1/*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 2004
5 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96#include <sys/sysctl.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_var.h>
103#include <net/if_media.h>
104#include <net/if_types.h>
105#include <net/if_vlan_var.h>
106
107#include <net/bpf.h>
108
109#include <machine/bus.h>
110#include <machine/resource.h>
111#include <sys/bus.h>
112#include <sys/rman.h>
113
114#include <dev/mii/mii.h>
115#include <dev/mii/miivar.h>
116
117#include <dev/pci/pcireg.h>
118#include <dev/pci/pcivar.h>
119
120MODULE_DEPEND(vge, pci, 1, 1, 1);
121MODULE_DEPEND(vge, ether, 1, 1, 1);
122MODULE_DEPEND(vge, miibus, 1, 1, 1);
123
124/* "device miibus" required.  See GENERIC if you get errors here. */
125#include "miibus_if.h"
126
127#include <dev/vge/if_vgereg.h>
128#include <dev/vge/if_vgevar.h>
129
130#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
131
132/* Tunables */
133static int msi_disable = 0;
134TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
135
136/*
137 * The SQE error counter of MIB seems to report bogus value.
138 * Vendor's workaround does not seem to work on PCIe based
139 * controllers. Disable it until we find better workaround.
140 */
141#undef VGE_ENABLE_SQEERR
142
143/*
144 * Various supported device vendors/types and their names.
145 */
146static struct vge_type vge_devs[] = {
147	{ VIA_VENDORID, VIA_DEVICEID_61XX,
148		"VIA Networking Velocity Gigabit Ethernet" },
149	{ 0, 0, NULL }
150};
151
152static int	vge_attach(device_t);
153static int	vge_detach(device_t);
154static int	vge_probe(device_t);
155static int	vge_resume(device_t);
156static int	vge_shutdown(device_t);
157static int	vge_suspend(device_t);
158
159static void	vge_cam_clear(struct vge_softc *);
160static int	vge_cam_set(struct vge_softc *, uint8_t *);
161static void	vge_clrwol(struct vge_softc *);
162static void	vge_discard_rxbuf(struct vge_softc *, int);
163static int	vge_dma_alloc(struct vge_softc *);
164static void	vge_dma_free(struct vge_softc *);
165static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
166#ifdef VGE_EEPROM
167static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
168#endif
169static int	vge_encap(struct vge_softc *, struct mbuf **);
170#ifndef __NO_STRICT_ALIGNMENT
171static __inline void
172		vge_fixup_rx(struct mbuf *);
173#endif
174static void	vge_freebufs(struct vge_softc *);
175static void	vge_ifmedia_sts(if_t, struct ifmediareq *);
176static int	vge_ifmedia_upd(if_t);
177static int	vge_ifmedia_upd_locked(struct vge_softc *);
178static void	vge_init(void *);
179static void	vge_init_locked(struct vge_softc *);
180static void	vge_intr(void *);
181static void	vge_intr_holdoff(struct vge_softc *);
182static int	vge_ioctl(if_t, u_long, caddr_t);
183static void	vge_link_statchg(void *);
184static int	vge_miibus_readreg(device_t, int, int);
185static int	vge_miibus_writereg(device_t, int, int, int);
186static void	vge_miipoll_start(struct vge_softc *);
187static void	vge_miipoll_stop(struct vge_softc *);
188static int	vge_newbuf(struct vge_softc *, int);
189static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
190static void	vge_reset(struct vge_softc *);
191static int	vge_rx_list_init(struct vge_softc *);
192static int	vge_rxeof(struct vge_softc *, int);
193static void	vge_rxfilter(struct vge_softc *);
194static void	vge_setmedia(struct vge_softc *);
195static void	vge_setvlan(struct vge_softc *);
196static void	vge_setwol(struct vge_softc *);
197static void	vge_start(if_t);
198static void	vge_start_locked(if_t);
199static void	vge_stats_clear(struct vge_softc *);
200static void	vge_stats_update(struct vge_softc *);
201static void	vge_stop(struct vge_softc *);
202static void	vge_sysctl_node(struct vge_softc *);
203static int	vge_tx_list_init(struct vge_softc *);
204static void	vge_txeof(struct vge_softc *);
205static void	vge_watchdog(void *);
206
207static device_method_t vge_methods[] = {
208	/* Device interface */
209	DEVMETHOD(device_probe,		vge_probe),
210	DEVMETHOD(device_attach,	vge_attach),
211	DEVMETHOD(device_detach,	vge_detach),
212	DEVMETHOD(device_suspend,	vge_suspend),
213	DEVMETHOD(device_resume,	vge_resume),
214	DEVMETHOD(device_shutdown,	vge_shutdown),
215
216	/* MII interface */
217	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
218	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
219
220	DEVMETHOD_END
221};
222
223static driver_t vge_driver = {
224	"vge",
225	vge_methods,
226	sizeof(struct vge_softc)
227};
228
229DRIVER_MODULE(vge, pci, vge_driver, 0, 0);
230DRIVER_MODULE(miibus, vge, miibus_driver, 0, 0);
231
232#ifdef VGE_EEPROM
233/*
234 * Read a word of data stored in the EEPROM at address 'addr.'
235 */
236static void
237vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
238{
239	int i;
240	uint16_t word = 0;
241
242	/*
243	 * Enter EEPROM embedded programming mode. In order to
244	 * access the EEPROM at all, we first have to set the
245	 * EELOAD bit in the CHIPCFG2 register.
246	 */
247	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
248	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
249
250	/* Select the address of the word we want to read */
251	CSR_WRITE_1(sc, VGE_EEADDR, addr);
252
253	/* Issue read command */
254	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
255
256	/* Wait for the done bit to be set. */
257	for (i = 0; i < VGE_TIMEOUT; i++) {
258		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
259			break;
260	}
261
262	if (i == VGE_TIMEOUT) {
263		device_printf(sc->vge_dev, "EEPROM read timed out\n");
264		*dest = 0;
265		return;
266	}
267
268	/* Read the result */
269	word = CSR_READ_2(sc, VGE_EERDDAT);
270
271	/* Turn off EEPROM access mode. */
272	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
273	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
274
275	*dest = word;
276}
277#endif
278
279/*
280 * Read a sequence of words from the EEPROM.
281 */
282static void
283vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
284{
285	int i;
286#ifdef VGE_EEPROM
287	uint16_t word = 0, *ptr;
288
289	for (i = 0; i < cnt; i++) {
290		vge_eeprom_getword(sc, off + i, &word);
291		ptr = (uint16_t *)(dest + (i * 2));
292		if (swap)
293			*ptr = ntohs(word);
294		else
295			*ptr = word;
296	}
297#else
298	for (i = 0; i < ETHER_ADDR_LEN; i++)
299		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
300#endif
301}
302
303static void
304vge_miipoll_stop(struct vge_softc *sc)
305{
306	int i;
307
308	CSR_WRITE_1(sc, VGE_MIICMD, 0);
309
310	for (i = 0; i < VGE_TIMEOUT; i++) {
311		DELAY(1);
312		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
313			break;
314	}
315
316	if (i == VGE_TIMEOUT)
317		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
318}
319
320static void
321vge_miipoll_start(struct vge_softc *sc)
322{
323	int i;
324
325	/* First, make sure we're idle. */
326
327	CSR_WRITE_1(sc, VGE_MIICMD, 0);
328	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
329
330	for (i = 0; i < VGE_TIMEOUT; i++) {
331		DELAY(1);
332		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
333			break;
334	}
335
336	if (i == VGE_TIMEOUT) {
337		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
338		return;
339	}
340
341	/* Now enable auto poll mode. */
342
343	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
344
345	/* And make sure it started. */
346
347	for (i = 0; i < VGE_TIMEOUT; i++) {
348		DELAY(1);
349		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
350			break;
351	}
352
353	if (i == VGE_TIMEOUT)
354		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
355}
356
357static int
358vge_miibus_readreg(device_t dev, int phy, int reg)
359{
360	struct vge_softc *sc;
361	int i;
362	uint16_t rval = 0;
363
364	sc = device_get_softc(dev);
365
366	vge_miipoll_stop(sc);
367
368	/* Specify the register we want to read. */
369	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
370
371	/* Issue read command. */
372	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
373
374	/* Wait for the read command bit to self-clear. */
375	for (i = 0; i < VGE_TIMEOUT; i++) {
376		DELAY(1);
377		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
378			break;
379	}
380
381	if (i == VGE_TIMEOUT)
382		device_printf(sc->vge_dev, "MII read timed out\n");
383	else
384		rval = CSR_READ_2(sc, VGE_MIIDATA);
385
386	vge_miipoll_start(sc);
387
388	return (rval);
389}
390
391static int
392vge_miibus_writereg(device_t dev, int phy, int reg, int data)
393{
394	struct vge_softc *sc;
395	int i, rval = 0;
396
397	sc = device_get_softc(dev);
398
399	vge_miipoll_stop(sc);
400
401	/* Specify the register we want to write. */
402	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
403
404	/* Specify the data we want to write. */
405	CSR_WRITE_2(sc, VGE_MIIDATA, data);
406
407	/* Issue write command. */
408	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
409
410	/* Wait for the write command bit to self-clear. */
411	for (i = 0; i < VGE_TIMEOUT; i++) {
412		DELAY(1);
413		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
414			break;
415	}
416
417	if (i == VGE_TIMEOUT) {
418		device_printf(sc->vge_dev, "MII write timed out\n");
419		rval = EIO;
420	}
421
422	vge_miipoll_start(sc);
423
424	return (rval);
425}
426
427static void
428vge_cam_clear(struct vge_softc *sc)
429{
430	int i;
431
432	/*
433	 * Turn off all the mask bits. This tells the chip
434	 * that none of the entries in the CAM filter are valid.
435	 * desired entries will be enabled as we fill the filter in.
