1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1997,1998,2003 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30#include "opt_bus.h"
31#include "opt_ddb.h"
32
33#include <sys/param.h>
34#include <sys/conf.h>
35#include <sys/domainset.h>
36#include <sys/eventhandler.h>
37#include <sys/lock.h>
38#include <sys/kernel.h>
39#include <sys/limits.h>
40#include <sys/malloc.h>
41#include <sys/module.h>
42#include <sys/mutex.h>
43#include <sys/priv.h>
44#include <machine/bus.h>
45#include <sys/random.h>
46#include <sys/refcount.h>
47#include <sys/rman.h>
48#include <sys/sbuf.h>
49#include <sys/smp.h>
50#include <sys/sysctl.h>
51#include <sys/systm.h>
52#include <sys/bus.h>
53#include <sys/cpuset.h>
54
55#include <net/vnet.h>
56
57#include <machine/cpu.h>
58#include <machine/stdarg.h>
59
60#include <vm/uma.h>
61#include <vm/vm.h>
62
63#include <ddb/ddb.h>
64
65SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
66    NULL);
67SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
68    NULL);
69
70static bool disable_failed_devs = false;
71SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs,
72    0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time");
73
74/*
75 * Used to attach drivers to devclasses.
76 */
77typedef struct driverlink *driverlink_t;
78struct driverlink {
79	kobj_class_t	driver;
80	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
81	int		pass;
82	int		flags;
83#define DL_DEFERRED_PROBE	1	/* Probe deferred on this */
84	TAILQ_ENTRY(driverlink) passlink;
85};
86
87/*
88 * Forward declarations
89 */
90typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
91typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
92typedef TAILQ_HEAD(device_list, _device) device_list_t;
93
94struct devclass {
95	TAILQ_ENTRY(devclass) link;
96	devclass_t	parent;		/* parent in devclass hierarchy */
97	driver_list_t	drivers;	/* bus devclasses store drivers for bus */
98	char		*name;
99	device_t	*devices;	/* array of devices indexed by unit */
100	int		maxunit;	/* size of devices array */
101	int		flags;
102#define DC_HAS_CHILDREN		1
103
104	struct sysctl_ctx_list sysctl_ctx;
105	struct sysctl_oid *sysctl_tree;
106};
107
108/**
109 * @brief Implementation of _device.
110 *
111 * The structure is named "_device" instead of "device" to avoid type confusion
112 * caused by other subsystems defining a (struct device).
113 */
114struct _device {
115	/*
116	 * A device is a kernel object. The first field must be the
117	 * current ops table for the object.
118	 */
119	KOBJ_FIELDS;
120
121	/*
122	 * Device hierarchy.
123	 */
124	TAILQ_ENTRY(_device)	link;	/**< list of devices in parent */
125	TAILQ_ENTRY(_device)	devlink; /**< global device list membership */
126	device_t	parent;		/**< parent of this device  */
127	device_list_t	children;	/**< list of child devices */
128
129	/*
130	 * Details of this device.
131	 */
132	driver_t	*driver;	/**< current driver */
133	devclass_t	devclass;	/**< current device class */
134	int		unit;		/**< current unit number */
135	char*		nameunit;	/**< name+unit e.g. foodev0 */
136	char*		desc;		/**< driver specific description */
137	u_int		busy;		/**< count of calls to device_busy() */
138	device_state_t	state;		/**< current device state  */
139	uint32_t	devflags;	/**< api level flags for device_get_flags() */
140	u_int		flags;		/**< internal device flags  */
141	u_int	order;			/**< order from device_add_child_ordered() */
142	void	*ivars;			/**< instance variables  */
143	void	*softc;			/**< current driver's variables  */
144
145	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
146	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
147};
148
149static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
150static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
151
152EVENTHANDLER_LIST_DEFINE(device_attach);
153EVENTHANDLER_LIST_DEFINE(device_detach);
154EVENTHANDLER_LIST_DEFINE(device_nomatch);
155EVENTHANDLER_LIST_DEFINE(dev_lookup);
156
157static void devctl2_init(void);
158static bool device_frozen;
159
160#define DRIVERNAME(d)	((d)? d->name : "no driver")
161#define DEVCLANAME(d)	((d)? d->name : "no devclass")
162
163#ifdef BUS_DEBUG
164
165static int bus_debug = 1;
166SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
167    "Bus debug level");
168#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
169#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
170
171/**
172 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
173 * prevent syslog from deleting initial spaces
174 */
175#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
176
177static void print_device_short(device_t dev, int indent);
178static void print_device(device_t dev, int indent);
179void print_device_tree_short(device_t dev, int indent);
180void print_device_tree(device_t dev, int indent);
181static void print_driver_short(driver_t *driver, int indent);
182static void print_driver(driver_t *driver, int indent);
183static void print_driver_list(driver_list_t drivers, int indent);
184static void print_devclass_short(devclass_t dc, int indent);
185static void print_devclass(devclass_t dc, int indent);
186void print_devclass_list_short(void);
187void print_devclass_list(void);
188
189#else
190/* Make the compiler ignore the function calls */
191#define PDEBUG(a)			/* nop */
192#define DEVICENAME(d)			/* nop */
193
194#define print_device_short(d,i)		/* nop */
195#define print_device(d,i)		/* nop */
196#define print_device_tree_short(d,i)	/* nop */
197#define print_device_tree(d,i)		/* nop */
198#define print_driver_short(d,i)		/* nop */
199#define print_driver(d,i)		/* nop */
200#define print_driver_list(d,i)		/* nop */
201#define print_devclass_short(d,i)	/* nop */
202#define print_devclass(d,i)		/* nop */
203#define print_devclass_list_short()	/* nop */
204#define print_devclass_list()		/* nop */
205#endif
206
207/*
208 * dev sysctl tree
209 */
210
211enum {
212	DEVCLASS_SYSCTL_PARENT,
213};
214
215static int
216devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
217{
218	devclass_t dc = (devclass_t)arg1;
219	const char *value;
220
221	switch (arg2) {
222	case DEVCLASS_SYSCTL_PARENT:
223		value = dc->parent ? dc->parent->name : "";
224		break;
225	default:
226		return (EINVAL);
227	}
228	return (SYSCTL_OUT_STR(req, value));
229}
230
231static void
232devclass_sysctl_init(devclass_t dc)
233{
234	if (dc->sysctl_tree != NULL)
235		return;
236	sysctl_ctx_init(&dc->sysctl_ctx);
237	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
238	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
239	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
240	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
241	    OID_AUTO, "%parent",
242	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
243	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
244	    "parent class");
245}
246
247enum {
248	DEVICE_SYSCTL_DESC,
249	DEVICE_SYSCTL_DRIVER,
250	DEVICE_SYSCTL_LOCATION,
251	DEVICE_SYSCTL_PNPINFO,
252	DEVICE_SYSCTL_PARENT,
253};
254
255static int
256device_sysctl_handler(SYSCTL_HANDLER_ARGS)
257{
258	struct sbuf sb;
259	device_t dev = (device_t)arg1;
260	int error;
261
262	sbuf_new_for_sysctl(&sb, NULL, 1024, req);
263	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
264	bus_topo_lock();
265	switch (arg2) {
266	case DEVICE_SYSCTL_DESC:
267		sbuf_cat(&sb, dev->desc ? dev->desc : "");
268		break;
269	case DEVICE_SYSCTL_DRIVER:
270		sbuf_cat(&sb, dev->driver ? dev->driver->name : "");
271		break;
272	case DEVICE_SYSCTL_LOCATION:
273		bus_child_location(dev, &sb);
274		break;
275	case DEVICE_SYSCTL_PNPINFO:
276		bus_child_pnpinfo(dev, &sb);
277		break;
278	case DEVICE_SYSCTL_PARENT:
279		sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : "");
280		break;
281	default:
282		error = EINVAL;
283		goto out;
284	}
285	error = sbuf_finish(&sb);
286out:
287	bus_topo_unlock();
288	sbuf_delete(&sb);
289	return (error);
290}
291
292static void
293device_sysctl_init(device_t dev)
294{
295	devclass_t dc = dev->devclass;
296	int domain;
297
298	if (dev->sysctl_tree != NULL)
299		return;
300	devclass_sysctl_init(dc);
301	sysctl_ctx_init(&dev->sysctl_ctx);
302	dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
303	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
304	    dev->nameunit + strlen(dc->name),
305	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
306	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
307	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
308	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
309	    "device description");
310	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
311	    OID_AUTO, "%driver",
312	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
313	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
314	    "device driver name");
315	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
316	    OID_AUTO, "%location",
317	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
318	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
319	    "device location relative to parent");
320	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
321	    OID_AUTO, "%pnpinfo",
322	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
323	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
324	    "device identification");
325	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
326	    OID_AUTO, "%parent",
327	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
328	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
329	    "parent device");
330	if (bus_get_domain(dev, &domain) == 0)
331		SYSCTL_ADD_INT(&dev->sysctl_ctx,
332		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
333		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain");
334}
335
336static void
337device_sysctl_update(device_t dev)
338{
339	devclass_t dc = dev->devclass;
340
341	if (dev->sysctl_tree == NULL)
342		return;
343	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
344}
345
346static void
347device_sysctl_fini(device_t dev)
348{
349	if (dev->sysctl_tree == NULL)
350		return;
351	sysctl_ctx_free(&dev->sysctl_ctx);
352	dev->sysctl_tree = NULL;
353}
354
355static struct device_list bus_data_devices;
356static int bus_data_generation = 1;
357
358static kobj_method_t null_methods[] = {
359	KOBJMETHOD_END
360};
361
362DEFINE_CLASS(null, null_methods, 0);
363
364void
365bus_topo_assert(void)
366{
367
368	GIANT_REQUIRED;
369}
370
371struct mtx *
372bus_topo_mtx(void)
373{
374
375	return (&Giant);
376}
377
378void
379bus_topo_lock(void)
380{
381
382	mtx_lock(bus_topo_mtx());
383}
384
385void
386bus_topo_unlock(void)
387{
388
389	mtx_unlock(bus_topo_mtx());
390}
391
392/*
393 * Bus pass implementation
394 */
395
396static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
397int bus_current_pass = BUS_PASS_ROOT;
398
399/**
400 * @internal
401 * @brief Register the pass level of a new driver attachment
402 *
403 * Register a new driver attachment's pass level.  If no driver
404 * attachment with the same pass level has been added, then @p new
405 * will be added to the global passes list.
406 *
407 * @param new		the new driver attachment
408 */
409static void
410driver_register_pass(struct driverlink *new)
411{
412	struct driverlink *dl;
413
414	/* We only consider pass numbers during boot. */
415	if (bus_current_pass == BUS_PASS_DEFAULT)
416		return;
417
418	/*
419	 * Walk the passes list.  If we already know about this pass
420	 * then there is nothing to do.  If we don't, then insert this
421	 * driver link into the list.
422	 */
423	TAILQ_FOREACH(dl, &passes, passlink) {
424		if (dl->pass < new->pass)
425			continue;
426		if (dl->pass == new->pass)
427			return;
428		TAILQ_INSERT_BEFORE(dl, new, passlink);
429		return;
430	}
431	TAILQ_INSERT_TAIL(&passes, new, passlink);
432}
433
434/**
435 * @brief Raise the current bus pass
436 *
437 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
438 * method on the root bus to kick off a new device tree scan for each
439 * new pass level that has at least one driver.
440 */
441void
442bus_set_pass(int pass)
443{
444	struct driverlink *dl;
445
446	if (bus_current_pass > pass)
447		panic("Attempt to lower bus pass level");
448
449	TAILQ_FOREACH(dl, &passes, passlink) {
450		/* Skip pass values below the current pass level. */
451		if (dl->pass <= bus_current_pass)
452			continue;
453
454		/*
455		 * Bail once we hit a driver with a pass level that is
456		 * too high.
457		 */
458		if (dl->pass > pass)
459			break;
460
461		/*
462		 * Raise the pass level to the next level and rescan
463		 * the tree.
464		 */
465		bus_current_pass = dl->pass;
466		BUS_NEW_PASS(root_bus);
467	}
468
469	/*
470	 * If there isn't a driver registered for the requested pass,
471	 * then bus_current_pass might still be less than 'pass'.  Set
472	 * it to 'pass' in that case.
473	 */
474	if (bus_current_pass < pass)
475		bus_current_pass = pass;
476	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
477}
478
479/*
480 * Devclass implementation
481 */
482
483static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
484
485/**
486 * @internal
487 * @brief Find or create a device class
488 *
489 * If a device class with the name @p classname exists, return it,
490 * otherwise if @p create is non-zero create and return a new device
491 * class.
492 *
493 * If @p parentname is non-NULL, the parent of the devclass is set to
494 * the devclass of that name.
495 *
496 * @param classname	the devclass name to find or create
497 * @param parentname	the parent devclass name or @c NULL
498 * @param create	non-zero to create a devclass
499 */
500static devclass_t
501devclass_find_internal(const char *classname, const char *parentname,
502		       int create)
503{
504	devclass_t dc;
505
506	PDEBUG(("looking for %s", classname));
507	if (!classname)
508		return (NULL);
509
510	TAILQ_FOREACH(dc, &devclasses, link) {
511		if (!strcmp(dc->name, classname))
512			break;
513	}
514
515	if (create && !dc) {
516		PDEBUG(("creating %s", classname));
517		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
518		    M_BUS, M_NOWAIT | M_ZERO);
519		if (!dc)
520			return (NULL);
521		dc->parent = NULL;
522		dc->name = (char*) (dc + 1);
523		strcpy(dc->name, classname);
524		TAILQ_INIT(&dc->drivers);
525		TAILQ_INSERT_TAIL(&devclasses, dc, link);
526
527		bus_data_generation_update();
528	}
529
530	/*
531	 * If a parent class is specified, then set that as our parent so
532	 * that this devclass will support drivers for the parent class as
533	 * well.  If the parent class has the same name don't do this though
534	 * as it creates a cycle that can trigger an infinite loop in
535	 * device_probe_child() if a device exists for which there is no
536	 * suitable driver.
537	 */
538	if (parentname && dc && !dc->parent &&
539	    strcmp(classname, parentname) != 0) {
540		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
541		dc->parent->flags |= DC_HAS_CHILDREN;
542	}
543
544	return (dc);
545}
546
547/**
548 * @brief Create a device class
549 *
550 * If a device class with the name @p classname exists, return it,
551 * otherwise create and return a new device class.
552 *
553 * @param classname	the devclass name to find or create
554 */
555devclass_t
556devclass_create(const char *classname)
557{
558	return (devclass_find_internal(classname, NULL, TRUE));
559}
560
561/**
562 * @brief Find a device class
563 *
564 * If a device class with the name @p classname exists, return it,
565 * otherwise return @c NULL.
566 *
567 * @param classname	the devclass name to find
568 */
569devclass_t
570devclass_find(const char *classname)
571{
572	return (devclass_find_internal(classname, NULL, FALSE));
573}
574
575/**
576 * @brief Register that a device driver has been added to a devclass
577 *
578 * Register that a device driver has been added to a devclass.  This
579 * is called by devclass_add_driver to accomplish the recursive
580 * notification of all the children classes of dc, as well as dc.
581 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
582 * the devclass.
583 *
584 * We do a full search here of the devclass list at each iteration
585 * level to save storing children-lists in the devclass structure.  If
586 * we ever move beyond a few dozen devices doing this, we may need to
587 * reevaluate...
588 *
589 * @param dc		the devclass to edit
590 * @param driver	the driver that was just added
591 */
592static void
593devclass_driver_added(devclass_t dc, driver_t *driver)
594{
595	devclass_t parent;
596	int i;
597
598	/*
599	 * Call BUS_DRIVER_ADDED for any existing buses in this class.
600	 */
601	for (i = 0; i < dc->maxunit; i++)
602		if (dc->devices[i] && device_is_attached(dc->devices[i]))
603			BUS_DRIVER_ADDED(dc->devices[i], driver);
604
605	/*
606	 * Walk through the children classes.  Since we only keep a
607	 * single parent pointer around, we walk the entire list of
608	 * devclasses looking for children.  We set the
609	 * DC_HAS_CHILDREN flag when a child devclass is created on
610	 * the parent, so we only walk the list for those devclasses
611	 * that have children.
612	 */
613	if (!(dc->flags & DC_HAS_CHILDREN))
614		return;
615	parent = dc;
616	TAILQ_FOREACH(dc, &devclasses, link) {
617		if (dc->parent == parent)
618			devclass_driver_added(dc, driver);
619	}
620}
621
622static void
623device_handle_nomatch(device_t dev)
624{
625	BUS_PROBE_NOMATCH(dev->parent, dev);
626	EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev);
627	dev->flags |= DF_DONENOMATCH;
628}
629
630/**
631 * @brief Add a device driver to a device class
632 *
633 * Add a device driver to a devclass. This is normally called
634 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
635 * all devices in the devclass will be called to allow them to attempt
636 * to re-probe any unmatched children.
637 *
638 * @param dc		the devclass to edit
639 * @param driver	the driver to register
640 */
641int
642devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
643{
644	driverlink_t dl;
645	devclass_t child_dc;
646	const char *parentname;
647
648	PDEBUG(("%s", DRIVERNAME(driver)));
649
650	/* Don't allow invalid pass values. */
651	if (pass <= BUS_PASS_ROOT)
652		return (EINVAL);
653
654	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
655	if (!dl)
656		return (ENOMEM);
657
658	/*
659	 * Compile the driver's methods. Also increase the reference count
660	 * so that the class doesn't get freed when the last instance
661	 * goes. This means we can safely use static methods and avoids a
662	 * double-free in devclass_delete_driver.
663	 */
664	kobj_class_compile((kobj_class_t) driver);
665
666	/*
667	 * If the driver has any base classes, make the
668	 * devclass inherit from the devclass of the driver's
669	 * first base class. This will allow the system to
670	 * search for drivers in both devclasses for children
671	 * of a device using this driver.
672	 */
673	if (driver->baseclasses)
674		parentname = driver->baseclasses[0]->name;
675	else
676		parentname = NULL;
677	child_dc = devclass_find_internal(driver->name, parentname, TRUE);
678	if (dcp != NULL)
679		*dcp = child_dc;
680
681	dl->driver = driver;
682	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
683	driver->refs++;		/* XXX: kobj_mtx */
684	dl->pass = pass;
685	driver_register_pass(dl);
686
687	if (device_frozen) {
688		dl->flags |= DL_DEFERRED_PROBE;
689	} else {
690		devclass_driver_added(dc, driver);
691	}
692	bus_data_generation_update();
693	return (0);
694}
695
696/**
697 * @brief Register that a device driver has been deleted from a devclass
698 *
699 * Register that a device driver has been removed from a devclass.
700 * This is called by devclass_delete_driver to accomplish the
701 * recursive notification of all the children classes of busclass, as
702 * well as busclass.  Each layer will attempt to detach the driver
703 * from any devices that are children of the bus's devclass.  The function
704 * will return an error if a device fails to detach.
705 *
706 * We do a full search here of the devclass list at each iteration
707 * level to save storing children-lists in the devclass structure.  If
708 * we ever move beyond a few dozen devices doing this, we may need to
709 * reevaluate...
710 *
711 * @param busclass	the devclass of the parent bus
712 * @param dc		the devclass of the driver being deleted
713 * @param driver	the driver being deleted
714 */
715static int
716devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
717{
718	devclass_t parent;
719	device_t dev;
720	int error, i;
721
722	/*
723	 * Disassociate from any devices.  We iterate through all the
724	 * devices in the devclass of the driver and detach any which are
725	 * using the driver and which have a parent in the devclass which
726	 * we are deleting from.
727	 *
728	 * Note that since a driver can be in multiple devclasses, we
729	 * should not detach devices which are not children of devices in
730	 * the affected devclass.
731	 *
732	 * If we're frozen, we don't generate NOMATCH events. Mark to
733	 * generate later.
734	 */
735	for (i = 0; i < dc->maxunit; i++) {
736		if (dc->devices[i]) {
737			dev = dc->devices[i];
738			if (dev->driver == driver && dev->parent &&
739			    dev->parent->devclass == busclass) {
740				if ((error = device_detach(dev)) != 0)
741					return (error);
742				if (device_frozen) {
743					dev->flags &= ~DF_DONENOMATCH;
744					dev->flags |= DF_NEEDNOMATCH;
745				} else {
746					device_handle_nomatch(dev);
747				}
748			}
749		}
750	}
751
752	/*
753	 * Walk through the children classes.  Since we only keep a
754	 * single parent pointer around, we walk the entire list of
755	 * devclasses looking for children.  We set the
756	 * DC_HAS_CHILDREN flag when a child devclass is created on
757	 * the parent, so we only walk the list for those devclasses
758	 * that have children.
759	 */
760	if (!(busclass->flags & DC_HAS_CHILDREN))
761		return (0);
762	parent = busclass;
763	TAILQ_FOREACH(busclass, &devclasses, link) {
764		if (busclass->parent == parent) {
765			error = devclass_driver_deleted(busclass, dc, driver);
766			if (error)
767				return (error);
768		}
769	}
770	return (0);
771}
772
773/**
774 * @brief Delete a device driver from a device class
775 *
776 * Delete a device driver from a devclass. This is normally called
777 * automatically by DRIVER_MODULE().
