1/*-
2 * Copyright (c) 2005 Marcel Moolenaar
3 * All rights reserved.
4 *
5 * Copyright (c) 2009 The FreeBSD Foundation
6 * All rights reserved.
7 *
8 * Portions of this software were developed by Ed Schouten
9 * under sponsorship from the FreeBSD Foundation.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include "opt_acpi.h"
34
35#include <sys/param.h>
36#include <sys/kernel.h>
37#include <sys/systm.h>
38#include <sys/bus.h>
39#include <sys/module.h>
40#include <sys/rman.h>
41
42#include <dev/vt/vt.h>
43#include <dev/vt/colors/vt_termcolors.h>
44#include <dev/vt/hw/vga/vt_vga_reg.h>
45#include <dev/pci/pcivar.h>
46
47#include <machine/bus.h>
48#if defined(__amd64__) || defined(__i386__)
49#include <contrib/dev/acpica/include/acpi.h>
50#include <machine/md_var.h>
51#endif
52
53struct vga_softc {
54	bus_space_tag_t		 vga_fb_tag;
55	bus_space_handle_t	 vga_fb_handle;
56	bus_space_tag_t		 vga_reg_tag;
57	bus_space_handle_t	 vga_reg_handle;
58	int			 vga_wmode;
59	term_color_t		 vga_curfg, vga_curbg;
60	boolean_t		 vga_enabled;
61};
62
63/* Convenience macros. */
64#define	MEM_READ1(sc, ofs) \
65	bus_space_read_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs)
66#define	MEM_WRITE1(sc, ofs, val) \
67	bus_space_write_1(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val)
68#define	MEM_WRITE2(sc, ofs, val) \
69	bus_space_write_2(sc->vga_fb_tag, sc->vga_fb_handle, ofs, val)
70#define	REG_READ1(sc, reg) \
71	bus_space_read_1(sc->vga_reg_tag, sc->vga_reg_handle, reg)
72#define	REG_WRITE1(sc, reg, val) \
73	bus_space_write_1(sc->vga_reg_tag, sc->vga_reg_handle, reg, val)
74
75#define	VT_VGA_WIDTH	640
76#define	VT_VGA_HEIGHT	480
77#define	VT_VGA_MEMSIZE	(VT_VGA_WIDTH * VT_VGA_HEIGHT / 8)
78
79/*
80 * VGA is designed to handle 8 pixels at a time (8 pixels in one byte of
81 * memory).
82 */
83#define	VT_VGA_PIXELS_BLOCK	8
84
85/*
86 * We use an off-screen addresses to:
87 *     o  store the background color;
88 *     o  store pixels pattern.
89 * Those addresses are then loaded in the latches once.
90 */
91#define	VT_VGA_BGCOLOR_OFFSET	VT_VGA_MEMSIZE
92
93static vd_probe_t	vga_probe;
94static vd_init_t	vga_init;
95static vd_blank_t	vga_blank;
96static vd_bitblt_text_t	vga_bitblt_text;
97static vd_invalidate_text_t	vga_invalidate_text;
98static vd_bitblt_bmp_t	vga_bitblt_bitmap;
99static vd_drawrect_t	vga_drawrect;
100static vd_setpixel_t	vga_setpixel;
101static vd_postswitch_t	vga_postswitch;
102
103static const struct vt_driver vt_vga_driver = {
104	.vd_name	= "vga",
105	.vd_probe	= vga_probe,
106	.vd_init	= vga_init,
107	.vd_blank	= vga_blank,
108	.vd_bitblt_text	= vga_bitblt_text,
109	.vd_invalidate_text = vga_invalidate_text,
110	.vd_bitblt_bmp	= vga_bitblt_bitmap,
111	.vd_drawrect	= vga_drawrect,
112	.vd_setpixel	= vga_setpixel,
113	.vd_postswitch	= vga_postswitch,
114	.vd_priority	= VD_PRIORITY_GENERIC,
115};
116
117/*
118 * Driver supports both text mode and graphics mode.  Make sure the
119 * buffer is always big enough to support both.
120 */
121static struct vga_softc vga_conssoftc;
122VT_DRIVER_DECLARE(vt_vga, vt_vga_driver);
123
124static inline void
125vga_setwmode(struct vt_device *vd, int wmode)
126{
127	struct vga_softc *sc = vd->vd_softc;
128
129	if (sc->vga_wmode == wmode)
130		return;
131
132	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
133	REG_WRITE1(sc, VGA_GC_DATA, wmode);
134	sc->vga_wmode = wmode;
135
136	switch (wmode) {
137	case 3:
138		/* Re-enable all planes. */
139		REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
140		REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 |
141		    VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0);
142		break;
143	}
144}
145
146static inline void
147vga_setfg(struct vt_device *vd, term_color_t color)
148{
149	struct vga_softc *sc = vd->vd_softc;
150
151	vga_setwmode(vd, 3);
152
153	if (sc->vga_curfg == color)
154		return;
155
156	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
157	REG_WRITE1(sc, VGA_GC_DATA, cons_to_vga_colors[color]);
158	sc->vga_curfg = color;
159}
160
161static inline void
162vga_setbg(struct vt_device *vd, term_color_t color)
163{
164	struct vga_softc *sc = vd->vd_softc;
165
166	vga_setwmode(vd, 3);
167
168	if (sc->vga_curbg == color)
169		return;
170
171	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
172	REG_WRITE1(sc, VGA_GC_DATA, cons_to_vga_colors[color]);
173
174	/*
175	 * Write 8 pixels using the background color to an off-screen
176	 * byte in the video memory.
177	 */
178	MEM_WRITE1(sc, VT_VGA_BGCOLOR_OFFSET, 0xff);
179
180	/*
181	 * Read those 8 pixels back to load the background color in the
182	 * latches register.
183	 */
184	MEM_READ1(sc, VT_VGA_BGCOLOR_OFFSET);
185
186	sc->vga_curbg = color;
187
188	/*
189         * The Set/Reset register doesn't contain the fg color anymore,
190         * store an invalid color.
191	 */
192	sc->vga_curfg = 0xff;
193}
194
195/*
196 * Binary searchable table for Unicode to CP437 conversion.