436	 */
437
438	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
439	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
440	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
441	for (i = 0; i < 8; i++)
442		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
443
444	/* Clear the VLAN filter too. */
445
446	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
447	for (i = 0; i < 8; i++)
448		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
449
450	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
451	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
452	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
453
454	sc->vge_camidx = 0;
455}
456
457static int
458vge_cam_set(struct vge_softc *sc, uint8_t *addr)
459{
460	int i, error = 0;
461
462	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
463		return (ENOSPC);
464
465	/* Select the CAM data page. */
466	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
467	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
468
469	/* Set the filter entry we want to update and enable writing. */
470	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
471
472	/* Write the address to the CAM registers */
473	for (i = 0; i < ETHER_ADDR_LEN; i++)
474		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
475
476	/* Issue a write command. */
477	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
478
479	/* Wake for it to clear. */
480	for (i = 0; i < VGE_TIMEOUT; i++) {
481		DELAY(1);
482		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
483			break;
484	}
485
486	if (i == VGE_TIMEOUT) {
487		device_printf(sc->vge_dev, "setting CAM filter failed\n");
488		error = EIO;
489		goto fail;
490	}
491
492	/* Select the CAM mask page. */
493	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
494	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
495
496	/* Set the mask bit that enables this filter. */
497	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
498	    1<<(sc->vge_camidx & 7));
499
500	sc->vge_camidx++;
501
502fail:
503	/* Turn off access to CAM. */
504	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
505	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
506	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
507
508	return (error);
509}
510
511static void
512vge_setvlan(struct vge_softc *sc)
513{
514	if_t ifp;
515	uint8_t cfg;
516
517	VGE_LOCK_ASSERT(sc);
518
519	ifp = sc->vge_ifp;
520	cfg = CSR_READ_1(sc, VGE_RXCFG);
521	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
522		cfg |= VGE_VTAG_OPT2;
523	else
524		cfg &= ~VGE_VTAG_OPT2;
525	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
526}
527
528static u_int
529vge_set_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
530{
531	struct vge_softc *sc = arg;
532
533        if (sc->vge_camidx == VGE_CAM_MAXADDRS)
534		return (0);
535
536	(void )vge_cam_set(sc, LLADDR(sdl));
537
538	return (1);
539}
540
541static u_int
542vge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
543{
544	uint32_t h, *hashes = arg;
545
546	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
547	if (h < 32)
548		hashes[0] |= (1 << h);
549	else
550		hashes[1] |= (1 << (h - 32));
551
552	return (1);
553}
554
555/*
556 * Program the multicast filter. We use the 64-entry CAM filter
557 * for perfect filtering. If there's more than 64 multicast addresses,
558 * we use the hash filter instead.
559 */
560static void
561vge_rxfilter(struct vge_softc *sc)
562{
563	if_t ifp;
564	uint32_t hashes[2];
565	uint8_t rxcfg;
566
567	VGE_LOCK_ASSERT(sc);
568
569	/* First, zot all the multicast entries. */
570	hashes[0] = 0;
571	hashes[1] = 0;
572
573	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
574	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
575	    VGE_RXCTL_RX_PROMISC);
576	/*
577	 * Always allow VLAN oversized frames and frames for
578	 * this host.
579	 */
580	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
581
582	ifp = sc->vge_ifp;
583	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
584		rxcfg |= VGE_RXCTL_RX_BCAST;
585	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
586		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
587			rxcfg |= VGE_RXCTL_RX_PROMISC;
588		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) {
589			hashes[0] = 0xFFFFFFFF;
590			hashes[1] = 0xFFFFFFFF;
591		}
592		goto done;
593	}
594
595	vge_cam_clear(sc);
596
597	/* Now program new ones */
598	if_foreach_llmaddr(ifp, vge_set_maddr, sc);
599
600	/* If there were too many addresses, use the hash filter. */
601        if (sc->vge_camidx == VGE_CAM_MAXADDRS) {
602		vge_cam_clear(sc);
603		 if_foreach_llmaddr(ifp, vge_hash_maddr, hashes);
604	}
605
606done:
607	if (hashes[0] != 0 || hashes[1] != 0)
608		rxcfg |= VGE_RXCTL_RX_MCAST;
609	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
610	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
611	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
612}
613
614static void
615vge_reset(struct vge_softc *sc)
616{
617	int i;
618
619	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
620
621	for (i = 0; i < VGE_TIMEOUT; i++) {
622		DELAY(5);
623		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
624			break;
625	}
626
627	if (i == VGE_TIMEOUT) {
628		device_printf(sc->vge_dev, "soft reset timed out\n");
629		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
630		DELAY(2000);
631	}
632
633	DELAY(5000);
634}
635
636/*
637 * Probe for a VIA gigabit chip. Check the PCI vendor and device
638 * IDs against our list and return a device name if we find a match.
639 */
640static int
641vge_probe(device_t dev)
642{
643	struct vge_type	*t;
644
645	t = vge_devs;
646
647	while (t->vge_name != NULL) {
648		if ((pci_get_vendor(dev) == t->vge_vid) &&
649		    (pci_get_device(dev) == t->vge_did)) {
650			device_set_desc(dev, t->vge_name);
651			return (BUS_PROBE_DEFAULT);
652		}
653		t++;
654	}
655
656	return (ENXIO);
657}
658
659/*
660 * Map a single buffer address.
661 */
662
663struct vge_dmamap_arg {
664	bus_addr_t	vge_busaddr;
665};
666
667static void
668vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
669{
670	struct vge_dmamap_arg *ctx;
671
672	if (error != 0)
673		return;
674
675	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
676
677	ctx = (struct vge_dmamap_arg *)arg;
678	ctx->vge_busaddr = segs[0].ds_addr;
679}
680
681static int
682vge_dma_alloc(struct vge_softc *sc)
683{
684	struct vge_dmamap_arg ctx;
685	struct vge_txdesc *txd;
686	struct vge_rxdesc *rxd;
687	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
688	int error, i;
689
690	/*
691	 * It seems old PCI controllers do not support DAC.  DAC
692	 * configuration can be enabled by accessing VGE_CHIPCFG3
693	 * register but honor EEPROM configuration instead of
694	 * blindly overriding DAC configuration.  PCIe based
695	 * controllers are supposed to support 64bit DMA so enable
696	 * 64bit DMA on these controllers.
697	 */
698	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
699		lowaddr = BUS_SPACE_MAXADDR;
700	else
701		lowaddr = BUS_SPACE_MAXADDR_32BIT;
702
703again:
704	/* Create parent ring tag. */
705	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
706	    1, 0,			/* algnmnt, boundary */
707	    lowaddr,			/* lowaddr */
708	    BUS_SPACE_MAXADDR,		/* highaddr */
709	    NULL, NULL,			/* filter, filterarg */
710	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
711	    0,				/* nsegments */
712	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
713	    0,				/* flags */
714	    NULL, NULL,			/* lockfunc, lockarg */
715	    &sc->vge_cdata.vge_ring_tag);
716	if (error != 0) {
717		device_printf(sc->vge_dev,
718		    "could not create parent DMA tag.\n");
719		goto fail;
720	}
721
722	/* Create tag for Tx ring. */
723	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
724	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
725	    BUS_SPACE_MAXADDR,		/* lowaddr */
726	    BUS_SPACE_MAXADDR,		/* highaddr */
727	    NULL, NULL,			/* filter, filterarg */
728	    VGE_TX_LIST_SZ,		/* maxsize */
729	    1,				/* nsegments */
730	    VGE_TX_LIST_SZ,		/* maxsegsize */
731	    0,				/* flags */
732	    NULL, NULL,			/* lockfunc, lockarg */
733	    &sc->vge_cdata.vge_tx_ring_tag);
734	if (error != 0) {
735		device_printf(sc->vge_dev,
736		    "could not allocate Tx ring DMA tag.\n");
737		goto fail;
738	}
739
740	/* Create tag for Rx ring. */
741	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
742	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
743	    BUS_SPACE_MAXADDR,		/* lowaddr */
744	    BUS_SPACE_MAXADDR,		/* highaddr */
745	    NULL, NULL,			/* filter, filterarg */
746	    VGE_RX_LIST_SZ,		/* maxsize */
747	    1,				/* nsegments */
748	    VGE_RX_LIST_SZ,		/* maxsegsize */
749	    0,				/* flags */
750	    NULL, NULL,			/* lockfunc, lockarg */
751	    &sc->vge_cdata.vge_rx_ring_tag);
752	if (error != 0) {
753		device_printf(sc->vge_dev,
754		    "could not allocate Rx ring DMA tag.\n");
755		goto fail;
756	}
757
758	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
759	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
760	    (void **)&sc->vge_rdata.vge_tx_ring,
761	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
762	    &sc->vge_cdata.vge_tx_ring_map);
763	if (error != 0) {
764		device_printf(sc->vge_dev,
765		    "could not allocate DMA'able memory for Tx ring.\n");
766		goto fail;
767	}
768
769	ctx.vge_busaddr = 0;
770	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
771	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
772	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
773	if (error != 0 || ctx.vge_busaddr == 0) {
774		device_printf(sc->vge_dev,
775		    "could not load DMA'able memory for Tx ring.\n");
776		goto fail;
777	}
778	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
779
780	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
781	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
782	    (void **)&sc->vge_rdata.vge_rx_ring,
783	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
784	    &sc->vge_cdata.vge_rx_ring_map);
785	if (error != 0) {
786		device_printf(sc->vge_dev,
787		    "could not allocate DMA'able memory for Rx ring.\n");
788		goto fail;
789	}
790
791	ctx.vge_busaddr = 0;
792	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
793	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
794	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
795	if (error != 0 || ctx.vge_busaddr == 0) {
796		device_printf(sc->vge_dev,
797		    "could not load DMA'able memory for Rx ring.\n");
798		goto fail;
799	}
800	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
801
802	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
803	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
804	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
805	if ((VGE_ADDR_HI(tx_ring_end) !=
806	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
807	    (VGE_ADDR_HI(rx_ring_end) !=
808	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
809	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
810		device_printf(sc->vge_dev, "4GB boundary crossed, "
811		    "switching to 32bit DMA address mode.\n");
