1/*
2 * Copyright (C) 2015 Cavium Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27#include <sys/cdefs.h>
28#include "opt_inet.h"
29#include "opt_inet6.h"
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/bitset.h>
34#include <sys/bitstring.h>
35#include <sys/buf_ring.h>
36#include <sys/bus.h>
37#include <sys/endian.h>
38#include <sys/kernel.h>
39#include <sys/malloc.h>
40#include <sys/module.h>
41#include <sys/rman.h>
42#include <sys/pciio.h>
43#include <sys/pcpu.h>
44#include <sys/proc.h>
45#include <sys/sockio.h>
46#include <sys/socket.h>
47#include <sys/stdatomic.h>
48#include <sys/cpuset.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/smp.h>
52#include <sys/taskqueue.h>
53
54#include <vm/vm.h>
55#include <vm/pmap.h>
56
57#include <machine/bus.h>
58#include <machine/vmparam.h>
59
60#include <net/if.h>
61#include <net/if_var.h>
62#include <net/if_media.h>
63#include <net/ifq.h>
64#include <net/bpf.h>
65#include <net/ethernet.h>
66
67#include <netinet/in_systm.h>
68#include <netinet/in.h>
69#include <netinet/if_ether.h>
70#include <netinet/ip.h>
71#include <netinet/ip6.h>
72#include <netinet/sctp.h>
73#include <netinet/tcp.h>
74#include <netinet/tcp_lro.h>
75#include <netinet/udp.h>
76
77#include <netinet6/ip6_var.h>
78
79#include <dev/pci/pcireg.h>
80#include <dev/pci/pcivar.h>
81
82#include "thunder_bgx.h"
83#include "nic_reg.h"
84#include "nic.h"
85#include "q_struct.h"
86#include "nicvf_queues.h"
87
88#define	DEBUG
89#undef DEBUG
90
91#ifdef DEBUG
92#define	dprintf(dev, fmt, ...)	device_printf(dev, fmt, ##__VA_ARGS__)
93#else
94#define	dprintf(dev, fmt, ...)
95#endif
96
97MALLOC_DECLARE(M_NICVF);
98
99static void nicvf_free_snd_queue(struct nicvf *, struct snd_queue *);
100static struct mbuf * nicvf_get_rcv_mbuf(struct nicvf *, struct cqe_rx_t *);
101static void nicvf_sq_disable(struct nicvf *, int);
102static void nicvf_sq_enable(struct nicvf *, struct snd_queue *, int);
103static void nicvf_put_sq_desc(struct snd_queue *, int);
104static void nicvf_cmp_queue_config(struct nicvf *, struct queue_set *, int,
105    boolean_t);
106static void nicvf_sq_free_used_descs(struct nicvf *, struct snd_queue *, int);
107
108static int nicvf_tx_mbuf_locked(struct snd_queue *, struct mbuf **);
109
110static void nicvf_rbdr_task(void *, int);
111static void nicvf_rbdr_task_nowait(void *, int);
112
113struct rbuf_info {
114	bus_dma_tag_t	dmat;
115	bus_dmamap_t	dmap;
116	struct mbuf *	mbuf;
117};
118
119#define GET_RBUF_INFO(x) ((struct rbuf_info *)((x) - NICVF_RCV_BUF_ALIGN_BYTES))
120
121/* Poll a register for a specific value */
122static int nicvf_poll_reg(struct nicvf *nic, int qidx,
123			  uint64_t reg, int bit_pos, int bits, int val)
124{
125	uint64_t bit_mask;
126	uint64_t reg_val;
127	int timeout = 10;
128
129	bit_mask = (1UL << bits) - 1;
130	bit_mask = (bit_mask << bit_pos);
131
132	while (timeout) {
133		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
134		if (((reg_val & bit_mask) >> bit_pos) == val)
135			return (0);
136
137		DELAY(1000);
138		timeout--;
139	}
140	device_printf(nic->dev, "Poll on reg 0x%lx failed\n", reg);
141	return (ETIMEDOUT);
142}
143
144/* Callback for bus_dmamap_load() */
145static void
146nicvf_dmamap_q_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
147{
148	bus_addr_t *paddr;
149
150	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
151	paddr = arg;
152	*paddr = segs->ds_addr;
153}
154
155/* Allocate memory for a queue's descriptors */
156static int
157nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
158    int q_len, int desc_size, int align_bytes)
159{
160	int err, err_dmat __diagused;
161
162	/* Create DMA tag first */
163	err = bus_dma_tag_create(
164	    bus_get_dma_tag(nic->dev),		/* parent tag */
165	    align_bytes,			/* alignment */
166	    0,					/* boundary */
167	    BUS_SPACE_MAXADDR,			/* lowaddr */
168	    BUS_SPACE_MAXADDR,			/* highaddr */
169	    NULL, NULL,				/* filtfunc, filtfuncarg */
170	    (q_len * desc_size),		/* maxsize */
171	    1,					/* nsegments */
172	    (q_len * desc_size),		/* maxsegsize */
173	    0,					/* flags */
174	    NULL, NULL,				/* lockfunc, lockfuncarg */
175	    &dmem->dmat);			/* dmat */
176
177	if (err != 0) {
178		device_printf(nic->dev,
179		    "Failed to create busdma tag for descriptors ring\n");
180		return (err);
181	}
182
183	/* Allocate segment of continuous DMA safe memory */
184	err = bus_dmamem_alloc(
185	    dmem->dmat,				/* DMA tag */
186	    &dmem->base,			/* virtual address */
187	    (BUS_DMA_NOWAIT | BUS_DMA_ZERO),	/* flags */
188	    &dmem->dmap);			/* DMA map */
189	if (err != 0) {
190		device_printf(nic->dev, "Failed to allocate DMA safe memory for"
191		    "descriptors ring\n");
192		goto dmamem_fail;
193	}
194
195	err = bus_dmamap_load(
196	    dmem->dmat,
197	    dmem->dmap,
198	    dmem->base,
199	    (q_len * desc_size),		/* allocation size */
200	    nicvf_dmamap_q_cb,			/* map to DMA address cb. */
201	    &dmem->phys_base,			/* physical address */
202	    BUS_DMA_NOWAIT);
203	if (err != 0) {
204		device_printf(nic->dev,
205		    "Cannot load DMA map of descriptors ring\n");
206		goto dmamap_fail;
207	}
208
209	dmem->q_len = q_len;
210	dmem->size = (desc_size * q_len);
211
212	return (0);
213
214dmamap_fail:
215	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
216	dmem->phys_base = 0;
217dmamem_fail:
218	err_dmat = bus_dma_tag_destroy(dmem->dmat);
219	dmem->base = NULL;
220	KASSERT(err_dmat == 0,
221	    ("%s: Trying to destroy BUSY DMA tag", __func__));
222
223	return (err);
224}
225
226/* Free queue's descriptor memory */
227static void
228nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
229{
230	int err __diagused;
231
232	if ((dmem == NULL) || (dmem->base == NULL))
233		return;
234
235	/* Unload a map */
236	bus_dmamap_sync(dmem->dmat, dmem->dmap, BUS_DMASYNC_POSTREAD);
237	bus_dmamap_unload(dmem->dmat, dmem->dmap);
238	/* Free DMA memory */
239	bus_dmamem_free(dmem->dmat, dmem->base, dmem->dmap);
240	/* Destroy DMA tag */
241	err = bus_dma_tag_destroy(dmem->dmat);
242
243	KASSERT(err == 0,
244	    ("%s: Trying to destroy BUSY DMA tag", __func__));
245
246	dmem->phys_base = 0;
247	dmem->base = NULL;
248}
249
250/*
251 * Allocate buffer for packet reception
252 * HW returns memory address where packet is DMA'ed but not a pointer
253 * into RBDR ring, so save buffer address at the start of fragment and
254 * align the start address to a cache aligned address
255 */
256static __inline int
257nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr,
258    bus_dmamap_t dmap, int mflags, uint32_t buf_len, bus_addr_t *rbuf)
259{
260	struct mbuf *mbuf;
261	struct rbuf_info *rinfo;
262	bus_dma_segment_t segs[1];
263	int nsegs;
264	int err;
265
266	mbuf = m_getjcl(mflags, MT_DATA, M_PKTHDR, MCLBYTES);
267	if (mbuf == NULL)
268		return (ENOMEM);
269
270	/*
271	 * The length is equal to the actual length + one 128b line
272	 * used as a room for rbuf_info structure.
273	 */
274	mbuf->m_len = mbuf->m_pkthdr.len = buf_len;
275
276	err = bus_dmamap_load_mbuf_sg(rbdr->rbdr_buff_dmat, dmap, mbuf, segs,
277	    &nsegs, BUS_DMA_NOWAIT);
278	if (err != 0) {
279		device_printf(nic->dev,
280		    "Failed to map mbuf into DMA visible memory, err: %d\n",
281		    err);
282		m_freem(mbuf);
283		bus_dmamap_destroy(rbdr->rbdr_buff_dmat, dmap);
284		return (err);
285	}
286	if (nsegs != 1)
287		panic("Unexpected number of DMA segments for RB: %d", nsegs);
288	/*
289	 * Now use the room for rbuf_info structure
290	 * and adjust mbuf data and length.
291	 */
292	rinfo = (struct rbuf_info *)mbuf->m_data;
293	m_adj(mbuf, NICVF_RCV_BUF_ALIGN_BYTES);
294
295	rinfo->dmat = rbdr->rbdr_buff_dmat;
296	rinfo->dmap = dmap;
297	rinfo->mbuf = mbuf;
298
299	*rbuf = segs[0].ds_addr + NICVF_RCV_BUF_ALIGN_BYTES;
300
301	return (0);
302}
303
304/* Retrieve mbuf for received packet */
305static struct mbuf *
306nicvf_rb_ptr_to_mbuf(struct nicvf *nic, bus_addr_t rb_ptr)
307{
308	struct mbuf *mbuf;
309	struct rbuf_info *rinfo;
310
311	/* Get buffer start address and alignment offset */
312	rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(rb_ptr));
313
314	/* Now retrieve mbuf to give to stack */
315	mbuf = rinfo->mbuf;
316	if (__predict_false(mbuf == NULL)) {
317		panic("%s: Received packet fragment with NULL mbuf",
318		    device_get_nameunit(nic->dev));
319	}
320	/*
321	 * Clear the mbuf in the descriptor to indicate
322	 * that this slot is processed and free to use.