197 */
198
199struct unicp437 {
200	uint16_t	unicode_base;
201	uint8_t		cp437_base;
202	uint8_t		length;
203};
204
205static const struct unicp437 cp437table[] = {
206	{ 0x0020, 0x20, 0x5e }, { 0x00a0, 0x20, 0x00 },
207	{ 0x00a1, 0xad, 0x00 }, { 0x00a2, 0x9b, 0x00 },
208	{ 0x00a3, 0x9c, 0x00 }, { 0x00a5, 0x9d, 0x00 },
209	{ 0x00a6, 0x7c, 0x00 },
210	{ 0x00a7, 0x15, 0x00 }, { 0x00aa, 0xa6, 0x00 },
211	{ 0x00ab, 0xae, 0x00 }, { 0x00ac, 0xaa, 0x00 },
212	{ 0x00b0, 0xf8, 0x00 }, { 0x00b1, 0xf1, 0x00 },
213	{ 0x00b2, 0xfd, 0x00 }, { 0x00b5, 0xe6, 0x00 },
214	{ 0x00b6, 0x14, 0x00 }, { 0x00b7, 0xfa, 0x00 },
215	{ 0x00ba, 0xa7, 0x00 }, { 0x00bb, 0xaf, 0x00 },
216	{ 0x00bc, 0xac, 0x00 }, { 0x00bd, 0xab, 0x00 },
217	{ 0x00bf, 0xa8, 0x00 }, { 0x00c4, 0x8e, 0x01 },
218	{ 0x00c6, 0x92, 0x00 }, { 0x00c7, 0x80, 0x00 },
219	{ 0x00c9, 0x90, 0x00 }, { 0x00d1, 0xa5, 0x00 },
220	{ 0x00d6, 0x99, 0x00 }, { 0x00dc, 0x9a, 0x00 },
221	{ 0x00df, 0xe1, 0x00 }, { 0x00e0, 0x85, 0x00 },
222	{ 0x00e1, 0xa0, 0x00 }, { 0x00e2, 0x83, 0x00 },
223	{ 0x00e4, 0x84, 0x00 }, { 0x00e5, 0x86, 0x00 },
224	{ 0x00e6, 0x91, 0x00 }, { 0x00e7, 0x87, 0x00 },
225	{ 0x00e8, 0x8a, 0x00 }, { 0x00e9, 0x82, 0x00 },
226	{ 0x00ea, 0x88, 0x01 }, { 0x00ec, 0x8d, 0x00 },
227	{ 0x00ed, 0xa1, 0x00 }, { 0x00ee, 0x8c, 0x00 },
228	{ 0x00ef, 0x8b, 0x00 }, { 0x00f0, 0xeb, 0x00 },
229	{ 0x00f1, 0xa4, 0x00 }, { 0x00f2, 0x95, 0x00 },
230	{ 0x00f3, 0xa2, 0x00 }, { 0x00f4, 0x93, 0x00 },
231	{ 0x00f6, 0x94, 0x00 }, { 0x00f7, 0xf6, 0x00 },
232	{ 0x00f8, 0xed, 0x00 }, { 0x00f9, 0x97, 0x00 },
233	{ 0x00fa, 0xa3, 0x00 }, { 0x00fb, 0x96, 0x00 },
234	{ 0x00fc, 0x81, 0x00 }, { 0x00ff, 0x98, 0x00 },
235	{ 0x0192, 0x9f, 0x00 }, { 0x0393, 0xe2, 0x00 },
236	{ 0x0398, 0xe9, 0x00 }, { 0x03a3, 0xe4, 0x00 },
237	{ 0x03a6, 0xe8, 0x00 }, { 0x03a9, 0xea, 0x00 },
238	{ 0x03b1, 0xe0, 0x01 }, { 0x03b4, 0xeb, 0x00 },
239	{ 0x03b5, 0xee, 0x00 }, { 0x03bc, 0xe6, 0x00 },
240	{ 0x03c0, 0xe3, 0x00 }, { 0x03c3, 0xe5, 0x00 },
241	{ 0x03c4, 0xe7, 0x00 }, { 0x03c6, 0xed, 0x00 },
242	{ 0x03d5, 0xed, 0x00 }, { 0x2010, 0x2d, 0x00 },
243	{ 0x2013, 0x2d, 0x00 },
244	{ 0x2014, 0x2d, 0x00 }, { 0x2018, 0x60, 0x00 },
245	{ 0x2019, 0x27, 0x00 }, { 0x201c, 0x22, 0x00 },
246	{ 0x201d, 0x22, 0x00 }, { 0x2022, 0x07, 0x00 },
247	{ 0x203c, 0x13, 0x00 }, { 0x207f, 0xfc, 0x00 },
248	{ 0x20a7, 0x9e, 0x00 }, { 0x20ac, 0xee, 0x00 },
249	{ 0x2126, 0xea, 0x00 }, { 0x2190, 0x1b, 0x00 },
250	{ 0x2191, 0x18, 0x00 }, { 0x2192, 0x1a, 0x00 },
251	{ 0x2193, 0x19, 0x00 }, { 0x2194, 0x1d, 0x00 },
252	{ 0x2195, 0x12, 0x00 }, { 0x21a8, 0x17, 0x00 },
253	{ 0x2202, 0xeb, 0x00 }, { 0x2208, 0xee, 0x00 },
254	{ 0x2211, 0xe4, 0x00 }, { 0x2212, 0x2d, 0x00 },
255	{ 0x2219, 0xf9, 0x00 }, { 0x221a, 0xfb, 0x00 },
256	{ 0x221e, 0xec, 0x00 }, { 0x221f, 0x1c, 0x00 },
257	{ 0x2229, 0xef, 0x00 }, { 0x2248, 0xf7, 0x00 },
258	{ 0x2261, 0xf0, 0x00 }, { 0x2264, 0xf3, 0x00 },
259	{ 0x2265, 0xf2, 0x00 }, { 0x2302, 0x7f, 0x00 },
260	{ 0x2310, 0xa9, 0x00 }, { 0x2320, 0xf4, 0x00 },
261	{ 0x2321, 0xf5, 0x00 }, { 0x2500, 0xc4, 0x00 },
262	{ 0x2502, 0xb3, 0x00 }, { 0x250c, 0xda, 0x00 },
263	{ 0x2510, 0xbf, 0x00 }, { 0x2514, 0xc0, 0x00 },
264	{ 0x2518, 0xd9, 0x00 }, { 0x251c, 0xc3, 0x00 },
265	{ 0x2524, 0xb4, 0x00 }, { 0x252c, 0xc2, 0x00 },
266	{ 0x2534, 0xc1, 0x00 }, { 0x253c, 0xc5, 0x00 },
267	{ 0x2550, 0xcd, 0x00 }, { 0x2551, 0xba, 0x00 },
268	{ 0x2552, 0xd5, 0x00 }, { 0x2553, 0xd6, 0x00 },
269	{ 0x2554, 0xc9, 0x00 }, { 0x2555, 0xb8, 0x00 },
270	{ 0x2556, 0xb7, 0x00 }, { 0x2557, 0xbb, 0x00 },
271	{ 0x2558, 0xd4, 0x00 }, { 0x2559, 0xd3, 0x00 },
272	{ 0x255a, 0xc8, 0x00 }, { 0x255b, 0xbe, 0x00 },
273	{ 0x255c, 0xbd, 0x00 }, { 0x255d, 0xbc, 0x00 },
274	{ 0x255e, 0xc6, 0x01 }, { 0x2560, 0xcc, 0x00 },
275	{ 0x2561, 0xb5, 0x00 }, { 0x2562, 0xb6, 0x00 },
276	{ 0x2563, 0xb9, 0x00 }, { 0x2564, 0xd1, 0x01 },
277	{ 0x2566, 0xcb, 0x00 }, { 0x2567, 0xcf, 0x00 },
278	{ 0x2568, 0xd0, 0x00 }, { 0x2569, 0xca, 0x00 },
279	{ 0x256a, 0xd8, 0x00 }, { 0x256b, 0xd7, 0x00 },
280	{ 0x256c, 0xce, 0x00 }, { 0x2580, 0xdf, 0x00 },
281	{ 0x2584, 0xdc, 0x00 }, { 0x2588, 0xdb, 0x00 },
282	{ 0x258c, 0xdd, 0x00 }, { 0x2590, 0xde, 0x00 },
283	{ 0x2591, 0xb0, 0x02 }, { 0x25a0, 0xfe, 0x00 },
284	{ 0x25ac, 0x16, 0x00 }, { 0x25b2, 0x1e, 0x00 },
285	{ 0x25ba, 0x10, 0x00 }, { 0x25bc, 0x1f, 0x00 },
286	{ 0x25c4, 0x11, 0x00 }, { 0x25cb, 0x09, 0x00 },
287	{ 0x25d8, 0x08, 0x00 }, { 0x25d9, 0x0a, 0x00 },
288	{ 0x263a, 0x01, 0x01 }, { 0x263c, 0x0f, 0x00 },
289	{ 0x2640, 0x0c, 0x00 }, { 0x2642, 0x0b, 0x00 },
290	{ 0x2660, 0x06, 0x00 }, { 0x2663, 0x05, 0x00 },
291	{ 0x2665, 0x03, 0x01 }, { 0x266a, 0x0d, 0x00 },
292	{ 0x266c, 0x0e, 0x00 }, { 0x2713, 0xfb, 0x00 },
293	{ 0x27e8, 0x3c, 0x00 }, { 0x27e9, 0x3e, 0x00 },
294};
295
296static uint8_t
297vga_get_cp437(term_char_t c)
298{
299	int min, mid, max;
300
301	min = 0;
302	max = nitems(cp437table) - 1;
303
304	if (c < cp437table[0].unicode_base ||