778 *
779 * If the driver is currently attached to any devices,
780 * devclass_delete_driver() will first attempt to detach from each
781 * device. If one of the detach calls fails, the driver will not be
782 * deleted.
783 *
784 * @param dc		the devclass to edit
785 * @param driver	the driver to unregister
786 */
787int
788devclass_delete_driver(devclass_t busclass, driver_t *driver)
789{
790	devclass_t dc = devclass_find(driver->name);
791	driverlink_t dl;
792	int error;
793
794	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
795
796	if (!dc)
797		return (0);
798
799	/*
800	 * Find the link structure in the bus' list of drivers.
801	 */
802	TAILQ_FOREACH(dl, &busclass->drivers, link) {
803		if (dl->driver == driver)
804			break;
805	}
806
807	if (!dl) {
808		PDEBUG(("%s not found in %s list", driver->name,
809		    busclass->name));
810		return (ENOENT);
811	}
812
813	error = devclass_driver_deleted(busclass, dc, driver);
814	if (error != 0)
815		return (error);
816
817	TAILQ_REMOVE(&busclass->drivers, dl, link);
818	free(dl, M_BUS);
819
820	/* XXX: kobj_mtx */
821	driver->refs--;
822	if (driver->refs == 0)
823		kobj_class_free((kobj_class_t) driver);
824
825	bus_data_generation_update();
826	return (0);
827}
828
829/**
830 * @brief Quiesces a set of device drivers from a device class
831 *
832 * Quiesce a device driver from a devclass. This is normally called
833 * automatically by DRIVER_MODULE().
834 *
835 * If the driver is currently attached to any devices,
836 * devclass_quiesece_driver() will first attempt to quiesce each
837 * device.
838 *
839 * @param dc		the devclass to edit
840 * @param driver	the driver to unregister
841 */
842static int
843devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
844{
845	devclass_t dc = devclass_find(driver->name);
846	driverlink_t dl;
847	device_t dev;
848	int i;
849	int error;
850
851	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
852
853	if (!dc)
854		return (0);
855
856	/*
857	 * Find the link structure in the bus' list of drivers.
858	 */
859	TAILQ_FOREACH(dl, &busclass->drivers, link) {
860		if (dl->driver == driver)
861			break;
862	}
863
864	if (!dl) {
865		PDEBUG(("%s not found in %s list", driver->name,
866		    busclass->name));
867		return (ENOENT);
868	}
869
870	/*
871	 * Quiesce all devices.  We iterate through all the devices in
872	 * the devclass of the driver and quiesce any which are using
873	 * the driver and which have a parent in the devclass which we
874	 * are quiescing.
875	 *
876	 * Note that since a driver can be in multiple devclasses, we
877	 * should not quiesce devices which are not children of
878	 * devices in the affected devclass.
879	 */
880	for (i = 0; i < dc->maxunit; i++) {
881		if (dc->devices[i]) {
882			dev = dc->devices[i];
883			if (dev->driver == driver && dev->parent &&
884			    dev->parent->devclass == busclass) {
885				if ((error = device_quiesce(dev)) != 0)
886					return (error);
887			}
888		}
889	}
890
891	return (0);
892}
893
894/**
895 * @internal
896 */
897static driverlink_t
898devclass_find_driver_internal(devclass_t dc, const char *classname)
899{
900	driverlink_t dl;
901
902	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
903
904	TAILQ_FOREACH(dl, &dc->drivers, link) {
905		if (!strcmp(dl->driver->name, classname))
906			return (dl);
907	}
908
909	PDEBUG(("not found"));
910	return (NULL);
911}
912
913/**
914 * @brief Return the name of the devclass
915 */
916const char *
917devclass_get_name(devclass_t dc)
918{
919	return (dc->name);
920}
921
922/**
923 * @brief Find a device given a unit number
924 *
925 * @param dc		the devclass to search
926 * @param unit		the unit number to search for
927 *
928 * @returns		the device with the given unit number or @c
929 *			NULL if there is no such device
930 */
931device_t
932devclass_get_device(devclass_t dc, int unit)
933{
934	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
935		return (NULL);
936	return (dc->devices[unit]);
937}
938
939/**
940 * @brief Find the softc field of a device given a unit number
941 *
942 * @param dc		the devclass to search
943 * @param unit		the unit number to search for
944 *
945 * @returns		the softc field of the device with the given
946 *			unit number or @c NULL if there is no such
947 *			device
948 */
949void *
950devclass_get_softc(devclass_t dc, int unit)
951{
952	device_t dev;
953
954	dev = devclass_get_device(dc, unit);
955	if (!dev)
956		return (NULL);
957
958	return (device_get_softc(dev));
959}
960
961/**
962 * @brief Get a list of devices in the devclass
963 *
964 * An array containing a list of all the devices in the given devclass
965 * is allocated and returned in @p *devlistp. The number of devices
966 * in the array is returned in @p *devcountp. The caller should free
967 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
968 *
969 * @param dc		the devclass to examine
970 * @param devlistp	points at location for array pointer return
971 *			value
972 * @param devcountp	points at location for array size return value
973 *
974 * @retval 0		success
975 * @retval ENOMEM	the array allocation failed
976 */
977int
978devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
979{
980	int count, i;
981	device_t *list;
982
983	count = devclass_get_count(dc);
984	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
985	if (!list)
986		return (ENOMEM);
987
988	count = 0;
989	for (i = 0; i < dc->maxunit; i++) {
990		if (dc->devices[i]) {
991			list[count] = dc->devices[i];
992			count++;
993		}
994	}
995
996	*devlistp = list;
997	*devcountp = count;
998
999	return (0);
1000}
1001
1002/**
1003 * @brief Get a list of drivers in the devclass
1004 *
1005 * An array containing a list of pointers to all the drivers in the
1006 * given devclass is allocated and returned in @p *listp.  The number
1007 * of drivers in the array is returned in @p *countp. The caller should
1008 * free the array using @c free(p, M_TEMP).
1009 *
1010 * @param dc		the devclass to examine
1011 * @param listp		gives location for array pointer return value
1012 * @param countp	gives location for number of array elements
1013 *			return value
1014 *
1015 * @retval 0		success
1016 * @retval ENOMEM	the array allocation failed
1017 */
1018int
1019devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1020{
1021	driverlink_t dl;
1022	driver_t **list;
1023	int count;
1024
1025	count = 0;
1026	TAILQ_FOREACH(dl, &dc->drivers, link)
1027		count++;
1028	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1029	if (list == NULL)
1030		return (ENOMEM);
1031
1032	count = 0;
1033	TAILQ_FOREACH(dl, &dc->drivers, link) {
1034		list[count] = dl->driver;
1035		count++;
1036	}
1037	*listp = list;
1038	*countp = count;
1039
1040	return (0);
1041}
1042
1043/**
1044 * @brief Get the number of devices in a devclass
1045 *
1046 * @param dc		the devclass to examine
1047 */
1048int
1049devclass_get_count(devclass_t dc)
1050{
1051	int count, i;
1052
1053	count = 0;
1054	for (i = 0; i < dc->maxunit; i++)
1055		if (dc->devices[i])
1056			count++;
1057	return (count);
1058}
1059
1060/**
1061 * @brief Get the maximum unit number used in a devclass
1062 *
1063 * Note that this is one greater than the highest currently-allocated
1064 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1065 * that not even the devclass has been allocated yet.
1066 *
1067 * @param dc		the devclass to examine
1068 */
1069int
1070devclass_get_maxunit(devclass_t dc)
1071{
1072	if (dc == NULL)
1073		return (-1);
1074	return (dc->maxunit);
1075}
1076
1077/**
1078 * @brief Find a free unit number in a devclass
1079 *
1080 * This function searches for the first unused unit number greater
1081 * that or equal to @p unit.
1082 *
1083 * @param dc		the devclass to examine
1084 * @param unit		the first unit number to check
1085 */
1086int
1087devclass_find_free_unit(devclass_t dc, int unit)
1088{
1089	if (dc == NULL)
1090		return (unit);
1091	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1092		unit++;
1093	return (unit);
1094}
1095
1096/**
1097 * @brief Set the parent of a devclass
1098 *
1099 * The parent class is normally initialised automatically by
1100 * DRIVER_MODULE().
1101 *
1102 * @param dc		the devclass to edit
1103 * @param pdc		the new parent devclass
1104 */
1105void
1106devclass_set_parent(devclass_t dc, devclass_t pdc)
1107{
1108	dc->parent = pdc;
1109}
1110
1111/**
1112 * @brief Get the parent of a devclass
1113 *
1114 * @param dc		the devclass to examine
1115 */
1116devclass_t
1117devclass_get_parent(devclass_t dc)
1118{
1119	return (dc->parent);
1120}
1121
1122struct sysctl_ctx_list *
1123devclass_get_sysctl_ctx(devclass_t dc)
1124{
1125	return (&dc->sysctl_ctx);
1126}
1127
1128struct sysctl_oid *
1129devclass_get_sysctl_tree(devclass_t dc)
1130{
1131	return (dc->sysctl_tree);
1132}
1133
1134/**
1135 * @internal
1136 * @brief Allocate a unit number
1137 *
1138 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1139 * will do). The allocated unit number is returned in @p *unitp.
1140
1141 * @param dc		the devclass to allocate from
1142 * @param unitp		points at the location for the allocated unit
1143 *			number
1144 *
1145 * @retval 0		success
1146 * @retval EEXIST	the requested unit number is already allocated
1147 * @retval ENOMEM	memory allocation failure
1148 */
1149static int
1150devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1151{
1152	const char *s;
1153	int unit = *unitp;
1154
1155	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1156
1157	/* Ask the parent bus if it wants to wire this device. */
1158	if (unit == -1)
1159		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1160		    &unit);
1161
1162	/* If we were given a wired unit number, check for existing device */
1163	/* XXX imp XXX */
1164	if (unit != -1) {
1165		if (unit >= 0 && unit < dc->maxunit &&
1166		    dc->devices[unit] != NULL) {
1167			if (bootverbose)
1168				printf("%s: %s%d already exists; skipping it\n",
1169				    dc->name, dc->name, *unitp);
1170			return (EEXIST);
1171		}
1172	} else {
1173		/* Unwired device, find the next available slot for it */
1174		unit = 0;
1175		for (unit = 0;; unit++) {
1176			/* If this device slot is already in use, skip it. */
1177			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1178				continue;
1179
1180			/* If there is an "at" hint for a unit then skip it. */
1181			if (resource_string_value(dc->name, unit, "at", &s) ==
1182			    0)
1183				continue;
1184
1185			break;
1186		}
1187	}
1188
1189	/*
1190	 * We've selected a unit beyond the length of the table, so let's
1191	 * extend the table to make room for all units up to and including
1192	 * this one.
1193	 */
1194	if (unit >= dc->maxunit) {
1195		device_t *newlist, *oldlist;
1196		int newsize;
1197
1198		oldlist = dc->devices;
1199		newsize = roundup((unit + 1),
1200		    MAX(1, MINALLOCSIZE / sizeof(device_t)));
1201		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1202		if (!newlist)
1203			return (ENOMEM);
1204		if (oldlist != NULL)
1205			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1206		bzero(newlist + dc->maxunit,
1207		    sizeof(device_t) * (newsize - dc->maxunit));
1208		dc->devices = newlist;
1209		dc->maxunit = newsize;
1210		if (oldlist != NULL)
1211			free(oldlist, M_BUS);
1212	}
1213	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1214
1215	*unitp = unit;
1216	return (0);
1217}
1218
1219/**
1220 * @internal
1221 * @brief Add a device to a devclass
1222 *
1223 * A unit number is allocated for the device (using the device's
1224 * preferred unit number if any) and the device is registered in the
1225 * devclass. This allows the device to be looked up by its unit
1226 * number, e.g. by decoding a dev_t minor number.
1227 *
1228 * @param dc		the devclass to add to
1229 * @param dev		the device to add
1230 *
1231 * @retval 0		success
1232 * @retval EEXIST	the requested unit number is already allocated
1233 * @retval ENOMEM	memory allocation failure
1234 */
1235static int
1236devclass_add_device(devclass_t dc, device_t dev)
1237{
1238	int buflen, error;
1239
1240	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1241
1242	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1243	if (buflen < 0)
1244		return (ENOMEM);
1245	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1246	if (!dev->nameunit)
1247		return (ENOMEM);
1248
1249	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1250		free(dev->nameunit, M_BUS);
1251		dev->nameunit = NULL;
1252		return (error);
1253	}
1254	dc->devices[dev->unit] = dev;
1255	dev->devclass = dc;
1256	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1257
1258	return (0);
1259}
1260
1261/**
1262 * @internal
1263 * @brief Delete a device from a devclass
1264 *
1265 * The device is removed from the devclass's device list and its unit
1266 * number is freed.
1267
1268 * @param dc		the devclass to delete from
1269 * @param dev		the device to delete
1270 *
1271 * @retval 0		success
1272 */
1273static int
1274devclass_delete_device(devclass_t dc, device_t dev)
1275{
1276	if (!dc || !dev)
1277		return (0);
1278
1279	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1280
1281	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1282		panic("devclass_delete_device: inconsistent device class");
1283	dc->devices[dev->unit] = NULL;
1284	if (dev->flags & DF_WILDCARD)
1285		dev->unit = -1;
1286	dev->devclass = NULL;
1287	free(dev->nameunit, M_BUS);
1288	dev->nameunit = NULL;
1289
1290	return (0);
1291}
1292
1293/**
1294 * @internal
1295 * @brief Make a new device and add it as a child of @p parent
1296 *
1297 * @param parent	the parent of the new device
1298 * @param name		the devclass name of the new device or @c NULL
1299 *			to leave the devclass unspecified
1300 * @parem unit		the unit number of the new device of @c -1 to
1301 *			leave the unit number unspecified
1302 *
1303 * @returns the new device
1304 */
1305static device_t
1306make_device(device_t parent, const char *name, int unit)
1307{
1308	device_t dev;
1309	devclass_t dc;
1310
1311	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1312
1313	if (name) {
1314		dc = devclass_find_internal(name, NULL, TRUE);
1315		if (!dc) {
1316			printf("make_device: can't find device class %s\n",
1317			    name);
1318			return (NULL);
1319		}
1320	} else {
1321		dc = NULL;
1322	}
1323
1324	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
1325	if (!dev)
1326		return (NULL);
1327
1328	dev->parent = parent;
1329	TAILQ_INIT(&dev->children);
1330	kobj_init((kobj_t) dev, &null_class);
1331	dev->driver = NULL;
1332	dev->devclass = NULL;
1333	dev->unit = unit;
1334	dev->nameunit = NULL;
1335	dev->desc = NULL;
1336	dev->busy = 0;
1337	dev->devflags = 0;
1338	dev->flags = DF_ENABLED;
1339	dev->order = 0;
1340	if (unit == -1)
1341		dev->flags |= DF_WILDCARD;
1342	if (name) {
1343		dev->flags |= DF_FIXEDCLASS;
1344		if (devclass_add_device(dc, dev)) {
1345			kobj_delete((kobj_t) dev, M_BUS);
1346			return (NULL);
1347		}
1348	}
1349	if (parent != NULL && device_has_quiet_children(parent))
1350		dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1351	dev->ivars = NULL;
1352	dev->softc = NULL;
1353
1354	dev->state = DS_NOTPRESENT;
1355
1356	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1357	bus_data_generation_update();
1358
1359	return (dev);
1360}
1361
1362/**
1363 * @internal
1364 * @brief Print a description of a device.
1365 */
1366static int
1367device_print_child(device_t dev, device_t child)
1368{
1369	int retval = 0;
1370
1371	if (device_is_alive(child))
1372		retval += BUS_PRINT_CHILD(dev, child);
1373	else
1374		retval += device_printf(child, " not found\n");
1375
1376	return (retval);
1377}
1378
1379/**
1380 * @brief Create a new device
1381 *
1382 * This creates a new device and adds it as a child of an existing
1383 * parent device. The new device will be added after the last existing
1384 * child with order zero.
1385 *
1386 * @param dev		the device which will be the parent of the
1387 *			new child device
1388 * @param name		devclass name for new device or @c NULL if not
1389 *			specified
1390 * @param unit		unit number for new device or @c -1 if not
1391 *			specified
1392 *
1393 * @returns		the new device
1394 */
1395device_t
1396device_add_child(device_t dev, const char *name, int unit)
1397{
1398	return (device_add_child_ordered(dev, 0, name, unit));
1399}
1400
1401/**
1402 * @brief Create a new device
1403 *
1404 * This creates a new device and adds it as a child of an existing
1405 * parent device. The new device will be added after the last existing
1406 * child with the same order.
1407 *
1408 * @param dev		the device which will be the parent of the
1409 *			new child device
1410 * @param order		a value which is used to partially sort the
1411 *			children of @p dev - devices created using
1412 *			lower values of @p order appear first in @p
1413 *			dev's list of children
1414 * @param name		devclass name for new device or @c NULL if not
1415 *			specified
1416 * @param unit		unit number for new device or @c -1 if not
1417 *			specified
1418 *
1419 * @returns		the new device
1420 */
1421device_t
1422device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1423{
1424	device_t child;
1425	device_t place;
1426
1427	PDEBUG(("%s at %s with order %u as unit %d",
1428	    name, DEVICENAME(dev), order, unit));
1429	KASSERT(name != NULL || unit == -1,
1430	    ("child device with wildcard name and specific unit number"));
1431
1432	child = make_device(dev, name, unit);
1433	if (child == NULL)
1434		return (child);
1435	child->order = order;
1436
1437	TAILQ_FOREACH(place, &dev->children, link) {
1438		if (place->order > order)
1439			break;
1440	}
1441
1442	if (place) {
1443		/*
1444		 * The device 'place' is the first device whose order is
1445		 * greater than the new child.
1446		 */
1447		TAILQ_INSERT_BEFORE(place, child, link);
1448	} else {
1449		/*
1450		 * The new child's order is greater or equal to the order of
1451		 * any existing device. Add the child to the tail of the list.
1452		 */
1453		TAILQ_INSERT_TAIL(&dev->children, child, link);
1454	}
1455
1456	bus_data_generation_update();
1457	return (child);
1458}
1459
1460/**
1461 * @brief Delete a device
1462 *
1463 * This function deletes a device along with all of its children. If
1464 * the device currently has a driver attached to it, the device is
1465 * detached first using device_detach().
1466 *
1467 * @param dev		the parent device
1468 * @param child		the device to delete
1469 *
1470 * @retval 0		success
1471 * @retval non-zero	a unit error code describing the error
1472 */
1473int
1474device_delete_child(device_t dev, device_t child)
1475{
1476	int error;
1477	device_t grandchild;
1478
1479	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1480
1481	/* detach parent before deleting children, if any */
1482	if ((error = device_detach(child)) != 0)
1483		return (error);
1484
1485	/* remove children second */
1486	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1487		error = device_delete_child(child, grandchild);
1488		if (error)
1489			return (error);
1490	}
1491
1492	if (child->devclass)
1493		devclass_delete_device(child->devclass, child);
1494	if (child->parent)
1495		BUS_CHILD_DELETED(dev, child);
1496	TAILQ_REMOVE(&dev->children, child, link);
1497	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1498	kobj_delete((kobj_t) child, M_BUS);
1499
1500	bus_data_generation_update();
1501	return (0);
1502}
1503
1504/**
1505 * @brief Delete all children devices of the given device, if any.
1506 *
1507 * This function deletes all children devices of the given device, if
1508 * any, using the device_delete_child() function for each device it
1509 * finds. If a child device cannot be deleted, this function will
1510 * return an error code.
1511 *
1512 * @param dev		the parent device
1513 *
1514 * @retval 0		success
1515 * @retval non-zero	a device would not detach
1516 */
1517int
1518device_delete_children(device_t dev)
1519{
1520	device_t child;
1521	int error;
1522
1523	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1524
1525	error = 0;
1526
1527	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1528		error = device_delete_child(dev, child);
1529		if (error) {
1530			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1531			break;
1532		}
1533	}
1534	return (error);
1535}
1536
1537/**
1538 * @brief Find a device given a unit number
1539 *
1540 * This is similar to devclass_get_devices() but only searches for
1541 * devices which have @p dev as a parent.
1542 *
1543 * @param dev		the parent device to search
1544 * @param unit		the unit number to search for.  If the unit is -1,
1545 *			return the first child of @p dev which has name
1546 *			@p classname (that is, the one with the lowest unit.)