812		vge_dma_free(sc);
813		/* Limit DMA address space to 32bit and try again. */
814		lowaddr = BUS_SPACE_MAXADDR_32BIT;
815		goto again;
816	}
817
818	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
819		lowaddr = VGE_BUF_DMA_MAXADDR;
820	else
821		lowaddr = BUS_SPACE_MAXADDR_32BIT;
822	/* Create parent buffer tag. */
823	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
824	    1, 0,			/* algnmnt, boundary */
825	    lowaddr,			/* lowaddr */
826	    BUS_SPACE_MAXADDR,		/* highaddr */
827	    NULL, NULL,			/* filter, filterarg */
828	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
829	    0,				/* nsegments */
830	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
831	    0,				/* flags */
832	    NULL, NULL,			/* lockfunc, lockarg */
833	    &sc->vge_cdata.vge_buffer_tag);
834	if (error != 0) {
835		device_printf(sc->vge_dev,
836		    "could not create parent buffer DMA tag.\n");
837		goto fail;
838	}
839
840	/* Create tag for Tx buffers. */
841	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
842	    1, 0,			/* algnmnt, boundary */
843	    BUS_SPACE_MAXADDR,		/* lowaddr */
844	    BUS_SPACE_MAXADDR,		/* highaddr */
845	    NULL, NULL,			/* filter, filterarg */
846	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
847	    VGE_MAXTXSEGS,		/* nsegments */
848	    MCLBYTES,			/* maxsegsize */
849	    0,				/* flags */
850	    NULL, NULL,			/* lockfunc, lockarg */
851	    &sc->vge_cdata.vge_tx_tag);
852	if (error != 0) {
853		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
854		goto fail;
855	}
856
857	/* Create tag for Rx buffers. */
858	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
859	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
860	    BUS_SPACE_MAXADDR,		/* lowaddr */
861	    BUS_SPACE_MAXADDR,		/* highaddr */
862	    NULL, NULL,			/* filter, filterarg */
863	    MCLBYTES,			/* maxsize */
864	    1,				/* nsegments */
865	    MCLBYTES,			/* maxsegsize */
866	    0,				/* flags */
867	    NULL, NULL,			/* lockfunc, lockarg */
868	    &sc->vge_cdata.vge_rx_tag);
869	if (error != 0) {
870		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
871		goto fail;
872	}
873
874	/* Create DMA maps for Tx buffers. */
875	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
876		txd = &sc->vge_cdata.vge_txdesc[i];
877		txd->tx_m = NULL;
878		txd->tx_dmamap = NULL;
879		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
880		    &txd->tx_dmamap);
881		if (error != 0) {
882			device_printf(sc->vge_dev,
883			    "could not create Tx dmamap.\n");
884			goto fail;
885		}
886	}
887	/* Create DMA maps for Rx buffers. */
888	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
889	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
890		device_printf(sc->vge_dev,
891		    "could not create spare Rx dmamap.\n");
892		goto fail;
893	}
894	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
895		rxd = &sc->vge_cdata.vge_rxdesc[i];
896		rxd->rx_m = NULL;
897		rxd->rx_dmamap = NULL;
898		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
899		    &rxd->rx_dmamap);
900		if (error != 0) {
901			device_printf(sc->vge_dev,
902			    "could not create Rx dmamap.\n");
903			goto fail;
904		}
905	}
906
907fail:
908	return (error);
909}
910
911static void
912vge_dma_free(struct vge_softc *sc)
913{
914	struct vge_txdesc *txd;
915	struct vge_rxdesc *rxd;
916	int i;
917
918	/* Tx ring. */
919	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
920		if (sc->vge_rdata.vge_tx_ring_paddr)
921			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
922			    sc->vge_cdata.vge_tx_ring_map);
923		if (sc->vge_rdata.vge_tx_ring)
924			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
925			    sc->vge_rdata.vge_tx_ring,
926			    sc->vge_cdata.vge_tx_ring_map);
927		sc->vge_rdata.vge_tx_ring = NULL;
928		sc->vge_rdata.vge_tx_ring_paddr = 0;
929		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
930		sc->vge_cdata.vge_tx_ring_tag = NULL;
931	}
932	/* Rx ring. */
933	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
934		if (sc->vge_rdata.vge_rx_ring_paddr)
935			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
936			    sc->vge_cdata.vge_rx_ring_map);
937		if (sc->vge_rdata.vge_rx_ring)
938			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
939			    sc->vge_rdata.vge_rx_ring,
940			    sc->vge_cdata.vge_rx_ring_map);
941		sc->vge_rdata.vge_rx_ring = NULL;
942		sc->vge_rdata.vge_rx_ring_paddr = 0;
943		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
944		sc->vge_cdata.vge_rx_ring_tag = NULL;
945	}
946	/* Tx buffers. */
947	if (sc->vge_cdata.vge_tx_tag != NULL) {
948		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
949			txd = &sc->vge_cdata.vge_txdesc[i];
950			if (txd->tx_dmamap != NULL) {
951				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
952				    txd->tx_dmamap);
953				txd->tx_dmamap = NULL;
954			}
955		}
956		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
957		sc->vge_cdata.vge_tx_tag = NULL;
958	}
959	/* Rx buffers. */
960	if (sc->vge_cdata.vge_rx_tag != NULL) {
961		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
962			rxd = &sc->vge_cdata.vge_rxdesc[i];
963			if (rxd->rx_dmamap != NULL) {
964				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
965				    rxd->rx_dmamap);
966				rxd->rx_dmamap = NULL;
967			}
968		}
969		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
970			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
971			    sc->vge_cdata.vge_rx_sparemap);
972			sc->vge_cdata.vge_rx_sparemap = NULL;
973		}
974		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
975		sc->vge_cdata.vge_rx_tag = NULL;
976	}
977
978	if (sc->vge_cdata.vge_buffer_tag != NULL) {
979		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
980		sc->vge_cdata.vge_buffer_tag = NULL;
981	}
982	if (sc->vge_cdata.vge_ring_tag != NULL) {
983		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
984		sc->vge_cdata.vge_ring_tag = NULL;
985	}
986}
987
988/*
989 * Attach the interface. Allocate softc structures, do ifmedia
990 * setup and ethernet/BPF attach.
991 */
992static int
993vge_attach(device_t dev)
994{
995	u_char eaddr[ETHER_ADDR_LEN];
996	struct vge_softc *sc;
997	if_t ifp;
998	int error = 0, cap, i, msic, rid;
999
1000	sc = device_get_softc(dev);
1001	sc->vge_dev = dev;
1002
1003	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1004	    MTX_DEF);
1005	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1006
1007	/*
1008	 * Map control/status registers.
1009	 */
1010	pci_enable_busmaster(dev);
1011
1012	rid = PCIR_BAR(1);
1013	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1014	    RF_ACTIVE);
1015
1016	if (sc->vge_res == NULL) {
1017		device_printf(dev, "couldn't map ports/memory\n");
1018		error = ENXIO;
1019		goto fail;
1020	}
1021
1022	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1023		sc->vge_flags |= VGE_FLAG_PCIE;
1024		sc->vge_expcap = cap;
1025	} else
1026		sc->vge_flags |= VGE_FLAG_JUMBO;
1027	if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1028		sc->vge_flags |= VGE_FLAG_PMCAP;
1029		sc->vge_pmcap = cap;
1030	}
1031	rid = 0;
1032	msic = pci_msi_count(dev);
1033	if (msi_disable == 0 && msic > 0) {
1034		msic = 1;
1035		if (pci_alloc_msi(dev, &msic) == 0) {
1036			if (msic == 1) {
1037				sc->vge_flags |= VGE_FLAG_MSI;
1038				device_printf(dev, "Using %d MSI message\n",
1039				    msic);
1040				rid = 1;
1041			} else
1042				pci_release_msi(dev);
1043		}
1044	}
1045
1046	/* Allocate interrupt */
1047	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1048	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1049	if (sc->vge_irq == NULL) {
1050		device_printf(dev, "couldn't map interrupt\n");
1051		error = ENXIO;
1052		goto fail;
1053	}
1054
1055	/* Reset the adapter. */
1056	vge_reset(sc);
1057	/* Reload EEPROM. */
1058	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1059	for (i = 0; i < VGE_TIMEOUT; i++) {
1060		DELAY(5);
1061		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1062			break;
1063	}
1064	if (i == VGE_TIMEOUT)
1065		device_printf(dev, "EEPROM reload timed out\n");
1066	/*
1067	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1068	 * MAC will receive magic packet which in turn confuses
1069	 * controller.
1070	 */
1071	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1072
1073	/*
1074	 * Get station address from the EEPROM.
1075	 */
1076	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1077	/*
1078	 * Save configured PHY address.
1079	 * It seems the PHY address of PCIe controllers just
1080	 * reflects media jump strapping status so we assume the
1081	 * internal PHY address of PCIe controller is at 1.
1082	 */
1083	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1084		sc->vge_phyaddr = 1;
1085	else
1086		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1087		    VGE_MIICFG_PHYADDR;
1088	/* Clear WOL and take hardware from powerdown. */
1089	vge_clrwol(sc);
1090	vge_sysctl_node(sc);
1091	error = vge_dma_alloc(sc);
1092	if (error)
1093		goto fail;
1094
1095	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1096	if (ifp == NULL) {
1097		device_printf(dev, "can not if_alloc()\n");
1098		error = ENOSPC;
1099		goto fail;
1100	}
1101
1102	vge_miipoll_start(sc);
1103	/* Do MII setup */
1104	error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1105	    vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1106	    MIIF_DOPAUSE);
1107	if (error != 0) {
1108		device_printf(dev, "attaching PHYs failed\n");
1109		goto fail;
1110	}
1111
1112	if_setsoftc(ifp, sc);
1113	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1114	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1115	if_setioctlfn(ifp, vge_ioctl);
1116	if_setcapabilities(ifp, IFCAP_VLAN_MTU);
1117	if_setstartfn(ifp, vge_start);
1118	if_sethwassist(ifp, VGE_CSUM_FEATURES);
1119	if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1120	    IFCAP_VLAN_HWTAGGING, 0);
1121	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1122		if_setcapabilitiesbit(ifp, IFCAP_WOL, 0);
1123	if_setcapenable(ifp, if_getcapabilities(ifp));
1124#ifdef DEVICE_POLLING
1125	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
1126#endif
1127	if_setinitfn(ifp, vge_init);
1128	if_setsendqlen(ifp, VGE_TX_DESC_CNT - 1);
1129	if_setsendqready(ifp);
1130
1131	/*
1132	 * Call MI attach routine.
1133	 */
1134	ether_ifattach(ifp, eaddr);
1135
1136	/* Tell the upper layer(s) we support long frames. */
1137	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
1138
1139	/* Hook interrupt last to avoid having to lock softc */
1140	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1141	    NULL, vge_intr, sc, &sc->vge_intrhand);
1142
1143	if (error) {
1144		device_printf(dev, "couldn't set up irq\n");
1145		ether_ifdetach(ifp);
1146		goto fail;
1147	}
1148
1149fail:
1150	if (error)
1151		vge_detach(dev);
1152
1153	return (error);
1154}
1155
1156/*
1157 * Shutdown hardware and free up resources. This can be called any
1158 * time after the mutex has been initialized. It is called in both
1159 * the error case in attach and the normal detach case so it needs
1160 * to be careful about only freeing resources that have actually been
1161 * allocated.
