1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002, 2005-2007, 2011 Marcel Moolenaar
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/param.h>
30#include <sys/bio.h>
31#include <sys/diskmbr.h>
32#include <sys/gsb_crc32.h>
33#include <sys/endian.h>
34#include <sys/gpt.h>
35#include <sys/kernel.h>
36#include <sys/kobj.h>
37#include <sys/limits.h>
38#include <sys/lock.h>
39#include <sys/malloc.h>
40#include <sys/mutex.h>
41#include <sys/queue.h>
42#include <sys/sbuf.h>
43#include <sys/systm.h>
44#include <sys/sysctl.h>
45#include <sys/uuid.h>
46#include <geom/geom.h>
47#include <geom/geom_int.h>
48#include <geom/part/g_part.h>
49
50#include "g_part_if.h"
51
52FEATURE(geom_part_gpt, "GEOM partitioning class for GPT partitions support");
53
54SYSCTL_DECL(_kern_geom_part);
55static SYSCTL_NODE(_kern_geom_part, OID_AUTO, gpt,
56    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
57    "GEOM_PART_GPT GUID Partition Table");
58
59static u_int allow_nesting = 0;
60SYSCTL_UINT(_kern_geom_part_gpt, OID_AUTO, allow_nesting,
61    CTLFLAG_RWTUN, &allow_nesting, 0, "Allow GPT to be nested inside other schemes");
62
63CTASSERT(offsetof(struct gpt_hdr, padding) == 92);
64CTASSERT(sizeof(struct gpt_ent) == 128);
65
66extern u_int geom_part_check_integrity;
67
68#define	EQUUID(a,b)	(memcmp(a, b, sizeof(struct uuid)) == 0)
69
70#define	MBRSIZE		512
71
72enum gpt_elt {
73	GPT_ELT_PRIHDR,
74	GPT_ELT_PRITBL,
75	GPT_ELT_SECHDR,
76	GPT_ELT_SECTBL,
77	GPT_ELT_COUNT
78};
79
80enum gpt_state {
81	GPT_STATE_UNKNOWN,	/* Not determined. */
82	GPT_STATE_MISSING,	/* No signature found. */
83	GPT_STATE_CORRUPT,	/* Checksum mismatch. */
84	GPT_STATE_INVALID,	/* Nonconformant/invalid. */
85	GPT_STATE_UNSUPPORTED,  /* Not supported. */
86	GPT_STATE_OK		/* Perfectly fine. */
87};
88
89struct g_part_gpt_table {
90	struct g_part_table	base;
91	u_char			mbr[MBRSIZE];
92	struct gpt_hdr		*hdr;
93	quad_t			lba[GPT_ELT_COUNT];
94	enum gpt_state		state[GPT_ELT_COUNT];
95	int			bootcamp;
96};
97
98struct g_part_gpt_entry {
99	struct g_part_entry	base;
100	struct gpt_ent		ent;
101};
102
103static void g_gpt_printf_utf16(struct sbuf *, uint16_t *, size_t);
104static void g_gpt_utf8_to_utf16(const uint8_t *, uint16_t *, size_t);
105static void g_gpt_set_defaults(struct g_part_table *, struct g_provider *,
106    struct g_part_parms *);
107
108static int g_part_gpt_add(struct g_part_table *, struct g_part_entry *,
109    struct g_part_parms *);
110static int g_part_gpt_bootcode(struct g_part_table *, struct g_part_parms *);
111static int g_part_gpt_create(struct g_part_table *, struct g_part_parms *);
112static int g_part_gpt_destroy(struct g_part_table *, struct g_part_parms *);
113static void g_part_gpt_dumpconf(struct g_part_table *, struct g_part_entry *,
114    struct sbuf *, const char *);
115static int g_part_gpt_dumpto(struct g_part_table *, struct g_part_entry *);
116static int g_part_gpt_modify(struct g_part_table *, struct g_part_entry *,
117    struct g_part_parms *);
118static const char *g_part_gpt_name(struct g_part_table *, struct g_part_entry *,
119    char *, size_t);
120static int g_part_gpt_probe(struct g_part_table *, struct g_consumer *);
121static int g_part_gpt_read(struct g_part_table *, struct g_consumer *);
122static int g_part_gpt_setunset(struct g_part_table *table,
123    struct g_part_entry *baseentry, const char *attrib, unsigned int set);
124static const char *g_part_gpt_type(struct g_part_table *, struct g_part_entry *,
125    char *, size_t);
126static int g_part_gpt_write(struct g_part_table *, struct g_consumer *);
127static int g_part_gpt_resize(struct g_part_table *, struct g_part_entry *,
128    struct g_part_parms *);
129static int g_part_gpt_recover(struct g_part_table *);
130
131static kobj_method_t g_part_gpt_methods[] = {
132	KOBJMETHOD(g_part_add,		g_part_gpt_add),
133	KOBJMETHOD(g_part_bootcode,	g_part_gpt_bootcode),
134	KOBJMETHOD(g_part_create,	g_part_gpt_create),
135	KOBJMETHOD(g_part_destroy,	g_part_gpt_destroy),
136	KOBJMETHOD(g_part_dumpconf,	g_part_gpt_dumpconf),
137	KOBJMETHOD(g_part_dumpto,	g_part_gpt_dumpto),
138	KOBJMETHOD(g_part_modify,	g_part_gpt_modify),
139	KOBJMETHOD(g_part_resize,	g_part_gpt_resize),
140	KOBJMETHOD(g_part_name,		g_part_gpt_name),
141	KOBJMETHOD(g_part_probe,	g_part_gpt_probe),
142	KOBJMETHOD(g_part_read,		g_part_gpt_read),
143	KOBJMETHOD(g_part_recover,	g_part_gpt_recover),
144	KOBJMETHOD(g_part_setunset,	g_part_gpt_setunset),
145	KOBJMETHOD(g_part_type,		g_part_gpt_type),
146	KOBJMETHOD(g_part_write,	g_part_gpt_write),
147	{ 0, 0 }
148};
149
150#define MAXENTSIZE 1024
151
152static struct g_part_scheme g_part_gpt_scheme = {
153	"GPT",
154	g_part_gpt_methods,
155	sizeof(struct g_part_gpt_table),
156	.gps_entrysz = sizeof(struct g_part_gpt_entry),
157	.gps_minent = 128,
158	.gps_maxent = 4096,
159	.gps_bootcodesz = MBRSIZE,
160};
161G_PART_SCHEME_DECLARE(g_part_gpt);
162MODULE_VERSION(geom_part_gpt, 0);
163
164static struct uuid gpt_uuid_apple_apfs = GPT_ENT_TYPE_APPLE_APFS;
165static struct uuid gpt_uuid_apple_boot = GPT_ENT_TYPE_APPLE_BOOT;
166static struct uuid gpt_uuid_apple_core_storage =
167    GPT_ENT_TYPE_APPLE_CORE_STORAGE;
168static struct uuid gpt_uuid_apple_hfs = GPT_ENT_TYPE_APPLE_HFS;
169static struct uuid gpt_uuid_apple_label = GPT_ENT_TYPE_APPLE_LABEL;
170static struct uuid gpt_uuid_apple_raid = GPT_ENT_TYPE_APPLE_RAID;
171static struct uuid gpt_uuid_apple_raid_offline = GPT_ENT_TYPE_APPLE_RAID_OFFLINE;
172static struct uuid gpt_uuid_apple_tv_recovery = GPT_ENT_TYPE_APPLE_TV_RECOVERY;
173static struct uuid gpt_uuid_apple_ufs = GPT_ENT_TYPE_APPLE_UFS;
174static struct uuid gpt_uuid_apple_zfs = GPT_ENT_TYPE_APPLE_ZFS;
175static struct uuid gpt_uuid_bios_boot = GPT_ENT_TYPE_BIOS_BOOT;
176static struct uuid gpt_uuid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE;
177static struct uuid gpt_uuid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL;
178static struct uuid gpt_uuid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED;
179static struct uuid gpt_uuid_chromeos_root = GPT_ENT_TYPE_CHROMEOS_ROOT;