305	    c > cp437table[max].unicode_base + cp437table[max].length)
306		return '?';
307
308	while (max >= min) {
309		mid = (min + max) / 2;
310		if (c < cp437table[mid].unicode_base)
311			max = mid - 1;
312		else if (c > cp437table[mid].unicode_base +
313		    cp437table[mid].length)
314			min = mid + 1;
315		else
316			return (c - cp437table[mid].unicode_base +
317			    cp437table[mid].cp437_base);
318	}
319
320	return '?';
321}
322
323static void
324vga_blank(struct vt_device *vd, term_color_t color)
325{
326	struct vga_softc *sc = vd->vd_softc;
327	u_int ofs;
328
329	vga_setfg(vd, color);
330	for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++)
331		MEM_WRITE1(sc, ofs, 0xff);
332}
333
334static inline void
335vga_bitblt_put(struct vt_device *vd, u_long dst, term_color_t color,
336    uint8_t v)
337{
338	struct vga_softc *sc = vd->vd_softc;
339
340	/* Skip empty writes, in order to avoid palette changes. */
341	if (v != 0x00) {
342		vga_setfg(vd, color);
343		/*
344		 * When this MEM_READ1() gets disabled, all sorts of
345		 * artifacts occur.  This is because this read loads the
346		 * set of 8 pixels that are about to be changed.  There
347		 * is one scenario where we can avoid the read, namely
348		 * if all pixels are about to be overwritten anyway.
349		 */
350		if (v != 0xff) {
351			MEM_READ1(sc, dst);
352
353			/* The bg color was trashed by the reads. */
354			sc->vga_curbg = 0xff;
355		}
356		MEM_WRITE1(sc, dst, v);
357	}
358}
359
360static void
361vga_setpixel(struct vt_device *vd, int x, int y, term_color_t color)
362{
363
364	if (vd->vd_flags & VDF_TEXTMODE)
365		return;
366
367	vga_bitblt_put(vd, (y * VT_VGA_WIDTH / 8) + (x / 8), color,
368	    0x80 >> (x % 8));
369}
370
371static void
372vga_drawrect(struct vt_device *vd, int x1, int y1, int x2, int y2, int fill,
373    term_color_t color)
374{
375	int x, y;
376
377	if (vd->vd_flags & VDF_TEXTMODE)
378		return;
379
380	for (y = y1; y <= y2; y++) {
381		if (fill || (y == y1) || (y == y2)) {
382			for (x = x1; x <= x2; x++)
383				vga_setpixel(vd, x, y, color);
384		} else {
385			vga_setpixel(vd, x1, y, color);
386			vga_setpixel(vd, x2, y, color);
387		}
388	}
389}
390
391static void
392vga_compute_shifted_pattern(const uint8_t *src, unsigned int bytes,
393    unsigned int src_x, unsigned int x_count, unsigned int dst_x,
394    uint8_t *pattern, uint8_t *mask)
395{
396	unsigned int n;
397
398	n = src_x / 8;
399
400	/*
401	 * This mask has bits set, where a pixel (ether 0 or 1)
402	 * comes from the source bitmap.
403	 */
404	if (mask != NULL) {
405		*mask = (0xff
406		    >> (8 - x_count))
407		    << (8 - x_count - dst_x);
408	}
409
410	if (n == (src_x + x_count - 1) / 8) {
411		/* All the pixels we want are in the same byte. */
412		*pattern = src[n];
413		if (dst_x >= src_x)
414			*pattern >>= (dst_x - src_x % 8);
415		else
416			*pattern <<= (src_x % 8 - dst_x);
417	} else {
418		/* The pixels we want are split into two bytes. */
419		if (dst_x >= src_x % 8) {
420			*pattern =
421			    src[n] << (8 - dst_x - src_x % 8) |
422			    src[n + 1] >> (dst_x - src_x % 8);
423		} else {
424			*pattern =
425			    src[n] << (src_x % 8 - dst_x) |
426			    src[n + 1] >> (8 - src_x % 8 - dst_x);
427		}
428	}
429}
430
431static void
432vga_copy_bitmap_portion(uint8_t *pattern_2colors, uint8_t *pattern_ncolors,
433    const uint8_t *src, const uint8_t *src_mask, unsigned int src_width,
434    unsigned int src_x, unsigned int dst_x, unsigned int x_count,
435    unsigned int src_y, unsigned int dst_y, unsigned int y_count,
436    term_color_t fg, term_color_t bg, int overwrite)
437{
438	unsigned int i, bytes;
439	uint8_t pattern, relevant_bits, mask;
440
441	bytes = (src_width + 7) / 8;
442
443	for (i = 0; i < y_count; ++i) {
444		vga_compute_shifted_pattern(src + (src_y + i) * bytes,
445		    bytes, src_x, x_count, dst_x, &pattern, &relevant_bits);
446
447		if (src_mask == NULL) {
448			/*
449			 * No src mask. Consider that all wanted bits
450			 * from the source are "authoritative".
451			 */
452			mask = relevant_bits;
453		} else {
454			/*
455			 * There's an src mask. We shift it the same way
456			 * we shifted the source pattern.
457			 */
458			vga_compute_shifted_pattern(
459			    src_mask + (src_y + i) * bytes,
460			    bytes, src_x, x_count, dst_x,
461			    &mask, NULL);
462
463			/* Now, only keep the wanted bits among them. */
464			mask &= relevant_bits;
465		}
466
467		/*
468		 * Clear bits from the pattern which must be
469		 * transparent, according to the source mask.
470		 */
471		pattern &= mask;
472
473		/* Set the bits in the 2-colors array. */
474		if (overwrite)
475			pattern_2colors[dst_y + i] &= ~mask;
476		pattern_2colors[dst_y + i] |= pattern;
477
478		if (pattern_ncolors == NULL)
479			continue;
480
481		/*
482		 * Set the same bits in the n-colors array. This one
483		 * supports transparency, when a given bit is cleared in
484		 * all colors.