1162 */
1163static int
1164vge_detach(device_t dev)
1165{
1166	struct vge_softc *sc;
1167	if_t ifp;
1168
1169	sc = device_get_softc(dev);
1170	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1171	ifp = sc->vge_ifp;
1172
1173#ifdef DEVICE_POLLING
1174	if (if_getcapenable(ifp) & IFCAP_POLLING)
1175		ether_poll_deregister(ifp);
1176#endif
1177
1178	/* These should only be active if attach succeeded */
1179	if (device_is_attached(dev)) {
1180		ether_ifdetach(ifp);
1181		VGE_LOCK(sc);
1182		vge_stop(sc);
1183		VGE_UNLOCK(sc);
1184		callout_drain(&sc->vge_watchdog);
1185	}
1186	if (sc->vge_miibus)
1187		device_delete_child(dev, sc->vge_miibus);
1188	bus_generic_detach(dev);
1189
1190	if (sc->vge_intrhand)
1191		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1192	if (sc->vge_irq)
1193		bus_release_resource(dev, SYS_RES_IRQ,
1194		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1195	if (sc->vge_flags & VGE_FLAG_MSI)
1196		pci_release_msi(dev);
1197	if (sc->vge_res)
1198		bus_release_resource(dev, SYS_RES_MEMORY,
1199		    PCIR_BAR(1), sc->vge_res);
1200	if (ifp)
1201		if_free(ifp);
1202
1203	vge_dma_free(sc);
1204	mtx_destroy(&sc->vge_mtx);
1205
1206	return (0);
1207}
1208
1209static void
1210vge_discard_rxbuf(struct vge_softc *sc, int prod)
1211{
1212	struct vge_rxdesc *rxd;
1213	int i;
1214
1215	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1216	rxd->rx_desc->vge_sts = 0;
1217	rxd->rx_desc->vge_ctl = 0;
1218
1219	/*
1220	 * Note: the manual fails to document the fact that for
1221	 * proper operation, the driver needs to replentish the RX
1222	 * DMA ring 4 descriptors at a time (rather than one at a
1223	 * time, like most chips). We can allocate the new buffers
1224	 * but we should not set the OWN bits until we're ready
1225	 * to hand back 4 of them in one shot.
1226	 */
1227	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1228		for (i = VGE_RXCHUNK; i > 0; i--) {
1229			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1230			rxd = rxd->rxd_prev;
1231		}
1232		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1233	}
1234}
1235
1236static int
1237vge_newbuf(struct vge_softc *sc, int prod)
1238{
1239	struct vge_rxdesc *rxd;
1240	struct mbuf *m;
1241	bus_dma_segment_t segs[1];
1242	bus_dmamap_t map;
1243	int i, nsegs;
1244
1245	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1246	if (m == NULL)
1247		return (ENOBUFS);
1248	/*
1249	 * This is part of an evil trick to deal with strict-alignment
1250	 * architectures. The VIA chip requires RX buffers to be aligned
1251	 * on 32-bit boundaries, but that will hose strict-alignment
1252	 * architectures. To get around this, we leave some empty space
1253	 * at the start of each buffer and for non-strict-alignment hosts,
1254	 * we copy the buffer back two bytes to achieve word alignment.
1255	 * This is slightly more efficient than allocating a new buffer,
1256	 * copying the contents, and discarding the old buffer.
1257	 */
1258	m->m_len = m->m_pkthdr.len = MCLBYTES;
1259	m_adj(m, VGE_RX_BUF_ALIGN);
1260
1261	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1262	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1263		m_freem(m);
1264		return (ENOBUFS);
1265	}
1266	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1267
1268	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1269	if (rxd->rx_m != NULL) {
1270		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1271		    BUS_DMASYNC_POSTREAD);
1272		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1273	}
1274	map = rxd->rx_dmamap;
1275	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1276	sc->vge_cdata.vge_rx_sparemap = map;
1277	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1278	    BUS_DMASYNC_PREREAD);
1279	rxd->rx_m = m;
1280
1281	rxd->rx_desc->vge_sts = 0;
1282	rxd->rx_desc->vge_ctl = 0;
1283	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1284	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1285	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1286
1287	/*
1288	 * Note: the manual fails to document the fact that for
1289	 * proper operation, the driver needs to replenish the RX
1290	 * DMA ring 4 descriptors at a time (rather than one at a
1291	 * time, like most chips). We can allocate the new buffers
1292	 * but we should not set the OWN bits until we're ready
1293	 * to hand back 4 of them in one shot.
1294	 */
1295	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1296		for (i = VGE_RXCHUNK; i > 0; i--) {
1297			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1298			rxd = rxd->rxd_prev;
1299		}
1300		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1301	}
1302
1303	return (0);
1304}
1305
1306static int
1307vge_tx_list_init(struct vge_softc *sc)
1308{
1309	struct vge_ring_data *rd;
1310	struct vge_txdesc *txd;
1311	int i;
1312
1313	VGE_LOCK_ASSERT(sc);
1314
1315	sc->vge_cdata.vge_tx_prodidx = 0;
1316	sc->vge_cdata.vge_tx_considx = 0;
1317	sc->vge_cdata.vge_tx_cnt = 0;
1318
1319	rd = &sc->vge_rdata;
1320	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1321	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1322		txd = &sc->vge_cdata.vge_txdesc[i];
1323		txd->tx_m = NULL;
1324		txd->tx_desc = &rd->vge_tx_ring[i];
1325	}
1326
1327	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1328	    sc->vge_cdata.vge_tx_ring_map,
1329	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1330
1331	return (0);
1332}
1333
1334static int
1335vge_rx_list_init(struct vge_softc *sc)
1336{
1337	struct vge_ring_data *rd;
1338	struct vge_rxdesc *rxd;
1339	int i;
1340
1341	VGE_LOCK_ASSERT(sc);
1342
1343	sc->vge_cdata.vge_rx_prodidx = 0;
1344	sc->vge_cdata.vge_head = NULL;
1345	sc->vge_cdata.vge_tail = NULL;
1346	sc->vge_cdata.vge_rx_commit = 0;
1347
1348	rd = &sc->vge_rdata;
1349	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1350	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1351		rxd = &sc->vge_cdata.vge_rxdesc[i];
1352		rxd->rx_m = NULL;
1353		rxd->rx_desc = &rd->vge_rx_ring[i];
1354		if (i == 0)
1355			rxd->rxd_prev =
1356			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1357		else
1358			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1359		if (vge_newbuf(sc, i) != 0)
1360			return (ENOBUFS);
1361	}
1362
1363	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1364	    sc->vge_cdata.vge_rx_ring_map,
1365	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1366
1367	sc->vge_cdata.vge_rx_commit = 0;
1368
1369	return (0);
1370}
1371
1372static void
1373vge_freebufs(struct vge_softc *sc)
1374{
1375	struct vge_txdesc *txd;
1376	struct vge_rxdesc *rxd;
1377	if_t ifp;
1378	int i;
1379
1380	VGE_LOCK_ASSERT(sc);
1381
1382	ifp = sc->vge_ifp;
1383	/*
1384	 * Free RX and TX mbufs still in the queues.
1385	 */
1386	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1387		rxd = &sc->vge_cdata.vge_rxdesc[i];
1388		if (rxd->rx_m != NULL) {
1389			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1390			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1391			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1392			    rxd->rx_dmamap);
1393			m_freem(rxd->rx_m);
1394			rxd->rx_m = NULL;
1395		}
1396	}
1397
1398	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1399		txd = &sc->vge_cdata.vge_txdesc[i];
1400		if (txd->tx_m != NULL) {
1401			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1402			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1403			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1404			    txd->tx_dmamap);
1405			m_freem(txd->tx_m);
1406			txd->tx_m = NULL;
1407			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1408		}
1409	}
1410}
1411
1412#ifndef	__NO_STRICT_ALIGNMENT
1413static __inline void
1414vge_fixup_rx(struct mbuf *m)
1415{
1416	int i;
1417	uint16_t *src, *dst;
1418
1419	src = mtod(m, uint16_t *);
1420	dst = src - 1;
1421
1422	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1423		*dst++ = *src++;
1424
1425	m->m_data -= ETHER_ALIGN;
1426}
1427#endif
1428
1429/*
1430 * RX handler. We support the reception of jumbo frames that have
1431 * been fragmented across multiple 2K mbuf cluster buffers.
1432 */
1433static int
1434vge_rxeof(struct vge_softc *sc, int count)
1435{
1436	struct mbuf *m;
1437	if_t ifp;
1438	int prod, prog, total_len;
1439	struct vge_rxdesc *rxd;
1440	struct vge_rx_desc *cur_rx;
1441	uint32_t rxstat, rxctl;
1442
1443	VGE_LOCK_ASSERT(sc);
1444
1445	ifp = sc->vge_ifp;
1446
1447	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1448	    sc->vge_cdata.vge_rx_ring_map,
1449	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1450
1451	prod = sc->vge_cdata.vge_rx_prodidx;
1452	for (prog = 0; count > 0 &&
1453	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0;
1454	    VGE_RX_DESC_INC(prod)) {
1455		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1456		rxstat = le32toh(cur_rx->vge_sts);
1457		if ((rxstat & VGE_RDSTS_OWN) != 0)
1458			break;
1459		count--;
1460		prog++;
1461		rxctl = le32toh(cur_rx->vge_ctl);
1462		total_len = VGE_RXBYTES(rxstat);
1463		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1464		m = rxd->rx_m;
1465
1466		/*
1467		 * If the 'start of frame' bit is set, this indicates
1468		 * either the first fragment in a multi-fragment receive,
1469		 * or an intermediate fragment. Either way, we want to
1470		 * accumulate the buffers.