180static struct uuid gpt_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
181static struct uuid gpt_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
182static struct uuid gpt_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
183static struct uuid gpt_uuid_dfbsd_label32 = GPT_ENT_TYPE_DRAGONFLY_LABEL32;
184static struct uuid gpt_uuid_dfbsd_label64 = GPT_ENT_TYPE_DRAGONFLY_LABEL64;
185static struct uuid gpt_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
186static struct uuid gpt_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
187static struct uuid gpt_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
188static struct uuid gpt_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
189static struct uuid gpt_uuid_efi = GPT_ENT_TYPE_EFI;
190static struct uuid gpt_uuid_freebsd = GPT_ENT_TYPE_FREEBSD;
191static struct uuid gpt_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
192static struct uuid gpt_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
193static struct uuid gpt_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
194static struct uuid gpt_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
195static struct uuid gpt_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
196static struct uuid gpt_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
197static struct uuid gpt_uuid_hifive_fsbl = GPT_ENT_TYPE_HIFIVE_FSBL;
198static struct uuid gpt_uuid_hifive_bbl = GPT_ENT_TYPE_HIFIVE_BBL;
199static struct uuid gpt_uuid_linux_data = GPT_ENT_TYPE_LINUX_DATA;
200static struct uuid gpt_uuid_linux_lvm = GPT_ENT_TYPE_LINUX_LVM;
201static struct uuid gpt_uuid_linux_raid = GPT_ENT_TYPE_LINUX_RAID;
202static struct uuid gpt_uuid_linux_swap = GPT_ENT_TYPE_LINUX_SWAP;
203static struct uuid gpt_uuid_mbr = GPT_ENT_TYPE_MBR;
204static struct uuid gpt_uuid_ms_basic_data = GPT_ENT_TYPE_MS_BASIC_DATA;
205static struct uuid gpt_uuid_ms_ldm_data = GPT_ENT_TYPE_MS_LDM_DATA;
206static struct uuid gpt_uuid_ms_ldm_metadata = GPT_ENT_TYPE_MS_LDM_METADATA;
207static struct uuid gpt_uuid_ms_recovery = GPT_ENT_TYPE_MS_RECOVERY;
208static struct uuid gpt_uuid_ms_reserved = GPT_ENT_TYPE_MS_RESERVED;
209static struct uuid gpt_uuid_ms_spaces = GPT_ENT_TYPE_MS_SPACES;
210static struct uuid gpt_uuid_netbsd_ccd = GPT_ENT_TYPE_NETBSD_CCD;
211static struct uuid gpt_uuid_netbsd_cgd = GPT_ENT_TYPE_NETBSD_CGD;
212static struct uuid gpt_uuid_netbsd_ffs = GPT_ENT_TYPE_NETBSD_FFS;
213static struct uuid gpt_uuid_netbsd_lfs = GPT_ENT_TYPE_NETBSD_LFS;
214static struct uuid gpt_uuid_netbsd_raid = GPT_ENT_TYPE_NETBSD_RAID;
215static struct uuid gpt_uuid_netbsd_swap = GPT_ENT_TYPE_NETBSD_SWAP;
216static struct uuid gpt_uuid_openbsd_data = GPT_ENT_TYPE_OPENBSD_DATA;
217static struct uuid gpt_uuid_prep_boot = GPT_ENT_TYPE_PREP_BOOT;
218static struct uuid gpt_uuid_solaris_boot = GPT_ENT_TYPE_SOLARIS_BOOT;
219static struct uuid gpt_uuid_solaris_root = GPT_ENT_TYPE_SOLARIS_ROOT;
220static struct uuid gpt_uuid_solaris_swap = GPT_ENT_TYPE_SOLARIS_SWAP;
221static struct uuid gpt_uuid_solaris_backup = GPT_ENT_TYPE_SOLARIS_BACKUP;
222static struct uuid gpt_uuid_solaris_var = GPT_ENT_TYPE_SOLARIS_VAR;
223static struct uuid gpt_uuid_solaris_home = GPT_ENT_TYPE_SOLARIS_HOME;
224static struct uuid gpt_uuid_solaris_altsec = GPT_ENT_TYPE_SOLARIS_ALTSEC;
225static struct uuid gpt_uuid_solaris_reserved = GPT_ENT_TYPE_SOLARIS_RESERVED;
226static struct uuid gpt_uuid_unused = GPT_ENT_TYPE_UNUSED;
227static struct uuid gpt_uuid_vmfs = GPT_ENT_TYPE_VMFS;
228static struct uuid gpt_uuid_vmkdiag = GPT_ENT_TYPE_VMKDIAG;
229static struct uuid gpt_uuid_vmreserved = GPT_ENT_TYPE_VMRESERVED;
230static struct uuid gpt_uuid_vmvsanhdr = GPT_ENT_TYPE_VMVSANHDR;
231
232static struct g_part_uuid_alias {
233	struct uuid *uuid;
234	int alias;
235	int mbrtype;
236} gpt_uuid_alias_match[] = {
237	{ &gpt_uuid_apple_apfs,		G_PART_ALIAS_APPLE_APFS,	 0 },
238	{ &gpt_uuid_apple_boot,		G_PART_ALIAS_APPLE_BOOT,	 0xab },
239	{ &gpt_uuid_apple_core_storage,	G_PART_ALIAS_APPLE_CORE_STORAGE, 0 },
240	{ &gpt_uuid_apple_hfs,		G_PART_ALIAS_APPLE_HFS,		 0xaf },
241	{ &gpt_uuid_apple_label,	G_PART_ALIAS_APPLE_LABEL,	 0 },
242	{ &gpt_uuid_apple_raid,		G_PART_ALIAS_APPLE_RAID,	 0 },
243	{ &gpt_uuid_apple_raid_offline,	G_PART_ALIAS_APPLE_RAID_OFFLINE, 0 },
244	{ &gpt_uuid_apple_tv_recovery,	G_PART_ALIAS_APPLE_TV_RECOVERY,	 0 },
245	{ &gpt_uuid_apple_ufs,		G_PART_ALIAS_APPLE_UFS,		 0 },
246	{ &gpt_uuid_apple_zfs,		G_PART_ALIAS_APPLE_ZFS,		 0 },
247	{ &gpt_uuid_bios_boot,		G_PART_ALIAS_BIOS_BOOT,		 0 },
248	{ &gpt_uuid_chromeos_firmware,	G_PART_ALIAS_CHROMEOS_FIRMWARE,	 0 },
249	{ &gpt_uuid_chromeos_kernel,	G_PART_ALIAS_CHROMEOS_KERNEL,	 0 },
250	{ &gpt_uuid_chromeos_reserved,	G_PART_ALIAS_CHROMEOS_RESERVED,	 0 },
251	{ &gpt_uuid_chromeos_root,	G_PART_ALIAS_CHROMEOS_ROOT,	 0 },
252	{ &gpt_uuid_dfbsd_ccd,		G_PART_ALIAS_DFBSD_CCD,		 0 },
253	{ &gpt_uuid_dfbsd_hammer,	G_PART_ALIAS_DFBSD_HAMMER,	 0 },
254	{ &gpt_uuid_dfbsd_hammer2,	G_PART_ALIAS_DFBSD_HAMMER2,	 0 },
255	{ &gpt_uuid_dfbsd_label32,	G_PART_ALIAS_DFBSD,		 0xa5 },
256	{ &gpt_uuid_dfbsd_label64,	G_PART_ALIAS_DFBSD64,		 0xa5 },
257	{ &gpt_uuid_dfbsd_legacy,	G_PART_ALIAS_DFBSD_LEGACY,	 0 },
258	{ &gpt_uuid_dfbsd_swap,		G_PART_ALIAS_DFBSD_SWAP,	 0 },
259	{ &gpt_uuid_dfbsd_ufs1,		G_PART_ALIAS_DFBSD_UFS,		 0 },
260	{ &gpt_uuid_dfbsd_vinum,	G_PART_ALIAS_DFBSD_VINUM,	 0 },
261	{ &gpt_uuid_efi, 		G_PART_ALIAS_EFI,		 0xee },
262	{ &gpt_uuid_freebsd,		G_PART_ALIAS_FREEBSD,		 0xa5 },
263	{ &gpt_uuid_freebsd_boot, 	G_PART_ALIAS_FREEBSD_BOOT,	 0 },
264	{ &gpt_uuid_freebsd_nandfs, 	G_PART_ALIAS_FREEBSD_NANDFS,	 0 },
265	{ &gpt_uuid_freebsd_swap,	G_PART_ALIAS_FREEBSD_SWAP,	 0 },
266	{ &gpt_uuid_freebsd_ufs,	G_PART_ALIAS_FREEBSD_UFS,	 0 },
267	{ &gpt_uuid_freebsd_vinum,	G_PART_ALIAS_FREEBSD_VINUM,	 0 },
268	{ &gpt_uuid_freebsd_zfs,	G_PART_ALIAS_FREEBSD_ZFS,	 0 },
269	{ &gpt_uuid_hifive_fsbl,	G_PART_ALIAS_HIFIVE_FSBL,	 0 },
270	{ &gpt_uuid_hifive_bbl,		G_PART_ALIAS_HIFIVE_BBL,	 0 },
271	{ &gpt_uuid_linux_data,		G_PART_ALIAS_LINUX_DATA,	 0x0b },