485		 */
486		if (overwrite) {
487			/*
488			 * Ensure that the pixels used by this bitmap are
489			 * cleared in other colors.
490			 */
491			for (int j = 0; j < 16; ++j)
492				pattern_ncolors[(dst_y + i) * 16 + j] &=
493				    ~mask;
494		}
495		pattern_ncolors[(dst_y + i) * 16 + fg] |= pattern;
496		pattern_ncolors[(dst_y + i) * 16 + bg] |= (~pattern & mask);
497	}
498}
499
500static void
501vga_bitblt_pixels_block_2colors(struct vt_device *vd, const uint8_t *masks,
502    term_color_t fg, term_color_t bg,
503    unsigned int x, unsigned int y, unsigned int height)
504{
505	unsigned int i, offset;
506	struct vga_softc *sc;
507
508	/*
509	 * The great advantage of Write Mode 3 is that we just need
510	 * to load the foreground in the Set/Reset register, load the
511	 * background color in the latches register (this is done
512	 * through a write in offscreen memory followed by a read of
513	 * that data), then write the pattern to video memory. This
514	 * pattern indicates if the pixel should use the foreground
515	 * color (bit set) or the background color (bit cleared).
516	 */
517
518	vga_setbg(vd, bg);
519	vga_setfg(vd, fg);
520
521	sc = vd->vd_softc;
522	offset = (VT_VGA_WIDTH * y + x) / 8;
523
524	for (i = 0; i < height; ++i, offset += VT_VGA_WIDTH / 8) {
525		MEM_WRITE1(sc, offset, masks[i]);
526	}
527}
528
529static void
530vga_bitblt_pixels_block_ncolors(struct vt_device *vd, const uint8_t *masks,
531    unsigned int x, unsigned int y, unsigned int height)
532{
533	unsigned int i, j, plane, color, offset;
534	struct vga_softc *sc;
535	uint8_t mask, planes[height * 4];
536
537	sc = vd->vd_softc;
538
539	memset(planes, 0, sizeof(planes));
540
541	/*
542         * To write a group of pixels using 3 or more colors, we select
543         * Write Mode 0 and write one byte to each plane separately.
544	 */
545
546	/*
547	 * We first compute each byte: each plane contains one bit of the
548	 * color code for each of the 8 pixels.
549	 *
550	 * For example, if the 8 pixels are like this:
551	 *     GBBBBBBY
552	 * where:
553	 *     G (gray)   = 0b0111
554	 *     B (black)  = 0b0000
555	 *     Y (yellow) = 0b0011
556	 *
557	 * The corresponding for bytes are:
558	 *             GBBBBBBY
559	 *    Plane 0: 10000001 = 0x81
560	 *    Plane 1: 10000001 = 0x81
561	 *    Plane 2: 10000000 = 0x80
562	 *    Plane 3: 00000000 = 0x00
563	 *             |  |   |
564	 *             |  |   +-> 0b0011 (Y)
565	 *             |  +-----> 0b0000 (B)
566	 *             +--------> 0b0111 (G)
567	 */
568
569	for (i = 0; i < height; ++i) {
570		for (color = 0; color < 16; ++color) {
571			mask = masks[i * 16 + color];
572			if (mask == 0x00)
573				continue;
574
575			for (j = 0; j < 8; ++j) {
576				if (!((mask >> (7 - j)) & 0x1))
577					continue;
578
579				/* The pixel "j" uses color "color". */
580				for (plane = 0; plane < 4; ++plane)
581					planes[i * 4 + plane] |=
582					    ((cons_to_vga_colors[color] >>
583					    plane) & 0x1) << (7 - j);
584			}
585		}
586	}
587
588	/*
589	 * The bytes are ready: we now switch to Write Mode 0 and write
590	 * all bytes, one plane at a time.
591	 */
592	vga_setwmode(vd, 0);
593
594	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
595	for (plane = 0; plane < 4; ++plane) {
596		/* Select plane. */
597		REG_WRITE1(sc, VGA_SEQ_DATA, 1 << plane);
598
599		/* Write all bytes for this plane, from Y to Y+height. */
600		for (i = 0; i < height; ++i) {
601			offset = (VT_VGA_WIDTH * (y + i) + x) / 8;
602			MEM_WRITE1(sc, offset, planes[i * 4 + plane]);
603		}
604	}
605}
606
607static void
608vga_bitblt_one_text_pixels_block(struct vt_device *vd,
609    const struct vt_window *vw, unsigned int x, unsigned int y)
610{
611	const struct vt_buf *vb;
612	const struct vt_font *vf;
613	unsigned int i, col, row, src_x, x_count;
614	unsigned int used_colors_list[16], used_colors;
615	uint8_t pattern_2colors[vw->vw_font->vf_height];
616	uint8_t pattern_ncolors[vw->vw_font->vf_height * 16];
617	term_char_t c;
618	term_color_t fg, bg;
619	const uint8_t *src;
620
621	vb = &vw->vw_buf;
622	vf = vw->vw_font;
623
624	/*
625	 * The current pixels block.
626	 *
627	 * We fill it with portions of characters, because both "grids"
628	 * may not match.
629	 *
630	 * i is the index in this pixels block.
631	 */
632
633	i = x;
634	used_colors = 0;
635	memset(used_colors_list, 0, sizeof(used_colors_list));
636	memset(pattern_2colors, 0, sizeof(pattern_2colors));
637	memset(pattern_ncolors, 0, sizeof(pattern_ncolors));
638
639	if (i < vw->vw_draw_area.tr_begin.tp_col) {
640		/*
641		 * i is in the margin used to center the text area on
642		 * the screen.
643		 */
644
645		i = vw->vw_draw_area.tr_begin.tp_col;
646	}
647
648	while (i < x + VT_VGA_PIXELS_BLOCK &&
649	    i < vw->vw_draw_area.tr_end.tp_col) {
650		/*
651		 * Find which character is drawn on this pixel in the
652		 * pixels block.
653		 *
654		 * While here, record what colors it uses.
655		 */
656
657		col = (i - vw->vw_draw_area.tr_begin.tp_col) / vf->vf_width;
658		row = (y - vw->vw_draw_area.tr_begin.tp_row) / vf->vf_height;
659
660		c = VTBUF_GET_FIELD(vb, row, col);
661		src = vtfont_lookup(vf, c);
662
663		vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col), &fg, &bg);
664		if ((used_colors_list[fg] & 0x1) != 0x1)
665			used_colors++;
666		if ((used_colors_list[bg] & 0x2) != 0x2)
667			used_colors++;
668		used_colors_list[fg] |= 0x1;
669		used_colors_list[bg] |= 0x2;
670
671		/*
672		 * Compute the portion of the character we want to draw,
673		 * because the pixels block may start in the middle of a
674		 * character.
675		 *
676		 * The first pixel to draw in the character is
677		 *     the current position -
678		 *     the start position of the character
679		 *
680		 * The last pixel to draw is either
681		 *     - the last pixel of the character, or
682		 *     - the pixel of the character matching the end of
683		 *       the pixels block
684		 * whichever comes first. This position is then
685		 * changed to be relative to the start position of the
686		 * character.
