctrie_node {
84	uint64_t	pn_owner;			/* Owner of record. */
85	pn_popmap_t	pn_popmap;			/* Valid children. */
86	uint8_t		pn_clev;			/* Level * WIDTH. */
87	smr_pctnode_t	pn_child[PCTRIE_COUNT];		/* Child nodes. */
88};
89
90enum pctrie_access { PCTRIE_SMR, PCTRIE_LOCKED, PCTRIE_UNSERIALIZED };
91
92static __inline void pctrie_node_store(smr_pctnode_t *p, void *val,
93    enum pctrie_access access);
94
95/*
96 * Map index to an array position for the children of node,
97 */
98static __inline int
99pctrie_slot(struct pctrie_node *node, uint64_t index)
100{
101	return ((index >> node->pn_clev) & PCTRIE_MASK);
102}
103
104/*
105 * Returns true if index does not belong to the specified node.  Otherwise,
106 * sets slot value, and returns false.
107 */
108static __inline bool
109pctrie_keybarr(struct pctrie_node *node, uint64_t index, int *slot)
110{
111	index = (index - node->pn_owner) >> node->pn_clev;
112	if (index >= PCTRIE_COUNT)
113		return (true);
114	*slot = index;
115	return (false);
116}
117
118/*
119 * Check radix node.
120 */
121static __inline void
122pctrie_node_put(struct pctrie_node *node)
123{
124#ifdef INVARIANTS
125	int slot;
126
127	KASSERT(powerof2(node->pn_popmap),
128	    ("pctrie_node_put: node %p has too many children %04x", node,
129	    node->pn_popmap));
130	for (slot = 0; slot < PCTRIE_COUNT; slot++) {
131		if ((node->pn_popmap & (1 << slot)) != 0)
132			continue;
133		KASSERT(smr_unserialized_load(&node->pn_child[slot], true) ==
134		    PCTRIE_NULL,
135		    ("pctrie_node_put: node %p has a child", node));
136	}
137#endif
138}
139
140/*
141 * Fetch a node pointer from a slot.
142 */
143static __inline struct pctrie_node *
144pctrie_node_load(smr_pctnode_t *p, smr_t smr, enum pctrie_access access)
145{
146	switch (access) {
147	case PCTRIE_UNSERIALIZED:
148		return (smr_unserialized_load(p, true));
149	case PCTRIE_LOCKED:
150		return (smr_serialized_load(p, true));
151	case PCTRIE_SMR:
152		return (smr_entered_load(p, smr));
153	}
154	__assert_unreachable();
155}
156
157static __inline void
158pctrie_node_store(smr_pctnode_t *p, void *v, enum pctrie_access access)
159{
160	switch (access) {
161	case PCTRIE_UNSERIALIZED:
162		smr_unserialized_store(p, v, true);
163		break;
164	case PCTRIE_LOCKED:
165		smr_serialized_store(p, v, true);
166		break;
167	case PCTRIE_SMR:
168		panic("%s: Not supported in SMR section.", __func__);
169		break;
170	default:
171		__assert_unreachable();
172		break;
173	}
174}
175
176/*
177 * Get the root node for a tree.
178 */
179static __inline struct pctrie_node *
180pctrie_root_load(struct pctrie *ptree, smr_t smr, enum pctrie_access access)
181{
182	return (pctrie_node_load((smr_pctnode_t *)&ptree->pt_root, smr, access));
183}
184
185/*
186 * Set the root node for a tree.
187 */
188static __inline void
189pctrie_root_store(struct pctrie *ptree, struct pctrie_node *node,
190    enum pctrie_access access)
191{
192	pctrie_node_store((smr_pctnode_t *)&ptree->pt_root, node, access);
193}
194
195/*
196 * Returns TRUE if the specified node is a leaf and FALSE otherwise.
197 */
198static __inline bool
199pctrie_isleaf(struct pctrie_node *node)
200{
201	return (((uintptr_t)node & PCTRIE_ISLEAF) != 0);
202}
203
204/*
205 * Returns val with leaf bit set.