272	{ &gpt_uuid_linux_lvm,		G_PART_ALIAS_LINUX_LVM,		 0 },
273	{ &gpt_uuid_linux_raid,		G_PART_ALIAS_LINUX_RAID,	 0 },
274	{ &gpt_uuid_linux_swap,		G_PART_ALIAS_LINUX_SWAP,	 0 },
275	{ &gpt_uuid_mbr,		G_PART_ALIAS_MBR,		 0 },
276	{ &gpt_uuid_ms_basic_data,	G_PART_ALIAS_MS_BASIC_DATA,	 0x0b },
277	{ &gpt_uuid_ms_ldm_data,	G_PART_ALIAS_MS_LDM_DATA,	 0 },
278	{ &gpt_uuid_ms_ldm_metadata,	G_PART_ALIAS_MS_LDM_METADATA,	 0 },
279	{ &gpt_uuid_ms_recovery,	G_PART_ALIAS_MS_RECOVERY,	 0 },
280	{ &gpt_uuid_ms_reserved,	G_PART_ALIAS_MS_RESERVED,	 0 },
281	{ &gpt_uuid_ms_spaces,		G_PART_ALIAS_MS_SPACES,		 0 },
282	{ &gpt_uuid_netbsd_ccd,		G_PART_ALIAS_NETBSD_CCD,	 0 },
283	{ &gpt_uuid_netbsd_cgd,		G_PART_ALIAS_NETBSD_CGD,	 0 },
284	{ &gpt_uuid_netbsd_ffs,		G_PART_ALIAS_NETBSD_FFS,	 0 },
285	{ &gpt_uuid_netbsd_lfs,		G_PART_ALIAS_NETBSD_LFS,	 0 },
286	{ &gpt_uuid_netbsd_raid,	G_PART_ALIAS_NETBSD_RAID,	 0 },
287	{ &gpt_uuid_netbsd_swap,	G_PART_ALIAS_NETBSD_SWAP,	 0 },
288	{ &gpt_uuid_openbsd_data,	G_PART_ALIAS_OPENBSD_DATA,	 0 },
289	{ &gpt_uuid_prep_boot,		G_PART_ALIAS_PREP_BOOT,		 0x41 },
290	{ &gpt_uuid_solaris_boot,	G_PART_ALIAS_SOLARIS_BOOT,	 0 },
291	{ &gpt_uuid_solaris_root,	G_PART_ALIAS_SOLARIS_ROOT,	 0 },
292	{ &gpt_uuid_solaris_swap,	G_PART_ALIAS_SOLARIS_SWAP,	 0 },
293	{ &gpt_uuid_solaris_backup,	G_PART_ALIAS_SOLARIS_BACKUP,	 0 },
294	{ &gpt_uuid_solaris_var,	G_PART_ALIAS_SOLARIS_VAR,	 0 },
295	{ &gpt_uuid_solaris_home,	G_PART_ALIAS_SOLARIS_HOME,	 0 },
296	{ &gpt_uuid_solaris_altsec,	G_PART_ALIAS_SOLARIS_ALTSEC,	 0 },
297	{ &gpt_uuid_solaris_reserved,	G_PART_ALIAS_SOLARIS_RESERVED,	 0 },
298	{ &gpt_uuid_vmfs,		G_PART_ALIAS_VMFS,		 0 },
299	{ &gpt_uuid_vmkdiag,		G_PART_ALIAS_VMKDIAG,		 0 },
300	{ &gpt_uuid_vmreserved,		G_PART_ALIAS_VMRESERVED,	 0 },
301	{ &gpt_uuid_vmvsanhdr,		G_PART_ALIAS_VMVSANHDR,		 0 },
302	{ NULL, 0, 0 }
303};
304
305static int
306gpt_write_mbr_entry(u_char *mbr, int idx, int typ, quad_t start,
307    quad_t end)
308{
309
310	if (typ == 0 || start > UINT32_MAX || end > UINT32_MAX)
311		return (EINVAL);
312
313	mbr += DOSPARTOFF + idx * DOSPARTSIZE;
314	mbr[0] = 0;
315	if (start == 1) {
316		/*
317		 * Treat the PMBR partition specially to maximize
318		 * interoperability with BIOSes.
319		 */
320		mbr[1] = mbr[3] = 0;
321		mbr[2] = 2;
322	} else
323		mbr[1] = mbr[2] = mbr[3] = 0xff;
324	mbr[4] = typ;
325	mbr[5] = mbr[6] = mbr[7] = 0xff;
326	le32enc(mbr + 8, (uint32_t)start);
327	le32enc(mbr + 12, (uint32_t)(end - start + 1));
328	return (0);
329}
330
331static int
332gpt_map_type(struct uuid *t)
333{
334	struct g_part_uuid_alias *uap;
335
336	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
337		if (EQUUID(t, uap->uuid))
338			return (uap->mbrtype);
339	}
340	return (0);
341}
342
343static void
344gpt_create_pmbr(struct g_part_gpt_table *table, struct g_provider *pp)
345{
346
347	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
348	gpt_write_mbr_entry(table->mbr, 0, 0xee, 1,
349	    MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
350	le16enc(table->mbr + DOSMAGICOFFSET, DOSMAGIC);
351}
352
353/*
354 * Under Boot Camp the PMBR partition (type 0xEE) doesn't cover the
355 * whole disk anymore. Rather, it covers the GPT table and the EFI
356 * system partition only. This way the HFS+ partition and any FAT
357 * partitions can be added to the MBR without creating an overlap.
358 */
359static int
360gpt_is_bootcamp(struct g_part_gpt_table *table, const char *provname)
361{
362	uint8_t *p;
363
364	p = table->mbr + DOSPARTOFF;
365	if (p[4] != 0xee || le32dec(p + 8) != 1)
366		return (0);
367
368	p += DOSPARTSIZE;
369	if (p[4] != 0xaf)
370		return (0);
371
372	printf("GEOM: %s: enabling Boot Camp\n", provname);
373	return (1);
374}
375
376static void
377gpt_update_bootcamp(struct g_part_table *basetable, struct g_provider *pp)
378{
379	struct g_part_entry *baseentry;
380	struct g_part_gpt_entry *entry;
381	struct g_part_gpt_table *table;
382	int bootable, error, index, slices, typ;
383
384	table = (struct g_part_gpt_table *)basetable;
385
386	bootable = -1;
387	for (index = 0; index < NDOSPART; index++) {
388		if (table->mbr[DOSPARTOFF + DOSPARTSIZE * index])
389			bootable = index;
390	}
391
392	bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
393	slices = 0;
394	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
395		if (baseentry->gpe_deleted)
396			continue;
397		index = baseentry->gpe_index - 1;
398		if (index >= NDOSPART)
399			continue;
400
401		entry = (struct g_part_gpt_entry *)baseentry;
402
403		switch (index) {
404		case 0:	/* This must be the EFI system partition. */
405			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_efi))
406				goto disable;
407			error = gpt_write_mbr_entry(table->mbr, index, 0xee,
408			    1ull, entry->ent.ent_lba_end);
409			break;
410		case 1:	/* This must be the HFS+ partition. */
411			if (!EQUUID(&entry->ent.ent_type, &gpt_uuid_apple_hfs))
412				goto disable;
413			error = gpt_write_mbr_entry(table->mbr, index, 0xaf,
414			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
415			break;
416		default:
417			typ = gpt_map_type(&entry->ent.ent_type);
418			error = gpt_write_mbr_entry(table->mbr, index, typ,
419			    entry->ent.ent_lba_start, entry->ent.ent_lba_end);
420			break;
421		}
422		if (error)
423			continue;
424
425		if (index == bootable)
426			table->mbr[DOSPARTOFF + DOSPARTSIZE * index] = 0x80;
427		slices |= 1 << index;
428	}
429	if ((slices & 3) == 3)
430		return;
431
432 disable:
433	table->bootcamp = 0;
434	gpt_create_pmbr(table, pp);
435}
436
437static struct gpt_hdr *
438gpt_read_hdr(struct g_part_gpt_table *table, struct g_consumer *cp,
439    enum gpt_elt elt)
440{
441	struct gpt_hdr *buf, *hdr;
442	struct g_provider *pp;
443	quad_t lba, last;
444	int error;
445	uint32_t crc, sz;
446
447	pp = cp->provider;
448	last = (pp->mediasize / pp->sectorsize) - 1;
449	table->state[elt] = GPT_STATE_MISSING;
450	/*
451	 * If the primary header is valid look for secondary
452	 * header in AlternateLBA, otherwise in the last medium's LBA.