1471		 */
1472		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1473			if (vge_newbuf(sc, prod) != 0) {
1474				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1475				VGE_CHAIN_RESET(sc);
1476				vge_discard_rxbuf(sc, prod);
1477				continue;
1478			}
1479			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1480			if (sc->vge_cdata.vge_head == NULL) {
1481				sc->vge_cdata.vge_head = m;
1482				sc->vge_cdata.vge_tail = m;
1483			} else {
1484				m->m_flags &= ~M_PKTHDR;
1485				sc->vge_cdata.vge_tail->m_next = m;
1486				sc->vge_cdata.vge_tail = m;
1487			}
1488			continue;
1489		}
1490
1491		/*
1492		 * Bad/error frames will have the RXOK bit cleared.
1493		 * However, there's one error case we want to allow:
1494		 * if a VLAN tagged frame arrives and the chip can't
1495		 * match it against the CAM filter, it considers this
1496		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1497		 * We don't want to drop the frame though: our VLAN
1498		 * filtering is done in software.
1499		 * We also want to receive bad-checksummed frames and
1500		 * and frames with bad-length.
1501		 */
1502		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1503		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1504		    VGE_RDSTS_CSUMERR)) == 0) {
1505			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1506			/*
1507			 * If this is part of a multi-fragment packet,
1508			 * discard all the pieces.
1509			 */
1510			VGE_CHAIN_RESET(sc);
1511			vge_discard_rxbuf(sc, prod);
1512			continue;
1513		}
1514
1515		if (vge_newbuf(sc, prod) != 0) {
1516			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1517			VGE_CHAIN_RESET(sc);
1518			vge_discard_rxbuf(sc, prod);
1519			continue;
1520		}
1521
1522		/* Chain received mbufs. */
1523		if (sc->vge_cdata.vge_head != NULL) {
1524			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1525			/*
1526			 * Special case: if there's 4 bytes or less
1527			 * in this buffer, the mbuf can be discarded:
1528			 * the last 4 bytes is the CRC, which we don't
1529			 * care about anyway.
1530			 */
1531			if (m->m_len <= ETHER_CRC_LEN) {
1532				sc->vge_cdata.vge_tail->m_len -=
1533				    (ETHER_CRC_LEN - m->m_len);
1534				m_freem(m);
1535			} else {
1536				m->m_len -= ETHER_CRC_LEN;
1537				m->m_flags &= ~M_PKTHDR;
1538				sc->vge_cdata.vge_tail->m_next = m;
1539			}
1540			m = sc->vge_cdata.vge_head;
1541			m->m_flags |= M_PKTHDR;
1542			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1543		} else {
1544			m->m_flags |= M_PKTHDR;
1545			m->m_pkthdr.len = m->m_len =
1546			    (total_len - ETHER_CRC_LEN);
1547		}
1548
1549#ifndef	__NO_STRICT_ALIGNMENT
1550		vge_fixup_rx(m);
1551#endif
1552		m->m_pkthdr.rcvif = ifp;
1553
1554		/* Do RX checksumming if enabled */
1555		if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
1556		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1557			/* Check IP header checksum */
1558			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1559				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1560			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1561				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1562
1563			/* Check TCP/UDP checksum */
1564			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1565			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1566				m->m_pkthdr.csum_flags |=
1567				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1568				m->m_pkthdr.csum_data = 0xffff;
1569			}
1570		}
1571
1572		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1573			/*
1574			 * The 32-bit rxctl register is stored in little-endian.
1575			 * However, the 16-bit vlan tag is stored in big-endian,
1576			 * so we have to byte swap it.
1577			 */
1578			m->m_pkthdr.ether_vtag =
1579			    bswap16(rxctl & VGE_RDCTL_VLANID);
1580			m->m_flags |= M_VLANTAG;
1581		}
1582
1583		VGE_UNLOCK(sc);
1584		if_input(ifp, m);
1585		VGE_LOCK(sc);
1586		sc->vge_cdata.vge_head = NULL;
1587		sc->vge_cdata.vge_tail = NULL;
1588	}
1589
1590	if (prog > 0) {
1591		sc->vge_cdata.vge_rx_prodidx = prod;
1592		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1593		    sc->vge_cdata.vge_rx_ring_map,
1594		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1595		/* Update residue counter. */
1596		if (sc->vge_cdata.vge_rx_commit != 0) {
1597			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1598			    sc->vge_cdata.vge_rx_commit);
1599			sc->vge_cdata.vge_rx_commit = 0;
1600		}
1601	}
1602	return (prog);
1603}
1604
1605static void
1606vge_txeof(struct vge_softc *sc)
1607{
1608	if_t ifp;
1609	struct vge_tx_desc *cur_tx;
1610	struct vge_txdesc *txd;
1611	uint32_t txstat;
1612	int cons, prod;
1613
1614	VGE_LOCK_ASSERT(sc);
1615
1616	ifp = sc->vge_ifp;
1617
1618	if (sc->vge_cdata.vge_tx_cnt == 0)
1619		return;
1620
1621	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1622	    sc->vge_cdata.vge_tx_ring_map,
1623	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1624
1625	/*
1626	 * Go through our tx list and free mbufs for those
1627	 * frames that have been transmitted.
1628	 */
1629	cons = sc->vge_cdata.vge_tx_considx;
1630	prod = sc->vge_cdata.vge_tx_prodidx;
1631	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1632		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1633		txstat = le32toh(cur_tx->vge_sts);
1634		if ((txstat & VGE_TDSTS_OWN) != 0)
1635			break;
1636		sc->vge_cdata.vge_tx_cnt--;
1637		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1638
1639		txd = &sc->vge_cdata.vge_txdesc[cons];
1640		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1641		    BUS_DMASYNC_POSTWRITE);
1642		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1643
1644		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1645		    __func__));
1646		m_freem(txd->tx_m);
1647		txd->tx_m = NULL;
1648		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1649	}
1650	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1651	    sc->vge_cdata.vge_tx_ring_map,
1652	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1653	sc->vge_cdata.vge_tx_considx = cons;
1654	if (sc->vge_cdata.vge_tx_cnt == 0)
1655		sc->vge_timer = 0;
1656}
1657
1658static void
1659vge_link_statchg(void *xsc)
1660{
1661	struct vge_softc *sc;
1662	if_t ifp;
1663	uint8_t physts;
1664
1665	sc = xsc;
1666	ifp = sc->vge_ifp;
1667	VGE_LOCK_ASSERT(sc);
1668
1669	physts = CSR_READ_1(sc, VGE_PHYSTS0);
1670	if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1671		if ((physts & VGE_PHYSTS_LINK) == 0) {
1672			sc->vge_flags &= ~VGE_FLAG_LINK;
1673			if_link_state_change(sc->vge_ifp,
1674			    LINK_STATE_DOWN);
1675		} else {
1676			sc->vge_flags |= VGE_FLAG_LINK;
1677			if_link_state_change(sc->vge_ifp,
1678			    LINK_STATE_UP);
1679			CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1680			    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1681			if ((physts & VGE_PHYSTS_FDX) != 0) {
1682				if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1683					CSR_WRITE_1(sc, VGE_CRS2,
1684					    VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1685				if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1686					CSR_WRITE_1(sc, VGE_CRS2,
1687					    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1688			}
1689			if (!if_sendq_empty(ifp))
1690				vge_start_locked(ifp);
1691		}
1692	}
1693	/*
1694	 * Restart MII auto-polling because link state change interrupt
1695	 * will disable it.
1696	 */
1697	vge_miipoll_start(sc);
1698}
1699
1700#ifdef DEVICE_POLLING
1701static int
1702vge_poll (if_t ifp, enum poll_cmd cmd, int count)
1703{
1704	struct vge_softc *sc = if_getsoftc(ifp);
1705	int rx_npkts = 0;
1706
1707	VGE_LOCK(sc);
1708	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
1709		goto done;
1710
1711	rx_npkts = vge_rxeof(sc, count);
1712	vge_txeof(sc);
1713
1714	if (!if_sendq_empty(ifp))
1715		vge_start_locked(ifp);
1716
1717	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1718		uint32_t       status;
1719		status = CSR_READ_4(sc, VGE_ISR);
1720		if (status == 0xFFFFFFFF)
1721			goto done;
1722		if (status)
1723			CSR_WRITE_4(sc, VGE_ISR, status);
1724
1725		/*
1726		 * XXX check behaviour on receiver stalls.
1727		 */
1728
1729		if (status & VGE_ISR_TXDMA_STALL ||
1730		    status & VGE_ISR_RXDMA_STALL) {
1731			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1732			vge_init_locked(sc);
1733		}
1734
1735		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1736			vge_rxeof(sc, count);
1737			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1738			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1739		}
1740	}
1741done:
1742	VGE_UNLOCK(sc);
1743	return (rx_npkts);
1744}
1745#endif /* DEVICE_POLLING */
1746
1747static void
1748vge_intr(void *arg)
1749{
1750	struct vge_softc *sc;
1751	if_t ifp;
1752	uint32_t status;
1753
1754	sc = arg;
1755	VGE_LOCK(sc);
1756
1757	ifp = sc->vge_ifp;
1758	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1759	    (if_getflags(ifp) & IFF_UP) == 0) {
1760		VGE_UNLOCK(sc);
1761		return;
1762	}
1763
1764#ifdef DEVICE_POLLING
1765	if  (if_getcapenable(ifp) & IFCAP_POLLING) {
1766		status = CSR_READ_4(sc, VGE_ISR);
1767		CSR_WRITE_4(sc, VGE_ISR, status);
1768		if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1769			vge_link_statchg(sc);
1770		VGE_UNLOCK(sc);
1771		return;
1772	}
1773#endif
1774
1775	/* Disable interrupts */
1776	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1777	status = CSR_READ_4(sc, VGE_ISR);
1778	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1779	/* If the card has gone away the read returns 0xffff. */
1780	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1781		goto done;
1782	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1783		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1784			vge_rxeof(sc, VGE_RX_DESC_CNT);
1785		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1786			vge_rxeof(sc, VGE_RX_DESC_CNT);
1787			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1788			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1789		}
1790
1791		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1792			vge_txeof(sc);
1793
1794		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1795			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1796			vge_init_locked(sc);
1797		}
1798
1799		if (status & VGE_ISR_LINKSTS)
1800			vge_link_statchg(sc);
1801	}
1802done:
1803	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1804		/* Re-enable interrupts */
1805		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1806
1807		if (!if_sendq_empty(ifp))
1808			vge_start_locked(ifp);
1809	}
1810	VGE_UNLOCK(sc);
1811}
1812
1813static int
1814vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1815{
1816	struct vge_txdesc *txd;
1817	struct vge_tx_frag *frag;
1818	struct mbuf *m;
1819	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1820	int error, i, nsegs, padlen;
1821	uint32_t cflags;
1822
1823	VGE_LOCK_ASSERT(sc);
1824
1825	M_ASSERTPKTHDR((*m_head));
1826
1827	/* Argh. This chip does not autopad short frames. */
1828	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1829		m = *m_head;
1830		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1831		if (M_WRITABLE(m) == 0) {
1832			/* Get a writable copy. */
1833			m = m_dup(*m_head, M_NOWAIT);
1834			m_freem(*m_head);
1835			if (m == NULL) {
1836				*m_head = NULL;
1837				return (ENOBUFS);
1838			}
1839			*m_head = m;
1840		}
1841		if (M_TRAILINGSPACE(m) < padlen) {
1842			m = m_defrag(m, M_NOWAIT);
1843			if (m == NULL) {
1844				m_freem(*m_head);
1845				*m_head = NULL;
1846				return (ENOBUFS);
1847			}
1848		}
1849		/*
1850		 * Manually pad short frames, and zero the pad space
1851		 * to avoid leaking data.