1547 *
1548 * @returns		the device with the given unit number or @c
1549 *			NULL if there is no such device
1550 */
1551device_t
1552device_find_child(device_t dev, const char *classname, int unit)
1553{
1554	devclass_t dc;
1555	device_t child;
1556
1557	dc = devclass_find(classname);
1558	if (!dc)
1559		return (NULL);
1560
1561	if (unit != -1) {
1562		child = devclass_get_device(dc, unit);
1563		if (child && child->parent == dev)
1564			return (child);
1565	} else {
1566		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1567			child = devclass_get_device(dc, unit);
1568			if (child && child->parent == dev)
1569				return (child);
1570		}
1571	}
1572	return (NULL);
1573}
1574
1575/**
1576 * @internal
1577 */
1578static driverlink_t
1579first_matching_driver(devclass_t dc, device_t dev)
1580{
1581	if (dev->devclass)
1582		return (devclass_find_driver_internal(dc, dev->devclass->name));
1583	return (TAILQ_FIRST(&dc->drivers));
1584}
1585
1586/**
1587 * @internal
1588 */
1589static driverlink_t
1590next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1591{
1592	if (dev->devclass) {
1593		driverlink_t dl;
1594		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1595			if (!strcmp(dev->devclass->name, dl->driver->name))
1596				return (dl);
1597		return (NULL);
1598	}
1599	return (TAILQ_NEXT(last, link));
1600}
1601
1602/**
1603 * @internal
1604 */
1605int
1606device_probe_child(device_t dev, device_t child)
1607{
1608	devclass_t dc;
1609	driverlink_t best = NULL;
1610	driverlink_t dl;
1611	int result, pri = 0;
1612	/* We should preserve the devclass (or lack of) set by the bus. */
1613	int hasclass = (child->devclass != NULL);
1614
1615	bus_topo_assert();
1616
1617	dc = dev->devclass;
1618	if (!dc)
1619		panic("device_probe_child: parent device has no devclass");
1620
1621	/*
1622	 * If the state is already probed, then return.
1623	 */
1624	if (child->state == DS_ALIVE)
1625		return (0);
1626
1627	for (; dc; dc = dc->parent) {
1628		for (dl = first_matching_driver(dc, child);
1629		     dl;
1630		     dl = next_matching_driver(dc, child, dl)) {
1631			/* If this driver's pass is too high, then ignore it. */
1632			if (dl->pass > bus_current_pass)
1633				continue;
1634
1635			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1636			result = device_set_driver(child, dl->driver);
1637			if (result == ENOMEM)
1638				return (result);
1639			else if (result != 0)
1640				continue;
1641			if (!hasclass) {
1642				if (device_set_devclass(child,
1643				    dl->driver->name) != 0) {
1644					char const * devname =
1645					    device_get_name(child);
1646					if (devname == NULL)
1647						devname = "(unknown)";
1648					printf("driver bug: Unable to set "
1649					    "devclass (class: %s "
1650					    "devname: %s)\n",
1651					    dl->driver->name,
1652					    devname);
1653					(void)device_set_driver(child, NULL);
1654					continue;
1655				}
1656			}
1657
1658			/* Fetch any flags for the device before probing. */
1659			resource_int_value(dl->driver->name, child->unit,
1660			    "flags", &child->devflags);
1661
1662			result = DEVICE_PROBE(child);
1663
1664			/*
1665			 * If the driver returns SUCCESS, there can be
1666			 * no higher match for this device.
1667			 */
1668			if (result == 0) {
1669				best = dl;
1670				pri = 0;
1671				break;
1672			}
1673
1674			/* Reset flags and devclass before the next probe. */
1675			child->devflags = 0;
1676			if (!hasclass)
1677				(void)device_set_devclass(child, NULL);
1678
1679			/*
1680			 * Reset DF_QUIET in case this driver doesn't
1681			 * end up as the best driver.
1682			 */
1683			device_verbose(child);
1684
1685			/*
1686			 * Probes that return BUS_PROBE_NOWILDCARD or lower
1687			 * only match on devices whose driver was explicitly
1688			 * specified.
1689			 */
1690			if (result <= BUS_PROBE_NOWILDCARD &&
1691			    !(child->flags & DF_FIXEDCLASS)) {
1692				result = ENXIO;
1693			}
1694
1695			/*
1696			 * The driver returned an error so it
1697			 * certainly doesn't match.
1698			 */
1699			if (result > 0) {
1700				(void)device_set_driver(child, NULL);
1701				continue;
1702			}
1703
1704			/*
1705			 * A priority lower than SUCCESS, remember the
1706			 * best matching driver. Initialise the value
1707			 * of pri for the first match.
1708			 */
1709			if (best == NULL || result > pri) {
1710				best = dl;
1711				pri = result;
1712				continue;
1713			}
1714		}
1715		/*
1716		 * If we have an unambiguous match in this devclass,
1717		 * don't look in the parent.
1718		 */
1719		if (best && pri == 0)
1720			break;
1721	}
1722
1723	if (best == NULL)
1724		return (ENXIO);
1725
1726	/*
1727	 * If we found a driver, change state and initialise the devclass.
1728	 */
1729	if (pri < 0) {
1730		/* Set the winning driver, devclass, and flags. */
1731		result = device_set_driver(child, best->driver);
1732		if (result != 0)
1733			return (result);
1734		if (!child->devclass) {
1735			result = device_set_devclass(child, best->driver->name);
1736			if (result != 0) {
1737				(void)device_set_driver(child, NULL);
1738				return (result);
1739			}
1740		}
1741		resource_int_value(best->driver->name, child->unit,
1742		    "flags", &child->devflags);
1743
1744		/*
1745		 * A bit bogus. Call the probe method again to make sure
1746		 * that we have the right description.
1747		 */
1748		result = DEVICE_PROBE(child);
1749		if (result > 0) {
1750			if (!hasclass)
1751				(void)device_set_devclass(child, NULL);
1752			(void)device_set_driver(child, NULL);
1753			return (result);
1754		}
1755	}
1756
1757	child->state = DS_ALIVE;
1758	bus_data_generation_update();
1759	return (0);
1760}
1761
1762/**
1763 * @brief Return the parent of a device
1764 */
1765device_t
1766device_get_parent(device_t dev)
1767{
1768	return (dev->parent);
1769}
1770
1771/**
1772 * @brief Get a list of children of a device
1773 *
1774 * An array containing a list of all the children of the given device
1775 * is allocated and returned in @p *devlistp. The number of devices
1776 * in the array is returned in @p *devcountp. The caller should free
1777 * the array using @c free(p, M_TEMP).
1778 *
1779 * @param dev		the device to examine
1780 * @param devlistp	points at location for array pointer return
1781 *			value
1782 * @param devcountp	points at location for array size return value
1783 *
1784 * @retval 0		success
1785 * @retval ENOMEM	the array allocation failed
1786 */
1787int
1788device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1789{
1790	int count;
1791	device_t child;
1792	device_t *list;
1793
1794	count = 0;
1795	TAILQ_FOREACH(child, &dev->children, link) {
1796		count++;
1797	}
1798	if (count == 0) {
1799		*devlistp = NULL;
1800		*devcountp = 0;
1801		return (0);
1802	}
1803
1804	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1805	if (!list)
1806		return (ENOMEM);
1807
1808	count = 0;
1809	TAILQ_FOREACH(child, &dev->children, link) {
1810		list[count] = child;
1811		count++;
1812	}
1813
1814	*devlistp = list;
1815	*devcountp = count;
1816
1817	return (0);
1818}
1819
1820/**
1821 * @brief Return the current driver for the device or @c NULL if there
1822 * is no driver currently attached
1823 */
1824driver_t *
1825device_get_driver(device_t dev)
1826{
1827	return (dev->driver);
1828}
1829
1830/**
1831 * @brief Return the current devclass for the device or @c NULL if
1832 * there is none.
1833 */
1834devclass_t
1835device_get_devclass(device_t dev)
1836{
1837	return (dev->devclass);
1838}
1839
1840/**
1841 * @brief Return the name of the device's devclass or @c NULL if there
1842 * is none.
1843 */
1844const char *
1845device_get_name(device_t dev)
1846{
1847	if (dev != NULL && dev->devclass)
1848		return (devclass_get_name(dev->devclass));
1849	return (NULL);
1850}
1851
1852/**
1853 * @brief Return a string containing the device's devclass name
1854 * followed by an ascii representation of the device's unit number
1855 * (e.g. @c "foo2").
1856 */
1857const char *
1858device_get_nameunit(device_t dev)
1859{
1860	return (dev->nameunit);
1861}
1862
1863/**
1864 * @brief Return the device's unit number.
1865 */
1866int
1867device_get_unit(device_t dev)
1868{
1869	return (dev->unit);
1870}
1871
1872/**
1873 * @brief Return the device's description string
1874 */
1875const char *
1876device_get_desc(device_t dev)
1877{
1878	return (dev->desc);
1879}
1880
1881/**
1882 * @brief Return the device's flags
1883 */
1884uint32_t
1885device_get_flags(device_t dev)
1886{
1887	return (dev->devflags);
1888}
1889
1890struct sysctl_ctx_list *
1891device_get_sysctl_ctx(device_t dev)
1892{
1893	return (&dev->sysctl_ctx);
1894}
1895
1896struct sysctl_oid *
1897device_get_sysctl_tree(device_t dev)
1898{
1899	return (dev->sysctl_tree);
1900}
1901
1902/**
1903 * @brief Print the name of the device followed by a colon and a space
1904 *
1905 * @returns the number of characters printed
1906 */
1907int
1908device_print_prettyname(device_t dev)
1909{
1910	const char *name = device_get_name(dev);
1911
1912	if (name == NULL)
1913		return (printf("unknown: "));
1914	return (printf("%s%d: ", name, device_get_unit(dev)));
1915}
1916
1917/**
1918 * @brief Print the name of the device followed by a colon, a space
1919 * and the result of calling vprintf() with the value of @p fmt and
1920 * the following arguments.
1921 *
1922 * @returns the number of characters printed
1923 */
1924int
1925device_printf(device_t dev, const char * fmt, ...)
1926{
1927	char buf[128];
1928	struct sbuf sb;
1929	const char *name;
1930	va_list ap;
1931	size_t retval;
1932
1933	retval = 0;
1934
1935	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1936	sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
1937
1938	name = device_get_name(dev);
1939
1940	if (name == NULL)
1941		sbuf_cat(&sb, "unknown: ");
1942	else
1943		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
1944
1945	va_start(ap, fmt);
1946	sbuf_vprintf(&sb, fmt, ap);
1947	va_end(ap);
1948
1949	sbuf_finish(&sb);
1950	sbuf_delete(&sb);
1951
1952	return (retval);
1953}
1954
1955/**
1956 * @brief Print the name of the device followed by a colon, a space
1957 * and the result of calling log() with the value of @p fmt and
1958 * the following arguments.
1959 *
1960 * @returns the number of characters printed
1961 */
1962int
1963device_log(device_t dev, int pri, const char * fmt, ...)
1964{
1965	char buf[128];
1966	struct sbuf sb;
1967	const char *name;
1968	va_list ap;
1969	size_t retval;
1970
1971	retval = 0;
1972
1973	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1974
1975	name = device_get_name(dev);
1976
1977	if (name == NULL)
1978		sbuf_cat(&sb, "unknown: ");
1979	else
1980		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
1981
1982	va_start(ap, fmt);
1983	sbuf_vprintf(&sb, fmt, ap);
1984	va_end(ap);
1985
1986	sbuf_finish(&sb);
1987
1988	log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb));
1989	retval = sbuf_len(&sb);
1990
1991	sbuf_delete(&sb);
1992
1993	return (retval);
1994}
1995
1996/**
1997 * @internal
1998 */
1999static void
2000device_set_desc_internal(device_t dev, const char *desc, bool allocated)
2001{
2002	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2003		free(dev->desc, M_BUS);
2004		dev->flags &= ~DF_DESCMALLOCED;
2005		dev->desc = NULL;
2006	}
2007
2008	if (allocated && desc)
2009		dev->flags |= DF_DESCMALLOCED;
2010	dev->desc = __DECONST(char *, desc);
2011
2012	bus_data_generation_update();
2013}
2014
2015/**
2016 * @brief Set the device's description
2017 *
2018 * The value of @c desc should be a string constant that will not
2019 * change (at least until the description is changed in a subsequent
2020 * call to device_set_desc() or device_set_desc_copy()).
2021 */
2022void
2023device_set_desc(device_t dev, const char *desc)
2024{
2025	device_set_desc_internal(dev, desc, false);
2026}
2027
2028/**
2029 * @brief Set the device's description
2030 *
2031 * A printf-like version of device_set_desc().
2032 */
2033void
2034device_set_descf(device_t dev, const char *fmt, ...)
2035{
2036	va_list ap;
2037	char *buf = NULL;
2038
2039	va_start(ap, fmt);
2040	vasprintf(&buf, M_BUS, fmt, ap);
2041	va_end(ap);
2042	device_set_desc_internal(dev, buf, true);
2043}
2044
2045/**
2046 * @brief Set the device's description
2047 *
2048 * The string pointed to by @c desc is copied. Use this function if
2049 * the device description is generated, (e.g. with sprintf()).
2050 */
2051void
2052device_set_desc_copy(device_t dev, const char *desc)
2053{
2054	char *buf;
2055
2056	buf = strdup_flags(desc, M_BUS, M_NOWAIT);
2057	device_set_desc_internal(dev, buf, true);
2058}
2059
2060/**
2061 * @brief Set the device's flags
2062 */
2063void
2064device_set_flags(device_t dev, uint32_t flags)
2065{
2066	dev->devflags = flags;
2067}
2068
2069/**
2070 * @brief Return the device's softc field
2071 *
2072 * The softc is allocated and zeroed when a driver is attached, based
2073 * on the size field of the driver.
2074 */
2075void *
2076device_get_softc(device_t dev)
2077{
2078	return (dev->softc);
2079}
2080
2081/**
2082 * @brief Set the device's softc field
2083 *
2084 * Most drivers do not need to use this since the softc is allocated
2085 * automatically when the driver is attached.
2086 */
2087void
2088device_set_softc(device_t dev, void *softc)
2089{
2090	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2091		free(dev->softc, M_BUS_SC);
2092	dev->softc = softc;
2093	if (dev->softc)
2094		dev->flags |= DF_EXTERNALSOFTC;
2095	else
2096		dev->flags &= ~DF_EXTERNALSOFTC;
2097}
2098
2099/**
2100 * @brief Free claimed softc
2101 *
2102 * Most drivers do not need to use this since the softc is freed
2103 * automatically when the driver is detached.
2104 */
2105void
2106device_free_softc(void *softc)
2107{
2108	free(softc, M_BUS_SC);
2109}
2110
2111/**
2112 * @brief Claim softc
2113 *
2114 * This function can be used to let the driver free the automatically
2115 * allocated softc using "device_free_softc()". This function is
2116 * useful when the driver is refcounting the softc and the softc
2117 * cannot be freed when the "device_detach" method is called.
2118 */
2119void
2120device_claim_softc(device_t dev)
2121{
2122	if (dev->softc)
2123		dev->flags |= DF_EXTERNALSOFTC;
2124	else
2125		dev->flags &= ~DF_EXTERNALSOFTC;
2126}
2127
2128/**
2129 * @brief Get the device's ivars field
2130 *
2131 * The ivars field is used by the parent device to store per-device
2132 * state (e.g. the physical location of the device or a list of
2133 * resources).
2134 */
2135void *
2136device_get_ivars(device_t dev)
2137{
2138	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2139	return (dev->ivars);
2140}
2141
2142/**
2143 * @brief Set the device's ivars field
2144 */
2145void
2146device_set_ivars(device_t dev, void * ivars)
2147{
2148	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2149	dev->ivars = ivars;
2150}
2151
2152/**
2153 * @brief Return the device's state
2154 */
2155device_state_t
2156device_get_state(device_t dev)
2157{
2158	return (dev->state);
2159}
2160
2161/**
2162 * @brief Set the DF_ENABLED flag for the device
2163 */
2164void
2165device_enable(device_t dev)
2166{
2167	dev->flags |= DF_ENABLED;
2168}
2169
2170/**
2171 * @brief Clear the DF_ENABLED flag for the device
2172 */
2173void
2174device_disable(device_t dev)
2175{
2176	dev->flags &= ~DF_ENABLED;
2177}
2178
2179/**
2180 * @brief Increment the busy counter for the device
2181 */
2182void
2183device_busy(device_t dev)
2184{
2185
2186	/*
2187	 * Mark the device as busy, recursively up the tree if this busy count
2188	 * goes 0->1.
2189	 */
2190	if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL)
2191		device_busy(dev->parent);
2192}
2193
2194/**
2195 * @brief Decrement the busy counter for the device
2196 */
2197void
2198device_unbusy(device_t dev)
2199{
2200
2201	/*
2202	 * Mark the device as unbsy, recursively if this is the last busy count.
2203	 */
2204	if (refcount_release(&dev->busy) && dev->parent != NULL)
2205		device_unbusy(dev->parent);
2206}
2207
2208/**
2209 * @brief Set the DF_QUIET flag for the device
2210 */
2211void
2212device_quiet(device_t dev)
2213{
2214	dev->flags |= DF_QUIET;
2215}
2216
2217/**
2218 * @brief Set the DF_QUIET_CHILDREN flag for the device
2219 */
2220void
2221device_quiet_children(device_t dev)
2222{
2223	dev->flags |= DF_QUIET_CHILDREN;
2224}
2225
2226/**
2227 * @brief Clear the DF_QUIET flag for the device
2228 */
2229void
2230device_verbose(device_t dev)
2231{
2232	dev->flags &= ~DF_QUIET;
2233}
2234
2235ssize_t
2236device_get_property(device_t dev, const char *prop, void *val, size_t sz,
2237    device_property_type_t type)
2238{
2239	device_t bus = device_get_parent(dev);
2240
2241	switch (type) {
2242	case DEVICE_PROP_ANY:
2243	case DEVICE_PROP_BUFFER:
2244	case DEVICE_PROP_HANDLE:	/* Size checks done in implementation. */
2245		break;
2246	case DEVICE_PROP_UINT32:
2247		if (sz % 4 != 0)
2248			return (-1);
2249		break;
2250	case DEVICE_PROP_UINT64:
2251		if (sz % 8 != 0)
2252			return (-1);
2253		break;
2254	default:
2255		return (-1);
2256	}
2257
2258	return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type));
2259}
2260
2261bool
2262device_has_property(device_t dev, const char *prop)
2263{
2264	return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0);
2265}
2266
2267/**
2268 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2269 */
2270int
2271device_has_quiet_children(device_t dev)
2272{
2273	return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2274}
2275
2276/**
2277 * @brief Return non-zero if the DF_QUIET flag is set on the device
2278 */
2279int
2280device_is_quiet(device_t dev)
2281{
2282	return ((dev->flags & DF_QUIET) != 0);
2283}
2284
2285/**
2286 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2287 */
2288int
2289device_is_enabled(device_t dev)
2290{
2291	return ((dev->flags & DF_ENABLED) != 0);
2292}
2293
2294/**
2295 * @brief Return non-zero if the device was successfully probed
2296 */
2297int
2298device_is_alive(device_t dev)
2299{
2300	return (dev->state >= DS_ALIVE);
2301}
2302
2303/**
2304 * @brief Return non-zero if the device currently has a driver
2305 * attached to it
2306 */
2307int
2308device_is_attached(device_t dev)
2309{
2310	return (dev->state >= DS_ATTACHED);
2311}
2312
2313/**
2314 * @brief Return non-zero if the device is currently suspended.
2315 */
2316int
2317device_is_suspended(device_t dev)
2318{
2319	return ((dev->flags & DF_SUSPENDED) != 0);
2320}
2321
2322/**
2323 * @brief Set the devclass of a device
2324 * @see devclass_add_device().
2325 */
2326int
2327device_set_devclass(device_t dev, const char *classname)
2328{
2329	devclass_t dc;
2330	int error;
2331
2332	if (!classname) {
2333		if (dev->devclass)
2334			devclass_delete_device(dev->devclass, dev);
2335		return (0);
2336	}
2337
2338	if (dev->devclass) {
2339		printf("device_set_devclass: device class already set\n");
2340		return (EINVAL);
2341	}
2342
2343	dc = devclass_find_internal(classname, NULL, TRUE);
2344	if (!dc)
2345		return (ENOMEM);
2346
2347	error = devclass_add_device(dc, dev);
2348
2349	bus_data_generation_update();
2350	return (error);
2351}
2352
2353/**
2354 * @brief Set the devclass of a device and mark the devclass fixed.