323	 */
324	rinfo->mbuf = NULL;
325
326	bus_dmamap_sync(rinfo->dmat, rinfo->dmap, BUS_DMASYNC_POSTREAD);
327	bus_dmamap_unload(rinfo->dmat, rinfo->dmap);
328
329	return (mbuf);
330}
331
332/* Allocate RBDR ring and populate receive buffers */
333static int
334nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr, int ring_len,
335    int buf_size, int qidx)
336{
337	bus_dmamap_t dmap;
338	bus_addr_t rbuf;
339	struct rbdr_entry_t *desc;
340	int idx;
341	int err;
342
343	/* Allocate rbdr descriptors ring */
344	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
345	    sizeof(struct rbdr_entry_t), NICVF_RCV_BUF_ALIGN_BYTES);
346	if (err != 0) {
347		device_printf(nic->dev,
348		    "Failed to create RBDR descriptors ring\n");
349		return (err);
350	}
351
352	rbdr->desc = rbdr->dmem.base;
353	/*
354	 * Buffer size has to be in multiples of 128 bytes.
355	 * Make room for metadata of size of one line (128 bytes).
356	 */
357	rbdr->dma_size = buf_size - NICVF_RCV_BUF_ALIGN_BYTES;
358	rbdr->enable = TRUE;
359	rbdr->thresh = RBDR_THRESH;
360	rbdr->nic = nic;
361	rbdr->idx = qidx;
362
363	/*
364	 * Create DMA tag for Rx buffers.
365	 * Each map created using this tag is intended to store Rx payload for
366	 * one fragment and one header structure containing rbuf_info (thus
367	 * additional 128 byte line since RB must be a multiple of 128 byte
368	 * cache line).
369	 */
370	if (buf_size > MCLBYTES) {
371		device_printf(nic->dev,
372		    "Buffer size to large for mbuf cluster\n");
373		return (EINVAL);
374	}
375	err = bus_dma_tag_create(
376	    bus_get_dma_tag(nic->dev),		/* parent tag */
377	    NICVF_RCV_BUF_ALIGN_BYTES,		/* alignment */
378	    0,					/* boundary */
379	    DMAP_MAX_PHYSADDR,			/* lowaddr */
380	    DMAP_MIN_PHYSADDR,			/* highaddr */
381	    NULL, NULL,				/* filtfunc, filtfuncarg */
382	    roundup2(buf_size, MCLBYTES),	/* maxsize */
383	    1,					/* nsegments */
384	    roundup2(buf_size, MCLBYTES),	/* maxsegsize */
385	    0,					/* flags */
386	    NULL, NULL,				/* lockfunc, lockfuncarg */
387	    &rbdr->rbdr_buff_dmat);		/* dmat */
388
389	if (err != 0) {
390		device_printf(nic->dev,
391		    "Failed to create busdma tag for RBDR buffers\n");
392		return (err);
393	}
394
395	rbdr->rbdr_buff_dmaps = malloc(sizeof(*rbdr->rbdr_buff_dmaps) *
396	    ring_len, M_NICVF, (M_WAITOK | M_ZERO));
397
398	for (idx = 0; idx < ring_len; idx++) {
399		err = bus_dmamap_create(rbdr->rbdr_buff_dmat, 0, &dmap);
400		if (err != 0) {
401			device_printf(nic->dev,
402			    "Failed to create DMA map for RB\n");
403			return (err);
404		}
405		rbdr->rbdr_buff_dmaps[idx] = dmap;
406
407		err = nicvf_alloc_rcv_buffer(nic, rbdr, dmap, M_WAITOK,
408		    DMA_BUFFER_LEN, &rbuf);
409		if (err != 0)
410			return (err);
411
412		desc = GET_RBDR_DESC(rbdr, idx);
413		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
414	}
415
416	/* Allocate taskqueue */
417	TASK_INIT(&rbdr->rbdr_task, 0, nicvf_rbdr_task, rbdr);
418	TASK_INIT(&rbdr->rbdr_task_nowait, 0, nicvf_rbdr_task_nowait, rbdr);
419	rbdr->rbdr_taskq = taskqueue_create_fast("nicvf_rbdr_taskq", M_WAITOK,
420	    taskqueue_thread_enqueue, &rbdr->rbdr_taskq);
421	taskqueue_start_threads(&rbdr->rbdr_taskq, 1, PI_NET, "%s: rbdr_taskq",
422	    device_get_nameunit(nic->dev));
423
424	return (0);
425}
426
427/* Free RBDR ring and its receive buffers */
428static void
429nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
430{
431	struct mbuf *mbuf;
432	struct queue_set *qs;
433	struct rbdr_entry_t *desc;
434	struct rbuf_info *rinfo;
435	bus_addr_t buf_addr;
436	int head, tail, idx;
437	int err __diagused;
438
439	qs = nic->qs;
440
441	if ((qs == NULL) || (rbdr == NULL))
442		return;
443
444	rbdr->enable = FALSE;
445	if (rbdr->rbdr_taskq != NULL) {
446		/* Remove tasks */
447		while (taskqueue_cancel(rbdr->rbdr_taskq,
448		    &rbdr->rbdr_task_nowait, NULL) != 0) {
449			/* Finish the nowait task first */
450			taskqueue_drain(rbdr->rbdr_taskq,
451			    &rbdr->rbdr_task_nowait);
452		}
453		taskqueue_free(rbdr->rbdr_taskq);
454		rbdr->rbdr_taskq = NULL;
455
456		while (taskqueue_cancel(taskqueue_thread,
457		    &rbdr->rbdr_task, NULL) != 0) {
458			/* Now finish the sleepable task */
459			taskqueue_drain(taskqueue_thread, &rbdr->rbdr_task);
460		}
461	}
462
463	/*
464	 * Free all of the memory under the RB descriptors.
465	 * There are assumptions here:
466	 * 1. Corresponding RBDR is disabled
467	 *    - it is safe to operate using head and tail indexes
468	 * 2. All bffers that were received are properly freed by
469	 *    the receive handler
470	 *    - there is no need to unload DMA map and free MBUF for other
471	 *      descriptors than unused ones
472	 */
473	if (rbdr->rbdr_buff_dmat != NULL) {
474		head = rbdr->head;
475		tail = rbdr->tail;
476		while (head != tail) {
477			desc = GET_RBDR_DESC(rbdr, head);
478			buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
479			rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
480			bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
481			mbuf = rinfo->mbuf;
482			/* This will destroy everything including rinfo! */
483			m_freem(mbuf);
484			head++;
485			head &= (rbdr->dmem.q_len - 1);
486		}
487		/* Free tail descriptor */
488		desc = GET_RBDR_DESC(rbdr, tail);
489		buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
490		rinfo = GET_RBUF_INFO(PHYS_TO_DMAP(buf_addr));
491		bus_dmamap_unload(rbdr->rbdr_buff_dmat, rinfo->dmap);
492		mbuf = rinfo->mbuf;
493		/* This will destroy everything including rinfo! */
494		m_freem(mbuf);
495
496		/* Destroy DMA maps */
497		for (idx = 0; idx < qs->rbdr_len; idx++) {
498			if (rbdr->rbdr_buff_dmaps[idx] == NULL)
499				continue;
500			err = bus_dmamap_destroy(rbdr->rbdr_buff_dmat,
501			    rbdr->rbdr_buff_dmaps[idx]);
502			KASSERT(err == 0,
503			    ("%s: Could not destroy DMA map for RB, desc: %d",
504			    __func__, idx));
505			rbdr->rbdr_buff_dmaps[idx] = NULL;
506		}
507
508		/* Now destroy the tag */
509		err = bus_dma_tag_destroy(rbdr->rbdr_buff_dmat);
510		KASSERT(err == 0,
511		    ("%s: Trying to destroy BUSY DMA tag", __func__));
512
513		rbdr->head = 0;
514		rbdr->tail = 0;
515	}
516
517	/* Free RBDR ring */
518	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
519}
520
521/*
522 * Refill receive buffer descriptors with new buffers.
523 */
524static int
525nicvf_refill_rbdr(struct rbdr *rbdr, int mflags)
526{
527	struct nicvf *nic;
528	struct queue_set *qs;
529	int rbdr_idx;
530	int tail, qcount;
531	int refill_rb_cnt;
532	struct rbdr_entry_t *desc;
533	bus_dmamap_t dmap;
534	bus_addr_t rbuf;
535	boolean_t rb_alloc_fail;
536	int new_rb;
537
538	rb_alloc_fail = TRUE;
539	new_rb = 0;
540	nic = rbdr->nic;
541	qs = nic->qs;
542	rbdr_idx = rbdr->idx;
543
544	/* Check if it's enabled */
545	if (!rbdr->enable)
546		return (0);
547
548	/* Get no of desc's to be refilled */
549	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
550	qcount &= 0x7FFFF;
551	/* Doorbell can be ringed with a max of ring size minus 1 */
552	if (qcount >= (qs->rbdr_len - 1)) {
553		rb_alloc_fail = FALSE;
554		goto out;
555	} else
556		refill_rb_cnt = qs->rbdr_len - qcount - 1;
557
558	/* Start filling descs from tail */
559	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
560	while (refill_rb_cnt) {
561		tail++;
562		tail &= (rbdr->dmem.q_len - 1);
563
564		dmap = rbdr->rbdr_buff_dmaps[tail];
565		if (nicvf_alloc_rcv_buffer(nic, rbdr, dmap, mflags,
566		    DMA_BUFFER_LEN, &rbuf)) {
567			/* Something went wrong. Resign */
568			break;
569		}
570		desc = GET_RBDR_DESC(rbdr, tail);
571		desc->buf_addr = (rbuf >> NICVF_RCV_BUF_ALIGN);
572		refill_rb_cnt--;
573		new_rb++;
574	}
575
576	/* make sure all memory stores are done before ringing doorbell */
577	wmb();
578
579	/* Check if buffer allocation failed */
580	if (refill_rb_cnt == 0)
581		rb_alloc_fail = FALSE;
582
583	/* Notify HW */
584	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
585			      rbdr_idx, new_rb);
586out:
587	if (!rb_alloc_fail) {
588		/*
589		 * Re-enable RBDR interrupts only
590		 * if buffer allocation is success.