687		 */
688
689		src_x = i -
690		    (col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col);
691		x_count = min(min(
692		    (col + 1) * vf->vf_width +
693		    vw->vw_draw_area.tr_begin.tp_col,
694		    x + VT_VGA_PIXELS_BLOCK),
695		    vw->vw_draw_area.tr_end.tp_col);
696		x_count -= col * vf->vf_width +
697		    vw->vw_draw_area.tr_begin.tp_col;
698		x_count -= src_x;
699
700		/* Copy a portion of the character. */
701		vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors,
702		    src, NULL, vf->vf_width,
703		    src_x, i % VT_VGA_PIXELS_BLOCK, x_count,
704		    0, 0, vf->vf_height, fg, bg, 0);
705
706		/* We move to the next portion. */
707		i += x_count;
708	}
709
710#ifndef SC_NO_CUTPASTE
711	/*
712	 * Copy the mouse pointer bitmap if it's over the current pixels
713	 * block.
714	 *
715	 * We use the saved cursor position (saved in vt_flush()), because
716	 * the current position could be different than the one used
717	 * to mark the area dirty.
718	 */
719	term_rect_t drawn_area;
720
721	drawn_area.tr_begin.tp_col = x;
722	drawn_area.tr_begin.tp_row = y;
723	drawn_area.tr_end.tp_col = x + VT_VGA_PIXELS_BLOCK;
724	drawn_area.tr_end.tp_row = y + vf->vf_height;
725	if (vd->vd_mshown && vt_is_cursor_in_area(vd, &drawn_area)) {
726		struct vt_mouse_cursor *cursor;
727		unsigned int mx, my;
728		unsigned int dst_x, src_y, dst_y, y_count;
729
730		cursor = vd->vd_mcursor;
731		mx = vd->vd_mx_drawn + vw->vw_draw_area.tr_begin.tp_col;
732		my = vd->vd_my_drawn + vw->vw_draw_area.tr_begin.tp_row;
733
734		/* Compute the portion of the cursor we want to copy. */
735		src_x = x > mx ? x - mx : 0;
736		dst_x = mx > x ? mx - x : 0;
737		x_count = min(min(min(
738		    cursor->width - src_x,
739		    x + VT_VGA_PIXELS_BLOCK - mx),
740		    vw->vw_draw_area.tr_end.tp_col - mx),
741		    VT_VGA_PIXELS_BLOCK);
742
743		/*
744		 * The cursor isn't aligned on the Y-axis with
745		 * characters, so we need to compute the vertical
746		 * start/count.
747		 */
748		src_y = y > my ? y - my : 0;
749		dst_y = my > y ? my - y : 0;
750		y_count = min(
751		    min(cursor->height - src_y, y + vf->vf_height - my),
752		    vf->vf_height);
753
754		/* Copy the cursor portion. */
755		vga_copy_bitmap_portion(pattern_2colors, pattern_ncolors,
756		    cursor->map, cursor->mask, cursor->width,
757		    src_x, dst_x, x_count, src_y, dst_y, y_count,
758		    vd->vd_mcursor_fg, vd->vd_mcursor_bg, 1);
759
760		if ((used_colors_list[vd->vd_mcursor_fg] & 0x1) != 0x1)
761			used_colors++;
762		if ((used_colors_list[vd->vd_mcursor_bg] & 0x2) != 0x2)
763			used_colors++;
764	}
765#endif
766
767	/*
768	 * The pixels block is completed, we can now draw it on the
769	 * screen.
770	 */
771	if (used_colors == 2)
772		vga_bitblt_pixels_block_2colors(vd, pattern_2colors, fg, bg,
773		    x, y, vf->vf_height);
774	else
775		vga_bitblt_pixels_block_ncolors(vd, pattern_ncolors,
776		    x, y, vf->vf_height);
777}
778
779static void
780vga_bitblt_text_gfxmode(struct vt_device *vd, const struct vt_window *vw,
781    const term_rect_t *area)
782{
783	const struct vt_font *vf;
784	unsigned int col, row;
785	unsigned int x1, y1, x2, y2, x, y;
786
787	vf = vw->vw_font;
788
789	/*
790	 * Compute the top-left pixel position aligned with the video
791	 * adapter pixels block size.
792	 *
793	 * This is calculated from the top-left column of te dirty area:
794	 *
795	 *     1. Compute the top-left pixel of the character:
796	 *        col * font width + x offset
797	 *
798	 *        NOTE: x offset is used to center the text area on the
799	 *        screen. It's expressed in pixels, not in characters
800	 *        col/row!
801	 *
802	 *     2. Find the pixel further on the left marking the start of
803	 *        an aligned pixels block (eg. chunk of 8 pixels):
804	 *        character's x / blocksize * blocksize
805	 *
806	 *        The division, being made on integers, achieves the
807	 *        alignment.
808	 *
809	 * For the Y-axis, we need to compute the character's y
810	 * coordinate, but we don't need to align it.
811	 */
812
813	col = area->tr_begin.tp_col;
814	row = area->tr_begin.tp_row;
815	x1 = (int)((col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col)
816	     / VT_VGA_PIXELS_BLOCK)
817	    * VT_VGA_PIXELS_BLOCK;
818	y1 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row;
819
820	/*
821	 * Compute the bottom right pixel position, again, aligned with
822	 * the pixels block size.
823	 *
824	 * The same rules apply, we just add 1 to base the computation
825	 * on the "right border" of the dirty area.
826	 */
827
828	col = area->tr_end.tp_col;
829	row = area->tr_end.tp_row;
830	x2 = (int)howmany(col * vf->vf_width + vw->vw_draw_area.tr_begin.tp_col,
831	    VT_VGA_PIXELS_BLOCK)
832	    * VT_VGA_PIXELS_BLOCK;
833	y2 = row * vf->vf_height + vw->vw_draw_area.tr_begin.tp_row;
834
835	/* Clip the area to the screen size. */
836	x2 = min(x2, vw->vw_draw_area.tr_end.tp_col);
837	y2 = min(y2, vw->vw_draw_area.tr_end.tp_row);
838
839	/*
840	 * Now, we take care of N pixels line at a time (the first for
841	 * loop, N = font height), and for these lines, draw one pixels
842	 * block at a time (the second for loop), not a character at a
843	 * time.
844	 *
845	 * Therefore, on the X-axis, characters my be drawn partially if
846	 * they are not aligned on 8-pixels boundary.
847	 *
848	 * However, the operation is repeated for the full height of the
849	 * font before moving to the next character, because it allows
850	 * to keep the color settings and write mode, before perhaps
851	 * changing them with the next one.
852	 */
853
854	for (y = y1; y < y2; y += vf->vf_height) {
855		for (x = x1; x < x2; x += VT_VGA_PIXELS_BLOCK) {
856			vga_bitblt_one_text_pixels_block(vd, vw, x, y);
857		}
858	}
859}
860
861static void
862vga_bitblt_text_txtmode(struct vt_device *vd, const struct vt_window *vw,
863    const term_rect_t *area)
864{
865	struct vga_softc *sc;
866	const struct vt_buf *vb;
867	unsigned int col, row;
868	term_char_t c;
869	term_color_t fg, bg;
870	uint8_t ch, attr;
871	size_t z;
872
873	sc = vd->vd_softc;
874	vb = &vw->vw_buf;
875
876	for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) {
877		for (col = area->tr_begin.tp_col;
878		    col < area->tr_end.tp_col;
879		    ++col) {
880			/*
881			 * Get next character and its associated fg/bg
882			 * colors.
