1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * This file implements the ULE scheduler.  ULE supports independent CPU
31 * run queues and fine grain locking.  It has superior interactive
32 * performance under load even on uni-processor systems.
33 *
34 * etymology:
35 *   ULE is the last three letters in schedule.  It owes its name to a
36 * generic user created for a scheduling system by Paul Mikesell at
37 * Isilon Systems and a general lack of creativity on the part of the author.
38 */
39
40#include <sys/cdefs.h>
41#include "opt_hwpmc_hooks.h"
42#include "opt_sched.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/kdb.h>
47#include <sys/kernel.h>
48#include <sys/ktr.h>
49#include <sys/limits.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resource.h>
54#include <sys/resourcevar.h>
55#include <sys/sched.h>
56#include <sys/sdt.h>
57#include <sys/smp.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/sysproto.h>
61#include <sys/turnstile.h>
62#include <sys/umtxvar.h>
63#include <sys/vmmeter.h>
64#include <sys/cpuset.h>
65#include <sys/sbuf.h>
66
67#ifdef HWPMC_HOOKS
68#include <sys/pmckern.h>
69#endif
70
71#ifdef KDTRACE_HOOKS
72#include <sys/dtrace_bsd.h>
73int __read_mostly		dtrace_vtime_active;
74dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75#endif
76
77#include <machine/cpu.h>
78#include <machine/smp.h>
79
80#define	KTR_ULE	0
81
82#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
83#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
84#define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
85
86/*
87 * Thread scheduler specific section.  All fields are protected
88 * by the thread lock.
89 */
90struct td_sched {
91	struct runq	*ts_runq;	/* Run-queue we're queued on. */
92	short		ts_flags;	/* TSF_* flags. */
93	int		ts_cpu;		/* CPU that we have affinity for. */
94	int		ts_rltick;	/* Real last tick, for affinity. */
95	int		ts_slice;	/* Ticks of slice remaining. */
96	u_int		ts_slptime;	/* Number of ticks we vol. slept */
97	u_int		ts_runtime;	/* Number of ticks we were running */
98	int		ts_ltick;	/* Last tick that we were running on */
99	int		ts_ftick;	/* First tick that we were running on */
100	int		ts_ticks;	/* Tick count */
101#ifdef KTR
102	char		ts_name[TS_NAME_LEN];
103#endif
104};
105/* flags kept in ts_flags */
106#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
107#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
108
109#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
110#define	THREAD_CAN_SCHED(td, cpu)	\
111    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
112
113_Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
114    sizeof(struct thread0_storage),
115    "increase struct thread0_storage.t0st_sched size");
116
117/*
118 * Priority ranges used for interactive and non-interactive timeshare
119 * threads.  The timeshare priorities are split up into four ranges.
120 * The first range handles interactive threads.  The last three ranges
121 * (NHALF, x, and NHALF) handle non-interactive threads with the outer
122 * ranges supporting nice values.
123 */
124#define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
125#define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
126#define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
127
128#define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
129#define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
130#define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
131#define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
132
133/*
134 * Cpu percentage computation macros and defines.
135 *
136 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
137 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
138 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
139 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
140 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
141 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
142 */
143#define	SCHED_TICK_SECS		10
144#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
145#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
146#define	SCHED_TICK_SHIFT	10
147#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
148#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
149
150/*
151 * These macros determine priorities for non-interactive threads.  They are
152 * assigned a priority based on their recent cpu utilization as expressed
153 * by the ratio of ticks to the tick total.  NHALF priorities at the start
154 * and end of the MIN to MAX timeshare range are only reachable with negative
155 * or positive nice respectively.
156 *
157 * PRI_RANGE:	Priority range for utilization dependent priorities.
158 * PRI_NRESV:	Number of nice values.
159 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
160 * PRI_NICE:	Determines the part of the priority inherited from nice.
161 */
162#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
163#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
164#define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
165#define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
166#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
167#define	SCHED_PRI_TICKS(ts)						\
168    (SCHED_TICK_HZ((ts)) /						\
169    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
170#define	SCHED_PRI_NICE(nice)	(nice)
171
172/*
173 * These determine the interactivity of a process.  Interactivity differs from
174 * cpu utilization in that it expresses the voluntary time slept vs time ran
175 * while cpu utilization includes all time not running.  This more accurately
176 * models the intent of the thread.
177 *
178 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
179 *		before throttling back.
180 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
181 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
182 * INTERACT_THRESH:	Threshold for placement on the current runq.
183 */
184#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
185#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
186#define	SCHED_INTERACT_MAX	(100)
187#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
188#define	SCHED_INTERACT_THRESH	(30)
189
190/*
191 * These parameters determine the slice behavior for batch work.
192 */
193#define	SCHED_SLICE_DEFAULT_DIVISOR	10	/* ~94 ms, 12 stathz ticks. */
194#define	SCHED_SLICE_MIN_DIVISOR		6	/* DEFAULT/MIN = ~16 ms. */
195
196/* Flags kept in td_flags. */
197#define	TDF_PICKCPU	TDF_SCHED0	/* Thread should pick new CPU. */
198#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
199
200/*
201 * tickincr:		Converts a stathz tick into a hz domain scaled by
202 *			the shift factor.  Without the shift the error rate
203 *			due to rounding would be unacceptably high.
204 * realstathz:		stathz is sometimes 0 and run off of hz.
205 * sched_slice:		Runtime of each thread before rescheduling.
206 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
207 */
208static u_int __read_mostly sched_interact = SCHED_INTERACT_THRESH;
209static int __read_mostly tickincr = 8 << SCHED_TICK_SHIFT;
210static int __read_mostly realstathz = 127;	/* reset during boot. */
211static int __read_mostly sched_slice = 10;	/* reset during boot. */
212static int __read_mostly sched_slice_min = 1;	/* reset during boot. */
213#ifdef PREEMPTION
214#ifdef FULL_PREEMPTION
215static int __read_mostly preempt_thresh = PRI_MAX_IDLE;
216#else
217static int __read_mostly preempt_thresh = PRI_MIN_KERN;
218#endif
219#else
220static int __read_mostly preempt_thresh = 0;
221#endif
222static int __read_mostly static_boost = PRI_MIN_BATCH;
223static int __read_mostly sched_idlespins = 10000;
224static int __read_mostly sched_idlespinthresh = -1;
225
226/*
227 * tdq - per processor runqs and statistics.  A mutex synchronizes access to
228 * most fields.  Some fields are loaded or modified without the mutex.
229 *
230 * Locking protocols:
231 * (c)  constant after initialization
232 * (f)  flag, set with the tdq lock held, cleared on local CPU
233 * (l)  all accesses are CPU-local
234 * (ls) stores are performed by the local CPU, loads may be lockless
235 * (t)  all accesses are protected by the tdq mutex
236 * (ts) stores are serialized by the tdq mutex, loads may be lockless
237 */
238struct tdq {
239	/*
240	 * Ordered to improve efficiency of cpu_search() and switch().
241	 * tdq_lock is padded to avoid false sharing with tdq_load and
242	 * tdq_cpu_idle.
243	 */
244	struct mtx_padalign tdq_lock;	/* run queue lock. */
245	struct cpu_group *tdq_cg;	/* (c) Pointer to cpu topology. */
246	struct thread	*tdq_curthread;	/* (t) Current executing thread. */
247	int		tdq_load;	/* (ts) Aggregate load. */
248	int		tdq_sysload;	/* (ts) For loadavg, !ITHD load. */
249	int		tdq_cpu_idle;	/* (ls) cpu_idle() is active. */
250	int		tdq_transferable; /* (ts) Transferable thread count. */
251	short		tdq_switchcnt;	/* (l) Switches this tick. */
252	short		tdq_oldswitchcnt; /* (l) Switches last tick. */
253	u_char		tdq_lowpri;	/* (ts) Lowest priority thread. */
254	u_char		tdq_owepreempt;	/* (f) Remote preemption pending. */
255	u_char		tdq_idx;	/* (t) Current insert index. */
256	u_char		tdq_ridx;	/* (t) Current removal index. */
257	int		tdq_id;		/* (c) cpuid. */
258	struct runq	tdq_realtime;	/* (t) real-time run queue. */
259	struct runq	tdq_timeshare;	/* (t) timeshare run queue. */
260	struct runq	tdq_idle;	/* (t) Queue of IDLE threads. */
261	char		tdq_name[TDQ_NAME_LEN];
262#ifdef KTR
263	char		tdq_loadname[TDQ_LOADNAME_LEN];
264#endif
265};
266
267/* Idle thread states and config. */
268#define	TDQ_RUNNING	1
269#define	TDQ_IDLE	2
270
271/* Lockless accessors. */
272#define	TDQ_LOAD(tdq)		atomic_load_int(&(tdq)->tdq_load)
273#define	TDQ_TRANSFERABLE(tdq)	atomic_load_int(&(tdq)->tdq_transferable)
274#define	TDQ_SWITCHCNT(tdq)	(atomic_load_short(&(tdq)->tdq_switchcnt) + \
275				 atomic_load_short(&(tdq)->tdq_oldswitchcnt))
276#define	TDQ_SWITCHCNT_INC(tdq)	(atomic_store_short(&(tdq)->tdq_switchcnt, \
277				 atomic_load_short(&(tdq)->tdq_switchcnt) + 1))
278
279#ifdef SMP
280struct cpu_group __read_mostly *cpu_top;		/* CPU topology */
281
282#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
283#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
284
285/*
286 * Run-time tunables.
287 */
288static int rebalance = 1;
289static int balance_interval = 128;	/* Default set in sched_initticks(). */
290static int __read_mostly affinity;
291static int __read_mostly steal_idle = 1;
292static int __read_mostly steal_thresh = 2;
293static int __read_mostly always_steal = 0;
294static int __read_mostly trysteal_limit = 2;
295
296/*
297 * One thread queue per processor.
298 */
299static struct tdq __read_mostly *balance_tdq;
300static int balance_ticks;
301DPCPU_DEFINE_STATIC(struct tdq, tdq);
302DPCPU_DEFINE_STATIC(uint32_t, randomval);
303
304#define	TDQ_SELF()	((struct tdq *)PCPU_GET(sched))
305#define	TDQ_CPU(x)	(DPCPU_ID_PTR((x), tdq))
306#define	TDQ_ID(x)	((x)->tdq_id)
307#else	/* !SMP */
308static struct tdq	tdq_cpu;
309
310#define	TDQ_ID(x)	(0)
311#define	TDQ_SELF()	(&tdq_cpu)
312#define	TDQ_CPU(x)	(&tdq_cpu)
313#endif
314
315#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
316#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
317#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
318#define	TDQ_TRYLOCK(t)		mtx_trylock_spin(TDQ_LOCKPTR((t)))
319#define	TDQ_TRYLOCK_FLAGS(t, f)	mtx_trylock_spin_flags(TDQ_LOCKPTR((t)), (f))
320#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
321#define	TDQ_LOCKPTR(t)		((struct mtx *)(&(t)->tdq_lock))
322
323static void sched_setpreempt(int);
324static void sched_priority(struct thread *);
325static void sched_thread_priority(struct thread *, u_char);
326static int sched_interact_score(struct thread *);
327static void sched_interact_update(struct thread *);
328static void sched_interact_fork(struct thread *);
329static void sched_pctcpu_update(struct td_sched *, int);
330
331/* Operations on per processor queues */
332static struct thread *tdq_choose(struct tdq *);
333static void tdq_setup(struct tdq *, int i);
334static void tdq_load_add(struct tdq *, struct thread *);
335static void tdq_load_rem(struct tdq *, struct thread *);
336static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
337static __inline void tdq_runq_rem(struct tdq *, struct thread *);
338static inline int sched_shouldpreempt(int, int, int);
339static void tdq_print(int cpu);
340static void runq_print(struct runq *rq);
341static int tdq_add(struct tdq *, struct thread *, int);
342#ifdef SMP
343static int tdq_move(struct tdq *, struct tdq *);
344static int tdq_idled(struct tdq *);
345static void tdq_notify(struct tdq *, int lowpri);
346static struct thread *tdq_steal(struct tdq *, int);
347static struct thread *runq_steal(struct runq *, int);
348static int sched_pickcpu(struct thread *, int);
349static void sched_balance(void);
350static bool sched_balance_pair(struct tdq *, struct tdq *);
351static inline struct tdq *sched_setcpu(struct thread *, int, int);
352static inline void thread_unblock_switch(struct thread *, struct mtx *);
353static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
354static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
355    struct cpu_group *cg, int indent);
356#endif
357
358static void sched_setup(void *dummy);
359SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
360
361static void sched_initticks(void *dummy);
362SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
363    NULL);
364
365SDT_PROVIDER_DEFINE(sched);
366
367SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *",
368    "struct proc *", "uint8_t");
369SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *",
370    "struct proc *", "void *");
371SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *",
372    "struct proc *", "void *", "int");
373SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *",
374    "struct proc *", "uint8_t", "struct thread *");
375SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
376SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
377    "struct proc *");
378SDT_PROBE_DEFINE(sched, , , on__cpu);
379SDT_PROBE_DEFINE(sched, , , remain__cpu);
380SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
381    "struct proc *");
382
383/*
384 * Print the threads waiting on a run-queue.