591		 */
592		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
593
594		return (0);
595	}
596
597	return (ENOMEM);
598}
599
600/* Refill RBs even if sleep is needed to reclaim memory */
601static void
602nicvf_rbdr_task(void *arg, int pending)
603{
604	struct rbdr *rbdr;
605	int err;
606
607	rbdr = (struct rbdr *)arg;
608
609	err = nicvf_refill_rbdr(rbdr, M_WAITOK);
610	if (__predict_false(err != 0)) {
611		panic("%s: Failed to refill RBs even when sleep enabled",
612		    __func__);
613	}
614}
615
616/* Refill RBs as soon as possible without waiting */
617static void
618nicvf_rbdr_task_nowait(void *arg, int pending)
619{
620	struct rbdr *rbdr;
621	int err;
622
623	rbdr = (struct rbdr *)arg;
624
625	err = nicvf_refill_rbdr(rbdr, M_NOWAIT);
626	if (err != 0) {
627		/*
628		 * Schedule another, sleepable kernel thread
629		 * that will for sure refill the buffers.
630		 */
631		taskqueue_enqueue(taskqueue_thread, &rbdr->rbdr_task);
632	}
633}
634
635static int
636nicvf_rcv_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
637    struct cqe_rx_t *cqe_rx, int cqe_type)
638{
639	struct mbuf *mbuf;
640	struct rcv_queue *rq;
641	int rq_idx;
642	int err = 0;
643
644	rq_idx = cqe_rx->rq_idx;
645	rq = &nic->qs->rq[rq_idx];
646
647	/* Check for errors */
648	err = nicvf_check_cqe_rx_errs(nic, cq, cqe_rx);
649	if (err && !cqe_rx->rb_cnt)
650		return (0);
651
652	mbuf = nicvf_get_rcv_mbuf(nic, cqe_rx);
653	if (mbuf == NULL) {
654		dprintf(nic->dev, "Packet not received\n");
655		return (0);
656	}
657
658	/* If error packet */
659	if (err != 0) {
660		m_freem(mbuf);
661		return (0);
662	}
663
664	if (rq->lro_enabled &&
665	    ((cqe_rx->l3_type == L3TYPE_IPV4) && (cqe_rx->l4_type == L4TYPE_TCP)) &&
666	    (mbuf->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
667            (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) {
668		/*
669		 * At this point it is known that there are no errors in the
670		 * packet. Attempt to LRO enqueue. Send to stack if no resources
671		 * or enqueue error.
672		 */
673		if ((rq->lro.lro_cnt != 0) &&
674		    (tcp_lro_rx(&rq->lro, mbuf, 0) == 0))
675			return (0);
676	}
677	/*
678	 * Push this packet to the stack later to avoid
679	 * unlocking completion task in the middle of work.
680	 */
681	err = buf_ring_enqueue(cq->rx_br, mbuf);
682	if (err != 0) {
683		/*
684		 * Failed to enqueue this mbuf.
685		 * We don't drop it, just schedule another task.
686		 */
687		return (err);
688	}
689
690	return (0);
691}
692
693static void
694nicvf_snd_pkt_handler(struct nicvf *nic, struct cmp_queue *cq,
695    struct cqe_send_t *cqe_tx, int cqe_type)
696{
697	bus_dmamap_t dmap;
698	struct mbuf *mbuf;
699	struct snd_queue *sq;
700	struct sq_hdr_subdesc *hdr;
701
702	mbuf = NULL;
703	sq = &nic->qs->sq[cqe_tx->sq_idx];
704
705	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
706	if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
707		return;
708
709	dprintf(nic->dev,
710	    "%s Qset #%d SQ #%d SQ ptr #%d subdesc count %d\n",
711	    __func__, cqe_tx->sq_qs, cqe_tx->sq_idx,
712	    cqe_tx->sqe_ptr, hdr->subdesc_cnt);
713
714	dmap = (bus_dmamap_t)sq->snd_buff[cqe_tx->sqe_ptr].dmap;
715	bus_dmamap_unload(sq->snd_buff_dmat, dmap);
716
717	mbuf = (struct mbuf *)sq->snd_buff[cqe_tx->sqe_ptr].mbuf;
718	if (mbuf != NULL) {
719		m_freem(mbuf);
720		sq->snd_buff[cqe_tx->sqe_ptr].mbuf = NULL;
721		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
722	}
723
724	nicvf_check_cqe_tx_errs(nic, cq, cqe_tx);
725}
726
727static int
728nicvf_cq_intr_handler(struct nicvf *nic, uint8_t cq_idx)
729{
730	struct mbuf *mbuf;
731	if_t ifp;
732	int processed_cqe, tx_done = 0;
733#ifdef DEBUG
734	int work_done = 0;
735#endif
736	int cqe_count, cqe_head;
737	struct queue_set *qs = nic->qs;
738	struct cmp_queue *cq = &qs->cq[cq_idx];
739	struct snd_queue *sq = &qs->sq[cq_idx];
740	struct rcv_queue *rq;
741	struct cqe_rx_t *cq_desc;
742	struct lro_ctrl	*lro;
743	int rq_idx;
744	int cmp_err;
745
746	NICVF_CMP_LOCK(cq);
747	cmp_err = 0;
748	processed_cqe = 0;
749	/* Get no of valid CQ entries to process */
750	cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
751	cqe_count &= CQ_CQE_COUNT;
752	if (cqe_count == 0)
753		goto out;
754
755	/* Get head of the valid CQ entries */
756	cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
757	cqe_head &= 0xFFFF;
758
759	dprintf(nic->dev, "%s CQ%d cqe_count %d cqe_head %d\n",
760	    __func__, cq_idx, cqe_count, cqe_head);
761	while (processed_cqe < cqe_count) {
762		/* Get the CQ descriptor */
763		cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
764		cqe_head++;
765		cqe_head &= (cq->dmem.q_len - 1);
766		/* Prefetch next CQ descriptor */
767		__builtin_prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
768
769		dprintf(nic->dev, "CQ%d cq_desc->cqe_type %d\n", cq_idx,
770		    cq_desc->cqe_type);
771		switch (cq_desc->cqe_type) {
772		case CQE_TYPE_RX:
773			cmp_err = nicvf_rcv_pkt_handler(nic, cq, cq_desc,
774			    CQE_TYPE_RX);
775			if (__predict_false(cmp_err != 0)) {
776				/*
777				 * Ups. Cannot finish now.
778				 * Let's try again later.
779				 */
780				goto done;
781			}
782#ifdef DEBUG
783			work_done++;
784#endif
785			break;
786		case CQE_TYPE_SEND:
787			nicvf_snd_pkt_handler(nic, cq, (void *)cq_desc,
788			    CQE_TYPE_SEND);
789			tx_done++;
790			break;
791		case CQE_TYPE_INVALID:
792		case CQE_TYPE_RX_SPLIT:
793		case CQE_TYPE_RX_TCP:
794		case CQE_TYPE_SEND_PTP:
795			/* Ignore for now */
796			break;
797		}
798		processed_cqe++;
799	}
800done:
801	dprintf(nic->dev,
802	    "%s CQ%d processed_cqe %d work_done %d\n",
803	    __func__, cq_idx, processed_cqe, work_done);
804
805	/* Ring doorbell to inform H/W to reuse processed CQEs */
806	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR, cq_idx, processed_cqe);
807
808	if ((tx_done > 0) &&
809	    ((if_getdrvflags(nic->ifp) & IFF_DRV_RUNNING) != 0)) {
810		/* Reenable TXQ if its stopped earlier due to SQ full */
811		if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
812		taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
813	}
814out:
815	/*
816	 * Flush any outstanding LRO work
817	 */
818	rq_idx = cq_idx;
819	rq = &nic->qs->rq[rq_idx];
820	lro = &rq->lro;
821	tcp_lro_flush_all(lro);
822
823	NICVF_CMP_UNLOCK(cq);
824
825	ifp = nic->ifp;
826	/* Push received MBUFs to the stack */
827	while (!buf_ring_empty(cq->rx_br)) {
828		mbuf = buf_ring_dequeue_mc(cq->rx_br);
829		if (__predict_true(mbuf != NULL))
830			if_input(ifp, mbuf);
831	}
832
833	return (cmp_err);
834}
835
836/*
837 * Qset error interrupt handler
838 *
839 * As of now only CQ errors are handled
840 */
841static void
842nicvf_qs_err_task(void *arg, int pending)
843{
844	struct nicvf *nic;
845	struct queue_set *qs;
846	int qidx;
847	uint64_t status;
848	boolean_t enable = TRUE;
849
850	nic = (struct nicvf *)arg;
851	qs = nic->qs;
852
853	/* Deactivate network interface */
854	if_setdrvflagbits(nic->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
855
856	/* Check if it is CQ err */
857	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
858		status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
859		    qidx);
860		if ((status & CQ_ERR_MASK) == 0)
861			continue;
862		/* Process already queued CQEs and reconfig CQ */
863		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
864		nicvf_sq_disable(nic, qidx);
865		(void)nicvf_cq_intr_handler(nic, qidx);
866		nicvf_cmp_queue_config(nic, qs, qidx, enable);
867		nicvf_sq_free_used_descs(nic, &qs->sq[qidx], qidx);
868		nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
869		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
870	}
871
872	if_setdrvflagbits(nic->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
873	/* Re-enable Qset error interrupt */
874	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
875}
876
877static void
878nicvf_cmp_task(void *arg, int pending)
879{
880	struct cmp_queue *cq;
881	struct nicvf *nic;
882	int cmp_err;
883
884	cq = (struct cmp_queue *)arg;
885	nic = cq->nic;
886
887	/* Handle CQ descriptors */
888	cmp_err = nicvf_cq_intr_handler(nic, cq->idx);
889	if (__predict_false(cmp_err != 0)) {
890		/*
891		 * Schedule another thread here since we did not
892		 * process the entire CQ due to Tx or Rx CQ parse error.