206 */
207static __inline void *
208pctrie_toleaf(uint64_t *val)
209{
210	return ((void *)((uintptr_t)val | PCTRIE_ISLEAF));
211}
212
213/*
214 * Returns the associated val extracted from node.
215 */
216static __inline uint64_t *
217pctrie_toval(struct pctrie_node *node)
218{
219	return ((uint64_t *)((uintptr_t)node & ~PCTRIE_FLAGS));
220}
221
222/*
223 * Returns the associated pointer extracted from node and field offset.
224 */
225static __inline void *
226pctrie_toptr(struct pctrie_node *node, int keyoff)
227{
228	return ((void *)(((uintptr_t)node & ~PCTRIE_FLAGS) - keyoff));
229}
230
231/*
232 * Make 'child' a child of 'node'.
233 */
234static __inline void
235pctrie_addnode(struct pctrie_node *node, uint64_t index,
236    struct pctrie_node *child, enum pctrie_access access)
237{
238	int slot;
239
240	slot = pctrie_slot(node, index);
241	pctrie_node_store(&node->pn_child[slot], child, access);
242	node->pn_popmap ^= 1 << slot;
243	KASSERT((node->pn_popmap & (1 << slot)) != 0,
244	    ("%s: bad popmap slot %d in node %p", __func__, slot, node));
245}
246
247/*
248 * pctrie node zone initializer.
249 */
250int
251pctrie_zone_init(void *mem, int size __unused, int flags __unused)
252{
253	struct pctrie_node *node;
254
255	node = mem;
256	node->pn_popmap = 0;
257	for (int i = 0; i < nitems(node->pn_child); i++)
258		pctrie_node_store(&node->pn_child[i], PCTRIE_NULL,
259		    PCTRIE_UNSERIALIZED);
260	return (0);
261}
262
263size_t
264pctrie_node_size(void)
265{
266
267	return (sizeof(struct pctrie_node));
268}
269
270enum pctrie_insert_neighbor_mode {
271	PCTRIE_INSERT_NEIGHBOR_NONE,
272	PCTRIE_INSERT_NEIGHBOR_LT,
273	PCTRIE_INSERT_NEIGHBOR_GT,
274};
275
276/*
277 * Look for where to insert the key-value pair into the trie.  Complete the
278 * insertion if it replaces a null leaf.  Return the insertion location if the
279 * insertion needs to be completed by the caller; otherwise return NULL.
280 *
281 * If the key is already present in the trie, populate *found_out as if by
282 * pctrie_lookup().
283 *
284 * With mode PCTRIE_INSERT_NEIGHBOR_GT or PCTRIE_INSERT_NEIGHBOR_LT, set
285 * *neighbor_out to the lowest level node we encounter during the insert lookup
286 * that is a parent of the next greater or lesser entry.  The value is not
287 * defined if the key was already present in the trie.
288 *
289 * Note that mode is expected to be a compile-time constant, and this procedure
290 * is expected to be inlined into callers with extraneous code optimized out.
291 */
292static __always_inline void *
293pctrie_insert_lookup_compound(struct pctrie *ptree, uint64_t *val,
294    uint64_t **found_out, struct pctrie_node **neighbor_out,
295    enum pctrie_insert_neighbor_mode mode)
296{
297	uint64_t index;
298	struct pctrie_node *node, *parent;
299	int slot;
300
301	index = *val;
302
303	/*
304	 * The owner of record for root is not really important because it
305	 * will never be used.
306	 */
307	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
308	parent = NULL;
309	for (;;) {
310		if (pctrie_isleaf(node)) {
311			if (node == PCTRIE_NULL) {
312				if (parent == NULL)
313					ptree->pt_root = pctrie_toleaf(val);
314				else
315					pctrie_addnode(parent, index,
316					    pctrie_toleaf(val), PCTRIE_LOCKED);
317				return (NULL);
318			}
319			if (*pctrie_toval(node) == index) {
320				*found_out = pctrie_toval(node);
321				return (NULL);
322			}
323			break;
324		}
325		if (pctrie_keybarr(node, index, &slot))
326			break;
327		/*
328		 * Descend.  If we're tracking the next neighbor and this node
329		 * contains a neighboring entry in the right direction, record
330		 * it.