2355 * @see device_set_devclass()
2356 */
2357int
2358device_set_devclass_fixed(device_t dev, const char *classname)
2359{
2360	int error;
2361
2362	if (classname == NULL)
2363		return (EINVAL);
2364
2365	error = device_set_devclass(dev, classname);
2366	if (error)
2367		return (error);
2368	dev->flags |= DF_FIXEDCLASS;
2369	return (0);
2370}
2371
2372/**
2373 * @brief Query the device to determine if it's of a fixed devclass
2374 * @see device_set_devclass_fixed()
2375 */
2376bool
2377device_is_devclass_fixed(device_t dev)
2378{
2379	return ((dev->flags & DF_FIXEDCLASS) != 0);
2380}
2381
2382/**
2383 * @brief Set the driver of a device
2384 *
2385 * @retval 0		success
2386 * @retval EBUSY	the device already has a driver attached
2387 * @retval ENOMEM	a memory allocation failure occurred
2388 */
2389int
2390device_set_driver(device_t dev, driver_t *driver)
2391{
2392	int domain;
2393	struct domainset *policy;
2394
2395	if (dev->state >= DS_ATTACHED)
2396		return (EBUSY);
2397
2398	if (dev->driver == driver)
2399		return (0);
2400
2401	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2402		free(dev->softc, M_BUS_SC);
2403		dev->softc = NULL;
2404	}
2405	device_set_desc(dev, NULL);
2406	kobj_delete((kobj_t) dev, NULL);
2407	dev->driver = driver;
2408	if (driver) {
2409		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2410		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2411			if (bus_get_domain(dev, &domain) == 0)
2412				policy = DOMAINSET_PREF(domain);
2413			else
2414				policy = DOMAINSET_RR();
2415			dev->softc = malloc_domainset(driver->size, M_BUS_SC,
2416			    policy, M_NOWAIT | M_ZERO);
2417			if (!dev->softc) {
2418				kobj_delete((kobj_t) dev, NULL);
2419				kobj_init((kobj_t) dev, &null_class);
2420				dev->driver = NULL;
2421				return (ENOMEM);
2422			}
2423		}
2424	} else {
2425		kobj_init((kobj_t) dev, &null_class);
2426	}
2427
2428	bus_data_generation_update();
2429	return (0);
2430}
2431
2432/**
2433 * @brief Probe a device, and return this status.
2434 *
2435 * This function is the core of the device autoconfiguration
2436 * system. Its purpose is to select a suitable driver for a device and
2437 * then call that driver to initialise the hardware appropriately. The
2438 * driver is selected by calling the DEVICE_PROBE() method of a set of
2439 * candidate drivers and then choosing the driver which returned the
2440 * best value. This driver is then attached to the device using
2441 * device_attach().
2442 *
2443 * The set of suitable drivers is taken from the list of drivers in
2444 * the parent device's devclass. If the device was originally created
2445 * with a specific class name (see device_add_child()), only drivers
2446 * with that name are probed, otherwise all drivers in the devclass
2447 * are probed. If no drivers return successful probe values in the
2448 * parent devclass, the search continues in the parent of that
2449 * devclass (see devclass_get_parent()) if any.
2450 *
2451 * @param dev		the device to initialise
2452 *
2453 * @retval 0		success
2454 * @retval ENXIO	no driver was found
2455 * @retval ENOMEM	memory allocation failure
2456 * @retval non-zero	some other unix error code
2457 * @retval -1		Device already attached
2458 */
2459int
2460device_probe(device_t dev)
2461{
2462	int error;
2463
2464	bus_topo_assert();
2465
2466	if (dev->state >= DS_ALIVE)
2467		return (-1);
2468
2469	if (!(dev->flags & DF_ENABLED)) {
2470		if (bootverbose && device_get_name(dev) != NULL) {
2471			device_print_prettyname(dev);
2472			printf("not probed (disabled)\n");
2473		}
2474		return (-1);
2475	}
2476	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2477		if (bus_current_pass == BUS_PASS_DEFAULT &&
2478		    !(dev->flags & DF_DONENOMATCH)) {
2479			device_handle_nomatch(dev);
2480		}
2481		return (error);
2482	}
2483	return (0);
2484}
2485
2486/**
2487 * @brief Probe a device and attach a driver if possible
2488 *
2489 * calls device_probe() and attaches if that was successful.
2490 */
2491int
2492device_probe_and_attach(device_t dev)
2493{
2494	int error;
2495
2496	bus_topo_assert();
2497
2498	error = device_probe(dev);
2499	if (error == -1)
2500		return (0);
2501	else if (error != 0)
2502		return (error);
2503
2504	CURVNET_SET_QUIET(vnet0);
2505	error = device_attach(dev);
2506	CURVNET_RESTORE();
2507	return error;
2508}
2509
2510/**
2511 * @brief Attach a device driver to a device
2512 *
2513 * This function is a wrapper around the DEVICE_ATTACH() driver
2514 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2515 * device's sysctl tree, optionally prints a description of the device
2516 * and queues a notification event for user-based device management
2517 * services.
2518 *
2519 * Normally this function is only called internally from
2520 * device_probe_and_attach().
2521 *
2522 * @param dev		the device to initialise
2523 *
2524 * @retval 0		success
2525 * @retval ENXIO	no driver was found
2526 * @retval ENOMEM	memory allocation failure
2527 * @retval non-zero	some other unix error code
2528 */
2529int
2530device_attach(device_t dev)
2531{
2532	uint64_t attachtime;
2533	uint16_t attachentropy;
2534	int error;
2535
2536	if (resource_disabled(dev->driver->name, dev->unit)) {
2537		device_disable(dev);
2538		if (bootverbose)
2539			 device_printf(dev, "disabled via hints entry\n");
2540		return (ENXIO);
2541	}
2542
2543	device_sysctl_init(dev);
2544	if (!device_is_quiet(dev))
2545		device_print_child(dev->parent, dev);
2546	attachtime = get_cyclecount();
2547	dev->state = DS_ATTACHING;
2548	if ((error = DEVICE_ATTACH(dev)) != 0) {
2549		printf("device_attach: %s%d attach returned %d\n",
2550		    dev->driver->name, dev->unit, error);
2551		if (disable_failed_devs) {
2552			/*
2553			 * When the user has asked to disable failed devices, we
2554			 * directly disable the device, but leave it in the
2555			 * attaching state. It will not try to probe/attach the
2556			 * device further. This leaves the device numbering
2557			 * intact for other similar devices in the system. It
2558			 * can be removed from this state with devctl.
2559			 */
2560			device_disable(dev);
2561		} else {
2562			/*
2563			 * Otherwise, when attach fails, tear down the state
2564			 * around that so we can retry when, for example, new
2565			 * drivers are loaded.
2566			 */
2567			if (!(dev->flags & DF_FIXEDCLASS))
2568				devclass_delete_device(dev->devclass, dev);
2569			(void)device_set_driver(dev, NULL);
2570			device_sysctl_fini(dev);
2571			KASSERT(dev->busy == 0, ("attach failed but busy"));
2572			dev->state = DS_NOTPRESENT;
2573		}
2574		return (error);
2575	}
2576	dev->flags |= DF_ATTACHED_ONCE;
2577	/*
2578	 * We only need the low bits of this time, but ranges from tens to thousands
2579	 * have been seen, so keep 2 bytes' worth.
2580	 */
2581	attachentropy = (uint16_t)(get_cyclecount() - attachtime);
2582	random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
2583	device_sysctl_update(dev);
2584	dev->state = DS_ATTACHED;
2585	dev->flags &= ~DF_DONENOMATCH;
2586	EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2587	return (0);
2588}
2589
2590/**
2591 * @brief Detach a driver from a device
2592 *
2593 * This function is a wrapper around the DEVICE_DETACH() driver
2594 * method. If the call to DEVICE_DETACH() succeeds, it calls
2595 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2596 * notification event for user-based device management services and
2597 * cleans up the device's sysctl tree.
2598 *
2599 * @param dev		the device to un-initialise
2600 *
2601 * @retval 0		success
2602 * @retval ENXIO	no driver was found
2603 * @retval ENOMEM	memory allocation failure
2604 * @retval non-zero	some other unix error code
2605 */
2606int
2607device_detach(device_t dev)
2608{
2609	int error;
2610
2611	bus_topo_assert();
2612
2613	PDEBUG(("%s", DEVICENAME(dev)));
2614	if (dev->busy > 0)
2615		return (EBUSY);
2616	if (dev->state == DS_ATTACHING) {
2617		device_printf(dev, "device in attaching state! Deferring detach.\n");
2618		return (EBUSY);
2619	}
2620	if (dev->state != DS_ATTACHED)
2621		return (0);
2622
2623	EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
2624	if ((error = DEVICE_DETACH(dev)) != 0) {
2625		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2626		    EVHDEV_DETACH_FAILED);
2627		return (error);
2628	} else {
2629		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2630		    EVHDEV_DETACH_COMPLETE);
2631	}
2632	if (!device_is_quiet(dev))
2633		device_printf(dev, "detached\n");
2634	if (dev->parent)
2635		BUS_CHILD_DETACHED(dev->parent, dev);
2636
2637	if (!(dev->flags & DF_FIXEDCLASS))
2638		devclass_delete_device(dev->devclass, dev);
2639
2640	device_verbose(dev);
2641	dev->state = DS_NOTPRESENT;
2642	(void)device_set_driver(dev, NULL);
2643	device_sysctl_fini(dev);
2644
2645	return (0);
2646}
2647
2648/**
2649 * @brief Tells a driver to quiesce itself.
2650 *
2651 * This function is a wrapper around the DEVICE_QUIESCE() driver
2652 * method. If the call to DEVICE_QUIESCE() succeeds.
2653 *
2654 * @param dev		the device to quiesce
2655 *
2656 * @retval 0		success
2657 * @retval ENXIO	no driver was found
2658 * @retval ENOMEM	memory allocation failure
2659 * @retval non-zero	some other unix error code
2660 */
2661int
2662device_quiesce(device_t dev)
2663{
2664	PDEBUG(("%s", DEVICENAME(dev)));
2665	if (dev->busy > 0)
2666		return (EBUSY);
2667	if (dev->state != DS_ATTACHED)
2668		return (0);
2669
2670	return (DEVICE_QUIESCE(dev));
2671}
2672
2673/**
2674 * @brief Notify a device of system shutdown
2675 *
2676 * This function calls the DEVICE_SHUTDOWN() driver method if the
2677 * device currently has an attached driver.
2678 *
2679 * @returns the value returned by DEVICE_SHUTDOWN()
2680 */
2681int
2682device_shutdown(device_t dev)
2683{
2684	if (dev->state < DS_ATTACHED)
2685		return (0);
2686	return (DEVICE_SHUTDOWN(dev));
2687}
2688
2689/**
2690 * @brief Set the unit number of a device
2691 *
2692 * This function can be used to override the unit number used for a
2693 * device (e.g. to wire a device to a pre-configured unit number).
2694 */
2695int
2696device_set_unit(device_t dev, int unit)
2697{
2698	devclass_t dc;
2699	int err;
2700
2701	if (unit == dev->unit)
2702		return (0);
2703	dc = device_get_devclass(dev);
2704	if (unit < dc->maxunit && dc->devices[unit])
2705		return (EBUSY);
2706	err = devclass_delete_device(dc, dev);
2707	if (err)
2708		return (err);
2709	dev->unit = unit;
2710	err = devclass_add_device(dc, dev);
2711	if (err)
2712		return (err);
2713
2714	bus_data_generation_update();
2715	return (0);
2716}
2717
2718/*======================================*/
2719/*
2720 * Some useful method implementations to make life easier for bus drivers.
2721 */
2722
2723/**
2724 * @brief Initialize a resource mapping request
2725 *
2726 * This is the internal implementation of the public API
2727 * resource_init_map_request.  Callers may be using a different layout
2728 * of struct resource_map_request than the kernel, so callers pass in
2729 * the size of the structure they are using to identify the structure
2730 * layout.
2731 */
2732void
2733resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
2734{
2735	bzero(args, sz);
2736	args->size = sz;
2737	args->memattr = VM_MEMATTR_DEVICE;
2738}
2739
2740/**
2741 * @brief Validate a resource mapping request
2742 *
2743 * Translate a device driver's mapping request (@p in) to a struct
2744 * resource_map_request using the current structure layout (@p out).
2745 * In addition, validate the offset and length from the mapping
2746 * request against the bounds of the resource @p r.  If the offset or
2747 * length are invalid, fail with EINVAL.  If the offset and length are
2748 * valid, the absolute starting address of the requested mapping is
2749 * returned in @p startp and the length of the requested mapping is
2750 * returned in @p lengthp.
2751 */
2752int
2753resource_validate_map_request(struct resource *r,
2754    struct resource_map_request *in, struct resource_map_request *out,
2755    rman_res_t *startp, rman_res_t *lengthp)
2756{
2757	rman_res_t end, length, start;
2758
2759	/*
2760	 * This assumes that any callers of this function are compiled
2761	 * into the kernel and use the same version of the structure
2762	 * as this file.
2763	 */
2764	MPASS(out->size == sizeof(struct resource_map_request));
2765
2766	if (in != NULL)
2767		bcopy(in, out, imin(in->size, out->size));
2768	start = rman_get_start(r) + out->offset;
2769	if (out->length == 0)
2770		length = rman_get_size(r);
2771	else
2772		length = out->length;
2773	end = start + length - 1;
2774	if (start > rman_get_end(r) || start < rman_get_start(r))
2775		return (EINVAL);
2776	if (end > rman_get_end(r) || end < start)
2777		return (EINVAL);
2778	*lengthp = length;
2779	*startp = start;
2780	return (0);
2781}
2782
2783/**
2784 * @brief Initialise a resource list.
2785 *
2786 * @param rl		the resource list to initialise
2787 */
2788void
2789resource_list_init(struct resource_list *rl)
2790{
2791	STAILQ_INIT(rl);
2792}
2793
2794/**
2795 * @brief Reclaim memory used by a resource list.
2796 *
2797 * This function frees the memory for all resource entries on the list
2798 * (if any).
2799 *
2800 * @param rl		the resource list to free
2801 */
2802void
2803resource_list_free(struct resource_list *rl)
2804{
2805	struct resource_list_entry *rle;
2806
2807	while ((rle = STAILQ_FIRST(rl)) != NULL) {
2808		if (rle->res)
2809			panic("resource_list_free: resource entry is busy");
2810		STAILQ_REMOVE_HEAD(rl, link);
2811		free(rle, M_BUS);
2812	}
2813}
2814
2815/**
2816 * @brief Add a resource entry.
2817 *
2818 * This function adds a resource entry using the given @p type, @p
2819 * start, @p end and @p count values. A rid value is chosen by
2820 * searching sequentially for the first unused rid starting at zero.
2821 *
2822 * @param rl		the resource list to edit
2823 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2824 * @param start		the start address of the resource
2825 * @param end		the end address of the resource
2826 * @param count		XXX end-start+1
2827 */
2828int
2829resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
2830    rman_res_t end, rman_res_t count)
2831{
2832	int rid;
2833
2834	rid = 0;
2835	while (resource_list_find(rl, type, rid) != NULL)
2836		rid++;
2837	resource_list_add(rl, type, rid, start, end, count);
2838	return (rid);
2839}
2840
2841/**
2842 * @brief Add or modify a resource entry.
2843 *
2844 * If an existing entry exists with the same type and rid, it will be
2845 * modified using the given values of @p start, @p end and @p
2846 * count. If no entry exists, a new one will be created using the
2847 * given values.  The resource list entry that matches is then returned.
2848 *
2849 * @param rl		the resource list to edit
2850 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2851 * @param rid		the resource identifier
2852 * @param start		the start address of the resource
2853 * @param end		the end address of the resource
2854 * @param count		XXX end-start+1
2855 */
2856struct resource_list_entry *
2857resource_list_add(struct resource_list *rl, int type, int rid,
2858    rman_res_t start, rman_res_t end, rman_res_t count)
2859{
2860	struct resource_list_entry *rle;
2861
2862	rle = resource_list_find(rl, type, rid);
2863	if (!rle) {
2864		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2865		    M_NOWAIT);
2866		if (!rle)
2867			panic("resource_list_add: can't record entry");
2868		STAILQ_INSERT_TAIL(rl, rle, link);
2869		rle->type = type;
2870		rle->rid = rid;
2871		rle->res = NULL;
2872		rle->flags = 0;
2873	}
2874
2875	if (rle->res)
2876		panic("resource_list_add: resource entry is busy");
2877
2878	rle->start = start;
2879	rle->end = end;
2880	rle->count = count;
2881	return (rle);
2882}
2883
2884/**
2885 * @brief Determine if a resource entry is busy.
2886 *
2887 * Returns true if a resource entry is busy meaning that it has an
2888 * associated resource that is not an unallocated "reserved" resource.
2889 *
2890 * @param rl		the resource list to search
2891 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2892 * @param rid		the resource identifier
2893 *
2894 * @returns Non-zero if the entry is busy, zero otherwise.
2895 */
2896int
2897resource_list_busy(struct resource_list *rl, int type, int rid)
2898{
2899	struct resource_list_entry *rle;
2900
2901	rle = resource_list_find(rl, type, rid);
2902	if (rle == NULL || rle->res == NULL)
2903		return (0);
2904	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2905		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2906		    ("reserved resource is active"));
2907		return (0);
2908	}
2909	return (1);
2910}
2911
2912/**
2913 * @brief Determine if a resource entry is reserved.
2914 *
2915 * Returns true if a resource entry is reserved meaning that it has an
2916 * associated "reserved" resource.  The resource can either be
2917 * allocated or unallocated.
2918 *
2919 * @param rl		the resource list to search
2920 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2921 * @param rid		the resource identifier
2922 *
2923 * @returns Non-zero if the entry is reserved, zero otherwise.
2924 */
2925int
2926resource_list_reserved(struct resource_list *rl, int type, int rid)
2927{
2928	struct resource_list_entry *rle;
2929
2930	rle = resource_list_find(rl, type, rid);
2931	if (rle != NULL && rle->flags & RLE_RESERVED)
2932		return (1);
2933	return (0);
2934}
2935
2936/**
2937 * @brief Find a resource entry by type and rid.
2938 *
2939 * @param rl		the resource list to search
2940 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2941 * @param rid		the resource identifier
2942 *
2943 * @returns the resource entry pointer or NULL if there is no such
2944 * entry.
2945 */
2946struct resource_list_entry *
2947resource_list_find(struct resource_list *rl, int type, int rid)
2948{
2949	struct resource_list_entry *rle;
2950
2951	STAILQ_FOREACH(rle, rl, link) {
2952		if (rle->type == type && rle->rid == rid)
2953			return (rle);
2954	}
2955	return (NULL);
2956}
2957
2958/**
2959 * @brief Delete a resource entry.
2960 *
2961 * @param rl		the resource list to edit
2962 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
2963 * @param rid		the resource identifier
2964 */
2965void
2966resource_list_delete(struct resource_list *rl, int type, int rid)
2967{
2968	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
2969
2970	if (rle) {
2971		if (rle->res != NULL)
2972			panic("resource_list_delete: resource has not been released");
2973		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
2974		free(rle, M_BUS);
2975	}
2976}
2977
2978/**
2979 * @brief Allocate a reserved resource
2980 *
2981 * This can be used by buses to force the allocation of resources
2982 * that are always active in the system even if they are not allocated
2983 * by a driver (e.g. PCI BARs).  This function is usually called when
2984 * adding a new child to the bus.  The resource is allocated from the
2985 * parent bus when it is reserved.  The resource list entry is marked
2986 * with RLE_RESERVED to note that it is a reserved resource.
2987 *
2988 * Subsequent attempts to allocate the resource with
2989 * resource_list_alloc() will succeed the first time and will set
2990 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
2991 * resource that has been allocated is released with
2992 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
2993 * the actual resource remains allocated.  The resource can be released to
2994 * the parent bus by calling resource_list_unreserve().
2995 *
2996 * @param rl		the resource list to allocate from
2997 * @param bus		the parent device of @p child
2998 * @param child		the device for which the resource is being reserved
2999 * @param type		the type of resource to allocate
3000 * @param rid		a pointer to the resource identifier
3001 * @param start		hint at the start of the resource range - pass
3002 *			@c 0 for any start address
3003 * @param end		hint at the end of the resource range - pass
3004 *			@c ~0 for any end address
3005 * @param count		hint at the size of range required - pass @c 1
3006 *			for any size
3007 * @param flags		any extra flags to control the resource
3008 *			allocation - see @c RF_XXX flags in
3009 *			<sys/rman.h> for details
3010 *
3011 * @returns		the resource which was allocated or @c NULL if no
3012 *			resource could be allocated
3013 */
3014struct resource *
3015resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3016    int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3017{
3018	struct resource_list_entry *rle = NULL;
3019	int passthrough = (device_get_parent(child) != bus);
3020	struct resource *r;
3021
3022	if (passthrough)
3023		panic(
3024    "resource_list_reserve() should only be called for direct children");
3025	if (flags & RF_ACTIVE)
3026		panic(
3027    "resource_list_reserve() should only reserve inactive resources");
3028
3029	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3030	    flags);
3031	if (r != NULL) {
3032		rle = resource_list_find(rl, type, *rid);
3033		rle->flags |= RLE_RESERVED;
3034	}
3035	return (r);
3036}
3037
3038/**
3039 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3040 *
3041 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3042 * and passing the allocation up to the parent of @p bus. This assumes
3043 * that the first entry of @c device_get_ivars(child) is a struct
3044 * resource_list. This also handles 'passthrough' allocations where a
3045 * child is a remote descendant of bus by passing the allocation up to
3046 * the parent of bus.
3047 *
3048 * Typically, a bus driver would store a list of child resources
3049 * somewhere in the child device's ivars (see device_get_ivars()) and
3050 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3051 * then call resource_list_alloc() to perform the allocation.