453	 */
454	if (elt == GPT_ELT_SECHDR) {
455		if (table->state[GPT_ELT_PRIHDR] != GPT_STATE_OK)
456			table->lba[elt] = last;
457	} else
458		table->lba[elt] = 1;
459	buf = g_read_data(cp, table->lba[elt] * pp->sectorsize, pp->sectorsize,
460	    &error);
461	if (buf == NULL)
462		return (NULL);
463	hdr = NULL;
464	if (memcmp(buf->hdr_sig, GPT_HDR_SIG, sizeof(buf->hdr_sig)) != 0)
465		goto fail;
466
467	table->state[elt] = GPT_STATE_CORRUPT;
468	sz = le32toh(buf->hdr_size);
469	if (sz < 92 || sz > pp->sectorsize)
470		goto fail;
471
472	hdr = g_malloc(sz, M_WAITOK | M_ZERO);
473	bcopy(buf, hdr, sz);
474	hdr->hdr_size = sz;
475
476	crc = le32toh(buf->hdr_crc_self);
477	buf->hdr_crc_self = 0;
478	if (crc32(buf, sz) != crc)
479		goto fail;
480	hdr->hdr_crc_self = crc;
481
482	table->state[elt] = GPT_STATE_INVALID;
483	hdr->hdr_revision = le32toh(buf->hdr_revision);
484	if (hdr->hdr_revision < GPT_HDR_REVISION)
485		goto fail;
486	hdr->hdr_lba_self = le64toh(buf->hdr_lba_self);
487	if (hdr->hdr_lba_self != table->lba[elt])
488		goto fail;
489	hdr->hdr_lba_alt = le64toh(buf->hdr_lba_alt);
490	if (hdr->hdr_lba_alt == hdr->hdr_lba_self)
491		goto fail;
492	if (hdr->hdr_lba_alt > last && geom_part_check_integrity)
493		goto fail;
494
495	/* Check the managed area. */
496	hdr->hdr_lba_start = le64toh(buf->hdr_lba_start);
497	if (hdr->hdr_lba_start < 2 || hdr->hdr_lba_start >= last)
498		goto fail;
499	hdr->hdr_lba_end = le64toh(buf->hdr_lba_end);
500	if (hdr->hdr_lba_end < hdr->hdr_lba_start || hdr->hdr_lba_end >= last)
501		goto fail;
502
503	/* Check the table location and size of the table. */
504	hdr->hdr_entries = le32toh(buf->hdr_entries);
505	hdr->hdr_entsz = le32toh(buf->hdr_entsz);
506	if (hdr->hdr_entries == 0 || hdr->hdr_entsz < 128 ||
507	    (hdr->hdr_entsz & 7) != 0)
508		goto fail;
509	hdr->hdr_lba_table = le64toh(buf->hdr_lba_table);
510	if (hdr->hdr_lba_table < 2 || hdr->hdr_lba_table >= last)
511		goto fail;
512	if (hdr->hdr_lba_table >= hdr->hdr_lba_start &&
513	    hdr->hdr_lba_table <= hdr->hdr_lba_end)
514		goto fail;
515	lba = hdr->hdr_lba_table +
516	    howmany((uint64_t)hdr->hdr_entries * hdr->hdr_entsz,
517	        pp->sectorsize) - 1;
518	if (lba >= last)
519		goto fail;
520	if (lba >= hdr->hdr_lba_start && lba <= hdr->hdr_lba_end)
521		goto fail;
522
523	table->state[elt] = GPT_STATE_OK;
524	le_uuid_dec(&buf->hdr_uuid, &hdr->hdr_uuid);
525	hdr->hdr_crc_table = le32toh(buf->hdr_crc_table);
526
527	/* save LBA for secondary header */
528	if (elt == GPT_ELT_PRIHDR)
529		table->lba[GPT_ELT_SECHDR] = hdr->hdr_lba_alt;
530
531	g_free(buf);
532	return (hdr);
533
534 fail:
535	g_free(hdr);
536	g_free(buf);
537	return (NULL);
538}
539
540static struct gpt_ent *
541gpt_read_tbl(struct g_part_gpt_table *table, struct g_consumer *cp,
542    enum gpt_elt elt, struct gpt_hdr *hdr)
543{
544	struct g_provider *pp;
545	struct gpt_ent *ent, *tbl;
546	char *buf, *p;
547	unsigned int idx, sectors, tblsz, size;
548	int error;
549
550	if (hdr == NULL)
551		return (NULL);
552	if (hdr->hdr_entries > g_part_gpt_scheme.gps_maxent ||
553	    hdr->hdr_entsz > MAXENTSIZE) {
554		table->state[elt] = GPT_STATE_UNSUPPORTED;
555		return (NULL);
556	}
557
558	pp = cp->provider;
559	table->lba[elt] = hdr->hdr_lba_table;
560
561	table->state[elt] = GPT_STATE_MISSING;
562	tblsz = hdr->hdr_entries * hdr->hdr_entsz;
563	sectors = howmany(tblsz, pp->sectorsize);
564	buf = g_malloc(sectors * pp->sectorsize, M_WAITOK | M_ZERO);
565	for (idx = 0; idx < sectors; idx += maxphys / pp->sectorsize) {
566		size = (sectors - idx > maxphys / pp->sectorsize) ?  maxphys:
567		    (sectors - idx) * pp->sectorsize;
568		p = g_read_data(cp, (table->lba[elt] + idx) * pp->sectorsize,
569		    size, &error);
570		if (p == NULL) {
571			g_free(buf);
572			return (NULL);
573		}
574		bcopy(p, buf + idx * pp->sectorsize, size);
575		g_free(p);
576	}
577	table->state[elt] = GPT_STATE_CORRUPT;
578	if (crc32(buf, tblsz) != hdr->hdr_crc_table) {
579		g_free(buf);
580		return (NULL);
581	}
582
583	table->state[elt] = GPT_STATE_OK;
584	tbl = g_malloc(hdr->hdr_entries * sizeof(struct gpt_ent),
585	    M_WAITOK | M_ZERO);
586
587	for (idx = 0, ent = tbl, p = buf;
588	     idx < hdr->hdr_entries;
589	     idx++, ent++, p += hdr->hdr_entsz) {
590		le_uuid_dec(p, &ent->ent_type);
591		le_uuid_dec(p + 16, &ent->ent_uuid);
592		ent->ent_lba_start = le64dec(p + 32);
593		ent->ent_lba_end = le64dec(p + 40);
594		ent->ent_attr = le64dec(p + 48);
595		/* Keep UTF-16 in little-endian. */
596		bcopy(p + 56, ent->ent_name, sizeof(ent->ent_name));
597	}
598
599	g_free(buf);
600	return (tbl);
601}
602
603static int
604gpt_matched_hdrs(struct gpt_hdr *pri, struct gpt_hdr *sec)
605{
606
607	if (pri == NULL || sec == NULL)
608		return (0);
609
610	if (!EQUUID(&pri->hdr_uuid, &sec->hdr_uuid))
611		return (0);
612	return ((pri->hdr_revision == sec->hdr_revision &&
613	    pri->hdr_size == sec->hdr_size &&
614	    pri->hdr_lba_start == sec->hdr_lba_start &&
615	    pri->hdr_lba_end == sec->hdr_lba_end &&
616	    pri->hdr_entries == sec->hdr_entries &&
617	    pri->hdr_entsz == sec->hdr_entsz &&
618	    pri->hdr_crc_table == sec->hdr_crc_table) ? 1 : 0);
619}
620
621static int
622gpt_parse_type(const char *type, struct uuid *uuid)
623{
624	struct uuid tmp;
625	const char *alias;
626	int error;
627	struct g_part_uuid_alias *uap;
628
629	if (type[0] == '!') {
630		error = parse_uuid(type + 1, &tmp);
631		if (error)
632			return (error);
633		if (EQUUID(&tmp, &gpt_uuid_unused))
634			return (EINVAL);
635		*uuid = tmp;
636		return (0);
637	}
638	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++) {
639		alias = g_part_alias_name(uap->alias);
640		if (!strcasecmp(type, alias)) {
641			*uuid = *uap->uuid;
642			return (0);
643		}
644	}
645	return (EINVAL);
646}
647
648static int
649g_part_gpt_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
650    struct g_part_parms *gpp)
651{
652	struct g_part_gpt_entry *entry;
653	int error;
654
655	entry = (struct g_part_gpt_entry *)baseentry;
656	error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
657	if (error)
658		return (error);
659	kern_uuidgen(&entry->ent.ent_uuid, 1);
660	entry->ent.ent_lba_start = baseentry->gpe_start;
661	entry->ent.ent_lba_end = baseentry->gpe_end;
662	if (baseentry->gpe_deleted) {
663		entry->ent.ent_attr = 0;
664		bzero(entry->ent.ent_name, sizeof(entry->ent.ent_name));
665	}
666	if (gpp->gpp_parms & G_PART_PARM_LABEL)
667		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
668		    sizeof(entry->ent.ent_name) /
669		    sizeof(entry->ent.ent_name[0]));
670	return (0);
671}
672
673static int
674g_part_gpt_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
675{
676	struct g_part_gpt_table *table;
677	size_t codesz;
678
679	codesz = DOSPARTOFF;
680	table = (struct g_part_gpt_table *)basetable;