331		 */
332		if (mode == PCTRIE_INSERT_NEIGHBOR_LT) {
333			if ((node->pn_popmap & ((1 << slot) - 1)) != 0)
334				*neighbor_out = node;
335		} else if (mode == PCTRIE_INSERT_NEIGHBOR_GT) {
336			if ((node->pn_popmap >> slot) > 1)
337				*neighbor_out = node;
338		}
339		parent = node;
340		node = pctrie_node_load(&node->pn_child[slot], NULL,
341		    PCTRIE_LOCKED);
342	}
343
344	/*
345	 * The caller will split this node.  If we're tracking the next
346	 * neighbor, record the old node if the old entry is in the right
347	 * direction.
348	 */
349	if (mode == PCTRIE_INSERT_NEIGHBOR_LT) {
350		if (*pctrie_toval(node) < index)
351			*neighbor_out = node;
352	} else if (mode == PCTRIE_INSERT_NEIGHBOR_GT) {
353		if (*pctrie_toval(node) > index)
354			*neighbor_out = node;
355	}
356
357	/*
358	 * 'node' must be replaced in the tree with a new branch node, with
359	 * children 'node' and 'val'. Return the place that points to 'node'
360	 * now, and will point to to the new branching node later.
361	 */
362	return ((parent != NULL) ? &parent->pn_child[slot]:
363	    (smr_pctnode_t *)&ptree->pt_root);
364}
365
366/*
367 * Wrap pctrie_insert_lookup_compound to implement a strict insertion.  Panic
368 * if the key already exists, and do not look for neighboring entries.
369 */
370void *
371pctrie_insert_lookup_strict(struct pctrie *ptree, uint64_t *val)
372{
373	void *parentp;
374	uint64_t *found;
375
376	found = NULL;
377	parentp = pctrie_insert_lookup_compound(ptree, val, &found, NULL,
378	    PCTRIE_INSERT_NEIGHBOR_NONE);
379	if (__predict_false(found != NULL))
380		panic("%s: key %jx is already present", __func__,
381		    (uintmax_t)*val);
382	return (parentp);
383}
384
385/*
386 * Wrap pctrie_insert_lookup_compound to implement find-or-insert.  Do not look
387 * for neighboring entries.
388 */
389void *
390pctrie_insert_lookup(struct pctrie *ptree, uint64_t *val,
391    uint64_t **found_out)
392{
393	*found_out = NULL;
394	return (pctrie_insert_lookup_compound(ptree, val, found_out, NULL,
395	    PCTRIE_INSERT_NEIGHBOR_NONE));
396}
397
398/*
399 * Wrap pctrie_insert_lookup_compound to implement find or insert and find next
400 * greater entry.  Find a subtree that contains the next entry greater than the
401 * newly-inserted or to-be-inserted entry.
402 */
403void *
404pctrie_insert_lookup_gt(struct pctrie *ptree, uint64_t *val,
405    uint64_t **found_out, struct pctrie_node **neighbor_out)
406{
407	*found_out = NULL;
408	*neighbor_out = NULL;
409	return (pctrie_insert_lookup_compound(ptree, val, found_out,
410	    neighbor_out, PCTRIE_INSERT_NEIGHBOR_GT));
411}
412
413/*
414 * Wrap pctrie_insert_lookup_compound to implement find or insert and find next
415 * lesser entry.  Find a subtree that contains the next entry less than the
416 * newly-inserted or to-be-inserted entry.
417 */
418void *
419pctrie_insert_lookup_lt(struct pctrie *ptree, uint64_t *val,
420    uint64_t **found_out, struct pctrie_node **neighbor_out)
421{
422	*found_out = NULL;
423	*neighbor_out = NULL;
424	return (pctrie_insert_lookup_compound(ptree, val, found_out,
425	    neighbor_out, PCTRIE_INSERT_NEIGHBOR_LT));
426}
427
428/*
429 * Uses new node to insert key-value pair into the trie at given location.