3052 *
3053 * @param rl		the resource list to allocate from
3054 * @param bus		the parent device of @p child
3055 * @param child		the device which is requesting an allocation
3056 * @param type		the type of resource to allocate
3057 * @param rid		a pointer to the resource identifier
3058 * @param start		hint at the start of the resource range - pass
3059 *			@c 0 for any start address
3060 * @param end		hint at the end of the resource range - pass
3061 *			@c ~0 for any end address
3062 * @param count		hint at the size of range required - pass @c 1
3063 *			for any size
3064 * @param flags		any extra flags to control the resource
3065 *			allocation - see @c RF_XXX flags in
3066 *			<sys/rman.h> for details
3067 *
3068 * @returns		the resource which was allocated or @c NULL if no
3069 *			resource could be allocated
3070 */
3071struct resource *
3072resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3073    int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3074{
3075	struct resource_list_entry *rle = NULL;
3076	int passthrough = (device_get_parent(child) != bus);
3077	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3078
3079	if (passthrough) {
3080		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3081		    type, rid, start, end, count, flags));
3082	}
3083
3084	rle = resource_list_find(rl, type, *rid);
3085
3086	if (!rle)
3087		return (NULL);		/* no resource of that type/rid */
3088
3089	if (rle->res) {
3090		if (rle->flags & RLE_RESERVED) {
3091			if (rle->flags & RLE_ALLOCATED)
3092				return (NULL);
3093			if ((flags & RF_ACTIVE) &&
3094			    bus_activate_resource(child, type, *rid,
3095			    rle->res) != 0)
3096				return (NULL);
3097			rle->flags |= RLE_ALLOCATED;
3098			return (rle->res);
3099		}
3100		device_printf(bus,
3101		    "resource entry %#x type %d for child %s is busy\n", *rid,
3102		    type, device_get_nameunit(child));
3103		return (NULL);
3104	}
3105
3106	if (isdefault) {
3107		start = rle->start;
3108		count = ulmax(count, rle->count);
3109		end = ulmax(rle->end, start + count - 1);
3110	}
3111
3112	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3113	    type, rid, start, end, count, flags);
3114
3115	/*
3116	 * Record the new range.
3117	 */
3118	if (rle->res) {
3119		rle->start = rman_get_start(rle->res);
3120		rle->end = rman_get_end(rle->res);
3121		rle->count = count;
3122	}
3123
3124	return (rle->res);
3125}
3126
3127/**
3128 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3129 *
3130 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3131 * used with resource_list_alloc().
3132 *
3133 * @param rl		the resource list which was allocated from
3134 * @param bus		the parent device of @p child
3135 * @param child		the device which is requesting a release
3136 * @param res		the resource to release
3137 *
3138 * @retval 0		success
3139 * @retval non-zero	a standard unix error code indicating what
3140 *			error condition prevented the operation
3141 */
3142int
3143resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3144    struct resource *res)
3145{
3146	struct resource_list_entry *rle = NULL;
3147	int passthrough = (device_get_parent(child) != bus);
3148	int error;
3149
3150	if (passthrough) {
3151		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3152		    res));
3153	}
3154
3155	rle = resource_list_find(rl, rman_get_type(res), rman_get_rid(res));
3156
3157	if (!rle)
3158		panic("resource_list_release: can't find resource");
3159	if (!rle->res)
3160		panic("resource_list_release: resource entry is not busy");
3161	if (rle->flags & RLE_RESERVED) {
3162		if (rle->flags & RLE_ALLOCATED) {
3163			if (rman_get_flags(res) & RF_ACTIVE) {
3164				error = bus_deactivate_resource(child, res);
3165				if (error)
3166					return (error);
3167			}
3168			rle->flags &= ~RLE_ALLOCATED;
3169			return (0);
3170		}
3171		return (EINVAL);
3172	}
3173
3174	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, res);
3175	if (error)
3176		return (error);
3177
3178	rle->res = NULL;
3179	return (0);
3180}
3181
3182/**
3183 * @brief Release all active resources of a given type
3184 *
3185 * Release all active resources of a specified type.  This is intended
3186 * to be used to cleanup resources leaked by a driver after detach or
3187 * a failed attach.
3188 *
3189 * @param rl		the resource list which was allocated from
3190 * @param bus		the parent device of @p child
3191 * @param child		the device whose active resources are being released
3192 * @param type		the type of resources to release
3193 *
3194 * @retval 0		success
3195 * @retval EBUSY	at least one resource was active
3196 */
3197int
3198resource_list_release_active(struct resource_list *rl, device_t bus,
3199    device_t child, int type)
3200{
3201	struct resource_list_entry *rle;
3202	int error, retval;
3203
3204	retval = 0;
3205	STAILQ_FOREACH(rle, rl, link) {
3206		if (rle->type != type)
3207			continue;
3208		if (rle->res == NULL)
3209			continue;
3210		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3211		    RLE_RESERVED)
3212			continue;
3213		retval = EBUSY;
3214		error = resource_list_release(rl, bus, child, rle->res);
3215		if (error != 0)
3216			device_printf(bus,
3217			    "Failed to release active resource: %d\n", error);
3218	}
3219	return (retval);
3220}
3221
3222/**
3223 * @brief Fully release a reserved resource
3224 *
3225 * Fully releases a resource reserved via resource_list_reserve().
3226 *
3227 * @param rl		the resource list which was allocated from
3228 * @param bus		the parent device of @p child
3229 * @param child		the device whose reserved resource is being released
3230 * @param type		the type of resource to release
3231 * @param rid		the resource identifier
3232 * @param res		the resource to release
3233 *
3234 * @retval 0		success
3235 * @retval non-zero	a standard unix error code indicating what
3236 *			error condition prevented the operation
3237 */
3238int
3239resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3240    int type, int rid)
3241{
3242	struct resource_list_entry *rle = NULL;
3243	int passthrough = (device_get_parent(child) != bus);
3244
3245	if (passthrough)
3246		panic(
3247    "resource_list_unreserve() should only be called for direct children");
3248
3249	rle = resource_list_find(rl, type, rid);
3250
3251	if (!rle)
3252		panic("resource_list_unreserve: can't find resource");
3253	if (!(rle->flags & RLE_RESERVED))
3254		return (EINVAL);
3255	if (rle->flags & RLE_ALLOCATED)
3256		return (EBUSY);
3257	rle->flags &= ~RLE_RESERVED;
3258	return (resource_list_release(rl, bus, child, rle->res));
3259}
3260
3261/**
3262 * @brief Print a description of resources in a resource list
3263 *
3264 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3265 * The name is printed if at least one resource of the given type is available.
3266 * The format is used to print resource start and end.
3267 *
3268 * @param rl		the resource list to print
3269 * @param name		the name of @p type, e.g. @c "memory"
3270 * @param type		type type of resource entry to print
3271 * @param format	printf(9) format string to print resource
3272 *			start and end values
3273 *
3274 * @returns		the number of characters printed
3275 */
3276int
3277resource_list_print_type(struct resource_list *rl, const char *name, int type,
3278    const char *format)
3279{
3280	struct resource_list_entry *rle;
3281	int printed, retval;
3282
3283	printed = 0;
3284	retval = 0;
3285	/* Yes, this is kinda cheating */
3286	STAILQ_FOREACH(rle, rl, link) {
3287		if (rle->type == type) {
3288			if (printed == 0)
3289				retval += printf(" %s ", name);
3290			else
3291				retval += printf(",");
3292			printed++;
3293			retval += printf(format, rle->start);
3294			if (rle->count > 1) {
3295				retval += printf("-");
3296				retval += printf(format, rle->start +
3297						 rle->count - 1);
3298			}
3299		}
3300	}
3301	return (retval);
3302}
3303
3304/**
3305 * @brief Releases all the resources in a list.
3306 *
3307 * @param rl		The resource list to purge.
3308 *
3309 * @returns		nothing
3310 */
3311void
3312resource_list_purge(struct resource_list *rl)
3313{
3314	struct resource_list_entry *rle;
3315
3316	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3317		if (rle->res)
3318			bus_release_resource(rman_get_device(rle->res),
3319			    rle->type, rle->rid, rle->res);
3320		STAILQ_REMOVE_HEAD(rl, link);
3321		free(rle, M_BUS);
3322	}
3323}
3324
3325device_t
3326bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3327{
3328	return (device_add_child_ordered(dev, order, name, unit));
3329}
3330
3331/**
3332 * @brief Helper function for implementing DEVICE_PROBE()
3333 *
3334 * This function can be used to help implement the DEVICE_PROBE() for
3335 * a bus (i.e. a device which has other devices attached to it). It
3336 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3337 * devclass.
3338 */
3339int
3340bus_generic_probe(device_t dev)
3341{
3342	devclass_t dc = dev->devclass;
3343	driverlink_t dl;
3344
3345	TAILQ_FOREACH(dl, &dc->drivers, link) {
3346		/*
3347		 * If this driver's pass is too high, then ignore it.
3348		 * For most drivers in the default pass, this will
3349		 * never be true.  For early-pass drivers they will
3350		 * only call the identify routines of eligible drivers
3351		 * when this routine is called.  Drivers for later
3352		 * passes should have their identify routines called
3353		 * on early-pass buses during BUS_NEW_PASS().
3354		 */
3355		if (dl->pass > bus_current_pass)
3356			continue;
3357		DEVICE_IDENTIFY(dl->driver, dev);
3358	}
3359
3360	return (0);
3361}
3362
3363/**
3364 * @brief Helper function for implementing DEVICE_ATTACH()
3365 *
3366 * This function can be used to help implement the DEVICE_ATTACH() for
3367 * a bus. It calls device_probe_and_attach() for each of the device's
3368 * children.
3369 */
3370int
3371bus_generic_attach(device_t dev)
3372{
3373	device_t child;
3374
3375	TAILQ_FOREACH(child, &dev->children, link) {
3376		device_probe_and_attach(child);
3377	}
3378
3379	return (0);
3380}
3381
3382/**
3383 * @brief Helper function for delaying attaching children
3384 *
3385 * Many buses can't run transactions on the bus which children need to probe and
3386 * attach until after interrupts and/or timers are running.  This function
3387 * delays their attach until interrupts and timers are enabled.
3388 */
3389int
3390bus_delayed_attach_children(device_t dev)
3391{
3392	/* Probe and attach the bus children when interrupts are available */
3393	config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev);
3394
3395	return (0);
3396}
3397
3398/**
3399 * @brief Helper function for implementing DEVICE_DETACH()
3400 *
3401 * This function can be used to help implement the DEVICE_DETACH() for
3402 * a bus. It calls device_detach() for each of the device's
3403 * children.
3404 */
3405int
3406bus_generic_detach(device_t dev)
3407{
3408	device_t child;
3409	int error;
3410
3411	if (dev->state != DS_ATTACHED)
3412		return (EBUSY);
3413
3414	/*
3415	 * Detach children in the reverse order.
3416	 * See bus_generic_suspend for details.
3417	 */
3418	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3419		if ((error = device_detach(child)) != 0)
3420			return (error);
3421	}
3422
3423	return (0);
3424}
3425
3426/**
3427 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3428 *
3429 * This function can be used to help implement the DEVICE_SHUTDOWN()
3430 * for a bus. It calls device_shutdown() for each of the device's
3431 * children.
3432 */
3433int
3434bus_generic_shutdown(device_t dev)
3435{
3436	device_t child;
3437
3438	/*
3439	 * Shut down children in the reverse order.
3440	 * See bus_generic_suspend for details.
3441	 */
3442	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3443		device_shutdown(child);
3444	}
3445
3446	return (0);
3447}
3448
3449/**
3450 * @brief Default function for suspending a child device.
3451 *
3452 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3453 */
3454int
3455bus_generic_suspend_child(device_t dev, device_t child)
3456{
3457	int	error;
3458
3459	error = DEVICE_SUSPEND(child);
3460
3461	if (error == 0) {
3462		child->flags |= DF_SUSPENDED;
3463	} else {
3464		printf("DEVICE_SUSPEND(%s) failed: %d\n",
3465		    device_get_nameunit(child), error);
3466	}
3467
3468	return (error);
3469}
3470
3471/**
3472 * @brief Default function for resuming a child device.
3473 *
3474 * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3475 */
3476int
3477bus_generic_resume_child(device_t dev, device_t child)
3478{
3479	DEVICE_RESUME(child);
3480	child->flags &= ~DF_SUSPENDED;
3481
3482	return (0);
3483}
3484
3485/**
3486 * @brief Helper function for implementing DEVICE_SUSPEND()
3487 *
3488 * This function can be used to help implement the DEVICE_SUSPEND()
3489 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3490 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3491 * operation is aborted and any devices which were suspended are
3492 * resumed immediately by calling their DEVICE_RESUME() methods.
3493 */
3494int
3495bus_generic_suspend(device_t dev)
3496{
3497	int		error;
3498	device_t	child;
3499
3500	/*
3501	 * Suspend children in the reverse order.
3502	 * For most buses all children are equal, so the order does not matter.
3503	 * Other buses, such as acpi, carefully order their child devices to
3504	 * express implicit dependencies between them.  For such buses it is
3505	 * safer to bring down devices in the reverse order.
3506	 */
3507	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3508		error = BUS_SUSPEND_CHILD(dev, child);
3509		if (error != 0) {
3510			child = TAILQ_NEXT(child, link);
3511			if (child != NULL) {
3512				TAILQ_FOREACH_FROM(child, &dev->children, link)
3513					BUS_RESUME_CHILD(dev, child);
3514			}
3515			return (error);
3516		}
3517	}
3518	return (0);
3519}
3520
3521/**
3522 * @brief Helper function for implementing DEVICE_RESUME()
3523 *
3524 * This function can be used to help implement the DEVICE_RESUME() for
3525 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3526 */
3527int
3528bus_generic_resume(device_t dev)
3529{
3530	device_t	child;
3531
3532	TAILQ_FOREACH(child, &dev->children, link) {
3533		BUS_RESUME_CHILD(dev, child);
3534		/* if resume fails, there's nothing we can usefully do... */
3535	}
3536	return (0);
3537}
3538
3539/**
3540 * @brief Helper function for implementing BUS_RESET_POST
3541 *
3542 * Bus can use this function to implement common operations of
3543 * re-attaching or resuming the children after the bus itself was
3544 * reset, and after restoring bus-unique state of children.
3545 *
3546 * @param dev	The bus
3547 * #param flags	DEVF_RESET_*
3548 */
3549int
3550bus_helper_reset_post(device_t dev, int flags)
3551{
3552	device_t child;
3553	int error, error1;
3554
3555	error = 0;
3556	TAILQ_FOREACH(child, &dev->children,link) {
3557		BUS_RESET_POST(dev, child);
3558		error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3559		    device_probe_and_attach(child) :
3560		    BUS_RESUME_CHILD(dev, child);
3561		if (error == 0 && error1 != 0)
3562			error = error1;
3563	}
3564	return (error);
3565}
3566
3567static void
3568bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3569{
3570	child = TAILQ_NEXT(child, link);
3571	if (child == NULL)
3572		return;
3573	TAILQ_FOREACH_FROM(child, &dev->children,link) {
3574		BUS_RESET_POST(dev, child);
3575		if ((flags & DEVF_RESET_DETACH) != 0)
3576			device_probe_and_attach(child);
3577		else
3578			BUS_RESUME_CHILD(dev, child);
3579	}
3580}
3581
3582/**
3583 * @brief Helper function for implementing BUS_RESET_PREPARE
3584 *
3585 * Bus can use this function to implement common operations of
3586 * detaching or suspending the children before the bus itself is
3587 * reset, and then save bus-unique state of children that must
3588 * persists around reset.
3589 *
3590 * @param dev	The bus
3591 * #param flags	DEVF_RESET_*
3592 */
3593int
3594bus_helper_reset_prepare(device_t dev, int flags)
3595{
3596	device_t child;
3597	int error;
3598
3599	if (dev->state != DS_ATTACHED)
3600		return (EBUSY);
3601
3602	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3603		if ((flags & DEVF_RESET_DETACH) != 0) {
3604			error = device_get_state(child) == DS_ATTACHED ?
3605			    device_detach(child) : 0;
3606		} else {
3607			error = BUS_SUSPEND_CHILD(dev, child);
3608		}
3609		if (error == 0) {
3610			error = BUS_RESET_PREPARE(dev, child);
3611			if (error != 0) {
3612				if ((flags & DEVF_RESET_DETACH) != 0)
3613					device_probe_and_attach(child);
3614				else
3615					BUS_RESUME_CHILD(dev, child);
3616			}
3617		}
3618		if (error != 0) {
3619			bus_helper_reset_prepare_rollback(dev, child, flags);
3620			return (error);
3621		}
3622	}
3623	return (0);
3624}
3625
3626/**
3627 * @brief Helper function for implementing BUS_PRINT_CHILD().
3628 *
3629 * This function prints the first part of the ascii representation of
3630 * @p child, including its name, unit and description (if any - see
3631 * device_set_desc()).
3632 *
3633 * @returns the number of characters printed
3634 */
3635int
3636bus_print_child_header(device_t dev, device_t child)
3637{
3638	int	retval = 0;
3639
3640	if (device_get_desc(child)) {
3641		retval += device_printf(child, "<%s>", device_get_desc(child));
3642	} else {
3643		retval += printf("%s", device_get_nameunit(child));
3644	}
3645
3646	return (retval);
3647}
3648
3649/**
3650 * @brief Helper function for implementing BUS_PRINT_CHILD().
3651 *
3652 * This function prints the last part of the ascii representation of
3653 * @p child, which consists of the string @c " on " followed by the
3654 * name and unit of the @p dev.
3655 *
3656 * @returns the number of characters printed
3657 */
3658int
3659bus_print_child_footer(device_t dev, device_t child)
3660{
3661	return (printf(" on %s\n", device_get_nameunit(dev)));
3662}
3663
3664/**
3665 * @brief Helper function for implementing BUS_PRINT_CHILD().
3666 *
3667 * This function prints out the VM domain for the given device.
3668 *
3669 * @returns the number of characters printed
3670 */
3671int
3672bus_print_child_domain(device_t dev, device_t child)
3673{
3674	int domain;
3675
3676	/* No domain? Don't print anything */
3677	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3678		return (0);
3679
3680	return (printf(" numa-domain %d", domain));
3681}
3682
3683/**
3684 * @brief Helper function for implementing BUS_PRINT_CHILD().
3685 *
3686 * This function simply calls bus_print_child_header() followed by
3687 * bus_print_child_footer().
3688 *
3689 * @returns the number of characters printed
3690 */
3691int
3692bus_generic_print_child(device_t dev, device_t child)
3693{
3694	int	retval = 0;
3695
3696	retval += bus_print_child_header(dev, child);
3697	retval += bus_print_child_domain(dev, child);
3698	retval += bus_print_child_footer(dev, child);
3699
3700	return (retval);
3701}
3702
3703/**
3704 * @brief Stub function for implementing BUS_READ_IVAR().
3705 *
3706 * @returns ENOENT
3707 */
3708int
3709bus_generic_read_ivar(device_t dev, device_t child, int index,
3710    uintptr_t * result)
3711{
3712	return (ENOENT);
3713}
3714
3715/**
3716 * @brief Stub function for implementing BUS_WRITE_IVAR().
3717 *
3718 * @returns ENOENT
3719 */
3720int
3721bus_generic_write_ivar(device_t dev, device_t child, int index,
3722    uintptr_t value)
3723{
3724	return (ENOENT);
3725}
3726
3727/**
3728 * @brief Helper function for implementing BUS_GET_PROPERTY().
3729 *
3730 * This simply calls the BUS_GET_PROPERTY of the parent of dev,
3731 * until a non-default implementation is found.
3732 */
3733ssize_t
3734bus_generic_get_property(device_t dev, device_t child, const char *propname,
3735    void *propvalue, size_t size, device_property_type_t type)
3736{
3737	if (device_get_parent(dev) != NULL)
3738		return (BUS_GET_PROPERTY(device_get_parent(dev), child,
3739		    propname, propvalue, size, type));
3740
3741	return (-1);
3742}
3743
3744/**
3745 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3746 *
3747 * @returns NULL
3748 */
3749struct resource_list *
3750bus_generic_get_resource_list(device_t dev, device_t child)
3751{
3752	return (NULL);
3753}
3754
3755/**
3756 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3757 *
3758 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3759 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3760 * and then calls device_probe_and_attach() for each unattached child.
3761 */
3762void
3763bus_generic_driver_added(device_t dev, driver_t *driver)
3764{
3765	device_t child;
3766
3767	DEVICE_IDENTIFY(driver, dev);
3768	TAILQ_FOREACH(child, &dev->children, link) {
3769		if (child->state == DS_NOTPRESENT)
3770			device_probe_and_attach(child);
3771	}
3772}
3773
3774/**
3775 * @brief Helper function for implementing BUS_NEW_PASS().
3776 *
3777 * This implementing of BUS_NEW_PASS() first calls the identify
3778 * routines for any drivers that probe at the current pass.  Then it
3779 * walks the list of devices for this bus.  If a device is already
3780 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3781 * device is not already attached, it attempts to attach a driver to
3782 * it.