385 */
386static void
387runq_print(struct runq *rq)
388{
389	struct rqhead *rqh;
390	struct thread *td;
391	int pri;
392	int j;
393	int i;
394
395	for (i = 0; i < RQB_LEN; i++) {
396		printf("\t\trunq bits %d 0x%zx\n",
397		    i, rq->rq_status.rqb_bits[i]);
398		for (j = 0; j < RQB_BPW; j++)
399			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
400				pri = j + (i << RQB_L2BPW);
401				rqh = &rq->rq_queues[pri];
402				TAILQ_FOREACH(td, rqh, td_runq) {
403					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
404					    td, td->td_name, td->td_priority,
405					    td->td_rqindex, pri);
406				}
407			}
408	}
409}
410
411/*
412 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
413 */
414static void __unused
415tdq_print(int cpu)
416{
417	struct tdq *tdq;
418
419	tdq = TDQ_CPU(cpu);
420
421	printf("tdq %d:\n", TDQ_ID(tdq));
422	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
423	printf("\tLock name:      %s\n", tdq->tdq_name);
424	printf("\tload:           %d\n", tdq->tdq_load);
425	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
426	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
427	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
428	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
429	printf("\tload transferable: %d\n", tdq->tdq_transferable);
430	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
431	printf("\trealtime runq:\n");
432	runq_print(&tdq->tdq_realtime);
433	printf("\ttimeshare runq:\n");
434	runq_print(&tdq->tdq_timeshare);
435	printf("\tidle runq:\n");
436	runq_print(&tdq->tdq_idle);
437}
438
439static inline int
440sched_shouldpreempt(int pri, int cpri, int remote)
441{
442	/*
443	 * If the new priority is not better than the current priority there is
444	 * nothing to do.
445	 */
446	if (pri >= cpri)
447		return (0);
448	/*
449	 * Always preempt idle.
450	 */
451	if (cpri >= PRI_MIN_IDLE)
452		return (1);
453	/*
454	 * If preemption is disabled don't preempt others.
455	 */
456	if (preempt_thresh == 0)
457		return (0);
458	/*
459	 * Preempt if we exceed the threshold.
460	 */
461	if (pri <= preempt_thresh)
462		return (1);
463	/*
464	 * If we're interactive or better and there is non-interactive
465	 * or worse running preempt only remote processors.
466	 */
467	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
468		return (1);
469	return (0);
470}
471
472/*
473 * Add a thread to the actual run-queue.  Keeps transferable counts up to
474 * date with what is actually on the run-queue.  Selects the correct
475 * queue position for timeshare threads.
476 */
477static __inline void
478tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
479{
480	struct td_sched *ts;
481	u_char pri;
482
483	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
484	THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
485
486	pri = td->td_priority;
487	ts = td_get_sched(td);
488	TD_SET_RUNQ(td);
489	if (THREAD_CAN_MIGRATE(td)) {
490		tdq->tdq_transferable++;
491		ts->ts_flags |= TSF_XFERABLE;
492	}
493	if (pri < PRI_MIN_BATCH) {
494		ts->ts_runq = &tdq->tdq_realtime;
495	} else if (pri <= PRI_MAX_BATCH) {
496		ts->ts_runq = &tdq->tdq_timeshare;
497		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
498			("Invalid priority %d on timeshare runq", pri));
499		/*
500		 * This queue contains only priorities between MIN and MAX
501		 * batch.  Use the whole queue to represent these values.
502		 */
503		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
504			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
505			pri = (pri + tdq->tdq_idx) % RQ_NQS;
506			/*
507			 * This effectively shortens the queue by one so we
508			 * can have a one slot difference between idx and
509			 * ridx while we wait for threads to drain.
510			 */
511			if (tdq->tdq_ridx != tdq->tdq_idx &&
512			    pri == tdq->tdq_ridx)
513				pri = (unsigned char)(pri - 1) % RQ_NQS;
514		} else
515			pri = tdq->tdq_ridx;
516		runq_add_pri(ts->ts_runq, td, pri, flags);
517		return;
518	} else
519		ts->ts_runq = &tdq->tdq_idle;
520	runq_add(ts->ts_runq, td, flags);
521}
522
523/*
524 * Remove a thread from a run-queue.  This typically happens when a thread
525 * is selected to run.  Running threads are not on the queue and the
526 * transferable count does not reflect them.
527 */
528static __inline void
529tdq_runq_rem(struct tdq *tdq, struct thread *td)
530{
531	struct td_sched *ts;
532
533	ts = td_get_sched(td);
534	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
535	THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
536	KASSERT(ts->ts_runq != NULL,
537	    ("tdq_runq_remove: thread %p null ts_runq", td));
538	if (ts->ts_flags & TSF_XFERABLE) {
539		tdq->tdq_transferable--;
540		ts->ts_flags &= ~TSF_XFERABLE;
541	}
542	if (ts->ts_runq == &tdq->tdq_timeshare) {
543		if (tdq->tdq_idx != tdq->tdq_ridx)
544			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
545		else
546			runq_remove_idx(ts->ts_runq, td, NULL);
547	} else
548		runq_remove(ts->ts_runq, td);
549}
550
551/*
552 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
553 * for this thread to the referenced thread queue.
554 */
555static void
556tdq_load_add(struct tdq *tdq, struct thread *td)
557{
558
559	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
560	THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
561
562	tdq->tdq_load++;
563	if ((td->td_flags & TDF_NOLOAD) == 0)
564		tdq->tdq_sysload++;
565	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
566	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
567}
568
569/*
570 * Remove the load from a thread that is transitioning to a sleep state or
571 * exiting.
572 */
573static void
574tdq_load_rem(struct tdq *tdq, struct thread *td)
575{
576
577	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
578	THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
579	KASSERT(tdq->tdq_load != 0,
580	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
581
582	tdq->tdq_load--;
583	if ((td->td_flags & TDF_NOLOAD) == 0)
584		tdq->tdq_sysload--;
585	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
586	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
587}
588
589/*
590 * Bound timeshare latency by decreasing slice size as load increases.  We
591 * consider the maximum latency as the sum of the threads waiting to run
592 * aside from curthread and target no more than sched_slice latency but
593 * no less than sched_slice_min runtime.
594 */
595static inline int
596tdq_slice(struct tdq *tdq)
597{
598	int load;
599
600	/*
601	 * It is safe to use sys_load here because this is called from
602	 * contexts where timeshare threads are running and so there
603	 * cannot be higher priority load in the system.
604	 */
605	load = tdq->tdq_sysload - 1;
606	if (load >= SCHED_SLICE_MIN_DIVISOR)
607		return (sched_slice_min);
608	if (load <= 1)
609		return (sched_slice);
610	return (sched_slice / load);
611}
612
613/*
614 * Set lowpri to its exact value by searching the run-queue and
615 * evaluating curthread.  curthread may be passed as an optimization.
616 */
617static void
618tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
619{
620	struct thread *td;
621
622	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
623	if (ctd == NULL)
624		ctd = tdq->tdq_curthread;
625	td = tdq_choose(tdq);
626	if (td == NULL || td->td_priority > ctd->td_priority)
627		tdq->tdq_lowpri = ctd->td_priority;
628	else
629		tdq->tdq_lowpri = td->td_priority;
630}
631
632#ifdef SMP
633/*
634 * We need some randomness. Implement a classic Linear Congruential
635 * Generator X_{n+1}=(aX_n+c) mod m. These values are optimized for
636 * m = 2^32, a = 69069 and c = 5. We only return the upper 16 bits
637 * of the random state (in the low bits of our answer) to keep
638 * the maximum randomness.
639 */
640static uint32_t
641sched_random(void)
642{
643	uint32_t *rndptr;
644
645	rndptr = DPCPU_PTR(randomval);
646	*rndptr = *rndptr * 69069 + 5;
647
648	return (*rndptr >> 16);
649}
650
651struct cpu_search {
652	cpuset_t *cs_mask;	/* The mask of allowed CPUs to choose from. */
653	int	cs_prefer;	/* Prefer this CPU and groups including it. */
654	int	cs_running;	/* The thread is now running at cs_prefer. */
655	int	cs_pri;		/* Min priority for low. */
656	int	cs_load;	/* Max load for low, min load for high. */
657	int	cs_trans;	/* Min transferable load for high. */
658};
659
660struct cpu_search_res {
661	int	csr_cpu;	/* The best CPU found. */
662	int	csr_load;	/* The load of cs_cpu. */
663};
664
665/*
666 * Search the tree of cpu_groups for the lowest or highest loaded CPU.
667 * These routines actually compare the load on all paths through the tree
668 * and find the least loaded cpu on the least loaded path, which may differ
669 * from the least loaded cpu in the system.  This balances work among caches
670 * and buses.
671 */
672static int
673cpu_search_lowest(const struct cpu_group *cg, const struct cpu_search *s,
674    struct cpu_search_res *r)
675{
676	struct cpu_search_res lr;
677	struct tdq *tdq;
678	int c, bload, l, load, p, total;
679
680	total = 0;
681	bload = INT_MAX;
682	r->csr_cpu = -1;
683
684	/* Loop through children CPU groups if there are any. */
685	if (cg->cg_children > 0) {
686		for (c = cg->cg_children - 1; c >= 0; c--) {
687			load = cpu_search_lowest(&cg->cg_child[c], s, &lr);
688			total += load;
689
690			/*
691			 * When balancing do not prefer SMT groups with load >1.
692			 * It allows round-robin between SMT groups with equal
693			 * load within parent group for more fair scheduling.
694			 */
695			if (__predict_false(s->cs_running) &&
696			    (cg->cg_child[c].cg_flags & CG_FLAG_THREAD) &&
697			    load >= 128 && (load & 128) != 0)
698				load += 128;
699
700			if (lr.csr_cpu >= 0 && (load < bload ||
701			    (load == bload && lr.csr_load < r->csr_load))) {
702				bload = load;
703				r->csr_cpu = lr.csr_cpu;
704				r->csr_load = lr.csr_load;
705			}
706		}
707		return (total);
708	}
709
710	/* Loop through children CPUs otherwise. */
711	for (c = cg->cg_last; c >= cg->cg_first; c--) {
712		if (!CPU_ISSET(c, &cg->cg_mask))
713			continue;
714		tdq = TDQ_CPU(c);
715		l = TDQ_LOAD(tdq);
716		if (c == s->cs_prefer) {
717			if (__predict_false(s->cs_running))
718				l--;
719			p = 128;
720		} else
721			p = 0;
722		load = l * 256;
723		total += load - p;
724
725		/*
726		 * Check this CPU is acceptable.
727		 * If the threads is already on the CPU, don't look on the TDQ
728		 * priority, since it can be the priority of the thread itself.
729		 */
730		if (l > s->cs_load ||
731		    (atomic_load_char(&tdq->tdq_lowpri) <= s->cs_pri &&
732		     (!s->cs_running || c != s->cs_prefer)) ||
733		    !CPU_ISSET(c, s->cs_mask))
734			continue;
735
736		/*
737		 * When balancing do not prefer CPUs with load > 1.
738		 * It allows round-robin between CPUs with equal load
739		 * within the CPU group for more fair scheduling.
740		 */
741		if (__predict_false(s->cs_running) && l > 0)
742			p = 0;
743
744		load -= sched_random() % 128;
745		if (bload > load - p) {
746			bload = load - p;
747			r->csr_cpu = c;
748			r->csr_load = load;
749		}
750	}
751	return (total);
752}
753
754static int
755cpu_search_highest(const struct cpu_group *cg, const struct cpu_search *s,
756    struct cpu_search_res *r)
757{
758	struct cpu_search_res lr;
759	struct tdq *tdq;
760	int c, bload, l, load, total;
761
762	total = 0;
763	bload = INT_MIN;
764	r->csr_cpu = -1;
765
766	/* Loop through children CPU groups if there are any. */
767	if (cg->cg_children > 0) {
768		for (c = cg->cg_children - 1; c >= 0; c--) {
769			load = cpu_search_highest(&cg->cg_child[c], s, &lr);
770			total += load;
771			if (lr.csr_cpu >= 0 && (load > bload ||
772			    (load == bload && lr.csr_load > r->csr_load))) {
773				bload = load;
774				r->csr_cpu = lr.csr_cpu;
775				r->csr_load = lr.csr_load;
776			}
777		}
778		return (total);
779	}
780
781	/* Loop through children CPUs otherwise. */
782	for (c = cg->cg_last; c >= cg->cg_first; c--) {
783		if (!CPU_ISSET(c, &cg->cg_mask))
784			continue;
785		tdq = TDQ_CPU(c);
786		l = TDQ_LOAD(tdq);
787		load = l * 256;
788		total += load;
789
790		/*
791		 * Check this CPU is acceptable.
792		 */
793		if (l < s->cs_load || TDQ_TRANSFERABLE(tdq) < s->cs_trans ||
794		    !CPU_ISSET(c, s->cs_mask))
795			continue;
796
797		load -= sched_random() % 256;
798		if (load > bload) {
799			bload = load;
800			r->csr_cpu = c;
801		}
802	}
803	r->csr_load = bload;
804	return (total);
805}
806
807/*
808 * Find the cpu with the least load via the least loaded path that has a
809 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
810 * acceptable.
811 */
812static inline int
813sched_lowest(const struct cpu_group *cg, cpuset_t *mask, int pri, int maxload,
814    int prefer, int running)
815{
816	struct cpu_search s;
817	struct cpu_search_res r;
818
819	s.cs_prefer = prefer;
820	s.cs_running = running;
821	s.cs_mask = mask;
822	s.cs_pri = pri;
823	s.cs_load = maxload;
824	cpu_search_lowest(cg, &s, &r);
825	return (r.csr_cpu);
826}
827
828/*
829 * Find the cpu with the highest load via the highest loaded path.
830 */
831static inline int
832sched_highest(const struct cpu_group *cg, cpuset_t *mask, int minload,
833    int mintrans)
834{
835	struct cpu_search s;
836	struct cpu_search_res r;
837
838	s.cs_mask = mask;
839	s.cs_load = minload;
840	s.cs_trans = mintrans;
841	cpu_search_highest(cg, &s, &r);
842	return (r.csr_cpu);
843}
844
845static void
846sched_balance_group(struct cpu_group *cg)
847{
848	struct tdq *tdq;
849	struct thread *td;
850	cpuset_t hmask, lmask;
851	int high, low, anylow;
852
853	CPU_FILL(&hmask);
854	for (;;) {
855		high = sched_highest(cg, &hmask, 1, 0);
856		/* Stop if there is no more CPU with transferrable threads. */
857		if (high == -1)
858			break;
859		CPU_CLR(high, &hmask);
860		CPU_COPY(&hmask, &lmask);
861		/* Stop if there is no more CPU left for low. */
862		if (CPU_EMPTY(&lmask))
863			break;
864		tdq = TDQ_CPU(high);
865		if (TDQ_LOAD(tdq) == 1) {
866			/*
867			 * There is only one running thread.  We can't move
868			 * it from here, so tell it to pick new CPU by itself.