883			 */
884			c = VTBUF_GET_FIELD(vb, row, col);
885			vt_determine_colors(c, VTBUF_ISCURSOR(vb, row, col),
886			    &fg, &bg);
887
888			z = row * PIXEL_WIDTH(VT_FB_MAX_WIDTH) + col;
889			if (z >= PIXEL_HEIGHT(VT_FB_MAX_HEIGHT) *
890			    PIXEL_WIDTH(VT_FB_MAX_WIDTH))
891				continue;
892			if (vd->vd_drawn && (vd->vd_drawn[z] == c) &&
893			    vd->vd_drawnfg && (vd->vd_drawnfg[z] == fg) &&
894			    vd->vd_drawnbg && (vd->vd_drawnbg[z] == bg))
895				continue;
896
897			/*
898			 * Convert character to CP437, which is the
899			 * character set used by the VGA hardware by
900			 * default.
901			 */
902			ch = vga_get_cp437(TCHAR_CHARACTER(c));
903
904			/* Convert colors to VGA attributes. */
905			attr =
906			    cons_to_vga_colors[bg] << 4 |
907			    cons_to_vga_colors[fg];
908
909			MEM_WRITE2(sc, (row * 80 + col) * 2 + 0,
910			    ch + ((uint16_t)(attr) << 8));
911
912			if (vd->vd_drawn)
913				vd->vd_drawn[z] = c;
914			if (vd->vd_drawnfg)
915				vd->vd_drawnfg[z] = fg;
916			if (vd->vd_drawnbg)
917				vd->vd_drawnbg[z] = bg;
918		}
919	}
920}
921
922static void
923vga_bitblt_text(struct vt_device *vd, const struct vt_window *vw,
924    const term_rect_t *area)
925{
926
927	if (!(vd->vd_flags & VDF_TEXTMODE)) {
928		vga_bitblt_text_gfxmode(vd, vw, area);
929	} else {
930		vga_bitblt_text_txtmode(vd, vw, area);
931	}
932}
933
934void
935vga_invalidate_text(struct vt_device *vd, const term_rect_t *area)
936{
937	unsigned int col, row;
938	size_t z;
939
940	for (row = area->tr_begin.tp_row; row < area->tr_end.tp_row; ++row) {
941		for (col = area->tr_begin.tp_col;
942		    col < area->tr_end.tp_col;
943		    ++col) {
944			z = row * PIXEL_WIDTH(VT_FB_MAX_WIDTH) + col;
945			if (z >= PIXEL_HEIGHT(VT_FB_MAX_HEIGHT) *
946			    PIXEL_WIDTH(VT_FB_MAX_WIDTH))
947				continue;
948			if (vd->vd_drawn)
949				vd->vd_drawn[z] = 0;
950			if (vd->vd_drawnfg)
951				vd->vd_drawnfg[z] = 0;
952			if (vd->vd_drawnbg)
953				vd->vd_drawnbg[z] = 0;
954		}
955	}
956}
957
958static void
959vga_bitblt_bitmap(struct vt_device *vd, const struct vt_window *vw,
960    const uint8_t *pattern, const uint8_t *mask,
961    unsigned int width, unsigned int height,
962    unsigned int x, unsigned int y, term_color_t fg, term_color_t bg)
963{
964	unsigned int x1, y1, x2, y2, i, j, src_x, dst_x, x_count;
965	uint8_t pattern_2colors;
966
967	/* Align coordinates with the 8-pxels grid. */
968	x1 = rounddown(x, VT_VGA_PIXELS_BLOCK);
969	y1 = y;
970
971	x2 = roundup(x + width, VT_VGA_PIXELS_BLOCK);
972	y2 = y + height;
973	x2 = min(x2, vd->vd_width - 1);
974	y2 = min(y2, vd->vd_height - 1);
975
976	for (j = y1; j < y2; ++j) {
977		src_x = 0;
978		dst_x = x - x1;
979		x_count = VT_VGA_PIXELS_BLOCK - dst_x;
980
981		for (i = x1; i < x2; i += VT_VGA_PIXELS_BLOCK) {
982			pattern_2colors = 0;
983
984			vga_copy_bitmap_portion(
985			    &pattern_2colors, NULL,
986			    pattern, mask, width,
987			    src_x, dst_x, x_count,
988			    j - y1, 0, 1, fg, bg, 0);
989
990			vga_bitblt_pixels_block_2colors(vd,
991			    &pattern_2colors, fg, bg,
992			    i, j, 1);
993
994			src_x += x_count;
995			dst_x = (dst_x + x_count) % VT_VGA_PIXELS_BLOCK;
996			x_count = min(width - src_x, VT_VGA_PIXELS_BLOCK);
997		}
998	}
999}
1000
1001static void
1002vga_initialize_graphics(struct vt_device *vd)
1003{
1004	struct vga_softc *sc = vd->vd_softc;
1005
1006	/* Clock select. */
1007	REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, VGA_GEN_MO_VSP | VGA_GEN_MO_HSP |
1008	    VGA_GEN_MO_PB | VGA_GEN_MO_ER | VGA_GEN_MO_IOA);
1009	/* Set sequencer clocking and memory mode. */
1010	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CLOCKING_MODE);
1011	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_CM_89);
1012	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MEMORY_MODE);
1013	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_OE | VGA_SEQ_MM_EM);
1014
1015	/* Set the graphics controller in graphics mode. */
1016	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MISCELLANEOUS);
1017	REG_WRITE1(sc, VGA_GC_DATA, 0x04 + VGA_GC_MISC_GA);
1018	/* Program the CRT controller. */
1019	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_TOTAL);
1020	REG_WRITE1(sc, VGA_CRTC_DATA, 0x5f);			/* 760 */
1021	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_HORIZ_DISP_END);
1022	REG_WRITE1(sc, VGA_CRTC_DATA, 0x4f);			/* 640 - 8 */
1023	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_BLANK);
1024	REG_WRITE1(sc, VGA_CRTC_DATA, 0x50);			/* 640 */
1025	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_BLANK);
1026	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHB_CR + 2);
1027	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_HORIZ_RETRACE);
1028	REG_WRITE1(sc, VGA_CRTC_DATA, 0x54);			/* 672 */
1029	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_HORIZ_RETRACE);
1030	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_EHR_EHB + 0);
1031	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_TOTAL);
1032	REG_WRITE1(sc, VGA_CRTC_DATA, 0x0b);			/* 523 */
1033	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OVERFLOW);
1034	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_OF_VT9 | VGA_CRTC_OF_LC8 |
1035	    VGA_CRTC_OF_VBS8 | VGA_CRTC_OF_VRS8 | VGA_CRTC_OF_VDE8);
1036	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MAX_SCAN_LINE);
1037	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MSL_LC9);
1038	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_START);
1039	REG_WRITE1(sc, VGA_CRTC_DATA, 0xea);			/* 480 + 10 */
1040	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END);
1041	REG_WRITE1(sc, VGA_CRTC_DATA, 0x0c);
1042	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_DISPLAY_END);
1043	REG_WRITE1(sc, VGA_CRTC_DATA, 0xdf);			/* 480 - 1*/
1044	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_OFFSET);
1045	REG_WRITE1(sc, VGA_CRTC_DATA, 0x28);
1046	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_VERT_BLANK);
1047	REG_WRITE1(sc, VGA_CRTC_DATA, 0xe7);			/* 480 + 7 */
1048	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_END_VERT_BLANK);
1049	REG_WRITE1(sc, VGA_CRTC_DATA, 0x04);
1050	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1051	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_MC_WB | VGA_CRTC_MC_AW |
1052	    VGA_CRTC_MC_SRS | VGA_CRTC_MC_CMS);
1053	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_LINE_COMPARE);
1054	REG_WRITE1(sc, VGA_CRTC_DATA, 0xff);			/* 480 + 31 */
1055
1056	REG_WRITE1(sc, VGA_GEN_FEATURE_CTRL_W, 0);
1057
1058	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_MAP_MASK);
1059	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_MM_EM3 | VGA_SEQ_MM_EM2 |
1060	    VGA_SEQ_MM_EM1 | VGA_SEQ_MM_EM0);
1061	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_CHAR_MAP_SELECT);
1062	REG_WRITE1(sc, VGA_SEQ_DATA, 0);
1063
1064	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_SET_RESET);
1065	REG_WRITE1(sc, VGA_GC_DATA, 0);
1066	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET);
1067	REG_WRITE1(sc, VGA_GC_DATA, 0x0f);