430 */
431void
432pctrie_insert_node(void *parentp, struct pctrie_node *parent, uint64_t *val)
433{
434	struct pctrie_node *node;
435	uint64_t index, newind;
436
437	/*
438	 * Clear the last child pointer of the newly allocated parent.  We want
439	 * to clear it after the final section has exited so lookup can not
440	 * return false negatives.  It is done here because it will be
441	 * cache-cold in the dtor callback.
442	 */
443	if (parent->pn_popmap != 0) {
444		pctrie_node_store(&parent->pn_child[ffs(parent->pn_popmap) - 1],
445		    PCTRIE_NULL, PCTRIE_UNSERIALIZED);
446		parent->pn_popmap = 0;
447	}
448
449	/*
450	 * Recover the values of the two children of the new parent node.  If
451	 * 'node' is not a leaf, this stores into 'newind' the 'owner' field,
452	 * which must be first in the node.
453	 */
454	index = *val;
455	node = pctrie_node_load(parentp, NULL, PCTRIE_UNSERIALIZED);
456	newind = *pctrie_toval(node);
457
458	/*
459	 * From the highest-order bit where the indexes differ,
460	 * compute the highest level in the trie where they differ.  Then,
461	 * compute the least index of this subtrie.
462	 */
463	_Static_assert(sizeof(long long) >= sizeof(uint64_t),
464	    "uint64 too wide");
465	_Static_assert(sizeof(uint64_t) * NBBY <=
466	    (1 << (sizeof(parent->pn_clev) * NBBY)), "pn_clev too narrow");
467	parent->pn_clev = rounddown(ilog2(index ^ newind), PCTRIE_WIDTH);
468	parent->pn_owner = PCTRIE_COUNT;
469	parent->pn_owner = index & -(parent->pn_owner << parent->pn_clev);
470
471
472	/* These writes are not yet visible due to ordering. */
473	pctrie_addnode(parent, index, pctrie_toleaf(val), PCTRIE_UNSERIALIZED);
474	pctrie_addnode(parent, newind, node, PCTRIE_UNSERIALIZED);
475	/* Synchronize to make the above visible. */
476	pctrie_node_store(parentp, parent, PCTRIE_LOCKED);
477}
478
479/*
480 * Returns the value stored at the index.  If the index is not present,
481 * NULL is returned.
482 */
483static __always_inline uint64_t *
484_pctrie_lookup(struct pctrie *ptree, uint64_t index, smr_t smr,
485    enum pctrie_access access)
486{
487	struct pctrie_node *node;
488	uint64_t *m;
489	int slot;
490
491	node = pctrie_root_load(ptree, smr, access);
492	for (;;) {
493		if (pctrie_isleaf(node)) {
494			if ((m = pctrie_toval(node)) != NULL && *m == index)
495				return (m);
496			break;
497		}
498		if (pctrie_keybarr(node, index, &slot))
499			break;
500		node = pctrie_node_load(&node->pn_child[slot], smr, access);
501	}
502	return (NULL);
503}
504
505/*
506 * Returns the value stored at the index, assuming access is externally
507 * synchronized by a lock.
508 *
509 * If the index is not present, NULL is returned.
510 */
511uint64_t *
512pctrie_lookup(struct pctrie *ptree, uint64_t index)
513{
514	return (_pctrie_lookup(ptree, index, NULL, PCTRIE_LOCKED));
515}
516
517/*
518 * Returns the value stored at the index without requiring an external lock.
519 *
520 * If the index is not present, NULL is returned.
521 */
522uint64_t *
523pctrie_lookup_unlocked(struct pctrie *ptree, uint64_t index, smr_t smr)
524{
525	uint64_t *res;
526
527	smr_enter(smr);
528	res = _pctrie_lookup(ptree, index, smr, PCTRIE_SMR);
529	smr_exit(smr);
530	return (res);
531}
532
533/*
534 * Returns the value with the least index that is greater than or equal to the
535 * specified index, or NULL if there are no such values.
536 *
537 * Requires that access be externally synchronized by a lock.