893		 */
894		taskqueue_enqueue(cq->cmp_taskq, &cq->cmp_task);
895	}
896
897	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
898	/* Reenable interrupt (previously disabled in nicvf_intr_handler() */
899	nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->idx);
900
901}
902
903/* Initialize completion queue */
904static int
905nicvf_init_cmp_queue(struct nicvf *nic, struct cmp_queue *cq, int q_len,
906    int qidx)
907{
908	int err;
909
910	/* Initizalize lock */
911	snprintf(cq->mtx_name, sizeof(cq->mtx_name), "%s: CQ(%d) lock",
912	    device_get_nameunit(nic->dev), qidx);
913	mtx_init(&cq->mtx, cq->mtx_name, NULL, MTX_DEF);
914
915	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
916				     NICVF_CQ_BASE_ALIGN_BYTES);
917
918	if (err != 0) {
919		device_printf(nic->dev,
920		    "Could not allocate DMA memory for CQ\n");
921		return (err);
922	}
923
924	cq->desc = cq->dmem.base;
925	cq->thresh = pass1_silicon(nic->dev) ? 0 : CMP_QUEUE_CQE_THRESH;
926	cq->nic = nic;
927	cq->idx = qidx;
928	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
929
930	cq->rx_br = buf_ring_alloc(CMP_QUEUE_LEN * 8, M_DEVBUF, M_WAITOK,
931	    &cq->mtx);
932
933	/* Allocate taskqueue */
934	NET_TASK_INIT(&cq->cmp_task, 0, nicvf_cmp_task, cq);
935	cq->cmp_taskq = taskqueue_create_fast("nicvf_cmp_taskq", M_WAITOK,
936	    taskqueue_thread_enqueue, &cq->cmp_taskq);
937	taskqueue_start_threads(&cq->cmp_taskq, 1, PI_NET, "%s: cmp_taskq(%d)",
938	    device_get_nameunit(nic->dev), qidx);
939
940	return (0);
941}
942
943static void
944nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
945{
946
947	if (cq == NULL)
948		return;
949	/*
950	 * The completion queue itself should be disabled by now
951	 * (ref. nicvf_snd_queue_config()).
952	 * Ensure that it is safe to disable it or panic.
953	 */
954	if (cq->enable)
955		panic("%s: Trying to free working CQ(%d)", __func__, cq->idx);
956
957	if (cq->cmp_taskq != NULL) {
958		/* Remove task */
959		while (taskqueue_cancel(cq->cmp_taskq, &cq->cmp_task, NULL) != 0)
960			taskqueue_drain(cq->cmp_taskq, &cq->cmp_task);
961
962		taskqueue_free(cq->cmp_taskq);
963		cq->cmp_taskq = NULL;
964	}
965	/*
966	 * Completion interrupt will possibly enable interrupts again
967	 * so disable interrupting now after we finished processing
968	 * completion task. It is safe to do so since the corresponding CQ
969	 * was already disabled.
970	 */
971	nicvf_disable_intr(nic, NICVF_INTR_CQ, cq->idx);
972	nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->idx);
973
974	NICVF_CMP_LOCK(cq);
975	nicvf_free_q_desc_mem(nic, &cq->dmem);
976	drbr_free(cq->rx_br, M_DEVBUF);
977	NICVF_CMP_UNLOCK(cq);
978	mtx_destroy(&cq->mtx);
979	memset(cq->mtx_name, 0, sizeof(cq->mtx_name));
980}
981
982int
983nicvf_xmit_locked(struct snd_queue *sq)
984{
985	struct nicvf *nic;
986	if_t ifp;
987	struct mbuf *next;
988	int err;
989
990	NICVF_TX_LOCK_ASSERT(sq);
991
992	nic = sq->nic;
993	ifp = nic->ifp;
994	err = 0;
995
996	while ((next = drbr_peek(ifp, sq->br)) != NULL) {
997		/* Send a copy of the frame to the BPF listener */
998		ETHER_BPF_MTAP(ifp, next);
999
1000		err = nicvf_tx_mbuf_locked(sq, &next);
1001		if (err != 0) {
1002			if (next == NULL)
1003				drbr_advance(ifp, sq->br);
1004			else
1005				drbr_putback(ifp, sq->br, next);
1006
1007			break;
1008		}
1009		drbr_advance(ifp, sq->br);
1010	}
1011	return (err);
1012}
1013
1014static void
1015nicvf_snd_task(void *arg, int pending)
1016{
1017	struct snd_queue *sq = (struct snd_queue *)arg;
1018	struct nicvf *nic;
1019	if_t ifp;
1020	int err;
1021
1022	nic = sq->nic;
1023	ifp = nic->ifp;
1024
1025	/*
1026	 * Skip sending anything if the driver is not running,
1027	 * SQ full or link is down.
1028	 */
1029	if (((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1030	    IFF_DRV_RUNNING) || !nic->link_up)
1031		return;
1032
1033	NICVF_TX_LOCK(sq);
1034	err = nicvf_xmit_locked(sq);
1035	NICVF_TX_UNLOCK(sq);
1036	/* Try again */
1037	if (err != 0)
1038		taskqueue_enqueue(sq->snd_taskq, &sq->snd_task);
1039}
1040
1041/* Initialize transmit queue */
1042static int
1043nicvf_init_snd_queue(struct nicvf *nic, struct snd_queue *sq, int q_len,
1044    int qidx)
1045{
1046	size_t i;
1047	int err;
1048
1049	/* Initizalize TX lock for this queue */
1050	snprintf(sq->mtx_name, sizeof(sq->mtx_name), "%s: SQ(%d) lock",
1051	    device_get_nameunit(nic->dev), qidx);
1052	mtx_init(&sq->mtx, sq->mtx_name, NULL, MTX_DEF);
1053
1054	NICVF_TX_LOCK(sq);
1055	/* Allocate buffer ring */
1056	sq->br = buf_ring_alloc(q_len / MIN_SQ_DESC_PER_PKT_XMIT, M_DEVBUF,
1057	    M_NOWAIT, &sq->mtx);
1058	if (sq->br == NULL) {
1059		device_printf(nic->dev,
1060		    "ERROR: Could not set up buf ring for SQ(%d)\n", qidx);
1061		err = ENOMEM;
1062		goto error;
1063	}
1064
1065	/* Allocate DMA memory for Tx descriptors */
1066	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
1067				     NICVF_SQ_BASE_ALIGN_BYTES);
1068	if (err != 0) {
1069		device_printf(nic->dev,
1070		    "Could not allocate DMA memory for SQ\n");
1071		goto error;
1072	}
1073
1074	sq->desc = sq->dmem.base;
1075	sq->head = sq->tail = 0;
1076	atomic_store_rel_int(&sq->free_cnt, q_len - 1);
1077	sq->thresh = SND_QUEUE_THRESH;
1078	sq->idx = qidx;
1079	sq->nic = nic;
1080
1081	/*
1082	 * Allocate DMA maps for Tx buffers
1083	 */
1084
1085	/* Create DMA tag first */
1086	err = bus_dma_tag_create(
1087	    bus_get_dma_tag(nic->dev),		/* parent tag */
1088	    1,					/* alignment */
1089	    0,					/* boundary */
1090	    BUS_SPACE_MAXADDR,			/* lowaddr */
1091	    BUS_SPACE_MAXADDR,			/* highaddr */
1092	    NULL, NULL,				/* filtfunc, filtfuncarg */
1093	    NICVF_TSO_MAXSIZE,			/* maxsize */
1094	    NICVF_TSO_NSEGS,			/* nsegments */
1095	    MCLBYTES,				/* maxsegsize */
1096	    0,					/* flags */
1097	    NULL, NULL,				/* lockfunc, lockfuncarg */
1098	    &sq->snd_buff_dmat);		/* dmat */
1099
1100	if (err != 0) {
1101		device_printf(nic->dev,
1102		    "Failed to create busdma tag for Tx buffers\n");
1103		goto error;
1104	}
1105
1106	/* Allocate send buffers array */
1107	sq->snd_buff = malloc(sizeof(*sq->snd_buff) * q_len, M_NICVF,
1108	    (M_NOWAIT | M_ZERO));
1109	if (sq->snd_buff == NULL) {
1110		device_printf(nic->dev,
1111		    "Could not allocate memory for Tx buffers array\n");
1112		err = ENOMEM;
1113		goto error;
1114	}
1115
1116	/* Now populate maps */
1117	for (i = 0; i < q_len; i++) {
1118		err = bus_dmamap_create(sq->snd_buff_dmat, 0,
1119		    &sq->snd_buff[i].dmap);
1120		if (err != 0) {
1121			device_printf(nic->dev,
1122			    "Failed to create DMA maps for Tx buffers\n");
1123			goto error;
1124		}
1125	}
1126	NICVF_TX_UNLOCK(sq);
1127
1128	/* Allocate taskqueue */
1129	TASK_INIT(&sq->snd_task, 0, nicvf_snd_task, sq);
1130	sq->snd_taskq = taskqueue_create_fast("nicvf_snd_taskq", M_WAITOK,
1131	    taskqueue_thread_enqueue, &sq->snd_taskq);
1132	taskqueue_start_threads(&sq->snd_taskq, 1, PI_NET, "%s: snd_taskq(%d)",
1133	    device_get_nameunit(nic->dev), qidx);
1134
1135	return (0);
1136error:
1137	NICVF_TX_UNLOCK(sq);
1138	return (err);
1139}
1140
1141static void
1142nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
1143{
1144	struct queue_set *qs = nic->qs;
1145	size_t i;
1146	int err __diagused;
1147
1148	if (sq == NULL)
1149		return;
1150
1151	if (sq->snd_taskq != NULL) {
1152		/* Remove task */
1153		while (taskqueue_cancel(sq->snd_taskq, &sq->snd_task, NULL) != 0)
1154			taskqueue_drain(sq->snd_taskq, &sq->snd_task);
1155
1156		taskqueue_free(sq->snd_taskq);
1157		sq->snd_taskq = NULL;
1158	}
1159
1160	NICVF_TX_LOCK(sq);
1161	if (sq->snd_buff_dmat != NULL) {
1162		if (sq->snd_buff != NULL) {
1163			for (i = 0; i < qs->sq_len; i++) {
1164				m_freem(sq->snd_buff[i].mbuf);
1165				sq->snd_buff[i].mbuf = NULL;
1166
1167				bus_dmamap_unload(sq->snd_buff_dmat,
1168				    sq->snd_buff[i].dmap);
1169				err = bus_dmamap_destroy(sq->snd_buff_dmat,
1170				    sq->snd_buff[i].dmap);
1171				/*
1172				 * If bus_dmamap_destroy fails it can cause
1173				 * random panic later if the tag is also
1174				 * destroyed in the process.