1068	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_COMPARE);
1069	REG_WRITE1(sc, VGA_GC_DATA, 0);
1070	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_DATA_ROTATE);
1071	REG_WRITE1(sc, VGA_GC_DATA, 0);
1072	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_READ_MAP_SELECT);
1073	REG_WRITE1(sc, VGA_GC_DATA, 0);
1074	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
1075	REG_WRITE1(sc, VGA_GC_DATA, 0);
1076	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_COLOR_DONT_CARE);
1077	REG_WRITE1(sc, VGA_GC_DATA, 0x0f);
1078	REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_BIT_MASK);
1079	REG_WRITE1(sc, VGA_GC_DATA, 0xff);
1080}
1081
1082static int
1083vga_initialize(struct vt_device *vd, int textmode)
1084{
1085	struct vga_softc *sc = vd->vd_softc;
1086	uint8_t x;
1087	int timeout;
1088
1089	/* Make sure the VGA adapter is not in monochrome emulation mode. */
1090	x = REG_READ1(sc, VGA_GEN_MISC_OUTPUT_R);
1091	REG_WRITE1(sc, VGA_GEN_MISC_OUTPUT_W, x | VGA_GEN_MO_IOA);
1092
1093	/* Unprotect CRTC registers 0-7. */
1094	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_VERT_RETRACE_END);
1095	x = REG_READ1(sc, VGA_CRTC_DATA);
1096	REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_VRE_PR);
1097
1098	/*
1099	 * Wait for the vertical retrace.
1100	 * NOTE: this code reads the VGA_GEN_INPUT_STAT_1 register, which has
1101	 * the side-effect of clearing the internal flip-flip of the attribute
1102	 * controller's write register. This means that because this code is
1103	 * here, we know for sure that the first write to the attribute
1104	 * controller will be a write to the address register. Removing this
1105	 * code therefore also removes that guarantee and appropriate measures
1106	 * need to be taken.
1107	 */
1108	timeout = 10000;
1109	do {
1110		DELAY(10);
1111		x = REG_READ1(sc, VGA_GEN_INPUT_STAT_1);
1112		x &= VGA_GEN_IS1_VR | VGA_GEN_IS1_DE;
1113	} while (x != (VGA_GEN_IS1_VR | VGA_GEN_IS1_DE) && --timeout != 0);
1114	if (timeout == 0) {
1115		printf("Timeout initializing vt_vga\n");
1116		return (ENXIO);
1117	}
1118
1119	/* Now, disable the sync. signals. */
1120	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1121	x = REG_READ1(sc, VGA_CRTC_DATA);
1122	REG_WRITE1(sc, VGA_CRTC_DATA, x & ~VGA_CRTC_MC_HR);
1123
1124	/* Asynchronous sequencer reset. */
1125	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET);
1126	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR);
1127
1128	if (!textmode)
1129		vga_initialize_graphics(vd);
1130
1131	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_PRESET_ROW_SCAN);
1132	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1133	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_START);
1134	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_CS_COO);
1135	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_END);
1136	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1137	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_HIGH);
1138	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1139	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_START_ADDR_LOW);
1140	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1141	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_HIGH);
1142	REG_WRITE1(sc, VGA_CRTC_DATA, 0);
1143	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_CURSOR_LOC_LOW);
1144	REG_WRITE1(sc, VGA_CRTC_DATA, 0x59);
1145	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_UNDERLINE_LOC);
1146	REG_WRITE1(sc, VGA_CRTC_DATA, VGA_CRTC_UL_UL);
1147
1148	if (textmode) {
1149		/* Set the attribute controller to blink disable. */
1150		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL);
1151		REG_WRITE1(sc, VGA_AC_WRITE, 0);
1152	} else {
1153		/* Set the attribute controller in graphics mode. */
1154		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MODE_CONTROL);
1155		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_MC_GA);
1156		REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_HORIZ_PIXEL_PANNING);
1157		REG_WRITE1(sc, VGA_AC_WRITE, 0);
1158	}
1159	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(0));
1160	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1161	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(1));
1162	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_B);
1163	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(2));
1164	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G);
1165	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(3));
1166	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_G | VGA_AC_PAL_B);
1167	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(4));
1168	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R);
1169	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(5));
1170	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_B);
1171	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(6));
1172	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SG | VGA_AC_PAL_R);
1173	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(7));
1174	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B);
1175
1176	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(8));
1177	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1178	    VGA_AC_PAL_SB);
1179	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(9));
1180	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1181	    VGA_AC_PAL_SB | VGA_AC_PAL_B);
1182	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(10));
1183	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1184	    VGA_AC_PAL_SB | VGA_AC_PAL_G);
1185	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(11));
1186	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1187	    VGA_AC_PAL_SB | VGA_AC_PAL_G | VGA_AC_PAL_B);
1188	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(12));
1189	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1190	    VGA_AC_PAL_SB | VGA_AC_PAL_R);
1191	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(13));
1192	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1193	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_B);
1194	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(14));
1195	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1196	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G);
1197	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PALETTE(15));
1198	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_PAL_SR | VGA_AC_PAL_SG |
1199	    VGA_AC_PAL_SB | VGA_AC_PAL_R | VGA_AC_PAL_G | VGA_AC_PAL_B);
1200
1201	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_OVERSCAN_COLOR);
1202	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1203	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_PLANE_ENABLE);
1204	REG_WRITE1(sc, VGA_AC_WRITE, 0x0f);
1205	REG_WRITE1(sc, VGA_AC_WRITE, VGA_AC_COLOR_SELECT);
1206	REG_WRITE1(sc, VGA_AC_WRITE, 0);
1207
1208	if (!textmode) {
1209		u_int ofs;
1210
1211		/*
1212		 * Done.  Clear the frame buffer.  All bit planes are
1213		 * enabled, so a single-paged loop should clear all
1214		 * planes.