3783 */
3784void
3785bus_generic_new_pass(device_t dev)
3786{
3787	driverlink_t dl;
3788	devclass_t dc;
3789	device_t child;
3790
3791	dc = dev->devclass;
3792	TAILQ_FOREACH(dl, &dc->drivers, link) {
3793		if (dl->pass == bus_current_pass)
3794			DEVICE_IDENTIFY(dl->driver, dev);
3795	}
3796	TAILQ_FOREACH(child, &dev->children, link) {
3797		if (child->state >= DS_ATTACHED)
3798			BUS_NEW_PASS(child);
3799		else if (child->state == DS_NOTPRESENT)
3800			device_probe_and_attach(child);
3801	}
3802}
3803
3804/**
3805 * @brief Helper function for implementing BUS_SETUP_INTR().
3806 *
3807 * This simple implementation of BUS_SETUP_INTR() simply calls the
3808 * BUS_SETUP_INTR() method of the parent of @p dev.
3809 */
3810int
3811bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3812    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3813    void **cookiep)
3814{
3815	/* Propagate up the bus hierarchy until someone handles it. */
3816	if (dev->parent)
3817		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3818		    filter, intr, arg, cookiep));
3819	return (EINVAL);
3820}
3821
3822/**
3823 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3824 *
3825 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3826 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3827 */
3828int
3829bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3830    void *cookie)
3831{
3832	/* Propagate up the bus hierarchy until someone handles it. */
3833	if (dev->parent)
3834		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3835	return (EINVAL);
3836}
3837
3838/**
3839 * @brief Helper function for implementing BUS_SUSPEND_INTR().
3840 *
3841 * This simple implementation of BUS_SUSPEND_INTR() simply calls the
3842 * BUS_SUSPEND_INTR() method of the parent of @p dev.
3843 */
3844int
3845bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
3846{
3847	/* Propagate up the bus hierarchy until someone handles it. */
3848	if (dev->parent)
3849		return (BUS_SUSPEND_INTR(dev->parent, child, irq));
3850	return (EINVAL);
3851}
3852
3853/**
3854 * @brief Helper function for implementing BUS_RESUME_INTR().
3855 *
3856 * This simple implementation of BUS_RESUME_INTR() simply calls the
3857 * BUS_RESUME_INTR() method of the parent of @p dev.
3858 */
3859int
3860bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
3861{
3862	/* Propagate up the bus hierarchy until someone handles it. */
3863	if (dev->parent)
3864		return (BUS_RESUME_INTR(dev->parent, child, irq));
3865	return (EINVAL);
3866}
3867
3868/**
3869 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3870 *
3871 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3872 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3873 */
3874int
3875bus_generic_adjust_resource(device_t dev, device_t child, struct resource *r,
3876    rman_res_t start, rman_res_t end)
3877{
3878	/* Propagate up the bus hierarchy until someone handles it. */
3879	if (dev->parent)
3880		return (BUS_ADJUST_RESOURCE(dev->parent, child, r, start, end));
3881	return (EINVAL);
3882}
3883
3884/*
3885 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE().
3886 *
3887 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the
3888 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev.  If there is no
3889 * parent, no translation happens.
3890 */
3891int
3892bus_generic_translate_resource(device_t dev, int type, rman_res_t start,
3893    rman_res_t *newstart)
3894{
3895	if (dev->parent)
3896		return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start,
3897		    newstart));
3898	*newstart = start;
3899	return (0);
3900}
3901
3902/**
3903 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3904 *
3905 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3906 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3907 */
3908struct resource *
3909bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3910    rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3911{
3912	/* Propagate up the bus hierarchy until someone handles it. */
3913	if (dev->parent)
3914		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3915		    start, end, count, flags));
3916	return (NULL);
3917}
3918
3919/**
3920 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3921 *
3922 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3923 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3924 */
3925int
3926bus_generic_release_resource(device_t dev, device_t child, struct resource *r)
3927{
3928	/* Propagate up the bus hierarchy until someone handles it. */
3929	if (dev->parent)
3930		return (BUS_RELEASE_RESOURCE(dev->parent, child, r));
3931	return (EINVAL);
3932}
3933
3934/**
3935 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3936 *
3937 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3938 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3939 */
3940int
3941bus_generic_activate_resource(device_t dev, device_t child, struct resource *r)
3942{
3943	/* Propagate up the bus hierarchy until someone handles it. */
3944	if (dev->parent)
3945		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, r));
3946	return (EINVAL);
3947}
3948
3949/**
3950 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3951 *
3952 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3953 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3954 */
3955int
3956bus_generic_deactivate_resource(device_t dev, device_t child,
3957    struct resource *r)
3958{
3959	/* Propagate up the bus hierarchy until someone handles it. */
3960	if (dev->parent)
3961		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, r));
3962	return (EINVAL);
3963}
3964
3965/**
3966 * @brief Helper function for implementing BUS_MAP_RESOURCE().
3967 *
3968 * This simple implementation of BUS_MAP_RESOURCE() simply calls the
3969 * BUS_MAP_RESOURCE() method of the parent of @p dev.
3970 */
3971int
3972bus_generic_map_resource(device_t dev, device_t child, struct resource *r,
3973    struct resource_map_request *args, struct resource_map *map)
3974{
3975	/* Propagate up the bus hierarchy until someone handles it. */
3976	if (dev->parent)
3977		return (BUS_MAP_RESOURCE(dev->parent, child, r, args, map));
3978	return (EINVAL);
3979}
3980
3981/**
3982 * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
3983 *
3984 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
3985 * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
3986 */
3987int
3988bus_generic_unmap_resource(device_t dev, device_t child, struct resource *r,
3989    struct resource_map *map)
3990{
3991	/* Propagate up the bus hierarchy until someone handles it. */
3992	if (dev->parent)
3993		return (BUS_UNMAP_RESOURCE(dev->parent, child, r, map));
3994	return (EINVAL);
3995}
3996
3997/**
3998 * @brief Helper function for implementing BUS_BIND_INTR().
3999 *
4000 * This simple implementation of BUS_BIND_INTR() simply calls the
4001 * BUS_BIND_INTR() method of the parent of @p dev.
4002 */
4003int
4004bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4005    int cpu)
4006{
4007	/* Propagate up the bus hierarchy until someone handles it. */
4008	if (dev->parent)
4009		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4010	return (EINVAL);
4011}
4012
4013/**
4014 * @brief Helper function for implementing BUS_CONFIG_INTR().
4015 *
4016 * This simple implementation of BUS_CONFIG_INTR() simply calls the
4017 * BUS_CONFIG_INTR() method of the parent of @p dev.
4018 */
4019int
4020bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4021    enum intr_polarity pol)
4022{
4023	/* Propagate up the bus hierarchy until someone handles it. */
4024	if (dev->parent)
4025		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4026	return (EINVAL);
4027}
4028
4029/**
4030 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4031 *
4032 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4033 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4034 */
4035int
4036bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4037    void *cookie, const char *descr)
4038{
4039	/* Propagate up the bus hierarchy until someone handles it. */
4040	if (dev->parent)
4041		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4042		    descr));
4043	return (EINVAL);
4044}
4045
4046/**
4047 * @brief Helper function for implementing BUS_GET_CPUS().
4048 *
4049 * This simple implementation of BUS_GET_CPUS() simply calls the
4050 * BUS_GET_CPUS() method of the parent of @p dev.
4051 */
4052int
4053bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4054    size_t setsize, cpuset_t *cpuset)
4055{
4056	/* Propagate up the bus hierarchy until someone handles it. */
4057	if (dev->parent != NULL)
4058		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4059	return (EINVAL);
4060}
4061
4062/**
4063 * @brief Helper function for implementing BUS_GET_DMA_TAG().
4064 *
4065 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4066 * BUS_GET_DMA_TAG() method of the parent of @p dev.
4067 */
4068bus_dma_tag_t
4069bus_generic_get_dma_tag(device_t dev, device_t child)
4070{
4071	/* Propagate up the bus hierarchy until someone handles it. */
4072	if (dev->parent != NULL)
4073		return (BUS_GET_DMA_TAG(dev->parent, child));
4074	return (NULL);
4075}
4076
4077/**
4078 * @brief Helper function for implementing BUS_GET_BUS_TAG().
4079 *
4080 * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4081 * BUS_GET_BUS_TAG() method of the parent of @p dev.
4082 */
4083bus_space_tag_t
4084bus_generic_get_bus_tag(device_t dev, device_t child)
4085{
4086	/* Propagate up the bus hierarchy until someone handles it. */
4087	if (dev->parent != NULL)
4088		return (BUS_GET_BUS_TAG(dev->parent, child));
4089	return ((bus_space_tag_t)0);
4090}
4091
4092/**
4093 * @brief Helper function for implementing BUS_GET_RESOURCE().
4094 *
4095 * This implementation of BUS_GET_RESOURCE() uses the
4096 * resource_list_find() function to do most of the work. It calls
4097 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4098 * search.
4099 */
4100int
4101bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4102    rman_res_t *startp, rman_res_t *countp)
4103{
4104	struct resource_list *		rl = NULL;
4105	struct resource_list_entry *	rle = NULL;
4106
4107	rl = BUS_GET_RESOURCE_LIST(dev, child);
4108	if (!rl)
4109		return (EINVAL);
4110
4111	rle = resource_list_find(rl, type, rid);
4112	if (!rle)
4113		return (ENOENT);
4114
4115	if (startp)
4116		*startp = rle->start;
4117	if (countp)
4118		*countp = rle->count;
4119
4120	return (0);
4121}
4122
4123/**
4124 * @brief Helper function for implementing BUS_SET_RESOURCE().
4125 *
4126 * This implementation of BUS_SET_RESOURCE() uses the
4127 * resource_list_add() function to do most of the work. It calls
4128 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4129 * edit.
4130 */
4131int
4132bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4133    rman_res_t start, rman_res_t count)
4134{
4135	struct resource_list *		rl = NULL;
4136
4137	rl = BUS_GET_RESOURCE_LIST(dev, child);
4138	if (!rl)
4139		return (EINVAL);
4140
4141	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4142
4143	return (0);
4144}
4145
4146/**
4147 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4148 *
4149 * This implementation of BUS_DELETE_RESOURCE() uses the
4150 * resource_list_delete() function to do most of the work. It calls
4151 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4152 * edit.
4153 */
4154void
4155bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4156{
4157	struct resource_list *		rl = NULL;
4158
4159	rl = BUS_GET_RESOURCE_LIST(dev, child);
4160	if (!rl)
4161		return;
4162
4163	resource_list_delete(rl, type, rid);
4164
4165	return;
4166}
4167
4168/**
4169 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4170 *
4171 * This implementation of BUS_RELEASE_RESOURCE() uses the
4172 * resource_list_release() function to do most of the work. It calls
4173 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4174 */
4175int
4176bus_generic_rl_release_resource(device_t dev, device_t child,
4177    struct resource *r)
4178{
4179	struct resource_list *		rl = NULL;
4180
4181	if (device_get_parent(child) != dev)
4182		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, r));
4183
4184	rl = BUS_GET_RESOURCE_LIST(dev, child);
4185	if (!rl)
4186		return (EINVAL);
4187
4188	return (resource_list_release(rl, dev, child, r));
4189}
4190
4191/**
4192 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4193 *
4194 * This implementation of BUS_ALLOC_RESOURCE() uses the
4195 * resource_list_alloc() function to do most of the work. It calls
4196 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4197 */
4198struct resource *
4199bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4200    int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4201{
4202	struct resource_list *		rl = NULL;
4203
4204	if (device_get_parent(child) != dev)
4205		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4206		    type, rid, start, end, count, flags));
4207
4208	rl = BUS_GET_RESOURCE_LIST(dev, child);
4209	if (!rl)
4210		return (NULL);
4211
4212	return (resource_list_alloc(rl, dev, child, type, rid,
4213	    start, end, count, flags));
4214}
4215
4216/**
4217 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4218 *
4219 * This implementation of BUS_ALLOC_RESOURCE() allocates a
4220 * resource from a resource manager.  It uses BUS_GET_RMAN()
4221 * to obtain the resource manager.
4222 */
4223struct resource *
4224bus_generic_rman_alloc_resource(device_t dev, device_t child, int type,
4225    int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4226{
4227	struct resource *r;
4228	struct rman *rm;
4229
4230	rm = BUS_GET_RMAN(dev, type, flags);
4231	if (rm == NULL)
4232		return (NULL);
4233
4234	r = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
4235	    child);
4236	if (r == NULL)
4237		return (NULL);
4238	rman_set_rid(r, *rid);
4239	rman_set_type(r, type);
4240
4241	if (flags & RF_ACTIVE) {
4242		if (bus_activate_resource(child, type, *rid, r) != 0) {
4243			rman_release_resource(r);
4244			return (NULL);
4245		}
4246	}
4247
4248	return (r);
4249}
4250
4251/**
4252 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4253 *
4254 * This implementation of BUS_ADJUST_RESOURCE() adjusts resources only
4255 * if they were allocated from the resource manager returned by
4256 * BUS_GET_RMAN().
4257 */
4258int
4259bus_generic_rman_adjust_resource(device_t dev, device_t child,
4260    struct resource *r, rman_res_t start, rman_res_t end)
4261{
4262	struct rman *rm;
4263
4264	rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4265	if (rm == NULL)
4266		return (ENXIO);
4267	if (!rman_is_region_manager(r, rm))
4268		return (EINVAL);
4269	return (rman_adjust_resource(r, start, end));
4270}
4271
4272/**
4273 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4274 *
4275 * This implementation of BUS_RELEASE_RESOURCE() releases resources
4276 * allocated by bus_generic_rman_alloc_resource.
4277 */
4278int
4279bus_generic_rman_release_resource(device_t dev, device_t child,
4280    struct resource *r)
4281{
4282#ifdef INVARIANTS
4283	struct rman *rm;
4284#endif
4285	int error;
4286
4287#ifdef INVARIANTS
4288	rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4289	KASSERT(rman_is_region_manager(r, rm),
4290	    ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4291#endif
4292
4293	if (rman_get_flags(r) & RF_ACTIVE) {
4294		error = bus_deactivate_resource(child, r);
4295		if (error != 0)
4296			return (error);
4297	}
4298	return (rman_release_resource(r));
4299}
4300
4301/**
4302 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4303 *
4304 * This implementation of BUS_ACTIVATE_RESOURCE() activates resources
4305 * allocated by bus_generic_rman_alloc_resource.
4306 */
4307int
4308bus_generic_rman_activate_resource(device_t dev, device_t child,
4309    struct resource *r)
4310{
4311	struct resource_map map;
4312#ifdef INVARIANTS
4313	struct rman *rm;
4314#endif
4315	int error, type;
4316
4317	type = rman_get_type(r);
4318#ifdef INVARIANTS
4319	rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4320	KASSERT(rman_is_region_manager(r, rm),
4321	    ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4322#endif
4323
4324	error = rman_activate_resource(r);
4325	if (error != 0)
4326		return (error);
4327
4328	if ((rman_get_flags(r) & RF_UNMAPPED) == 0 &&
4329	    (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT)) {
4330		error = BUS_MAP_RESOURCE(dev, child, r, NULL, &map);
4331		if (error != 0) {
4332			rman_deactivate_resource(r);
4333			return (error);
4334		}
4335
4336		rman_set_mapping(r, &map);
4337	}
4338	return (0);
4339}
4340
4341/**
4342 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4343 *
4344 * This implementation of BUS_DEACTIVATE_RESOURCE() deactivates
4345 * resources allocated by bus_generic_rman_alloc_resource.
4346 */
4347int
4348bus_generic_rman_deactivate_resource(device_t dev, device_t child,
4349    struct resource *r)
4350{
4351	struct resource_map map;
4352#ifdef INVARIANTS
4353	struct rman *rm;
4354#endif
4355	int error, type;
4356
4357	type = rman_get_type(r);
4358#ifdef INVARIANTS
4359	rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4360	KASSERT(rman_is_region_manager(r, rm),
4361	    ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4362#endif
4363
4364	error = rman_deactivate_resource(r);
4365	if (error != 0)
4366		return (error);
4367
4368	if ((rman_get_flags(r) & RF_UNMAPPED) == 0 &&
4369	    (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT)) {
4370		rman_get_mapping(r, &map);
4371		BUS_UNMAP_RESOURCE(dev, child, r, &map);
4372	}
4373	return (0);
4374}
4375
4376/**
4377 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4378 *
4379 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4380 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4381 */
4382int
4383bus_generic_child_present(device_t dev, device_t child)
4384{
4385	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4386}
4387
4388/**
4389 * @brief Helper function for implementing BUS_GET_DOMAIN().
4390 *
4391 * This simple implementation of BUS_GET_DOMAIN() calls the
4392 * BUS_GET_DOMAIN() method of the parent of @p dev.  If @p dev
4393 * does not have a parent, the function fails with ENOENT.
4394 */
4395int
4396bus_generic_get_domain(device_t dev, device_t child, int *domain)
4397{
4398	if (dev->parent)
4399		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4400
4401	return (ENOENT);
4402}
4403
4404/**
4405 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH()
4406 *
4407 * This function knows how to (a) pass the request up the tree if there's
4408 * a parent and (b) Knows how to supply a FreeBSD locator.
4409 *
4410 * @param bus		bus in the walk up the tree
4411 * @param child		leaf node to print information about
4412 * @param locator	BUS_LOCATOR_xxx string for locator
4413 * @param sb		Buffer to print information into
4414 */
4415int
4416bus_generic_get_device_path(device_t bus, device_t child, const char *locator,
4417    struct sbuf *sb)
4418{
4419	int rv = 0;
4420	device_t parent;
4421
4422	/*
4423	 * We don't recurse on ACPI since either we know the handle for the
4424	 * device or we don't. And if we're in the generic routine, we don't
4425	 * have a ACPI override. All other locators build up a path by having
4426	 * their parents create a path and then adding the path element for this
4427	 * node. That's why we recurse with parent, bus rather than the typical
4428	 * parent, child: each spot in the tree is independent of what our child
4429	 * will do with this path.
4430	 */
4431	parent = device_get_parent(bus);
4432	if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) {
4433		rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb);
4434	}
4435	if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) {
4436		if (rv == 0) {
4437			sbuf_printf(sb, "/%s", device_get_nameunit(child));
4438		}
4439		return (rv);
4440	}
4441	/*
4442	 * Don't know what to do. So assume we do nothing. Not sure that's
4443	 * the right thing, but keeps us from having a big list here.
4444	 */
4445	return (0);
4446}
4447
4448
4449/**
4450 * @brief Helper function for implementing BUS_RESCAN().
4451 *
4452 * This null implementation of BUS_RESCAN() always fails to indicate
4453 * the bus does not support rescanning.
4454 */
4455int
4456bus_null_rescan(device_t dev)
4457{
4458	return (ENODEV);
4459}
4460
4461/*
4462 * Some convenience functions to make it easier for drivers to use the
4463 * resource-management functions.  All these really do is hide the
4464 * indirection through the parent's method table, making for slightly
4465 * less-wordy code.  In the future, it might make sense for this code
4466 * to maintain some sort of a list of resources allocated by each device.
4467 */
4468
4469int
4470bus_alloc_resources(device_t dev, struct resource_spec *rs,
4471    struct resource **res)
4472{
4473	int i;
4474
4475	for (i = 0; rs[i].type != -1; i++)
4476		res[i] = NULL;
4477	for (i = 0; rs[i].type != -1; i++) {
4478		res[i] = bus_alloc_resource_any(dev,
4479		    rs[i].type, &rs[i].rid, rs[i].flags);
4480		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4481			bus_release_resources(dev, rs, res);
4482			return (ENXIO);
4483		}
4484	}
4485	return (0);
4486}
4487
4488void
4489bus_release_resources(device_t dev, const struct resource_spec *rs,
4490    struct resource **res)
4491{
4492	int i;
4493
4494	for (i = 0; rs[i].type != -1; i++)
4495		if (res[i] != NULL) {
4496			bus_release_resource(
4497			    dev, rs[i].type, rs[i].rid, res[i]);
4498			res[i] = NULL;
4499		}
4500}
4501
4502/**
4503 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4504 *
4505 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4506 * parent of @p dev.
4507 */
4508struct resource *
4509bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4510    rman_res_t end, rman_res_t count, u_int flags)
4511{
4512	struct resource *res;
4513
4514	if (dev->parent == NULL)
4515		return (NULL);
4516	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4517	    count, flags);
4518	return (res);
4519}
4520
4521/**
4522 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4523 *
4524 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4525 * parent of @p dev.
4526 */
4527int
4528bus_adjust_resource(device_t dev, struct resource *r, rman_res_t start,
4529    rman_res_t end)
4530{
4531	if (dev->parent == NULL)
4532		return (EINVAL);
4533	return (BUS_ADJUST_RESOURCE(dev->parent, dev, r, start, end));
4534}
4535
4536int
4537bus_adjust_resource_old(device_t dev, int type __unused, struct resource *r,
4538    rman_res_t start, rman_res_t end)
4539{
4540	return (bus_adjust_resource(dev, r, start, end));
4541}
4542
4543/**
4544 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE().
4545 *
4546 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the
4547 * parent of @p dev.