1852		 */
1853		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1854		m->m_pkthdr.len += padlen;
1855		m->m_len = m->m_pkthdr.len;
1856		*m_head = m;
1857	}
1858
1859	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1860
1861	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1862	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1863	if (error == EFBIG) {
1864		m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1865		if (m == NULL) {
1866			m_freem(*m_head);
1867			*m_head = NULL;
1868			return (ENOMEM);
1869		}
1870		*m_head = m;
1871		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1872		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1873		if (error != 0) {
1874			m_freem(*m_head);
1875			*m_head = NULL;
1876			return (error);
1877		}
1878	} else if (error != 0)
1879		return (error);
1880	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1881	    BUS_DMASYNC_PREWRITE);
1882
1883	m = *m_head;
1884	cflags = 0;
1885
1886	/* Configure checksum offload. */
1887	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1888		cflags |= VGE_TDCTL_IPCSUM;
1889	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1890		cflags |= VGE_TDCTL_TCPCSUM;
1891	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1892		cflags |= VGE_TDCTL_UDPCSUM;
1893
1894	/* Configure VLAN. */
1895	if ((m->m_flags & M_VLANTAG) != 0)
1896		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1897	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1898	/*
1899	 * XXX
1900	 * Velocity family seems to support TSO but no information
1901	 * for MSS configuration is available. Also the number of
1902	 * fragments supported by a descriptor is too small to hold
1903	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1904	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1905	 * longer chain of buffers but no additional information is
1906	 * available.
1907	 *
1908	 * When telling the chip how many segments there are, we
1909	 * must use nsegs + 1 instead of just nsegs. Darned if I
1910	 * know why. This also means we can't use the last fragment
1911	 * field of Tx descriptor.
1912	 */
1913	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1914	    VGE_TD_LS_NORM);
1915	for (i = 0; i < nsegs; i++) {
1916		frag = &txd->tx_desc->vge_frag[i];
1917		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1918		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1919		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1920	}
1921
1922	sc->vge_cdata.vge_tx_cnt++;
1923	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1924
1925	/*
1926	 * Finally request interrupt and give the first descriptor
1927	 * ownership to hardware.
1928	 */
1929	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1930	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1931	txd->tx_m = m;
1932
1933	return (0);
1934}
1935
1936/*
1937 * Main transmit routine.
1938 */
1939
1940static void
1941vge_start(if_t ifp)
1942{
1943	struct vge_softc *sc;
1944
1945	sc = if_getsoftc(ifp);
1946	VGE_LOCK(sc);
1947	vge_start_locked(ifp);
1948	VGE_UNLOCK(sc);
1949}
1950
1951static void
1952vge_start_locked(if_t ifp)
1953{
1954	struct vge_softc *sc;
1955	struct vge_txdesc *txd;
1956	struct mbuf *m_head;
1957	int enq, idx;
1958
1959	sc = if_getsoftc(ifp);
1960
1961	VGE_LOCK_ASSERT(sc);
1962
1963	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1964	    (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1965	    IFF_DRV_RUNNING)
1966		return;
1967
1968	idx = sc->vge_cdata.vge_tx_prodidx;
1969	VGE_TX_DESC_DEC(idx);
1970	for (enq = 0; !if_sendq_empty(ifp) &&
1971	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1972		m_head = if_dequeue(ifp);
1973		if (m_head == NULL)
1974			break;
1975		/*
1976		 * Pack the data into the transmit ring. If we
1977		 * don't have room, set the OACTIVE flag and wait
1978		 * for the NIC to drain the ring.
1979		 */
1980		if (vge_encap(sc, &m_head)) {
1981			if (m_head == NULL)
1982				break;
1983			if_sendq_prepend(ifp, m_head);
1984			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1985			break;
1986		}
1987
1988		txd = &sc->vge_cdata.vge_txdesc[idx];
1989		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1990		VGE_TX_DESC_INC(idx);
1991
1992		enq++;
1993		/*
1994		 * If there's a BPF listener, bounce a copy of this frame
1995		 * to him.
1996		 */
1997		ETHER_BPF_MTAP(ifp, m_head);
1998	}
1999
2000	if (enq > 0) {
2001		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
2002		    sc->vge_cdata.vge_tx_ring_map,
2003		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2004		/* Issue a transmit command. */
2005		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2006		/*
2007		 * Set a timeout in case the chip goes out to lunch.
2008		 */
2009		sc->vge_timer = 5;
2010	}
2011}
2012
2013static void
2014vge_init(void *xsc)
2015{
2016	struct vge_softc *sc = xsc;
2017
2018	VGE_LOCK(sc);
2019	vge_init_locked(sc);
2020	VGE_UNLOCK(sc);
2021}
2022
2023static void
2024vge_init_locked(struct vge_softc *sc)
2025{
2026	if_t ifp = sc->vge_ifp;
2027	int error, i;
2028
2029	VGE_LOCK_ASSERT(sc);
2030
2031	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2032		return;
2033
2034	/*
2035	 * Cancel pending I/O and free all RX/TX buffers.
2036	 */
2037	vge_stop(sc);
2038	vge_reset(sc);
2039	vge_miipoll_start(sc);
2040
2041	/*
2042	 * Initialize the RX and TX descriptors and mbufs.
2043	 */
2044
2045	error = vge_rx_list_init(sc);
2046	if (error != 0) {
2047                device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2048                return;
2049	}
2050	vge_tx_list_init(sc);
2051	/* Clear MAC statistics. */
2052	vge_stats_clear(sc);
2053	/* Set our station address */
2054	for (i = 0; i < ETHER_ADDR_LEN; i++)
2055		CSR_WRITE_1(sc, VGE_PAR0 + i, if_getlladdr(sc->vge_ifp)[i]);
2056
2057	/*
2058	 * Set receive FIFO threshold. Also allow transmission and
2059	 * reception of VLAN tagged frames.
2060	 */
2061	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2062	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2063
2064	/* Set DMA burst length */
2065	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2066	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2067
2068	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2069
2070	/* Set collision backoff algorithm */
2071	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2072	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2073	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2074
2075	/* Disable LPSEL field in priority resolution */
2076	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2077
2078	/*
2079	 * Load the addresses of the DMA queues into the chip.
2080	 * Note that we only use one transmit queue.
2081	 */
2082
2083	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2084	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2085	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2086	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2087	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2088
2089	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2090	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2091	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2092	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2093
2094	/* Configure interrupt moderation. */
2095	vge_intr_holdoff(sc);
2096
2097	/* Enable and wake up the RX descriptor queue */
2098	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2099	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2100
2101	/* Enable the TX descriptor queue */
2102	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2103
2104	/* Init the cam filter. */
2105	vge_cam_clear(sc);
2106
2107	/* Set up receiver filter. */
2108	vge_rxfilter(sc);
2109	vge_setvlan(sc);
2110
2111	/* Initialize pause timer. */
2112	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2113	/*
2114	 * Initialize flow control parameters.
2115	 *  TX XON high threshold : 48
2116	 *  TX pause low threshold : 24
2117	 *  Disable hald-duplex flow control
2118	 */
2119	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2120	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2121
2122	/* Enable jumbo frame reception (if desired) */
2123
2124	/* Start the MAC. */
2125	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2126	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2127	CSR_WRITE_1(sc, VGE_CRS0,
2128	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2129
2130#ifdef DEVICE_POLLING
2131	/*
2132	 * Disable interrupts except link state change if we are polling.
2133	 */
2134	if (if_getcapenable(ifp) & IFCAP_POLLING) {
2135		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2136	} else	/* otherwise ... */
2137#endif
2138	{
2139	/*
2140	 * Enable interrupts.
2141	 */
2142		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2143	}
2144	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2145	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2146
2147	sc->vge_flags &= ~VGE_FLAG_LINK;
2148	vge_ifmedia_upd_locked(sc);
2149
2150	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2151	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2152	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2153}
2154
2155/*
2156 * Set media options.
2157 */
2158static int
2159vge_ifmedia_upd(if_t ifp)
2160{
2161	struct vge_softc *sc;
2162	int error;
2163
2164	sc = if_getsoftc(ifp);
2165	VGE_LOCK(sc);
2166	error = vge_ifmedia_upd_locked(sc);
2167	VGE_UNLOCK(sc);
2168
2169	return (error);
2170}
2171
2172static int
2173vge_ifmedia_upd_locked(struct vge_softc *sc)
2174{
2175	struct mii_data *mii;
2176	struct mii_softc *miisc;
2177	int error;
2178
2179	mii = device_get_softc(sc->vge_miibus);
2180	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2181		PHY_RESET(miisc);
2182	vge_setmedia(sc);
2183	error = mii_mediachg(mii);
2184
2185	return (error);
2186}
2187
2188/*
2189 * Report current media status.