1215		 */
1216		for (ofs = 0; ofs < VT_VGA_MEMSIZE; ofs++) {
1217			MEM_WRITE1(sc, ofs, 0);
1218		}
1219	}
1220
1221	/* Re-enable the sequencer. */
1222	REG_WRITE1(sc, VGA_SEQ_ADDRESS, VGA_SEQ_RESET);
1223	REG_WRITE1(sc, VGA_SEQ_DATA, VGA_SEQ_RST_SR | VGA_SEQ_RST_NAR);
1224	/* Re-enable the sync signals. */
1225	REG_WRITE1(sc, VGA_CRTC_ADDRESS, VGA_CRTC_MODE_CONTROL);
1226	x = REG_READ1(sc, VGA_CRTC_DATA);
1227	REG_WRITE1(sc, VGA_CRTC_DATA, x | VGA_CRTC_MC_HR);
1228
1229	if (!textmode) {
1230		/* Switch to write mode 3, because we'll mainly do bitblt. */
1231		REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_MODE);
1232		REG_WRITE1(sc, VGA_GC_DATA, 3);
1233		sc->vga_wmode = 3;
1234
1235		/*
1236		 * In Write Mode 3, Enable Set/Reset is ignored, but we
1237		 * use Write Mode 0 to write a group of 8 pixels using
1238		 * 3 or more colors. In this case, we want to disable
1239		 * Set/Reset: set Enable Set/Reset to 0.
1240		 */
1241		REG_WRITE1(sc, VGA_GC_ADDRESS, VGA_GC_ENABLE_SET_RESET);
1242		REG_WRITE1(sc, VGA_GC_DATA, 0x00);
1243
1244		/*
1245		 * Clear the colors we think are loaded into Set/Reset or
1246		 * the latches.
1247		 */
1248		sc->vga_curfg = sc->vga_curbg = 0xff;
1249	}
1250
1251	return (0);
1252}
1253
1254static bool
1255vga_acpi_disabled(void)
1256{
1257#if defined(__amd64__) || defined(__i386__)
1258	uint16_t flags;
1259	int ignore;
1260
1261	/*
1262	 * Ignore the flag on real hardware: there's a lot of buggy firmware
1263	 * that will wrongly set it.
1264	 */
1265	ignore = (vm_guest == VM_GUEST_NO);
1266	TUNABLE_INT_FETCH("hw.vga.acpi_ignore_no_vga", &ignore);
1267	if (ignore || !acpi_get_fadt_bootflags(&flags))
1268 		return (false);
1269	return ((flags & ACPI_FADT_NO_VGA) != 0);
1270#else
1271	return (false);
1272#endif
1273}
1274
1275static int
1276vga_probe(struct vt_device *vd)
1277{
1278
1279	return (vga_acpi_disabled() ? CN_DEAD : CN_INTERNAL);
1280}
1281
1282static int
1283vga_init(struct vt_device *vd)
1284{
1285	struct vga_softc *sc;
1286	int textmode;
1287
1288	if (vd->vd_softc == NULL)
1289		vd->vd_softc = (void *)&vga_conssoftc;
1290	sc = vd->vd_softc;
1291
1292	if (vd->vd_flags & VDF_DOWNGRADE && vd->vd_video_dev != NULL)
1293		vga_pci_repost(vd->vd_video_dev);
1294
1295#if defined(__amd64__) || defined(__i386__)
1296	sc->vga_fb_tag = X86_BUS_SPACE_MEM;
1297	sc->vga_reg_tag = X86_BUS_SPACE_IO;
1298#else
1299# error "Architecture not yet supported!"
1300#endif
1301
1302	bus_space_map(sc->vga_reg_tag, VGA_REG_BASE, VGA_REG_SIZE, 0,
1303	    &sc->vga_reg_handle);
1304
1305	/*
1306	 * If "hw.vga.textmode" is not set and we're running on hypervisor,
1307	 * we use text mode by default, this is because when we're on
1308	 * hypervisor, vt(4) is usually much slower in graphics mode than
1309	 * in text mode, especially when we're on Hyper-V.
1310	 */
1311	textmode = vm_guest != VM_GUEST_NO;
1312	TUNABLE_INT_FETCH("hw.vga.textmode", &textmode);
1313	if (textmode) {
1314		vd->vd_flags |= VDF_TEXTMODE;
1315		vd->vd_width = 80;
1316		vd->vd_height = 25;
1317		bus_space_map(sc->vga_fb_tag, VGA_TXT_BASE, VGA_TXT_SIZE, 0,
1318		    &sc->vga_fb_handle);
1319	} else {
1320		vd->vd_width = VT_VGA_WIDTH;
1321		vd->vd_height = VT_VGA_HEIGHT;
1322		bus_space_map(sc->vga_fb_tag, VGA_MEM_BASE, VGA_MEM_SIZE, 0,
1323		    &sc->vga_fb_handle);
1324	}
1325	if (vga_initialize(vd, textmode) != 0)
1326		return (CN_DEAD);
1327	sc->vga_enabled = true;
1328
1329	return (CN_INTERNAL);
1330}
1331
1332static void
1333vga_postswitch(struct vt_device *vd)
1334{
1335
1336	/* Reinit VGA mode, to restore view after app which change mode. */
1337	vga_initialize(vd, (vd->vd_flags & VDF_TEXTMODE));
1338	/* Ask vt(9) to update chars on visible area. */
1339	vd->vd_flags |= VDF_INVALID;
1340}
1341
1342/* Dummy NewBus functions to reserve the resources used by the vt_vga driver */
1343static void
1344vtvga_identify(driver_t *driver, device_t parent)
1345{
1346
1347	if (!vga_conssoftc.vga_enabled)
1348		return;
1349
1350	if (BUS_ADD_CHILD(parent, 0, driver->name, 0) == NULL)
1351		panic("Unable to attach vt_vga console");
1352}
1353
1354static int
1355vtvga_probe(device_t dev)
1356{
1357
1358	device_set_desc(dev, "VT VGA driver");
1359
1360	return (BUS_PROBE_NOWILDCARD);
1361}
1362
1363static int
1364vtvga_attach(device_t dev)
1365{
1366	struct resource *pseudo_phys_res;
1367	int res_id;
1368
1369	res_id = 0;
1370	pseudo_phys_res = bus_alloc_resource(dev, SYS_RES_MEMORY,
1371	    &res_id, VGA_MEM_BASE, VGA_MEM_BASE + VGA_MEM_SIZE - 1,
1372	    VGA_MEM_SIZE, RF_ACTIVE);
1373	if (pseudo_phys_res == NULL)
1374		panic("Unable to reserve vt_vga memory");
1375	return (0);
1376}
1377
1378/*-------------------- Private Device Attachment Data  -----------------------*/
1379static device_method_t vtvga_methods[] = {
1380	/* Device interface */
1381	DEVMETHOD(device_identify,	vtvga_identify),
1382	DEVMETHOD(device_probe,         vtvga_probe),
1383	DEVMETHOD(device_attach,        vtvga_attach),
1384
1385	DEVMETHOD_END
1386};
1387
1388DEFINE_CLASS_0(vtvga, vtvga_driver, vtvga_methods, 0);
1389
1390DRIVER_MODULE(vtvga, nexus, vtvga_driver, NULL, NULL);
1391