869			 */
870			TDQ_LOCK(tdq);
871			td = tdq->tdq_curthread;
872			if (td->td_lock == TDQ_LOCKPTR(tdq) &&
873			    (td->td_flags & TDF_IDLETD) == 0 &&
874			    THREAD_CAN_MIGRATE(td)) {
875				td->td_flags |= TDF_PICKCPU;
876				ast_sched_locked(td, TDA_SCHED);
877				if (high != curcpu)
878					ipi_cpu(high, IPI_AST);
879			}
880			TDQ_UNLOCK(tdq);
881			break;
882		}
883		anylow = 1;
884nextlow:
885		if (TDQ_TRANSFERABLE(tdq) == 0)
886			continue;
887		low = sched_lowest(cg, &lmask, -1, TDQ_LOAD(tdq) - 1, high, 1);
888		/* Stop if we looked well and found no less loaded CPU. */
889		if (anylow && low == -1)
890			break;
891		/* Go to next high if we found no less loaded CPU. */
892		if (low == -1)
893			continue;
894		/* Transfer thread from high to low. */
895		if (sched_balance_pair(tdq, TDQ_CPU(low))) {
896			/* CPU that got thread can no longer be a donor. */
897			CPU_CLR(low, &hmask);
898		} else {
899			/*
900			 * If failed, then there is no threads on high
901			 * that can run on this low. Drop low from low
902			 * mask and look for different one.
903			 */
904			CPU_CLR(low, &lmask);
905			anylow = 0;
906			goto nextlow;
907		}
908	}
909}
910
911static void
912sched_balance(void)
913{
914	struct tdq *tdq;
915
916	balance_ticks = max(balance_interval / 2, 1) +
917	    (sched_random() % balance_interval);
918	tdq = TDQ_SELF();
919	TDQ_UNLOCK(tdq);
920	sched_balance_group(cpu_top);
921	TDQ_LOCK(tdq);
922}
923
924/*
925 * Lock two thread queues using their address to maintain lock order.
926 */
927static void
928tdq_lock_pair(struct tdq *one, struct tdq *two)
929{
930	if (one < two) {
931		TDQ_LOCK(one);
932		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
933	} else {
934		TDQ_LOCK(two);
935		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
936	}
937}
938
939/*
940 * Unlock two thread queues.  Order is not important here.
941 */
942static void
943tdq_unlock_pair(struct tdq *one, struct tdq *two)
944{
945	TDQ_UNLOCK(one);
946	TDQ_UNLOCK(two);
947}
948
949/*
950 * Transfer load between two imbalanced thread queues.  Returns true if a thread
951 * was moved between the queues, and false otherwise.
952 */
953static bool
954sched_balance_pair(struct tdq *high, struct tdq *low)
955{
956	int cpu, lowpri;
957	bool ret;
958
959	ret = false;
960	tdq_lock_pair(high, low);
961
962	/*
963	 * Transfer a thread from high to low.
964	 */
965	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load) {
966		lowpri = tdq_move(high, low);
967		if (lowpri != -1) {
968			/*
969			 * In case the target isn't the current CPU notify it of
970			 * the new load, possibly sending an IPI to force it to
971			 * reschedule.  Otherwise maybe schedule a preemption.
972			 */
973			cpu = TDQ_ID(low);
974			if (cpu != PCPU_GET(cpuid))
975				tdq_notify(low, lowpri);
976			else
977				sched_setpreempt(low->tdq_lowpri);
978			ret = true;
979		}
980	}
981	tdq_unlock_pair(high, low);
982	return (ret);
983}
984
985/*
986 * Move a thread from one thread queue to another.  Returns -1 if the source
987 * queue was empty, else returns the maximum priority of all threads in
988 * the destination queue prior to the addition of the new thread.  In the latter
989 * case, this priority can be used to determine whether an IPI needs to be
990 * delivered.
991 */
992static int
993tdq_move(struct tdq *from, struct tdq *to)
994{
995	struct thread *td;
996	int cpu;
997
998	TDQ_LOCK_ASSERT(from, MA_OWNED);
999	TDQ_LOCK_ASSERT(to, MA_OWNED);
1000
1001	cpu = TDQ_ID(to);
1002	td = tdq_steal(from, cpu);
1003	if (td == NULL)
1004		return (-1);
1005
1006	/*
1007	 * Although the run queue is locked the thread may be
1008	 * blocked.  We can not set the lock until it is unblocked.
1009	 */
1010	thread_lock_block_wait(td);
1011	sched_rem(td);
1012	THREAD_LOCKPTR_ASSERT(td, TDQ_LOCKPTR(from));
1013	td->td_lock = TDQ_LOCKPTR(to);
1014	td_get_sched(td)->ts_cpu = cpu;
1015	return (tdq_add(to, td, SRQ_YIELDING));
1016}
1017
1018/*
1019 * This tdq has idled.  Try to steal a thread from another cpu and switch
1020 * to it.
1021 */
1022static int
1023tdq_idled(struct tdq *tdq)
1024{
1025	struct cpu_group *cg, *parent;
1026	struct tdq *steal;
1027	cpuset_t mask;
1028	int cpu, switchcnt, goup;
1029
1030	if (smp_started == 0 || steal_idle == 0 || tdq->tdq_cg == NULL)
1031		return (1);
1032	CPU_FILL(&mask);
1033	CPU_CLR(PCPU_GET(cpuid), &mask);
1034restart:
1035	switchcnt = TDQ_SWITCHCNT(tdq);
1036	for (cg = tdq->tdq_cg, goup = 0; ; ) {
1037		cpu = sched_highest(cg, &mask, steal_thresh, 1);
1038		/*
1039		 * We were assigned a thread but not preempted.  Returning
1040		 * 0 here will cause our caller to switch to it.
1041		 */
1042		if (TDQ_LOAD(tdq))
1043			return (0);
1044
1045		/*
1046		 * We found no CPU to steal from in this group.  Escalate to
1047		 * the parent and repeat.  But if parent has only two children
1048		 * groups we can avoid searching this group again by searching
1049		 * the other one specifically and then escalating two levels.
1050		 */
1051		if (cpu == -1) {
1052			if (goup) {
1053				cg = cg->cg_parent;
1054				goup = 0;
1055			}
1056			parent = cg->cg_parent;
1057			if (parent == NULL)
1058				return (1);
1059			if (parent->cg_children == 2) {
1060				if (cg == &parent->cg_child[0])
1061					cg = &parent->cg_child[1];
1062				else
1063					cg = &parent->cg_child[0];
1064				goup = 1;
1065			} else
1066				cg = parent;
1067			continue;
1068		}
1069		steal = TDQ_CPU(cpu);
1070		/*
1071		 * The data returned by sched_highest() is stale and
1072		 * the chosen CPU no longer has an eligible thread.
1073		 *
1074		 * Testing this ahead of tdq_lock_pair() only catches
1075		 * this situation about 20% of the time on an 8 core
1076		 * 16 thread Ryzen 7, but it still helps performance.
1077		 */
1078		if (TDQ_LOAD(steal) < steal_thresh ||
1079		    TDQ_TRANSFERABLE(steal) == 0)
1080			goto restart;
1081		/*
1082		 * Try to lock both queues. If we are assigned a thread while
1083		 * waited for the lock, switch to it now instead of stealing.
1084		 * If we can't get the lock, then somebody likely got there
1085		 * first so continue searching.
1086		 */
1087		TDQ_LOCK(tdq);
1088		if (tdq->tdq_load > 0) {
1089			mi_switch(SW_VOL | SWT_IDLE);
1090			return (0);
1091		}
1092		if (TDQ_TRYLOCK_FLAGS(steal, MTX_DUPOK) == 0) {
1093			TDQ_UNLOCK(tdq);
1094			CPU_CLR(cpu, &mask);
1095			continue;
1096		}
1097		/*
1098		 * The data returned by sched_highest() is stale and
1099		 * the chosen CPU no longer has an eligible thread, or
1100		 * we were preempted and the CPU loading info may be out
1101		 * of date.  The latter is rare.  In either case restart
1102		 * the search.
1103		 */
1104		if (TDQ_LOAD(steal) < steal_thresh ||
1105		    TDQ_TRANSFERABLE(steal) == 0 ||
1106		    switchcnt != TDQ_SWITCHCNT(tdq)) {
1107			tdq_unlock_pair(tdq, steal);
1108			goto restart;
1109		}
1110		/*
1111		 * Steal the thread and switch to it.
1112		 */
1113		if (tdq_move(steal, tdq) != -1)
1114			break;
1115		/*
1116		 * We failed to acquire a thread even though it looked
1117		 * like one was available.  This could be due to affinity
1118		 * restrictions or for other reasons.  Loop again after
1119		 * removing this CPU from the set.  The restart logic
1120		 * above does not restore this CPU to the set due to the
1121		 * likelyhood of failing here again.
1122		 */
1123		CPU_CLR(cpu, &mask);
1124		tdq_unlock_pair(tdq, steal);
1125	}
1126	TDQ_UNLOCK(steal);
1127	mi_switch(SW_VOL | SWT_IDLE);
1128	return (0);
1129}
1130
1131/*
1132 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1133 *
1134 * "lowpri" is the minimum scheduling priority among all threads on
1135 * the queue prior to the addition of the new thread.
1136 */
1137static void
1138tdq_notify(struct tdq *tdq, int lowpri)
1139{
1140	int cpu;
1141
1142	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1143	KASSERT(tdq->tdq_lowpri <= lowpri,
1144	    ("tdq_notify: lowpri %d > tdq_lowpri %d", lowpri, tdq->tdq_lowpri));
1145
1146	if (tdq->tdq_owepreempt)
1147		return;
1148
1149	/*
1150	 * Check to see if the newly added thread should preempt the one
1151	 * currently running.
1152	 */
1153	if (!sched_shouldpreempt(tdq->tdq_lowpri, lowpri, 1))
1154		return;
1155
1156	/*
1157	 * Make sure that our caller's earlier update to tdq_load is
1158	 * globally visible before we read tdq_cpu_idle.  Idle thread
1159	 * accesses both of them without locks, and the order is important.
1160	 */
1161	atomic_thread_fence_seq_cst();
1162
1163	/*
1164	 * Try to figure out if we can signal the idle thread instead of sending
1165	 * an IPI.  This check is racy; at worst, we will deliever an IPI
1166	 * unnecessarily.
1167	 */
1168	cpu = TDQ_ID(tdq);
1169	if (TD_IS_IDLETHREAD(tdq->tdq_curthread) &&
1170	    (atomic_load_int(&tdq->tdq_cpu_idle) == 0 || cpu_idle_wakeup(cpu)))
1171		return;
1172
1173	/*
1174	 * The run queues have been updated, so any switch on the remote CPU
1175	 * will satisfy the preemption request.
1176	 */
1177	tdq->tdq_owepreempt = 1;
1178	ipi_cpu(cpu, IPI_PREEMPT);
1179}
1180
1181/*
1182 * Steals load from a timeshare queue.  Honors the rotating queue head
1183 * index.
1184 */
1185static struct thread *
1186runq_steal_from(struct runq *rq, int cpu, u_char start)
1187{
1188	struct rqbits *rqb;
1189	struct rqhead *rqh;
1190	struct thread *td, *first;
1191	int bit;
1192	int i;
1193
1194	rqb = &rq->rq_status;
1195	bit = start & (RQB_BPW -1);
1196	first = NULL;
1197again:
1198	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1199		if (rqb->rqb_bits[i] == 0)
1200			continue;
1201		if (bit == 0)
1202			bit = RQB_FFS(rqb->rqb_bits[i]);
1203		for (; bit < RQB_BPW; bit++) {
1204			if ((rqb->rqb_bits[i] & (1ul << bit)) == 0)
1205				continue;
1206			rqh = &rq->rq_queues[bit + (i << RQB_L2BPW)];
1207			TAILQ_FOREACH(td, rqh, td_runq) {
1208				if (first) {
1209					if (THREAD_CAN_MIGRATE(td) &&
1210					    THREAD_CAN_SCHED(td, cpu))
1211						return (td);
1212				} else
1213					first = td;
1214			}
1215		}
1216	}
1217	if (start != 0) {
1218		start = 0;
1219		goto again;
1220	}
1221
1222	if (first && THREAD_CAN_MIGRATE(first) &&
1223	    THREAD_CAN_SCHED(first, cpu))
1224		return (first);
1225	return (NULL);
1226}
1227
1228/*
1229 * Steals load from a standard linear queue.
1230 */
1231static struct thread *
1232runq_steal(struct runq *rq, int cpu)
1233{
1234	struct rqhead *rqh;
1235	struct rqbits *rqb;
1236	struct thread *td;
1237	int word;
1238	int bit;
1239
1240	rqb = &rq->rq_status;
1241	for (word = 0; word < RQB_LEN; word++) {
1242		if (rqb->rqb_bits[word] == 0)
1243			continue;
1244		for (bit = 0; bit < RQB_BPW; bit++) {
1245			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1246				continue;
1247			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1248			TAILQ_FOREACH(td, rqh, td_runq)
1249				if (THREAD_CAN_MIGRATE(td) &&
1250				    THREAD_CAN_SCHED(td, cpu))
1251					return (td);
1252		}
1253	}
1254	return (NULL);
1255}
1256
1257/*
1258 * Attempt to steal a thread in priority order from a thread queue.