681	bzero(table->mbr, codesz);
682	codesz = MIN(codesz, gpp->gpp_codesize);
683	if (codesz > 0)
684		bcopy(gpp->gpp_codeptr, table->mbr, codesz);
685	return (0);
686}
687
688static int
689g_part_gpt_create(struct g_part_table *basetable, struct g_part_parms *gpp)
690{
691	struct g_provider *pp;
692	struct g_part_gpt_table *table;
693	size_t tblsz;
694
695	/* Our depth should be 0 unless nesting was explicitly enabled. */
696	if (!allow_nesting && basetable->gpt_depth != 0)
697		return (ENXIO);
698
699	table = (struct g_part_gpt_table *)basetable;
700	pp = gpp->gpp_provider;
701	tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
702	    pp->sectorsize);
703	if (pp->sectorsize < MBRSIZE ||
704	    pp->mediasize < (3 + 2 * tblsz + basetable->gpt_entries) *
705	    pp->sectorsize)
706		return (ENOSPC);
707
708	gpt_create_pmbr(table, pp);
709
710	/* Allocate space for the header */
711	table->hdr = g_malloc(sizeof(struct gpt_hdr), M_WAITOK | M_ZERO);
712
713	bcopy(GPT_HDR_SIG, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
714	table->hdr->hdr_revision = GPT_HDR_REVISION;
715	table->hdr->hdr_size = offsetof(struct gpt_hdr, padding);
716	kern_uuidgen(&table->hdr->hdr_uuid, 1);
717	table->hdr->hdr_entries = basetable->gpt_entries;
718	table->hdr->hdr_entsz = sizeof(struct gpt_ent);
719
720	g_gpt_set_defaults(basetable, pp, gpp);
721	return (0);
722}
723
724static int
725g_part_gpt_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
726{
727	struct g_part_gpt_table *table;
728	struct g_provider *pp;
729
730	table = (struct g_part_gpt_table *)basetable;
731	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
732	g_free(table->hdr);
733	table->hdr = NULL;
734
735	/*
736	 * Wipe the first 2 sectors and last one to clear the partitioning.
737	 * Wipe sectors only if they have valid metadata.
738	 */
739	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK)
740		basetable->gpt_smhead |= 3;
741	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
742	    table->lba[GPT_ELT_SECHDR] == pp->mediasize / pp->sectorsize - 1)
743		basetable->gpt_smtail |= 1;
744	return (0);
745}
746
747static void
748g_part_gpt_efimedia(struct g_part_gpt_entry *entry, struct sbuf *sb)
749{
750	sbuf_printf(sb, "HD(%d,GPT,", entry->base.gpe_index);
751	sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
752	sbuf_printf(sb, ",%#jx,%#jx)", (intmax_t)entry->base.gpe_start,
753	    (intmax_t)(entry->base.gpe_end - entry->base.gpe_start + 1));
754}
755
756static void
757g_part_gpt_dumpconf(struct g_part_table *table, struct g_part_entry *baseentry,
758    struct sbuf *sb, const char *indent)
759{
760	struct g_part_gpt_entry *entry;
761
762	entry = (struct g_part_gpt_entry *)baseentry;
763	if (indent == NULL) {
764		/* conftxt: libdisk compatibility */
765		sbuf_cat(sb, " xs GPT xt ");
766		sbuf_printf_uuid(sb, &entry->ent.ent_type);
767	} else if (entry != NULL) {
768		/* confxml: partition entry information */
769		sbuf_printf(sb, "%s<label>", indent);
770		g_gpt_printf_utf16(sb, entry->ent.ent_name,
771		    sizeof(entry->ent.ent_name) >> 1);
772		sbuf_cat(sb, "</label>\n");
773		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTME)
774			sbuf_printf(sb, "%s<attrib>bootme</attrib>\n", indent);
775		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTONCE) {
776			sbuf_printf(sb, "%s<attrib>bootonce</attrib>\n",
777			    indent);
778		}
779		if (entry->ent.ent_attr & GPT_ENT_ATTR_BOOTFAILED) {
780			sbuf_printf(sb, "%s<attrib>bootfailed</attrib>\n",
781			    indent);
782		}
783		sbuf_printf(sb, "%s<rawtype>", indent);
784		sbuf_printf_uuid(sb, &entry->ent.ent_type);
785		sbuf_cat(sb, "</rawtype>\n");
786		sbuf_printf(sb, "%s<rawuuid>", indent);
787		sbuf_printf_uuid(sb, &entry->ent.ent_uuid);
788		sbuf_cat(sb, "</rawuuid>\n");
789		sbuf_printf(sb, "%s<efimedia>", indent);
790		g_part_gpt_efimedia(entry, sb);
791		sbuf_cat(sb, "</efimedia>\n");
792	} else {
793		/* confxml: scheme information */
794	}
795}
796
797static int
798g_part_gpt_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
799{
800	struct g_part_gpt_entry *entry;
801
802	entry = (struct g_part_gpt_entry *)baseentry;
803	return ((EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd_swap) ||
804	    EQUUID(&entry->ent.ent_type, &gpt_uuid_linux_swap) ||
805	    EQUUID(&entry->ent.ent_type, &gpt_uuid_dfbsd_swap)) ? 1 : 0);
806}
807
808static int
809g_part_gpt_modify(struct g_part_table *basetable,
810    struct g_part_entry *baseentry, struct g_part_parms *gpp)
811{
812	struct g_part_gpt_entry *entry;
813	int error;
814
815	entry = (struct g_part_gpt_entry *)baseentry;
816	if (gpp->gpp_parms & G_PART_PARM_TYPE) {
817		error = gpt_parse_type(gpp->gpp_type, &entry->ent.ent_type);
818		if (error)
819			return (error);
820	}
821	if (gpp->gpp_parms & G_PART_PARM_LABEL)
822		g_gpt_utf8_to_utf16(gpp->gpp_label, entry->ent.ent_name,
823		    sizeof(entry->ent.ent_name) /
824		    sizeof(entry->ent.ent_name[0]));
825	return (0);
826}
827
828static int
829g_part_gpt_resize(struct g_part_table *basetable,
830    struct g_part_entry *baseentry, struct g_part_parms *gpp)
831{
832	struct g_part_gpt_entry *entry;
833
834	if (baseentry == NULL)
835		return (g_part_gpt_recover(basetable));
836
837	entry = (struct g_part_gpt_entry *)baseentry;
838	baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
839	entry->ent.ent_lba_end = baseentry->gpe_end;
840
841	return (0);
842}
843
844static const char *
845g_part_gpt_name(struct g_part_table *table, struct g_part_entry *baseentry,
846    char *buf, size_t bufsz)
847{
848	struct g_part_gpt_entry *entry;
849	char c;
850
851	entry = (struct g_part_gpt_entry *)baseentry;
852	c = (EQUUID(&entry->ent.ent_type, &gpt_uuid_freebsd)) ? 's' : 'p';
853	snprintf(buf, bufsz, "%c%d", c, baseentry->gpe_index);
854	return (buf);
855}
856
857static int
858g_part_gpt_probe(struct g_part_table *table, struct g_consumer *cp)
859{
860	struct g_provider *pp;
861	u_char *buf;
862	int error, index, pri, res;
863
864	/* Our depth should be 0 unless nesting was explicitly enabled. */
865	if (!allow_nesting && table->gpt_depth != 0)
866		return (ENXIO);
867
868	pp = cp->provider;
869
870	/*
871	 * Sanity-check the provider. Since the first sector on the provider
872	 * must be a PMBR and a PMBR is 512 bytes large, the sector size
873	 * must be at least 512 bytes.  Also, since the theoretical minimum
874	 * number of sectors needed by GPT is 6, any medium that has less
875	 * than 6 sectors is never going to be able to hold a GPT. The
876	 * number 6 comes from:
877	 *	1 sector for the PMBR
878	 *	2 sectors for the GPT headers (each 1 sector)
879	 *	2 sectors for the GPT tables (each 1 sector)
880	 *	1 sector for an actual partition
881	 * It's better to catch this pathological case early than behaving
882	 * pathologically later on...