4548 */
4549int
4550bus_translate_resource(device_t dev, int type, rman_res_t start,
4551    rman_res_t *newstart)
4552{
4553	if (dev->parent == NULL)
4554		return (EINVAL);
4555	return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart));
4556}
4557
4558/**
4559 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4560 *
4561 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4562 * parent of @p dev.
4563 */
4564int
4565bus_activate_resource(device_t dev, struct resource *r)
4566{
4567	if (dev->parent == NULL)
4568		return (EINVAL);
4569	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, r));
4570}
4571
4572int
4573bus_activate_resource_old(device_t dev, int type, int rid, struct resource *r)
4574{
4575	return (bus_activate_resource(dev, r));
4576}
4577
4578/**
4579 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4580 *
4581 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4582 * parent of @p dev.
4583 */
4584int
4585bus_deactivate_resource(device_t dev, struct resource *r)
4586{
4587	if (dev->parent == NULL)
4588		return (EINVAL);
4589	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, r));
4590}
4591
4592int
4593bus_deactivate_resource_old(device_t dev, int type, int rid, struct resource *r)
4594{
4595	return (bus_deactivate_resource(dev, r));
4596}
4597
4598/**
4599 * @brief Wrapper function for BUS_MAP_RESOURCE().
4600 *
4601 * This function simply calls the BUS_MAP_RESOURCE() method of the
4602 * parent of @p dev.
4603 */
4604int
4605bus_map_resource(device_t dev, struct resource *r,
4606    struct resource_map_request *args, struct resource_map *map)
4607{
4608	if (dev->parent == NULL)
4609		return (EINVAL);
4610	return (BUS_MAP_RESOURCE(dev->parent, dev, r, args, map));
4611}
4612
4613int
4614bus_map_resource_old(device_t dev, int type, struct resource *r,
4615    struct resource_map_request *args, struct resource_map *map)
4616{
4617	return (bus_map_resource(dev, r, args, map));
4618}
4619
4620/**
4621 * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4622 *
4623 * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4624 * parent of @p dev.
4625 */
4626int
4627bus_unmap_resource(device_t dev, struct resource *r, struct resource_map *map)
4628{
4629	if (dev->parent == NULL)
4630		return (EINVAL);
4631	return (BUS_UNMAP_RESOURCE(dev->parent, dev, r, map));
4632}
4633
4634int
4635bus_unmap_resource_old(device_t dev, int type, struct resource *r,
4636    struct resource_map *map)
4637{
4638	return (bus_unmap_resource(dev, r, map));
4639}
4640
4641/**
4642 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4643 *
4644 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4645 * parent of @p dev.
4646 */
4647int
4648bus_release_resource(device_t dev, struct resource *r)
4649{
4650	int rv;
4651
4652	if (dev->parent == NULL)
4653		return (EINVAL);
4654	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, r);
4655	return (rv);
4656}
4657
4658int
4659bus_release_resource_old(device_t dev, int type, int rid, struct resource *r)
4660{
4661	return (bus_release_resource(dev, r));
4662}
4663
4664/**
4665 * @brief Wrapper function for BUS_SETUP_INTR().
4666 *
4667 * This function simply calls the BUS_SETUP_INTR() method of the
4668 * parent of @p dev.
4669 */
4670int
4671bus_setup_intr(device_t dev, struct resource *r, int flags,
4672    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4673{
4674	int error;
4675
4676	if (dev->parent == NULL)
4677		return (EINVAL);
4678	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4679	    arg, cookiep);
4680	if (error != 0)
4681		return (error);
4682	if (handler != NULL && !(flags & INTR_MPSAFE))
4683		device_printf(dev, "[GIANT-LOCKED]\n");
4684	return (0);
4685}
4686
4687/**
4688 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4689 *
4690 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4691 * parent of @p dev.
4692 */
4693int
4694bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4695{
4696	if (dev->parent == NULL)
4697		return (EINVAL);
4698	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4699}
4700
4701/**
4702 * @brief Wrapper function for BUS_SUSPEND_INTR().
4703 *
4704 * This function simply calls the BUS_SUSPEND_INTR() method of the
4705 * parent of @p dev.
4706 */
4707int
4708bus_suspend_intr(device_t dev, struct resource *r)
4709{
4710	if (dev->parent == NULL)
4711		return (EINVAL);
4712	return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4713}
4714
4715/**
4716 * @brief Wrapper function for BUS_RESUME_INTR().
4717 *
4718 * This function simply calls the BUS_RESUME_INTR() method of the
4719 * parent of @p dev.
4720 */
4721int
4722bus_resume_intr(device_t dev, struct resource *r)
4723{
4724	if (dev->parent == NULL)
4725		return (EINVAL);
4726	return (BUS_RESUME_INTR(dev->parent, dev, r));
4727}
4728
4729/**
4730 * @brief Wrapper function for BUS_BIND_INTR().
4731 *
4732 * This function simply calls the BUS_BIND_INTR() method of the
4733 * parent of @p dev.
4734 */
4735int
4736bus_bind_intr(device_t dev, struct resource *r, int cpu)
4737{
4738	if (dev->parent == NULL)
4739		return (EINVAL);
4740	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4741}
4742
4743/**
4744 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4745 *
4746 * This function first formats the requested description into a
4747 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4748 * the parent of @p dev.
4749 */
4750int
4751bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4752    const char *fmt, ...)
4753{
4754	va_list ap;
4755	char descr[MAXCOMLEN + 1];
4756
4757	if (dev->parent == NULL)
4758		return (EINVAL);
4759	va_start(ap, fmt);
4760	vsnprintf(descr, sizeof(descr), fmt, ap);
4761	va_end(ap);
4762	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4763}
4764
4765/**
4766 * @brief Wrapper function for BUS_SET_RESOURCE().
4767 *
4768 * This function simply calls the BUS_SET_RESOURCE() method of the
4769 * parent of @p dev.
4770 */
4771int
4772bus_set_resource(device_t dev, int type, int rid,
4773    rman_res_t start, rman_res_t count)
4774{
4775	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4776	    start, count));
4777}
4778
4779/**
4780 * @brief Wrapper function for BUS_GET_RESOURCE().
4781 *
4782 * This function simply calls the BUS_GET_RESOURCE() method of the
4783 * parent of @p dev.
4784 */
4785int
4786bus_get_resource(device_t dev, int type, int rid,
4787    rman_res_t *startp, rman_res_t *countp)
4788{
4789	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4790	    startp, countp));
4791}
4792
4793/**
4794 * @brief Wrapper function for BUS_GET_RESOURCE().
4795 *
4796 * This function simply calls the BUS_GET_RESOURCE() method of the
4797 * parent of @p dev and returns the start value.
4798 */
4799rman_res_t
4800bus_get_resource_start(device_t dev, int type, int rid)
4801{
4802	rman_res_t start;
4803	rman_res_t count;
4804	int error;
4805
4806	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4807	    &start, &count);
4808	if (error)
4809		return (0);
4810	return (start);
4811}
4812
4813/**
4814 * @brief Wrapper function for BUS_GET_RESOURCE().
4815 *
4816 * This function simply calls the BUS_GET_RESOURCE() method of the
4817 * parent of @p dev and returns the count value.
4818 */
4819rman_res_t
4820bus_get_resource_count(device_t dev, int type, int rid)
4821{
4822	rman_res_t start;
4823	rman_res_t count;
4824	int error;
4825
4826	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4827	    &start, &count);
4828	if (error)
4829		return (0);
4830	return (count);
4831}
4832
4833/**
4834 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4835 *
4836 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4837 * parent of @p dev.
4838 */
4839void
4840bus_delete_resource(device_t dev, int type, int rid)
4841{
4842	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4843}
4844
4845/**
4846 * @brief Wrapper function for BUS_CHILD_PRESENT().
4847 *
4848 * This function simply calls the BUS_CHILD_PRESENT() method of the
4849 * parent of @p dev.
4850 */
4851int
4852bus_child_present(device_t child)
4853{
4854	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4855}
4856
4857/**
4858 * @brief Wrapper function for BUS_CHILD_PNPINFO().
4859 *
4860 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p
4861 * dev.
4862 */
4863int
4864bus_child_pnpinfo(device_t child, struct sbuf *sb)
4865{
4866	device_t parent;
4867
4868	parent = device_get_parent(child);
4869	if (parent == NULL)
4870		return (0);
4871	return (BUS_CHILD_PNPINFO(parent, child, sb));
4872}
4873
4874/**
4875 * @brief Generic implementation that does nothing for bus_child_pnpinfo
4876 *
4877 * This function has the right signature and returns 0 since the sbuf is passed
4878 * to us to append to.
4879 */
4880int
4881bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb)
4882{
4883	return (0);
4884}
4885
4886/**
4887 * @brief Wrapper function for BUS_CHILD_LOCATION().
4888 *
4889 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of
4890 * @p dev.
4891 */
4892int
4893bus_child_location(device_t child, struct sbuf *sb)
4894{
4895	device_t parent;
4896
4897	parent = device_get_parent(child);
4898	if (parent == NULL)
4899		return (0);
4900	return (BUS_CHILD_LOCATION(parent, child, sb));
4901}
4902
4903/**
4904 * @brief Generic implementation that does nothing for bus_child_location
4905 *
4906 * This function has the right signature and returns 0 since the sbuf is passed
4907 * to us to append to.
4908 */
4909int
4910bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb)
4911{
4912	return (0);
4913}
4914
4915/**
4916 * @brief Wrapper function for BUS_GET_CPUS().
4917 *
4918 * This function simply calls the BUS_GET_CPUS() method of the
4919 * parent of @p dev.
4920 */
4921int
4922bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
4923{
4924	device_t parent;
4925
4926	parent = device_get_parent(dev);
4927	if (parent == NULL)
4928		return (EINVAL);
4929	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
4930}
4931
4932/**
4933 * @brief Wrapper function for BUS_GET_DMA_TAG().
4934 *
4935 * This function simply calls the BUS_GET_DMA_TAG() method of the
4936 * parent of @p dev.
4937 */
4938bus_dma_tag_t
4939bus_get_dma_tag(device_t dev)
4940{
4941	device_t parent;
4942
4943	parent = device_get_parent(dev);
4944	if (parent == NULL)
4945		return (NULL);
4946	return (BUS_GET_DMA_TAG(parent, dev));
4947}
4948
4949/**
4950 * @brief Wrapper function for BUS_GET_BUS_TAG().
4951 *
4952 * This function simply calls the BUS_GET_BUS_TAG() method of the
4953 * parent of @p dev.
4954 */
4955bus_space_tag_t
4956bus_get_bus_tag(device_t dev)
4957{
4958	device_t parent;
4959
4960	parent = device_get_parent(dev);
4961	if (parent == NULL)
4962		return ((bus_space_tag_t)0);
4963	return (BUS_GET_BUS_TAG(parent, dev));
4964}
4965
4966/**
4967 * @brief Wrapper function for BUS_GET_DOMAIN().
4968 *
4969 * This function simply calls the BUS_GET_DOMAIN() method of the
4970 * parent of @p dev.
4971 */
4972int
4973bus_get_domain(device_t dev, int *domain)
4974{
4975	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
4976}
4977
4978/* Resume all devices and then notify userland that we're up again. */
4979static int
4980root_resume(device_t dev)
4981{
4982	int error;
4983
4984	error = bus_generic_resume(dev);
4985	if (error == 0) {
4986		devctl_notify("kernel", "power", "resume", NULL);
4987	}
4988	return (error);
4989}
4990
4991static int
4992root_print_child(device_t dev, device_t child)
4993{
4994	int	retval = 0;
4995
4996	retval += bus_print_child_header(dev, child);
4997	retval += printf("\n");
4998
4999	return (retval);
5000}
5001
5002static int
5003root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
5004    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
5005{
5006	/*
5007	 * If an interrupt mapping gets to here something bad has happened.
5008	 */
5009	panic("root_setup_intr");
5010}
5011
5012/*
5013 * If we get here, assume that the device is permanent and really is
5014 * present in the system.  Removable bus drivers are expected to intercept
5015 * this call long before it gets here.  We return -1 so that drivers that
5016 * really care can check vs -1 or some ERRNO returned higher in the food
5017 * chain.
5018 */
5019static int
5020root_child_present(device_t dev, device_t child)
5021{
5022	return (-1);
5023}
5024
5025static int
5026root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
5027    cpuset_t *cpuset)
5028{
5029	switch (op) {
5030	case INTR_CPUS:
5031		/* Default to returning the set of all CPUs. */
5032		if (setsize != sizeof(cpuset_t))
5033			return (EINVAL);
5034		*cpuset = all_cpus;
5035		return (0);
5036	default:
5037		return (EINVAL);
5038	}
5039}
5040
5041static kobj_method_t root_methods[] = {
5042	/* Device interface */
5043	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
5044	KOBJMETHOD(device_suspend,	bus_generic_suspend),
5045	KOBJMETHOD(device_resume,	root_resume),
5046
5047	/* Bus interface */
5048	KOBJMETHOD(bus_print_child,	root_print_child),
5049	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
5050	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
5051	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
5052	KOBJMETHOD(bus_child_present,	root_child_present),
5053	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
5054
5055	KOBJMETHOD_END
5056};
5057
5058static driver_t root_driver = {
5059	"root",
5060	root_methods,
5061	1,			/* no softc */
5062};
5063
5064device_t	root_bus;
5065devclass_t	root_devclass;
5066
5067static int
5068root_bus_module_handler(module_t mod, int what, void* arg)
5069{
5070	switch (what) {
5071	case MOD_LOAD:
5072		TAILQ_INIT(&bus_data_devices);
5073		kobj_class_compile((kobj_class_t) &root_driver);
5074		root_bus = make_device(NULL, "root", 0);
5075		root_bus->desc = "System root bus";
5076		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
5077		root_bus->driver = &root_driver;
5078		root_bus->state = DS_ATTACHED;
5079		root_devclass = devclass_find_internal("root", NULL, FALSE);
5080		devctl2_init();
5081		return (0);
5082
5083	case MOD_SHUTDOWN:
5084		device_shutdown(root_bus);
5085		return (0);
5086	default:
5087		return (EOPNOTSUPP);
5088	}
5089
5090	return (0);
5091}
5092
5093static moduledata_t root_bus_mod = {
5094	"rootbus",
5095	root_bus_module_handler,
5096	NULL
5097};
5098DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5099
5100/**
5101 * @brief Automatically configure devices
5102 *
5103 * This function begins the autoconfiguration process by calling
5104 * device_probe_and_attach() for each child of the @c root0 device.
5105 */
5106void
5107root_bus_configure(void)
5108{
5109	PDEBUG(("."));
5110
5111	/* Eventually this will be split up, but this is sufficient for now. */
5112	bus_set_pass(BUS_PASS_DEFAULT);
5113}
5114
5115/**
5116 * @brief Module handler for registering device drivers
5117 *
5118 * This module handler is used to automatically register device
5119 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5120 * devclass_add_driver() for the driver described by the
5121 * driver_module_data structure pointed to by @p arg
5122 */
5123int
5124driver_module_handler(module_t mod, int what, void *arg)
5125{
5126	struct driver_module_data *dmd;
5127	devclass_t bus_devclass;
5128	kobj_class_t driver;
5129	int error, pass;
5130
5131	dmd = (struct driver_module_data *)arg;
5132	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5133	error = 0;
5134
5135	switch (what) {
5136	case MOD_LOAD:
5137		if (dmd->dmd_chainevh)
5138			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5139
5140		pass = dmd->dmd_pass;
5141		driver = dmd->dmd_driver;
5142		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5143		    DRIVERNAME(driver), dmd->dmd_busname, pass));
5144		error = devclass_add_driver(bus_devclass, driver, pass,
5145		    dmd->dmd_devclass);
5146		break;
5147
5148	case MOD_UNLOAD:
5149		PDEBUG(("Unloading module: driver %s from bus %s",
5150		    DRIVERNAME(dmd->dmd_driver),
5151		    dmd->dmd_busname));
5152		error = devclass_delete_driver(bus_devclass,
5153		    dmd->dmd_driver);
5154
5155		if (!error && dmd->dmd_chainevh)
5156			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5157		break;
5158	case MOD_QUIESCE:
5159		PDEBUG(("Quiesce module: driver %s from bus %s",
5160		    DRIVERNAME(dmd->dmd_driver),
5161		    dmd->dmd_busname));
5162		error = devclass_quiesce_driver(bus_devclass,
5163		    dmd->dmd_driver);
5164
5165		if (!error && dmd->dmd_chainevh)
5166			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5167		break;
5168	default:
5169		error = EOPNOTSUPP;
5170		break;
5171	}
5172
5173	return (error);
5174}
5175
5176/**
5177 * @brief Enumerate all hinted devices for this bus.
5178 *
5179 * Walks through the hints for this bus and calls the bus_hinted_child
5180 * routine for each one it fines.  It searches first for the specific
5181 * bus that's being probed for hinted children (eg isa0), and then for
5182 * generic children (eg isa).
5183 *
5184 * @param	dev	bus device to enumerate
5185 */
5186void
5187bus_enumerate_hinted_children(device_t bus)
5188{
5189	int i;
5190	const char *dname, *busname;
5191	int dunit;
5192
5193	/*
5194	 * enumerate all devices on the specific bus
5195	 */
5196	busname = device_get_nameunit(bus);
5197	i = 0;
5198	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5199		BUS_HINTED_CHILD(bus, dname, dunit);
5200
5201	/*
5202	 * and all the generic ones.
5203	 */
5204	busname = device_get_name(bus);
5205	i = 0;
5206	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5207		BUS_HINTED_CHILD(bus, dname, dunit);
5208}
5209
5210#ifdef BUS_DEBUG
5211
5212/* the _short versions avoid iteration by not calling anything that prints
5213 * more than oneliners. I love oneliners.
5214 */
5215
5216static void
5217print_device_short(device_t dev, int indent)
5218{
5219	if (!dev)
5220		return;
5221
5222	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5223	    dev->unit, dev->desc,
5224	    (dev->parent? "":"no "),
5225	    (TAILQ_EMPTY(&dev->children)? "no ":""),
5226	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5227	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5228	    (dev->flags&DF_WILDCARD? "wildcard,":""),
5229	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5230	    (dev->flags&DF_SUSPENDED? "suspended,":""),
5231	    (dev->ivars? "":"no "),
5232	    (dev->softc? "":"no "),
5233	    dev->busy));
5234}
5235
5236static void
5237print_device(device_t dev, int indent)
5238{
5239	if (!dev)
5240		return;
5241
5242	print_device_short(dev, indent);
5243
5244	indentprintf(("Parent:\n"));
5245	print_device_short(dev->parent, indent+1);
5246	indentprintf(("Driver:\n"));
5247	print_driver_short(dev->driver, indent+1);
5248	indentprintf(("Devclass:\n"));
5249	print_devclass_short(dev->devclass, indent+1);
5250}
5251
5252void
5253print_device_tree_short(device_t dev, int indent)
5254/* print the device and all its children (indented) */
5255{
5256	device_t child;
5257
5258	if (!dev)
5259		return;
5260
5261	print_device_short(dev, indent);
5262
5263	TAILQ_FOREACH(child, &dev->children, link) {
5264		print_device_tree_short(child, indent+1);
5265	}
5266}
5267
5268void
5269print_device_tree(device_t dev, int indent)
5270/* print the device and all its children (indented) */
5271{
5272	device_t child;
5273
5274	if (!dev)
5275		return;
5276
5277	print_device(dev, indent);
5278
5279	TAILQ_FOREACH(child, &dev->children, link) {
5280		print_device_tree(child, indent+1);
5281	}
5282}
5283
5284static void
5285print_driver_short(driver_t *driver, int indent)
5286{
5287	if (!driver)
5288		return;
5289
5290	indentprintf(("driver %s: softc size = %zd\n",
5291	    driver->name, driver->size));
5292}
5293
5294static void
5295print_driver(driver_t *driver, int indent)
5296{
5297	if (!driver)
5298		return;
5299
5300	print_driver_short(driver, indent);
5301}
5302
5303static void
5304print_driver_list(driver_list_t drivers, int indent)
5305{
5306	driverlink_t driver;
5307
5308	TAILQ_FOREACH(driver, &drivers, link) {
5309		print_driver(driver->driver, indent);
5310	}
5311}
5312
5313static void
5314print_devclass_short(devclass_t dc, int indent)
5315{
5316	if ( !dc )
5317		return;
5318
5319	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5320}
5321
5322static void
5323print_devclass(devclass_t dc, int indent)
5324{
5325	int i;
5326
5327	if ( !dc )
5328		return;
5329
5330	print_devclass_short(dc, indent);
5331	indentprintf(("Drivers:\n"));
5332	print_driver_list(dc->drivers, indent+1);
5333
5334	indentprintf(("Devices:\n"));
5335	for (i = 0; i < dc->maxunit; i++)
5336		if (dc->devices[i])
5337			print_device(dc->devices[i], indent+1);
5338}
5339
5340void
5341print_devclass_list_short(void)
5342{
5343	devclass_t dc;
5344
5345	printf("Short listing of devclasses, drivers & devices:\n");
5346	TAILQ_FOREACH(dc, &devclasses, link) {
5347		print_devclass_short(dc, 0);
5348	}
5349}
5350
5351void
5352print_devclass_list(void)
5353{
5354	devclass_t dc;
5355
5356	printf("Full listing of devclasses, drivers & devices:\n");
5357	TAILQ_FOREACH(dc, &devclasses, link) {
5358		print_devclass(dc, 0);
5359	}
5360}
5361
5362#endif
5363
5364/*
5365 * User-space access to the device tree.