1259 */
1260static struct thread *
1261tdq_steal(struct tdq *tdq, int cpu)
1262{
1263	struct thread *td;
1264
1265	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1266	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1267		return (td);
1268	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1269	    cpu, tdq->tdq_ridx)) != NULL)
1270		return (td);
1271	return (runq_steal(&tdq->tdq_idle, cpu));
1272}
1273
1274/*
1275 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1276 * current lock and returns with the assigned queue locked.
1277 */
1278static inline struct tdq *
1279sched_setcpu(struct thread *td, int cpu, int flags)
1280{
1281
1282	struct tdq *tdq;
1283	struct mtx *mtx;
1284
1285	THREAD_LOCK_ASSERT(td, MA_OWNED);
1286	tdq = TDQ_CPU(cpu);
1287	td_get_sched(td)->ts_cpu = cpu;
1288	/*
1289	 * If the lock matches just return the queue.
1290	 */
1291	if (td->td_lock == TDQ_LOCKPTR(tdq)) {
1292		KASSERT((flags & SRQ_HOLD) == 0,
1293		    ("sched_setcpu: Invalid lock for SRQ_HOLD"));
1294		return (tdq);
1295	}
1296
1297	/*
1298	 * The hard case, migration, we need to block the thread first to
1299	 * prevent order reversals with other cpus locks.
1300	 */
1301	spinlock_enter();
1302	mtx = thread_lock_block(td);
1303	if ((flags & SRQ_HOLD) == 0)
1304		mtx_unlock_spin(mtx);
1305	TDQ_LOCK(tdq);
1306	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1307	spinlock_exit();
1308	return (tdq);
1309}
1310
1311SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1312SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1313SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1314SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1315SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1316SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1317
1318static int
1319sched_pickcpu(struct thread *td, int flags)
1320{
1321	struct cpu_group *cg, *ccg;
1322	struct td_sched *ts;
1323	struct tdq *tdq;
1324	cpuset_t *mask;
1325	int cpu, pri, r, self, intr;
1326
1327	self = PCPU_GET(cpuid);
1328	ts = td_get_sched(td);
1329	KASSERT(!CPU_ABSENT(ts->ts_cpu), ("sched_pickcpu: Start scheduler on "
1330	    "absent CPU %d for thread %s.", ts->ts_cpu, td->td_name));
1331	if (smp_started == 0)
1332		return (self);
1333	/*
1334	 * Don't migrate a running thread from sched_switch().
1335	 */
1336	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1337		return (ts->ts_cpu);
1338	/*
1339	 * Prefer to run interrupt threads on the processors that generate
1340	 * the interrupt.
1341	 */
1342	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1343	    curthread->td_intr_nesting_level) {
1344		tdq = TDQ_SELF();
1345		if (tdq->tdq_lowpri >= PRI_MIN_IDLE) {
1346			SCHED_STAT_INC(pickcpu_idle_affinity);
1347			return (self);
1348		}
1349		ts->ts_cpu = self;
1350		intr = 1;
1351		cg = tdq->tdq_cg;
1352		goto llc;
1353	} else {
1354		intr = 0;
1355		tdq = TDQ_CPU(ts->ts_cpu);
1356		cg = tdq->tdq_cg;
1357	}
1358	/*
1359	 * If the thread can run on the last cpu and the affinity has not
1360	 * expired and it is idle, run it there.
1361	 */
1362	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1363	    atomic_load_char(&tdq->tdq_lowpri) >= PRI_MIN_IDLE &&
1364	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1365		if (cg->cg_flags & CG_FLAG_THREAD) {
1366			/* Check all SMT threads for being idle. */
1367			for (cpu = cg->cg_first; cpu <= cg->cg_last; cpu++) {
1368				pri =
1369				    atomic_load_char(&TDQ_CPU(cpu)->tdq_lowpri);
1370				if (CPU_ISSET(cpu, &cg->cg_mask) &&
1371				    pri < PRI_MIN_IDLE)
1372					break;
1373			}
1374			if (cpu > cg->cg_last) {
1375				SCHED_STAT_INC(pickcpu_idle_affinity);
1376				return (ts->ts_cpu);
1377			}
1378		} else {
1379			SCHED_STAT_INC(pickcpu_idle_affinity);
1380			return (ts->ts_cpu);
1381		}
1382	}
1383llc:
1384	/*
1385	 * Search for the last level cache CPU group in the tree.
1386	 * Skip SMT, identical groups and caches with expired affinity.
1387	 * Interrupt threads affinity is explicit and never expires.
1388	 */
1389	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1390		if (cg->cg_flags & CG_FLAG_THREAD)
1391			continue;
1392		if (cg->cg_children == 1 || cg->cg_count == 1)
1393			continue;
1394		if (cg->cg_level == CG_SHARE_NONE ||
1395		    (!intr && !SCHED_AFFINITY(ts, cg->cg_level)))
1396			continue;
1397		ccg = cg;
1398	}
1399	/* Found LLC shared by all CPUs, so do a global search. */
1400	if (ccg == cpu_top)
1401		ccg = NULL;
1402	cpu = -1;
1403	mask = &td->td_cpuset->cs_mask;
1404	pri = td->td_priority;
1405	r = TD_IS_RUNNING(td);
1406	/*
1407	 * Try hard to keep interrupts within found LLC.  Search the LLC for
1408	 * the least loaded CPU we can run now.  For NUMA systems it should
1409	 * be within target domain, and it also reduces scheduling overhead.
1410	 */
1411	if (ccg != NULL && intr) {
1412		cpu = sched_lowest(ccg, mask, pri, INT_MAX, ts->ts_cpu, r);
1413		if (cpu >= 0)
1414			SCHED_STAT_INC(pickcpu_intrbind);
1415	} else
1416	/* Search the LLC for the least loaded idle CPU we can run now. */
1417	if (ccg != NULL) {
1418		cpu = sched_lowest(ccg, mask, max(pri, PRI_MAX_TIMESHARE),
1419		    INT_MAX, ts->ts_cpu, r);
1420		if (cpu >= 0)
1421			SCHED_STAT_INC(pickcpu_affinity);
1422	}
1423	/* Search globally for the least loaded CPU we can run now. */
1424	if (cpu < 0) {
1425		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu, r);
1426		if (cpu >= 0)
1427			SCHED_STAT_INC(pickcpu_lowest);
1428	}
1429	/* Search globally for the least loaded CPU. */
1430	if (cpu < 0) {
1431		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu, r);
1432		if (cpu >= 0)
1433			SCHED_STAT_INC(pickcpu_lowest);
1434	}
1435	KASSERT(cpu >= 0, ("sched_pickcpu: Failed to find a cpu."));
1436	KASSERT(!CPU_ABSENT(cpu), ("sched_pickcpu: Picked absent CPU %d.", cpu));
1437	/*
1438	 * Compare the lowest loaded cpu to current cpu.
1439	 */
1440	tdq = TDQ_CPU(cpu);
1441	if (THREAD_CAN_SCHED(td, self) && TDQ_SELF()->tdq_lowpri > pri &&
1442	    atomic_load_char(&tdq->tdq_lowpri) < PRI_MIN_IDLE &&
1443	    TDQ_LOAD(TDQ_SELF()) <= TDQ_LOAD(tdq) + 1) {
1444		SCHED_STAT_INC(pickcpu_local);
1445		cpu = self;
1446	}
1447	if (cpu != ts->ts_cpu)
1448		SCHED_STAT_INC(pickcpu_migration);
1449	return (cpu);
1450}
1451#endif
1452
1453/*
1454 * Pick the highest priority task we have and return it.
1455 */
1456static struct thread *
1457tdq_choose(struct tdq *tdq)
1458{
1459	struct thread *td;
1460
1461	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1462	td = runq_choose(&tdq->tdq_realtime);
1463	if (td != NULL)
1464		return (td);
1465	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1466	if (td != NULL) {
1467		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1468		    ("tdq_choose: Invalid priority on timeshare queue %d",
1469		    td->td_priority));
1470		return (td);
1471	}
1472	td = runq_choose(&tdq->tdq_idle);
1473	if (td != NULL) {
1474		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1475		    ("tdq_choose: Invalid priority on idle queue %d",
1476		    td->td_priority));
1477		return (td);
1478	}
1479
1480	return (NULL);
1481}
1482
1483/*
1484 * Initialize a thread queue.
1485 */
1486static void
1487tdq_setup(struct tdq *tdq, int id)
1488{
1489
1490	if (bootverbose)
1491		printf("ULE: setup cpu %d\n", id);
1492	runq_init(&tdq->tdq_realtime);
1493	runq_init(&tdq->tdq_timeshare);
1494	runq_init(&tdq->tdq_idle);
1495	tdq->tdq_id = id;
1496	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1497	    "sched lock %d", (int)TDQ_ID(tdq));
1498	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock", MTX_SPIN);
1499#ifdef KTR
1500	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1501	    "CPU %d load", (int)TDQ_ID(tdq));
1502#endif
1503}
1504
1505#ifdef SMP
1506static void
1507sched_setup_smp(void)
1508{
1509	struct tdq *tdq;
1510	int i;
1511
1512	cpu_top = smp_topo();
1513	CPU_FOREACH(i) {
1514		tdq = DPCPU_ID_PTR(i, tdq);
1515		tdq_setup(tdq, i);
1516		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1517		if (tdq->tdq_cg == NULL)
1518			panic("Can't find cpu group for %d\n", i);
1519		DPCPU_ID_SET(i, randomval, i * 69069 + 5);
1520	}
1521	PCPU_SET(sched, DPCPU_PTR(tdq));
1522	balance_tdq = TDQ_SELF();
1523}
1524#endif
1525
1526/*
1527 * Setup the thread queues and initialize the topology based on MD
1528 * information.
1529 */
1530static void
1531sched_setup(void *dummy)
1532{
1533	struct tdq *tdq;
1534
1535#ifdef SMP
1536	sched_setup_smp();
1537#else
1538	tdq_setup(TDQ_SELF(), 0);
1539#endif
1540	tdq = TDQ_SELF();
1541
1542	/* Add thread0's load since it's running. */
1543	TDQ_LOCK(tdq);
1544	thread0.td_lock = TDQ_LOCKPTR(tdq);
1545	tdq_load_add(tdq, &thread0);
1546	tdq->tdq_curthread = &thread0;
1547	tdq->tdq_lowpri = thread0.td_priority;
1548	TDQ_UNLOCK(tdq);
1549}
1550
1551/*
1552 * This routine determines time constants after stathz and hz are setup.
1553 */
1554/* ARGSUSED */
1555static void
1556sched_initticks(void *dummy)
1557{
1558	int incr;
1559
1560	realstathz = stathz ? stathz : hz;
1561	sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR;
1562	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
1563	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
1564	    realstathz);
1565
1566	/*
1567	 * tickincr is shifted out by 10 to avoid rounding errors due to
1568	 * hz not being evenly divisible by stathz on all platforms.
1569	 */
1570	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1571	/*
1572	 * This does not work for values of stathz that are more than
1573	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1574	 */
1575	if (incr == 0)
1576		incr = 1;
1577	tickincr = incr;
1578#ifdef SMP
1579	/*
1580	 * Set the default balance interval now that we know
1581	 * what realstathz is.
1582	 */
1583	balance_interval = realstathz;
1584	balance_ticks = balance_interval;
1585	affinity = SCHED_AFFINITY_DEFAULT;
1586#endif
1587	if (sched_idlespinthresh < 0)
1588		sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
1589}
1590
1591/*
1592 * This is the core of the interactivity algorithm.  Determines a score based
1593 * on past behavior.  It is the ratio of sleep time to run time scaled to
1594 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1595 * differs from the cpu usage because it does not account for time spent
1596 * waiting on a run-queue.  Would be prettier if we had floating point.
1597 *
1598 * When a thread's sleep time is greater than its run time the
1599 * calculation is:
1600 *
1601 *                           scaling factor
1602 * interactivity score =  ---------------------
1603 *                        sleep time / run time
1604 *
1605 *
1606 * When a thread's run time is greater than its sleep time the
1607 * calculation is:
1608 *
1609 *                                                 scaling factor
1610 * interactivity score = 2 * scaling factor  -  ---------------------
1611 *                                              run time / sleep time
1612 */
1613static int
1614sched_interact_score(struct thread *td)
1615{
1616	struct td_sched *ts;
1617	int div;
1618
1619	ts = td_get_sched(td);
1620	/*
1621	 * The score is only needed if this is likely to be an interactive
1622	 * task.  Don't go through the expense of computing it if there's
1623	 * no chance.
1624	 */
1625	if (sched_interact <= SCHED_INTERACT_HALF &&
1626		ts->ts_runtime >= ts->ts_slptime)
1627			return (SCHED_INTERACT_HALF);
1628
1629	if (ts->ts_runtime > ts->ts_slptime) {
1630		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1631		return (SCHED_INTERACT_HALF +
1632		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1633	}
1634	if (ts->ts_slptime > ts->ts_runtime) {
1635		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1636		return (ts->ts_runtime / div);
1637	}
1638	/* runtime == slptime */
1639	if (ts->ts_runtime)
1640		return (SCHED_INTERACT_HALF);
1641
1642	/*
1643	 * This can happen if slptime and runtime are 0.
1644	 */
1645	return (0);
1646
1647}
1648
1649/*
1650 * Scale the scheduling priority according to the "interactivity" of this
1651 * process.
1652 */
1653static void
1654sched_priority(struct thread *td)
1655{
1656	u_int pri, score;
1657
1658	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1659		return;
1660	/*
1661	 * If the score is interactive we place the thread in the realtime
1662	 * queue with a priority that is less than kernel and interrupt
1663	 * priorities.  These threads are not subject to nice restrictions.
1664	 *
1665	 * Scores greater than this are placed on the normal timeshare queue
1666	 * where the priority is partially decided by the most recent cpu
1667	 * utilization and the rest is decided by nice value.
1668	 *
1669	 * The nice value of the process has a linear effect on the calculated
1670	 * score.  Negative nice values make it easier for a thread to be
1671	 * considered interactive.