2190 */
2191static void
2192vge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2193{
2194	struct vge_softc *sc;
2195	struct mii_data *mii;
2196
2197	sc = if_getsoftc(ifp);
2198	mii = device_get_softc(sc->vge_miibus);
2199
2200	VGE_LOCK(sc);
2201	if ((if_getflags(ifp) & IFF_UP) == 0) {
2202		VGE_UNLOCK(sc);
2203		return;
2204	}
2205	mii_pollstat(mii);
2206	ifmr->ifm_active = mii->mii_media_active;
2207	ifmr->ifm_status = mii->mii_media_status;
2208	VGE_UNLOCK(sc);
2209}
2210
2211static void
2212vge_setmedia(struct vge_softc *sc)
2213{
2214	struct mii_data *mii;
2215	struct ifmedia_entry *ife;
2216
2217	mii = device_get_softc(sc->vge_miibus);
2218	ife = mii->mii_media.ifm_cur;
2219
2220	/*
2221	 * If the user manually selects a media mode, we need to turn
2222	 * on the forced MAC mode bit in the DIAGCTL register. If the
2223	 * user happens to choose a full duplex mode, we also need to
2224	 * set the 'force full duplex' bit. This applies only to
2225	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2226	 * mode is disabled, and in 1000baseT mode, full duplex is
2227	 * always implied, so we turn on the forced mode bit but leave
2228	 * the FDX bit cleared.
2229	 */
2230
2231	switch (IFM_SUBTYPE(ife->ifm_media)) {
2232	case IFM_AUTO:
2233		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2234		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2235		break;
2236	case IFM_1000_T:
2237		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2238		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2239		break;
2240	case IFM_100_TX:
2241	case IFM_10_T:
2242		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2243		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2244			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2245		} else {
2246			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2247		}
2248		break;
2249	default:
2250		device_printf(sc->vge_dev, "unknown media type: %x\n",
2251		    IFM_SUBTYPE(ife->ifm_media));
2252		break;
2253	}
2254}
2255
2256static int
2257vge_ioctl(if_t ifp, u_long command, caddr_t data)
2258{
2259	struct vge_softc *sc = if_getsoftc(ifp);
2260	struct ifreq *ifr = (struct ifreq *) data;
2261	struct mii_data *mii;
2262	int error = 0, mask;
2263
2264	switch (command) {
2265	case SIOCSIFMTU:
2266		VGE_LOCK(sc);
2267		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2268			error = EINVAL;
2269		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
2270			if (ifr->ifr_mtu > ETHERMTU &&
2271			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2272				error = EINVAL;
2273			else
2274				if_setmtu(ifp, ifr->ifr_mtu);
2275		}
2276		VGE_UNLOCK(sc);
2277		break;
2278	case SIOCSIFFLAGS:
2279		VGE_LOCK(sc);
2280		if ((if_getflags(ifp) & IFF_UP) != 0) {
2281			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
2282			    ((if_getflags(ifp) ^ sc->vge_if_flags) &
2283			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2284				vge_rxfilter(sc);
2285			else
2286				vge_init_locked(sc);
2287		} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2288			vge_stop(sc);
2289		sc->vge_if_flags = if_getflags(ifp);
2290		VGE_UNLOCK(sc);
2291		break;
2292	case SIOCADDMULTI:
2293	case SIOCDELMULTI:
2294		VGE_LOCK(sc);
2295		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2296			vge_rxfilter(sc);
2297		VGE_UNLOCK(sc);
2298		break;
2299	case SIOCGIFMEDIA:
2300	case SIOCSIFMEDIA:
2301		mii = device_get_softc(sc->vge_miibus);
2302		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2303		break;
2304	case SIOCSIFCAP:
2305		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2306#ifdef DEVICE_POLLING
2307		if (mask & IFCAP_POLLING) {
2308			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2309				error = ether_poll_register(vge_poll, ifp);
2310				if (error)
2311					return (error);
2312				VGE_LOCK(sc);
2313					/* Disable interrupts */
2314				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2315				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2316				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2317				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
2318				VGE_UNLOCK(sc);
2319			} else {
2320				error = ether_poll_deregister(ifp);
2321				/* Enable interrupts. */
2322				VGE_LOCK(sc);
2323				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2324				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2325				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2326				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
2327				VGE_UNLOCK(sc);
2328			}
2329		}
2330#endif /* DEVICE_POLLING */
2331		VGE_LOCK(sc);
2332		if ((mask & IFCAP_TXCSUM) != 0 &&
2333		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
2334			if_togglecapenable(ifp, IFCAP_TXCSUM);
2335			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2336				if_sethwassistbits(ifp, VGE_CSUM_FEATURES, 0);
2337			else
2338				if_sethwassistbits(ifp, 0, VGE_CSUM_FEATURES);
2339		}
2340		if ((mask & IFCAP_RXCSUM) != 0 &&
2341		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
2342			if_togglecapenable(ifp, IFCAP_RXCSUM);
2343		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2344		    (if_getcapabilities(ifp) & IFCAP_WOL_UCAST) != 0)
2345			if_togglecapenable(ifp, IFCAP_WOL_UCAST);
2346		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2347		    (if_getcapabilities(ifp) & IFCAP_WOL_MCAST) != 0)
2348			if_togglecapenable(ifp, IFCAP_WOL_MCAST);
2349		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2350		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
2351			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2352		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2353		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2354			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2355		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2356		    (IFCAP_VLAN_HWTAGGING & if_getcapabilities(ifp)) != 0) {
2357			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2358			vge_setvlan(sc);
2359		}
2360		VGE_UNLOCK(sc);
2361		VLAN_CAPABILITIES(ifp);
2362		break;
2363	default:
2364		error = ether_ioctl(ifp, command, data);
2365		break;
2366	}
2367
2368	return (error);
2369}
2370
2371static void
2372vge_watchdog(void *arg)
2373{
2374	struct vge_softc *sc;
2375	if_t ifp;
2376
2377	sc = arg;
2378	VGE_LOCK_ASSERT(sc);
2379	vge_stats_update(sc);
2380	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2381	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2382		return;
2383
2384	ifp = sc->vge_ifp;
2385	if_printf(ifp, "watchdog timeout\n");
2386	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2387
2388	vge_txeof(sc);
2389	vge_rxeof(sc, VGE_RX_DESC_CNT);
2390
2391	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2392	vge_init_locked(sc);
2393}
2394
2395/*
2396 * Stop the adapter and free any mbufs allocated to the
2397 * RX and TX lists.
2398 */
2399static void
2400vge_stop(struct vge_softc *sc)
2401{
2402	if_t ifp;
2403
2404	VGE_LOCK_ASSERT(sc);
2405	ifp = sc->vge_ifp;
2406	sc->vge_timer = 0;
2407	callout_stop(&sc->vge_watchdog);
2408
2409	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2410
2411	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2412	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2413	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2414	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2415	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2416	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2417
2418	vge_stats_update(sc);
2419	VGE_CHAIN_RESET(sc);
2420	vge_txeof(sc);
2421	vge_freebufs(sc);
2422}
2423
2424/*
2425 * Device suspend routine.  Stop the interface and save some PCI
2426 * settings in case the BIOS doesn't restore them properly on
2427 * resume.
2428 */
2429static int
2430vge_suspend(device_t dev)
2431{
2432	struct vge_softc *sc;
2433
2434	sc = device_get_softc(dev);
2435
2436	VGE_LOCK(sc);
2437	vge_stop(sc);
2438	vge_setwol(sc);
2439	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2440	VGE_UNLOCK(sc);
2441
2442	return (0);
2443}
2444
2445/*
2446 * Device resume routine.  Restore some PCI settings in case the BIOS
2447 * doesn't, re-enable busmastering, and restart the interface if
2448 * appropriate.
2449 */
2450static int
2451vge_resume(device_t dev)
2452{
2453	struct vge_softc *sc;
2454	if_t ifp;
2455	uint16_t pmstat;
2456
2457	sc = device_get_softc(dev);
2458	VGE_LOCK(sc);
2459	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2460		/* Disable PME and clear PME status. */
2461		pmstat = pci_read_config(sc->vge_dev,
2462		    sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2463		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2464			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2465			pci_write_config(sc->vge_dev,
2466			    sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2467		}
2468	}
2469	vge_clrwol(sc);
2470	/* Restart MII auto-polling. */
2471	vge_miipoll_start(sc);
2472	ifp = sc->vge_ifp;
2473	/* Reinitialize interface if necessary. */
2474	if ((if_getflags(ifp) & IFF_UP) != 0) {
2475		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2476		vge_init_locked(sc);
2477	}
2478	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2479	VGE_UNLOCK(sc);
2480
2481	return (0);
2482}
2483
2484/*
2485 * Stop all chip I/O so that the kernel's probe routines don't
2486 * get confused by errant DMAs when rebooting.