883	 */
884	if (pp->sectorsize < MBRSIZE || pp->mediasize < 6 * pp->sectorsize)
885		return (ENOSPC);
886
887	/*
888	 * Check that there's a MBR or a PMBR. If it's a PMBR, we return
889	 * as the highest priority on a match, otherwise we assume some
890	 * GPT-unaware tool has destroyed the GPT by recreating a MBR and
891	 * we really want the MBR scheme to take precedence.
892	 */
893	buf = g_read_data(cp, 0L, pp->sectorsize, &error);
894	if (buf == NULL)
895		return (error);
896	res = le16dec(buf + DOSMAGICOFFSET);
897	pri = G_PART_PROBE_PRI_LOW;
898	if (res == DOSMAGIC) {
899		for (index = 0; index < NDOSPART; index++) {
900			if (buf[DOSPARTOFF + DOSPARTSIZE * index + 4] == 0xee)
901				pri = G_PART_PROBE_PRI_HIGH;
902		}
903		g_free(buf);
904
905		/* Check that there's a primary header. */
906		buf = g_read_data(cp, pp->sectorsize, pp->sectorsize, &error);
907		if (buf == NULL)
908			return (error);
909		res = memcmp(buf, GPT_HDR_SIG, 8);
910		g_free(buf);
911		if (res == 0)
912			return (pri);
913	} else
914		g_free(buf);
915
916	/* No primary? Check that there's a secondary. */
917	buf = g_read_data(cp, pp->mediasize - pp->sectorsize, pp->sectorsize,
918	    &error);
919	if (buf == NULL)
920		return (error);
921	res = memcmp(buf, GPT_HDR_SIG, 8);
922	g_free(buf);
923	return ((res == 0) ? pri : ENXIO);
924}
925
926static int
927g_part_gpt_read(struct g_part_table *basetable, struct g_consumer *cp)
928{
929	struct gpt_hdr *prihdr, *sechdr;
930	struct gpt_ent *tbl, *pritbl, *sectbl;
931	struct g_provider *pp;
932	struct g_part_gpt_table *table;
933	struct g_part_gpt_entry *entry;
934	u_char *buf;
935	uint64_t last;
936	int error, index;
937
938	table = (struct g_part_gpt_table *)basetable;
939	pp = cp->provider;
940	last = (pp->mediasize / pp->sectorsize) - 1;
941
942	/* Read the PMBR */
943	buf = g_read_data(cp, 0, pp->sectorsize, &error);
944	if (buf == NULL)
945		return (error);
946	bcopy(buf, table->mbr, MBRSIZE);
947	g_free(buf);
948
949	/* Read the primary header and table. */
950	prihdr = gpt_read_hdr(table, cp, GPT_ELT_PRIHDR);
951	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK) {
952		pritbl = gpt_read_tbl(table, cp, GPT_ELT_PRITBL, prihdr);
953	} else {
954		table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
955		pritbl = NULL;
956	}
957
958	/* Read the secondary header and table. */
959	sechdr = gpt_read_hdr(table, cp, GPT_ELT_SECHDR);
960	if (table->state[GPT_ELT_SECHDR] == GPT_STATE_OK) {
961		sectbl = gpt_read_tbl(table, cp, GPT_ELT_SECTBL, sechdr);
962	} else {
963		table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
964		sectbl = NULL;
965	}
966
967	/* Fail if we haven't got any good tables at all. */
968	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK &&
969	    table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
970		if (table->state[GPT_ELT_PRITBL] == GPT_STATE_UNSUPPORTED &&
971		    table->state[GPT_ELT_SECTBL] == GPT_STATE_UNSUPPORTED &&
972		    gpt_matched_hdrs(prihdr, sechdr)) {
973			printf("GEOM: %s: unsupported GPT detected.\n",
974			    pp->name);
975			printf(
976		    "GEOM: %s: number of GPT entries: %u, entry size: %uB.\n",
977			    pp->name, prihdr->hdr_entries, prihdr->hdr_entsz);
978			printf(
979    "GEOM: %s: maximum supported number of GPT entries: %u, entry size: %uB.\n",
980			    pp->name, g_part_gpt_scheme.gps_maxent, MAXENTSIZE);
981			printf("GEOM: %s: GPT rejected.\n", pp->name);
982		} else {
983			printf("GEOM: %s: corrupt or invalid GPT detected.\n",
984			    pp->name);
985			printf(
986		    "GEOM: %s: GPT rejected -- may not be recoverable.\n",
987			    pp->name);
988		}
989		g_free(prihdr);
990		g_free(pritbl);
991		g_free(sechdr);
992		g_free(sectbl);
993		return (EINVAL);
994	}
995
996	/*
997	 * If both headers are good but they disagree with each other,
998	 * then invalidate one. We prefer to keep the primary header,
999	 * unless the primary table is corrupt.
1000	 */
1001	if (table->state[GPT_ELT_PRIHDR] == GPT_STATE_OK &&
1002	    table->state[GPT_ELT_SECHDR] == GPT_STATE_OK &&
1003	    !gpt_matched_hdrs(prihdr, sechdr)) {
1004		if (table->state[GPT_ELT_PRITBL] == GPT_STATE_OK) {
1005			table->state[GPT_ELT_SECHDR] = GPT_STATE_INVALID;
1006			table->state[GPT_ELT_SECTBL] = GPT_STATE_MISSING;
1007			g_free(sechdr);
1008			sechdr = NULL;
1009		} else {
1010			table->state[GPT_ELT_PRIHDR] = GPT_STATE_INVALID;
1011			table->state[GPT_ELT_PRITBL] = GPT_STATE_MISSING;
1012			g_free(prihdr);
1013			prihdr = NULL;
1014		}
1015	}
1016
1017	if (table->state[GPT_ELT_PRITBL] != GPT_STATE_OK) {
1018		printf("GEOM: %s: the primary GPT table is corrupt or "
1019		    "invalid.\n", pp->name);
1020		printf("GEOM: %s: using the secondary instead -- recovery "
1021		    "strongly advised.\n", pp->name);
1022		table->hdr = sechdr;
1023		basetable->gpt_corrupt = 1;
1024		g_free(prihdr);
1025		tbl = sectbl;
1026		g_free(pritbl);
1027	} else {
1028		if (table->state[GPT_ELT_SECTBL] != GPT_STATE_OK) {
1029			printf("GEOM: %s: the secondary GPT table is corrupt "
1030			    "or invalid.\n", pp->name);
1031			printf("GEOM: %s: using the primary only -- recovery "
1032			    "suggested.\n", pp->name);
1033			basetable->gpt_corrupt = 1;
1034		} else if (table->lba[GPT_ELT_SECHDR] != last) {
1035			printf( "GEOM: %s: the secondary GPT header is not in "
1036			    "the last LBA.\n", pp->name);
1037			basetable->gpt_corrupt = 1;
1038		}
1039		table->hdr = prihdr;
1040		g_free(sechdr);
1041		tbl = pritbl;
1042		g_free(sectbl);
1043	}
1044
1045	basetable->gpt_first = table->hdr->hdr_lba_start;
1046	basetable->gpt_last = table->hdr->hdr_lba_end;
1047	basetable->gpt_entries = table->hdr->hdr_entries;
1048
1049	for (index = basetable->gpt_entries - 1; index >= 0; index--) {
1050		if (EQUUID(&tbl[index].ent_type, &gpt_uuid_unused))
1051			continue;
1052		entry = (struct g_part_gpt_entry *)g_part_new_entry(
1053		    basetable, index + 1, tbl[index].ent_lba_start,
1054		    tbl[index].ent_lba_end);
1055		entry->ent = tbl[index];
1056	}
1057
1058	g_free(tbl);
1059
1060	/*
1061	 * Under Mac OS X, the MBR mirrors the first 4 GPT partitions
1062	 * if (and only if) any FAT32 or FAT16 partitions have been
1063	 * created. This happens irrespective of whether Boot Camp is
1064	 * used/enabled, though it's generally understood to be done
1065	 * to support legacy Windows under Boot Camp. We refer to this
1066	 * mirroring simply as Boot Camp. We try to detect Boot Camp
1067	 * so that we can update the MBR if and when GPT changes have
1068	 * been made. Note that we do not enable Boot Camp if not
1069	 * previously enabled because we can't assume that we're on a
1070	 * Mac alongside Mac OS X.