1672	 */
1673	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1674	if (score < sched_interact) {
1675		pri = PRI_MIN_INTERACT;
1676		pri += (PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) * score /
1677		    sched_interact;
1678		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1679		    ("sched_priority: invalid interactive priority %u score %u",
1680		    pri, score));
1681	} else {
1682		pri = SCHED_PRI_MIN;
1683		if (td_get_sched(td)->ts_ticks)
1684			pri += min(SCHED_PRI_TICKS(td_get_sched(td)),
1685			    SCHED_PRI_RANGE - 1);
1686		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1687		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1688		    ("sched_priority: invalid priority %u: nice %d, "
1689		    "ticks %d ftick %d ltick %d tick pri %d",
1690		    pri, td->td_proc->p_nice, td_get_sched(td)->ts_ticks,
1691		    td_get_sched(td)->ts_ftick, td_get_sched(td)->ts_ltick,
1692		    SCHED_PRI_TICKS(td_get_sched(td))));
1693	}
1694	sched_user_prio(td, pri);
1695
1696	return;
1697}
1698
1699/*
1700 * This routine enforces a maximum limit on the amount of scheduling history
1701 * kept.  It is called after either the slptime or runtime is adjusted.  This
1702 * function is ugly due to integer math.
1703 */
1704static void
1705sched_interact_update(struct thread *td)
1706{
1707	struct td_sched *ts;
1708	u_int sum;
1709
1710	ts = td_get_sched(td);
1711	sum = ts->ts_runtime + ts->ts_slptime;
1712	if (sum < SCHED_SLP_RUN_MAX)
1713		return;
1714	/*
1715	 * This only happens from two places:
1716	 * 1) We have added an unusual amount of run time from fork_exit.
1717	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1718	 */
1719	if (sum > SCHED_SLP_RUN_MAX * 2) {
1720		if (ts->ts_runtime > ts->ts_slptime) {
1721			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1722			ts->ts_slptime = 1;
1723		} else {
1724			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1725			ts->ts_runtime = 1;
1726		}
1727		return;
1728	}
1729	/*
1730	 * If we have exceeded by more than 1/5th then the algorithm below
1731	 * will not bring us back into range.  Dividing by two here forces
1732	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1733	 */
1734	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1735		ts->ts_runtime /= 2;
1736		ts->ts_slptime /= 2;
1737		return;
1738	}
1739	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1740	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1741}
1742
1743/*
1744 * Scale back the interactivity history when a child thread is created.  The
1745 * history is inherited from the parent but the thread may behave totally
1746 * differently.  For example, a shell spawning a compiler process.  We want
1747 * to learn that the compiler is behaving badly very quickly.
1748 */
1749static void
1750sched_interact_fork(struct thread *td)
1751{
1752	struct td_sched *ts;
1753	int ratio;
1754	int sum;
1755
1756	ts = td_get_sched(td);
1757	sum = ts->ts_runtime + ts->ts_slptime;
1758	if (sum > SCHED_SLP_RUN_FORK) {
1759		ratio = sum / SCHED_SLP_RUN_FORK;
1760		ts->ts_runtime /= ratio;
1761		ts->ts_slptime /= ratio;
1762	}
1763}
1764
1765/*
1766 * Called from proc0_init() to setup the scheduler fields.
1767 */
1768void
1769schedinit(void)
1770{
1771	struct td_sched *ts0;
1772
1773	/*
1774	 * Set up the scheduler specific parts of thread0.
1775	 */
1776	ts0 = td_get_sched(&thread0);
1777	ts0->ts_ltick = ticks;
1778	ts0->ts_ftick = ticks;
1779	ts0->ts_slice = 0;
1780	ts0->ts_cpu = curcpu;	/* set valid CPU number */
1781}
1782
1783/*
1784 * schedinit_ap() is needed prior to calling sched_throw(NULL) to ensure that
1785 * the pcpu requirements are met for any calls in the period between curthread
1786 * initialization and sched_throw().  One can safely add threads to the queue
1787 * before sched_throw(), for instance, as long as the thread lock is setup
1788 * correctly.
1789 *
1790 * TDQ_SELF() relies on the below sched pcpu setting; it may be used only
1791 * after schedinit_ap().
1792 */
1793void
1794schedinit_ap(void)
1795{
1796
1797#ifdef SMP
1798	PCPU_SET(sched, DPCPU_PTR(tdq));
1799#endif
1800	PCPU_GET(idlethread)->td_lock = TDQ_LOCKPTR(TDQ_SELF());
1801}
1802
1803/*
1804 * This is only somewhat accurate since given many processes of the same
1805 * priority they will switch when their slices run out, which will be
1806 * at most sched_slice stathz ticks.
1807 */
1808int
1809sched_rr_interval(void)
1810{
1811
1812	/* Convert sched_slice from stathz to hz. */
1813	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
1814}
1815
1816/*
1817 * Update the percent cpu tracking information when it is requested or
1818 * the total history exceeds the maximum.  We keep a sliding history of
1819 * tick counts that slowly decays.  This is less precise than the 4BSD
1820 * mechanism since it happens with less regular and frequent events.
1821 */
1822static void
1823sched_pctcpu_update(struct td_sched *ts, int run)
1824{
1825	int t = ticks;
1826
1827	/*
1828	 * The signed difference may be negative if the thread hasn't run for
1829	 * over half of the ticks rollover period.
1830	 */
1831	if ((u_int)(t - ts->ts_ltick) >= SCHED_TICK_TARG) {
1832		ts->ts_ticks = 0;
1833		ts->ts_ftick = t - SCHED_TICK_TARG;
1834	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1835		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1836		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1837		ts->ts_ftick = t - SCHED_TICK_TARG;
1838	}
1839	if (run)
1840		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1841	ts->ts_ltick = t;
1842}
1843
1844/*
1845 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1846 * if necessary.  This is the back-end for several priority related
1847 * functions.
1848 */
1849static void
1850sched_thread_priority(struct thread *td, u_char prio)
1851{
1852	struct tdq *tdq;
1853	int oldpri;
1854
1855	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1856	    "prio:%d", td->td_priority, "new prio:%d", prio,
1857	    KTR_ATTR_LINKED, sched_tdname(curthread));
1858	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
1859	if (td != curthread && prio < td->td_priority) {
1860		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1861		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1862		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1863		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio,
1864		    curthread);
1865	}
1866	THREAD_LOCK_ASSERT(td, MA_OWNED);
1867	if (td->td_priority == prio)
1868		return;
1869	/*
1870	 * If the priority has been elevated due to priority
1871	 * propagation, we may have to move ourselves to a new
1872	 * queue.  This could be optimized to not re-add in some
1873	 * cases.
1874	 */
1875	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1876		sched_rem(td);
1877		td->td_priority = prio;
1878		sched_add(td, SRQ_BORROWING | SRQ_HOLDTD);
1879		return;
1880	}
1881	/*
1882	 * If the thread is currently running we may have to adjust the lowpri
1883	 * information so other cpus are aware of our current priority.
1884	 */
1885	if (TD_IS_RUNNING(td)) {
1886		tdq = TDQ_CPU(td_get_sched(td)->ts_cpu);
1887		oldpri = td->td_priority;
1888		td->td_priority = prio;
1889		if (prio < tdq->tdq_lowpri)
1890			tdq->tdq_lowpri = prio;
1891		else if (tdq->tdq_lowpri == oldpri)
1892			tdq_setlowpri(tdq, td);
1893		return;
1894	}
1895	td->td_priority = prio;
1896}
1897
1898/*
1899 * Update a thread's priority when it is lent another thread's
1900 * priority.
1901 */
1902void
1903sched_lend_prio(struct thread *td, u_char prio)
1904{
1905
1906	td->td_flags |= TDF_BORROWING;
1907	sched_thread_priority(td, prio);
1908}
1909
1910/*
1911 * Restore a thread's priority when priority propagation is
1912 * over.  The prio argument is the minimum priority the thread
1913 * needs to have to satisfy other possible priority lending
1914 * requests.  If the thread's regular priority is less
1915 * important than prio, the thread will keep a priority boost
1916 * of prio.
1917 */
1918void
1919sched_unlend_prio(struct thread *td, u_char prio)
1920{
1921	u_char base_pri;
1922
1923	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1924	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1925		base_pri = td->td_user_pri;
1926	else
1927		base_pri = td->td_base_pri;
1928	if (prio >= base_pri) {
1929		td->td_flags &= ~TDF_BORROWING;
1930		sched_thread_priority(td, base_pri);
1931	} else
1932		sched_lend_prio(td, prio);
1933}
1934
1935/*
1936 * Standard entry for setting the priority to an absolute value.
1937 */
1938void
1939sched_prio(struct thread *td, u_char prio)
1940{
1941	u_char oldprio;
1942
1943	/* First, update the base priority. */
1944	td->td_base_pri = prio;
1945
1946	/*
1947	 * If the thread is borrowing another thread's priority, don't
1948	 * ever lower the priority.
1949	 */
1950	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1951		return;
1952
1953	/* Change the real priority. */
1954	oldprio = td->td_priority;
1955	sched_thread_priority(td, prio);
1956
1957	/*
1958	 * If the thread is on a turnstile, then let the turnstile update
1959	 * its state.
1960	 */
1961	if (TD_ON_LOCK(td) && oldprio != prio)
1962		turnstile_adjust(td, oldprio);
1963}
1964
1965/*
1966 * Set the base interrupt thread priority.
1967 */
1968void
1969sched_ithread_prio(struct thread *td, u_char prio)
1970{
1971	THREAD_LOCK_ASSERT(td, MA_OWNED);
1972	MPASS(td->td_pri_class == PRI_ITHD);
1973	td->td_base_ithread_pri = prio;
1974	sched_prio(td, prio);
1975}
1976
1977/*
1978 * Set the base user priority, does not effect current running priority.
1979 */
1980void
1981sched_user_prio(struct thread *td, u_char prio)
1982{
1983
1984	td->td_base_user_pri = prio;
1985	if (td->td_lend_user_pri <= prio)
1986		return;
1987	td->td_user_pri = prio;
1988}
1989
1990void
1991sched_lend_user_prio(struct thread *td, u_char prio)
1992{
1993
1994	THREAD_LOCK_ASSERT(td, MA_OWNED);
1995	td->td_lend_user_pri = prio;
1996	td->td_user_pri = min(prio, td->td_base_user_pri);
1997	if (td->td_priority > td->td_user_pri)
1998		sched_prio(td, td->td_user_pri);
1999	else if (td->td_priority != td->td_user_pri)
2000		ast_sched_locked(td, TDA_SCHED);
2001}
2002
2003/*
2004 * Like the above but first check if there is anything to do.
2005 */
2006void
2007sched_lend_user_prio_cond(struct thread *td, u_char prio)
2008{
2009
2010	if (td->td_lend_user_pri == prio)
2011		return;
2012
2013	thread_lock(td);
2014	sched_lend_user_prio(td, prio);
2015	thread_unlock(td);
2016}
2017
2018#ifdef SMP
2019/*
2020 * This tdq is about to idle.  Try to steal a thread from another CPU before
2021 * choosing the idle thread.
2022 */
2023static void
2024tdq_trysteal(struct tdq *tdq)
2025{
2026	struct cpu_group *cg, *parent;
2027	struct tdq *steal;
2028	cpuset_t mask;
2029	int cpu, i, goup;
2030
2031	if (smp_started == 0 || steal_idle == 0 || trysteal_limit == 0 ||
2032	    tdq->tdq_cg == NULL)
2033		return;
2034	CPU_FILL(&mask);
2035	CPU_CLR(PCPU_GET(cpuid), &mask);
2036	/* We don't want to be preempted while we're iterating. */
2037	spinlock_enter();
2038	TDQ_UNLOCK(tdq);
2039	for (i = 1, cg = tdq->tdq_cg, goup = 0; ; ) {
2040		cpu = sched_highest(cg, &mask, steal_thresh, 1);
2041		/*
2042		 * If a thread was added while interrupts were disabled don't
2043		 * steal one here.
2044		 */
2045		if (TDQ_LOAD(tdq) > 0) {
2046			TDQ_LOCK(tdq);
2047			break;
2048		}
2049
2050		/*
2051		 * We found no CPU to steal from in this group.  Escalate to
2052		 * the parent and repeat.  But if parent has only two children
2053		 * groups we can avoid searching this group again by searching
2054		 * the other one specifically and then escalating two levels.
2055		 */
2056		if (cpu == -1) {
2057			if (goup) {
2058				cg = cg->cg_parent;
2059				goup = 0;
2060			}
2061			if (++i > trysteal_limit) {
2062				TDQ_LOCK(tdq);
2063				break;
2064			}
2065			parent = cg->cg_parent;
2066			if (parent == NULL) {
2067				TDQ_LOCK(tdq);
2068				break;
2069			}
2070			if (parent->cg_children == 2) {
2071				if (cg == &parent->cg_child[0])
2072					cg = &parent->cg_child[1];
2073				else
2074					cg = &parent->cg_child[0];
2075				goup = 1;
2076			} else
2077				cg = parent;
2078			continue;
2079		}
2080		steal = TDQ_CPU(cpu);
2081		/*
2082		 * The data returned by sched_highest() is stale and
2083		 * the chosen CPU no longer has an eligible thread.
2084		 * At this point unconditionally exit the loop to bound
2085		 * the time spent in the critcal section.
2086		 */
2087		if (TDQ_LOAD(steal) < steal_thresh ||
2088		    TDQ_TRANSFERABLE(steal) == 0)
2089			continue;
2090		/*
2091		 * Try to lock both queues. If we are assigned a thread while
2092		 * waited for the lock, switch to it now instead of stealing.
2093		 * If we can't get the lock, then somebody likely got there
2094		 * first.