1175				 */
1176				KASSERT(err == 0,
1177				    ("%s: Could not destroy DMA map for SQ",
1178				    __func__));
1179			}
1180		}
1181
1182		free(sq->snd_buff, M_NICVF);
1183
1184		err = bus_dma_tag_destroy(sq->snd_buff_dmat);
1185		KASSERT(err == 0,
1186		    ("%s: Trying to destroy BUSY DMA tag", __func__));
1187	}
1188
1189	/* Free private driver ring for this send queue */
1190	if (sq->br != NULL)
1191		drbr_free(sq->br, M_DEVBUF);
1192
1193	if (sq->dmem.base != NULL)
1194		nicvf_free_q_desc_mem(nic, &sq->dmem);
1195
1196	NICVF_TX_UNLOCK(sq);
1197	/* Destroy Tx lock */
1198	mtx_destroy(&sq->mtx);
1199	memset(sq->mtx_name, 0, sizeof(sq->mtx_name));
1200}
1201
1202static void
1203nicvf_reclaim_snd_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1204{
1205
1206	/* Disable send queue */
1207	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
1208	/* Check if SQ is stopped */
1209	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
1210		return;
1211	/* Reset send queue */
1212	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1213}
1214
1215static void
1216nicvf_reclaim_rcv_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1217{
1218	union nic_mbx mbx = {};
1219
1220	/* Make sure all packets in the pipeline are written back into mem */
1221	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
1222	nicvf_send_msg_to_pf(nic, &mbx);
1223}
1224
1225static void
1226nicvf_reclaim_cmp_queue(struct nicvf *nic, struct queue_set *qs, int qidx)
1227{
1228
1229	/* Disable timer threshold (doesn't get reset upon CQ reset */
1230	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
1231	/* Disable completion queue */
1232	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
1233	/* Reset completion queue */
1234	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1235}
1236
1237static void
1238nicvf_reclaim_rbdr(struct nicvf *nic, struct rbdr *rbdr, int qidx)
1239{
1240	uint64_t tmp, fifo_state;
1241	int timeout = 10;
1242
1243	/* Save head and tail pointers for feeing up buffers */
1244	rbdr->head =
1245	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_HEAD, qidx) >> 3;
1246	rbdr->tail =
1247	    nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, qidx) >> 3;
1248
1249	/*
1250	 * If RBDR FIFO is in 'FAIL' state then do a reset first
1251	 * before relaiming.
1252	 */
1253	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
1254	if (((fifo_state >> 62) & 0x03) == 0x3) {
1255		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
1256		    qidx, NICVF_RBDR_RESET);
1257	}
1258
1259	/* Disable RBDR */
1260	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
1261	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1262		return;
1263	while (1) {
1264		tmp = nicvf_queue_reg_read(nic,
1265		    NIC_QSET_RBDR_0_1_PREFETCH_STATUS, qidx);
1266		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
1267			break;
1268
1269		DELAY(1000);
1270		timeout--;
1271		if (!timeout) {
1272			device_printf(nic->dev,
1273			    "Failed polling on prefetch status\n");
1274			return;
1275		}
1276	}
1277	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1278	    NICVF_RBDR_RESET);
1279
1280	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
1281		return;
1282	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
1283	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
1284		return;
1285}
1286
1287/* Configures receive queue */
1288static void
1289nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
1290    int qidx, bool enable)
1291{
1292	union nic_mbx mbx = {};
1293	struct rcv_queue *rq;
1294	struct rq_cfg rq_cfg;
1295	if_t ifp;
1296	struct lro_ctrl	*lro;
1297
1298	ifp = nic->ifp;
1299
1300	rq = &qs->rq[qidx];
1301	rq->enable = enable;
1302
1303	lro = &rq->lro;
1304
1305	/* Disable receive queue */
1306	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
1307
1308	if (!rq->enable) {
1309		nicvf_reclaim_rcv_queue(nic, qs, qidx);
1310		/* Free LRO memory */
1311		tcp_lro_free(lro);
1312		rq->lro_enabled = FALSE;
1313		return;
1314	}
1315
1316	/* Configure LRO if enabled */
1317	rq->lro_enabled = FALSE;
1318	if ((if_getcapenable(ifp) & IFCAP_LRO) != 0) {
1319		if (tcp_lro_init(lro) != 0) {
1320			device_printf(nic->dev,
1321			    "Failed to initialize LRO for RXQ%d\n", qidx);
1322		} else {
1323			rq->lro_enabled = TRUE;
1324			lro->ifp = nic->ifp;
1325		}
1326	}
1327
1328	rq->cq_qs = qs->vnic_id;
1329	rq->cq_idx = qidx;
1330	rq->start_rbdr_qs = qs->vnic_id;
1331	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
1332	rq->cont_rbdr_qs = qs->vnic_id;
1333	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
1334	/* all writes of RBDR data to be loaded into L2 Cache as well*/
1335	rq->caching = 1;
1336
1337	/* Send a mailbox msg to PF to config RQ */
1338	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
1339	mbx.rq.qs_num = qs->vnic_id;
1340	mbx.rq.rq_num = qidx;
1341	mbx.rq.cfg = ((uint64_t)rq->caching << 26) | (rq->cq_qs << 19) |
1342	    (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
1343	    (rq->cont_qs_rbdr_idx << 8) | (rq->start_rbdr_qs << 1) |
1344	    (rq->start_qs_rbdr_idx);
1345	nicvf_send_msg_to_pf(nic, &mbx);
1346
1347	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
1348	mbx.rq.cfg = (1UL << 63) | (1UL << 62) | (qs->vnic_id << 0);
1349	nicvf_send_msg_to_pf(nic, &mbx);
1350
1351	/*
1352	 * RQ drop config
1353	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
1354	 */
1355	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
1356	mbx.rq.cfg = (1UL << 62) | (RQ_CQ_DROP << 8);
1357	nicvf_send_msg_to_pf(nic, &mbx);
1358
1359	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, 0x00);
1360
1361	/* Enable Receive queue */
1362	rq_cfg.ena = 1;
1363	rq_cfg.tcp_ena = 0;
1364	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx,
1365	    *(uint64_t *)&rq_cfg);
1366}
1367
1368/* Configures completion queue */
1369static void
1370nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
1371    int qidx, boolean_t enable)
1372{
1373	struct cmp_queue *cq;
1374	struct cq_cfg cq_cfg;
1375
1376	cq = &qs->cq[qidx];
1377	cq->enable = enable;
1378
1379	if (!cq->enable) {
1380		nicvf_reclaim_cmp_queue(nic, qs, qidx);
1381		return;
1382	}
1383
1384	/* Reset completion queue */
1385	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
1386
1387	/* Set completion queue base address */
1388	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE, qidx,
1389	    (uint64_t)(cq->dmem.phys_base));
1390
1391	/* Enable Completion queue */
1392	cq_cfg.ena = 1;
1393	cq_cfg.reset = 0;
1394	cq_cfg.caching = 0;
1395	cq_cfg.qsize = CMP_QSIZE;
1396	cq_cfg.avg_con = 0;
1397	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(uint64_t *)&cq_cfg);
1398
1399	/* Set threshold value for interrupt generation */
1400	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
1401	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx,
1402	    nic->cq_coalesce_usecs);
1403}
1404
1405/* Configures transmit queue */
1406static void
1407nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1408    boolean_t enable)
1409{
1410	union nic_mbx mbx = {};
1411	struct snd_queue *sq;
1412	struct sq_cfg sq_cfg;
1413
1414	sq = &qs->sq[qidx];
1415	sq->enable = enable;
1416
1417	if (!sq->enable) {
1418		nicvf_reclaim_snd_queue(nic, qs, qidx);
1419		return;
1420	}
1421
1422	/* Reset send queue */
1423	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
1424
1425	sq->cq_qs = qs->vnic_id;
1426	sq->cq_idx = qidx;
1427
1428	/* Send a mailbox msg to PF to config SQ */
1429	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
1430	mbx.sq.qs_num = qs->vnic_id;
1431	mbx.sq.sq_num = qidx;
1432	mbx.sq.sqs_mode = nic->sqs_mode;
1433	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
1434	nicvf_send_msg_to_pf(nic, &mbx);
1435
1436	/* Set queue base address */
1437	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE, qidx,
1438	    (uint64_t)(sq->dmem.phys_base));
1439
1440	/* Enable send queue  & set queue size */
1441	sq_cfg.ena = 1;
1442	sq_cfg.reset = 0;
1443	sq_cfg.ldwb = 0;
1444	sq_cfg.qsize = SND_QSIZE;
1445	sq_cfg.tstmp_bgx_intf = 0;
1446	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(uint64_t *)&sq_cfg);
1447
1448	/* Set threshold value for interrupt generation */
1449	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
1450}
1451
1452/* Configures receive buffer descriptor ring */
1453static void
1454nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs, int qidx,
1455    boolean_t enable)
1456{
1457	struct rbdr *rbdr;
1458	struct rbdr_cfg rbdr_cfg;
1459
1460	rbdr = &qs->rbdr[qidx];
1461	nicvf_reclaim_rbdr(nic, rbdr, qidx);
1462	if (!enable)
1463		return;
1464
1465	/* Set descriptor base address */
1466	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE, qidx,
1467	    (uint64_t)(rbdr->dmem.phys_base));
1468
1469	/* Enable RBDR  & set queue size */
1470	/* Buffer size should be in multiples of 128 bytes */
1471	rbdr_cfg.ena = 1;
1472	rbdr_cfg.reset = 0;
1473	rbdr_cfg.ldwb = 0;
1474	rbdr_cfg.qsize = RBDR_SIZE;
1475	rbdr_cfg.avg_con = 0;
1476	rbdr_cfg.lines = rbdr->dma_size / 128;
1477	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx,
1478	    *(uint64_t *)&rbdr_cfg);
1479
1480	/* Notify HW */
1481	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, qidx,
1482	    qs->rbdr_len - 1);
1483
1484	/* Set threshold value for interrupt generation */
1485	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH, qidx,
1486	    rbdr->thresh - 1);
1487}
1488
1489/* Requests PF to assign and enable Qset */
1490void
1491nicvf_qset_config(struct nicvf *nic, boolean_t enable)
1492{
1493	union nic_mbx mbx = {};
1494	struct queue_set *qs;
1495	struct qs_cfg *qs_cfg;
1496
1497	qs = nic->qs;
1498	if (qs == NULL) {
1499		device_printf(nic->dev,
1500		    "Qset is still not allocated, don't init queues\n");
1501		return;
1502	}
1503
1504	qs->enable = enable;
1505	qs->vnic_id = nic->vf_id;
1506
1507	/* Send a mailbox msg to PF to config Qset */
1508	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
1509	mbx.qs.num = qs->vnic_id;
1510
1511	mbx.qs.cfg = 0;
1512	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
1513	if (qs->enable) {
1514		qs_cfg->ena = 1;
1515		qs_cfg->vnic = qs->vnic_id;
1516	}
1517	nicvf_send_msg_to_pf(nic, &mbx);
1518}
1519
1520static void
1521nicvf_free_resources(struct nicvf *nic)
1522{
1523	int qidx;
1524	struct queue_set *qs;
1525
1526	qs = nic->qs;
1527	/*
1528	 * Remove QS error task first since it has to be dead
1529	 * to safely free completion queue tasks.