1071	 */
1072	table->bootcamp = gpt_is_bootcamp(table, pp->name);
1073
1074	return (0);
1075}
1076
1077static int
1078g_part_gpt_recover(struct g_part_table *basetable)
1079{
1080	struct g_part_gpt_table *table;
1081	struct g_provider *pp;
1082
1083	table = (struct g_part_gpt_table *)basetable;
1084	pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
1085	gpt_create_pmbr(table, pp);
1086	g_gpt_set_defaults(basetable, pp, NULL);
1087	basetable->gpt_corrupt = 0;
1088	return (0);
1089}
1090
1091static int
1092g_part_gpt_setunset(struct g_part_table *basetable,
1093    struct g_part_entry *baseentry, const char *attrib, unsigned int set)
1094{
1095	struct g_part_gpt_entry *entry;
1096	struct g_part_gpt_table *table;
1097	struct g_provider *pp;
1098	uint8_t *p;
1099	uint64_t attr;
1100	int i;
1101
1102	table = (struct g_part_gpt_table *)basetable;
1103	entry = (struct g_part_gpt_entry *)baseentry;
1104
1105	if (strcasecmp(attrib, "active") == 0) {
1106		if (table->bootcamp) {
1107			/* The active flag must be set on a valid entry. */
1108			if (entry == NULL)
1109				return (ENXIO);
1110			if (baseentry->gpe_index > NDOSPART)
1111				return (EINVAL);
1112			for (i = 0; i < NDOSPART; i++) {
1113				p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1114				p[0] = (i == baseentry->gpe_index - 1)
1115				    ? ((set) ? 0x80 : 0) : 0;
1116			}
1117		} else {
1118			/* The PMBR is marked as active without an entry. */
1119			if (entry != NULL)
1120				return (ENXIO);
1121			for (i = 0; i < NDOSPART; i++) {
1122				p = &table->mbr[DOSPARTOFF + i * DOSPARTSIZE];
1123				p[0] = (p[4] == 0xee) ? ((set) ? 0x80 : 0) : 0;
1124			}
1125		}
1126		return (0);
1127	} else if (strcasecmp(attrib, "lenovofix") == 0) {
1128		/*
1129		 * Write the 0xee GPT entry to slot #1 (2nd slot) in the pMBR.
1130		 * This workaround allows Lenovo X220, T420, T520, etc to boot
1131		 * from GPT Partitions in BIOS mode.
1132		 */
1133
1134		if (entry != NULL)
1135			return (ENXIO);
1136
1137		pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
1138		bzero(table->mbr + DOSPARTOFF, DOSPARTSIZE * NDOSPART);
1139		gpt_write_mbr_entry(table->mbr, ((set) ? 1 : 0), 0xee, 1,
1140		    MIN(pp->mediasize / pp->sectorsize - 1, UINT32_MAX));
1141		return (0);
1142	}
1143
1144	if (entry == NULL)
1145		return (ENODEV);
1146
1147	attr = 0;
1148	if (strcasecmp(attrib, "bootme") == 0) {
1149		attr |= GPT_ENT_ATTR_BOOTME;
1150	} else if (strcasecmp(attrib, "bootonce") == 0) {
1151		attr |= GPT_ENT_ATTR_BOOTONCE;
1152		if (set)
1153			attr |= GPT_ENT_ATTR_BOOTME;
1154	} else if (strcasecmp(attrib, "bootfailed") == 0) {
1155		/*
1156		 * It should only be possible to unset BOOTFAILED, but it might
1157		 * be useful for test purposes to also be able to set it.
1158		 */
1159		attr |= GPT_ENT_ATTR_BOOTFAILED;
1160	}
1161	if (attr == 0)
1162		return (EINVAL);
1163
1164	if (set)
1165		attr = entry->ent.ent_attr | attr;
1166	else
1167		attr = entry->ent.ent_attr & ~attr;
1168	if (attr != entry->ent.ent_attr) {
1169		entry->ent.ent_attr = attr;
1170		if (!baseentry->gpe_created)
1171			baseentry->gpe_modified = 1;
1172	}
1173	return (0);
1174}
1175
1176static const char *
1177g_part_gpt_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
1178    char *buf, size_t bufsz)
1179{
1180	struct g_part_gpt_entry *entry;
1181	struct uuid *type;
1182	struct g_part_uuid_alias *uap;
1183
1184	entry = (struct g_part_gpt_entry *)baseentry;
1185	type = &entry->ent.ent_type;
1186	for (uap = &gpt_uuid_alias_match[0]; uap->uuid; uap++)
1187		if (EQUUID(type, uap->uuid))
1188			return (g_part_alias_name(uap->alias));
1189	buf[0] = '!';
1190	snprintf_uuid(buf + 1, bufsz - 1, type);
1191
1192	return (buf);
1193}
1194
1195static int
1196g_part_gpt_write(struct g_part_table *basetable, struct g_consumer *cp)
1197{
1198	unsigned char *buf, *bp;
1199	struct g_provider *pp;
1200	struct g_part_entry *baseentry;
1201	struct g_part_gpt_entry *entry;
1202	struct g_part_gpt_table *table;
1203	size_t tblsz;
1204	uint32_t crc;
1205	int error, index;
1206
1207	pp = cp->provider;
1208	table = (struct g_part_gpt_table *)basetable;
1209	tblsz = howmany(table->hdr->hdr_entries * table->hdr->hdr_entsz,
1210	    pp->sectorsize);
1211
1212	/* Reconstruct the MBR from the GPT if under Boot Camp. */
1213	if (table->bootcamp)
1214		gpt_update_bootcamp(basetable, pp);
1215
1216	/* Write the PMBR */
1217	buf = g_malloc(pp->sectorsize, M_WAITOK | M_ZERO);
1218	bcopy(table->mbr, buf, MBRSIZE);
1219	error = g_write_data(cp, 0, buf, pp->sectorsize);
1220	g_free(buf);
1221	if (error)
1222		return (error);
1223
1224	/* Allocate space for the header and entries. */
1225	buf = g_malloc((tblsz + 1) * pp->sectorsize, M_WAITOK | M_ZERO);
1226
1227	memcpy(buf, table->hdr->hdr_sig, sizeof(table->hdr->hdr_sig));
1228	le32enc(buf + 8, table->hdr->hdr_revision);
1229	le32enc(buf + 12, table->hdr->hdr_size);
1230	le64enc(buf + 40, table->hdr->hdr_lba_start);
1231	le64enc(buf + 48, table->hdr->hdr_lba_end);
1232	le_uuid_enc(buf + 56, &table->hdr->hdr_uuid);
1233	le32enc(buf + 80, table->hdr->hdr_entries);
1234	le32enc(buf + 84, table->hdr->hdr_entsz);
1235
1236	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1237		if (baseentry->gpe_deleted)
1238			continue;
1239		entry = (struct g_part_gpt_entry *)baseentry;
1240		index = baseentry->gpe_index - 1;
1241		bp = buf + pp->sectorsize + table->hdr->hdr_entsz * index;
1242		le_uuid_enc(bp, &entry->ent.ent_type);
1243		le_uuid_enc(bp + 16, &entry->ent.ent_uuid);
1244		le64enc(bp + 32, entry->ent.ent_lba_start);
1245		le64enc(bp + 40, entry->ent.ent_lba_end);
1246		le64enc(bp + 48, entry->ent.ent_attr);
1247		memcpy(bp + 56, entry->ent.ent_name,
1248		    sizeof(entry->ent.ent_name));
1249	}
1250
1251	crc = crc32(buf + pp->sectorsize,
1252	    table->hdr->hdr_entries * table->hdr->hdr_entsz);
1253	le32enc(buf + 88, crc);
1254
1255	/* Write primary meta-data. */
1256	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1257	le64enc(buf + 24, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_self. */
1258	le64enc(buf + 32, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_alt. */
1259	le64enc(buf + 72, table->lba[GPT_ELT_PRITBL]);	/* hdr_lba_table. */
1260	crc = crc32(buf, table->hdr->hdr_size);
1261	le32enc(buf + 16, crc);
1262
1263	for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) {
1264		error = g_write_data(cp,
1265		    (table->lba[GPT_ELT_PRITBL] + index) * pp->sectorsize,
1266		    buf + (index + 1) * pp->sectorsize,
1267		    (tblsz - index > maxphys / pp->sectorsize) ? maxphys :
1268		    (tblsz - index) * pp->sectorsize);
1269		if (error)
1270			goto out;
1271	}
1272	error = g_write_data(cp, table->lba[GPT_ELT_PRIHDR] * pp->sectorsize,
1273	    buf, pp->sectorsize);
1274	if (error)