538 */
539static __inline uint64_t *
540pctrie_lookup_ge_node(struct pctrie_node *node, uint64_t index)
541{
542	struct pctrie_node *succ;
543	uint64_t *m;
544	int slot;
545
546	/*
547	 * Descend the trie as if performing an ordinary lookup for the
548	 * specified value.  However, unlike an ordinary lookup, as we descend
549	 * the trie, we use "succ" to remember the last branching-off point,
550	 * that is, the interior node under which the least value that is both
551	 * outside our current path down the trie and greater than the specified
552	 * index resides.  (The node's popmap makes it fast and easy to
553	 * recognize a branching-off point.)  If our ordinary lookup fails to
554	 * yield a value that is greater than or equal to the specified index,
555	 * then we will exit this loop and perform a lookup starting from
556	 * "succ".  If "succ" is not NULL, then that lookup is guaranteed to
557	 * succeed.
558	 */
559	succ = NULL;
560	for (;;) {
561		if (pctrie_isleaf(node)) {
562			if ((m = pctrie_toval(node)) != NULL && *m >= index)
563				return (m);
564			break;
565		}
566		if (pctrie_keybarr(node, index, &slot)) {
567			/*
568			 * If all values in this subtree are > index, then the
569			 * least value in this subtree is the answer.
570			 */
571			if (node->pn_owner > index)
572				succ = node;
573			break;
574		}
575
576		/*
577		 * Just in case the next search step leads to a subtree of all
578		 * values < index, check popmap to see if a next bigger step, to
579		 * a subtree of all pages with values > index, is available.  If
580		 * so, remember to restart the search here.
581		 */
582		if ((node->pn_popmap >> slot) > 1)
583			succ = node;
584		node = pctrie_node_load(&node->pn_child[slot], NULL,
585		    PCTRIE_LOCKED);
586	}
587
588	/*
589	 * Restart the search from the last place visited in the subtree that
590	 * included some values > index, if there was such a place.
591	 */
592	if (succ == NULL)
593		return (NULL);
594	if (succ != node) {
595		/*
596		 * Take a step to the next bigger sibling of the node chosen
597		 * last time.  In that subtree, all values > index.
598		 */
599		slot = pctrie_slot(succ, index) + 1;
600		KASSERT((succ->pn_popmap >> slot) != 0,
601		    ("%s: no popmap siblings past slot %d in node %p",
602		    __func__, slot, succ));
603		slot += ffs(succ->pn_popmap >> slot) - 1;
604		succ = pctrie_node_load(&succ->pn_child[slot], NULL,
605		    PCTRIE_LOCKED);
606	}
607
608	/*
609	 * Find the value in the subtree rooted at "succ" with the least index.
610	 */
611	while (!pctrie_isleaf(succ)) {
612		KASSERT(succ->pn_popmap != 0,
613		    ("%s: no popmap children in node %p",  __func__, succ));
614		slot = ffs(succ->pn_popmap) - 1;
615		succ = pctrie_node_load(&succ->pn_child[slot], NULL,
616		    PCTRIE_LOCKED);
617	}
618	return (pctrie_toval(succ));
619}
620
621uint64_t *
622pctrie_lookup_ge(struct pctrie *ptree, uint64_t index)
623{
624	return (pctrie_lookup_ge_node(
625	    pctrie_root_load(ptree, NULL, PCTRIE_LOCKED), index));
626}
627
628uint64_t *
629pctrie_subtree_lookup_gt(struct pctrie_node *node, uint64_t index)
630{
631	if (node == NULL || index + 1 == 0)
632		return (NULL);
633	return (pctrie_lookup_ge_node(node, index + 1));
634}
635
636#ifdef INVARIANTS
637void
638pctrie_subtree_lookup_gt_assert(struct pctrie_node *node, uint64_t index,
639    struct pctrie *ptree, uint64_t *res)
640{
641	uint64_t *expected;
642
643	if (index + 1 == 0)
644		expected = NULL;
645	else
646		expected = pctrie_lookup_ge(ptree, index + 1);
647	KASSERT(res == expected,
648	    ("pctrie subtree lookup gt result different from root lookup: "
649	    "ptree %p, index %ju, subtree %p, found %p, expected %p", ptree,
650	    (uintmax_t)index, node, res, expected));
651}
652#endif
653
654/*
655 * Returns the value with the greatest index that is less than or equal to the
656 * specified index, or NULL if there are no such values.