1530	 */
1531	if (qs->qs_err_taskq != NULL) {
1532		/* Shut down QS error tasks */
1533		while (taskqueue_cancel(qs->qs_err_taskq,
1534		    &qs->qs_err_task,  NULL) != 0) {
1535			taskqueue_drain(qs->qs_err_taskq, &qs->qs_err_task);
1536		}
1537		taskqueue_free(qs->qs_err_taskq);
1538		qs->qs_err_taskq = NULL;
1539	}
1540	/* Free receive buffer descriptor ring */
1541	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1542		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
1543
1544	/* Free completion queue */
1545	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1546		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
1547
1548	/* Free send queue */
1549	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1550		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
1551}
1552
1553static int
1554nicvf_alloc_resources(struct nicvf *nic)
1555{
1556	struct queue_set *qs = nic->qs;
1557	int qidx;
1558
1559	/* Alloc receive buffer descriptor ring */
1560	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1561		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
1562				    DMA_BUFFER_LEN, qidx))
1563			goto alloc_fail;
1564	}
1565
1566	/* Alloc send queue */
1567	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
1568		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx))
1569			goto alloc_fail;
1570	}
1571
1572	/* Alloc completion queue */
1573	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1574		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len, qidx))
1575			goto alloc_fail;
1576	}
1577
1578	/* Allocate QS error taskqueue */
1579	NET_TASK_INIT(&qs->qs_err_task, 0, nicvf_qs_err_task, nic);
1580	qs->qs_err_taskq = taskqueue_create_fast("nicvf_qs_err_taskq", M_WAITOK,
1581	    taskqueue_thread_enqueue, &qs->qs_err_taskq);
1582	taskqueue_start_threads(&qs->qs_err_taskq, 1, PI_NET, "%s: qs_taskq",
1583	    device_get_nameunit(nic->dev));
1584
1585	return (0);
1586alloc_fail:
1587	nicvf_free_resources(nic);
1588	return (ENOMEM);
1589}
1590
1591int
1592nicvf_set_qset_resources(struct nicvf *nic)
1593{
1594	struct queue_set *qs;
1595
1596	qs = malloc(sizeof(*qs), M_NICVF, (M_ZERO | M_WAITOK));
1597	nic->qs = qs;
1598
1599	/* Set count of each queue */
1600	qs->rbdr_cnt = RBDR_CNT;
1601	qs->rq_cnt = RCV_QUEUE_CNT;
1602
1603	qs->sq_cnt = SND_QUEUE_CNT;
1604	qs->cq_cnt = CMP_QUEUE_CNT;
1605
1606	/* Set queue lengths */
1607	qs->rbdr_len = RCV_BUF_COUNT;
1608	qs->sq_len = SND_QUEUE_LEN;
1609	qs->cq_len = CMP_QUEUE_LEN;
1610
1611	nic->rx_queues = qs->rq_cnt;
1612	nic->tx_queues = qs->sq_cnt;
1613
1614	return (0);
1615}
1616
1617int
1618nicvf_config_data_transfer(struct nicvf *nic, boolean_t enable)
1619{
1620	boolean_t disable = FALSE;
1621	struct queue_set *qs;
1622	int qidx;
1623
1624	qs = nic->qs;
1625	if (qs == NULL)
1626		return (0);
1627
1628	if (enable) {
1629		if (nicvf_alloc_resources(nic) != 0)
1630			return (ENOMEM);
1631
1632		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1633			nicvf_snd_queue_config(nic, qs, qidx, enable);
1634		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1635			nicvf_cmp_queue_config(nic, qs, qidx, enable);
1636		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1637			nicvf_rbdr_config(nic, qs, qidx, enable);
1638		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1639			nicvf_rcv_queue_config(nic, qs, qidx, enable);
1640	} else {
1641		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1642			nicvf_rcv_queue_config(nic, qs, qidx, disable);
1643		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1644			nicvf_rbdr_config(nic, qs, qidx, disable);
1645		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1646			nicvf_snd_queue_config(nic, qs, qidx, disable);
1647		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1648			nicvf_cmp_queue_config(nic, qs, qidx, disable);
1649
1650		nicvf_free_resources(nic);
1651	}
1652
1653	return (0);
1654}
1655
1656/*
1657 * Get a free desc from SQ
1658 * returns descriptor ponter & descriptor number
1659 */
1660static __inline int
1661nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
1662{
1663	int qentry;
1664
1665	qentry = sq->tail;
1666	atomic_subtract_int(&sq->free_cnt, desc_cnt);
1667	sq->tail += desc_cnt;
1668	sq->tail &= (sq->dmem.q_len - 1);
1669
1670	return (qentry);
1671}
1672
1673/* Free descriptor back to SQ for future use */
1674static void
1675nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
1676{
1677
1678	atomic_add_int(&sq->free_cnt, desc_cnt);
1679	sq->head += desc_cnt;
1680	sq->head &= (sq->dmem.q_len - 1);
1681}
1682
1683static __inline int
1684nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
1685{
1686	qentry++;
1687	qentry &= (sq->dmem.q_len - 1);
1688	return (qentry);
1689}
1690
1691static void
1692nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
1693{
1694	uint64_t sq_cfg;
1695
1696	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1697	sq_cfg |= NICVF_SQ_EN;
1698	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1699	/* Ring doorbell so that H/W restarts processing SQEs */
1700	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
1701}
1702
1703static void
1704nicvf_sq_disable(struct nicvf *nic, int qidx)
1705{
1706	uint64_t sq_cfg;
1707
1708	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
1709	sq_cfg &= ~NICVF_SQ_EN;
1710	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
1711}
1712
1713static void
1714nicvf_sq_free_used_descs(struct nicvf *nic, struct snd_queue *sq, int qidx)
1715{
1716	uint64_t head;
1717	struct snd_buff *snd_buff;
1718	struct sq_hdr_subdesc *hdr;
1719
1720	NICVF_TX_LOCK(sq);
1721	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1722	while (sq->head != head) {
1723		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1724		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1725			nicvf_put_sq_desc(sq, 1);
1726			continue;
1727		}
1728		snd_buff = &sq->snd_buff[sq->head];
1729		if (snd_buff->mbuf != NULL) {
1730			bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1731			m_freem(snd_buff->mbuf);
1732			sq->snd_buff[sq->head].mbuf = NULL;
1733		}
1734		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1735	}
1736	NICVF_TX_UNLOCK(sq);
1737}
1738
1739/*
1740 * Add SQ HEADER subdescriptor.
1741 * First subdescriptor for every send descriptor.