5366 *
5367 * We implement a small set of nodes:
5368 *
5369 * hw.bus			Single integer read method to obtain the
5370 *				current generation count.
5371 * hw.bus.devices		Reads the entire device tree in flat space.
5372 * hw.bus.rman			Resource manager interface
5373 *
5374 * We might like to add the ability to scan devclasses and/or drivers to
5375 * determine what else is currently loaded/available.
5376 */
5377
5378static int
5379sysctl_bus_info(SYSCTL_HANDLER_ARGS)
5380{
5381	struct u_businfo	ubus;
5382
5383	ubus.ub_version = BUS_USER_VERSION;
5384	ubus.ub_generation = bus_data_generation;
5385
5386	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5387}
5388SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD |
5389    CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo",
5390    "bus-related data");
5391
5392static int
5393sysctl_devices(SYSCTL_HANDLER_ARGS)
5394{
5395	struct sbuf		sb;
5396	int			*name = (int *)arg1;
5397	u_int			namelen = arg2;
5398	int			index;
5399	device_t		dev;
5400	struct u_device		*udev;
5401	int			error;
5402
5403	if (namelen != 2)
5404		return (EINVAL);
5405
5406	if (bus_data_generation_check(name[0]))
5407		return (EINVAL);
5408
5409	index = name[1];
5410
5411	/*
5412	 * Scan the list of devices, looking for the requested index.
5413	 */
5414	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5415		if (index-- == 0)
5416			break;
5417	}
5418	if (dev == NULL)
5419		return (ENOENT);
5420
5421	/*
5422	 * Populate the return item, careful not to overflow the buffer.
5423	 */
5424	udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5425	if (udev == NULL)
5426		return (ENOMEM);
5427	udev->dv_handle = (uintptr_t)dev;
5428	udev->dv_parent = (uintptr_t)dev->parent;
5429	udev->dv_devflags = dev->devflags;
5430	udev->dv_flags = dev->flags;
5431	udev->dv_state = dev->state;
5432	sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN);
5433	if (dev->nameunit != NULL)
5434		sbuf_cat(&sb, dev->nameunit);
5435	sbuf_putc(&sb, '\0');
5436	if (dev->desc != NULL)
5437		sbuf_cat(&sb, dev->desc);
5438	sbuf_putc(&sb, '\0');
5439	if (dev->driver != NULL)
5440		sbuf_cat(&sb, dev->driver->name);
5441	sbuf_putc(&sb, '\0');
5442	bus_child_pnpinfo(dev, &sb);
5443	sbuf_putc(&sb, '\0');
5444	bus_child_location(dev, &sb);
5445	sbuf_putc(&sb, '\0');
5446	error = sbuf_finish(&sb);
5447	if (error == 0)
5448		error = SYSCTL_OUT(req, udev, sizeof(*udev));
5449	sbuf_delete(&sb);
5450	free(udev, M_BUS);
5451	return (error);
5452}
5453
5454SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
5455    CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
5456    "system device tree");
5457
5458int
5459bus_data_generation_check(int generation)
5460{
5461	if (generation != bus_data_generation)
5462		return (1);
5463
5464	/* XXX generate optimised lists here? */
5465	return (0);
5466}
5467
5468void
5469bus_data_generation_update(void)
5470{
5471	atomic_add_int(&bus_data_generation, 1);
5472}
5473
5474int
5475bus_free_resource(device_t dev, int type, struct resource *r)
5476{
5477	if (r == NULL)
5478		return (0);
5479	return (bus_release_resource(dev, type, rman_get_rid(r), r));
5480}
5481
5482device_t
5483device_lookup_by_name(const char *name)
5484{
5485	device_t dev;
5486
5487	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5488		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5489			return (dev);
5490	}
5491	return (NULL);
5492}
5493
5494/*
5495 * /dev/devctl2 implementation.  The existing /dev/devctl device has
5496 * implicit semantics on open, so it could not be reused for this.
5497 * Another option would be to call this /dev/bus?
5498 */
5499static int
5500find_device(struct devreq *req, device_t *devp)
5501{
5502	device_t dev;
5503
5504	/*
5505	 * First, ensure that the name is nul terminated.
5506	 */
5507	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5508		return (EINVAL);
5509
5510	/*
5511	 * Second, try to find an attached device whose name matches
5512	 * 'name'.
5513	 */
5514	dev = device_lookup_by_name(req->dr_name);
5515	if (dev != NULL) {
5516		*devp = dev;
5517		return (0);
5518	}
5519
5520	/* Finally, give device enumerators a chance. */
5521	dev = NULL;
5522	EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5523	if (dev == NULL)
5524		return (ENOENT);
5525	*devp = dev;
5526	return (0);
5527}
5528
5529static bool
5530driver_exists(device_t bus, const char *driver)
5531{
5532	devclass_t dc;
5533
5534	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5535		if (devclass_find_driver_internal(dc, driver) != NULL)
5536			return (true);
5537	}
5538	return (false);
5539}
5540
5541static void
5542device_gen_nomatch(device_t dev)
5543{
5544	device_t child;
5545
5546	if (dev->flags & DF_NEEDNOMATCH &&
5547	    dev->state == DS_NOTPRESENT) {
5548		device_handle_nomatch(dev);
5549	}
5550	dev->flags &= ~DF_NEEDNOMATCH;
5551	TAILQ_FOREACH(child, &dev->children, link) {
5552		device_gen_nomatch(child);
5553	}
5554}
5555
5556static void
5557device_do_deferred_actions(void)
5558{
5559	devclass_t dc;
5560	driverlink_t dl;
5561
5562	/*
5563	 * Walk through the devclasses to find all the drivers we've tagged as
5564	 * deferred during the freeze and call the driver added routines. They
5565	 * have already been added to the lists in the background, so the driver
5566	 * added routines that trigger a probe will have all the right bidders
5567	 * for the probe auction.
5568	 */
5569	TAILQ_FOREACH(dc, &devclasses, link) {
5570		TAILQ_FOREACH(dl, &dc->drivers, link) {
5571			if (dl->flags & DL_DEFERRED_PROBE) {
5572				devclass_driver_added(dc, dl->driver);
5573				dl->flags &= ~DL_DEFERRED_PROBE;
5574			}
5575		}
5576	}
5577
5578	/*
5579	 * We also defer no-match events during a freeze. Walk the tree and
5580	 * generate all the pent-up events that are still relevant.
5581	 */
5582	device_gen_nomatch(root_bus);
5583	bus_data_generation_update();
5584}
5585
5586static int
5587device_get_path(device_t dev, const char *locator, struct sbuf *sb)
5588{
5589	device_t parent;
5590	int error;
5591
5592	KASSERT(sb != NULL, ("sb is NULL"));
5593	parent = device_get_parent(dev);
5594	if (parent == NULL) {
5595		error = sbuf_putc(sb, '/');
5596	} else {
5597		error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb);
5598		if (error == 0) {
5599			error = sbuf_error(sb);
5600			if (error == 0 && sbuf_len(sb) <= 1)
5601				error = EIO;
5602		}
5603	}
5604	sbuf_finish(sb);
5605	return (error);
5606}
5607
5608static int
5609devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5610    struct thread *td)
5611{
5612	struct devreq *req;
5613	device_t dev;
5614	int error, old;
5615
5616	/* Locate the device to control. */
5617	bus_topo_lock();
5618	req = (struct devreq *)data;
5619	switch (cmd) {
5620	case DEV_ATTACH:
5621	case DEV_DETACH:
5622	case DEV_ENABLE:
5623	case DEV_DISABLE:
5624	case DEV_SUSPEND:
5625	case DEV_RESUME:
5626	case DEV_SET_DRIVER:
5627	case DEV_CLEAR_DRIVER:
5628	case DEV_RESCAN:
5629	case DEV_DELETE:
5630	case DEV_RESET:
5631		error = priv_check(td, PRIV_DRIVER);
5632		if (error == 0)
5633			error = find_device(req, &dev);
5634		break;
5635	case DEV_FREEZE:
5636	case DEV_THAW:
5637		error = priv_check(td, PRIV_DRIVER);
5638		break;
5639	case DEV_GET_PATH:
5640		error = find_device(req, &dev);
5641		break;
5642	default:
5643		error = ENOTTY;
5644		break;
5645	}
5646	if (error) {
5647		bus_topo_unlock();
5648		return (error);
5649	}
5650
5651	/* Perform the requested operation. */
5652	switch (cmd) {
5653	case DEV_ATTACH:
5654		if (device_is_attached(dev))
5655			error = EBUSY;
5656		else if (!device_is_enabled(dev))
5657			error = ENXIO;
5658		else
5659			error = device_probe_and_attach(dev);
5660		break;
5661	case DEV_DETACH:
5662		if (!device_is_attached(dev)) {
5663			error = ENXIO;
5664			break;
5665		}
5666		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5667			error = device_quiesce(dev);
5668			if (error)
5669				break;
5670		}
5671		error = device_detach(dev);
5672		break;
5673	case DEV_ENABLE:
5674		if (device_is_enabled(dev)) {
5675			error = EBUSY;
5676			break;
5677		}
5678
5679		/*
5680		 * If the device has been probed but not attached (e.g.
5681		 * when it has been disabled by a loader hint), just
5682		 * attach the device rather than doing a full probe.
5683		 */
5684		device_enable(dev);
5685		if (device_is_alive(dev)) {
5686			/*
5687			 * If the device was disabled via a hint, clear
5688			 * the hint.
5689			 */
5690			if (resource_disabled(dev->driver->name, dev->unit))
5691				resource_unset_value(dev->driver->name,
5692				    dev->unit, "disabled");
5693			error = device_attach(dev);
5694		} else
5695			error = device_probe_and_attach(dev);
5696		break;
5697	case DEV_DISABLE:
5698		if (!device_is_enabled(dev)) {
5699			error = ENXIO;
5700			break;
5701		}
5702
5703		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5704			error = device_quiesce(dev);
5705			if (error)
5706				break;
5707		}
5708
5709		/*
5710		 * Force DF_FIXEDCLASS on around detach to preserve
5711		 * the existing name.
5712		 */
5713		old = dev->flags;
5714		dev->flags |= DF_FIXEDCLASS;
5715		error = device_detach(dev);
5716		if (!(old & DF_FIXEDCLASS))
5717			dev->flags &= ~DF_FIXEDCLASS;
5718		if (error == 0)
5719			device_disable(dev);
5720		break;
5721	case DEV_SUSPEND:
5722		if (device_is_suspended(dev)) {
5723			error = EBUSY;
5724			break;
5725		}
5726		if (device_get_parent(dev) == NULL) {
5727			error = EINVAL;
5728			break;
5729		}
5730		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5731		break;
5732	case DEV_RESUME:
5733		if (!device_is_suspended(dev)) {
5734			error = EINVAL;
5735			break;
5736		}
5737		if (device_get_parent(dev) == NULL) {
5738			error = EINVAL;
5739			break;
5740		}
5741		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5742		break;
5743	case DEV_SET_DRIVER: {
5744		devclass_t dc;
5745		char driver[128];
5746
5747		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5748		if (error)
5749			break;
5750		if (driver[0] == '\0') {
5751			error = EINVAL;
5752			break;
5753		}
5754		if (dev->devclass != NULL &&
5755		    strcmp(driver, dev->devclass->name) == 0)
5756			/* XXX: Could possibly force DF_FIXEDCLASS on? */
5757			break;
5758
5759		/*
5760		 * Scan drivers for this device's bus looking for at
5761		 * least one matching driver.
5762		 */
5763		if (dev->parent == NULL) {
5764			error = EINVAL;
5765			break;
5766		}
5767		if (!driver_exists(dev->parent, driver)) {
5768			error = ENOENT;
5769			break;
5770		}
5771		dc = devclass_create(driver);
5772		if (dc == NULL) {
5773			error = ENOMEM;
5774			break;
5775		}
5776
5777		/* Detach device if necessary. */
5778		if (device_is_attached(dev)) {
5779			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5780				error = device_detach(dev);
5781			else
5782				error = EBUSY;
5783			if (error)
5784				break;
5785		}
5786
5787		/* Clear any previously-fixed device class and unit. */
5788		if (dev->flags & DF_FIXEDCLASS)
5789			devclass_delete_device(dev->devclass, dev);
5790		dev->flags |= DF_WILDCARD;
5791		dev->unit = -1;
5792
5793		/* Force the new device class. */
5794		error = devclass_add_device(dc, dev);
5795		if (error)
5796			break;
5797		dev->flags |= DF_FIXEDCLASS;
5798		error = device_probe_and_attach(dev);
5799		break;
5800	}
5801	case DEV_CLEAR_DRIVER:
5802		if (!(dev->flags & DF_FIXEDCLASS)) {
5803			error = 0;
5804			break;
5805		}
5806		if (device_is_attached(dev)) {
5807			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5808				error = device_detach(dev);
5809			else
5810				error = EBUSY;
5811			if (error)
5812				break;
5813		}
5814
5815		dev->flags &= ~DF_FIXEDCLASS;
5816		dev->flags |= DF_WILDCARD;
5817		devclass_delete_device(dev->devclass, dev);
5818		error = device_probe_and_attach(dev);
5819		break;
5820	case DEV_RESCAN:
5821		if (!device_is_attached(dev)) {
5822			error = ENXIO;
5823			break;
5824		}
5825		error = BUS_RESCAN(dev);
5826		break;
5827	case DEV_DELETE: {
5828		device_t parent;
5829
5830		parent = device_get_parent(dev);
5831		if (parent == NULL) {
5832			error = EINVAL;
5833			break;
5834		}
5835		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5836			if (bus_child_present(dev) != 0) {
5837				error = EBUSY;
5838				break;
5839			}
5840		}
5841
5842		error = device_delete_child(parent, dev);
5843		break;
5844	}
5845	case DEV_FREEZE:
5846		if (device_frozen)
5847			error = EBUSY;
5848		else
5849			device_frozen = true;
5850		break;
5851	case DEV_THAW:
5852		if (!device_frozen)
5853			error = EBUSY;
5854		else {
5855			device_do_deferred_actions();
5856			device_frozen = false;
5857		}
5858		break;
5859	case DEV_RESET:
5860		if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
5861			error = EINVAL;
5862			break;
5863		}
5864		error = BUS_RESET_CHILD(device_get_parent(dev), dev,
5865		    req->dr_flags);
5866		break;
5867	case DEV_GET_PATH: {
5868		struct sbuf *sb;
5869		char locator[64];
5870		ssize_t len;
5871
5872		error = copyinstr(req->dr_buffer.buffer, locator,
5873		    sizeof(locator), NULL);
5874		if (error != 0)
5875			break;
5876		sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
5877		    SBUF_INCLUDENUL /* | SBUF_WAITOK */);
5878		error = device_get_path(dev, locator, sb);
5879		if (error == 0) {
5880			len = sbuf_len(sb);
5881			if (req->dr_buffer.length < len) {
5882				error = ENAMETOOLONG;
5883			} else {
5884				error = copyout(sbuf_data(sb),
5885				    req->dr_buffer.buffer, len);
5886			}
5887			req->dr_buffer.length = len;
5888		}
5889		sbuf_delete(sb);
5890		break;
5891	}
5892	}
5893	bus_topo_unlock();
5894	return (error);
5895}
5896
5897static struct cdevsw devctl2_cdevsw = {
5898	.d_version =	D_VERSION,
5899	.d_ioctl =	devctl2_ioctl,
5900	.d_name =	"devctl2",
5901};
5902
5903static void
5904devctl2_init(void)
5905{
5906	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
5907	    UID_ROOT, GID_WHEEL, 0644, "devctl2");
5908}
5909
5910/*
5911 * For maintaining device 'at' location info to avoid recomputing it
5912 */
5913struct device_location_node {
5914	const char *dln_locator;
5915	const char *dln_path;
5916	TAILQ_ENTRY(device_location_node) dln_link;
5917};
5918typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t;
5919
5920struct device_location_cache {
5921	device_location_list_t dlc_list;
5922};
5923
5924
5925/*
5926 * Location cache for wired devices.
5927 */
5928device_location_cache_t *
5929dev_wired_cache_init(void)
5930{
5931	device_location_cache_t *dcp;
5932
5933	dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO);
5934	TAILQ_INIT(&dcp->dlc_list);
5935
5936	return (dcp);
5937}
5938
5939void
5940dev_wired_cache_fini(device_location_cache_t *dcp)
5941{
5942	struct device_location_node *dln, *tdln;
5943
5944	TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) {
5945		free(dln, M_BUS);
5946	}
5947	free(dcp, M_BUS);
5948}
5949
5950static struct device_location_node *
5951dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator)
5952{
5953	struct device_location_node *dln;
5954
5955	TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) {
5956		if (strcmp(locator, dln->dln_locator) == 0)
5957			return (dln);
5958	}
5959
5960	return (NULL);
5961}
5962
5963static struct device_location_node *
5964dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path)
5965{
5966	struct device_location_node *dln;
5967	size_t loclen, pathlen;
5968
5969	loclen = strlen(locator) + 1;
5970	pathlen = strlen(path) + 1;
5971	dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO);
5972	dln->dln_locator = (char *)(dln + 1);
5973	memcpy(__DECONST(char *, dln->dln_locator), locator, loclen);
5974	dln->dln_path = dln->dln_locator + loclen;
5975	memcpy(__DECONST(char *, dln->dln_path), path, pathlen);
5976	TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link);
5977
5978	return (dln);
5979}
5980
5981bool
5982dev_wired_cache_match(device_location_cache_t *dcp, device_t dev,
5983    const char *at)
5984{
5985	struct sbuf *sb;
5986	const char *cp;
5987	char locator[32];
5988	int error, len;
5989	struct device_location_node *res;
5990
5991	cp = strchr(at, ':');
5992	if (cp == NULL)
5993		return (false);
5994	len = cp - at;
5995	if (len > sizeof(locator) - 1)	/* Skip too long locator */
5996		return (false);
5997	memcpy(locator, at, len);
5998	locator[len] = '\0';
5999	cp++;
6000
6001	error = 0;
6002	/* maybe cache this inside device_t and look that up, but not yet */
6003	res = dev_wired_cache_lookup(dcp, locator);
6004	if (res == NULL) {
6005		sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
6006		    SBUF_INCLUDENUL | SBUF_NOWAIT);
6007		if (sb != NULL) {
6008			error = device_get_path(dev, locator, sb);
6009			if (error == 0) {
6010				res = dev_wired_cache_add(dcp, locator,
6011				    sbuf_data(sb));
6012			}
6013			sbuf_delete(sb);
6014		}
6015	}
6016	if (error != 0 || res == NULL || res->dln_path == NULL)
6017		return (false);
6018
6019	return (strcmp(res->dln_path, cp) == 0);
6020}
6021
6022/*
6023 * APIs to manage deprecation and obsolescence.
6024 */
6025static int obsolete_panic = 0;
6026SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
6027    "Panic when obsolete features are used (0 = never, 1 = if obsolete, "
6028    "2 = if deprecated)");
6029
6030static void
6031gone_panic(int major, int running, const char *msg)
6032{
6033	switch (obsolete_panic)
6034	{
6035	case 0:
6036		return;
6037	case 1:
6038		if (running < major)
6039			return;
6040		/* FALLTHROUGH */
6041	default:
6042		panic("%s", msg);
6043	}
6044}
6045
6046void
6047_gone_in(int major, const char *msg)
6048{
6049	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6050	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6051		printf("Obsolete code will be removed soon: %s\n", msg);
6052	else
6053		printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
6054		    major, msg);
6055}
6056
6057void
6058_gone_in_dev(device_t dev, int major, const char *msg)
6059{
6060	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6061	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6062		device_printf(dev,
6063		    "Obsolete code will be removed soon: %s\n", msg);
6064	else
6065		device_printf(dev,
6066		    "Deprecated code (to be removed in FreeBSD %d): %s\n",
6067		    major, msg);
6068}
6069
6070#ifdef DDB
6071DB_SHOW_COMMAND(device, db_show_device)
6072{
6073	device_t dev;
6074
6075	if (!have_addr)
6076		return;
6077
6078	dev = (device_t)addr;
6079
6080	db_printf("name:    %s\n", device_get_nameunit(dev));
6081	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
6082	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
6083	db_printf("  addr:    %p\n", dev);
6084	db_printf("  parent:  %p\n", dev->parent);
6085	db_printf("  softc:   %p\n", dev->softc);
6086	db_printf("  ivars:   %p\n", dev->ivars);
6087}
6088
6089DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
6090{
6091	device_t dev;
6092
6093	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6094		db_show_device((db_expr_t)dev, true, count, modif);
6095	}
6096}
6097#endif
6098