2487 */
2488static int
2489vge_shutdown(device_t dev)
2490{
2491
2492	return (vge_suspend(dev));
2493}
2494
2495#define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2496	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2497
2498static void
2499vge_sysctl_node(struct vge_softc *sc)
2500{
2501	struct sysctl_ctx_list *ctx;
2502	struct sysctl_oid_list *child, *parent;
2503	struct sysctl_oid *tree;
2504	struct vge_hw_stats *stats;
2505
2506	stats = &sc->vge_stats;
2507	ctx = device_get_sysctl_ctx(sc->vge_dev);
2508	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2509
2510	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2511	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2512	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2513	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2514	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2515	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2516
2517	/* Pull in device tunables. */
2518	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2519	resource_int_value(device_get_name(sc->vge_dev),
2520	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2521	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2522	resource_int_value(device_get_name(sc->vge_dev),
2523	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2524	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2525	resource_int_value(device_get_name(sc->vge_dev),
2526	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2527
2528	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2529	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "VGE statistics");
2530	parent = SYSCTL_CHILDREN(tree);
2531
2532	/* Rx statistics. */
2533	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
2534	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX MAC statistics");
2535	child = SYSCTL_CHILDREN(tree);
2536	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2537	    &stats->rx_frames, "frames");
2538	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2539	    &stats->rx_good_frames, "Good frames");
2540	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2541	    &stats->rx_fifo_oflows, "FIFO overflows");
2542	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2543	    &stats->rx_runts, "Too short frames");
2544	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2545	    &stats->rx_runts_errs, "Too short frames with errors");
2546	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2547	    &stats->rx_pkts_64, "64 bytes frames");
2548	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2549	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2550	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2551	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2552	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2553	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2554	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2555	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2556	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2557	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2558	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2559	    &stats->rx_pkts_1519_max, "1519 to max frames");
2560	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2561	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2562	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2563	    &stats->rx_jumbos, "Jumbo frames");
2564	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2565	    &stats->rx_crcerrs, "CRC errors");
2566	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2567	    &stats->rx_pause_frames, "Pause frames");
2568	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2569	    &stats->rx_alignerrs, "Alignment errors");
2570	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2571	    &stats->rx_nobufs, "Frames with no buffer event");
2572	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2573	    &stats->rx_symerrs, "Frames with symbol errors");
2574	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2575	    &stats->rx_lenerrs, "Frames with length mismatched");
2576
2577	/* Tx statistics. */
2578	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
2579	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX MAC statistics");
2580	child = SYSCTL_CHILDREN(tree);
2581	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2582	    &stats->tx_good_frames, "Good frames");
2583	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2584	    &stats->tx_pkts_64, "64 bytes frames");
2585	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2586	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2587	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2588	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2589	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2590	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2591	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2592	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2593	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2594	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2595	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2596	    &stats->tx_jumbos, "Jumbo frames");
2597	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2598	    &stats->tx_colls, "Collisions");
2599	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2600	    &stats->tx_latecolls, "Late collisions");
2601	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2602	    &stats->tx_pause, "Pause frames");
2603#ifdef VGE_ENABLE_SQEERR
2604	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2605	    &stats->tx_sqeerrs, "SQE errors");
2606#endif
2607	/* Clear MAC statistics. */
2608	vge_stats_clear(sc);
2609}
2610
2611#undef	VGE_SYSCTL_STAT_ADD32
2612
2613static void
2614vge_stats_clear(struct vge_softc *sc)
2615{
2616	int i;
2617
2618	CSR_WRITE_1(sc, VGE_MIBCSR,
2619	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2620	CSR_WRITE_1(sc, VGE_MIBCSR,
2621	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2622	for (i = VGE_TIMEOUT; i > 0; i--) {
2623		DELAY(1);
2624		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2625			break;
2626	}
2627	if (i == 0)
2628		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2629	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2630	    ~VGE_MIBCSR_FREEZE);
2631}
2632
2633static void
2634vge_stats_update(struct vge_softc *sc)
2635{
2636	struct vge_hw_stats *stats;
2637	if_t ifp;
2638	uint32_t mib[VGE_MIB_CNT], val;
2639	int i;
2640
2641	VGE_LOCK_ASSERT(sc);
2642
2643	stats = &sc->vge_stats;
2644	ifp = sc->vge_ifp;
2645
2646	CSR_WRITE_1(sc, VGE_MIBCSR,
2647	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2648	for (i = VGE_TIMEOUT; i > 0; i--) {
2649		DELAY(1);
2650		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2651			break;
2652	}
2653	if (i == 0) {
2654		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2655		vge_stats_clear(sc);
2656		return;
2657	}
2658
2659	bzero(mib, sizeof(mib));
2660reset_idx:
2661	/* Set MIB read index to 0. */
2662	CSR_WRITE_1(sc, VGE_MIBCSR,
2663	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2664	for (i = 0; i < VGE_MIB_CNT; i++) {
2665		val = CSR_READ_4(sc, VGE_MIBDATA);
2666		if (i != VGE_MIB_DATA_IDX(val)) {
2667			/* Reading interrupted. */
2668			goto reset_idx;
2669		}
2670		mib[i] = val & VGE_MIB_DATA_MASK;
2671	}
2672
2673	/* Rx stats. */
2674	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2675	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2676	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2677	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2678	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2679	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2680	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2681	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2682	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2683	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2684	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2685	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2686	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2687	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2688	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2689	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2690	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2691	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2692	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2693	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2694
2695	/* Tx stats. */
2696	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2697	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2698	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2699	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2700	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2701	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2702	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2703	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2704	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2705	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2706#ifdef VGE_ENABLE_SQEERR
2707	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2708#endif
2709	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2710
2711	/* Update counters in ifnet. */
2712	if_inc_counter(ifp, IFCOUNTER_OPACKETS, mib[VGE_MIB_TX_GOOD_FRAMES]);
2713
2714	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2715	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2716
2717	if_inc_counter(ifp, IFCOUNTER_OERRORS,
2718	    mib[VGE_MIB_TX_COLLS] + mib[VGE_MIB_TX_LATECOLLS]);
2719
2720	if_inc_counter(ifp, IFCOUNTER_IPACKETS, mib[VGE_MIB_RX_GOOD_FRAMES]);
2721
2722	if_inc_counter(ifp, IFCOUNTER_IERRORS,
2723	    mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2724	    mib[VGE_MIB_RX_RUNTS] +
2725	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2726	    mib[VGE_MIB_RX_CRCERRS] +
2727	    mib[VGE_MIB_RX_ALIGNERRS] +
2728	    mib[VGE_MIB_RX_NOBUFS] +
2729	    mib[VGE_MIB_RX_SYMERRS] +
2730	    mib[VGE_MIB_RX_LENERRS]);
2731}
2732
2733static void
2734vge_intr_holdoff(struct vge_softc *sc)
2735{
2736	uint8_t intctl;
2737
2738	VGE_LOCK_ASSERT(sc);
2739
2740	/*
2741	 * Set Tx interrupt supression threshold.
2742	 * It's possible to use single-shot timer in VGE_CRS1 register
2743	 * in Tx path such that driver can remove most of Tx completion
2744	 * interrupts. However this requires additional access to
2745	 * VGE_CRS1 register to reload the timer in addintion to
2746	 * activating Tx kick command. Another downside is we don't know
2747	 * what single-shot timer value should be used in advance so
2748	 * reclaiming transmitted mbufs could be delayed a lot which in
2749	 * turn slows down Tx operation.
2750	 */
2751	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2752	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2753
2754	/* Set Rx interrupt suppresion threshold. */
2755	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2756	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2757
2758	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2759	intctl &= ~VGE_INTCTL_SC_RELOAD;
2760	intctl |= VGE_INTCTL_HC_RELOAD;
2761	if (sc->vge_tx_coal_pkt <= 0)
2762		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2763	else
2764		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2765	if (sc->vge_rx_coal_pkt <= 0)
2766		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2767	else
2768		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2769	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2770	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2771	if (sc->vge_int_holdoff > 0) {
2772		/* Set interrupt holdoff timer. */
2773		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2774		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2775		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2776		/* Enable holdoff timer. */
2777		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2778	}
2779}
2780
2781static void
2782vge_setlinkspeed(struct vge_softc *sc)
2783{
2784	struct mii_data *mii;
2785	int aneg, i;
2786
2787	VGE_LOCK_ASSERT(sc);
2788
2789	mii = device_get_softc(sc->vge_miibus);
2790	mii_pollstat(mii);
2791	aneg = 0;
2792	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2793	    (IFM_ACTIVE | IFM_AVALID)) {
2794		switch IFM_SUBTYPE(mii->mii_media_active) {
2795		case IFM_10_T:
2796		case IFM_100_TX:
2797			return;
2798		case IFM_1000_T:
2799			aneg++;
2800		default:
2801			break;
2802		}
2803	}
2804	/* Clear forced MAC speed/duplex configuration. */
2805	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2806	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2807	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2808	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2809	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2810	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2811	    BMCR_AUTOEN | BMCR_STARTNEG);
2812	DELAY(1000);
2813	if (aneg != 0) {
2814		/* Poll link state until vge(4) get a 10/100 link. */
2815		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2816			mii_pollstat(mii);
2817			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2818			    == (IFM_ACTIVE | IFM_AVALID)) {
2819				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2820				case IFM_10_T:
2821				case IFM_100_TX:
2822					return;
2823				default:
2824					break;
2825				}
2826			}
2827			VGE_UNLOCK(sc);
2828			pause("vgelnk", hz);
2829			VGE_LOCK(sc);
2830		}
2831		if (i == MII_ANEGTICKS_GIGE)
2832			device_printf(sc->vge_dev, "establishing link failed, "
2833			    "WOL may not work!");
2834	}
2835	/*
2836	 * No link, force MAC to have 100Mbps, full-duplex link.
2837	 * This is the last resort and may/may not work.
2838	 */
2839	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2840	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2841}
2842
2843static void
2844vge_setwol(struct vge_softc *sc)
2845{
2846	if_t ifp;
2847	uint16_t pmstat;
2848	uint8_t val;
2849
2850	VGE_LOCK_ASSERT(sc);
2851
2852	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2853		/* No PME capability, PHY power down. */
2854		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2855		    BMCR_PDOWN);
2856		vge_miipoll_stop(sc);
2857		return;
2858	}
2859
2860	ifp = sc->vge_ifp;
2861
2862	/* Clear WOL on pattern match. */
2863	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2864	/* Disable WOL on magic/unicast packet. */
2865	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2866	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2867	    VGE_WOLCFG_PMEOVR);
2868	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
2869		vge_setlinkspeed(sc);
2870		val = 0;
2871		if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) != 0)
2872			val |= VGE_WOLCR1_UCAST;
2873		if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
2874			val |= VGE_WOLCR1_MAGIC;
2875		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2876		val = 0;
2877		if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
2878			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2879		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2880		/* Disable MII auto-polling. */
2881		vge_miipoll_stop(sc);
2882	}
2883	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2884	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2885	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2886
2887	/* Clear WOL status on pattern match. */
2888	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2889	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2890
2891	val = CSR_READ_1(sc, VGE_PWRSTAT);
2892	val |= VGE_STICKHW_SWPTAG;
2893	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2894	/* Put hardware into sleep. */
2895	val = CSR_READ_1(sc, VGE_PWRSTAT);
2896	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2897	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2898	/* Request PME if WOL is requested. */
2899	pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2900	    PCIR_POWER_STATUS, 2);
2901	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2902	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
2903		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2904	pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2905	    pmstat, 2);
2906}
2907
2908static void
2909vge_clrwol(struct vge_softc *sc)
2910{
2911	uint8_t val;
2912
2913	val = CSR_READ_1(sc, VGE_PWRSTAT);
2914	val &= ~VGE_STICKHW_SWPTAG;
2915	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2916	/* Disable WOL and clear power state indicator. */
2917	val = CSR_READ_1(sc, VGE_PWRSTAT);
2918	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2919	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2920
2921	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2922	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2923
2924	/* Clear WOL on pattern match. */
2925	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2926	/* Disable WOL on magic/unicast packet. */
2927	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2928	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2929	    VGE_WOLCFG_PMEOVR);
2930	/* Clear WOL status on pattern match. */
2931	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2932	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2933}
2934