1742 */
1743static __inline int
1744nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
1745			 int subdesc_cnt, struct mbuf *mbuf, int len)
1746{
1747	struct nicvf *nic;
1748	struct sq_hdr_subdesc *hdr;
1749	struct ether_vlan_header *eh;
1750#ifdef INET
1751	struct ip *ip;
1752#endif
1753#if defined(INET6) || defined(INET)
1754	struct tcphdr *th;
1755#endif
1756#ifdef INET
1757	int iphlen;
1758#endif
1759	int ehdrlen, poff, proto;
1760	uint16_t etype;
1761
1762	nic = sq->nic;
1763
1764	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1765	sq->snd_buff[qentry].mbuf = mbuf;
1766
1767	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1768	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1769	/* Enable notification via CQE after processing SQE */
1770	hdr->post_cqe = 1;
1771	/* No of subdescriptors following this */
1772	hdr->subdesc_cnt = subdesc_cnt;
1773	hdr->tot_len = len;
1774
1775	eh = mtod(mbuf, struct ether_vlan_header *);
1776	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1777		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1778		etype = ntohs(eh->evl_proto);
1779	} else {
1780		ehdrlen = ETHER_HDR_LEN;
1781		etype = ntohs(eh->evl_encap_proto);
1782	}
1783
1784	poff = proto = -1;
1785	switch (etype) {
1786#ifdef INET6
1787	case ETHERTYPE_IPV6:
1788		if (mbuf->m_len < ehdrlen + sizeof(struct ip6_hdr)) {
1789			mbuf = m_pullup(mbuf, ehdrlen +sizeof(struct ip6_hdr));
1790			sq->snd_buff[qentry].mbuf = NULL;
1791			if (mbuf == NULL)
1792				return (ENOBUFS);
1793		}
1794		poff = ip6_lasthdr(mbuf, ehdrlen, IPPROTO_IPV6, &proto);
1795		if (poff < 0)
1796			return (ENOBUFS);
1797		poff += ehdrlen;
1798		break;
1799#endif
1800#ifdef INET
1801	case ETHERTYPE_IP:
1802		if (mbuf->m_len < ehdrlen + sizeof(struct ip)) {
1803			mbuf = m_pullup(mbuf, ehdrlen + sizeof(struct ip));
1804			sq->snd_buff[qentry].mbuf = mbuf;
1805			if (mbuf == NULL)
1806				return (ENOBUFS);
1807		}
1808		if (mbuf->m_pkthdr.csum_flags & CSUM_IP)
1809			hdr->csum_l3 = 1; /* Enable IP csum calculation */
1810
1811		ip = (struct ip *)(mbuf->m_data + ehdrlen);
1812		iphlen = ip->ip_hl << 2;
1813		poff = ehdrlen + iphlen;
1814		proto = ip->ip_p;
1815		break;
1816#endif
1817	}
1818
1819#if defined(INET6) || defined(INET)
1820	if (poff > 0 && mbuf->m_pkthdr.csum_flags != 0) {
1821		switch (proto) {
1822		case IPPROTO_TCP:
1823			if ((mbuf->m_pkthdr.csum_flags & CSUM_TCP) == 0)
1824				break;
1825
1826			if (mbuf->m_len < (poff + sizeof(struct tcphdr))) {
1827				mbuf = m_pullup(mbuf, poff + sizeof(struct tcphdr));
1828				sq->snd_buff[qentry].mbuf = mbuf;
1829				if (mbuf == NULL)
1830					return (ENOBUFS);
1831			}
1832			hdr->csum_l4 = SEND_L4_CSUM_TCP;
1833			break;
1834		case IPPROTO_UDP:
1835			if ((mbuf->m_pkthdr.csum_flags & CSUM_UDP) == 0)
1836				break;
1837
1838			if (mbuf->m_len < (poff + sizeof(struct udphdr))) {
1839				mbuf = m_pullup(mbuf, poff + sizeof(struct udphdr));
1840				sq->snd_buff[qentry].mbuf = mbuf;
1841				if (mbuf == NULL)
1842					return (ENOBUFS);
1843			}
1844			hdr->csum_l4 = SEND_L4_CSUM_UDP;
1845			break;
1846		case IPPROTO_SCTP:
1847			if ((mbuf->m_pkthdr.csum_flags & CSUM_SCTP) == 0)
1848				break;
1849
1850			if (mbuf->m_len < (poff + sizeof(struct sctphdr))) {
1851				mbuf = m_pullup(mbuf, poff + sizeof(struct sctphdr));
1852				sq->snd_buff[qentry].mbuf = mbuf;
1853				if (mbuf == NULL)
1854					return (ENOBUFS);
1855			}
1856			hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1857			break;
1858		default:
1859			break;
1860		}
1861		hdr->l3_offset = ehdrlen;
1862		hdr->l4_offset = poff;
1863	}
1864
1865	if ((mbuf->m_pkthdr.tso_segsz != 0) && nic->hw_tso) {
1866		th = (struct tcphdr *)((caddr_t)(mbuf->m_data + poff));
1867
1868		hdr->tso = 1;
1869		hdr->tso_start = poff + (th->th_off * 4);
1870		hdr->tso_max_paysize = mbuf->m_pkthdr.tso_segsz;
1871		hdr->inner_l3_offset = ehdrlen - 2;
1872		nic->drv_stats.tx_tso++;
1873	}
1874#endif
1875
1876	return (0);
1877}
1878
1879/*
1880 * SQ GATHER subdescriptor
1881 * Must follow HDR descriptor
1882 */
1883static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1884					       int size, uint64_t data)
1885{
1886	struct sq_gather_subdesc *gather;
1887
1888	qentry &= (sq->dmem.q_len - 1);
1889	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1890
1891	memset(gather, 0, SND_QUEUE_DESC_SIZE);
1892	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1893	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1894	gather->size = size;
1895	gather->addr = data;
1896}
1897
1898/* Put an mbuf to a SQ for packet transfer. */
1899static int
1900nicvf_tx_mbuf_locked(struct snd_queue *sq, struct mbuf **mbufp)
1901{
1902	bus_dma_segment_t segs[256];
1903	struct snd_buff *snd_buff;
1904	size_t seg;
1905	int nsegs, qentry;
1906	int subdesc_cnt;
1907	int err;
1908
1909	NICVF_TX_LOCK_ASSERT(sq);
1910
1911	if (sq->free_cnt == 0)
1912		return (ENOBUFS);
1913
1914	snd_buff = &sq->snd_buff[sq->tail];
1915
1916	err = bus_dmamap_load_mbuf_sg(sq->snd_buff_dmat, snd_buff->dmap,
1917	    *mbufp, segs, &nsegs, BUS_DMA_NOWAIT);
1918	if (__predict_false(err != 0)) {
1919		/* ARM64TODO: Add mbuf defragmenting if we lack maps */
1920		m_freem(*mbufp);
1921		*mbufp = NULL;
1922		return (err);
1923	}
1924
1925	/* Set how many subdescriptors is required */
1926	subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT + nsegs - 1;
1927	if (subdesc_cnt > sq->free_cnt) {
1928		/* ARM64TODO: Add mbuf defragmentation if we lack descriptors */
1929		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1930		return (ENOBUFS);
1931	}
1932
1933	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1934
1935	/* Add SQ header subdesc */
1936	err = nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, *mbufp,
1937	    (*mbufp)->m_pkthdr.len);
1938	if (err != 0) {
1939		nicvf_put_sq_desc(sq, subdesc_cnt);
1940		bus_dmamap_unload(sq->snd_buff_dmat, snd_buff->dmap);
1941		if (err == ENOBUFS) {
1942			m_freem(*mbufp);
1943			*mbufp = NULL;
1944		}
1945		return (err);
1946	}
1947
1948	/* Add SQ gather subdescs */
1949	for (seg = 0; seg < nsegs; seg++) {
1950		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1951		nicvf_sq_add_gather_subdesc(sq, qentry, segs[seg].ds_len,
1952		    segs[seg].ds_addr);
1953	}
1954
1955	/* make sure all memory stores are done before ringing doorbell */
1956	bus_dmamap_sync(sq->dmem.dmat, sq->dmem.dmap, BUS_DMASYNC_PREWRITE);
1957
1958	dprintf(sq->nic->dev, "%s: sq->idx: %d, subdesc_cnt: %d\n",
1959	    __func__, sq->idx, subdesc_cnt);
1960	/* Inform HW to xmit new packet */
1961	nicvf_queue_reg_write(sq->nic, NIC_QSET_SQ_0_7_DOOR,
1962	    sq->idx, subdesc_cnt);
1963	return (0);
1964}
1965
1966static __inline u_int
1967frag_num(u_int i)
1968{
1969#if BYTE_ORDER == BIG_ENDIAN
1970	return ((i & ~3) + 3 - (i & 3));
1971#else
1972	return (i);
1973#endif
1974}
1975
1976/* Returns MBUF for a received packet */
1977struct mbuf *
1978nicvf_get_rcv_mbuf(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1979{
1980	int frag;
1981	int payload_len = 0;
1982	struct mbuf *mbuf;
1983	struct mbuf *mbuf_frag;
1984	uint16_t *rb_lens = NULL;
1985	uint64_t *rb_ptrs = NULL;
1986
1987	mbuf = NULL;
1988	rb_lens = (uint16_t *)((uint8_t *)cqe_rx + (3 * sizeof(uint64_t)));
1989	rb_ptrs = (uint64_t *)((uint8_t *)cqe_rx + (6 * sizeof(uint64_t)));
1990
1991	dprintf(nic->dev, "%s rb_cnt %d rb0_ptr %lx rb0_sz %d\n",
1992	    __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1993
1994	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1995		payload_len = rb_lens[frag_num(frag)];
1996		if (frag == 0) {
1997			/* First fragment */
1998			mbuf = nicvf_rb_ptr_to_mbuf(nic,
1999			    (*rb_ptrs - cqe_rx->align_pad));
2000			mbuf->m_len = payload_len;
2001			mbuf->m_data += cqe_rx->align_pad;
2002			if_setrcvif(mbuf, nic->ifp);
2003		} else {
2004			/* Add fragments */
2005			mbuf_frag = nicvf_rb_ptr_to_mbuf(nic, *rb_ptrs);
2006			m_append(mbuf, payload_len, mbuf_frag->m_data);
2007			m_freem(mbuf_frag);
2008		}
2009		/* Next buffer pointer */
2010		rb_ptrs++;
2011	}
2012
2013	if (__predict_true(mbuf != NULL)) {
2014		m_fixhdr(mbuf);
2015		mbuf->m_pkthdr.flowid = cqe_rx->rq_idx;
2016		M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE);
2017		if (__predict_true((if_getcapenable(nic->ifp) & IFCAP_RXCSUM) != 0)) {
2018			/*
2019			 * HW by default verifies IP & TCP/UDP/SCTP checksums
2020			 */
2021			if (__predict_true(cqe_rx->l3_type == L3TYPE_IPV4)) {
2022				mbuf->m_pkthdr.csum_flags =
2023				    (CSUM_IP_CHECKED | CSUM_IP_VALID);
2024			}
2025
2026			switch (cqe_rx->l4_type) {
2027			case L4TYPE_UDP:
2028			case L4TYPE_TCP: /* fall through */
2029				mbuf->m_pkthdr.csum_flags |=
2030				    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
2031				mbuf->m_pkthdr.csum_data = 0xffff;
2032				break;
2033			case L4TYPE_SCTP:
2034				mbuf->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
2035				break;
2036			default:
2037				break;
2038			}
2039		}
2040	}
2041