657 *
658 * Requires that access be externally synchronized by a lock.
659 */
660static __inline uint64_t *
661pctrie_lookup_le_node(struct pctrie_node *node, uint64_t index)
662{
663	struct pctrie_node *pred;
664	uint64_t *m;
665	int slot;
666
667	/*
668	 * Mirror the implementation of pctrie_lookup_ge_node, described above.
669	 */
670	pred = NULL;
671	for (;;) {
672		if (pctrie_isleaf(node)) {
673			if ((m = pctrie_toval(node)) != NULL && *m <= index)
674				return (m);
675			break;
676		}
677		if (pctrie_keybarr(node, index, &slot)) {
678			if (node->pn_owner < index)
679				pred = node;
680			break;
681		}
682		if ((node->pn_popmap & ((1 << slot) - 1)) != 0)
683			pred = node;
684		node = pctrie_node_load(&node->pn_child[slot], NULL,
685		    PCTRIE_LOCKED);
686	}
687	if (pred == NULL)
688		return (NULL);
689	if (pred != node) {
690		slot = pctrie_slot(pred, index);
691		KASSERT((pred->pn_popmap & ((1 << slot) - 1)) != 0,
692		    ("%s: no popmap siblings before slot %d in node %p",
693		    __func__, slot, pred));
694		slot = ilog2(pred->pn_popmap & ((1 << slot) - 1));
695		pred = pctrie_node_load(&pred->pn_child[slot], NULL,
696		    PCTRIE_LOCKED);
697	}
698	while (!pctrie_isleaf(pred)) {
699		KASSERT(pred->pn_popmap != 0,
700		    ("%s: no popmap children in node %p",  __func__, pred));
701		slot = ilog2(pred->pn_popmap);
702		pred = pctrie_node_load(&pred->pn_child[slot], NULL,
703		    PCTRIE_LOCKED);
704	}
705	return (pctrie_toval(pred));
706}
707
708uint64_t *
709pctrie_lookup_le(struct pctrie *ptree, uint64_t index)
710{
711	return (pctrie_lookup_le_node(
712	    pctrie_root_load(ptree, NULL, PCTRIE_LOCKED), index));
713}
714
715uint64_t *
716pctrie_subtree_lookup_lt(struct pctrie_node *node, uint64_t index)
717{
718	if (node == NULL || index == 0)
719		return (NULL);
720	return (pctrie_lookup_le_node(node, index - 1));
721}
722
723#ifdef INVARIANTS
724void
725pctrie_subtree_lookup_lt_assert(struct pctrie_node *node, uint64_t index,
726    struct pctrie *ptree, uint64_t *res)
727{
728	uint64_t *expected;
729
730	if (index == 0)
731		expected = NULL;
732	else
733		expected = pctrie_lookup_le(ptree, index - 1);
734	KASSERT(res == expected,
735	    ("pctrie subtree lookup lt result different from root lookup: "
736	    "ptree %p, index %ju, subtree %p, found %p, expected %p", ptree,
737	    (uintmax_t)index, node, res, expected));
738}
739#endif
740
741/*
742 * Remove the specified index from the tree, and return the value stored at
743 * that index.  If the index is not present, return NULL.