2095		 */
2096		TDQ_LOCK(tdq);
2097		if (tdq->tdq_load > 0)
2098			break;
2099		if (TDQ_TRYLOCK_FLAGS(steal, MTX_DUPOK) == 0)
2100			break;
2101		/*
2102		 * The data returned by sched_highest() is stale and
2103                 * the chosen CPU no longer has an eligible thread.
2104		 */
2105		if (TDQ_LOAD(steal) < steal_thresh ||
2106		    TDQ_TRANSFERABLE(steal) == 0) {
2107			TDQ_UNLOCK(steal);
2108			break;
2109		}
2110		/*
2111		 * If we fail to acquire one due to affinity restrictions,
2112		 * bail out and let the idle thread to a more complete search
2113		 * outside of a critical section.
2114		 */
2115		if (tdq_move(steal, tdq) == -1) {
2116			TDQ_UNLOCK(steal);
2117			break;
2118		}
2119		TDQ_UNLOCK(steal);
2120		break;
2121	}
2122	spinlock_exit();
2123}
2124#endif
2125
2126/*
2127 * Handle migration from sched_switch().  This happens only for
2128 * cpu binding.
2129 */
2130static struct mtx *
2131sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
2132{
2133	struct tdq *tdn;
2134#ifdef SMP
2135	int lowpri;
2136#endif
2137
2138	KASSERT(THREAD_CAN_MIGRATE(td) ||
2139	    (td_get_sched(td)->ts_flags & TSF_BOUND) != 0,
2140	    ("Thread %p shouldn't migrate", td));
2141	KASSERT(!CPU_ABSENT(td_get_sched(td)->ts_cpu), ("sched_switch_migrate: "
2142	    "thread %s queued on absent CPU %d.", td->td_name,
2143	    td_get_sched(td)->ts_cpu));
2144	tdn = TDQ_CPU(td_get_sched(td)->ts_cpu);
2145#ifdef SMP
2146	tdq_load_rem(tdq, td);
2147	/*
2148	 * Do the lock dance required to avoid LOR.  We have an
2149	 * extra spinlock nesting from sched_switch() which will
2150	 * prevent preemption while we're holding neither run-queue lock.
2151	 */
2152	TDQ_UNLOCK(tdq);
2153	TDQ_LOCK(tdn);
2154	lowpri = tdq_add(tdn, td, flags);
2155	tdq_notify(tdn, lowpri);
2156	TDQ_UNLOCK(tdn);
2157	TDQ_LOCK(tdq);
2158#endif
2159	return (TDQ_LOCKPTR(tdn));
2160}
2161
2162/*
2163 * thread_lock_unblock() that does not assume td_lock is blocked.
2164 */
2165static inline void
2166thread_unblock_switch(struct thread *td, struct mtx *mtx)
2167{
2168	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
2169	    (uintptr_t)mtx);
2170}
2171
2172/*
2173 * Switch threads.  This function has to handle threads coming in while
2174 * blocked for some reason, running, or idle.  It also must deal with
2175 * migrating a thread from one queue to another as running threads may
2176 * be assigned elsewhere via binding.
2177 */
2178void
2179sched_switch(struct thread *td, int flags)
2180{
2181	struct thread *newtd;
2182	struct tdq *tdq;
2183	struct td_sched *ts;
2184	struct mtx *mtx;
2185	int srqflag;
2186	int cpuid, preempted;
2187#ifdef SMP
2188	int pickcpu;
2189#endif
2190
2191	THREAD_LOCK_ASSERT(td, MA_OWNED);
2192
2193	cpuid = PCPU_GET(cpuid);
2194	tdq = TDQ_SELF();
2195	ts = td_get_sched(td);
2196	sched_pctcpu_update(ts, 1);
2197#ifdef SMP
2198	pickcpu = (td->td_flags & TDF_PICKCPU) != 0;
2199	if (pickcpu)
2200		ts->ts_rltick = ticks - affinity * MAX_CACHE_LEVELS;
2201	else
2202		ts->ts_rltick = ticks;
2203#endif
2204	td->td_lastcpu = td->td_oncpu;
2205	preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
2206	    (flags & SW_PREEMPT) != 0;
2207	td->td_flags &= ~(TDF_PICKCPU | TDF_SLICEEND);
2208	ast_unsched_locked(td, TDA_SCHED);
2209	td->td_owepreempt = 0;
2210	atomic_store_char(&tdq->tdq_owepreempt, 0);
2211	if (!TD_IS_IDLETHREAD(td))
2212		TDQ_SWITCHCNT_INC(tdq);
2213
2214	/*
2215	 * Always block the thread lock so we can drop the tdq lock early.
2216	 */
2217	mtx = thread_lock_block(td);
2218	spinlock_enter();
2219	if (TD_IS_IDLETHREAD(td)) {
2220		MPASS(mtx == TDQ_LOCKPTR(tdq));
2221		TD_SET_CAN_RUN(td);
2222	} else if (TD_IS_RUNNING(td)) {
2223		MPASS(mtx == TDQ_LOCKPTR(tdq));
2224		srqflag = SRQ_OURSELF | SRQ_YIELDING |
2225		    (preempted ? SRQ_PREEMPTED : 0);
2226#ifdef SMP
2227		if (THREAD_CAN_MIGRATE(td) && (!THREAD_CAN_SCHED(td, ts->ts_cpu)
2228		    || pickcpu))
2229			ts->ts_cpu = sched_pickcpu(td, 0);
2230#endif
2231		if (ts->ts_cpu == cpuid)
2232			tdq_runq_add(tdq, td, srqflag);
2233		else
2234			mtx = sched_switch_migrate(tdq, td, srqflag);
2235	} else {
2236		/* This thread must be going to sleep. */
2237		if (mtx != TDQ_LOCKPTR(tdq)) {
2238			mtx_unlock_spin(mtx);
2239			TDQ_LOCK(tdq);
2240		}
2241		tdq_load_rem(tdq, td);
2242#ifdef SMP
2243		if (tdq->tdq_load == 0)
2244			tdq_trysteal(tdq);
2245#endif
2246	}
2247
2248#if (KTR_COMPILE & KTR_SCHED) != 0
2249	if (TD_IS_IDLETHREAD(td))
2250		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
2251		    "prio:%d", td->td_priority);
2252	else
2253		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
2254		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
2255		    "lockname:\"%s\"", td->td_lockname);
2256#endif
2257
2258	/*
2259	 * We enter here with the thread blocked and assigned to the
2260	 * appropriate cpu run-queue or sleep-queue and with the current
2261	 * thread-queue locked.
2262	 */
2263	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2264	MPASS(td == tdq->tdq_curthread);
2265	newtd = choosethread();
2266	sched_pctcpu_update(td_get_sched(newtd), 0);
2267	TDQ_UNLOCK(tdq);
2268
2269	/*
2270	 * Call the MD code to switch contexts if necessary.
2271	 */
2272	if (td != newtd) {
2273#ifdef	HWPMC_HOOKS
2274		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
2275			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
2276#endif
2277		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
2278
2279#ifdef KDTRACE_HOOKS
2280		/*
2281		 * If DTrace has set the active vtime enum to anything
2282		 * other than INACTIVE (0), then it should have set the
2283		 * function to call.
2284		 */
2285		if (dtrace_vtime_active)
2286			(*dtrace_vtime_switch_func)(newtd);
2287#endif
2288		td->td_oncpu = NOCPU;
2289		cpu_switch(td, newtd, mtx);
2290		cpuid = td->td_oncpu = PCPU_GET(cpuid);
2291
2292		SDT_PROBE0(sched, , , on__cpu);
2293#ifdef	HWPMC_HOOKS
2294		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
2295			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
2296#endif
2297	} else {
2298		thread_unblock_switch(td, mtx);
2299		SDT_PROBE0(sched, , , remain__cpu);
2300	}
2301	KASSERT(curthread->td_md.md_spinlock_count == 1,
2302	    ("invalid count %d", curthread->td_md.md_spinlock_count));
2303
2304	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
2305	    "prio:%d", td->td_priority);
2306}
2307
2308/*
2309 * Adjust thread priorities as a result of a nice request.
2310 */
2311void
2312sched_nice(struct proc *p, int nice)
2313{
2314	struct thread *td;
2315
2316	PROC_LOCK_ASSERT(p, MA_OWNED);
2317
2318	p->p_nice = nice;
2319	FOREACH_THREAD_IN_PROC(p, td) {
2320		thread_lock(td);
2321		sched_priority(td);
2322		sched_prio(td, td->td_base_user_pri);
2323		thread_unlock(td);
2324	}
2325}
2326
2327/*
2328 * Record the sleep time for the interactivity scorer.
2329 */
2330void
2331sched_sleep(struct thread *td, int prio)
2332{
2333
2334	THREAD_LOCK_ASSERT(td, MA_OWNED);
2335
2336	td->td_slptick = ticks;
2337	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
2338		td->td_flags |= TDF_CANSWAP;
2339	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
2340		return;
2341	if (static_boost == 1 && prio)
2342		sched_prio(td, prio);
2343	else if (static_boost && td->td_priority > static_boost)
2344		sched_prio(td, static_boost);
2345}
2346
2347/*
2348 * Schedule a thread to resume execution and record how long it voluntarily
2349 * slept.  We also update the pctcpu, interactivity, and priority.
2350 *
2351 * Requires the thread lock on entry, drops on exit.
2352 */
2353void
2354sched_wakeup(struct thread *td, int srqflags)
2355{
2356	struct td_sched *ts;
2357	int slptick;
2358
2359	THREAD_LOCK_ASSERT(td, MA_OWNED);
2360	ts = td_get_sched(td);
2361	td->td_flags &= ~TDF_CANSWAP;
2362
2363	/*
2364	 * If we slept for more than a tick update our interactivity and
2365	 * priority.
2366	 */
2367	slptick = td->td_slptick;
2368	td->td_slptick = 0;
2369	if (slptick && slptick != ticks) {
2370		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2371		sched_interact_update(td);
2372		sched_pctcpu_update(ts, 0);
2373	}
2374
2375	/*
2376	 * When resuming an idle ithread, restore its base ithread
2377	 * priority.
2378	 */
2379	if (PRI_BASE(td->td_pri_class) == PRI_ITHD &&
2380	    td->td_priority != td->td_base_ithread_pri)
2381		sched_prio(td, td->td_base_ithread_pri);
2382
2383	/*
2384	 * Reset the slice value since we slept and advanced the round-robin.
2385	 */
2386	ts->ts_slice = 0;
2387	sched_add(td, SRQ_BORING | srqflags);
2388}
2389
2390/*
2391 * Penalize the parent for creating a new child and initialize the child's
2392 * priority.
2393 */
2394void
2395sched_fork(struct thread *td, struct thread *child)
2396{
2397	THREAD_LOCK_ASSERT(td, MA_OWNED);
2398	sched_pctcpu_update(td_get_sched(td), 1);
2399	sched_fork_thread(td, child);
2400	/*
2401	 * Penalize the parent and child for forking.
2402	 */
2403	sched_interact_fork(child);
2404	sched_priority(child);
2405	td_get_sched(td)->ts_runtime += tickincr;
2406	sched_interact_update(td);
2407	sched_priority(td);
2408}
2409
2410/*
2411 * Fork a new thread, may be within the same process.
2412 */
2413void
2414sched_fork_thread(struct thread *td, struct thread *child)
2415{
2416	struct td_sched *ts;
2417	struct td_sched *ts2;
2418	struct tdq *tdq;
2419
2420	tdq = TDQ_SELF();
2421	THREAD_LOCK_ASSERT(td, MA_OWNED);
2422	/*
2423	 * Initialize child.
2424	 */
2425	ts = td_get_sched(td);
2426	ts2 = td_get_sched(child);
2427	child->td_oncpu = NOCPU;
2428	child->td_lastcpu = NOCPU;
2429	child->td_lock = TDQ_LOCKPTR(tdq);
2430	child->td_cpuset = cpuset_ref(td->td_cpuset);
2431	child->td_domain.dr_policy = td->td_cpuset->cs_domain;
2432	ts2->ts_cpu = ts->ts_cpu;
2433	ts2->ts_flags = 0;
2434	/*
2435	 * Grab our parents cpu estimation information.
2436	 */
2437	ts2->ts_ticks = ts->ts_ticks;
2438	ts2->ts_ltick = ts->ts_ltick;
2439	ts2->ts_ftick = ts->ts_ftick;
2440	/*
2441	 * Do not inherit any borrowed priority from the parent.
2442	 */
2443	child->td_priority = child->td_base_pri;
2444	/*
2445	 * And update interactivity score.
2446	 */
2447	ts2->ts_slptime = ts->ts_slptime;
2448	ts2->ts_runtime = ts->ts_runtime;
2449	/* Attempt to quickly learn interactivity. */
2450	ts2->ts_slice = tdq_slice(tdq) - sched_slice_min;
2451#ifdef KTR
2452	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2453#endif
2454}
2455
2456/*
2457 * Adjust the priority class of a thread.
2458 */
2459void
2460sched_class(struct thread *td, int class)
2461{
2462
2463	THREAD_LOCK_ASSERT(td, MA_OWNED);
2464	if (td->td_pri_class == class)
2465		return;
2466	td->td_pri_class = class;
2467}
2468
2469/*
2470 * Return some of the child's priority and interactivity to the parent.
2471 */
2472void
2473sched_exit(struct proc *p, struct thread *child)
2474{
2475	struct thread *td;
2476
2477	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2478	    "prio:%d", child->td_priority);
2479	PROC_LOCK_ASSERT(p, MA_OWNED);
2480	td = FIRST_THREAD_IN_PROC(p);
2481	sched_exit_thread(td, child);
2482}
2483
2484/*
2485 * Penalize another thread for the time spent on this one.  This helps to
2486 * worsen the priority and interactivity of processes which schedule batch
2487 * jobs such as make.  This has little effect on the make process itself but
2488 * causes new processes spawned by it to receive worse scores immediately.