1275		goto out;
1276
1277	/* Write secondary meta-data. */
1278	le32enc(buf + 16, 0);	/* hdr_crc_self. */
1279	le64enc(buf + 24, table->lba[GPT_ELT_SECHDR]);	/* hdr_lba_self. */
1280	le64enc(buf + 32, table->lba[GPT_ELT_PRIHDR]);	/* hdr_lba_alt. */
1281	le64enc(buf + 72, table->lba[GPT_ELT_SECTBL]);	/* hdr_lba_table. */
1282	crc = crc32(buf, table->hdr->hdr_size);
1283	le32enc(buf + 16, crc);
1284
1285	for (index = 0; index < tblsz; index += maxphys / pp->sectorsize) {
1286		error = g_write_data(cp,
1287		    (table->lba[GPT_ELT_SECTBL] + index) * pp->sectorsize,
1288		    buf + (index + 1) * pp->sectorsize,
1289		    (tblsz - index > maxphys / pp->sectorsize) ? maxphys :
1290		    (tblsz - index) * pp->sectorsize);
1291		if (error)
1292			goto out;
1293	}
1294	error = g_write_data(cp, table->lba[GPT_ELT_SECHDR] * pp->sectorsize,
1295	    buf, pp->sectorsize);
1296
1297 out:
1298	g_free(buf);
1299	return (error);
1300}
1301
1302static void
1303g_gpt_set_defaults(struct g_part_table *basetable, struct g_provider *pp,
1304	struct g_part_parms *gpp)
1305{
1306	struct g_part_entry *baseentry;
1307	struct g_part_gpt_entry *entry;
1308	struct g_part_gpt_table *table;
1309	quad_t start, end, min, max;
1310	quad_t lba, last;
1311	size_t spb, tblsz;
1312
1313	table = (struct g_part_gpt_table *)basetable;
1314	last = pp->mediasize / pp->sectorsize - 1;
1315	tblsz = howmany(basetable->gpt_entries * sizeof(struct gpt_ent),
1316	    pp->sectorsize);
1317
1318	table->lba[GPT_ELT_PRIHDR] = 1;
1319	table->lba[GPT_ELT_PRITBL] = 2;
1320	table->lba[GPT_ELT_SECHDR] = last;
1321	table->lba[GPT_ELT_SECTBL] = last - tblsz;
1322	table->state[GPT_ELT_PRIHDR] = GPT_STATE_OK;
1323	table->state[GPT_ELT_PRITBL] = GPT_STATE_OK;
1324	table->state[GPT_ELT_SECHDR] = GPT_STATE_OK;
1325	table->state[GPT_ELT_SECTBL] = GPT_STATE_OK;
1326
1327	max = start = 2 + tblsz;
1328	min = end = last - tblsz - 1;
1329	LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
1330		if (baseentry->gpe_deleted)
1331			continue;
1332		entry = (struct g_part_gpt_entry *)baseentry;
1333		if (entry->ent.ent_lba_start < min)
1334			min = entry->ent.ent_lba_start;
1335		if (entry->ent.ent_lba_end > max)
1336			max = entry->ent.ent_lba_end;
1337	}
1338	/*
1339	 * Don't force alignment of any kind whatsoever on resize, restore or
1340	 * recover. resize doesn't go through this path, recover has a NULL gpp
1341	 * and restore has flags == restore (maybe with an appended 'C' to
1342	 * commit the operation). For these operations, we have to trust the
1343	 * user knows what they are doing.
1344	 *
1345	 * Otherwise it some flavor of creation of a new partition, so we align
1346	 * to a 4k offset on the drive, to make 512e/4kn drives more performant
1347	 * by default.
1348	 */
1349	if (gpp == NULL ||
1350	    (gpp->gpp_parms & G_PART_PARM_FLAGS) == 0 ||
1351	    strstr(gpp->gpp_flags, "restore") == NULL) {
1352		spb = 4096 / pp->sectorsize;
1353		if (spb > 1) {
1354			lba = start + ((start % spb) ? spb - start % spb : 0);
1355			if (lba <= min)
1356				start = lba;
1357			lba = end - (end + 1) % spb;
1358			if (max <= lba)
1359				end = lba;
1360		}
1361	}
1362	table->hdr->hdr_lba_start = start;
1363	table->hdr->hdr_lba_end = end;
1364
1365	basetable->gpt_first = start;
1366	basetable->gpt_last = end;
1367}
1368
1369static void
1370g_gpt_printf_utf16(struct sbuf *sb, uint16_t *str, size_t len)
1371{
1372	u_int bo;
1373	uint32_t ch;
1374	uint16_t c;
1375
1376	bo = LITTLE_ENDIAN;	/* GPT is little-endian */
1377	while (len > 0 && *str != 0) {
1378		ch = (bo == BIG_ENDIAN) ? be16toh(*str) : le16toh(*str);
1379		str++, len--;
1380		if ((ch & 0xf800) == 0xd800) {
1381			if (len > 0) {
1382				c = (bo == BIG_ENDIAN) ? be16toh(*str)
1383				    : le16toh(*str);
1384				str++, len--;
1385			} else
1386				c = 0xfffd;
1387			if ((ch & 0x400) == 0 && (c & 0xfc00) == 0xdc00) {
1388				ch = ((ch & 0x3ff) << 10) + (c & 0x3ff);
1389				ch += 0x10000;
1390			} else
1391				ch = 0xfffd;
1392		} else if (ch == 0xfffe) { /* BOM (U+FEFF) swapped. */
1393			bo = (bo == BIG_ENDIAN) ? LITTLE_ENDIAN : BIG_ENDIAN;
1394			continue;
1395		} else if (ch == 0xfeff) /* BOM (U+FEFF) unswapped. */
1396			continue;
1397
1398		/* Write the Unicode character in UTF-8 */
1399		if (ch < 0x80)
1400			g_conf_printf_escaped(sb, "%c", ch);
1401		else if (ch < 0x800)
1402			g_conf_printf_escaped(sb, "%c%c", 0xc0 | (ch >> 6),
1403			    0x80 | (ch & 0x3f));
1404		else if (ch < 0x10000)
1405			g_conf_printf_escaped(sb, "%c%c%c", 0xe0 | (ch >> 12),
1406			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1407		else if (ch < 0x200000)
1408			g_conf_printf_escaped(sb, "%c%c%c%c", 0xf0 |
1409			    (ch >> 18), 0x80 | ((ch >> 12) & 0x3f),
1410			    0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f));
1411	}
1412}
1413
1414static void
1415g_gpt_utf8_to_utf16(const uint8_t *s8, uint16_t *s16, size_t s16len)
1416{
1417	size_t s16idx, s8idx;
1418	uint32_t utfchar;
1419	unsigned int c, utfbytes;
1420
1421	s8idx = s16idx = 0;
1422	utfchar = 0;
1423	utfbytes = 0;
1424	bzero(s16, s16len << 1);
1425	while (s8[s8idx] != 0 && s16idx < s16len) {
1426		c = s8[s8idx++];
1427		if ((c & 0xc0) != 0x80) {
1428			/* Initial characters. */
1429			if (utfbytes != 0) {
1430				/* Incomplete encoding of previous char. */
1431				s16[s16idx++] = htole16(0xfffd);
1432			}
1433			if ((c & 0xf8) == 0xf0) {
1434				utfchar = c & 0x07;
1435				utfbytes = 3;
1436			} else if ((c & 0xf0) == 0xe0) {
1437				utfchar = c & 0x0f;
1438				utfbytes = 2;
1439			} else if ((c & 0xe0) == 0xc0) {
1440				utfchar = c & 0x1f;
1441				utfbytes = 1;
1442			} else {
1443				utfchar = c & 0x7f;
1444				utfbytes = 0;
1445			}
1446		} else {
1447			/* Followup characters. */
1448			if (utfbytes > 0) {
1449				utfchar = (utfchar << 6) + (c & 0x3f);
1450				utfbytes--;
1451			} else if (utfbytes == 0)
1452				utfbytes = ~0;
1453		}
1454		/*
1455		 * Write the complete Unicode character as UTF-16 when we
1456		 * have all the UTF-8 charactars collected.
1457		 */
1458		if (utfbytes == 0) {
1459			/*
1460			 * If we need to write 2 UTF-16 characters, but
1461			 * we only have room for 1, then we truncate the
1462			 * string by writing a 0 instead.
1463			 */
1464			if (utfchar >= 0x10000 && s16idx < s16len - 1) {
1465				s16[s16idx++] =
1466				    htole16(0xd800 | ((utfchar >> 10) - 0x40));
1467				s16[s16idx++] =
1468				    htole16(0xdc00 | (utfchar & 0x3ff));
1469			} else
1470				s16[s16idx++] = (utfchar >= 0x10000) ? 0 :
1471				    htole16(utfchar);
1472		}
1473	}
1474	/*
1475	 * If our input string was truncated, append an invalid encoding
1476	 * character to the output string.
1477	 */
1478	if (utfbytes != 0 && s16idx < s16len)
1479		s16[s16idx++] = htole16(0xfffd);
1480}
1481