744 */
745uint64_t *
746pctrie_remove_lookup(struct pctrie *ptree, uint64_t index,
747    struct pctrie_node **freenode)
748{
749	struct pctrie_node *child, *node, *parent;
750	uint64_t *m;
751	int slot;
752
753	*freenode = node = NULL;
754	child = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
755	for (;;) {
756		if (pctrie_isleaf(child))
757			break;
758		parent = node;
759		node = child;
760		slot = pctrie_slot(node, index);
761		child = pctrie_node_load(&node->pn_child[slot], NULL,
762		    PCTRIE_LOCKED);
763	}
764	if ((m = pctrie_toval(child)) == NULL || *m != index)
765		return (NULL);
766	if (node == NULL) {
767		pctrie_root_store(ptree, PCTRIE_NULL, PCTRIE_LOCKED);
768		return (m);
769	}
770	KASSERT((node->pn_popmap & (1 << slot)) != 0,
771	    ("%s: bad popmap slot %d in node %p",
772	    __func__, slot, node));
773	node->pn_popmap ^= 1 << slot;
774	pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL, PCTRIE_LOCKED);
775	if (!powerof2(node->pn_popmap))
776		return (m);
777	KASSERT(node->pn_popmap != 0, ("%s: bad popmap all zeroes", __func__));
778	slot = ffs(node->pn_popmap) - 1;
779	child = pctrie_node_load(&node->pn_child[slot], NULL, PCTRIE_LOCKED);
780	KASSERT(child != PCTRIE_NULL,
781	    ("%s: bad popmap slot %d in node %p", __func__, slot, node));
782	if (parent == NULL)
783		pctrie_root_store(ptree, child, PCTRIE_LOCKED);
784	else {
785		slot = pctrie_slot(parent, index);
786		KASSERT(node ==
787		    pctrie_node_load(&parent->pn_child[slot], NULL,
788		    PCTRIE_LOCKED), ("%s: invalid child value", __func__));
789		pctrie_node_store(&parent->pn_child[slot], child,
790		    PCTRIE_LOCKED);
791	}
792	/*
793	 * The child is still valid and we can not zero the
794	 * pointer until all SMR references are gone.
795	 */
796	pctrie_node_put(node);
797	*freenode = node;
798	return (m);
799}
800
801/*
802 * Walk the subtrie rooted at *pnode in order, invoking callback on leaves and
803 * using the leftmost child pointer for path reversal, until an interior node
804 * is stripped of all children, and returned for deallocation, with *pnode left
805 * pointing to the parent of that node.
806 */
807static __always_inline struct pctrie_node *
808pctrie_reclaim_prune(struct pctrie_node **pnode, struct pctrie_node *parent,
809    pctrie_cb_t callback, int keyoff, void *arg)
810{
811	struct pctrie_node *child, *node;
812	int slot;
813
814	node = *pnode;
815	while (node->pn_popmap != 0) {
816		slot = ffs(node->pn_popmap) - 1;
817		node->pn_popmap ^= 1 << slot;
818		child = pctrie_node_load(&node->pn_child[slot], NULL,
819		    PCTRIE_UNSERIALIZED);
820		pctrie_node_store(&node->pn_child[slot], PCTRIE_NULL,
821		    PCTRIE_UNSERIALIZED);
822		if (pctrie_isleaf(child)) {
823			if (callback != NULL)
824				callback(pctrie_toptr(child, keyoff), arg);
825			continue;
826		}
827		/* Climb one level down the trie. */
828		pctrie_node_store(&node->pn_child[0], parent,
829		    PCTRIE_UNSERIALIZED);
830		parent = node;
831		node = child;
832	}
833	*pnode = parent;
834	return (node);
835}
836
837/*
838 * Recover the node parent from its first child and continue pruning.
839 */
840static __always_inline struct pctrie_node *
841pctrie_reclaim_resume_compound(struct pctrie_node **pnode,
842    pctrie_cb_t callback, int keyoff, void *arg)
843{
844	struct pctrie_node *parent, *node;
845
846	node = *pnode;
847	if (node == NULL)
848		return (NULL);
849	/* Climb one level up the trie. */
850	parent = pctrie_node_load(&node->pn_child[0], NULL,
851	    PCTRIE_UNSERIALIZED);
852	pctrie_node_store(&node->pn_child[0], PCTRIE_NULL, PCTRIE_UNSERIALIZED);
853	return (pctrie_reclaim_prune(pnode, parent, callback, keyoff, arg));
854}
855
856/*
857 * Find the trie root, and start pruning with a NULL parent.