2489 */
2490void
2491sched_exit_thread(struct thread *td, struct thread *child)
2492{
2493
2494	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2495	    "prio:%d", child->td_priority);
2496	/*
2497	 * Give the child's runtime to the parent without returning the
2498	 * sleep time as a penalty to the parent.  This causes shells that
2499	 * launch expensive things to mark their children as expensive.
2500	 */
2501	thread_lock(td);
2502	td_get_sched(td)->ts_runtime += td_get_sched(child)->ts_runtime;
2503	sched_interact_update(td);
2504	sched_priority(td);
2505	thread_unlock(td);
2506}
2507
2508void
2509sched_preempt(struct thread *td)
2510{
2511	struct tdq *tdq;
2512	int flags;
2513
2514	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2515
2516	thread_lock(td);
2517	tdq = TDQ_SELF();
2518	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2519	if (td->td_priority > tdq->tdq_lowpri) {
2520		if (td->td_critnest == 1) {
2521			flags = SW_INVOL | SW_PREEMPT;
2522			flags |= TD_IS_IDLETHREAD(td) ? SWT_REMOTEWAKEIDLE :
2523			    SWT_REMOTEPREEMPT;
2524			mi_switch(flags);
2525			/* Switch dropped thread lock. */
2526			return;
2527		}
2528		td->td_owepreempt = 1;
2529	} else {
2530		tdq->tdq_owepreempt = 0;
2531	}
2532	thread_unlock(td);
2533}
2534
2535/*
2536 * Fix priorities on return to user-space.  Priorities may be elevated due
2537 * to static priorities in msleep() or similar.
2538 */
2539void
2540sched_userret_slowpath(struct thread *td)
2541{
2542
2543	thread_lock(td);
2544	td->td_priority = td->td_user_pri;
2545	td->td_base_pri = td->td_user_pri;
2546	tdq_setlowpri(TDQ_SELF(), td);
2547	thread_unlock(td);
2548}
2549
2550SCHED_STAT_DEFINE(ithread_demotions, "Interrupt thread priority demotions");
2551SCHED_STAT_DEFINE(ithread_preemptions,
2552    "Interrupt thread preemptions due to time-sharing");
2553
2554/*
2555 * Return time slice for a given thread.  For ithreads this is
2556 * sched_slice.  For other threads it is tdq_slice(tdq).
2557 */
2558static inline int
2559td_slice(struct thread *td, struct tdq *tdq)
2560{
2561	if (PRI_BASE(td->td_pri_class) == PRI_ITHD)
2562		return (sched_slice);
2563	return (tdq_slice(tdq));
2564}
2565
2566/*
2567 * Handle a stathz tick.  This is really only relevant for timeshare
2568 * and interrupt threads.
2569 */
2570void
2571sched_clock(struct thread *td, int cnt)
2572{
2573	struct tdq *tdq;
2574	struct td_sched *ts;
2575
2576	THREAD_LOCK_ASSERT(td, MA_OWNED);
2577	tdq = TDQ_SELF();
2578#ifdef SMP
2579	/*
2580	 * We run the long term load balancer infrequently on the first cpu.
2581	 */
2582	if (balance_tdq == tdq && smp_started != 0 && rebalance != 0 &&
2583	    balance_ticks != 0) {
2584		balance_ticks -= cnt;
2585		if (balance_ticks <= 0)
2586			sched_balance();
2587	}
2588#endif
2589	/*
2590	 * Save the old switch count so we have a record of the last ticks
2591	 * activity.   Initialize the new switch count based on our load.
2592	 * If there is some activity seed it to reflect that.
2593	 */
2594	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2595	tdq->tdq_switchcnt = tdq->tdq_load;
2596
2597	/*
2598	 * Advance the insert index once for each tick to ensure that all
2599	 * threads get a chance to run.
2600	 */
2601	if (tdq->tdq_idx == tdq->tdq_ridx) {
2602		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2603		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2604			tdq->tdq_ridx = tdq->tdq_idx;
2605	}
2606	ts = td_get_sched(td);
2607	sched_pctcpu_update(ts, 1);
2608	if ((td->td_pri_class & PRI_FIFO_BIT) || TD_IS_IDLETHREAD(td))
2609		return;
2610
2611	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2612		/*
2613		 * We used a tick; charge it to the thread so
2614		 * that we can compute our interactivity.
2615		 */
2616		td_get_sched(td)->ts_runtime += tickincr * cnt;
2617		sched_interact_update(td);
2618		sched_priority(td);
2619	}
2620
2621	/*
2622	 * Force a context switch if the current thread has used up a full
2623	 * time slice (default is 100ms).
2624	 */
2625	ts->ts_slice += cnt;
2626	if (ts->ts_slice >= td_slice(td, tdq)) {
2627		ts->ts_slice = 0;
2628
2629		/*
2630		 * If an ithread uses a full quantum, demote its
2631		 * priority and preempt it.
2632		 */
2633		if (PRI_BASE(td->td_pri_class) == PRI_ITHD) {
2634			SCHED_STAT_INC(ithread_preemptions);
2635			td->td_owepreempt = 1;
2636			if (td->td_base_pri + RQ_PPQ < PRI_MAX_ITHD) {
2637				SCHED_STAT_INC(ithread_demotions);
2638				sched_prio(td, td->td_base_pri + RQ_PPQ);
2639			}
2640		} else {
2641			ast_sched_locked(td, TDA_SCHED);
2642			td->td_flags |= TDF_SLICEEND;
2643		}
2644	}
2645}
2646
2647u_int
2648sched_estcpu(struct thread *td __unused)
2649{
2650
2651	return (0);
2652}
2653
2654/*
2655 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2656 * cooperative idle threads.
2657 */
2658int
2659sched_runnable(void)
2660{
2661	struct tdq *tdq;
2662	int load;
2663
2664	load = 1;
2665
2666	tdq = TDQ_SELF();
2667	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2668		if (TDQ_LOAD(tdq) > 0)
2669			goto out;
2670	} else
2671		if (TDQ_LOAD(tdq) - 1 > 0)
2672			goto out;
2673	load = 0;
2674out:
2675	return (load);
2676}
2677
2678/*
2679 * Choose the highest priority thread to run.  The thread is removed from
2680 * the run-queue while running however the load remains.
2681 */
2682struct thread *
2683sched_choose(void)
2684{
2685	struct thread *td;
2686	struct tdq *tdq;
2687
2688	tdq = TDQ_SELF();
2689	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2690	td = tdq_choose(tdq);
2691	if (td != NULL) {
2692		tdq_runq_rem(tdq, td);
2693		tdq->tdq_lowpri = td->td_priority;
2694	} else {
2695		tdq->tdq_lowpri = PRI_MAX_IDLE;
2696		td = PCPU_GET(idlethread);
2697	}
2698	tdq->tdq_curthread = td;
2699	return (td);
2700}
2701
2702/*
2703 * Set owepreempt if the currently running thread has lower priority than "pri".
2704 * Preemption never happens directly in ULE, we always request it once we exit a
2705 * critical section.
2706 */
2707static void
2708sched_setpreempt(int pri)
2709{
2710	struct thread *ctd;
2711	int cpri;
2712
2713	ctd = curthread;
2714	THREAD_LOCK_ASSERT(ctd, MA_OWNED);
2715
2716	cpri = ctd->td_priority;
2717	if (pri < cpri)
2718		ast_sched_locked(ctd, TDA_SCHED);
2719	if (KERNEL_PANICKED() || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2720		return;
2721	if (!sched_shouldpreempt(pri, cpri, 0))
2722		return;
2723	ctd->td_owepreempt = 1;
2724}
2725
2726/*
2727 * Add a thread to a thread queue.  Select the appropriate runq and add the
2728 * thread to it.  This is the internal function called when the tdq is
2729 * predetermined.
2730 */
2731static int
2732tdq_add(struct tdq *tdq, struct thread *td, int flags)
2733{
2734	int lowpri;
2735
2736	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2737	THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
2738	KASSERT((td->td_inhibitors == 0),
2739	    ("sched_add: trying to run inhibited thread"));
2740	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2741	    ("sched_add: bad thread state"));
2742	KASSERT(td->td_flags & TDF_INMEM,
2743	    ("sched_add: thread swapped out"));
2744
2745	lowpri = tdq->tdq_lowpri;
2746	if (td->td_priority < lowpri)
2747		tdq->tdq_lowpri = td->td_priority;
2748	tdq_runq_add(tdq, td, flags);
2749	tdq_load_add(tdq, td);
2750	return (lowpri);
2751}
2752
2753/*
2754 * Select the target thread queue and add a thread to it.  Request
2755 * preemption or IPI a remote processor if required.
2756 *
2757 * Requires the thread lock on entry, drops on exit.
2758 */
2759void
2760sched_add(struct thread *td, int flags)
2761{
2762	struct tdq *tdq;
2763#ifdef SMP
2764	int cpu, lowpri;
2765#endif
2766
2767	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2768	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2769	    sched_tdname(curthread));
2770	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2771	    KTR_ATTR_LINKED, sched_tdname(td));
2772	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2773	    flags & SRQ_PREEMPTED);
2774	THREAD_LOCK_ASSERT(td, MA_OWNED);
2775	/*
2776	 * Recalculate the priority before we select the target cpu or
2777	 * run-queue.
2778	 */
2779	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2780		sched_priority(td);
2781#ifdef SMP
2782	/*
2783	 * Pick the destination cpu and if it isn't ours transfer to the
2784	 * target cpu.
2785	 */
2786	cpu = sched_pickcpu(td, flags);
2787	tdq = sched_setcpu(td, cpu, flags);
2788	lowpri = tdq_add(tdq, td, flags);
2789	if (cpu != PCPU_GET(cpuid))
2790		tdq_notify(tdq, lowpri);
2791	else if (!(flags & SRQ_YIELDING))
2792		sched_setpreempt(td->td_priority);
2793#else
2794	tdq = TDQ_SELF();
2795	/*
2796	 * Now that the thread is moving to the run-queue, set the lock
2797	 * to the scheduler's lock.
2798	 */
2799	if (td->td_lock != TDQ_LOCKPTR(tdq)) {
2800		TDQ_LOCK(tdq);
2801		if ((flags & SRQ_HOLD) != 0)
2802			td->td_lock = TDQ_LOCKPTR(tdq);
2803		else
2804			thread_lock_set(td, TDQ_LOCKPTR(tdq));
2805	}
2806	(void)tdq_add(tdq, td, flags);
2807	if (!(flags & SRQ_YIELDING))
2808		sched_setpreempt(td->td_priority);
2809#endif
2810	if (!(flags & SRQ_HOLDTD))
2811		thread_unlock(td);
2812}
2813
2814/*
2815 * Remove a thread from a run-queue without running it.  This is used
2816 * when we're stealing a thread from a remote queue.  Otherwise all threads
2817 * exit by calling sched_exit_thread() and sched_throw() themselves.
2818 */
2819void
2820sched_rem(struct thread *td)
2821{
2822	struct tdq *tdq;
2823
2824	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2825	    "prio:%d", td->td_priority);
2826	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2827	tdq = TDQ_CPU(td_get_sched(td)->ts_cpu);
2828	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2829	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2830	KASSERT(TD_ON_RUNQ(td),
2831	    ("sched_rem: thread not on run queue"));
2832	tdq_runq_rem(tdq, td);
2833	tdq_load_rem(tdq, td);
2834	TD_SET_CAN_RUN(td);
2835	if (td->td_priority == tdq->tdq_lowpri)
2836		tdq_setlowpri(tdq, NULL);
2837}
2838
2839/*
2840 * Fetch cpu utilization information.  Updates on demand.
2841 */
2842fixpt_t
2843sched_pctcpu(struct thread *td)
2844{
2845	fixpt_t pctcpu;
2846	struct td_sched *ts;
2847
2848	pctcpu = 0;
2849	ts = td_get_sched(td);
2850
2851	THREAD_LOCK_ASSERT(td, MA_OWNED);
2852	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2853	if (ts->ts_ticks) {
2854		int rtick;
2855
2856		/* How many rtick per second ? */
2857		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2858		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2859	}
2860
2861	return (pctcpu);
2862}
2863
2864/*
2865 * Enforce affinity settings for a thread.  Called after adjustments to
2866 * cpumask.
2867 */
2868void
2869sched_affinity(struct thread *td)
2870{
2871#ifdef SMP
2872	struct td_sched *ts;
2873
2874	THREAD_LOCK_ASSERT(td, MA_OWNED);
2875	ts = td_get_sched(td);
2876	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2877		return;
2878	if (TD_ON_RUNQ(td)) {
2879		sched_rem(td);
2880		sched_add(td, SRQ_BORING | SRQ_HOLDTD);
2881		return;
2882	}
2883	if (!TD_IS_RUNNING(td))
2884		return;
2885	/*
2886	 * Force a switch before returning to userspace.  If the
2887	 * target thread is not running locally send an ipi to force
2888	 * the issue.
2889	 */
2890	ast_sched_locked(td, TDA_SCHED);
2891	if (td != curthread)
2892		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2893#endif
2894}
2895
2896/*
2897 * Bind a thread to a target cpu.
2898 */
2899void
2900sched_bind(struct thread *td, int cpu)
2901{
2902	struct td_sched *ts;
2903
2904	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2905	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2906	ts = td_get_sched(td);
2907	if (ts->ts_flags & TSF_BOUND)
2908		sched_unbind(td);
2909	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2910	ts->ts_flags |= TSF_BOUND;
2911	sched_pin();
2912	if (PCPU_GET(cpuid) == cpu)
2913		return;
2914	ts->ts_cpu = cpu;
2915	/* When we return from mi_switch we'll be on the correct cpu. */
2916	mi_switch(SW_VOL | SWT_BIND);
2917	thread_lock(td);
2918}
2919
2920/*
2921 * Release a bound thread.