2042	return (mbuf);
2043}
2044
2045/* Enable interrupt */
2046void
2047nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
2048{
2049	uint64_t reg_val;
2050
2051	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2052
2053	switch (int_type) {
2054	case NICVF_INTR_CQ:
2055		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2056		break;
2057	case NICVF_INTR_SQ:
2058		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2059		break;
2060	case NICVF_INTR_RBDR:
2061		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2062		break;
2063	case NICVF_INTR_PKT_DROP:
2064		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2065		break;
2066	case NICVF_INTR_TCP_TIMER:
2067		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2068		break;
2069	case NICVF_INTR_MBOX:
2070		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2071		break;
2072	case NICVF_INTR_QS_ERR:
2073		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2074		break;
2075	default:
2076		device_printf(nic->dev,
2077			   "Failed to enable interrupt: unknown type\n");
2078		break;
2079	}
2080
2081	nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
2082}
2083
2084/* Disable interrupt */
2085void
2086nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
2087{
2088	uint64_t reg_val = 0;
2089
2090	switch (int_type) {
2091	case NICVF_INTR_CQ:
2092		reg_val |= ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2093		break;
2094	case NICVF_INTR_SQ:
2095		reg_val |= ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2096		break;
2097	case NICVF_INTR_RBDR:
2098		reg_val |= ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2099		break;
2100	case NICVF_INTR_PKT_DROP:
2101		reg_val |= (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2102		break;
2103	case NICVF_INTR_TCP_TIMER:
2104		reg_val |= (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2105		break;
2106	case NICVF_INTR_MBOX:
2107		reg_val |= (1UL << NICVF_INTR_MBOX_SHIFT);
2108		break;
2109	case NICVF_INTR_QS_ERR:
2110		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2111		break;
2112	default:
2113		device_printf(nic->dev,
2114			   "Failed to disable interrupt: unknown type\n");
2115		break;
2116	}
2117
2118	nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
2119}
2120
2121/* Clear interrupt */
2122void
2123nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
2124{
2125	uint64_t reg_val = 0;
2126
2127	switch (int_type) {
2128	case NICVF_INTR_CQ:
2129		reg_val = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2130		break;
2131	case NICVF_INTR_SQ:
2132		reg_val = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2133		break;
2134	case NICVF_INTR_RBDR:
2135		reg_val = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2136		break;
2137	case NICVF_INTR_PKT_DROP:
2138		reg_val = (1UL << NICVF_INTR_PKT_DROP_SHIFT);
2139		break;
2140	case NICVF_INTR_TCP_TIMER:
2141		reg_val = (1UL << NICVF_INTR_TCP_TIMER_SHIFT);
2142		break;
2143	case NICVF_INTR_MBOX:
2144		reg_val = (1UL << NICVF_INTR_MBOX_SHIFT);
2145		break;
2146	case NICVF_INTR_QS_ERR:
2147		reg_val |= (1UL << NICVF_INTR_QS_ERR_SHIFT);
2148		break;
2149	default:
2150		device_printf(nic->dev,
2151			   "Failed to clear interrupt: unknown type\n");
2152		break;
2153	}
2154
2155	nicvf_reg_write(nic, NIC_VF_INT, reg_val);
2156}
2157
2158/* Check if interrupt is enabled */
2159int
2160nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
2161{
2162	uint64_t reg_val;
2163	uint64_t mask = 0xff;
2164
2165	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
2166
2167	switch (int_type) {
2168	case NICVF_INTR_CQ:
2169		mask = ((1UL << q_idx) << NICVF_INTR_CQ_SHIFT);
2170		break;
2171	case NICVF_INTR_SQ:
2172		mask = ((1UL << q_idx) << NICVF_INTR_SQ_SHIFT);
2173		break;
2174	case NICVF_INTR_RBDR:
2175		mask = ((1UL << q_idx) << NICVF_INTR_RBDR_SHIFT);
2176		break;
2177	case NICVF_INTR_PKT_DROP:
2178		mask = NICVF_INTR_PKT_DROP_MASK;
2179		break;
2180	case NICVF_INTR_TCP_TIMER:
2181		mask = NICVF_INTR_TCP_TIMER_MASK;
2182		break;
2183	case NICVF_INTR_MBOX:
2184		mask = NICVF_INTR_MBOX_MASK;
2185		break;
2186	case NICVF_INTR_QS_ERR:
2187		mask = NICVF_INTR_QS_ERR_MASK;
2188		break;
2189	default:
2190		device_printf(nic->dev,
2191			   "Failed to check interrupt enable: unknown type\n");
2192		break;
2193	}
2194
2195	return (reg_val & mask);
2196}
2197
2198void
2199nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
2200{
2201	struct rcv_queue *rq;
2202
2203#define GET_RQ_STATS(reg) \
2204	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
2205			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2206
2207	rq = &nic->qs->rq[rq_idx];
2208	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
2209	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
2210}
2211
2212void
2213nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
2214{
2215	struct snd_queue *sq;
2216
2217#define GET_SQ_STATS(reg) \
2218	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
2219			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
2220
2221	sq = &nic->qs->sq[sq_idx];
2222	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
2223	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
2224}
2225
2226/* Check for errors in the receive cmp.queue entry */
2227int
2228nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cmp_queue *cq,
2229    struct cqe_rx_t *cqe_rx)
2230{
2231	struct nicvf_hw_stats *stats = &nic->hw_stats;
2232	struct nicvf_drv_stats *drv_stats = &nic->drv_stats;
2233
2234	if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
2235		drv_stats->rx_frames_ok++;
2236		return (0);
2237	}
2238
2239	switch (cqe_rx->err_opcode) {
2240	case CQ_RX_ERROP_RE_PARTIAL:
2241		stats->rx_bgx_truncated_pkts++;
2242		break;
2243	case CQ_RX_ERROP_RE_JABBER:
2244		stats->rx_jabber_errs++;
2245		break;
2246	case CQ_RX_ERROP_RE_FCS:
2247		stats->rx_fcs_errs++;
2248		break;
2249	case CQ_RX_ERROP_RE_RX_CTL:
2250		stats->rx_bgx_errs++;
2251		break;
2252	case CQ_RX_ERROP_PREL2_ERR:
2253		stats->rx_prel2_errs++;
2254		break;
2255	case CQ_RX_ERROP_L2_MAL:
2256		stats->rx_l2_hdr_malformed++;
2257		break;
2258	case CQ_RX_ERROP_L2_OVERSIZE:
2259		stats->rx_oversize++;
2260		break;
2261	case CQ_RX_ERROP_L2_UNDERSIZE:
2262		stats->rx_undersize++;
2263		break;
2264	case CQ_RX_ERROP_L2_LENMISM:
2265		stats->rx_l2_len_mismatch++;
2266		break;
2267	case CQ_RX_ERROP_L2_PCLP:
2268		stats->rx_l2_pclp++;
2269		break;
2270	case CQ_RX_ERROP_IP_NOT:
2271		stats->rx_ip_ver_errs++;
2272		break;
2273	case CQ_RX_ERROP_IP_CSUM_ERR:
2274		stats->rx_ip_csum_errs++;
2275		break;
2276	case CQ_RX_ERROP_IP_MAL:
2277		stats->rx_ip_hdr_malformed++;
2278		break;
2279	case CQ_RX_ERROP_IP_MALD:
2280		stats->rx_ip_payload_malformed++;
2281		break;
2282	case CQ_RX_ERROP_IP_HOP:
2283		stats->rx_ip_ttl_errs++;
2284		break;
2285	case CQ_RX_ERROP_L3_PCLP:
2286		stats->rx_l3_pclp++;
2287		break;
2288	case CQ_RX_ERROP_L4_MAL:
2289		stats->rx_l4_malformed++;
2290		break;
2291	case CQ_RX_ERROP_L4_CHK:
2292		stats->rx_l4_csum_errs++;
2293		break;
2294	case CQ_RX_ERROP_UDP_LEN:
2295		stats->rx_udp_len_errs++;
2296		break;
2297	case CQ_RX_ERROP_L4_PORT:
2298		stats->rx_l4_port_errs++;
2299		break;
2300	case CQ_RX_ERROP_TCP_FLAG:
2301		stats->rx_tcp_flag_errs++;
2302		break;
2303	case CQ_RX_ERROP_TCP_OFFSET:
2304		stats->rx_tcp_offset_errs++;
2305		break;
2306	case CQ_RX_ERROP_L4_PCLP:
2307		stats->rx_l4_pclp++;
2308		break;
2309	case CQ_RX_ERROP_RBDR_TRUNC:
2310		stats->rx_truncated_pkts++;
2311		break;
2312	}
2313
2314	return (1);
2315}
2316
2317/* Check for errors in the send cmp.queue entry */
2318int
2319nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cmp_queue *cq,
2320    struct cqe_send_t *cqe_tx)
2321{
2322	struct cmp_queue_stats *stats = &cq->stats;
2323
2324	switch (cqe_tx->send_status) {
2325	case CQ_TX_ERROP_GOOD:
2326		stats->tx.good++;
2327		return (0);
2328	case CQ_TX_ERROP_DESC_FAULT:
2329		stats->tx.desc_fault++;
2330		break;
2331	case CQ_TX_ERROP_HDR_CONS_ERR:
2332		stats->tx.hdr_cons_err++;
2333		break;
2334	case CQ_TX_ERROP_SUBDC_ERR:
2335		stats->tx.subdesc_err++;
2336		break;
2337	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
2338		stats->tx.imm_size_oflow++;
2339		break;
2340	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
2341		stats->tx.data_seq_err++;
2342		break;
2343	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
2344		stats->tx.mem_seq_err++;
2345		break;
2346	case CQ_TX_ERROP_LOCK_VIOL:
2347		stats->tx.lock_viol++;
2348		break;
2349	case CQ_TX_ERROP_DATA_FAULT:
2350		stats->tx.data_fault++;
2351		break;
2352	case CQ_TX_ERROP_TSTMP_CONFLICT:
2353		stats->tx.tstmp_conflict++;
2354		break;
2355	case CQ_TX_ERROP_TSTMP_TIMEOUT:
2356		stats->tx.tstmp_timeout++;
2357		break;
2358	case CQ_TX_ERROP_MEM_FAULT:
2359		stats->tx.mem_fault++;
2360		break;
2361	case CQ_TX_ERROP_CK_OVERLAP:
2362		stats->tx.csum_overlap++;
2363		break;
2364	case CQ_TX_ERROP_CK_OFLOW:
2365		stats->tx.csum_overflow++;
2366		break;
2367	}
2368
2369	return (1);
2370}
2371