858 */
859static __always_inline struct pctrie_node *
860pctrie_reclaim_begin_compound(struct pctrie_node **pnode,
861    struct pctrie *ptree,
862    pctrie_cb_t callback, int keyoff, void *arg)
863{
864	struct pctrie_node *node;
865
866	node = pctrie_root_load(ptree, NULL, PCTRIE_UNSERIALIZED);
867	pctrie_root_store(ptree, PCTRIE_NULL, PCTRIE_UNSERIALIZED);
868	if (pctrie_isleaf(node)) {
869		if (callback != NULL && node != PCTRIE_NULL)
870			callback(pctrie_toptr(node, keyoff), arg);
871		return (NULL);
872	}
873	*pnode = node;
874	return (pctrie_reclaim_prune(pnode, NULL, callback, keyoff, arg));
875}
876
877struct pctrie_node *
878pctrie_reclaim_resume(struct pctrie_node **pnode)
879{
880	return (pctrie_reclaim_resume_compound(pnode, NULL, 0, NULL));
881}
882
883struct pctrie_node *
884pctrie_reclaim_begin(struct pctrie_node **pnode, struct pctrie *ptree)
885{
886	return (pctrie_reclaim_begin_compound(pnode, ptree, NULL, 0, NULL));
887}
888
889struct pctrie_node *
890pctrie_reclaim_resume_cb(struct pctrie_node **pnode,
891    pctrie_cb_t callback, int keyoff, void *arg)
892{
893	return (pctrie_reclaim_resume_compound(pnode, callback, keyoff, arg));
894}
895
896struct pctrie_node *
897pctrie_reclaim_begin_cb(struct pctrie_node **pnode, struct pctrie *ptree,
898    pctrie_cb_t callback, int keyoff, void *arg)
899{
900	return (pctrie_reclaim_begin_compound(pnode, ptree,
901	    callback, keyoff, arg));
902}
903
904/*
905 * Replace an existing value in the trie with another one.
906 * Panics if there is not an old value in the trie at the new value's index.
907 */
908uint64_t *
909pctrie_replace(struct pctrie *ptree, uint64_t *newval)
910{
911	struct pctrie_node *leaf, *parent, *node;
912	uint64_t *m;
913	uint64_t index;
914	int slot;
915
916	leaf = pctrie_toleaf(newval);
917	index = *newval;
918	node = pctrie_root_load(ptree, NULL, PCTRIE_LOCKED);
919	parent = NULL;
920	for (;;) {
921		if (pctrie_isleaf(node)) {
922			if ((m = pctrie_toval(node)) != NULL && *m == index) {
923				if (parent == NULL)
924					ptree->pt_root = leaf;
925				else
926					pctrie_node_store(
927					    &parent->pn_child[slot], leaf,
928					    PCTRIE_LOCKED);
929				return (m);
930			}
931			break;
932		}
933		if (pctrie_keybarr(node, index, &slot))
934			break;
935		parent = node;
936		node = pctrie_node_load(&node->pn_child[slot], NULL,
937		    PCTRIE_LOCKED);
938	}
939	panic("%s: original replacing value not found", __func__);
940}
941
942#ifdef DDB
943/*
944 * Show details about the given node.
945 */
946DB_SHOW_COMMAND(pctrienode, db_show_pctrienode)
947{
948	struct pctrie_node *node, *tmp;
949	int slot;
950	pn_popmap_t popmap;
951
952        if (!have_addr)
953                return;
954	node = (struct pctrie_node *)addr;
955	db_printf("node %p, owner %jx, children popmap %04x, level %u:\n",
956	    (void *)node, (uintmax_t)node->pn_owner, node->pn_popmap,
957	    node->pn_clev / PCTRIE_WIDTH);
958	for (popmap = node->pn_popmap; popmap != 0; popmap ^= 1 << slot) {
959		slot = ffs(popmap) - 1;
960		tmp = pctrie_node_load(&node->pn_child[slot], NULL,
961		    PCTRIE_UNSERIALIZED);
962		db_printf("slot: %d, val: %p, value: %p, clev: %d\n",
963		    slot, (void *)tmp,
964		    pctrie_isleaf(tmp) ? pctrie_toval(tmp) : NULL,
965		    node->pn_clev / PCTRIE_WIDTH);
966	}
967}
968#endif /* DDB */
969