2922 */
2923void
2924sched_unbind(struct thread *td)
2925{
2926	struct td_sched *ts;
2927
2928	THREAD_LOCK_ASSERT(td, MA_OWNED);
2929	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2930	ts = td_get_sched(td);
2931	if ((ts->ts_flags & TSF_BOUND) == 0)
2932		return;
2933	ts->ts_flags &= ~TSF_BOUND;
2934	sched_unpin();
2935}
2936
2937int
2938sched_is_bound(struct thread *td)
2939{
2940	THREAD_LOCK_ASSERT(td, MA_OWNED);
2941	return (td_get_sched(td)->ts_flags & TSF_BOUND);
2942}
2943
2944/*
2945 * Basic yield call.
2946 */
2947void
2948sched_relinquish(struct thread *td)
2949{
2950	thread_lock(td);
2951	mi_switch(SW_VOL | SWT_RELINQUISH);
2952}
2953
2954/*
2955 * Return the total system load.
2956 */
2957int
2958sched_load(void)
2959{
2960#ifdef SMP
2961	int total;
2962	int i;
2963
2964	total = 0;
2965	CPU_FOREACH(i)
2966		total += atomic_load_int(&TDQ_CPU(i)->tdq_sysload);
2967	return (total);
2968#else
2969	return (atomic_load_int(&TDQ_SELF()->tdq_sysload));
2970#endif
2971}
2972
2973int
2974sched_sizeof_proc(void)
2975{
2976	return (sizeof(struct proc));
2977}
2978
2979int
2980sched_sizeof_thread(void)
2981{
2982	return (sizeof(struct thread) + sizeof(struct td_sched));
2983}
2984
2985#ifdef SMP
2986#define	TDQ_IDLESPIN(tdq)						\
2987    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2988#else
2989#define	TDQ_IDLESPIN(tdq)	1
2990#endif
2991
2992/*
2993 * The actual idle process.
2994 */
2995void
2996sched_idletd(void *dummy)
2997{
2998	struct thread *td;
2999	struct tdq *tdq;
3000	int oldswitchcnt, switchcnt;
3001	int i;
3002
3003	mtx_assert(&Giant, MA_NOTOWNED);
3004	td = curthread;
3005	tdq = TDQ_SELF();
3006	THREAD_NO_SLEEPING();
3007	oldswitchcnt = -1;
3008	for (;;) {
3009		if (TDQ_LOAD(tdq)) {
3010			thread_lock(td);
3011			mi_switch(SW_VOL | SWT_IDLE);
3012		}
3013		switchcnt = TDQ_SWITCHCNT(tdq);
3014#ifdef SMP
3015		if (always_steal || switchcnt != oldswitchcnt) {
3016			oldswitchcnt = switchcnt;
3017			if (tdq_idled(tdq) == 0)
3018				continue;
3019		}
3020		switchcnt = TDQ_SWITCHCNT(tdq);
3021#else
3022		oldswitchcnt = switchcnt;
3023#endif
3024		/*
3025		 * If we're switching very frequently, spin while checking
3026		 * for load rather than entering a low power state that
3027		 * may require an IPI.  However, don't do any busy
3028		 * loops while on SMT machines as this simply steals
3029		 * cycles from cores doing useful work.
3030		 */
3031		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
3032			for (i = 0; i < sched_idlespins; i++) {
3033				if (TDQ_LOAD(tdq))
3034					break;
3035				cpu_spinwait();
3036			}
3037		}
3038
3039		/* If there was context switch during spin, restart it. */
3040		switchcnt = TDQ_SWITCHCNT(tdq);
3041		if (TDQ_LOAD(tdq) != 0 || switchcnt != oldswitchcnt)
3042			continue;
3043
3044		/* Run main MD idle handler. */
3045		atomic_store_int(&tdq->tdq_cpu_idle, 1);
3046		/*
3047		 * Make sure that the tdq_cpu_idle update is globally visible
3048		 * before cpu_idle() reads tdq_load.  The order is important
3049		 * to avoid races with tdq_notify().
3050		 */
3051		atomic_thread_fence_seq_cst();
3052		/*
3053		 * Checking for again after the fence picks up assigned
3054		 * threads often enough to make it worthwhile to do so in
3055		 * order to avoid calling cpu_idle().
3056		 */
3057		if (TDQ_LOAD(tdq) != 0) {
3058			atomic_store_int(&tdq->tdq_cpu_idle, 0);
3059			continue;
3060		}
3061		cpu_idle(switchcnt * 4 > sched_idlespinthresh);
3062		atomic_store_int(&tdq->tdq_cpu_idle, 0);
3063
3064		/*
3065		 * Account thread-less hardware interrupts and
3066		 * other wakeup reasons equal to context switches.
3067		 */
3068		switchcnt = TDQ_SWITCHCNT(tdq);
3069		if (switchcnt != oldswitchcnt)
3070			continue;
3071		TDQ_SWITCHCNT_INC(tdq);
3072		oldswitchcnt++;
3073	}
3074}
3075
3076/*
3077 * sched_throw_grab() chooses a thread from the queue to switch to
3078 * next.  It returns with the tdq lock dropped in a spinlock section to
3079 * keep interrupts disabled until the CPU is running in a proper threaded
3080 * context.
3081 */
3082static struct thread *
3083sched_throw_grab(struct tdq *tdq)
3084{
3085	struct thread *newtd;
3086
3087	newtd = choosethread();
3088	spinlock_enter();
3089	TDQ_UNLOCK(tdq);
3090	KASSERT(curthread->td_md.md_spinlock_count == 1,
3091	    ("invalid count %d", curthread->td_md.md_spinlock_count));
3092	return (newtd);
3093}
3094
3095/*
3096 * A CPU is entering for the first time.
3097 */
3098void
3099sched_ap_entry(void)
3100{
3101	struct thread *newtd;
3102	struct tdq *tdq;
3103
3104	tdq = TDQ_SELF();
3105
3106	/* This should have been setup in schedinit_ap(). */
3107	THREAD_LOCKPTR_ASSERT(curthread, TDQ_LOCKPTR(tdq));
3108
3109	TDQ_LOCK(tdq);
3110	/* Correct spinlock nesting. */
3111	spinlock_exit();
3112	PCPU_SET(switchtime, cpu_ticks());
3113	PCPU_SET(switchticks, ticks);
3114
3115	newtd = sched_throw_grab(tdq);
3116
3117	/* doesn't return */
3118	cpu_throw(NULL, newtd);
3119}
3120
3121/*
3122 * A thread is exiting.
3123 */
3124void
3125sched_throw(struct thread *td)
3126{
3127	struct thread *newtd;
3128	struct tdq *tdq;
3129
3130	tdq = TDQ_SELF();
3131
3132	MPASS(td != NULL);
3133	THREAD_LOCK_ASSERT(td, MA_OWNED);
3134	THREAD_LOCKPTR_ASSERT(td, TDQ_LOCKPTR(tdq));
3135
3136	tdq_load_rem(tdq, td);
3137	td->td_lastcpu = td->td_oncpu;
3138	td->td_oncpu = NOCPU;
3139	thread_lock_block(td);
3140
3141	newtd = sched_throw_grab(tdq);
3142
3143	/* doesn't return */
3144	cpu_switch(td, newtd, TDQ_LOCKPTR(tdq));
3145}
3146
3147/*
3148 * This is called from fork_exit().  Just acquire the correct locks and
3149 * let fork do the rest of the work.
3150 */
3151void
3152sched_fork_exit(struct thread *td)
3153{
3154	struct tdq *tdq;
3155	int cpuid;
3156
3157	/*
3158	 * Finish setting up thread glue so that it begins execution in a
3159	 * non-nested critical section with the scheduler lock held.
3160	 */
3161	KASSERT(curthread->td_md.md_spinlock_count == 1,
3162	    ("invalid count %d", curthread->td_md.md_spinlock_count));
3163	cpuid = PCPU_GET(cpuid);
3164	tdq = TDQ_SELF();
3165	TDQ_LOCK(tdq);
3166	spinlock_exit();
3167	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
3168	td->td_oncpu = cpuid;
3169	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
3170	    "prio:%d", td->td_priority);
3171	SDT_PROBE0(sched, , , on__cpu);
3172}
3173
3174/*
3175 * Create on first use to catch odd startup conditions.
3176 */
3177char *
3178sched_tdname(struct thread *td)
3179{
3180#ifdef KTR
3181	struct td_sched *ts;
3182
3183	ts = td_get_sched(td);
3184	if (ts->ts_name[0] == '\0')
3185		snprintf(ts->ts_name, sizeof(ts->ts_name),
3186		    "%s tid %d", td->td_name, td->td_tid);
3187	return (ts->ts_name);
3188#else
3189	return (td->td_name);
3190#endif
3191}
3192
3193#ifdef KTR
3194void
3195sched_clear_tdname(struct thread *td)
3196{
3197	struct td_sched *ts;
3198
3199	ts = td_get_sched(td);
3200	ts->ts_name[0] = '\0';
3201}
3202#endif
3203
3204#ifdef SMP
3205
3206/*
3207 * Build the CPU topology dump string. Is recursively called to collect
3208 * the topology tree.
3209 */
3210static int
3211sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
3212    int indent)
3213{
3214	char cpusetbuf[CPUSETBUFSIZ];
3215	int i, first;
3216
3217	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
3218	    "", 1 + indent / 2, cg->cg_level);
3219	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
3220	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
3221	first = TRUE;
3222	for (i = cg->cg_first; i <= cg->cg_last; i++) {
3223		if (CPU_ISSET(i, &cg->cg_mask)) {
3224			if (!first)
3225				sbuf_cat(sb, ", ");
3226			else
3227				first = FALSE;
3228			sbuf_printf(sb, "%d", i);
3229		}
3230	}
3231	sbuf_cat(sb, "</cpu>\n");
3232
3233	if (cg->cg_flags != 0) {
3234		sbuf_printf(sb, "%*s <flags>", indent, "");
3235		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
3236			sbuf_cat(sb, "<flag name=\"HTT\">HTT group</flag>");
3237		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
3238			sbuf_cat(sb, "<flag name=\"THREAD\">THREAD group</flag>");
3239		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
3240			sbuf_cat(sb, "<flag name=\"SMT\">SMT group</flag>");
3241		if ((cg->cg_flags & CG_FLAG_NODE) != 0)
3242			sbuf_cat(sb, "<flag name=\"NODE\">NUMA node</flag>");
3243		sbuf_cat(sb, "</flags>\n");
3244	}
3245
3246	if (cg->cg_children > 0) {
3247		sbuf_printf(sb, "%*s <children>\n", indent, "");
3248		for (i = 0; i < cg->cg_children; i++)
3249			sysctl_kern_sched_topology_spec_internal(sb,
3250			    &cg->cg_child[i], indent+2);
3251		sbuf_printf(sb, "%*s </children>\n", indent, "");
3252	}
3253	sbuf_printf(sb, "%*s</group>\n", indent, "");
3254	return (0);
3255}
3256
3257/*
3258 * Sysctl handler for retrieving topology dump. It's a wrapper for
3259 * the recursive sysctl_kern_smp_topology_spec_internal().
3260 */
3261static int
3262sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
3263{
3264	struct sbuf *topo;
3265	int err;
3266
3267	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
3268
3269	topo = sbuf_new_for_sysctl(NULL, NULL, 512, req);
3270	if (topo == NULL)
3271		return (ENOMEM);
3272
3273	sbuf_cat(topo, "<groups>\n");
3274	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
3275	sbuf_cat(topo, "</groups>\n");
3276
3277	if (err == 0) {
3278		err = sbuf_finish(topo);
3279	}
3280	sbuf_delete(topo);
3281	return (err);
3282}
3283
3284#endif
3285
3286static int
3287sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
3288{
3289	int error, new_val, period;
3290
3291	period = 1000000 / realstathz;
3292	new_val = period * sched_slice;
3293	error = sysctl_handle_int(oidp, &new_val, 0, req);
3294	if (error != 0 || req->newptr == NULL)
3295		return (error);
3296	if (new_val <= 0)
3297		return (EINVAL);
3298	sched_slice = imax(1, (new_val + period / 2) / period);
3299	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
3300	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
3301	    realstathz);
3302	return (0);
3303}
3304
3305SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
3306    "Scheduler");
3307SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
3308    "Scheduler name");
3309SYSCTL_PROC(_kern_sched, OID_AUTO, quantum,
3310    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
3311    sysctl_kern_quantum, "I",
3312    "Quantum for timeshare threads in microseconds");
3313SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
3314    "Quantum for timeshare threads in stathz ticks");
3315SYSCTL_UINT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
3316    "Interactivity score threshold");
3317SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
3318    &preempt_thresh, 0,
3319    "Maximal (lowest) priority for preemption");
3320SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
3321    "Assign static kernel priorities to sleeping threads");
3322SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
3323    "Number of times idle thread will spin waiting for new work");
3324SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
3325    &sched_idlespinthresh, 0,
3326    "Threshold before we will permit idle thread spinning");
3327#ifdef SMP
3328SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
3329    "Number of hz ticks to keep thread affinity for");
3330SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
3331    "Enables the long-term load balancer");
3332SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
3333    &balance_interval, 0,
3334    "Average period in stathz ticks to run the long-term balancer");
3335SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
3336    "Attempts to steal work from other cores before idling");
3337SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
3338    "Minimum load on remote CPU before we'll steal");
3339SYSCTL_INT(_kern_sched, OID_AUTO, trysteal_limit, CTLFLAG_RW, &trysteal_limit,
3340    0, "Topological distance limit for stealing threads in sched_switch()");
3341SYSCTL_INT(_kern_sched, OID_AUTO, always_steal, CTLFLAG_RW, &always_steal, 0,
3342    "Always run the stealer from the idle thread");
3343SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
3344    CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
3345    "XML dump of detected CPU topology");
3346#endif
3347
3348/* ps compat.  All cpu percentages from ULE are weighted. */
3349static int ccpu = 0;
3350SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0,
3351    "Decay factor used for updating %CPU in 4BSD scheduler");
3352